Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions optimum/exporters/executorch/recipes/vulkan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from itertools import product
from typing import Any, Dict, Union

from tabulate import tabulate
from torch.export import ExportedProgram

from executorch.devtools.backend_debug import get_delegation_info
from executorch.exir import (
EdgeCompileConfig,
ExecutorchBackendConfig,
ExecutorchProgram,
to_edge_transform_and_lower,
)
from optimum.executorch.passes.remove_padding_idx_embedding_pass import RemovePaddingIdxEmbeddingPass

from ..integrations import (
CausalLMExportableModule,
MaskedLMExportableModule,
Seq2SeqLMExportableModule,
)
from ..recipe_registry import register_recipe


@register_recipe("vulkan")
def _export_to_executorch(
model: Union[CausalLMExportableModule, MaskedLMExportableModule, Seq2SeqLMExportableModule],
**kwargs,
):
"""
Export a PyTorch model to ExecuTorch w/ delegation to CoreML backend.

This function also write metadata required by the ExecuTorch runtime to the model.

Args:
model (Union[CausalLMExportableModule, MaskedLMExportableModule, Seq2SeqLMExportableModule]):
The PyTorch model to be exported to ExecuTorch.
**kwargs:
Additional keyword arguments for recipe-specific configurations, e.g. export using different example inputs, or different compile/bechend configs.

Returns:
Dict[str, ExecutorchProgram]:
A map of exported and optimized program for ExecuTorch.
For encoder-decoder models or multimodal models, it may generate multiple programs.
"""
# Import here because coremltools might not be available in all environments
from executorch.backends.vulkan.partitioner.vulkan_partitioner import VulkanPartitioner

def _lower_to_executorch(
exported_programs: Dict[str, ExportedProgram],
metadata=None,
) -> Dict[str, ExecutorchProgram]:
logging.debug(f"\nExported program: {exported_programs}")

# If just one exported program, the method name in the .pte for it should be "forward".
if len(exported_programs) == 1:
exported_programs = {"forward": next(iter(exported_programs.values()))}

et_prog = to_edge_transform_and_lower(
exported_programs,
partitioner=[
VulkanPartitioner(
{"require_dynamic_shapes": True, "force_fp16": True}
)
],
compile_config=EdgeCompileConfig(
_check_ir_validity=False,
# In ET 0.7, we can set _skip_dim_order=False
_skip_dim_order=True,
),
constant_methods=metadata,
transform_passes=[RemovePaddingIdxEmbeddingPass()],
).to_executorch()
pte_name = "model"
for method in et_prog.methods:
logging.debug(f"---------------------- Method: {method} ----------------------")
logging.debug(
f"\nExecuTorch program for {pte_name}.pte: {et_prog.exported_program(method).graph_module}"
)
delegation_info = get_delegation_info(et_prog.exported_program(method).graph_module)
logging.debug(f"\nDelegation info Summary for {pte_name}.pte: {delegation_info.get_summary()}")
logging.debug(
f"\nDelegation info for {pte_name}.pte: {tabulate(delegation_info.get_operator_delegation_dataframe(), headers='keys', tablefmt='fancy_grid')}"
)
return {pte_name: et_prog}

exported_progs = model.export()
return _lower_to_executorch(exported_progs, model.metadata)
Loading