-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNSF_ABM_main code.py
504 lines (417 loc) · 19.1 KB
/
NSF_ABM_main code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
from pylab import *
import networkx as nx
import pandas as pd
import itertools as itr
from scipy import spatial
from collections import Counter
import operator
from collections import OrderedDict
dim = 4 # dim: dimensions of problem space
group_size = 20
number_items = 10
n = 3 # number of ideas in final selection
MC = 100 # number of Monte Carlo experiments
mont_iter = 20 # number of Monte Carlo experiments for each group
coef_unknown = 0.2
coef_com_like = 1.
number_new_ideas = 4 # number of potential new ideas in function of post a novel idea
number_initial_idea = 50
noise = 0.1
number_personal_idea = 1
number_visible_idea = 20 # number of visible ideas in each iteration
number_groups = 1
########################################################################################################################
# functions
########################################################################################################################
items = list(arange(number_items))
initial_n_idea = [[choice(items) for i in range(dim)] for j in range(number_initial_idea)]
TU = {tuple(c): random() for c in initial_n_idea}
i_1, i_0 = choice(arange(number_initial_idea), 2, replace=False)
TU[tuple(initial_n_idea[i_1])] = 1.
TU[tuple(initial_n_idea[i_0])] = 0.
def True_utility(idea): # given n initial ideas
pure_idea = tuple(idea['idea'])
initial_idea = list(TU.keys())
initial_idea_value = list(TU.values())
if pure_idea in initial_idea:
return TU[pure_idea]
else:
dist = []
for i in range(len(initial_idea)): # n is the number of initial ideas
dist.append(sqrt(sum([(float(initial_idea[i][d]) - float(pure_idea[d]))**2 for d in range(dim)])))
return sum([initial_idea_value[i]*(dist[i]**(-2)) for i in range(len(dist))])/sum([dist[i]**(-2) for i in range(len(dist))])
def Background(expertise):
Background = []
for i in range(dim):
if i in expertise:
Background.append(list(choice(items, int(uniform(int(number_items/2.)+2, number_items)), replace=False)))
else:
Background.append(list(choice(items, int(uniform(1, int(number_items/2.)-2)), replace=False)))
return Background
def Diff_background(agent1, agent2):
Background1 = agent1.background
Background2 = agent2.background
overlap = 0
for i in range(dim):
for j in Background1[i]:
if j in Background2[i]:
overlap += 1
whole_items1 = sum([len(Background1[i]) for i in range(dim)])
whole_items2 = sum([len(Background2[i]) for i in range(dim)])
return 1-overlap/(whole_items1 + whole_items2 - overlap)
def Individual_utility(agent, idea):
background = agent.background
pure_idea = idea['idea']
r = 0
for i in range(dim):
if pure_idea[i] in background[i]:
r += 1
return r*clip(True_utility(idea)+uniform(-noise, noise), 0, 1) + coef_unknown*(1-r)*uniform(0, 1.)
def Best_idea(agent):
personal_idea_pool = agent.idea_pool
if len(personal_idea_pool) == 0:
return None
else:
max_idea = max(personal_idea_pool, key=lambda i: Individual_utility(agent, i))
return max_idea
def Variance_ideas(idea_list):
dist = []
for i in idea_list:
for j in idea_list:
if i != j:
dist.append(sqrt(sum([(float(i[d])-float(j[d]))**2 for d in range(dim)])))
return var(dist)
def Probability_accept(node, idea):
agent = node['agent']
best_utility = max([Individual_utility(node['agent'], i) for i in agent.idea_pool])
mid_utility = median([Individual_utility(node['agent'], i) for i in agent.idea_pool])
if Individual_utility(node['agent'], idea) > best_utility:
return 1.
elif Individual_utility(node['agent'], idea) < mid_utility:
return 0.
else:
if mid_utility == best_utility:
return 1.
