给你一个下标从 0 开始的非负整数数组 nums
和两个整数 l
和 r
。
请你返回 nums
中子多重集合的和在闭区间 [l, r]
之间的 子多重集合的数目 。
由于答案可能很大,请你将答案对 109 + 7
取余后返回。
子多重集合 指的是从数组中选出一些元素构成的 无序 集合,每个元素 x
出现的次数可以是 0, 1, ..., occ[x]
次,其中 occ[x]
是元素 x
在数组中的出现次数。
注意:
- 如果两个子多重集合中的元素排序后一模一样,那么它们两个是相同的 子多重集合 。
- 空 集合的和是
0
。
示例 1:
输入:nums = [1,2,2,3], l = 6, r = 6 输出:1 解释:唯一和为 6 的子集合是 {1, 2, 3} 。
示例 2:
输入:nums = [2,1,4,2,7], l = 1, r = 5 输出:7 解释:和在闭区间 [1, 5] 之间的子多重集合为 {1} ,{2} ,{4} ,{2, 2} ,{1, 2} ,{1, 4} 和 {1, 2, 2} 。
示例 3:
输入:nums = [1,2,1,3,5,2], l = 3, r = 5 输出:9 解释:和在闭区间 [3, 5] 之间的子多重集合为 {3} ,{5} ,{1, 2} ,{1, 3} ,{2, 2} ,{2, 3} ,{1, 1, 2} ,{1, 1, 3} 和 {1, 2, 2} 。
提示:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
nums
的和不超过2 * 104
。0 <= l <= r <= 2 * 104
class Solution:
def countSubMultisets(self, nums: List[int], l: int, r: int) -> int:
kMod = 1_000_000_007
# dp[i] := # of submultisets of nums with sum i
dp = [1] + [0] * r
count = collections.Counter(nums)
zeros = count.pop(0, 0)
for num, freq in count.items():
# stride[i] := dp[i] + dp[i - num] + dp[i - 2 * num] + ...
stride = dp.copy()
for i in range(num, r + 1):
stride[i] += stride[i - num]
for i in range(r, 0, -1):
if i >= num * (freq + 1):
# dp[i] + dp[i - num] + dp[i - freq * num]
dp[i] = stride[i] - stride[i - num * (freq + 1)]
else:
dp[i] = stride[i]
return (zeros + 1) * sum(dp[l : r + 1]) % kMod
class Solution {
static final int MOD = 1_000_000_007;
public int countSubMultisets(List<Integer> nums, int l, int r) {
Map<Integer, Integer> count = new HashMap<>();
int total = 0;
for (int num : nums) {
total += num;
if (num <= r) {
count.merge(num, 1, Integer::sum);
}
}
if (total < l) {
return 0;
}
r = Math.min(r, total);
int[] dp = new int[r + 1];
dp[0] = count.getOrDefault(0, 0) + 1;
count.remove(Integer.valueOf(0));
int sum = 0;
for (Map.Entry<Integer, Integer> e : count.entrySet()) {
int num = e.getKey();
int c = e.getValue();
sum = Math.min(sum + c * num, r);
// prefix part
// dp[i] = dp[i] + dp[i - num] + ... + dp[i - c*num] + dp[i-(c+1)*num] + ... + dp[i % num]
for (int i = num; i <= sum; i++) {
dp[i] = (dp[i] + dp[i - num]) % MOD;
}
int temp = (c + 1) * num;
// correction part
// subtract dp[i - (freq + 1) * num] to the end part.
// leves dp[i] = dp[i] + dp[i-num] +...+ dp[i - c*num];
for (int i = sum; i >= temp; i--) {
dp[i] = (dp[i] - dp[i - temp] + MOD) % MOD;
}
}
int ans = 0;
for (int i = l; i <= r; i++) {
ans += dp[i];
ans %= MOD;
}
return ans;
}
}