From bc1ed97255bdbb2c182699ddb39ceeaa80efba59 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Zden=C4=9Bk=20Hur=C3=A1k?= Reset systems
@@ -862,53 +862,53 @@ Clegg’s integrator
+
State-dependent
@@ -1018,7 +1018,7 @@
x(t) is more than just continuous (even more than uniformly continuous) but less than contiuously differentiable (aka \mathcal C^1) – it is absolutely continuous. Absolutely continuous function is a solution of the integral equation (indeed, an equation) x(t) = x(t_0) + \int_{t_0}^t f(x(\tau),\tau)\mathrm{d}\tau,
where we use Lebesgue integral (instead of Riemann).
Having referred to absolute continuity and Lebesgue integral, the discussion could quickly become rather technical. But all we want to say is that f can be “some kind of discontinuous” with respect to t. In particular, it must be measurable wrt t, which again seems to start escalating… But it suffices to say that it includes the case when f(x,t) is piecewise continuous with respect to t (sampled data control with ZOH).
-Needles to say that for a continuous f, solutions x are just classical (smooth).
+Needless to say, for a continuous f, solutions x are just classical (smooth).
If the function f is discontinuous with respect to x, some more concepts of a solution need to be invoked so that existence and uniqueness can be analyzed.
Example 6 (Some more examples of nonexistence and nonuniqueness of solutions) The system with a discontinuous RHS
diff --git a/complementarity_simulations.html b/complementarity_simulations.html
index 35efd58..0d1e145 100644
--- a/complementarity_simulations.html
+++ b/complementarity_simulations.html
@@ -757,46 +757,46 @@ Simulations of complementarity systems using time-stepping
Note, once again, the amazingly small number of steps
@@ -2324,107 +2324,107 @@Once again, we can see that the method correctly simulates the system coming to a complete stop due to friction.
diff --git a/des_automata.html b/des_automata.html index 0d5439d..314e719 100644 --- a/des_automata.html +++ b/des_automata.html @@ -2143,16 +2143,16 @@x_initial = rand(0:k, n) = [0, 4, 0, 4]
-output(dtr) = [0, 1, 1, 1]
-(update!(dtr), output(dtr)) = ([0, 0, 4, 0], [1, 0, 1, 1])
-(update!(dtr), output(dtr)) = ([1, 0, 0, 4], [0, 1, 0, 1])
-(update!(dtr), output(dtr)) = ([1, 1, 0, 0], [0, 0, 1, 0])
-(update!(dtr), output(dtr)) = ([1, 1, 1, 0], [0, 0, 0, 1])
-(update!(dtr), output(dtr)) = ([1, 1, 1, 1], [1, 0, 0, 0])
+x_initial = rand(0:k, n) = [4, 2, 3, 3]
+output(dtr) = [0, 1, 1, 0]
+(update!(dtr), output(dtr)) = ([4, 4, 2, 3], [0, 0, 1, 1])
+(update!(dtr), output(dtr)) = ([4, 4, 4, 2], [0, 0, 0, 1])
+(update!(dtr), output(dtr)) = ([4, 4, 4, 4], [1, 0, 0, 0])
+(update!(dtr), output(dtr)) = ([1, 4, 4, 4], [0, 1, 0, 0])
+(update!(dtr), output(dtr)) = ([1, 1, 4, 4], [0, 0, 1, 0])
([1, 1, 1, 1], [1, 0, 0, 0])
+([1, 1, 4, 4], [0, 0, 1, 0])
We can see that although initially the there can be more tokens, after a few iterations the algorithm achieves the goal of having just one token in the ring.
diff --git a/hybrid_automata.html b/hybrid_automata.html index 9bec34a..897cbcb 100644 --- a/hybrid_automata.html +++ b/hybrid_automata.html @@ -765,7 +765,7 @@Example 1 (Thermostat – the hello world example of a hybrid automaton) The thermostat is a device that turns some heater on
or off
(or sets some valve open or closed) based on the sensed temperature. The goal is to keep the temperature around, say, 18^\circ C.
Naturally, the discrete states (modes, locations) are on
and off
. Initially, the heater is off
. We can identify the first two components of the hybrid automaton: \mathcal Q = \{\text{on}, \text{off}\}, \quad \mathcal Q_0 = \{\text{off}\}
The only continuous state variable is the temperature. The initial temperature not not quite certain, say it is known to be in the interval [5,10]. Two more components of the hybrid automaton follow: \mathcal X = \mathbb R, \quad \mathcal X_0 = \{x:x\in \mathcal X, 5\leq x\leq 10\}
+The only continuous state variable is the temperature. The initial temperature is not quite certain, say, it is known to be in the interval [5,10]. Two more components of the hybrid automaton follow: \mathcal X = \mathbb R, \quad \mathcal X_0 = \{x:x\in \mathcal X, 5\leq x\leq 10\}
In the two modes on
and off
, the evolution of the temperature can be modelled by two different ODEs. Either from first-principles modelling or from system identification (or preferrably from the combination of the two) we get the two differential equations, say:
f_\text{off}(x) = -0.1x,\quad f_\text{on}(x) = -0.1x + 5,
which gives another component for the hybrid automaton.