else:
return (Individual_utility(node['agent'], idea)-mid_utility)/(best_utility-mid_utility)
def Visible_ideas(node): # personal ideas are not included
local_ideas = []
# get the index of the node
index = 0
for i in range(len(net.nodes)):
if node == net.nodes[i]:
index = i
for nb in list(net.neighbors(index)): # neighbors' idea_pool
local_ideas = local_ideas + net.nodes[nb]['agent'].idea_pool
local_iter = [i['iteration'] + 10**-10 for i in local_ideas]
local_comment = [len(i['comment']) + 10**-10 for i in local_ideas]
local_like = [len(i['like']) + 10**-10 for i in local_ideas]
p_iter = [(i-min(local_iter))/max(local_iter) for i in local_iter]
p_comment = [(i-min(local_comment))/max(local_comment) for i in local_comment]
p_like = [(i-min(local_like))/max(local_like) for i in local_like]
p = [p_iter[i]+coef_com_like*p_comment[i]+coef_com_like*p_like[i] for i in range(len(p_iter))]
if sum(p) == 0:
norm_p = [1./len(p)]*len(p)
else:
norm_p = [i/sum(p) for i in p]
if len(local_ideas) <= number_visible_idea:
return local_ideas
else:
return list(choice(local_ideas, number_visible_idea, p=norm_p))
def Like(node, idea): # need to be testified
if node in idea['like']:
return
elif random() <= Probability_accept(node, idea):
idea['like'].append(node)
print("like")
else:
return
def Comment(node, idea): # comment here represents the suggestions; complement comments are assumed to be equal to clicking like
agent = node['agent']
pure_idea = idea['idea']
personal_pure_ideas = [i['idea'] for i in agent.idea_pool]
if node in idea['comment']:
return
elif random() <= Probability_accept(node, idea):
if pure_idea in personal_pure_ideas: # if the agent has the same idea
idea['comment'].append(node)
else:
new_idea = pure_idea[:]
background = agent.background
size_background = sum([len(i) for i in background])
selected_dim = choice(list(arange(dim)), p=[(len(i)+10**-10)/size_background for i in background])
random_item = choice(background[selected_dim])
new_idea[selected_dim] = random_item
new_idea_dic = {'idea': new_idea}
if Individual_utility(agent, new_idea_dic) > Individual_utility(agent, idea): # if the new idea is better than previous one
idea['comment'].append(node)
print("comment")
else:
return
def Post_novel_idea(node, iteration):
agent = node['agent']
background = agent.background
potential_new_ideas = []
for i in range(number_new_ideas):
tem_new_idea = []
for di in range(dim): # choose item randomly
tem_new_idea.append(choice(background[di]))
potential_new_ideas.append({'idea': tem_new_idea})
selected_idea = potential_new_ideas[0]
for i in potential_new_ideas:
if Individual_utility(agent, i) > Individual_utility(agent, selected_idea):
selected_idea = i
new_idea = {'idea': selected_idea['idea'], 'comment': [], 'like': [], 'iteration': iteration}
personal_idea_pool = node['agent'].idea_pool
pure_personal_idea = [i['idea'] for i in personal_idea_pool]
pure_visible_idea = [i['idea'] for i in visible_ideas]
if (new_idea['idea'] not in pure_personal_idea) and (new_idea['idea'] not in pure_visible_idea)\
and (random() <= Probability_accept(node, new_idea)):
node['agent'].idea_pool.append(new_idea)
print("new")
else:
return
def Post_revised_idea(node, iteration):
agent = node['agent']
personal_idea_pool = node['agent'].idea_pool
pure_personal_ideas = [i['idea'] for i in personal_idea_pool]
potential_ideas = []
for i in visible_ideas:
if i['idea'] not in pure_personal_ideas:
potential_ideas.append(i)
if len(potential_ideas) != 0: # revise an idea that is randomly selected
selected_idea = potential_ideas[choice(len(potential_ideas))]
selected_pure_idea = selected_idea['idea']
potential_new_ideas = []
for i in range(number_new_ideas):
tem_new_idea = selected_pure_idea[:]
background = agent.background
size_background = sum([len(i) for i in background])
selected_dim = choice(list(arange(dim)), p=[(len(i) + 10 ** -10) / size_background for i in background])
modified_item = Best_idea(agent)['idea'][selected_dim]
tem_new_idea[selected_dim] = modified_item
tem_new_idea_dic = {'idea': tem_new_idea}
potential_new_ideas.append(tem_new_idea_dic)
selected_idea = potential_new_ideas[0]
for i in potential_new_ideas:
if Individual_utility(agent, i) > Individual_utility(agent, selected_idea):
selected_idea = i
new_idea = {'idea': selected_idea['idea'], 'comment': [], 'like': [], 'iteration': iteration}
personal_idea_pool = node['agent'].idea_pool
pure_personal_idea = [i['idea'] for i in personal_idea_pool]
