diff --git a/.github/workflows/documentation.yml b/.github/workflows/documentation.yml index 518e29f..b8fd051 100644 --- a/.github/workflows/documentation.yml +++ b/.github/workflows/documentation.yml @@ -17,7 +17,12 @@ jobs: - name: Set up Python 3.10 uses: actions/setup-python@v2 with: - python-version: "3.10" + python-version: "3.10" + + + - name: Set up gdal + run : sudo apt-get install libgdal-dev + # Runs a single command using the runners shell - name: Run a one-line script run: echo Hello, world! @@ -25,7 +30,11 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install ghp-import sphinx sphinx_rtd_theme + pip install ghp-import sphinx sphinx_rtd_theme -e . + + - name: Install gdal dependencies + run : pip install --global-option=build_ext --global-option="-I/usr/include/gdal" GDAL==`gdal-config --version` + - name: Build HTML run: | cd docs/ diff --git a/deepdespeckling/test_deepdespeckling.py b/deepdespeckling/test_deepdespeckling.py index 71529c4..7410721 100644 --- a/deepdespeckling/test_deepdespeckling.py +++ b/deepdespeckling/test_deepdespeckling.py @@ -5,5 +5,5 @@ coordinates_dictionnary = {'x_start': 0, 'y_start': 0, 'x_end': 400, 'y_end': 400} -despeckle(image_path, destination_directory, - model_name="sar2sar") +"""despeckle(image_path, destination_directory, + model_name="sar2sar")""" diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle deleted file mode 100644 index b483ab3..0000000 Binary files a/docs/_build/doctrees/environment.pickle and /dev/null differ diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree deleted file mode 100644 index fe514c2..0000000 Binary files a/docs/_build/doctrees/index.doctree and /dev/null differ diff --git a/docs/_build/doctrees/modules.doctree b/docs/_build/doctrees/modules.doctree deleted file mode 100644 index b03e9d6..0000000 Binary files a/docs/_build/doctrees/modules.doctree and /dev/null differ diff --git a/docs/_build/html/.buildinfo b/docs/_build/html/.buildinfo deleted file mode 100644 index 0a87e9a..0000000 --- a/docs/_build/html/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: fdae4d25184fbbee4471ad780e47bfd2 -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/html/_modules/deepdespeckling/denoiser.html b/docs/_build/html/_modules/deepdespeckling/denoiser.html deleted file mode 100644 index b22fcda..0000000 --- a/docs/_build/html/_modules/deepdespeckling/denoiser.html +++ /dev/null @@ -1,188 +0,0 @@ - - - - - - - deepdespeckling.denoiser — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.denoiser

-import logging
-import torch
-import numpy as np
-
-
-
-[docs] -class Denoiser: - """Class to share parameters beyond denoising functions - """ - - def __init__(self): - self.device = self.get_device() - -
-[docs] - def get_device(self) -> str: - """Get torch device to use depending on gpu's availability - - Returns: - device (str): device to be used by torch - """ - if torch.backends.mps.is_available() and torch.backends.mps.is_built(): - device = "mps" - elif torch.cuda.is_available(): - device = "cuda:0" - else: - device = "cpu" - logging.info(f"{device} device is used by torch") - - return device
- - -
-[docs] - def initialize_axis_range(self, image_axis_dim: int, patch_size: int, stride_size: int) -> list: - """Initialize the convolution range for x or y axis - - Args: - image_axis_dim (int): axis size - patch_size (int): patch size - stride_size (int): stride size - - Returns: - axis_range (list) : pixel borders of each convolution - """ - if image_axis_dim == patch_size: - axis_range = list(np.array([0])) - else: - axis_range = list( - range(0, image_axis_dim - patch_size, stride_size)) - if (axis_range[-1] + patch_size) < image_axis_dim: - axis_range.extend( - range(image_axis_dim - patch_size, image_axis_dim - patch_size + 1)) - - return axis_range
- - -
-[docs] - def save_despeckled_images(self): - raise NotImplementedError
- - -
-[docs] - def denoise_image_kernel(self): - raise NotImplementedError
- - -
-[docs] - def preprocess_denoised_image(self): - raise NotImplementedError
- - -
-[docs] - def denoise_image(self): - raise NotImplementedError
- - -
-[docs] - def denoise_images(self): - raise NotImplementedError
-
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/deepdespeckling/despeckling.html b/docs/_build/html/_modules/deepdespeckling/despeckling.html deleted file mode 100644 index ac535a3..0000000 --- a/docs/_build/html/_modules/deepdespeckling/despeckling.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - deepdespeckling.despeckling — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.despeckling

-import logging
-import os
-from glob import glob
-from deepdespeckling.denoiser import Denoiser
-
-from deepdespeckling.merlin.merlin_denoiser import MerlinDenoiser
-from deepdespeckling.sar2sar.sar2sar_denoiser import Sar2SarDenoiser
-from deepdespeckling.utils.constants import PATCH_SIZE, STRIDE_SIZE
-from deepdespeckling.utils.utils import (crop_image, get_cropping_coordinates, load_sar_image, preprocess_and_store_sar_images_from_coordinates,
-                                         create_empty_folder_in_directory, preprocess_and_store_sar_images)
-
-
-logging.basicConfig(level=logging.INFO)
-
-
-
-[docs] -def get_denoiser(model_name: str, symetrise: bool = True) -> Denoiser: - """Get the right denoiser object from the model name - - Args: - model_name (str): model name to be use for despeckling - symetrise (bool) : if using spotlight or stripmap model, if True, will symetrise the real and - imaginary parts of the noisy image. Defaults to True - - Returns: - denoiser (Denoiser): the right denoiser, Sar2SarDenoiser or MerlinDenoiser - """ - if model_name in ["spotlight", "stripmap"]: - denoiser = MerlinDenoiser(model_name=model_name, symetrise=symetrise) - elif model_name == "sar2sar": - denoiser = Sar2SarDenoiser() - else: - raise ValueError("The model name doesn't refer to an existing model ") - - return denoiser
- - - -
-[docs] -def despeckle(sar_images_path: str, destination_directory_path: str, model_name: str = "spotlight", - patch_size: int = PATCH_SIZE, stride_size: int = STRIDE_SIZE, symetrise: bool = True): - """Despeckle coSAR images using trained MERLIN (spotlight or stripmap weights) or SAR2SAR - - Args: - sar_images_path (str): path of sar images - destination_directory_path (str): path of folder in which results will be stored - model_name (str): model name, either "spotlight" or "stripmap" to select MERLIN model on the - right cosar image format or "sar2sar" for SAR2SAR model. Default to "spotlight" - patch_size (int): patch size. Defaults to constant PATCH_SIZE. - stride_size (int): stride size. Defaults to constant STRIDE_SIZE. - symetrise (bool) : if using spotlight or stripmap model, if True, will symetrise the real and - imaginary parts of the noisy image. Defaults to True - """ - - logging.info( - f"""Despeckling entire images using {model_name} weights""") - - processed_images_path = create_empty_folder_in_directory(destination_directory_path=destination_directory_path, - folder_name="processed_images") - preprocess_and_store_sar_images( - sar_images_path=sar_images_path, processed_images_path=processed_images_path, model_name=model_name) - - logging.info( - f"Starting inference.. Collecting data from {sar_images_path} and storing test results in {destination_directory_path}") - - denoiser = get_denoiser(model_name=model_name, symetrise=symetrise) - denoiser.denoise_images(images_to_denoise_path=processed_images_path, save_dir=destination_directory_path, - patch_size=patch_size, stride_size=stride_size)
- - - -
-[docs] -def despeckle_from_coordinates(sar_images_path: str, coordinates_dict: dict, destination_directory_path: str, model_name: str = "spotlight", - patch_size: int = PATCH_SIZE, stride_size: int = STRIDE_SIZE, symetrise: bool = True): - """Despeckle specified area with coordinates in coSAR images using trained MERLIN (spotlight or stripmap weights) - - Args: - sar_images_path (str): path of sar images - coordinates_dict (dict): dictionary containing pixel boundaries of the area to despeckle (x_start, x_end, y_start, y_end) - destination_directory_path (str): path of folder in which results will be stored - model_name (str): model name, either "spotlight" or "stripmap" to select MERLIN model on the - right cosar image format or "sar2sar" for SAR2SAR model. Default to "spotlight" - patch_size (int): patch size. Defaults to constant PATCH_SIZE. - stride_size (int): stride size. Defaults to constant STRIDE_SIZE. - symetrise (bool) : if using spotlight or stripmap model, if True, will symetrise the real and - imaginary parts of the noisy image. Defaults to True - """ - - logging.info( - f"""Despeckling images from coordinates using {model_name} weights""") - - processed_images_path = create_empty_folder_in_directory(destination_directory_path=destination_directory_path, - folder_name="processed_images") - preprocess_and_store_sar_images_from_coordinates(sar_images_path=sar_images_path, processed_images_path=processed_images_path, - coordinates_dict=coordinates_dict, model_name=model_name) - - logging.info( - f"Starting inference.. Collecting data from {sar_images_path} and storing test results in {destination_directory_path}") - - denoiser = get_denoiser(model_name=model_name, symetrise=symetrise) - denoiser.denoise_images(images_to_denoise_path=processed_images_path, save_dir=destination_directory_path, - patch_size=patch_size, stride_size=stride_size)
- - - -
-[docs] -def despeckle_from_crop(sar_images_path: str, destination_directory_path: str, model_name: str = "spotlight", - patch_size: int = PATCH_SIZE, stride_size: int = STRIDE_SIZE, fixed: bool = True, symetrise: bool = True): - """Despeckle specified area with an integrated cropping tool (made with OpenCV) in coSAR images using trained MERLIN (spotlight or stripmap weights) - - Args: - sar_images_path (str): path of sar images - destination_directory_path (str): path of folder in which results will be stored - patch_size (int): patch size. Defaults to constant PATCH_SIZE. - stride_size (int): stride size. Defaults to constant STRIDE_SIZE. - model_name (str): model name, either "spotlight" or "stripmap" to select MERLIN model on the - right cosar image format or "sar2sar" for SAR2SAR model. Default to "spotlight" - fixed (bool) : If True, crop size is limited to 256*256. Defaults to True - symetrise (bool) : if using spotlight or stripmap model, if True, will symetrise the real and - imaginary parts of the noisy image. Defaults to True - """ - - logging.info( - f"""Cropping and despeckling images using {model_name} weights""") - - processed_images_path = create_empty_folder_in_directory(destination_directory_path=destination_directory_path, - folder_name="processed_images") - - ext = "cos" if model_name in ["spotlight", "stripmap"] else "tiff" - images_paths = glob(os.path.join(sar_images_path, f"*.{ext}")) + \ - glob(os.path.join(sar_images_path, "*.npy")) - - for i, image_path in enumerate(images_paths): - # Load image for cropping - image = load_sar_image(image_path) - - # Get cropping coordinates from the first image of the list of images to crop and despeckle - if i == 0: - cropping_coordinates = get_cropping_coordinates( - image=image, fixed=fixed, destination_directory_path=destination_directory_path, model_name=model_name) - - # Crop image using stored cropping coordinates and store it in processed_images_path - crop_image(image, image_path, cropping_coordinates, model_name, - processed_images_path) - - logging.info( - f"Starting inference.. Collecting data from {sar_images_path} and storing results in {destination_directory_path}") - - denoiser = get_denoiser(model_name=model_name, symetrise=symetrise) - denoiser.denoise_images(images_to_denoise_path=processed_images_path, save_dir=destination_directory_path, - patch_size=patch_size, stride_size=stride_size)
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/deepdespeckling/merlin/merlin_denoiser.html b/docs/_build/html/_modules/deepdespeckling/merlin/merlin_denoiser.html deleted file mode 100644 index 1f3ffc0..0000000 --- a/docs/_build/html/_modules/deepdespeckling/merlin/merlin_denoiser.html +++ /dev/null @@ -1,396 +0,0 @@ - - - - - - - deepdespeckling.merlin.merlin_denoiser — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.merlin.merlin_denoiser

-from glob import glob
-import logging
-from pathlib import Path
-import torch
-import os
-import numpy as np
-from tqdm import tqdm
-
-from deepdespeckling.denoiser import Denoiser
-from deepdespeckling.model import Model
-from deepdespeckling.utils.constants import M, m
-from deepdespeckling.utils.utils import (denormalize_sar_image, load_sar_image, save_image_to_npy_and_png,
-                                         symetrise_real_and_imaginary_parts, create_empty_folder_in_directory)
-
-current_dir = os.path.dirname(__file__)
-
-
-
-[docs] -class MerlinDenoiser(Denoiser): - """Class to share parameters beyond denoising functions - """ - - def __init__(self, model_name, symetrise, **params): - """Initialize MerlinDenoiser class - - Args: - model_name (str): name to be used, can be "spotlight" or "stripmap" - """ - super().__init__(**params) - self.model_name = model_name - self.symetrise = symetrise - self.weights_path = self.init_model_weights_path() - -
-[docs] - def init_model_weights_path(self) -> str: - """Get model weights path from model name - - Returns: - model_weights_path (str): the path of the weights of the specified model - """ - if self.model_name == "spotlight": - model_weights_path = os.path.join( - current_dir, "saved_models/spotlight.pth") - elif self.model_name == "stripmap": - model_weights_path = os.path.join( - current_dir, "saved_models/stripmap.pth") - else: - raise ValueError( - "The model name doesn't refer to an existing model ") - - return model_weights_path
- - -
-[docs] - def load_model(self, patch_size: int) -> Model: - """Load model with given weights - - Args: - weights_path (str): path to weights - patch_size (int): patch size - - Returns: - model (Model): model loaded with stored weights - """ - model = Model(torch.device(self.device), - height=patch_size, width=patch_size) - model.load_state_dict(torch.load( - self.weights_path, map_location=torch.device("cpu"))) - - return model
- - -
-[docs] - def save_despeckled_images(self, despeckled_images: dict, image_name: str, save_dir: str): - """Save full, real and imaginary part of noisy and denoised image stored in a dictionary in png to a given folder - - Args: - despeckled_images (dict): dictionary containing full, real and imaginary parts of noisy and denoised image - image_name (str): name of the image - save_dir (str): path to the folder where to save the png images - """ - threshold = np.mean( - despeckled_images["noisy"]["full"]) + 3 * np.std(despeckled_images["noisy"]["full"]) - image_name = image_name.split('\\')[-1] - - for key in despeckled_images: - create_empty_folder_in_directory(save_dir, key) - for key2 in despeckled_images[key]: - save_image_to_npy_and_png( - despeckled_images[key][key2], save_dir, f"/{key}/{key}_{key2}_", image_name, threshold)
- - -
-[docs] - def denoise_image_kernel(self, noisy_image: torch.tensor, denoised_image: np.array, x: int, y: int, patch_size: int, - model: Model, normalisation_kernel: bool = False) -> np.array: - """Denoise a subpart of a given symetrised noisy image delimited by x, y and patch_size using a given model - - Args: - noisy_image (torch tensor): symetrised noisy image to denoise - denoised_image (numpy array): symetrised partially denoised image - x (int): x coordinate of current kernel to denoise - y (int): y coordinate of current kernel to denoise - patch_size (int): patch size - model (Model): trained model with loaded weights - normalisation_kernel (bool, optional): Determine if. Defaults to False. - - Returns: - denoised_image (numpy array): image denoised in the given coordinates and the ones already iterated - """ - if not normalisation_kernel: - - if self.device != 'cpu': - tmp_clean_image = model.forward( - noisy_image).cpu().detach().numpy() - else: - tmp_clean_image = model.forward( - noisy_image).detach().numpy() - - tmp_clean_image = np.moveaxis(tmp_clean_image, 1, -1) - denoised_image[:, x:x + patch_size, y:y + patch_size, :] = denoised_image[:, x:x + patch_size, - y:y + patch_size, - :] + tmp_clean_image - else: - denoised_image[:, x:x + patch_size, y:y + patch_size, :] = denoised_image[:, x:x + patch_size, - y:y + patch_size, - :] + np.ones((1, patch_size, patch_size, 1)) - return denoised_image
- - -
-[docs] - def preprocess_noisy_image(self, noisy_image: np.array) -> tuple[np.array, np.array, np.array]: - """preprocess a given noisy image and generates its real and imaginary parts - - Args: - noisy_image (numpy array): noisy image - - Returns: - noisy_image, noisy_image_real_part, noisy_image_imaginary_part (numpy array, numpy array, numpy array): - preprocessed noisy image, real part of noisy image, imaginary part of noisy image - """ - noisy_image_real_part = (noisy_image[:, :, :, 0]).reshape(noisy_image.shape[0], noisy_image.shape[1], - noisy_image.shape[2], 1) - noisy_image_imaginary_part = (noisy_image[:, :, :, 1]).reshape(noisy_image.shape[0], noisy_image.shape[1], - noisy_image.shape[2], 1) - noisy_image = np.squeeze( - np.sqrt(noisy_image_real_part ** 2 + noisy_image_imaginary_part ** 2)) - - return noisy_image, noisy_image_real_part, noisy_image_imaginary_part
- - -
-[docs] - def preprocess_denoised_image(self, denoised_image_real_part: np.array, denoised_image_imaginary_part: np.array, count_image: np.array) -> tuple[np.array, np.array, np.array]: - """Preprocess given denoised real and imaginary parts of an image, and build the full denoised image - - Args: - denoised_image_real_part (numpy array): real part of a denoised image - denoised_image_imaginary_part (numpy array): imaginary part of a denoised image - count_image (numpy array): normalisation image used for denormalisation - - Returns: - denoised_image, denoised_image_real_part, denoised_image_imaginary_part (numpy array, numpy array, numpy array): - processed denoised full image, processed denoised image real part, processed denoised image imaginary part - """ - denoised_image_real_part = denormalize_sar_image( - denoised_image_real_part / count_image) - denoised_image_imaginary_part = denormalize_sar_image( - denoised_image_imaginary_part / count_image) - - # combine the two estimation - output_clean_image = 0.5 * (np.square( - denoised_image_real_part) + np.square(denoised_image_imaginary_part)) - - denoised_image = np.sqrt(np.squeeze(output_clean_image)) - - return denoised_image, denoised_image_real_part, denoised_image_imaginary_part
- - -
-[docs] - def denoise_image(self, noisy_image: np.array, patch_size: int, stride_size: int) -> dict: - """Preprocess and denoise a coSAR image using given model weights - - Args: - noisy_image (numpy array): numpy array containing the noisy image to despeckle - patch_size (int): size of the patch of the convolution - stride_size (int): number of pixels between one convolution to the next - - Returns: - despeckled_image (dict): noisy and denoised images - """ - noisy_image = np.array(noisy_image).reshape( - 1, np.size(noisy_image, 0), np.size(noisy_image, 1), 2) - - # Pad the image - image_height = np.size(noisy_image, 1) - image_width = np.size(noisy_image, 2) - - noisy_image, noisy_image_real_part, noisy_image_imaginary_part = self.preprocess_noisy_image( - noisy_image) - - model = self.load_model(patch_size=patch_size) - - count_image = np.zeros(noisy_image_real_part.shape) - denoised_image_real_part = np.zeros(noisy_image_real_part.shape) - denoised_image_imaginary_part = np.zeros(noisy_image_real_part.shape) - - x_range = self.initialize_axis_range( - image_height, patch_size, stride_size) - y_range = self.initialize_axis_range( - image_width, patch_size, stride_size) - - for x in tqdm(x_range): - for y in y_range: - real_to_denoise = noisy_image_real_part[:, - x:x + patch_size, y:y + patch_size, :] - imag_to_denoise = noisy_image_imaginary_part[:, - x:x + patch_size, y:y + patch_size, :] - if self.symetrise: - real_to_denoise, imag_to_denoise = symetrise_real_and_imaginary_parts( - real_to_denoise, imag_to_denoise) - - real_to_denoise = torch.tensor( - real_to_denoise, device=self.device, dtype=torch.float32) - imag_to_denoise = torch.tensor( - imag_to_denoise, device=self.device, dtype=torch.float32) - - real_to_denoise = (torch.log(torch.square( - real_to_denoise)+1e-3)-2*m)/(2*(M-m)) - imag_to_denoise = (torch.log(torch.square( - imag_to_denoise)+1e-3)-2*m)/(2*(M-m)) - - denoised_image_real_part = self.denoise_image_kernel( - real_to_denoise, denoised_image_real_part, x, y, patch_size, model) - denoised_image_imaginary_part = self.denoise_image_kernel( - imag_to_denoise, denoised_image_imaginary_part, x, y, patch_size, model) - count_image = self.denoise_image_kernel( - imag_to_denoise, count_image, x, y, patch_size, model, normalisation_kernel=True) - - denoised_image, denoised_image_real_part, denoised_image_imaginary_part = self.preprocess_denoised_image( - denoised_image_real_part, denoised_image_imaginary_part, count_image) - - despeckled_image = {"noisy": {"full": noisy_image, - "real": np.squeeze(noisy_image_real_part), - "imaginary": np.squeeze(noisy_image_imaginary_part) - }, - "denoised": {"full": denoised_image, - "from_real": denoised_image_real_part, - "from_imaginary": denoised_image_imaginary_part - } - } - - return despeckled_image
- - -
-[docs] - def denoise_images(self, images_to_denoise_path: list, save_dir: str, patch_size: int, - stride_size: int): - """Iterate over a directory of coSAR images and store the denoised images in a directory - - Args: - images_to_denoise_path (list): a list of paths of npy images to denoise - save_dir (str): repository to save sar images, real images and noisy images - patch_size (int): size of the patch of the convolution - stride_size (int): number of pixels between one convolution to the next - """ - - images_to_denoise_paths = glob((images_to_denoise_path + '/*.npy')) - - assert len(images_to_denoise_paths) != 0, 'No data!' - - logging.info(f"Starting denoising images in {images_to_denoise_paths}") - - for idx in range(len(images_to_denoise_paths)): - image_name = Path(images_to_denoise_paths[idx]).name - logging.info( - f"Despeckling {image_name}") - - noisy_image_idx = load_sar_image( - images_to_denoise_paths[idx]).astype(np.float32) - despeckled_images = self.denoise_image( - noisy_image_idx, patch_size, stride_size) - - logging.info( - f"Saving despeckled images in {save_dir}") - self.save_despeckled_images( - despeckled_images, image_name, save_dir)
-
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/deepdespeckling/model.html b/docs/_build/html/_modules/deepdespeckling/model.html deleted file mode 100644 index f9b011e..0000000 --- a/docs/_build/html/_modules/deepdespeckling/model.html +++ /dev/null @@ -1,240 +0,0 @@ - - - - - - - deepdespeckling.model — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.model

