-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicies.py
569 lines (457 loc) · 16.1 KB
/
policies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# RL agents
import gym
import numpy as np
from typing import List
import os
import sys
import torch
from torch.distributions import Normal, Categorical
import torch.nn.functional as F
from torch.distributions import Normal
from rlkits.models import MLP
from rlkits.env_batch import SpaceBatch
from ipdb import set_trace
class Policy:
"""Interface for generic policy"""
def __init__(self, *args, **kwargs):
raise NotImplemented
def step(self, state, **kwargs):
"""Take an action based on the input state"""
raise NotImplemented
def dist(self):
"""Generate a distribution based on the problem type"""
raise NotImplemented
def average_weight(model):
"""Compute average weight the parameters of a neural network
Argss:
model (nn.Module)
Returns:
(np.ndarray) parameter average weight
"""
pi = 0.0
cnt = 0
for p in model.parameters():
pi += torch.mean(p.data)
cnt += 1
pi /= cnt
return pi.numpy()
def save_ckpt(model, ckpt_dir, postfix=''):
"""Save model checkpoint at
$ckpt_dir/ckpt-$postfix.pth
Args:
model: torch model
ckpt_dir: directory to save the ckpt
postfix: a postfix to add to ckpt file
Returns:
None
"""
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
ckpt = {
"model": model.state_dict()
}
torch.save(ckpt, os.path.join(ckpt_dir,
f"ckpt-{postfix}.pth"))
return
def load_ckpt(model, ckptfile):
"""Load checkpoint from a checkpoint file
It assumes the unpickled checkpoint maps the
key 'model' to the state dict of the network
Args:
model: torch model
ckptfile: path to the ckpt
Returns:
model with loaded checkpoint
"""
ckpt = torch.load(ckptfile)
model.load_state_dict(ckpt["model"])
return model
def random_action(ac_space):
"""Take a random action sampled from the action space
Argss:
ac_space: gym env action space
Returns:
(numpy.ndarray) a random action
"""
return ac_space.sample()
def transform_input(*args):
"""Preprocess input
1. numpy array to torch tensor
2. add batch dimension if there's none
"""
new_args = []
for i, x in enumerate(args):
if isinstance(x, np.ndarray):
x = torch.from_numpy(x).float()
if len(x.shape) == 1:
x = torch.unsqueeze(x, dim=0)
new_args.append(x)
return new_args
class RandomPolicyWithValue(Policy):
def __init__(self, ob_space, ac_space):
"""
ob_space: gym env observation space
ac_space: gym env action space
"""
self.ob_space = ob_space
self.ob_dim = len(ob_space.shape)
self.ac_space = ac_space
self.ac_dim = len(ac_space.shape)
def step(self, x):
return self.take_action(x), self.predict_state_value(x)
def take_action(self, x):
return self.ac_space.sample(), 0.5
def predict_state_value(self, x):
return np.random.rand()
class REINFORCEPolicy(Policy):
""""Policy for REINFORCE"""
def __init__(self, ob_space, ac_space, ckpt_dir,
**network_kwargs):
self.ob_space = ob_space
self.ob_dim = len(ob_space.shape)
self.input_dim = np.prod(ob_space.shape).item()
self.ac_space = ac_space
self.ac_space_dim = np.prod(ac_space.shape).item()
self.ckpt_dir = ckpt_dir
# TODO
# add support for continuous tasks
assert isinstance(ac_space, gym.spaces.discrete.Discrete), "only support discrete action space for now"
self.continuous = False
self.output_dim = ac_space.n
# output mean and log std of a gaussian dist
self.model = MLP(input_shape=self.input_dim,
output_shape=self.output_dim,
**network_kwargs)
def dist(self, params):
"""Create a distribution over action space
Args:
params (torch.Tensor): parameters of the distribution.
