-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ASR_teacher.py
141 lines (127 loc) · 5.95 KB
/
train_ASR_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from jiwer import wer
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from transformers import Wav2Vec2FeatureExtractor
import torch, json, os, librosa, transformers, gc
import torch.nn as nn
import json
import torch.nn.functional as F
from torch.optim.lr_scheduler import ExponentialLR
import torch.optim as optim
from torch.utils.data import DataLoader
from pyctcdecode import build_ctcdecoder
import pandas as pd
import numpy as np
from tqdm import tqdm
import warnings
import torch
from torch.utils.data import Dataset
import numpy as np
from dataloader import MDD_Dataset
import einops
from dataloader import text_to_tensor
from MDD_model import Wav2Vec2_Teacher, Wav2Vec2_Teacher_woL
from pyctcdecode import build_ctcdecoder
from jiwer import wer
import ast
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, padding_side='right', do_normalize=True, return_attention_mask=False)
min_wer = 100
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
num_epoch = 100
torch.manual_seed(0)
gc.collect()
def collate_fn(batch):
with torch.no_grad():
sr = 16000
max_col = [-1] * 4
target_length = []
for row in batch:
if row[0].shape[0] > max_col[0]:
max_col[0] = row[0].shape[0]
if len(row[1]) > max_col[1]:
max_col[1] = len(row[1])
if len(row[2]) > max_col[2]:
max_col[2] = len(row[2])
cols = {'waveform':[], 'linguistic':[], 'transcript':[], 'error':[], 'outputlengths':[]}
for row in batch:
pad_wav = np.concatenate([row[0], np.zeros(max_col[0] - row[0].shape[0])])
cols['waveform'].append(pad_wav)
row[1].extend([68] * (max_col[1] - len(row[1])))
cols['linguistic'].append(row[1])
cols['outputlengths'].append(len(row[2]))
row[2].extend([68] * (max_col[2] - len(row[2])))
cols['transcript'].append(row[2])
inputs = feature_extractor(cols['waveform'], sampling_rate = 16000)
input_values = torch.tensor(inputs.input_values, device=device)
cols['linguistic'] = torch.tensor(cols['linguistic'], dtype=torch.long, device=device)
cols['transcript'] = torch.tensor(cols['transcript'], dtype=torch.long, device=device)
cols['outputlengths'] = torch.tensor(cols['outputlengths'], dtype=torch.long, device=device)
return input_values, cols['linguistic'], cols['transcript'], cols['outputlengths']
df_train = pd.read_csv('./train_canonical_error.csv')
df_dev = pd.read_csv("./dev.csv")
train_dataset = MDD_Dataset(df_train)
batch_size = 4
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
model = Wav2Vec2_Teacher_woL.from_pretrained(
'facebook/wav2vec2-large-xlsr-53',
)
# model.load_state_dict(torch.load("w2v2_XLSR_MDD.pth"))
model.freeze_feature_extractor()
model = model.to(device)
list_vocab = ['t ', 'n* ', 'y* ', 'uw ', 'er ', 'ah ', 'sh ', 'ng ', 'ey* ', 'd* ', 'jh* ', 'ow ', 'aw ', 'ao* ', 'aa ', 'z* ', 'dh* ', 'aa* ', 'uw* ', 'th ', 'er* ', 'ih ', 't* ', 'zh ', 'g* ', 'k ', 'y ', 'l ', 'uh ', 'eh* ', 'p* ', 'ow* ', 'ch ', 'w ', 'b ', 'l* ', 'v ', 'ao ', 'w* ', 'aw* ', 'ah* ', 'uh* ', 'zh* ', 's ', 'k* ', 'p ', 'iy ', 'r ', 'ae* ', 'eh ', 'b* ', 'f ', 'n ', 'ay ', 'oy ', 'd ', 'g ', 'ey ', 'err ', 'hh* ', 'dh ', 'ae ', 'v* ', 'r* ', 'hh ', 'm ', 'jh ', 'z ', '']
decoder_ctc = build_ctcdecoder(
labels = list_vocab,
)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
nll_loss = nn.NLLLoss() #should care about ignore index, need to test more
ctc_loss = nn.CTCLoss(blank = 68)
for epoch in range(num_epoch):
model.train().to(device)
running_loss = []
print(f'EPOCH {epoch}:')
for i, data in tqdm(enumerate(train_loader)):
acoustic, linguistic, labels, target_lengths = data
output = labels
transcript = labels
# _, _, _, _, _, _, _, _, logits= model(acoustic, linguistic)
_, _, _, _, _, _, _, _, logits= model(acoustic)
logits = logits.transpose(0,1)
input_lengths = torch.full(size=(logits.shape[1],), fill_value=logits.shape[0], dtype=torch.long, device=device)
logits = F.log_softmax(logits, dim=2)
loss_ctc = ctc_loss(logits, labels, input_lengths, target_lengths)
loss = loss_ctc
running_loss.append(loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
# break
# scheduler.step()
print(f"Training loss: {sum(running_loss) / len(running_loss)}")
if epoch>=7:
with torch.no_grad():
model.eval().to(device)
worderrorrate = []
for point in tqdm(range(len(df_dev))):
acoustic, _ = librosa.load("../WAV/" + df_dev['Path'][point] + ".wav", sr=16000)
acoustic = feature_extractor(acoustic, sampling_rate = 16000)
acoustic = torch.tensor(acoustic.input_values, device=device)
transcript = df_dev['Transcript'][point]
canonical = df_dev['Canonical'][point]
# canonical = text_to_tensor(canonical)
# canonical = torch.tensor(canonical).to(device)
# _, _, _, _, _, _, _, _, logits = model(acoustic, canonical.unsqueeze(0))
_, _, _, _, _, _, _, _, logits = model(acoustic)
logits = F.log_softmax(logits.squeeze(0), dim=1)
x = logits.detach().cpu().numpy()
hypothesis = decoder_ctc.decode(x).strip()
# print(hypothesis)
error = wer(transcript, hypothesis)
worderrorrate.append(error)
epoch_wer = sum(worderrorrate)/len(worderrorrate)
if (epoch_wer < min_wer):
print("save_checkpoint...")
min_wer = epoch_wer
torch.save(model.state_dict(), 'checkpoint/wol_XLSR_w2v2_teacher.pth')
# with open('wer_base.txt', 'a') as wer_file:
# wer_file.write(f"Epoch {epoch}: {epoch_wer}\n")
print("wer checkpoint " + str(epoch) + ": " + str(epoch_wer))
print("min_wer: " + str(min_wer))