Python 是一个非常方便的数据科学语言,具备有强大的数据处理能力,那么在数据处理之后,进行数据的可视化操作,是顺其自然的事情,所以 PyG2Plot 就是为了在 Python 的语言环境中,也可以享受到 G2Plot 的可视化能力。
Jupyter Notebook 是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。—— Jupyter Notebook 官方介绍
简而言之,Jupyter Notebook 是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示的程序。如在编程过程中需要编写说明文档,可在同一个页面中直接编写,便于作及时的说明和解释。
其实 PyG2Plot 在 Jupyter 中的使用,和原生的用法区别不大,只是最后调用的 render 函数区别而已。
# py 环境
plot.render()
# jupyter 环境
plot.render_notebook()
首先我们打开 Jupyter 官网,开启试用 Jupyter,然后进行一个新建的模板文档。
然后我们在一个区块中输入下面的一段代码:
下面的代码直接来源于 scatter.py 文件,仅仅修改了最后的 render_notebook 方法。
!pip install pyg2plot
from pyg2plot import Plot
data = [
{ "x": 42, "y": 38, "size": 20, "genre": "female" },
{ "x": 6, "y": 18, "size": 1, "genre": "female" },
{ "x": 1, "y": 93, "size": 55, "genre": "female" },
{ "x": 57, "y": 2, "size": 90, "genre": "female" },
{ "x": 80, "y": 76, "size": 22, "genre": "female" },
{ "x": 11, "y": 74, "size": 96, "genre": "female" },
{ "x": 88, "y": 56, "size": 10, "genre": "female" },
{ "x": 30, "y": 47, "size": 49, "genre": "female" },
{ "x": 57, "y": 62, "size": 98, "genre": "female" },
{ "x": 4, "y": 16, "size": 16, "genre": "female" },
{ "x": 46, "y": 10, "size": 11, "genre": "female" },
{ "x": 22, "y": 87, "size": 89, "genre": "female" },
{ "x": 57, "y": 91, "size": 82, "genre": "female" },
{ "x": 45, "y": 15, "size": 98, "genre": "female" },
{ "x": 9, "y": 81, "size": 63, "genre": "male" },
{ "x": 98, "y": 5, "size": 89, "genre": "male" },
{ "x": 51, "y": 50, "size": 73, "genre": "male" },
{ "x": 41, "y": 22, "size": 14, "genre": "male" },
{ "x": 58, "y": 24, "size": 20, "genre": "male" },
{ "x": 78, "y": 37, "size": 34, "genre": "male" },
{ "x": 55, "y": 56, "size": 53, "genre": "male" },
{ "x": 18, "y": 45, "size": 70, "genre": "male" },
{ "x": 42, "y": 44, "size": 28, "genre": "male" },
{ "x": 3, "y": 52, "size": 59, "genre": "male" },
{ "x": 31, "y": 18, "size": 97, "genre": "male" },
{ "x": 79, "y": 91, "size": 63, "genre": "male" },
{ "x": 93, "y": 23, "size": 23, "genre": "male" },
{ "x": 44, "y": 83, "size": 22, "genre": "male" }
]
scatter = Plot("Scatter")
scatter.set_options({
"height": 400,
"appendPadding": 32,
"data": data,
"xField": "x",
"yField": "y",
"colorField": "genre",
"color": [
"r(0.4, 0.3, 0.7) 0:rgba(255,255,255,0.5) 1:#5B8FF9",
"r(0.4, 0.4, 0.7) 0:rgba(255,255,255,0.5) 1:#61DDAA",
],
"sizeField": "size",
"size": [5, 20],
"shape": "circle",
"yAxis": {
"nice": True,
"line": {
"style": {
"stroke": "#eee",
},
},
},
"xAxis": {
"grid": {
"line": {
"style": {
"stroke": "#eee",
},
},
},
"line": {
"style": {
"stroke": "#eee",
},
},
},
})
scatter.render_notebook()
然后点击运行,即可看到预览效果:
而对于 Jupyter Lab,除了上述代码中的 render_notebook
改成 render_jupyter_lab
之外,其他用法完全一样。
大概就是这样的一个使用方式了,本质没有任何使用区别。更多其他的图表类型,可以参考 绘制常用统计图表。