pure_visible_idea = [i['idea'] for i in visible_ideas]
pure_new_idea = new_idea['idea']
if (pure_new_idea not in pure_personal_idea) and (pure_new_idea not in pure_visible_idea):
#and (random() <= Probability_accept(node, new_idea)):
node['agent'].idea_pool.append(new_idea)
print("revised")
else:
return
else:
return
def Post_existed_idea(node, iteration):
personal_idea = node['agent'].idea_pool
pure_personal_idea = [i['idea'] for i in personal_idea]
qualified_ideas = []
for i in visible_ideas:
if (i['idea'] not in pure_personal_idea) and (Individual_utility(node['agent'], i) >= Individual_utility(node['agent'], Best_idea(node['agent']))):
qualified_ideas.append(i)
if len(qualified_ideas) == 0:
return
else:
popular_qualified_ideas = [len(i['like']) + len(i['comment']) + 10**-10 for i in qualified_ideas]
p = [i/sum(popular_qualified_ideas) for i in popular_qualified_ideas]
tem_idea = choice(qualified_ideas, p=p)
new_idea = tem_idea.copy()
new_idea['iteration'] = iteration
node['agent'].idea_pool.append(new_idea)
print("copy")
def Generate_three_group(agent_list):
whole_local_diversity = {}
tem_list = agent_list[:]
for mont in range(MC):
shuffle(tem_list)
for i in range(group_size):
net.nodes[i]['agent'] = tem_list[i]
local_diversity = []
for i in net.nodes:
tem_diff = []
for nei in list(net.neighbors(i)):
tem_diff.append(Diff_background(net.nodes[i]['agent'], net.nodes[nei]['agent']))
local_diversity.append(mean(tem_diff))
whole_local_diversity[tuple(tem_list)] = mean(local_diversity)
sorted_whole_local_diversity = OrderedDict(sorted(whole_local_diversity.items(), key=lambda x: x[1]))
Low = list(sorted_whole_local_diversity.keys())[0]
Medium = list(sorted_whole_local_diversity.keys())[int(MC/2.)]
Large = list(sorted_whole_local_diversity.keys())[-1]
Low_value = list(sorted_whole_local_diversity.values())[0]
Medium_value = list(sorted_whole_local_diversity.values())[int(MC/2.)]
Large_value = list(sorted_whole_local_diversity.values())[-1]
return Low, Medium, Large, Low_value, Medium_value, Large_value
def Final_selection(node, n):
personal_idea_pool = node['agent'].idea_pool
whole_ideas = personal_idea_pool + visible_ideas
sorted_ideas = sorted(whole_ideas, key=lambda i: Individual_utility(node['agent'], i))
return sorted_ideas[-n:]
def All_ideas(net):
all_ideas = []
for nod in net.nodes:
all_ideas = all_ideas + [j['idea'] for j in net.nodes[nod]['agent'].idea_pool]
return all_ideas
########################################################################################################################
# initialization
########################################################################################################################
background_list1 = [Background([0,1]) for j in range(int(group_size/2.))]
background_list2 = [Background([2,3]) for j in range(int(group_size/2.))]
background_list = background_list1 + background_list2
participation_tendency = [1.]*group_size
### creat agent
class agent:
pass
# create a small world network
net = nx.random_regular_graph(d=4, n=20)
# initialization
agent_list = []
for i in range(group_size):
ag = agent()
ag.index = i
ag.participation_tendency = participation_tendency[i]
ag.background = background_list[i]
ag.idea_pool = []
# add agent into agent list
agent_list.append(ag)
########################################################################################################################
# generate three groups: cluster, random, and dispersed
########################################################################################################################
#return Low, Medium, Large, Low_value, Medium_value, Large_value
Low, Medium, Large, Low_value, Medium_value, Large_value = Generate_three_group(agent_list)
print('Low value', Low_value)
print('Medium value', Medium_value)
print('Large value', Large_value)
########################################################################################################################
# iteration
########################################################################################################################
number_iteration = 10
cluster_utility = []
cluster_ideas = []
cluster_whole_ideas = []
for c in range(mont_iter):
for i in range(group_size):
Low[i].idea_pool = [{'idea': [choice(ag.background[d]) for d in range(dim)], 'comment': [], 'like': [], 'iteration': 0} for n in range(number_personal_idea)]
net.nodes[i]['agent'] = Low[i]
final_ideas = []
for it in range(number_iteration):
iter = it + 1