*OC##&>;A00j^{8?cH5n_3DO01foh$X>FdJFfaS
z8P9aZYlR1V+gGb4y9D9f(Xy>#@2Y|iWvl{Aq~v-Rv1CJ!zuhl4WN^!oi1zXA;G{yL
z50#Uh49=>`bUEXN`IxNX_zui{8%c%T@9k7gwO%l!eW_+1_n758!-Z(naD8%aK`j&k
zYe=g-Ka4YWdF>JQ+n_#nt;T0nR>>|U_G^3%csC`r>XIDUjU-3!_Hn`DM&A6`f7!rh
zUKygZS=se)Q(aY!e#ZvJme%IjOmwK0sUOLFE_QSZzJWP0UEa>VWaQc)7hhQoDGwfH
z&r~}VDtEofT&DTnSILfY`wndSukt2Pc{PNT+Zn_LjjW(L6jV@X?DCHt%vX)=?x{k0
z)JbL4$>5%_+@HYPNN#lAak*$qjutlNn>5xBbz3g(CaL?@n?jN=B?%aV(bD(eIj+~<
z5|rmH&h(s0?&f~bjWlA@$|jW64m(W9mJs*#$Lqr))e*S1E#;;O@*fXS7y*plx*AAB
zoUxcEG+C~m@NPozrM6!1_zqXb3`~Ag W6&Gw01!-+x@jp4ap1tS@c-wTt+_!MM
zkh5n@H;wPgF^K(Vw~Ym5u6#rP52+3&57zaYKxM!LbA8Ip(7`;0jA{w2oV@dPZr2tG
zxq*#3maDdu2l_{e&dytfjvEGhM#cnqBrwAS%uf9wKa1=HhWS5IVfL1-YW71%k!1gk
zkQJ6w+~++KTuFgVz1OVcY9Oayk8)3~2$eA5y8Nlu9pLXe6KTragXf-ncG3bVUjc4P
zUg!2kTgca_h0Hc`ur2lny-2x~T+vt?i|66$iPMWp=doJ6Xt IROR3$wOr=1j@lgZ?Zh>*MVWeYJKYU(1V=Xp+8C^bl3z+Au_Cw
z3pF)3yLCz-$O9c34-ncY{kdl|^Vq>fVK%60aXC7qZte-nmwo!^rZT&Bf*-}axiO#Q
zC8fwxqpGzdgZQkQ1j~t5stLu4%zaXtuiY=7P|xoeI6Vxy{ao<7LY4v-Hg$u8Nt5ki
zFX0wsK4ju{7(i@0K+ojZTTQ7>jm51tAN^f6%|}Sv9^+1SZ{~4d3D^IR39t%jZ2qGX
zIHbJ+C{O8-YrulaL>{5GXK;{R3Ao`U)f%UnQ_D
znF2Y3;E0mey`G${y2F~rGFPViqVx0vkI|DE(sOCFp`g)go>Pg@UGHDXZ>%6F*X?f$
z&johiVHmz)L`=+GVvV1#CC7+L@>!*s>
z_B3iZY;&j=lOmm1E$MM8fSjCzz-`E#d%#2B6{GfTh5UVg1rc=5
&G-1XN4KqU^qCV-=&J_YtQqyrG
zQXd8feRTEO*qd2^Kw$+2@uwo<3o>7@i~VaW&gCsA6Zy1pay1HUpA&tzd)TC~H
#Yxh?cB4m1i?wt=R*ba50H
8Vm|dBk3n$D}sqYu~;BtnwR{C!QV73iqFtl?mIAKMhriJRdA$_2Y35
z_mw4@kQ|^tba3Y;+C$|7qX~gWti0*<9!7C?gMvK$iaZr8Yr
96aP5_JOW#BpeD>I_
zh`C=-XAkj959Jdpcj9XtqU+hw46ptS!TK^ik~yj@aX{UAy3gH7)DuQZ(4gtAzT>cy
zlT2zgnE?p;54zo+Dnwc5W(G=!myj#43#zTbUI@NxPaj!a?}2&1I%d(&I)AIbS;xEt
z{m#ex%_~n>q032_KpGzH_1ULoQ&PAT5<#_$#%Z}fC%@#G<5YJkT4_z^T=c-jgr5PT
zqq1+F@7kCqPdFN=iv^wLNRl)suqKm