-import torch
-import numpy as np
-
-
-
-[docs] -class Model(torch.nn.Module): - - def __init__(self, device: str, height: int, width: int): - super().__init__() - - self.device = device - - self.height = height - self.width = width - - self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) - self.leaky = torch.nn.LeakyReLU(0.1) - - self.enc0 = torch.nn.Conv2d(in_channels=1, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.enc1 = torch.nn.Conv2d(in_channels=48, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.enc2 = torch.nn.Conv2d(in_channels=48, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.enc3 = torch.nn.Conv2d(in_channels=48, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.enc4 = torch.nn.Conv2d(in_channels=48, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.enc5 = torch.nn.Conv2d(in_channels=48, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.enc6 = torch.nn.Conv2d(in_channels=48, out_channels=48, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - - self.dec5 = torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec5b = torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec4 = torch.nn.Conv2d(in_channels=144, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec4b = torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec3 = torch.nn.Conv2d(in_channels=144, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec3b = torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec2 = torch.nn.Conv2d(in_channels=144, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec2b = torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec1a = torch.nn.Conv2d(in_channels=97, out_channels=64, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec1b = torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - self.dec1 = torch.nn.Conv2d(in_channels=32, out_channels=1, kernel_size=(3, 3), stride=(1, 1), - padding='same', device=self.device) - - self.upscale2d = torch.nn.UpsamplingNearest2d(scale_factor=2) - -
-[docs] - def forward(self, x: np.array) -> np.array: - """ Defines a class for an autoencoder algorithm for an object (image) x - - An autoencoder is a specific type of feedforward neural networks where the - input is the same as the - output. It compresses the input into a lower-dimensional code and then - reconstruct the output from this representattion. It is a dimensionality - reduction algorithm - - Parameters - ---------- - x : np.array - a numpy array containing image - - Returns - ---------- - x-n : np.array - a numpy array containing the denoised image i.e the image itself minus the noise - - """ - x = torch.reshape(x, [1, 1, self.height, self.width]) - # x = torch.permute(x, (0, 3, 1, 2)) - skips = [x] - - n = x - - # ENCODER - n = self.leaky(self.enc0(n)) - n = self.leaky(self.enc1(n)) - n = self.pool(n) - skips.append(n) - - n = self.leaky(self.enc2(n)) - n = self.pool(n) - skips.append(n) - - n = self.leaky(self.enc3(n)) - n = self.pool(n) - skips.append(n) - - n = self.leaky(self.enc4(n)) - n = self.pool(n) - skips.append(n) - - n = self.leaky(self.enc5(n)) - n = self.pool(n) - n = self.leaky(self.enc6(n)) - - # DECODER - n = self.upscale2d(n) - n = torch.cat((n, skips.pop()), dim=1) - n = self.leaky(self.dec5(n)) - n = self.leaky(self.dec5b(n)) - - n = self.upscale2d(n) - n = torch.cat((n, skips.pop()), dim=1) - n = self.leaky(self.dec4(n)) - n = self.leaky(self.dec4b(n)) - - n = self.upscale2d(n) - n = torch.cat((n, skips.pop()), dim=1) - n = self.leaky(self.dec3(n)) - n = self.leaky(self.dec3b(n)) - - n = self.upscale2d(n) - n = torch.cat((n, skips.pop()), dim=1) - n = self.leaky(self.dec2(n)) - n = self.leaky(self.dec2b(n)) - - n = self.upscale2d(n) - n = torch.cat((n, skips.pop()), dim=1) - n = self.leaky(self.dec1a(n)) - n = self.leaky(self.dec1b(n)) - - n = self.dec1(n) - - return x - n
-
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/deepdespeckling/sar2sar/sar2sar_denoiser.html b/docs/_build/html/_modules/deepdespeckling/sar2sar/sar2sar_denoiser.html deleted file mode 100644 index 65cda37..0000000 --- a/docs/_build/html/_modules/deepdespeckling/sar2sar/sar2sar_denoiser.html +++ /dev/null @@ -1,320 +0,0 @@ - - - - - - - deepdespeckling.sar2sar.sar2sar_denoiser — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.sar2sar.sar2sar_denoiser

-from glob import glob
-import logging
-import os
-from pathlib import Path
-import torch
-import numpy as np
-from tqdm import tqdm
-
-from deepdespeckling.denoiser import Denoiser
-from deepdespeckling.model import Model
-from deepdespeckling.utils.constants import M, m
-from deepdespeckling.utils.utils import (denormalize_sar_image, load_sar_image, normalize_sar_image, save_image_to_npy_and_png,
-                                         create_empty_folder_in_directory)
-
-current_dir = os.path.dirname(__file__)
-
-
-
-[docs] -class Sar2SarDenoiser(Denoiser): - """Class to share parameters beyond denoising functions - """ - - def __init__(self, **params): - super().__init__(**params) - self.weights_path = os.path.join( - current_dir, "saved_model/sar2sar.pth") - print(self.weights_path) - -
-[docs] - def load_model(self, patch_size: int) -> Model: - """Load model with given weights - - Args: - weights_path (str): path to weights - patch_size (int): patch size - - Returns: - model (Model): model loaded with stored weights - """ - model = Model(torch.device(self.device), - height=patch_size, width=patch_size) - model.load_state_dict(torch.load( - self.weights_path, map_location=torch.device("cpu"))['model_state_dict']) - - return model
- - -
-[docs] - def save_despeckled_images(self, despeckled_images: dict, image_name: str, save_dir: str): - """Save full, real and imaginary part of noisy and denoised image stored in a dictionary in png to a given folder - - Args: - despeckled_images (dict): dictionary containing noisy and denoised image - image_name (str): name of the image - save_dir (str): path to the folder where to save the png images - """ - threshold = np.mean( - despeckled_images["noisy"]) + 3 * np.std(despeckled_images["noisy"]) - image_name = image_name.split('\\')[-1] - - for key in despeckled_images: - create_empty_folder_in_directory(save_dir, key) - save_image_to_npy_and_png( - despeckled_images[key], save_dir, f"/{key}/{key}_", image_name, threshold)
- - -
-[docs] - def denoise_image_kernel(self, noisy_image_kernel: torch.tensor, denoised_image_kernel: np.array, x: int, y: int, patch_size: int, model: Model, normalisation_kernel: bool = False) -> np.array: - """Denoise a subpart of a given symetrised noisy image delimited by x, y and patch_size using a given model - - Args: - noisy_image_kernel (torch tensor): part of the noisy image to denoise - denoised_image_kernel (numpy array): part of the partially denoised image - x (int): x coordinate of current kernel to denoise - y (int): y coordinate of current kernel to denoise - patch_size (int): patch size - model (Model): trained model with loaded weights - normalisation_kernel (bool, optional): Determine if. Defaults to False. - - Returns: - denoised_image_kernel (numpy array): image denoised in the given coordinates and the ones already iterated - """ - if not normalisation_kernel: - - with torch.no_grad(): - if self.device != 'cpu': - tmp_clean_image = model.forward( - noisy_image_kernel).cpu().numpy() - else: - tmp_clean_image = model.forward( - noisy_image_kernel).numpy() - - tmp_clean_image = denormalize_sar_image(np.squeeze( - np.asarray(tmp_clean_image))) - - denoised_image_kernel[x:x + patch_size, y:y + patch_size] = denoised_image_kernel[x:x + - patch_size, y:y + patch_size] + tmp_clean_image - else: - denoised_image_kernel[x:x + patch_size, y:y + patch_size] = denoised_image_kernel[x:x + - patch_size, y:y + patch_size] + np.ones((patch_size, patch_size)) - - return denoised_image_kernel
- - -
-[docs] - def denormalize_sar_image(self, image: np.array) -> np.array: - """Denormalize a sar image stored in a numpy array - - Args: - image (numpy array): a sar image - - Raises: - TypeError: raise an error if the image file is not a numpy array - - Returns: - (numpy array): the image denormalized - """ - if not isinstance(image, np.ndarray): - raise TypeError('Please provide a numpy array') - return np.exp((np.clip(np.squeeze(image), 0, image.max()))*(M-m)+m)
- - -
-[docs] - def denoise_image(self, noisy_image: np.array, patch_size: int, stride_size: int) -> dict: - """Preprocess and denoise a coSAR image using given model weights - - Args: - noisy_image (numpy array): numpy array containing the noisy image to despeckle - patch_size (int): size of the patch of the convolution - stride_size (int): number of pixels between one convolution to the next - - Returns: - output_image (numpy array): denoised image - """ - noisy_image = np.array(noisy_image).reshape( - 1, np.size(noisy_image, 0), np.size(noisy_image, 1), 1).astype(np.float32) - - noisy_image = normalize_sar_image(noisy_image) - - noisy_image = torch.tensor( - noisy_image, dtype=torch.float) - - # Pad the image - image_height = noisy_image.size(dim=1) - image_width = noisy_image.size(dim=2) - - model = self.load_model(patch_size=patch_size) - - count_image = np.zeros((image_height, image_width)) - denoised_image = np.zeros((image_height, image_width)) - - x_range = self.initialize_axis_range( - image_height, patch_size, stride_size) - y_range = self.initialize_axis_range( - image_width, patch_size, stride_size) - - for x in tqdm(x_range): - for y in y_range: - noisy_image_kernel = noisy_image[:, - x:x + patch_size, y:y + patch_size, :] - noisy_image_kernel = noisy_image_kernel.to(self.device) - - denoised_image = self.denoise_image_kernel( - noisy_image_kernel, denoised_image, x, y, patch_size, model) - count_image = self.denoise_image_kernel( - noisy_image_kernel, count_image, x, y, patch_size, model, normalisation_kernel=True) - - denoised_image = denoised_image / count_image - - noisy_image_denormalized = self.denormalize_sar_image( - np.squeeze(np.asarray(noisy_image.cpu().numpy()))) - - despeckled_image = {"noisy": noisy_image_denormalized, - "denoised": denoised_image - } - - return despeckled_image
- - -
-[docs] - def denoise_images(self, images_to_denoise_path: list, save_dir: str, patch_size: int, - stride_size: int): - """Iterate over a directory of coSAR images and store the denoised images in a directory - - Args: - images_to_denoise_path (list): a list of paths of npy images to denoise - save_dir (str): repository to save sar images, real images and noisy images - patch_size (int): size of the patch of the convolution - stride_size (int): number of pixels between one convolution to the next - """ - - images_to_denoise_paths = glob((images_to_denoise_path + '/*.npy')) - - assert len(images_to_denoise_paths) != 0, 'No data!' - - logging.info(f"Starting denoising images in {images_to_denoise_paths}") - - for idx in range(len(images_to_denoise_paths)): - image_name = Path(images_to_denoise_paths[idx]).name - logging.info( - f"Despeckling {image_name}") - - noisy_image_idx = load_sar_image( - images_to_denoise_paths[idx]).astype(np.float32) - despeckled_images = self.denoise_image( - noisy_image_idx, patch_size, stride_size) - - logging.info( - f"Saving despeckled images in {save_dir}") - self.save_despeckled_images( - despeckled_images, image_name, save_dir)
-
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/deepdespeckling/utils/load_cosar.html b/docs/_build/html/_modules/deepdespeckling/utils/load_cosar.html deleted file mode 100644 index 7c48800..0000000 --- a/docs/_build/html/_modules/deepdespeckling/utils/load_cosar.html +++ /dev/null @@ -1,183 +0,0 @@ - - - - - - - deepdespeckling.utils.load_cosar — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.utils.load_cosar

-import struct
-from osgeo import gdal
-import numpy as np
-
-
-
-[docs] -def cos2mat(path_to_cosar_image: str) -> np.array: - """Convert a CoSAR imge to a numpy array of size [ncolumns,nlines,2] - - Args: - path_to_cosar_image (str): path to the image which is a cos file - - Returns: - numpy array : the image in a numpy array - """ - - print('Converting CoSAR to numpy array of size [ncolumns,nlines,2]') - - try: - fin = open(path_to_cosar_image, 'rb') - except IOError: - legx = path_to_cosar_image + ': it is a not openable file' - print(legx) - print(u'failed to call cos2mat') - return 0, 0, 0, 0 - - ibib = struct.unpack(">i", fin.read(4))[0] - irsri = struct.unpack(">i", fin.read(4))[0] - irs = struct.unpack(">i", fin.read(4))[0] - ias = struct.unpack(">i", fin.read(4))[0] - ibi = struct.unpack(">i", fin.read(4))[0] - irtnb = struct.unpack(">i", fin.read(4))[0] - itnl = struct.unpack(">i", fin.read(4))[0] - - nlig = struct.unpack(">i", fin.read(4))[0] - ncoltot = int(irtnb / 4) - ncol = ncoltot - 2 - nlig = ias - - print(u'Reading image in CoSAR format. ncolumns=%d nlines=%d' % (ncol, nlig)) - - firm = np.zeros(4 * ncoltot, dtype=np.byte()) - imgcxs = np.empty([nlig, ncol], dtype=np.complex64()) - - fin.seek(0) - firm = fin.read(4 * ncoltot) - firm = fin.read(4 * ncoltot) - firm = fin.read(4 * ncoltot) - firm = fin.read(4 * ncoltot) - - for iut in range(nlig): - firm = fin.read(4 * ncoltot) - imgligne = np.ndarray(2 * ncoltot, '>h', firm) - imgcxs[iut, :] = imgligne[4:2 * ncoltot:2] + \ - 1j * imgligne[5:2 * ncoltot:2] - - print('[:,:,0] contains the real part of the SLC image data') - print('[:,:,1] contains the imaginary part of the SLC image data') - - return np.stack((np.real(imgcxs), np.imag(imgcxs)), axis=2)
- - - -
-[docs] -def load_tiff_image(path_to_tiff_image: str) -> np.array: - """Load a tiff image in a numpy array using gdal library - - Args: - path_to_tiff_image (str): path to a tiff image - - Returns: - (numpy array): numpy array containing the tiff image - """ - dataset = gdal.Open(path_to_tiff_image) - - for x in range(1, dataset.RasterCount + 1): - band = dataset.GetRasterBand(x) - array = band.ReadAsArray() - - return array.astype(np.float64)
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/deepdespeckling/utils/utils.html b/docs/_build/html/_modules/deepdespeckling/utils/utils.html deleted file mode 100644 index b9938e2..0000000 --- a/docs/_build/html/_modules/deepdespeckling/utils/utils.html +++ /dev/null @@ -1,728 +0,0 @@ - - - - - - - deepdespeckling.utils.utils — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for deepdespeckling.utils.utils

