এতক্ষণ পর্যন্ত খেয়াল করেছেন যে, বার বার আমরা ম্যাট্রিক্স নিয়ে কাজ করছি। আর কাজের কাজ বলতে আমরা যা করেছি তা হচ্ছে ডাটার মধ্যে থেকে প্যাটার্ন খুঁজে বের করা এবং সেই খুঁজে পাওয়া প্যাটার্নকে কাজে লাগিয়ে পরবর্তীতে ওই রকম ডাটা সম্পর্কিত বিষয়ে প্রেডিকশন দেয়া। মজার ব্যাপার হচ্ছে, আমরা সবাই জানি – ডিজিটাল ইমেজ বা ফটো কিন্তু আর কিছুই না একটা 2D অ্যারে বা ম্যাট্রিক্স (গ্রে স্কেল বা সাদাকালো ফটোর ক্ষেত্রে)। সেই ম্যাট্রিক্সের প্রত্যেকটি সেল হচ্ছে এক একটি পিক্সেল। আর সেলের ভ্যালু হচ্ছে পিক্সেল ভ্যালু বা কালার এর মান। আবার ম্যাট্রিক্সটার (row সংখ্যা x column সংখ্যা) মানেই হচ্ছে ওই ফটোর রেজোল্যুশন। তাহলে বিষয়টা কি দাঁড়ালো?
আমরা নিউরাল নেটওয়ার্ক দিয়ে তাহলে ডিজিটাল ফটো অ্যানালাইসিস করতে পারি। বলতে গেলে – ফটো রিকগনিশনের কাজ করতে পারি। আর নিউরাল নেটওয়ার্কের মাধ্যমে ইমেজ ক্লাসিফিকেশনের জন্য বহুল ব্যবহৃত একটা টেকনিক/মডেল হচ্ছে কনভলিউশনাল নিউরাল নেটওয়ার্ক। নিউরাল নেটওয়ার্ক কি সেটা আমরা ইতোমধ্যে জেনেছি। এবার আমরা জানবো কনভলিউশন মানে কি এবং এটার প্রয়োজনীয়তা। বলে রাখা ভালো এই কনভলিউশন টার্মটা কিন্তু শুধু নিউরাল নেটওয়ার্ক বা ইমেজ প্রসেসিং এর সাথে সম্পর্কিত কোন টার্ম না। বরং এটা একটা জেনেরিক ম্যাথেমেটিক্যাল টার্ম। সিগনাল প্রসেসিং –এও এর ব্যবহার দেখা যায় (বিশেষ টাইপের একরকম সিগনালও কিন্তু ঘুরে ফিরে ম্যাট্রিক্স ইমেজের মতই। যাহোক সময় থাকলে সেটা পরে উদ্ধার করবো 🙂 )।