forked from DengWangBao/Leetcode-Java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongestIncreasingSubsequence.java
48 lines (43 loc) · 1.31 KB
/
LongestIncreasingSubsequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import java.util.Arrays;
public class LongestIncreasingSubsequence {
/**
* 这题是典型的DP,f[i]包含i的最长递增子序列长度
*/
public int lengthOfLIS(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
}
int[] f = new int[n];
/**
* 注意这里fill是有必要的
*/
Arrays.fill(f, 1);
int max = 1;
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
f[i] = Math.max(f[i], f[j] + 1);
}
}
max = Math.max(max, f[i]);
}
return max;
}
/**
* 核心思路是dp维护了一个递增的序列,dp[i]表示nums中长度为i+1的递增子序列中tail最小的值
* tail越小意味着之后延长这个序列更容易
* 为了保证dp[i]是tail最小的,我们遍历nums时,当发现有更小的值时,会替换dp[i]
*/
public int lengthOfLIS2(int[] nums) {
int[] dp = new int[nums.length];
int len = 0;
for(int x : nums) {
int i = Arrays.binarySearch(dp, 0, len, x);
if(i < 0) i = -(i + 1);
dp[i] = x;
if(i == len) len++;
}
return len;
}
}