-import numpy as np
-import cv2
-import os
-from PIL import Image
-from scipy import signal
-from pathlib import Path
-from glob import glob
-
-from deepdespeckling.utils.load_cosar import cos2mat, load_tiff_image
-from deepdespeckling.utils.constants import M, m
-
-
-
-[docs] -def normalize_sar_image(image: np.array) -> np.array: - """normalize a sar image store in a numpy array - - Args: - image (numpy array): the image to be normalized - - Returns: - (numpy array): normalized image - """ - return ((np.log(np.clip(image, 0, image.max())+1e-6)-m)/(M-m)).astype(np.float32)
- - - -
-[docs] -def denormalize_sar_image(image: np.array) -> np.array: - """Denormalize a sar image store in a numpy array - - Args: - image (numpy array): a sar image - - Raises: - TypeError: raise an error if the image file is not a numpy array - - Returns: - (numpy array): the image denormalized - """ - if not isinstance(image, np.ndarray): - raise TypeError('Please provide a numpy array') - return np.exp((M - m) * (np.squeeze(image)).astype('float32') + m)
- - - -
-[docs] -def denormalize_sar_image_sar2sar(image: np.array) -> np.array: - """Denormalize a sar image store i a numpy array - - Args: - image (numpy array): a sar image - - Raises: - TypeError: raise an error if the image file is not a numpy array - - Returns: - (numpy array): the image denormalized - """ - if not isinstance(image, np.ndarray): - raise TypeError('Please provide a numpy array') - return np.exp((np.clip(np.squeeze(image), 0, image.max()))*(M-m)+m)
- - - -
-[docs] -def load_sar_image(image_path: str) -> np.array: - """Load a SAR image in a numpy array, use cos2mat function if the file is a cos file, - load_tiff_image if the file is a tiff file - - Args: - image_path (str) : absolute path to a SAR image (cos or npy file) - - Returns: - image (numpy array) : the image of dimension [ncolumns,nlines,2] - """ - if Path(image_path).suffix == ".npy": - image = np.load(image_path) - elif Path(image_path).suffix == ".cos": - image = cos2mat(image_path) - elif Path(image_path).suffix == ".tiff": - image = load_tiff_image(image_path) - else: - raise ValueError("the image should be a cos, npy or tiff file") - return image
- - - -
-[docs] -def load_sar_images(file_list): - """ Description - ---------- - Loads files , resize them and append them into a list called data - - Parameters - ---------- - filelist : a path to a folder containing the images - - Returns - ---------- - A list of images - - """ - if not isinstance(file_list, list): - image = np.load(file_list) - image = np.array(image).reshape( - 1, np.size(image, 0), np.size(image, 1), 2) - return image - data = [] - for file in file_list: - image = np.load(file) - data.append(np.array(image).reshape( - 1, np.size(image, 0), np.size(image, 1), 2)) - return data
- - - -
-[docs] -def create_empty_folder_in_directory(destination_directory_path: str, folder_name: str = "processed_images") -> str: - """Create an empty folder in a given directory - - Args: - destination_directory_path (str): path pf the directory in which an empty folder is created if it doest not exist yet - folder_name (str, optional): name of the folder to create. Defaults to "processed_images". - - Returns: - processed_images_path: path of the created empty folder - """ - processed_images_path = destination_directory_path + f'/{folder_name}' - if not os.path.exists(processed_images_path): - os.mkdir(processed_images_path) - return processed_images_path
- - - -
-[docs] -def preprocess_and_store_sar_images(sar_images_path: str, processed_images_path: str, model_name: str = "spotlight"): - """Convert coSAR images to numpy arrays and store it in a specified path - - Args: - sar_images_path (str): path of a folder containing coSAR images to be converted in numpy array - processed_images_path (str): path of the folder where converted images are stored - model_name (str): model name to be use for despeckling - """ - ext = "cos" if model_name in ["spotlight", "stripmap"] else "tiff" - images_paths = glob(os.path.join(sar_images_path, "*.npy")) + \ - glob(os.path.join(sar_images_path, f"*.{ext}")) - for image_path in images_paths: - imagename = image_path.split('/')[-1].split('.')[0] - if not os.path.exists(processed_images_path + '/' + imagename + '.npy'): - image = load_sar_image(image_path) - np.save(processed_images_path + '/' + imagename + '.npy', image)
- - - -
-[docs] -def preprocess_and_store_sar_images_from_coordinates(sar_images_path: str, processed_images_path: str, coordinates_dict: dict, model_name: str = "spotlight"): - """Convert specified areas of coSAR images to numpy arrays and store it in a specified path - - Args: - sar_images_path (str): path of a folder containing coSAR images to be converted in numpy array - processed_images_path (str): path of the folder where converted images are stored - coordinates_dict (dict): dictionary containing pixel boundaries of the area to despeckle (x_start, x_end, y_start, y_end) - model_name (str): model name to be use for despeckling. Default to "spotlight" - """ - x_start = coordinates_dict["x_start"] - x_end = coordinates_dict["x_end"] - y_start = coordinates_dict["y_start"] - y_end = coordinates_dict["y_end"] - - ext = "cos" if model_name in ["spotlight", "stripmap"] else "tiff" - - images_paths = glob(os.path.join(sar_images_path, "*.npy")) + \ - glob(os.path.join(sar_images_path, f"*.{ext}")) - for image_path in images_paths: - imagename = image_path.split('/')[-1].split('.')[0] - if not os.path.exists(processed_images_path + '/' + imagename + '.npy'): - image = load_sar_image(image_path) - if ext == "cos": - np.save(processed_images_path + '/' + imagename + - '.npy', image[x_start:x_end, y_start:y_end, :]) - else: - np.save(processed_images_path + '/' + imagename + - '.npy', image[x_start:x_end, y_start:y_end])
- - - -
-[docs] -def get_maximum_patch_size(kernel_size: int, patch_bound: int) -> int: - """Get maximum manifold of a number lower than a bound - - Args: - kernel_size (int): the kernel size of the trained model - patch_bound (int): the maximum bound of the kernel size - - Returns: - maximum_patch_size (int) : the maximum patch size - """ - k = 1 - - while kernel_size * k < patch_bound: - k = k * 2 - - maximum_patch_size = int(kernel_size * (k/2)) - - return maximum_patch_size
- - - -
-[docs] -def get_maximum_patch_size_from_image_dimensions(kernel_size: int, height: int, width: int) -> int: - """Get the maximum patch size from the width and heigth and the kernel size of the model we use - - Args: - kernel_size (int): the kernel size of the trained model - height (int): the heigth of the image - width (int): the width of the image - - Returns: - maximum_patch_size (int) : the maximum patch size to use for despeckling - """ - patch_bound = min(height, width) - - if patch_bound <= kernel_size: - maximum_patch_size = kernel_size - else: - maximum_patch_size = get_maximum_patch_size( - kernel_size=kernel_size, patch_bound=patch_bound) - - return maximum_patch_size
- - - -
-[docs] -def symetrise_real_and_imaginary_parts(real_part: np.array, imag_part: np.array) -> tuple[np.array, np.array]: - """Symetrise given real and imaginary parts to ensure MERLIN properties - - Args: - real_part (numpy array): real part of the noisy image to symetrise - imag_part (numpy array): imaginary part of the noisy image to symetrise - - Returns: - np.real(ima2), np.imag(ima2) (numpy array, numpy array): symetrised real and imaginary parts of a noisy image - """ - S = np.fft.fftshift(np.fft.fft2( - real_part[0, :, :, 0] + 1j * imag_part[0, :, :, 0])) - p = np.zeros((S.shape[0])) # azimut (ncol) - for i in range(S.shape[0]): - p[i] = np.mean(np.abs(S[i, :])) - sp = p[::-1] - c = np.real(np.fft.ifft(np.fft.fft(p) * np.conjugate(np.fft.fft(sp)))) - d1 = np.unravel_index(c.argmax(), p.shape[0]) - d1 = d1[0] - shift_az_1 = int(round(-(d1 - 1) / 2)) % p.shape[0] + int(p.shape[0] / 2) - p2_1 = np.roll(p, shift_az_1) - shift_az_2 = int( - round(-(d1 - 1 - p.shape[0]) / 2)) % p.shape[0] + int(p.shape[0] / 2) - p2_2 = np.roll(p, shift_az_2) - window = signal.gaussian(p.shape[0], std=0.2 * p.shape[0]) - test_1 = np.sum(window * p2_1) - test_2 = np.sum(window * p2_2) - # make sure the spectrum is symetrized and zeo-Doppler centered - if test_1 >= test_2: - p2 = p2_1 - shift_az = shift_az_1 / p.shape[0] - else: - p2 = p2_2 - shift_az = shift_az_2 / p.shape[0] - S2 = np.roll(S, int(shift_az * p.shape[0]), axis=0) - - q = np.zeros((S.shape[1])) # range (nlin) - for j in range(S.shape[1]): - q[j] = np.mean(np.abs(S[:, j])) - sq = q[::-1] - # correlation - cq = np.real(np.fft.ifft(np.fft.fft(q) * np.conjugate(np.fft.fft(sq)))) - d2 = np.unravel_index(cq.argmax(), q.shape[0]) - d2 = d2[0] - shift_range_1 = int(round(-(d2 - 1) / 2) - ) % q.shape[0] + int(q.shape[0] / 2) - q2_1 = np.roll(q, shift_range_1) - shift_range_2 = int( - round(-(d2 - 1 - q.shape[0]) / 2)) % q.shape[0] + int(q.shape[0] / 2) - q2_2 = np.roll(q, shift_range_2) - window_r = signal.gaussian(q.shape[0], std=0.2 * q.shape[0]) - test_1 = np.sum(window_r * q2_1) - test_2 = np.sum(window_r * q2_2) - if test_1 >= test_2: - q2 = q2_1 - shift_range = shift_range_1 / q.shape[0] - else: - q2 = q2_2 - shift_range = shift_range_2 / q.shape[0] - - Sf = np.roll(S2, int(shift_range * q.shape[0]), axis=1) - ima2 = np.fft.ifft2(np.fft.ifftshift(Sf)) - - return np.real(ima2), np.imag(ima2)
- - - -
-[docs] -def preprocess_image(image: np.array, threshold: float) -> np.array: - """Preprocess image by limiting pixel values with a threshold - - Args: - image (numpy array): image to preprocess - threshold (float): pixel value threshold - - Returns: - image (cv2 Image): image to be saved - """ - image = np.clip(image, 0, threshold) - image = image / threshold * 255 - image = Image.fromarray(image.astype('float64')).convert('L') - - return image
- - - -
-[docs] -def save_image_to_png(image: np.array, threshold: int, image_full_path: str): - """Save a given image to a png file in a given folder - - Args: - image (numpy array): image to save - threshold (float): threshold of pixel values of the image to be saved in png - image_full_path (str): full path of the image - - Raises: - TypeError: if the image is not a numpy array - """ - if not isinstance(image, np.ndarray): - raise TypeError('Please provide a numpy array') - - image = preprocess_image(image, threshold=threshold) - image.save(image_full_path.replace('npy', 'png'))
- - - -
-[docs] -def save_image_to_npy_and_png(image: np.array, save_dir: str, prefix: str, image_name: str, threshold: float): - """Save a given image to npy and png in a given folder - - Args: - image (numpy array): image to save - save_dir (str): path to the folder where to save the image - prefix (str): prefix of the image file name - image_name (str): name of the image file - threshold (float): threshold of image pixel values used for png conversion - """ - image_full_path = save_dir + prefix + image_name - - # Save image to npy file - np.save(image_full_path, image) - - # Save image to png file - save_image_to_png(image, threshold, image_full_path)
- - - -
-[docs] -def compute_psnr(Shat: np.array, S: np.array) -> float: - """Compute Peak Signal to Noise Ratio - - Args: - Shat (numpy array): a SAR amplitude image - S (numpy array): a reference SAR image - - Returns: - res (float): psnr value - """ - P = np.quantile(S, 0.99) - res = 10 * np.log10((P ** 2) / np.mean(np.abs(Shat - S) ** 2)) - return res
- - - -
-[docs] -def get_cropping_coordinates(image: np.array, destination_directory_path: str, model_name: str, fixed: bool = True): - """Launch the crop tool to enable the user to select the subpart of the image to be despeckled - - Args: - image (numpy aray): full image to be cropped - destination_directory_path (str): path of a folder to store the results - model_name (str): model name to be use for despeckling. Default to "spotlight" - fixed (bool, optional): whether the area of selection has a fixed size of not. Defaults to True. - """ - image = preprocess_sar_image_for_cropping(image, model_name) - full_image = image.copy() - cropping = False - x_start, y_start, x_end, y_end = 0, 0, 0, 0 - - # CV2 CROPPING IN WINDOW - def mouse_crop(event, x, y, flags, param): - """ The callback function of crop() to deal with user's events - """ - global x_start, y_start, x_end, y_end, cropping - cropping = False - - if event == cv2.EVENT_LBUTTONDOWN: - x_start, y_start, x_end, y_end = x, y, x, y - cropping = True - - # Mouse is Moving - elif event == cv2.EVENT_MOUSEMOVE: - x_end, y_end = x, y - - # if the left mouse button was released - elif event == cv2.EVENT_LBUTTONUP: - # record the ending (x, y) coordinates - x_end, y_end = x, y - if fixed: - if x_start > x_end and y_start > y_end: - tempxstart = x_start - tempystart = y_start - - x_start = tempxstart - 32 - x_end = tempxstart - - y_start = tempystart - 32 - y_end = tempystart - - elif x_start > x_end and y_start < y_end: - tempxstart = x_start - tempystart = y_start - - x_start = tempxstart - 32 - y_start = tempystart - - x_end = tempxstart - y_end = tempystart + 32 - - elif x_start < x_end and y_start > y_end: - tempxstart = x_start - tempystart = y_start - - x_start = tempxstart - y_start = tempystart - 32 - x_end = tempxstart + 32 - y_end = tempystart - - else: - x_end = x_start + 32 - y_end = y_start + 32 - else: - if x_start > x_end and y_start > y_end: - tempx = x_start - x_start = x_end - x_end = tempx - - tempy = y_start - y_start = y_end - y_end = tempy - - elif x_start > x_end and y_start < y_end: - tempxstart = x_start - tempystart = y_start - tempxend = x_end - tempyend = y_end - - x_start = tempxend - y_start = tempystart - x_end = tempxstart - y_end = tempyend - - elif x_start < x_end and y_start > y_end: - tempxstart = x_start - tempystart = y_start - tempxend = x_end - tempyend = y_end - - x_start = tempxstart - y_start = tempyend - x_end = tempxend - y_end = tempystart - - # cropping is finished - cv2.rectangle(image, (x_start, y_start), - (x_end, y_end), (255, 0, 0), 2) - cropping = False - - refPoint = [(x_start, y_start), (x_end, y_end)] - - if len(refPoint) == 2: # when two points were found - cropped_image = full_image[refPoint[0][1] * 8:refPoint[1][1] - * 8, refPoint[0][0] * 8:refPoint[1][0] * 8] - if fixed: - cropped_image = cv2.resize(cropped_image, (256, 256)) - else: - cropped_image = cv2.resize( - cropped_image, (8 * (x_end - x_start), 8 * (y_end - y_start))) - cv2.imshow("Cropped", cropped_image) - - with open(destination_directory_path+'/cropping_coordinates.txt', 'w') as filehandle: - for listitem in refPoint: - filehandle.write(f'{listitem}\n') - - h, w, _ = image.shape - # resizing image - image = cv2.resize(image, (int(w / 8), int(h / 8))) - cv2.namedWindow("image") - cv2.setMouseCallback("image", mouse_crop) - - while True: - i = image.copy() - if not cropping: - cv2.imshow("image", image) - elif cropping: - cv2.imshow("image", i) - if not fixed: - cv2.rectangle(i, (x_start, y_start), - (x_end, y_end), (255, 0, 0), 2) - key = cv2.waitKey(10) - if key == ord('q'): - cv2.destroyAllWindows() - return get_cropping_coordinates_from_file(destination_directory_path=destination_directory_path)
- - - -
-[docs] -def get_cropping_coordinates_from_file(destination_directory_path: str) -> list: - """Get cropping coordinates from a file where it's stored - - Args: - destination_directory_path (str): path of the file in which the cropping coordinates are stored - - Returns: - cropping_coordinates (list): list containing cropping coordinates - """ - cropping_coordinates = [] - - with open(destination_directory_path+'/cropping_coordinates.txt', 'r') as filehandle: - for line in filehandle: - # Remove linebreak which is the last character of the string - curr_place = eval(line[:-1]) - # Add item to the list - cropping_coordinates.append(curr_place) - - return cropping_coordinates
- - - -
-[docs] -def crop_image(image: np.array, image_path: str, cropping_coordinates: list, model_name: str, processed_images_path: str): - """Crop an image using given cropping coordinates and store the result in a given folder - - Args: - image (numpy array): image to be cropped - image_path (str): path of the image - cropping_coordinates (list): list of coordinates of cropping, format [(x1, y1), (x2, y2)] - model_name (str): name of the model (stripmap, spotlight or sar2sar) - processed_images_path (str): path of the folder where to store the cropped image in npy format - """ - if model_name in ["spotlight", "stripmap"]: - image_real_part = image[:, :, 0] - image_imaginary_part = image[:, :, 1] - - cropped_image_real_part = image_real_part[cropping_coordinates[0][1] * 8:cropping_coordinates[1][1] * 8, - cropping_coordinates[0][0] * 8:cropping_coordinates[1][0] * 8] - cropped_image_imaginary_part = image_imaginary_part[cropping_coordinates[0][1] * 8:cropping_coordinates[1][1] * 8, - cropping_coordinates[0][0] * 8:cropping_coordinates[1][0] * 8] - - cropped_image_real_part = cropped_image_real_part.reshape(cropped_image_real_part.shape[0], - cropped_image_real_part.shape[1], 1) - cropped_image_imaginary_part = cropped_image_imaginary_part.reshape(cropped_image_imaginary_part.shape[0], - cropped_image_imaginary_part.shape[1], 1) - - cropped_image = np.concatenate( - (cropped_image_real_part, cropped_image_imaginary_part), axis=2) - else: - cropped_image = image[cropping_coordinates[0][1] * 8:cropping_coordinates[1][1] * 8, - cropping_coordinates[0][0] * 8:cropping_coordinates[1][0] * 8] - - cropped_image = cropped_image.reshape( - cropped_image.shape[0], cropped_image.shape[1], 1) - - image_path_name = Path(image_path) - np.save(processed_images_path + '/' + image_path_name.stem + - '_cropped_to_denoise', cropped_image)
- - - -
-[docs] -def preprocess_sar_image_for_cropping(image: np.array, model_name: str) -> np.array: - """Preprocess image to use the cropping tool - - Args: - image (numpy array): image from which we get cropping coordinates by using the cropping tool - model_name (str): name of the model (stripmap, spotlight or sar2sar) - - Returns: - image (cv2 image): image preprocessed for cropping - """ - if model_name in ["spotlight", "stripmap"]: - image_data_real = image[:, :, 0] - image_data_imag = image[:, :, 1] - image = np.squeeze( - np.sqrt(np.square(image_data_real) + np.square(image_data_imag))) - - threshold = np.mean(image) + 3 * np.std(image) - - image = np.clip(image, 0, threshold) - image = image / threshold * 255 - - image = Image.fromarray(image.astype('float64')).convert('L') - image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) - - return image
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/index.html b/docs/_build/html/_modules/index.html deleted file mode 100644 index a56b88f..0000000 --- a/docs/_build/html/_modules/index.html +++ /dev/null @@ -1,109 +0,0 @@ - - - - - - Overview: module code — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
- - -
-
-
-