For example, for continuous action space, the parameters
can be the mean and the standard deviation of a Gaussian
distribution; for discrete action space, the parameters
can be probabilities of each action
Returns:
torch.Distribution
"""
if self.continuous:
return None
else:
try:
proba = torch.softmax(params, dim=-1)
return Categorical(proba)
except:
return None
def step(self, obs):
"""Take an action at the given state of the env
Args:
obs (torch.Tenosr or np.ndarray): state of the
env
Returns:
(np.ndarray, np.ndarray): action and its log probability
"""
x, = transform_input(obs)
with torch.no_grad():
y = self.model(x)
dist = self.dist(y)
if dist is None:
print("Policy net blows up -- Bad")
self.save_ckpt('dead')
set_trace()
sys.exit()
action = dist.sample()
log_prob = dist.log_prob(action)
return (
action.numpy(), log_prob.numpy()
)
def average_weight(self):
return average_weight(self.model)
def save_ckpt(self, postfix, optimizer=None):
save_ckpt(self.model, self.ckpt_dir, postfix)
if optimizer:
torch.save(optimizer.state_dict(), os.path.join(
self.ckpt_dir, f"optim-{postfix}.pth"
))
return
def load_ckpt(self, ckptfile):
load_ckpt(self.model, ckptfile)
return
class SACPolicy(Policy):
"""Policy for SAC """
def __init__(self, ob_space, ac_space, ckpt_dir,
**network_kwargs):
"""[summary]
Args:
ob_space ([type]): [description]
ac_space ([type]): [description]
ckpt_dir ([type]): [description]
"""
self.ob_space = ob_space
self.ob_dim = len(ob_space.shape)
self.ac_space = ac_space
self.ac_space_dim = np.prod(ac_space.shape).item()
self.ckpt_dir = ckpt_dir
# output mean and log std of a gaussian dist
self.model = MLP(input_shape=self.input_dim,
output_shape=2,
**network_kwargs)
def __call__(self, obs):
"""Sample an action and compute its log probability
Only support 1-d action for now. This is because the
the output of the model is of dimension [-1, 2]
and axis 1 splits into mean and std
@TODO
Update the policy to support problem with high dimensional
action space after the SAC algorithm works on the low dim
problem
Args:
obs (np.ndarray or torch.Tensor): state of the environment
Returns:
(torch.Tensor, torch.Tensor) action and its log probability
"""
obs = transform_input(obs)
mean, logstd = torch.split(self.model(obs), [1, 1], dim=1)
std = torch.exp(logstd)
dist = Normal(mean, std)
# sample an action and compute log prob
u = dist.sample()
logprob = dist.log_prob(u)
# squash through tanh to bound the action in [-1, 1]
a = torch.tanh(u)
# I understand the jacobian formula via pull back of
# differential form, but why should log probability
# be different? I think when sampling from a continuous
# distribution, the log probability is not really a
# probability in the sense of sampling frequency
# it is simply \log p(x), p(x) is the density fn
# if p(x) transforms according to jacobian rule,
# so is it log prob
logprob -= torch.log(1 - torch.tanh(u))
return a, logprob
class DeterministicPolicy:
"""Deterministic policy for continuous action space"""
def __init__(self, ob_space, ac_space,
ckpt_dir, **network_kwargs):
self.ob_space = ob_space
self.ac_space = ac_space
self.ac_space_dim = np.prod(ac_space.shape).item()
self.ckpt_dir = ckpt_dir
self.input_dim = np.prod(self.ob_space.shape).item()
self.model = MLP(
input_shape=self.input_dim, output_shape=self.ac_space_dim,
**network_kwargs
)
def __call__(self, obs):
obs = self.transform_input(obs)
return torch.tanh(self.model(obs))
def parameters(self):
return self.model.parameters()
def reset(self):
pass
def average_weight(self):
pi = 0.0
cnt = 0
for p in self.parameters():
pi += torch.mean(p.data)
cnt += 1
pi /= cnt
return pi.numpy()
def transform_input(self, x):
if isinstance(x, np.ndarray):
x = torch.from_numpy(x.astype(np.float32))
if len(x.shape) == 1:
x = torch.unsqueeze(x, dim=0)
return x
def step(self, x):
"""Take action at the current state of the env"""
with torch.no_grad():
action = self(x)
return action.numpy().reshape(self.ac_space.shape)
def random_action(self):
"""Take random action"""
action = np.random.uniform(-1.0, 1.0,
size=self.ac_space.shape)
return action
def save_ckpt(self, postfix=''):
if not os.path.exists(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
ckpt = {
"model": self.model.state_dict()
}
torch.save(ckpt, os.path.join(self.ckpt_dir, f"ckpt-{postfix}.pth"))
def load_ckpt(self, ckptfile):
ckpt = torch.load(ckptfile)
self.model.load_state_dict(ckpt["model"])
return
class QNetForContinuousAction:
"""Function approximator for state action value Q(s, a) with a
