forked from extreme-bert/extreme-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglue_utils.py
177 lines (139 loc) · 5.39 KB
/
glue_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from typing import Callable, Dict, List
from sklearn.metrics import f1_score
import json
import dataclasses
from dataclasses import dataclass
from typing import List, Optional, Union
import csv
import os
glue_tasks_num_labels = {
"citation_intent": 6,
"ag": 4,
"amazon": 2,
"chemprot": 13,
"hyperpartisan_news": 2,
"imdb": 2,
"rct-20k": 5,
"sciie": 7,
"SST2": 2
}
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds, average='macro')
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def glue_compute_metrics(task_name, preds, labels):
assert len(preds) == len(
labels
), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}"
if task_name == "citation_intent":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "ag":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "amazon":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "chemprot":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "hyperpartisan_news":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "imdb":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "rct-20k":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "sciie":
return {"acc_and_f1": acc_and_f1(preds, labels)}
elif task_name == "SST2":
return {"acc_and_f1": acc_and_f1(preds, labels)}
else:
raise KeyError(task_name)
@dataclass
class InputExample:
guid: str
text_a: str
text_b: Optional[str] = None
label: Optional[str] = None
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(dataclasses.asdict(self), indent=2) + "\n"
class generalProcessor:
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8-sig") as f:
return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
def get_train_examples(self, data_dir):
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if len(line) == 2:
guid = "%s-%s" % (set_type, i)
text_a = line[0]
label = line[1]
examples.append(InputExample(guid=guid, text_a=text_a, label=label))
return examples
class sciieProcessor(generalProcessor):
def get_labels(self):
return ['FEATURE-OF', 'PART-OF', 'CONJUNCTION', 'EVALUATE-FOR', 'COMPARE', 'USED-FOR', 'HYPONYM-OF']
class SST2Processor(generalProcessor):
def get_labels(self):
return ['0', '1']
class rct_20kProcessor(generalProcessor):
def get_labels(self):
return ['CONCLUSIONS', 'RESULTS', 'METHODS', 'OBJECTIVE', 'BACKGROUND']
class imdbProcessor(generalProcessor):
def get_labels(self):
return ['0', '1']
class hyperpartisan_newsProcessor(generalProcessor):
def get_labels(self):
return ['true', 'false']
class chemprotProcessor(generalProcessor):
def get_labels(self):
return ['INDIRECT-UPREGULATOR', 'UPREGULATOR', 'INHIBITOR', 'DOWNREGULATOR', 'SUBSTRATE', 'ACTIVATOR',
'AGONIST-ACTIVATOR',
'PRODUCT-OF', 'AGONIST-INHIBITOR', 'INDIRECT-DOWNREGULATOR', 'SUBSTRATE_PRODUCT-OF', 'ANTAGONIST',
'AGONIST']
class amazonProcessor(generalProcessor):
def get_labels(self):
return ['helpful', 'unhelpful']
class agProcessor(generalProcessor):
def get_labels(self):
return ['1', '2', '3', '4']
class citation_intentProcessor(generalProcessor):
def get_labels(self):
return ['CompareOrContrast', 'Background', 'Uses', 'Extends', 'Motivation', 'Future']
glue_processors = {
"citation_intent": citation_intentProcessor,
"ag": agProcessor,
"amazon": amazonProcessor,
"chemprot": chemprotProcessor,
"hyperpartisan_news": hyperpartisan_newsProcessor,
"imdb": imdbProcessor,
"rct-20k": rct_20kProcessor,
"sciie": sciieProcessor,
"SST2": SST2Processor
}
glue_output_modes = {
"citation_intent": "classification",
"ag": "classification",
"amazon": "classification",
"chemprot": "classification",
"hyperpartisan_news": "classification",
"imdb": "classification",
"rct-20k": "classification",
"sciie": "classification",
"SST2": "classification"
}
############################ for dataset and accuracy ###########################