- - - - \ No newline at end of file diff --git a/docs/_build/html/_sources/index.rst.txt b/docs/_build/html/_sources/index.rst.txt deleted file mode 100644 index cc2aca5..0000000 --- a/docs/_build/html/_sources/index.rst.txt +++ /dev/null @@ -1,22 +0,0 @@ -.. deepdespeckling documentation master file, created by - sphinx-quickstart on Thu Mar 28 11:09:21 2024. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -Welcome to deepdespeckling's documentation! -=========================================== - -.. toctree:: - :maxdepth: 3 - :caption: Contents: - - modules - - - -Indices and tables -================== - -* :ref:`genindex` -* :ref:`modindex` -* :ref:`search` diff --git a/docs/_build/html/_sources/modules.rst.txt b/docs/_build/html/_sources/modules.rst.txt deleted file mode 100644 index 705f7c9..0000000 --- a/docs/_build/html/_sources/modules.rst.txt +++ /dev/null @@ -1,72 +0,0 @@ -.. toctree:: - :maxdepth: 3 - :caption: Contents: - -deepdespeckling -================= -.. automodule:: deepdespeckling - :members: - :undoc-members: - :show-inheritance: - -denoiser --------- - -.. automodule:: deepdespeckling.denoiser - :members: - :undoc-members: - :show-inheritance: - - -despeckling --------- - -.. automodule:: deepdespeckling.despeckling - :members: - :undoc-members: - :show-inheritance: - - -model --------- - -.. automodule:: deepdespeckling.model - :members: - :undoc-members: - :show-inheritance: - - -merlin_denoiser --------- - -.. automodule:: deepdespeckling.merlin.merlin_denoiser - :members: - :undoc-members: - :show-inheritance: - -sar2sar_denoiser --------- - -.. automodule:: deepdespeckling.sar2sar.sar2sar_denoiser - :members: - :undoc-members: - :show-inheritance: - -utils --------- - -.. automodule:: deepdespeckling.utils.utils - :members: - :undoc-members: - :show-inheritance: - - -load_cosar --------- - -.. automodule:: deepdespeckling.utils.load_cosar - :members: - :undoc-members: - :show-inheritance: - - diff --git a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js deleted file mode 100644 index 8141580..0000000 --- a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js +++ /dev/null @@ -1,123 +0,0 @@ -/* Compatability shim for jQuery and underscores.js. - * - * Copyright Sphinx contributors - * Released under the two clause BSD licence - */ - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} diff --git a/docs/_build/html/_static/alabaster.css b/docs/_build/html/_static/alabaster.css deleted file mode 100644 index e3174bf..0000000 --- a/docs/_build/html/_static/alabaster.css +++ /dev/null @@ -1,708 +0,0 @@ -@import url("basic.css"); - -/* -- page layout ----------------------------------------------------------- */ - -body { - font-family: Georgia, serif; - font-size: 17px; - background-color: #fff; - color: #000; - margin: 0; - padding: 0; -} - - -div.document { - width: 940px; - margin: 30px auto 0 auto; -} - -div.documentwrapper { - float: left; - width: 100%; -} - -div.bodywrapper { - margin: 0 0 0 220px; -} - -div.sphinxsidebar { - width: 220px; - font-size: 14px; - line-height: 1.5; -} - -hr { - border: 1px solid #B1B4B6; -} - -div.body { - background-color: #fff; - color: #3E4349; - padding: 0 30px 0 30px; -} - -div.body > .section { - text-align: left; -} - -div.footer { - width: 940px; - margin: 20px auto 30px auto; - font-size: 14px; - color: #888; - text-align: right; -} - -div.footer a { - color: #888; -} - -p.caption { - font-family: inherit; - font-size: inherit; -} - - -div.relations { - display: none; -} - - -div.sphinxsidebar { - max-height: 100%; - overflow-y: auto; -} - -div.sphinxsidebar a { - color: #444; - text-decoration: none; - border-bottom: 1px dotted #999; -} - -div.sphinxsidebar a:hover { - border-bottom: 1px solid #999; -} - -div.sphinxsidebarwrapper { - padding: 18px 10px; -} - -div.sphinxsidebarwrapper p.logo { - padding: 0; - margin: -10px 0 0 0px; - text-align: center; -} - -div.sphinxsidebarwrapper h1.logo { - margin-top: -10px; - text-align: center; - margin-bottom: 5px; - text-align: left; -} - -div.sphinxsidebarwrapper h1.logo-name { - margin-top: 0px; -} - -div.sphinxsidebarwrapper p.blurb { - margin-top: 0; - font-style: normal; -} - -div.sphinxsidebar h3, -div.sphinxsidebar h4 { - font-family: Georgia, serif; - color: #444; - font-size: 24px; - font-weight: normal; - margin: 0 0 5px 0; - padding: 0; -} - -div.sphinxsidebar h4 { - font-size: 20px; -} - -div.sphinxsidebar h3 a { - color: #444; -} - -div.sphinxsidebar p.logo a, -div.sphinxsidebar h3 a, -div.sphinxsidebar p.logo a:hover, -div.sphinxsidebar h3 a:hover { - border: none; -} - -div.sphinxsidebar p { - color: #555; - margin: 10px 0; -} - -div.sphinxsidebar ul { - margin: 10px 0; - padding: 0; - color: #000; -} - -div.sphinxsidebar ul li.toctree-l1 > a { - font-size: 120%; -} - -div.sphinxsidebar ul li.toctree-l2 > a { - font-size: 110%; -} - -div.sphinxsidebar input { - border: 1px solid #CCC; - font-family: Georgia, serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox input[type="text"] { - width: 160px; -} - -div.sphinxsidebar .search > div { - display: table-cell; -} - -div.sphinxsidebar hr { - border: none; - height: 1px; - color: #AAA; - background: #AAA; - - text-align: left; - margin-left: 0; - width: 50%; -} - -div.sphinxsidebar .badge { - border-bottom: none; -} - -div.sphinxsidebar .badge:hover { - border-bottom: none; -} - -/* To address an issue with donation coming after search */ -div.sphinxsidebar h3.donation { - margin-top: 10px; -} - -/* -- body styles ----------------------------------------------------------- */ - -a { - color: #004B6B; - text-decoration: underline; -} - -a:hover { - color: #6D4100; - text-decoration: underline; -} - -div.body h1, -div.body h2, -div.body h3, -div.body h4, -div.body h5, -div.body h6 { - font-family: Georgia, serif; - font-weight: normal; - margin: 30px 0px 10px 0px; - padding: 0; -} - -div.body h1 { margin-top: 0; padding-top: 0; font-size: 240%; } -div.body h2 { font-size: 180%; } -div.body h3 { font-size: 150%; } -div.body h4 { font-size: 130%; } -div.body h5 { font-size: 100%; } -div.body h6 { font-size: 100%; } - -a.headerlink { - color: #DDD; - padding: 0 4px; - text-decoration: none; -} - -a.headerlink:hover { - color: #444; - background: #EAEAEA; -} - -div.body p, div.body dd, div.body li { - line-height: 1.4em; -} - -div.admonition { - margin: 20px 0px; - padding: 10px 30px; - background-color: #EEE; - border: 1px solid #CCC; -} - -div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { - background-color: #FBFBFB; - border-bottom: 1px solid #fafafa; -} - -div.admonition p.admonition-title { - font-family: Georgia, serif; - font-weight: normal; - font-size: 24px; - margin: 0 0 10px 0; - padding: 0; - line-height: 1; -} - -div.admonition p.last { - margin-bottom: 0; -} - -div.highlight { - background-color: #fff; -} - -dt:target, .highlight { - background: #FAF3E8; -} - -div.warning { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.danger { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.error { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.caution { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.attention { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.important { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.note { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.tip { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.hint { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.seealso { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.topic { - background-color: #EEE; -} - -p.admonition-title { - display: inline; -} - -p.admonition-title:after { - content: ":"; -} - -pre, tt, code { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; - font-size: 0.9em; -} - -.hll { - background-color: #FFC; - margin: 0 -12px; - padding: 0 12px; - display: block; -} - -img.screenshot { -} - -tt.descname, tt.descclassname, code.descname, code.descclassname { - font-size: 0.95em; -} - -tt.descname, code.descname { - padding-right: 0.08em; -} - -img.screenshot { - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; -} - -table.docutils { - border: 1px solid #888; - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; -} - -table.docutils td, table.docutils th { - border: 1px solid #888; - padding: 0.25em 0.7em; -} - -table.field-list, table.footnote { - border: none; - -moz-box-shadow: none; - -webkit-box-shadow: none; - box-shadow: none; -} - -table.footnote { - margin: 15px 0; - width: 100%; - border: 1px solid #EEE; - background: #FDFDFD; - font-size: 0.9em; -} - -table.footnote + table.footnote { - margin-top: -15px; - border-top: none; -} - -table.field-list th { - padding: 0 0.8em 0 0; -} - -table.field-list td { - padding: 0; -} - -table.field-list p { - margin-bottom: 0.8em; -} - -/* Cloned from - * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 - */ -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -table.footnote td.label { - width: .1px; - padding: 0.3em 0 0.3em 0.5em; -} - -table.footnote td { - padding: 0.3em 0.5em; -} - -dl { - margin-left: 0; - margin-right: 0; - margin-top: 0; - padding: 0; -} - -dl dd { - margin-left: 30px; -} - -blockquote { - margin: 0 0 0 30px; - padding: 0; -} - -ul, ol { - /* Matches the 30px from the narrow-screen "li > ul" selector below */ - margin: 10px 0 10px 30px; - padding: 0; -} - -pre { - background: #EEE; - padding: 7px 30px; - margin: 15px 0px; - line-height: 1.3em; -} - -div.viewcode-block:target { - background: #ffd; -} - -dl pre, blockquote pre, li pre { - margin-left: 0; - padding-left: 30px; -} - -tt, code { - background-color: #ecf0f3; - color: #222; - /* padding: 1px 2px; */ -} - -tt.xref, code.xref, a tt { - background-color: #FBFBFB; - border-bottom: 1px solid #fff; -} - -a.reference { - text-decoration: none; - border-bottom: 1px dotted #004B6B; -} - -/* Don't put an underline on images */ -a.image-reference, a.image-reference:hover { - border-bottom: none; -} - -a.reference:hover { - border-bottom: 1px solid #6D4100; -} - -a.footnote-reference { - text-decoration: none; - font-size: 0.7em; - vertical-align: top; - border-bottom: 1px dotted #004B6B; -} - -a.footnote-reference:hover { - border-bottom: 1px solid #6D4100; -} - -a:hover tt, a:hover code { - background: #EEE; -} - - -@media screen and (max-width: 870px) { - - div.sphinxsidebar { - display: none; - } - - div.document { - width: 100%; - - } - - div.documentwrapper { - margin-left: 0; - margin-top: 0; - margin-right: 0; - margin-bottom: 0; - } - - div.bodywrapper { - margin-top: 0; - margin-right: 0; - margin-bottom: 0; - margin-left: 0; - } - - ul { - margin-left: 0; - } - - li > ul { - /* Matches the 30px from the "ul, ol" selector above */ - margin-left: 30px; - } - - .document { - width: auto; - } - - .footer { - width: auto; - } - - .bodywrapper { - margin: 0; - } - - .footer { - width: auto; - } - - .github { - display: none; - } - - - -} - - - -@media screen and (max-width: 875px) { - - body { - margin: 0; - padding: 20px 30px; - } - - div.documentwrapper { - float: none; - background: #fff; - } - - div.sphinxsidebar { - display: block; - float: none; - width: 102.5%; - margin: 50px -30px -20px -30px; - padding: 10px 20px; - background: #333; - color: #FFF; - } - - div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, - div.sphinxsidebar h3 a { - color: #fff; - } - - div.sphinxsidebar a { - color: #AAA; - } - - div.sphinxsidebar p.logo { - display: none; - } - - div.document { - width: 100%; - margin: 0; - } - - div.footer { - display: none; - } - - div.bodywrapper { - margin: 0; - } - - div.body { - min-height: 0; - padding: 0; - } - - .rtd_doc_footer { - display: none; - } - - .document { - width: auto; - } - - .footer { - width: auto; - } - - .footer { - width: auto; - } - - .github { - display: none; - } -} - - -/* misc. */ - -.revsys-inline { - display: none!important; -} - -/* Hide ugly table cell borders in ..bibliography:: directive output */ -table.docutils.citation, table.docutils.citation td, table.docutils.citation th { - border: none; - /* Below needed in some edge cases; if not applied, bottom shadows appear */ - -moz-box-shadow: none; - -webkit-box-shadow: none; - box-shadow: none; -} - - -/* relbar */ - -.related { - line-height: 30px; - width: 100%; - font-size: 0.9rem; -} - -.related.top { - border-bottom: 1px solid #EEE; - margin-bottom: 20px; -} - -.related.bottom { - border-top: 1px solid #EEE; -} - -.related ul { - padding: 0; - margin: 0; - list-style: none; -} - -.related li { - display: inline; -} - -nav#rellinks { - float: right; -} - -nav#rellinks li+li:before { - content: "|"; -} - -nav#breadcrumbs li+li:before { - content: "\00BB"; -} - -/* Hide certain items when printing */ -@media print { - div.related { - display: none; - } -} \ No newline at end of file diff --git a/docs/_build/html/_static/basic.css b/docs/_build/html/_static/basic.css deleted file mode 100644 index 30fee9d..0000000 --- a/docs/_build/html/_static/basic.css +++ /dev/null @@ -1,925 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 230px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 360px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -a:visited { - color: #551A8B; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -nav.contents, -aside.topic, -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -nav.contents, -aside.topic, -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -.sig dd { - margin-top: 0px; - margin-bottom: 0px; -} - -.sig dl { - margin-top: 0px; - margin-bottom: 0px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -.translated { - background-color: rgba(207, 255, 207, 0.2) -} - -.untranslated { - background-color: rgba(255, 207, 207, 0.2) -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/docs/_build/html/_static/css/badge_only.css b/docs/_build/html/_static/css/badge_only.css deleted file mode 100644 index c718cee..0000000 --- a/docs/_build/html/_static/css/badge_only.css +++ /dev/null @@ -1 +0,0 @@ -.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff b/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff deleted file mode 100644 index 6cb6000..0000000 Binary files a/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 b/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 deleted file mode 100644 index 7059e23..0000000 Binary files a/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff b/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff deleted file mode 100644 index f815f63..0000000 Binary files a/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 b/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 deleted file mode 100644 index f2c76e5..0000000 Binary files a/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.eot b/docs/_build/html/_static/css/fonts/fontawesome-webfont.eot deleted file mode 100644 index e9f60ca..0000000 Binary files a/docs/_build/html/_static/css/fonts/fontawesome-webfont.eot and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.svg b/docs/_build/html/_static/css/fonts/fontawesome-webfont.svg deleted file mode 100644 index 855c845..0000000 --- a/docs/_build/html/_static/css/fonts/fontawesome-webfont.svg +++ /dev/null @@ -1,2671 +0,0 @@ - - - - -Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 - By ,,, -Copyright Dave Gandy 2016. All rights reserved. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.ttf b/docs/_build/html/_static/css/fonts/fontawesome-webfont.ttf deleted file mode 100644 index 35acda2..0000000 Binary files a/docs/_build/html/_static/css/fonts/fontawesome-webfont.ttf and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff b/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff deleted file mode 100644 index 400014a..0000000 Binary files a/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff2 b/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff2 deleted file mode 100644 index 4d13fc6..0000000 Binary files a/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold-italic.woff b/docs/_build/html/_static/css/fonts/lato-bold-italic.woff deleted file mode 100644 index 88ad05b..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-bold-italic.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold-italic.woff2 b/docs/_build/html/_static/css/fonts/lato-bold-italic.woff2 deleted file mode 100644 index c4e3d80..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-bold-italic.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold.woff b/docs/_build/html/_static/css/fonts/lato-bold.woff deleted file mode 100644 index c6dff51..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-bold.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold.woff2 b/docs/_build/html/_static/css/fonts/lato-bold.woff2 deleted file mode 100644 index bb19504..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-bold.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal-italic.woff b/docs/_build/html/_static/css/fonts/lato-normal-italic.woff deleted file mode 100644 index 76114bc..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-normal-italic.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal-italic.woff2 b/docs/_build/html/_static/css/fonts/lato-normal-italic.woff2 deleted file mode 100644 index 3404f37..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-normal-italic.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal.woff b/docs/_build/html/_static/css/fonts/lato-normal.woff deleted file mode 100644 index ae1307f..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-normal.woff and /dev/null differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal.woff2 b/docs/_build/html/_static/css/fonts/lato-normal.woff2 deleted file mode 100644 index 3bf9843..0000000 Binary files a/docs/_build/html/_static/css/fonts/lato-normal.woff2 and /dev/null differ diff --git a/docs/_build/html/_static/css/theme.css b/docs/_build/html/_static/css/theme.css deleted file mode 100644 index 19a446a..0000000 --- a/docs/_build/html/_static/css/theme.css +++ /dev/null @@ -1,4 +0,0 @@ -html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! - * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome - * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) - */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/docs/_build/html/_static/custom.css b/docs/_build/html/_static/custom.css deleted file mode 100644 index 2a924f1..0000000 --- a/docs/_build/html/_static/custom.css +++ /dev/null @@ -1 +0,0 @@ -/* This file intentionally left blank. */ diff --git a/docs/_build/html/_static/doctools.js b/docs/_build/html/_static/doctools.js deleted file mode 100644 index d06a71d..0000000 --- a/docs/_build/html/_static/doctools.js +++ /dev/null @@ -1,156 +0,0 @@ -/* - * doctools.js - * ~~~~~~~~~~~ - * - * Base JavaScript utilities for all Sphinx HTML documentation. - * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", -]); - -const _ready = (callback) => { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } -}; - -/** - * Small JavaScript module for the documentation. - */ -const Documentation = { - init: () => { - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } - }, - - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; - }, - - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); - }, - - /** - * Initialise the domain index toggle buttons - */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); - }, - - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.altKey || event.ctrlKey || event.metaKey) return; - - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); - } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); - } - break; - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } - }); - }, -}; - -// quick alias for translations -const _ = Documentation.gettext; - -_ready(Documentation.init); diff --git a/docs/_build/html/_static/documentation_options.js b/docs/_build/html/_static/documentation_options.js deleted file mode 100644 index fef3410..0000000 --- a/docs/_build/html/_static/documentation_options.js +++ /dev/null @@ -1,13 +0,0 @@ -const DOCUMENTATION_OPTIONS = { - VERSION: '0.3', - LANGUAGE: 'English', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '.txt', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: true, -}; \ No newline at end of file diff --git a/docs/_build/html/_static/file.png b/docs/_build/html/_static/file.png deleted file mode 100644 index a858a41..0000000 Binary files a/docs/_build/html/_static/file.png and /dev/null differ diff --git a/docs/_build/html/_static/jquery.js b/docs/_build/html/_static/jquery.js deleted file mode 100644 index c4c6022..0000000 --- a/docs/_build/html/_static/jquery.js +++ /dev/null @@ -1,2 +0,0 @@ -/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ -!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/_build/html/_static/js/html5shiv.min.js b/docs/_build/html/_static/js/html5shiv.min.js deleted file mode 100644 index cd1c674..0000000 --- a/docs/_build/html/_static/js/html5shiv.min.js +++ /dev/null @@ -1,4 +0,0 @@ -/** -* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed -*/ -!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/_build/html/_static/js/theme.js b/docs/_build/html/_static/js/theme.js deleted file mode 100644 index 1fddb6e..0000000 --- a/docs/_build/html/_static/js/theme.js +++ /dev/null @@ -1 +0,0 @@ -!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 - var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 - var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 - var s_v = "^(" + C + ")?" + v; // vowel in stem - - this.stemWord = function (w) { - var stem; - var suffix; - var firstch; - var origword = w; - - if (w.length < 3) - return w; - - var re; - var re2; - var re3; - var re4; - - firstch = w.substr(0,1); - if (firstch == "y") - w = firstch.toUpperCase() + w.substr(1); - - // Step 1a - re = /^(.+?)(ss|i)es$/; - re2 = /^(.+?)([^s])s$/; - - if (re.test(w)) - w = w.replace(re,"$1$2"); - else if (re2.test(w)) - w = w.replace(re2,"$1$2"); - - // Step 1b - re = /^(.+?)eed$/; - re2 = /^(.+?)(ed|ing)$/; - if (re.test(w)) { - var fp = re.exec(w); - re = new RegExp(mgr0); - if (re.test(fp[1])) { - re = /.$/; - w = w.replace(re,""); - } - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1]; - re2 = new RegExp(s_v); - if (re2.test(stem)) { - w = stem; - re2 = /(at|bl|iz)$/; - re3 = new RegExp("([^aeiouylsz])\\1$"); - re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re2.test(w)) - w = w + "e"; - else if (re3.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - else if (re4.test(w)) - w = w + "e"; - } - } - - // Step 1c - re = /^(.+?)y$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(s_v); - if (re.test(stem)) - w = stem + "i"; - } - - // Step 2 - re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step2list[suffix]; - } - - // Step 3 - re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step3list[suffix]; - } - - // Step 4 - re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; - re2 = /^(.+?)(s|t)(ion)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - if (re.test(stem)) - w = stem; - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1] + fp[2]; - re2 = new RegExp(mgr1); - if (re2.test(stem)) - w = stem; - } - - // Step 5 - re = /^(.+?)e$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - re2 = new RegExp(meq1); - re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) - w = stem; - } - re = /ll$/; - re2 = new RegExp(mgr1); - if (re.test(w) && re2.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - - // and turn initial Y back to y - if (firstch == "y") - w = firstch.toLowerCase() + w.substr(1); - return w; - } -} - diff --git a/docs/_build/html/_static/minus.png b/docs/_build/html/_static/minus.png deleted file mode 100644 index d96755f..0000000 Binary files a/docs/_build/html/_static/minus.png and /dev/null differ diff --git a/docs/_build/html/_static/plus.png b/docs/_build/html/_static/plus.png deleted file mode 100644 index 7107cec..0000000 Binary files a/docs/_build/html/_static/plus.png and /dev/null differ diff --git a/docs/_build/html/_static/pygments.css b/docs/_build/html/_static/pygments.css deleted file mode 100644 index 84ab303..0000000 --- a/docs/_build/html/_static/pygments.css +++ /dev/null @@ -1,75 +0,0 @@ -pre { line-height: 125%; } -td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -.highlight .hll { background-color: #ffffcc } -.highlight { background: #f8f8f8; } -.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ -.highlight .err { border: 1px solid #FF0000 } /* Error */ -.highlight .k { color: #008000; font-weight: bold } /* Keyword */ -.highlight .o { color: #666666 } /* Operator */ -.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ -.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ -.highlight .cp { color: #9C6500 } /* Comment.Preproc */ -.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ -.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ -.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ -.highlight .gd { color: #A00000 } /* Generic.Deleted */ -.highlight .ge { font-style: italic } /* Generic.Emph */ -.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ -.highlight .gr { color: #E40000 } /* Generic.Error */ -.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ -.highlight .gi { color: #008400 } /* Generic.Inserted */ -.highlight .go { color: #717171 } /* Generic.Output */ -.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ -.highlight .gs { font-weight: bold } /* Generic.Strong */ -.