being continuous
"""
def __init__(self, ob_space, ac_space, ckpt_dir, **network_kwargs):
self.ob_space = ob_space
self.ac_space = ac_space
self.ac_space_dim = np.prod(ac_space.shape).item()
self.ckpt_dir = ckpt_dir
self.input_dim = np.prod(self.ob_space.shape).item() + \
np.prod(self.ac_space.shape).item()
self.model = MLP(
input_shape=self.input_dim, output_shape=1,
**network_kwargs
)
def parameters(self):
return self.model.parameters()
def __call__(self, obs, acs):
obs, acs = self.transform_input(obs, acs)
assert obs.shape[0] == acs.shape[0]
x = torch.cat([obs, acs], dim=1)
return self.model(x)
def average_weight(self):
pi = 0.0
cnt = 0
for p in self.parameters():
pi += torch.mean(p.data)
cnt += 1
pi /= cnt
return pi.numpy()
def save_ckpt(self, postfix=''):
if not os.path.exists(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
ckpt = {
"model": self.model.state_dict()
}
torch.save(ckpt,
os.path.join(self.ckpt_dir, f"ckpt-{postfix}.pth"))
return
def transform_input(self, *args):
new_args = []
for i, x in enumerate(args):
if len(x.shape) == 1:
x = torch.unsqueeze(x, dim=0)
new_args.append(x)
return new_args
class PolicyWithValue:
def __init__(self, ob_space, ac_space, ckpt_dir, **network_kwargs):
"""
ob_space: gym env observation space
ac_space: gym env action space
"""
self.ob_space = ob_space
self.ob_dim = len(ob_space.shape)
self.ac_space = ac_space
self.ac_dim = len(ac_space.shape)
self.ckpt_dir = ckpt_dir
if isinstance(ob_space, SpaceBatch):
# parallel env
self.n = ob_space.sample().shape[0]
else:
# single env
self.n = 1
if isinstance(ac_space, SpaceBatch):
ac_space_type = type(ac_space.spaces[0])
else:
ac_space_type = type(ac_space)
self.input_dim = np.prod(self.ob_space.shape).item()
if ac_space_type is gym.spaces.Box:
self.output_dim = np.prod(self.ac_space.shape).item()
elif ac_space_type is gym.spaces.Discrete:
self.output_dim = ac_space.n
else:
raise NotImplemented
self.continuous = False # continuous action space
if self.ac_space.dtype == np.float32:
self.continuous = True
if self.continuous:
print('Continous action space')
# output is the mean and std of a Gaussian dist
self.policy_net = MLP(
input_shape=self.input_dim, output_shape=2, **network_kwargs
)
else:
print('Discrete action space')
# output is the input of a categorical probability dist
self.policy_net = MLP(
input_shape=self.input_dim,
output_shape=self.output_dim,
**network_kwargs,
)
self.value_net = MLP(
input_shape=self.input_dim, output_shape=1, **network_kwargs
)
def average_weight(self):
"""Get average weight of the policy and value net"""
pi = 0.0
cnt = 0
for p in self.policy_net.parameters():
pi += torch.mean(p.data)
cnt += 1
pi /= cnt
v = 0.0
cnt = 0
for p in self.value_net.parameters():
v += torch.mean(p.data)
cnt += 1
v /= cnt
return pi, v
def transform_input(self, x):
if len(x.shape) == 1:
x = np.expand_dims(x, axis=0)
x = torch.from_numpy(x).float()
return x
def step(self, x):
ac, log_prob = self.take_action(x)
return ac, log_prob, self.predict_state_value(x)
def take_action(self, x):
"""Take action at the current state of the env"""
x = self.transform_input(x)
with torch.no_grad():
y = self.policy_net(x)
dist = self.dist(y)
if dist is None:
print("Policy net blows up -- Bad")
self.save_ckpt()
action = dist.sample()
log_prob = dist.log_prob(action)
return (
action.numpy(), log_prob.numpy()
)
def predict_state_value(self, x):
"""Predict the state value at the current state of the env"""
x = self.transform_input(x)
with torch.no_grad():
v = self.value_net(x)
return v.numpy().squeeze(axis=1)
def dist(self, params):
"""Get a distribution of actions"""
if self.continuous:
assert params.shape[-1] == 2 # mean and log of std
mean, logstd = torch.split(params, [1, 1], dim=1)
try:
m = Normal(mean, torch.exp(logstd))
return m
except Exception as e:
print(e)
self.save_ckpt('dead')
sys.exit()
else:
try:
# apply softmax to the output
prob = torch.softmax(params, dim=-1)
m = Categorical(prob)
return m
except Exception as e:
print(e)
self.save_ckpt('dead')
sys.exit()
def save_ckpt(self, postfix=''):
if not os.path.exists(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
ckpt = {
"policy_net": self.policy_net.state_dict(),
"value_net": self.value_net.state_dict(),
}
torch.save(ckpt, os.path.join(self.ckpt_dir, f"ckpt-{postfix}.pth"))
return
def load_ckpt(self, ckptfile):
ckpt = torch.load(ckptfile)
self.policy_net.load_state_dict(ckpt["policy_net"])
self.value_net.load_state_dict(ckpt["value_net"])
return