print(iter)
for nod in net.nodes:
print('node: ', nod)
if random() < net.nodes[nod]['agent'].participation_tendency:
# agent behaviors
visible_ideas = Visible_ideas(net.nodes[nod])
# like
for vi in visible_ideas:
Like(net.nodes[nod], vi)
# comment. to be finished
for vi in visible_ideas:
Comment(net.nodes[nod], vi)
# post novel ideas
Post_novel_idea(net.nodes[nod], iter)
# post revised ideas
Post_revised_idea(net.nodes[nod], iter)
# advocacy
Post_existed_idea(net.nodes[nod], iter)
cluster_whole_ideas.append(All_ideas(net))
for i in net.nodes:
final_ideas = final_ideas + Final_selection(net.nodes[i], n)
final_pure_ideas = [tuple(i['idea']) for i in final_ideas]
most_supported_idea = {'idea':list(Counter(final_pure_ideas).most_common()[0][0])}
cluster_utility.append(True_utility(most_supported_idea))
number_cluster = [len(i) for i in cluster_whole_ideas]
variance_cluster = [Variance_ideas(i) for i in cluster_whole_ideas]
############################################################
random_utility = []
random_ideas = []
random_whole_ideas = []
for r in range(mont_iter):
for i in range(group_size):
Medium[i].idea_pool = [{'idea': [choice(ag.background[d]) for d in range(dim)], 'comment': [], 'like': [], 'iteration': 0} for n in range(number_personal_idea)]
net.nodes[i]['agent'] = Medium[i]
final_ideas = []
for it in range(number_iteration):
iter = it + 1
for nod in net.nodes:
if random() < net.nodes[nod]['agent'].participation_tendency:
# agent behaviors
visible_ideas = Visible_ideas(net.nodes[nod])
# like
for vi in visible_ideas:
Like(net.nodes[nod], vi)
# comment. to be finished
for vi in visible_ideas:
Comment(net.nodes[nod], vi)
# post novel ideas
Post_novel_idea(net.nodes[nod], iter)
# post revised ideas
Post_revised_idea(net.nodes[nod], iter)
# advocacy
Post_existed_idea(net.nodes[nod], iter)
random_whole_ideas.append(All_ideas(net))
for i in net.nodes:
final_ideas = final_ideas + Final_selection(net.nodes[i], n)
final_pure_ideas = [tuple(i['idea']) for i in final_ideas]
most_supported_idea = {'idea':list(Counter(final_pure_ideas).most_common()[0][0])}
random_utility.append(True_utility(most_supported_idea))
number_random = [len(i) for i in random_whole_ideas]
variance_random = [Variance_ideas(i) for i in random_whole_ideas]
dispersed_utility = []
dispersed_ideas = []
dispersed_whole_ideas = []
for l in range(mont_iter):
for i in range(group_size):
Large[i].idea_pool = [{'idea': [choice(ag.background[d]) for d in range(dim)], 'comment': [], 'like': [], 'iteration': 0} for n in range(number_personal_idea)]
net.nodes[i]['agent'] = Large[i]
final_ideas = []
for it in range(number_iteration):
iter = it + 1
for nod in net.nodes:
if random() < net.nodes[nod]['agent'].participation_tendency:
# agent behaviors
visible_ideas = Visible_ideas(net.nodes[nod])
# like
for vi in visible_ideas:
Like(net.nodes[nod], vi)
# comment. to be finished
for vi in visible_ideas:
Comment(net.nodes[nod], vi)
# post novel ideas
Post_novel_idea(net.nodes[nod], iter)
# post revised ideas
Post_revised_idea(net.nodes[nod], iter)
# advocacy
Post_existed_idea(net.nodes[nod], iter)
dispersed_whole_ideas.append(All_ideas(net))
for i in net.nodes:
final_ideas = final_ideas + Final_selection(net.nodes[i], n)
final_pure_ideas = [tuple(i['idea']) for i in final_ideas]
most_supported_idea = {'idea':list(Counter(final_pure_ideas).most_common()[0][0])}
dispersed_utility.append(True_utility(most_supported_idea))
number_dispersed = [len(i) for i in dispersed_whole_ideas]
variance_dispersed = [Variance_ideas(i) for i in dispersed_whole_ideas]
df = pd.DataFrame(list(zip(cluster_utility, random_utility, dispersed_utility)), columns =['Clustered', 'Randomly Distributed', 'Dispersed'])
ax = plt.subplots(figsize=(8, 4))
df.boxplot(grid=False)
plt.ylabel('Utility of the most supported idea')
plt.grid(axis='y', linestyle=':', color='lightgrey')
plt.show()
df = pd.DataFrame(list(zip(number_cluster, number_random, number_dispersed)), columns =['Clustered', 'Randomly Distributed', 'Dispersed'])
ax = plt.subplots(figsize=(8, 4))
df.boxplot(grid=False)
plt.ylabel('Number of distinct ideas')
plt.grid(axis='y', linestyle=':', color='lightgrey')
plt.show()
df = pd.DataFrame(list(zip(variance_cluster, variance_random, variance_dispersed)), columns =['Clustered', 'Randomly Distributed', 'Dispersed'])
ax = plt.subplots(figsize=(8, 4))
df.boxplot(grid=False)
plt.ylabel('Variance of ideas')
plt.grid(axis='y', linestyle=':', color='lightgrey')
plt.show()