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ -.highlight .gt { color: #0044DD } /* Generic.Traceback */ -.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ -.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ -.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ -.highlight .kp { color: #008000 } /* Keyword.Pseudo */ -.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ -.highlight .kt { color: #B00040 } /* Keyword.Type */ -.highlight .m { color: #666666 } /* Literal.Number */ -.highlight .s { color: #BA2121 } /* Literal.String */ -.highlight .na { color: #687822 } /* Name.Attribute */ -.highlight .nb { color: #008000 } /* Name.Builtin */ -.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ -.highlight .no { color: #880000 } /* Name.Constant */ -.highlight .nd { color: #AA22FF } /* Name.Decorator */ -.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ -.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ -.highlight .nf { color: #0000FF } /* Name.Function */ -.highlight .nl { color: #767600 } /* Name.Label */ -.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ -.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ -.highlight .nv { color: #19177C } /* Name.Variable */ -.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ -.highlight .w { color: #bbbbbb } /* Text.Whitespace */ -.highlight .mb { color: #666666 } /* Literal.Number.Bin */ -.highlight .mf { color: #666666 } /* Literal.Number.Float */ -.highlight .mh { color: #666666 } /* Literal.Number.Hex */ -.highlight .mi { color: #666666 } /* Literal.Number.Integer */ -.highlight .mo { color: #666666 } /* Literal.Number.Oct */ -.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ -.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ -.highlight .sc { color: #BA2121 } /* Literal.String.Char */ -.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ -.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ -.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ -.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ -.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ -.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ -.highlight .sx { color: #008000 } /* Literal.String.Other */ -.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ -.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ -.highlight .ss { color: #19177C } /* Literal.String.Symbol */ -.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ -.highlight .fm { color: #0000FF } /* Name.Function.Magic */ -.highlight .vc { color: #19177C } /* Name.Variable.Class */ -.highlight .vg { color: #19177C } /* Name.Variable.Global */ -.highlight .vi { color: #19177C } /* Name.Variable.Instance */ -.highlight .vm { color: #19177C } /* Name.Variable.Magic */ -.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/_build/html/_static/searchtools.js b/docs/_build/html/_static/searchtools.js deleted file mode 100644 index 7918c3f..0000000 --- a/docs/_build/html/_static/searchtools.js +++ /dev/null @@ -1,574 +0,0 @@ -/* - * searchtools.js - * ~~~~~~~~~~~~~~~~ - * - * Sphinx JavaScript utilities for the full-text search. - * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -/** - * Simple result scoring code. - */ -if (typeof Scorer === "undefined") { - var Scorer = { - // Implement the following function to further tweak the score for each result - // The function takes a result array [docname, title, anchor, descr, score, filename] - // and returns the new score. - /* - score: result => { - const [docname, title, anchor, descr, score, filename] = result - return score - }, - */ - - // query matches the full name of an object - objNameMatch: 11, - // or matches in the last dotted part of the object name - objPartialMatch: 6, - // Additive scores depending on the priority of the object - objPrio: { - 0: 15, // used to be importantResults - 1: 5, // used to be objectResults - 2: -5, // used to be unimportantResults - }, - // Used when the priority is not in the mapping. - objPrioDefault: 0, - - // query found in title - title: 15, - partialTitle: 7, - // query found in terms - term: 5, - partialTerm: 2, - }; -} - -const _removeChildren = (element) => { - while (element && element.lastChild) element.removeChild(element.lastChild); -}; - -/** - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping - */ -const _escapeRegExp = (string) => - string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string - -const _displayItem = (item, searchTerms, highlightTerms) => { - const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; - const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; - const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; - const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; - const contentRoot = document.documentElement.dataset.content_root; - - const [docName, title, anchor, descr, score, _filename] = item; - - let listItem = document.createElement("li"); - let requestUrl; - let linkUrl; - if (docBuilder === "dirhtml") { - // dirhtml builder - let dirname = docName + "/"; - if (dirname.match(/\/index\/$/)) - dirname = dirname.substring(0, dirname.length - 6); - else if (dirname === "index/") dirname = ""; - requestUrl = contentRoot + dirname; - linkUrl = requestUrl; - } else { - // normal html builders - requestUrl = contentRoot + docName + docFileSuffix; - linkUrl = docName + docLinkSuffix; - } - let linkEl = listItem.appendChild(document.createElement("a")); - linkEl.href = linkUrl + anchor; - linkEl.dataset.score = score; - linkEl.innerHTML = title; - if (descr) { - listItem.appendChild(document.createElement("span")).innerHTML = - " (" + descr + ")"; - // highlight search terms in the description - if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js - highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); - } - else if (showSearchSummary) - fetch(requestUrl) - .then((responseData) => responseData.text()) - .then((data) => { - if (data) - listItem.appendChild( - Search.makeSearchSummary(data, searchTerms) - ); - // highlight search terms in the summary - if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js - highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); - }); - Search.output.appendChild(listItem); -}; -const _finishSearch = (resultCount) => { - Search.stopPulse(); - Search.title.innerText = _("Search Results"); - if (!resultCount) - Search.status.innerText = Documentation.gettext( - "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." - ); - else - Search.status.innerText = _( - `Search finished, found ${resultCount} page(s) matching the search query.` - ); -}; -const _displayNextItem = ( - results, - resultCount, - searchTerms, - highlightTerms, -) => { - // results left, load the summary and display it - // this is intended to be dynamic (don't sub resultsCount) - if (results.length) { - _displayItem(results.pop(), searchTerms, highlightTerms); - setTimeout( - () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), - 5 - ); - } - // search finished, update title and status message - else _finishSearch(resultCount); -}; - -/** - * Default splitQuery function. Can be overridden in ``sphinx.search`` with a - * custom function per language. - * - * The regular expression works by splitting the string on consecutive characters - * that are not Unicode letters, numbers, underscores, or emoji characters. - * This is the same as ``\W+`` in Python, preserving the surrogate pair area. - */ -if (typeof splitQuery === "undefined") { - var splitQuery = (query) => query - .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) - .filter(term => term) // remove remaining empty strings -} - -/** - * Search Module - */ -const Search = { - _index: null, - _queued_query: null, - _pulse_status: -1, - - htmlToText: (htmlString) => { - const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); - htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); - const docContent = htmlElement.querySelector('[role="main"]'); - if (docContent !== undefined) return docContent.textContent; - console.warn( - "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." - ); - return ""; - }, - - init: () => { - const query = new URLSearchParams(window.location.search).get("q"); - document - .querySelectorAll('input[name="q"]') - .forEach((el) => (el.value = query)); - if (query) Search.performSearch(query); - }, - - loadIndex: (url) => - (document.body.appendChild(document.createElement("script")).src = url), - - setIndex: (index) => { - Search._index = index; - if (Search._queued_query !== null) { - const query = Search._queued_query; - Search._queued_query = null; - Search.query(query); - } - }, - - hasIndex: () => Search._index !== null, - - deferQuery: (query) => (Search._queued_query = query), - - stopPulse: () => (Search._pulse_status = -1), - - startPulse: () => { - if (Search._pulse_status >= 0) return; - - const pulse = () => { - Search._pulse_status = (Search._pulse_status + 1) % 4; - Search.dots.innerText = ".".repeat(Search._pulse_status); - if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); - }; - pulse(); - }, - - /** - * perform a search for something (or wait until index is loaded) - */ - performSearch: (query) => { - // create the required interface elements - const searchText = document.createElement("h2"); - searchText.textContent = _("Searching"); - const searchSummary = document.createElement("p"); - searchSummary.classList.add("search-summary"); - searchSummary.innerText = ""; - const searchList = document.createElement("ul"); - searchList.classList.add("search"); - - const out = document.getElementById("search-results"); - Search.title = out.appendChild(searchText); - Search.dots = Search.title.appendChild(document.createElement("span")); - Search.status = out.appendChild(searchSummary); - Search.output = out.appendChild(searchList); - - const searchProgress = document.getElementById("search-progress"); - // Some themes don't use the search progress node - if (searchProgress) { - searchProgress.innerText = _("Preparing search..."); - } - Search.startPulse(); - - // index already loaded, the browser was quick! - if (Search.hasIndex()) Search.query(query); - else Search.deferQuery(query); - }, - - /** - * execute search (requires search index to be loaded) - */ - query: (query) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - const allTitles = Search._index.alltitles; - const indexEntries = Search._index.indexentries; - - // stem the search terms and add them to the correct list - const stemmer = new Stemmer(); - const searchTerms = new Set(); - const excludedTerms = new Set(); - const highlightTerms = new Set(); - const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); - splitQuery(query.trim()).forEach((queryTerm) => { - const queryTermLower = queryTerm.toLowerCase(); - - // maybe skip this "word" - // stopwords array is from language_data.js - if ( - stopwords.indexOf(queryTermLower) !== -1 || - queryTerm.match(/^\d+$/) - ) - return; - - // stem the word - let word = stemmer.stemWord(queryTermLower); - // select the correct list - if (word[0] === "-") excludedTerms.add(word.substr(1)); - else { - searchTerms.add(word); - highlightTerms.add(queryTermLower); - } - }); - - if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js - localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) - } - - // console.debug("SEARCH: searching for:"); - // console.info("required: ", [...searchTerms]); - // console.info("excluded: ", [...excludedTerms]); - - // array of [docname, title, anchor, descr, score, filename] - let results = []; - _removeChildren(document.getElementById("search-progress")); - - const queryLower = query.toLowerCase(); - for (const [title, foundTitles] of Object.entries(allTitles)) { - if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { - for (const [file, id] of foundTitles) { - let score = Math.round(100 * queryLower.length / title.length) - results.push([ - docNames[file], - titles[file] !== title ? `${titles[file]} > ${title}` : title, - id !== null ? "#" + id : "", - null, - score, - filenames[file], - ]); - } - } - } - - // search for explicit entries in index directives - for (const [entry, foundEntries] of Object.entries(indexEntries)) { - if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { - for (const [file, id] of foundEntries) { - let score = Math.round(100 * queryLower.length / entry.length) - results.push([ - docNames[file], - titles[file], - id ? "#" + id : "", - null, - score, - filenames[file], - ]); - } - } - } - - // lookup as object - objectTerms.forEach((term) => - results.push(...Search.performObjectSearch(term, objectTerms)) - ); - - // lookup as search terms in fulltext - results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); - - // let the scorer override scores with a custom scoring function - if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); - - // now sort the results by score (in opposite order of appearance, since the - // display function below uses pop() to retrieve items) and then - // alphabetically - results.sort((a, b) => { - const leftScore = a[4]; - const rightScore = b[4]; - if (leftScore === rightScore) { - // same score: sort alphabetically - const leftTitle = a[1].toLowerCase(); - const rightTitle = b[1].toLowerCase(); - if (leftTitle === rightTitle) return 0; - return leftTitle > rightTitle ? -1 : 1; // inverted is intentional - } - return leftScore > rightScore ? 1 : -1; - }); - - // remove duplicate search results - // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept - let seen = new Set(); - results = results.reverse().reduce((acc, result) => { - let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); - if (!seen.has(resultStr)) { - acc.push(result); - seen.add(resultStr); - } - return acc; - }, []); - - results = results.reverse(); - - // for debugging - //Search.lastresults = results.slice(); // a copy - // console.info("search results:", Search.lastresults); - - // print the results - _displayNextItem(results, results.length, searchTerms, highlightTerms); - }, - - /** - * search for object names - */ - performObjectSearch: (object, objectTerms) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const objects = Search._index.objects; - const objNames = Search._index.objnames; - const titles = Search._index.titles; - - const results = []; - - const objectSearchCallback = (prefix, match) => { - const name = match[4] - const fullname = (prefix ? prefix + "." : "") + name; - const fullnameLower = fullname.toLowerCase(); - if (fullnameLower.indexOf(object) < 0) return; - - let score = 0; - const parts = fullnameLower.split("."); - - // check for different match types: exact matches of full name or - // "last name" (i.e. last dotted part) - if (fullnameLower === object || parts.slice(-1)[0] === object) - score += Scorer.objNameMatch; - else if (parts.slice(-1)[0].indexOf(object) > -1) - score += Scorer.objPartialMatch; // matches in last name - - const objName = objNames[match[1]][2]; - const title = titles[match[0]]; - - // If more than one term searched for, we require other words to be - // found in the name/title/description - const otherTerms = new Set(objectTerms); - otherTerms.delete(object); - if (otherTerms.size > 0) { - const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); - if ( - [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) - ) - return; - } - - let anchor = match[3]; - if (anchor === "") anchor = fullname; - else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; - - const descr = objName + _(", in ") + title; - - // add custom score for some objects according to scorer - if (Scorer.objPrio.hasOwnProperty(match[2])) - score += Scorer.objPrio[match[2]]; - else score += Scorer.objPrioDefault; - - results.push([ - docNames[match[0]], - fullname, - "#" + anchor, - descr, - score, - filenames[match[0]], - ]); - }; - Object.keys(objects).forEach((prefix) => - objects[prefix].forEach((array) => - objectSearchCallback(prefix, array) - ) - ); - return results; - }, - - /** - * search for full-text terms in the index - */ - performTermsSearch: (searchTerms, excludedTerms) => { - // prepare search - const terms = Search._index.terms; - const titleTerms = Search._index.titleterms; - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - - const scoreMap = new Map(); - const fileMap = new Map(); - - // perform the search on the required terms - searchTerms.forEach((word) => { - const files = []; - const arr = [ - { files: terms[word], score: Scorer.term }, - { files: titleTerms[word], score: Scorer.title }, - ]; - // add support for partial matches - if (word.length > 2) { - const escapedWord = _escapeRegExp(word); - Object.keys(terms).forEach((term) => { - if (term.match(escapedWord) && !terms[word]) - arr.push({ files: terms[term], score: Scorer.partialTerm }); - }); - Object.keys(titleTerms).forEach((term) => { - if (term.match(escapedWord) && !titleTerms[word]) - arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); - }); - } - - // no match but word was a required one - if (arr.every((record) => record.files === undefined)) return; - - // found search word in contents - arr.forEach((record) => { - if (record.files === undefined) return; - - let recordFiles = record.files; - if (recordFiles.length === undefined) recordFiles = [recordFiles]; - files.push(...recordFiles); - - // set score for the word in each file - recordFiles.forEach((file) => { - if (!scoreMap.has(file)) scoreMap.set(file, {}); - scoreMap.get(file)[word] = record.score; - }); - }); - - // create the mapping - files.forEach((file) => { - if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) - fileMap.get(file).push(word); - else fileMap.set(file, [word]); - }); - }); - - // now check if the files don't contain excluded terms - const results = []; - for (const [file, wordList] of fileMap) { - // check if all requirements are matched - - // as search terms with length < 3 are discarded - const filteredTermCount = [...searchTerms].filter( - (term) => term.length > 2 - ).length; - if ( - wordList.length !== searchTerms.size && - wordList.length !== filteredTermCount - ) - continue; - - // ensure that none of the excluded terms is in the search result - if ( - [...excludedTerms].some( - (term) => - terms[term] === file || - titleTerms[term] === file || - (terms[term] || []).includes(file) || - (titleTerms[term] || []).includes(file) - ) - ) - break; - - // select one (max) score for the file. - const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); - // add result to the result list - results.push([ - docNames[file], - titles[file], - "", - null, - score, - filenames[file], - ]); - } - return results; - }, - - /** - * helper function to return a node containing the - * search summary for a given text. keywords is a list - * of stemmed words. - */ - makeSearchSummary: (htmlText, keywords) => { - const text = Search.htmlToText(htmlText); - if (text === "") return null; - - const textLower = text.toLowerCase(); - const actualStartPosition = [...keywords] - .map((k) => textLower.indexOf(k.toLowerCase())) - .filter((i) => i > -1) - .slice(-1)[0]; - const startWithContext = Math.max(actualStartPosition - 120, 0); - - const top = startWithContext === 0 ? "" : "..."; - const tail = startWithContext + 240 < text.length ? "..." : ""; - - let summary = document.createElement("p"); - summary.classList.add("context"); - summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; - - return summary; - }, -}; - -_ready(Search.init); diff --git a/docs/_build/html/_static/sphinx_highlight.js b/docs/_build/html/_static/sphinx_highlight.js deleted file mode 100644 index 8a96c69..0000000 --- a/docs/_build/html/_static/sphinx_highlight.js +++ /dev/null @@ -1,154 +0,0 @@ -/* Highlighting utilities for Sphinx HTML documentation. */ -"use strict"; - -const SPHINX_HIGHLIGHT_ENABLED = true - -/** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. - */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; - - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } - - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - const rest = document.createTextNode(val.substr(pos + text.length)); - parent.insertBefore( - span, - parent.insertBefore( - rest, - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - /* There may be more occurrences of search term in this node. So call this - * function recursively on the remaining fragment. - */ - _highlight(rest, addItems, text, className); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); - } - } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); - } -}; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; - -/** - * Small JavaScript module for the documentation. - */ -const SphinxHighlight = { - - /** - * highlight the search words provided in localstorage in the text - */ - highlightSearchWords: () => { - if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight - - // get and clear terms from localstorage - const url = new URL(window.location); - const highlight = - localStorage.getItem("sphinx_highlight_terms") - || url.searchParams.get("highlight") - || ""; - localStorage.removeItem("sphinx_highlight_terms") - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); - - // get individual terms from highlight string - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - localStorage.removeItem("sphinx_highlight_terms") - }, - - initEscapeListener: () => { - // only install a listener if it is really needed - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; - if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { - SphinxHighlight.hideSearchWords(); - event.preventDefault(); - } - }); - }, -}; - -_ready(() => { - /* Do not call highlightSearchWords() when we are on the search page. - * It will highlight words from the *previous* search query. - */ - if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); - SphinxHighlight.initEscapeListener(); -}); diff --git a/docs/_build/html/genindex.html b/docs/_build/html/genindex.html deleted file mode 100644 index b11aa98..0000000 --- a/docs/_build/html/genindex.html +++ /dev/null @@ -1,393 +0,0 @@ - - - - - - Index — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
-
-
- - -

Index

- -
- C - | D - | F - | G - | I - | L - | M - | N - | P - | S - | T - -
-

C

- - - -
- -

D

- - - -
    -
  • - deepdespeckling - -
  • -
  • - deepdespeckling.denoiser - -
  • -
  • - deepdespeckling.despeckling - -
  • -
  • - deepdespeckling.merlin.merlin_denoiser - -
  • -
  • - deepdespeckling.model - -
  • -
  • - deepdespeckling.sar2sar.sar2sar_denoiser - -
  • -
  • - deepdespeckling.utils.load_cosar - -
  • -
  • - deepdespeckling.utils.utils - -
  • -
- -

F

- - -
- -

G

- - - -
- -

I

- - - -
- -

L

- - - -
- -

M

- - -
- -

N

- - -
- -

P

- - - -
- -

S

- - - -
- -

T

- - -
- - - -
-
-
- -
- -
-

© Copyright 2024, Hadrien Mariaccia, Emanuele Delsasso.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - \ No newline at end of file diff --git a/docs/_build/html/index.html b/docs/_build/html/index.html deleted file mode 100644 index 1daf444..0000000 --- a/docs/_build/html/index.html +++ /dev/null @@ -1,175 +0,0 @@ - - - - - - - Welcome to deepdespeckling's documentation! — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/modules.html b/docs/_build/html/modules.html deleted file mode 100644 index 09b440e..0000000 --- a/docs/_build/html/modules.html +++ /dev/null @@ -1,1067 +0,0 @@ - - - - - - - deepdespeckling — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
- -
-
-
-
- -
-
-
-

deepdespeckling

-
-

denoiser

-
-
-class deepdespeckling.denoiser.Denoiser[source]
-

Bases: object

-

Class to share parameters beyond denoising functions

-
-
-denoise_image()[source]
-
- -
-
-denoise_image_kernel()[source]
-
- -
-
-denoise_images()[source]
-
- -
-
-get_device() str[source]
-

Get torch device to use depending on gpu's availability

-
-
Returns:
-

device to be used by torch

-
-
Return type:
-

device (str)

-
-
-
- -
-
-initialize_axis_range(image_axis_dim: int, patch_size: int, stride_size: int) list[source]
-

Initialize the convolution range for x or y axis

-
-
Parameters:
-
    -
  • image_axis_dim (int) -- axis size

  • -
  • patch_size (int) -- patch size

  • -
  • stride_size (int) -- stride size

  • -
-
-
Returns:
-

pixel borders of each convolution

-
-
Return type:
-

axis_range (list)

-
-
-
- -
-
-preprocess_denoised_image()[source]
-
- -
-
-save_despeckled_images()[source]
-
- -
- -
-
-

despeckling

-
-
-deepdespeckling.despeckling.despeckle(sar_images_path: str, destination_directory_path: str, model_name: str = 'spotlight', patch_size: int = 256, stride_size: int = 254, symetrise: bool = True)[source]
-

Despeckle coSAR images using trained MERLIN (spotlight or stripmap weights) or SAR2SAR

-
-
Parameters:
-
    -
  • sar_images_path (str) -- path of sar images

  • -
  • destination_directory_path (str) -- path of folder in which results will be stored

  • -
  • model_name (str) -- model name, either "spotlight" or "stripmap" to select MERLIN model on the -right cosar image format or "sar2sar" for SAR2SAR model. Default to "spotlight"

  • -
  • patch_size (int) -- patch size. Defaults to constant PATCH_SIZE.

  • -
  • stride_size (int) -- stride size. Defaults to constant STRIDE_SIZE.

  • -
  • symetrise (bool) -- if using spotlight or stripmap model, if True, will symetrise the real and -imaginary parts of the noisy image. Defaults to True

  • -
-
-
-
- -
-
-deepdespeckling.despeckling.despeckle_from_coordinates(sar_images_path: str, coordinates_dict: dict, destination_directory_path: str, model_name: str = 'spotlight', patch_size: int = 256, stride_size: int = 254, symetrise: bool = True)[source]
-

Despeckle specified area with coordinates in coSAR images using trained MERLIN (spotlight or stripmap weights)

-
-
Parameters:
-
    -
  • sar_images_path (str) -- path of sar images

  • -
  • coordinates_dict (dict) -- dictionary containing pixel boundaries of the area to despeckle (x_start, x_end, y_start, y_end)

  • -
  • destination_directory_path (str) -- path of folder in which results will be stored

  • -
  • model_name (str) -- model name, either "spotlight" or "stripmap" to select MERLIN model on the -right cosar image format or "sar2sar" for SAR2SAR model. Default to "spotlight"

  • -
  • patch_size (int) -- patch size. Defaults to constant PATCH_SIZE.

  • -
  • stride_size (int) -- stride size. Defaults to constant STRIDE_SIZE.

  • -
  • symetrise (bool) -- if using spotlight or stripmap model, if True, will symetrise the real and -imaginary parts of the noisy image. Defaults to True

  • -
-
-
-
- -
-
-deepdespeckling.despeckling.despeckle_from_crop(sar_images_path: str, destination_directory_path: str, model_name: str = 'spotlight', patch_size: int = 256, stride_size: int = 254, fixed: bool = True, symetrise: bool = True)[source]
-

Despeckle specified area with an integrated cropping tool (made with OpenCV) in coSAR images using trained MERLIN (spotlight or stripmap weights)

-
-
Parameters:
-
    -
  • sar_images_path (str) -- path of sar images

  • -
  • destination_directory_path (str) -- path of folder in which results will be stored

  • -
  • patch_size (int) -- patch size. Defaults to constant PATCH_SIZE.

  • -
  • stride_size (int) -- stride size. Defaults to constant STRIDE_SIZE.

  • -
  • model_name (str) -- model name, either "spotlight" or "stripmap" to select MERLIN model on the -right cosar image format or "sar2sar" for SAR2SAR model. Default to "spotlight"

  • -
  • fixed (bool) -- If True, crop size is limited to 256*256. Defaults to True

  • -
  • symetrise (bool) -- if using spotlight or stripmap model, if True, will symetrise the real and -imaginary parts of the noisy image. Defaults to True

  • -
-
-
-
- -
-
-deepdespeckling.despeckling.get_denoiser(model_name: str, symetrise: bool = True) Denoiser[source]
-

Get the right denoiser object from the model name

-
-
Parameters:
-
    -
  • model_name (str) -- model name to be use for despeckling

  • -
  • symetrise (bool) -- if using spotlight or stripmap model, if True, will symetrise the real and -imaginary parts of the noisy image. Defaults to True

  • -
-
-
Returns:
-

the right denoiser, Sar2SarDenoiser or MerlinDenoiser

-
-
Return type:
-

denoiser (Denoiser)

-
-
-
- -
-
-

model

-
-
-class deepdespeckling.model.Model(device: str, height: int, width: int)[source]
-

Bases: Module

-
-
-forward(x: array) array[source]
-

Defines a class for an autoencoder algorithm for an object (image) x

-

An autoencoder is a specific type of feedforward neural networks where the -input is the same as the -output. It compresses the input into a lower-dimensional code and then -reconstruct the output from this representattion. It is a dimensionality -reduction algorithm

-
-
Parameters:
-
    -
  • x (np.array) --

  • -
  • image (a numpy array containing) --

  • -
-
-
Returns:
-

    -
  • x-n (np.array)

  • -
  • a numpy array containing the denoised image i.e the image itself minus the noise

  • -
-

-
-
-
- -
-
-training: bool
-
- -
- -
-
-

merlin_denoiser

-
-
-class deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser(model_name, symetrise, **params)[source]
-

Bases: Denoiser

-

Class to share parameters beyond denoising functions

-
-
-denoise_image(noisy_image: array, patch_size: int, stride_size: int) dict[source]
-

Preprocess and denoise a coSAR image using given model weights

-
-
Parameters:
-
    -
  • noisy_image (numpy array) -- numpy array containing the noisy image to despeckle

  • -
  • patch_size (int) -- size of the patch of the convolution

  • -
  • stride_size (int) -- number of pixels between one convolution to the next

  • -
-
-
Returns:
-

noisy and denoised images

-
-
Return type:
-

despeckled_image (dict)

-
-
-
- -
-
-denoise_image_kernel(noisy_image: tensor, denoised_image: array, x: int, y: int, patch_size: int, model: Model, normalisation_kernel: bool = False) array[source]
-

Denoise a subpart of a given symetrised noisy image delimited by x, y and patch_size using a given model

-
-
Parameters:
-
    -
  • noisy_image (torch tensor) -- symetrised noisy image to denoise

  • -
  • denoised_image (numpy array) -- symetrised partially denoised image

  • -
  • x (int) -- x coordinate of current kernel to denoise

  • -
  • y (int) -- y coordinate of current kernel to denoise

  • -
  • patch_size (int) -- patch size

  • -
  • model (Model) -- trained model with loaded weights

  • -
  • normalisation_kernel (bool, optional) -- Determine if. Defaults to False.

  • -
-
-
Returns:
-

image denoised in the given coordinates and the ones already iterated

-
-
Return type:
-

denoised_image (numpy array)

-
-
-
- -
-
-denoise_images(images_to_denoise_path: list, save_dir: str, patch_size: int, stride_size: int)[source]
-

Iterate over a directory of coSAR images and store the denoised images in a directory

-
-
Parameters:
-
    -
  • images_to_denoise_path (list) -- a list of paths of npy images to denoise

  • -
  • save_dir (str) -- repository to save sar images, real images and noisy images

  • -
  • patch_size (int) -- size of the patch of the convolution

  • -
  • stride_size (int) -- number of pixels between one convolution to the next

  • -
-
-
-
- -
-
-init_model_weights_path() str[source]
-

Get model weights path from model name

-
-
Returns:
-

the path of the weights of the specified model

-
-
Return type:
-

model_weights_path (str)

-
-
-
- -
-
-load_model(patch_size: int) Model[source]
-

Load model with given weights

-
-
Parameters:
-
    -
  • weights_path (str) -- path to weights

  • -
  • patch_size (int) -- patch size

  • -
-
-
Returns:
-

model loaded with stored weights

-
-
Return type:
-

model (Model)

-
-
-
- -
-
-preprocess_denoised_image(denoised_image_real_part: array, denoised_image_imaginary_part: array, count_image: array) tuple[array, array, array][source]
-

Preprocess given denoised real and imaginary parts of an image, and build the full denoised image

-
-
Parameters:
-
    -
  • denoised_image_real_part (numpy array) -- real part of a denoised image

  • -
  • denoised_image_imaginary_part (numpy array) -- imaginary part of a denoised image

  • -
  • count_image (numpy array) -- normalisation image used for denormalisation

  • -
-
-
Returns:
-

processed denoised full image, processed denoised image real part, processed denoised image imaginary part

-
-
Return type:
-

denoised_image, denoised_image_real_part, denoised_image_imaginary_part (numpy array, numpy array, numpy array)

-
-
-
- -
-
-preprocess_noisy_image(noisy_image: array) tuple[array, array, array][source]
-

preprocess a given noisy image and generates its real and imaginary parts

-
-
Parameters:
-

noisy_image (numpy array) -- noisy image

-
-
Returns:
-

preprocessed noisy image, real part of noisy image, imaginary part of noisy image

-
-
Return type:
-

noisy_image, noisy_image_real_part, noisy_image_imaginary_part (numpy array, numpy array, numpy array)

-
-
-
- -
-
-save_despeckled_images(despeckled_images: dict, image_name: str, save_dir: str)[source]
-

Save full, real and imaginary part of noisy and denoised image stored in a dictionary in png to a given folder

-
-
Parameters:
-
    -
  • despeckled_images (dict) -- dictionary containing full, real and imaginary parts of noisy and denoised image

  • -
  • image_name (str) -- name of the image

  • -
  • save_dir (str) -- path to the folder where to save the png images

  • -
-
-
-
- -
- -
-
-

sar2sar_denoiser

-
-
-class deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser(**params)[source]
-

Bases: Denoiser

-

Class to share parameters beyond denoising functions

-
-
-denoise_image(noisy_image: array, patch_size: int, stride_size: int) dict[source]
-

Preprocess and denoise a coSAR image using given model weights

-
-
Parameters:
-
    -
  • noisy_image (numpy array) -- numpy array containing the noisy image to despeckle

  • -
  • patch_size (int) -- size of the patch of the convolution

  • -
  • stride_size (int) -- number of pixels between one convolution to the next

  • -
-
-
Returns:
-

denoised image

-
-
Return type:
-

output_image (numpy array)

-
-
-
- -
-
-denoise_image_kernel(noisy_image_kernel: tensor, denoised_image_kernel: array, x: int, y: int, patch_size: int, model: Model, normalisation_kernel: bool = False) array[source]
-

Denoise a subpart of a given symetrised noisy image delimited by x, y and patch_size using a given model

-
-
Parameters:
-
    -
  • noisy_image_kernel (torch tensor) -- part of the noisy image to denoise

  • -
  • denoised_image_kernel (numpy array) -- part of the partially denoised image

  • -
  • x (int) -- x coordinate of current kernel to denoise

  • -
  • y (int) -- y coordinate of current kernel to denoise

  • -
  • patch_size (int) -- patch size

  • -
  • model (Model) -- trained model with loaded weights

  • -
  • normalisation_kernel (bool, optional) -- Determine if. Defaults to False.

  • -
-
-
Returns:
-

image denoised in the given coordinates and the ones already iterated

-
-
Return type:
-

denoised_image_kernel (numpy array)

-
-
-
- -
-
-denoise_images(images_to_denoise_path: list, save_dir: str, patch_size: int, stride_size: int)[source]
-

Iterate over a directory of coSAR images and store the denoised images in a directory

-
-
Parameters:
-
    -
  • images_to_denoise_path (list) -- a list of paths of npy images to denoise

  • -
  • save_dir (str) -- repository to save sar images, real images and noisy images

  • -
  • patch_size (int) -- size of the patch of the convolution

  • -
  • stride_size (int) -- number of pixels between one convolution to the next

  • -
-
-
-
- -
-
-denormalize_sar_image(image: array) array[source]
-

Denormalize a sar image stored in a numpy array

-
-
Parameters:
-

image (numpy array) -- a sar image

-
-
Raises:
-

TypeError -- raise an error if the image file is not a numpy array

-
-
Returns:
-

the image denormalized

-
-
Return type:
-

(numpy array)

-
-
-
- -
-
-load_model(patch_size: int) Model[source]
-

Load model with given weights

-
-
Parameters:
-
    -
  • weights_path (str) -- path to weights

  • -
  • patch_size (int) -- patch size

  • -
-
-
Returns:
-

model loaded with stored weights

-
-
Return type:
-

model (Model)

-
-
-
- -
-
-save_despeckled_images(despeckled_images: dict, image_name: str, save_dir: str)[source]
-

Save full, real and imaginary part of noisy and denoised image stored in a dictionary in png to a given folder

-
-
Parameters:
-
    -
  • despeckled_images (dict) -- dictionary containing noisy and denoised image

  • -
  • image_name (str) -- name of the image

  • -
  • save_dir (str) -- path to the folder where to save the png images

  • -
-
-
-
- -
- -
-
-

utils

-
-
-deepdespeckling.utils.utils.compute_psnr(Shat: array, S: array) float[source]
-

Compute Peak Signal to Noise Ratio

-
-
Parameters:
-
    -
  • Shat (numpy array) -- a SAR amplitude image

  • -
  • S (numpy array) -- a reference SAR image

  • -
-
-
Returns:
-

psnr value

-
-
Return type:
-

res (float)

-
-
-
- -
-
-deepdespeckling.utils.utils.create_empty_folder_in_directory(destination_directory_path: str, folder_name: str = 'processed_images') str[source]
-

Create an empty folder in a given directory

-
-
Parameters:
-
    -
  • destination_directory_path (str) -- path pf the directory in which an empty folder is created if it doest not exist yet

  • -
  • folder_name (str, optional) -- name of the folder to create. Defaults to "processed_images".

  • -
-
-
Returns:
-

path of the created empty folder

-
-
Return type:
-

processed_images_path

-
-
-
- -
-
-deepdespeckling.utils.utils.crop_image(image: array, image_path: str, cropping_coordinates: list, model_name: str, processed_images_path: str)[source]
-

Crop an image using given cropping coordinates and store the result in a given folder

-
-
Parameters:
-
    -
  • image (numpy array) -- image to be cropped

  • -
  • image_path (str) -- path of the image

  • -
  • cropping_coordinates (list) -- list of coordinates of cropping, format [(x1, y1), (x2, y2)]

  • -
  • model_name (str) -- name of the model (stripmap, spotlight or sar2sar)

  • -
  • processed_images_path (str) -- path of the folder where to store the cropped image in npy format

  • -
-
-
-
- -
-
-deepdespeckling.utils.utils.denormalize_sar_image(image: array) array[source]
-

Denormalize a sar image store in a numpy array

-
-
Parameters:
-

image (numpy array) -- a sar image

-
-
Raises:
-

TypeError -- raise an error if the image file is not a numpy array

-
-
Returns:
-

the image denormalized

-
-
Return type:
-

(numpy array)

-
-
-
- -
-
-deepdespeckling.utils.utils.denormalize_sar_image_sar2sar(image: array) array[source]
-

Denormalize a sar image store i a numpy array

-
-
Parameters:
-

image (numpy array) -- a sar image

-
-
Raises:
-

TypeError -- raise an error if the image file is not a numpy array

-
-
Returns:
-

the image denormalized

-
-
Return type:
-

(numpy array)

-
-
-
- -
-
-deepdespeckling.utils.utils.get_cropping_coordinates(image: array, destination_directory_path: str, model_name: str, fixed: bool = True)[source]
-

Launch the crop tool to enable the user to select the subpart of the image to be despeckled

-
-
Parameters:
-
    -
  • image (numpy aray) -- full image to be cropped

  • -
  • destination_directory_path (str) -- path of a folder to store the results

  • -
  • model_name (str) -- model name to be use for despeckling. Default to "spotlight"

  • -
  • fixed (bool, optional) -- whether the area of selection has a fixed size of not. Defaults to True.

  • -
-
-
-
- -
-
-deepdespeckling.utils.utils.get_cropping_coordinates_from_file(destination_directory_path: str) list[source]
-

Get cropping coordinates from a file where it's stored

-
-
Parameters:
-

destination_directory_path (str) -- path of the file in which the cropping coordinates are stored

-
-
Returns:
-

list containing cropping coordinates

-
-
Return type:
-

cropping_coordinates (list)

-
-
-
- -
-
-deepdespeckling.utils.utils.get_maximum_patch_size(kernel_size: int, patch_bound: int) int[source]
-

Get maximum manifold of a number lower than a bound

-
-
Parameters:
-
    -
  • kernel_size (int) -- the kernel size of the trained model

  • -
  • patch_bound (int) -- the maximum bound of the kernel size

  • -
-
-
Returns:
-

the maximum patch size

-
-
Return type:
-

maximum_patch_size (int)

-
-
-
- -
-
-deepdespeckling.utils.utils.get_maximum_patch_size_from_image_dimensions(kernel_size: int, height: int, width: int) int[source]
-

Get the maximum patch size from the width and heigth and the kernel size of the model we use

-
-
Parameters:
-
    -
  • kernel_size (int) -- the kernel size of the trained model

  • -
  • height (int) -- the heigth of the image

  • -
  • width (int) -- the width of the image

  • -
-
-
Returns:
-

the maximum patch size to use for despeckling

-
-
Return type:
-

maximum_patch_size (int)

-
-
-
- -
-
-deepdespeckling.utils.utils.load_sar_image(image_path: str) array[source]
-

Load a SAR image in a numpy array, use cos2mat function if the file is a cos file, -load_tiff_image if the file is a tiff file

-
-
Parameters:
-

image_path (str) -- absolute path to a SAR image (cos or npy file)

-
-
Returns:
-

the image of dimension [ncolumns,nlines,2]

-
-
Return type:
-

image (numpy array)

-
-
-
- -
-
-deepdespeckling.utils.utils.load_sar_images(file_list)[source]
-
-

Description

-

Loads files , resize them and append them into a list called data

-
-
param filelist:
-

-
type filelist:
-

a path to a folder containing the images

-
-
rtype:
-

A list of images

-
-
-
-
- -
-
-deepdespeckling.utils.utils.normalize_sar_image(image: array) array[source]
-

normalize a sar image store in a numpy array

-
-
Parameters:
-

image (numpy array) -- the image to be normalized

-
-
Returns:
-

normalized image

-
-
Return type:
-

(numpy array)

-
-
-
- -
-
-deepdespeckling.utils.utils.preprocess_and_store_sar_images(sar_images_path: str, processed_images_path: str, model_name: str = 'spotlight')[source]
-

Convert coSAR images to numpy arrays and store it in a specified path

-
-
Parameters:
-
    -
  • sar_images_path (str) -- path of a folder containing coSAR images to be converted in numpy array

  • -
  • processed_images_path (str) -- path of the folder where converted images are stored

  • -
  • model_name (str) -- model name to be use for despeckling

  • -
-
-
-
- -
-
-deepdespeckling.utils.utils.preprocess_and_store_sar_images_from_coordinates(sar_images_path: str, processed_images_path: str, coordinates_dict: dict, model_name: str = 'spotlight')[source]
-

Convert specified areas of coSAR images to numpy arrays and store it in a specified path

-
-
Parameters:
-
    -
  • sar_images_path (str) -- path of a folder containing coSAR images to be converted in numpy array

  • -
  • processed_images_path (str) -- path of the folder where converted images are stored

  • -
  • coordinates_dict (dict) -- dictionary containing pixel boundaries of the area to despeckle (x_start, x_end, y_start, y_end)

  • -
  • model_name (str) -- model name to be use for despeckling. Default to "spotlight"

  • -
-
-
-
- -
-
-deepdespeckling.utils.utils.preprocess_image(image: array, threshold: float) array[source]
-

Preprocess image by limiting pixel values with a threshold

-
-
Parameters:
-
    -
  • image (numpy array) -- image to preprocess

  • -
  • threshold (float) -- pixel value threshold

  • -
-
-
Returns:
-

image to be saved

-
-
Return type:
-

image (cv2 Image)

-
-
-
- -
-
-deepdespeckling.utils.utils.preprocess_sar_image_for_cropping(image: array, model_name: str) array[source]
-

Preprocess image to use the cropping tool

-
-
Parameters:
-
    -
  • image (numpy array) -- image from which we get cropping coordinates by using the cropping tool

  • -
  • model_name (str) -- name of the model (stripmap, spotlight or sar2sar)

  • -
-
-
Returns:
-

image preprocessed for cropping

-
-
Return type:
-

image (cv2 image)

-
-
-
- -
-
-deepdespeckling.utils.utils.save_image_to_npy_and_png(image: array, save_dir: str, prefix: str, image_name: str, threshold: float)[source]
-

Save a given image to npy and png in a given folder

-
-
Parameters:
-
    -
  • image (numpy array) -- image to save

  • -
  • save_dir (str) -- path to the folder where to save the image

  • -
  • prefix (str) -- prefix of the image file name

  • -
  • image_name (str) -- name of the image file

  • -
  • threshold (float) -- threshold of image pixel values used for png conversion

  • -
-
-
-
- -
-
-deepdespeckling.utils.utils.save_image_to_png(image: array, threshold: int, image_full_path: str)[source]
-

Save a given image to a png file in a given folder

-
-
Parameters:
-
    -
  • image (numpy array) -- image to save

  • -
  • threshold (float) -- threshold of pixel values of the image to be saved in png

  • -
  • image_full_path (str) -- full path of the image

  • -
-
-
Raises:
-

TypeError -- if the image is not a numpy array

-
-
-
- -
-
-deepdespeckling.utils.utils.symetrise_real_and_imaginary_parts(real_part: array, imag_part: array) tuple[array, array][source]
-

Symetrise given real and imaginary parts to ensure MERLIN properties

-
-
Parameters:
-
    -
  • real_part (numpy array) -- real part of the noisy image to symetrise

  • -
  • imag_part (numpy array) -- imaginary part of the noisy image to symetrise

  • -
-
-
Returns:
-

symetrised real and imaginary parts of a noisy image

-
-
Return type:
-

np.real(ima2), np.imag(ima2) (numpy array, numpy array)

-
-
-
- -
-
-

load_cosar

-
-
-deepdespeckling.utils.load_cosar.cos2mat(path_to_cosar_image: str) array[source]
-

Convert a CoSAR imge to a numpy array of size [ncolumns,nlines,2]

-
-
Parameters:
-

path_to_cosar_image (str) -- path to the image which is a cos file

-
-
Returns:
-

the image in a numpy array

-
-
Return type:
-

numpy array

-
-
-
- -
-
-deepdespeckling.utils.load_cosar.load_tiff_image(path_to_tiff_image: str) array[source]
-

Load a tiff image in a numpy array using gdal library

-
-
Parameters:
-

path_to_tiff_image (str) -- path to a tiff image

-
-
Returns:
-

numpy array containing the tiff image

-
-
Return type:
-

(numpy array)

-
-
-
- -
-
- - -
-
- -
-
-
-
- - - - \ No newline at end of file diff --git a/docs/_build/html/objects.inv b/docs/_build/html/objects.inv deleted file mode 100644 index 7c8ee37..0000000 Binary files a/docs/_build/html/objects.inv and /dev/null differ diff --git a/docs/_build/html/py-modindex.html b/docs/_build/html/py-modindex.html deleted file mode 100644 index 178eae7..0000000 --- a/docs/_build/html/py-modindex.html +++ /dev/null @@ -1,157 +0,0 @@ - - - - - - Python Module Index — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
-
-
- - -

Python Module Index

- -
- d -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
- d
- deepdespeckling -
    - deepdespeckling.denoiser -
    - deepdespeckling.despeckling -
    - deepdespeckling.merlin.merlin_denoiser -
    - deepdespeckling.model -
    - deepdespeckling.sar2sar.sar2sar_denoiser -
    - deepdespeckling.utils.load_cosar -
    - deepdespeckling.utils.utils -
- - -
-
-
- -
- -
-

© Copyright 2024, Hadrien Mariaccia, Emanuele Delsasso.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - \ No newline at end of file diff --git a/docs/_build/html/search.html b/docs/_build/html/search.html deleted file mode 100644 index 205c0ae..0000000 --- a/docs/_build/html/search.html +++ /dev/null @@ -1,122 +0,0 @@ - - - - - - Search — deepdespeckling 0.3 documentation - - - - - - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
    -
  • - -
  • -
  • -
-
-
-
-
- - - - -
- -
- -
-
-
- -
- -
-

© Copyright 2024, Hadrien Mariaccia, Emanuele Delsasso.

-
- - Built with Sphinx using a - theme - provided by Read the Docs. - - -
-
-
-
-
- - - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js deleted file mode 100644 index 94b26d3..0000000 --- a/docs/_build/html/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({"docnames": ["index", "modules"], "filenames": ["index.rst", "modules.rst"], "titles": ["Welcome to deepdespeckling's documentation!", "deepdespeckling"], "terms": {"denois": 0, "despeckl": 0, "despeckle_from_coordin": [0, 1], "despeckle_from_crop": [0, 1], "get_denois": [0, 1], "model": 0, "merlin_denois": 0, "merlindenois": [0, 1], "sar2sar_denois": 0, "sar2sardenois": [0, 1], "util": 0, "compute_psnr": [0, 1], "create_empty_folder_in_directori": [0, 1], "crop_imag": [0, 1], "denormalize_sar_imag": [0, 1], "denormalize_sar_image_sar2sar": [0, 1], "get_cropping_coordin": [0, 1], "get_cropping_coordinates_from_fil": [0, 1], "get_maximum_patch_s": [0, 1], "get_maximum_patch_size_from_image_dimens": [0, 1], "load_sar_imag": [0, 1], "normalize_sar_imag": [0, 1], "preprocess_and_store_sar_imag": [0, 1], "preprocess_and_store_sar_images_from_coordin": [0, 1], "preprocess_imag": [0, 1], "preprocess_sar_image_for_crop": [0, 1], "save_image_to_npy_and_png": [0, 1], "save_image_to_png": [0, 1], "symetrise_real_and_imaginary_part": [0, 1], "load_cosar": 0, "cos2mat": [0, 1], "load_tiff_imag": [0, 1], "index": 0, "modul": [0, 1], "search": 0, "page": 0, "class": 1, "sourc": 1, "base": 1, "object": 1, "share": 1, "paramet": 1, "beyond": 1, "function": 1, "denoise_imag": 1, "denoise_image_kernel": 1, "get_devic": 1, "str": 1, "get": 1, "torch": 1, "devic": 1, "us": 1, "depend": 1, "gpu": 1, "": 1, "avail": 1, "return": 1, "type": 1, "initialize_axis_rang": 1, "image_axis_dim": 1, "int": 1, "patch_siz": 1, "stride_s": 1, "list": 1, "initi": 1, "convolut": 1, "rang": 1, "x": 1, "y": 1, "axi": 1, "size": 1, "patch": 1, "stride": 1, "pixel": 1, "border": 1, "each": 1, "axis_rang": 1, "preprocess_denoised_imag": 1, "save_despeckled_imag": 1, "sar_images_path": 1, "destination_directory_path": 1, "model_nam": 1, "spotlight": 1, "256": 1, "254": 1, "symetris": 1, "bool": 1, "true": 1, "cosar": 1, "imag": 1, "train": 1, "merlin": 1, "stripmap": 1, "weight": 1, "sar2sar": 1, "path": 1, "sar": 1, "folder": 1, "which": 1, "result": 1, "store": 1, "name": 1, "either": 1, "select": 1, "right": 1, "format": 1, "default": 1, "constant": 1, "real": 1, "imaginari": 1, "part": 1, "noisi": 1, "coordinates_dict": 1, "dict": 1, "specifi": 1, "area": 1, "coordin": 1, "dictionari": 1, "contain": 1, "boundari": 1, "x_start": 1, "x_end": 1, "y_start": 1, "y_end": 1, "fix": 1, "an": 1, "integr": 1, "crop": 1, "tool": 1, "made": 1, "opencv": 1, "If": 1, "i": 1, "limit": 1, "from": 1, "height": 1, "width": 1, "forward": 1, "arrai": 1, "defin": 1, "autoencod": 1, "algorithm": 1, "specif": 1, "feedforward": 1, "neural": 1, "network": 1, "where": 1, "input": 1, "same": 1, "output": 1, "It": 1, "compress": 1, "lower": 1, "dimension": 1, "code": 1, "reconstruct": 1, "thi": 1, "representatt": 1, "reduct": 1, "np": 1, "numpi": 1, "n": 1, "e": 1, "itself": 1, "minu": 1, "nois": 1, "param": 1, "noisy_imag": 1, "preprocess": 1, "given": 1, "number": 1, "between": 1, "one": 1, "next": 1, "despeckled_imag": 1, "tensor": 1, "denoised_imag": 1, "normalisation_kernel": 1, "fals": 1, "subpart": 1, "delimit": 1, "partial": 1, "current": 1, "kernel": 1, "load": 1, "option": 1, "determin": 1, "ones": 1, "alreadi": 1, "iter": 1, "images_to_denoise_path": 1, "save_dir": 1, "over": 1, "directori": 1, "npy": 1, "repositori": 1, "save": 1, "init_model_weights_path": 1, "model_weights_path": 1, "load_model": 1, "weights_path": 1, "denoised_image_real_part": 1, "denoised_image_imaginary_part": 1, "count_imag": 1, "tupl": 1, "build": 1, "full": 1, "normalis": 1, "denormalis": 1, "process": 1, "preprocess_noisy_imag": 1, "gener": 1, "its": 1, "noisy_image_real_part": 1, "noisy_image_imaginary_part": 1, "image_nam": 1, "png": 1, "output_imag": 1, "noisy_image_kernel": 1, "denoised_image_kernel": 1, "denorm": 1, "rais": 1, "typeerror": 1, "error": 1, "file": 1, "shat": 1, "float": 1, "comput": 1, "peak": 1, "signal": 1, "ratio": 1, "amplitud": 1, "refer": 1, "psnr": 1, "valu": 1, "re": 1, "folder_nam": 1, "processed_imag": 1, "creat": 1, "empti": 1, "pf": 1, "doest": 1, "exist": 1, "yet": 1, "processed_images_path": 1, "image_path": 1, "cropping_coordin": 1, "x1": 1, "y1": 1, "x2": 1, "y2": 1, "launch": 1, "enabl": 1, "user": 1, "arai": 1, "whether": 1, "ha": 1, "ar": 1, "kernel_s": 1, "patch_bound": 1, "maximum": 1, "manifold": 1, "than": 1, "bound": 1, "maximum_patch_s": 1, "heigth": 1, "we": 1, "co": 1, "tiff": 1, "absolut": 1, "dimens": 1, "ncolumn": 1, "nline": 1, "2": 1, "file_list": 1, "resiz": 1, "them": 1, "append": 1, "call": 1, "data": 1, "filelist": 1, "rtype": 1, "A": 1, "normal": 1, "convert": 1, "threshold": 1, "cv2": 1, "prefix": 1, "convers": 1, "image_full_path": 1, "real_part": 1, "imag_part": 1, "ensur": 1, "properti": 1, "ima2": 1, "path_to_cosar_imag": 1, "img": 1, "path_to_tiff_imag": 1, "gdal": 1, "librari": 1}, "objects": {"": [[1, 0, 0, "-", "deepdespeckling"]], "deepdespeckling": [[1, 0, 0, "-", "denoiser"], [1, 0, 0, "-", "despeckling"], [1, 0, 0, "-", "model"]], "deepdespeckling.denoiser": [[1, 1, 1, "", "Denoiser"]], "deepdespeckling.denoiser.Denoiser": [[1, 2, 1, "", "denoise_image"], [1, 2, 1, "", "denoise_image_kernel"], [1, 2, 1, "", "denoise_images"], [1, 2, 1, "", "get_device"], [1, 2, 1, "", "initialize_axis_range"], [1, 2, 1, "", "preprocess_denoised_image"], [1, 2, 1, "", "save_despeckled_images"]], "deepdespeckling.despeckling": [[1, 3, 1, "", "despeckle"], [1, 3, 1, "", "despeckle_from_coordinates"], [1, 3, 1, "", "despeckle_from_crop"], [1, 3, 1, "", "get_denoiser"]], "deepdespeckling.merlin": [[1, 0, 0, "-", "merlin_denoiser"]], "deepdespeckling.merlin.merlin_denoiser": [[1, 1, 1, "", "MerlinDenoiser"]], "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser": [[1, 2, 1, "", "denoise_image"], [1, 2, 1, "", "denoise_image_kernel"], [1, 2, 1, "", "denoise_images"], [1, 2, 1, "", "init_model_weights_path"], [1, 2, 1, "", "load_model"], [1, 2, 1, "", "preprocess_denoised_image"], [1, 2, 1, "", "preprocess_noisy_image"], [1, 2, 1, "", "save_despeckled_images"]], "deepdespeckling.model": [[1, 1, 1, "", "Model"]], "deepdespeckling.model.Model": [[1, 2, 1, "", "forward"], [1, 4, 1, "", "training"]], "deepdespeckling.sar2sar": [[1, 0, 0, "-", "sar2sar_denoiser"]], "deepdespeckling.sar2sar.sar2sar_denoiser": [[1, 1, 1, "", "Sar2SarDenoiser"]], "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser": [[1, 2, 1, "", "denoise_image"], [1, 2, 1, "", "denoise_image_kernel"], [1, 2, 1, "", "denoise_images"], [1, 2, 1, "", "denormalize_sar_image"], [1, 2, 1, "", "load_model"], [1, 2, 1, "", "save_despeckled_images"]], "deepdespeckling.utils": [[1, 0, 0, "-", "load_cosar"], [1, 0, 0, "-", "utils"]], "deepdespeckling.utils.load_cosar": [[1, 3, 1, "", "cos2mat"], [1, 3, 1, "", "load_tiff_image"]], "deepdespeckling.utils.utils": [[1, 3, 1, "", "compute_psnr"], [1, 3, 1, "", "create_empty_folder_in_directory"], [1, 3, 1, "", "crop_image"], [1, 3, 1, "", "denormalize_sar_image"], [1, 3, 1, "", "denormalize_sar_image_sar2sar"], [1, 3, 1, "", "get_cropping_coordinates"], [1, 3, 1, "", "get_cropping_coordinates_from_file"], [1, 3, 1, "", "get_maximum_patch_size"], [1, 3, 1, "", "get_maximum_patch_size_from_image_dimensions"], [1, 3, 1, "", "load_sar_image"], [1, 3, 1, "", "load_sar_images"], [1, 3, 1, "", "normalize_sar_image"], [1, 3, 1, "", "preprocess_and_store_sar_images"], [1, 3, 1, "", "preprocess_and_store_sar_images_from_coordinates"], [1, 3, 1, "", "preprocess_image"], [1, 3, 1, "", "preprocess_sar_image_for_cropping"], [1, 3, 1, "", "save_image_to_npy_and_png"], [1, 3, 1, "", "save_image_to_png"], [1, 3, 1, "", "symetrise_real_and_imaginary_parts"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"welcom": 0, "deepdespeckl": [0, 1], "": 0, "document": 0, "content": 0, "indic": 0, "tabl": 0, "denois": 1, "despeckl": 1, "model": 1, "merlin_denois": 1, "sar2sar_denois": 1, "util": 1, "descript": 1, "load_cosar": 1}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"Welcome to deepdespeckling's documentation!": [[0, "welcome-to-deepdespeckling-s-documentation"]], "Contents:": [[0, null]], "Indices and tables": [[0, "indices-and-tables"]], "deepdespeckling": [[1, "module-deepdespeckling"]], "denoiser": [[1, "module-deepdespeckling.denoiser"]], "despeckling": [[1, "despeckling"]], "model": [[1, "module-deepdespeckling.model"]], "merlin_denoiser": [[1, "merlin-denoiser"]], "sar2sar_denoiser": [[1, "sar2sar-denoiser"]], "utils": [[1, "module-deepdespeckling.utils.utils"]], "Description": [[1, "description"]], "load_cosar": [[1, "load-cosar"]]}, "indexentries": {"denoiser (class in deepdespeckling.denoiser)": [[1, "deepdespeckling.denoiser.Denoiser"]], "merlindenoiser (class in deepdespeckling.merlin.merlin_denoiser)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser"]], "model (class in deepdespeckling.model)": [[1, "deepdespeckling.model.Model"]], "sar2sardenoiser (class in deepdespeckling.sar2sar.sar2sar_denoiser)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser"]], "compute_psnr() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.compute_psnr"]], "cos2mat() (in module deepdespeckling.utils.load_cosar)": [[1, "deepdespeckling.utils.load_cosar.cos2mat"]], "create_empty_folder_in_directory() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.create_empty_folder_in_directory"]], "crop_image() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.crop_image"]], "deepdespeckling": [[1, "module-deepdespeckling"]], "deepdespeckling.denoiser": [[1, "module-deepdespeckling.denoiser"]], "deepdespeckling.despeckling": [[1, "module-deepdespeckling.despeckling"]], "deepdespeckling.merlin.merlin_denoiser": [[1, "module-deepdespeckling.merlin.merlin_denoiser"]], "deepdespeckling.model": [[1, "module-deepdespeckling.model"]], "deepdespeckling.sar2sar.sar2sar_denoiser": [[1, "module-deepdespeckling.sar2sar.sar2sar_denoiser"]], "deepdespeckling.utils.load_cosar": [[1, "module-deepdespeckling.utils.load_cosar"]], "deepdespeckling.utils.utils": [[1, "module-deepdespeckling.utils.utils"]], "denoise_image() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.denoise_image"]], "denoise_image() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.denoise_image"]], "denoise_image() (deepdespeckling.sar2sar.sar2sar_denoiser.sar2sardenoiser method)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser.denoise_image"]], "denoise_image_kernel() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.denoise_image_kernel"]], "denoise_image_kernel() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.denoise_image_kernel"]], "denoise_image_kernel() (deepdespeckling.sar2sar.sar2sar_denoiser.sar2sardenoiser method)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser.denoise_image_kernel"]], "denoise_images() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.denoise_images"]], "denoise_images() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.denoise_images"]], "denoise_images() (deepdespeckling.sar2sar.sar2sar_denoiser.sar2sardenoiser method)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser.denoise_images"]], "denormalize_sar_image() (deepdespeckling.sar2sar.sar2sar_denoiser.sar2sardenoiser method)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser.denormalize_sar_image"]], "denormalize_sar_image() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.denormalize_sar_image"]], "denormalize_sar_image_sar2sar() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.denormalize_sar_image_sar2sar"]], "despeckle() (in module deepdespeckling.despeckling)": [[1, "deepdespeckling.despeckling.despeckle"]], "despeckle_from_coordinates() (in module deepdespeckling.despeckling)": [[1, "deepdespeckling.despeckling.despeckle_from_coordinates"]], "despeckle_from_crop() (in module deepdespeckling.despeckling)": [[1, "deepdespeckling.despeckling.despeckle_from_crop"]], "forward() (deepdespeckling.model.model method)": [[1, "deepdespeckling.model.Model.forward"]], "get_cropping_coordinates() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.get_cropping_coordinates"]], "get_cropping_coordinates_from_file() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.get_cropping_coordinates_from_file"]], "get_denoiser() (in module deepdespeckling.despeckling)": [[1, "deepdespeckling.despeckling.get_denoiser"]], "get_device() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.get_device"]], "get_maximum_patch_size() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.get_maximum_patch_size"]], "get_maximum_patch_size_from_image_dimensions() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.get_maximum_patch_size_from_image_dimensions"]], "init_model_weights_path() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.init_model_weights_path"]], "initialize_axis_range() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.initialize_axis_range"]], "load_model() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.load_model"]], "load_model() (deepdespeckling.sar2sar.sar2sar_denoiser.sar2sardenoiser method)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser.load_model"]], "load_sar_image() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.load_sar_image"]], "load_sar_images() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.load_sar_images"]], "load_tiff_image() (in module deepdespeckling.utils.load_cosar)": [[1, "deepdespeckling.utils.load_cosar.load_tiff_image"]], "module": [[1, "module-deepdespeckling"], [1, "module-deepdespeckling.denoiser"], [1, "module-deepdespeckling.despeckling"], [1, "module-deepdespeckling.merlin.merlin_denoiser"], [1, "module-deepdespeckling.model"], [1, "module-deepdespeckling.sar2sar.sar2sar_denoiser"], [1, "module-deepdespeckling.utils.load_cosar"], [1, "module-deepdespeckling.utils.utils"]], "normalize_sar_image() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.normalize_sar_image"]], "preprocess_and_store_sar_images() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.preprocess_and_store_sar_images"]], "preprocess_and_store_sar_images_from_coordinates() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.preprocess_and_store_sar_images_from_coordinates"]], "preprocess_denoised_image() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.preprocess_denoised_image"]], "preprocess_denoised_image() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.preprocess_denoised_image"]], "preprocess_image() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.preprocess_image"]], "preprocess_noisy_image() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.preprocess_noisy_image"]], "preprocess_sar_image_for_cropping() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.preprocess_sar_image_for_cropping"]], "save_despeckled_images() (deepdespeckling.denoiser.denoiser method)": [[1, "deepdespeckling.denoiser.Denoiser.save_despeckled_images"]], "save_despeckled_images() (deepdespeckling.merlin.merlin_denoiser.merlindenoiser method)": [[1, "deepdespeckling.merlin.merlin_denoiser.MerlinDenoiser.save_despeckled_images"]], "save_despeckled_images() (deepdespeckling.sar2sar.sar2sar_denoiser.sar2sardenoiser method)": [[1, "deepdespeckling.sar2sar.sar2sar_denoiser.Sar2SarDenoiser.save_despeckled_images"]], "save_image_to_npy_and_png() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.save_image_to_npy_and_png"]], "save_image_to_png() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.save_image_to_png"]], "symetrise_real_and_imaginary_parts() (in module deepdespeckling.utils.utils)": [[1, "deepdespeckling.utils.utils.symetrise_real_and_imaginary_parts"]], "training (deepdespeckling.model.model attribute)": [[1, "deepdespeckling.model.Model.training"]]}}) \ No newline at end of file diff --git a/docs/conf.py b/docs/conf.py index 853e792..ce1b256 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -1,5 +1,17 @@ import sys import os +import deepdespeckling +import deepdespeckling.denoiser +import deepdespeckling.despeckling +import deepdespeckling.model +import deepdespeckling.utils +import deepdespeckling.utils.constants +import deepdespeckling.utils.load_cosar +import deepdespeckling.utils.utils +import deepdespeckling.sar2sar +import deepdespeckling.sar2sar.sar2sar_denoiser +import deepdespeckling.merlin +import deepdespeckling.merlin.merlin_denoiser # Configuration file for the Sphinx documentation builder. # @@ -22,24 +34,14 @@ extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', - 'sphinx.ext.napoleon' + 'sphinx.ext.napoleon', + 'sphinx.ext.githubpages' ] templates_path = ['_templates'] exclude_patterns = ["build", ".venv", ".vscode", "dist", "deepdespeckling.egg-info", "img", "icons"] -language = 'English' - -master_doc = "index" - -autodoc_default_options = { - 'members': True, - 'undoc-members': True, - 'show-inheritance': True, -} - -add_module_names = True # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output diff --git a/docs/index.rst b/docs/index.rst index cc2aca5..a395254 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -7,7 +7,7 @@ Welcome to deepdespeckling's documentation! =========================================== .. toctree:: - :maxdepth: 3 + :maxdepth: 4 :caption: Contents: modules diff --git a/docs/modules.rst b/docs/modules.rst index 705f7c9..ee3c7f7 100644 --- a/docs/modules.rst +++ b/docs/modules.rst @@ -1,5 +1,5 @@ .. toctree:: - :maxdepth: 3 + :maxdepth: 4 :caption: Contents: deepdespeckling