-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkcftracker.cpp
519 lines (430 loc) · 18.6 KB
/
kcftracker.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
Tracker based on Kernelized Correlation Filter (KCF) [1] and Circulant Structure with Kernels (CSK) [2].
CSK is implemented by using raw gray level features, since it is a single-channel filter.
KCF is implemented by using HOG features (the default), since it extends CSK to multiple channels.
[1] J. F. Henriques, R. Caseiro, P. Martins, J. Batista,
"High-Speed Tracking with Kernelized Correlation Filters", TPAMI 2015.
[2] J. F. Henriques, R. Caseiro, P. Martins, J. Batista,
"Exploiting the Circulant Structure of Tracking-by-detection with Kernels", ECCV 2012.
Authors: Joao Faro, Christian Bailer, Joao F. Henriques
Institute of Systems and Robotics - University of Coimbra / Department Augmented Vision DFKI
Constructor parameters, all boolean:
hog: use HOG features (default), otherwise use raw pixels
fixed_window: fix window size (default), otherwise use ROI size (slower but more accurate)
multiscale: use multi-scale tracking (default; cannot be used with fixed_window = true)
Default values are set for all properties of the tracker depending on the above choices.
Their values can be customized further before calling init():
interp_factor: linear interpolation factor for adaptation
sigma: gaussian kernel bandwidth
lambda: regularization
cell_size: HOG cell size
padding: area surrounding the target, relative to its size
output_sigma_factor: bandwidth of gaussian target
template_size: template size in pixels, 0 to use ROI size
scale_step: scale step for multi-scale estimation, 1 to disable it
scale_weight: to downweight detection scores of other scales for added stability
For speed, the value (template_size/cell_size) should be a power of 2 or a product of small prime numbers.
Inputs to init():
image is the initial frame.
roi is a cv::Rect with the target positions in the initial frame
Inputs to update():
image is the current frame.
Outputs of update():
cv::Rect with target positions for the current frame
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef _KCFTRACKER_HEADERS
#include "kcftracker.hpp"
#include "ffttools.hpp"
#include "recttools.hpp"
#include "fhog.hpp"
#include "labdata.hpp"
#endif
// Constructor
KCFTracker::KCFTracker(bool hog, bool fixed_window, bool multiscale, bool lab)
{
// Parameters equal in all cases
lambda = 0.0001;
padding = 2.5;
//output_sigma_factor = 0.1;
output_sigma_factor = 0.125;
if (hog) { // HOG
// VOT
interp_factor = 0.012;
sigma = 0.6;
// TPAMI
//interp_factor = 0.02;
//sigma = 0.5;
cell_size = 4;
_hogfeatures = true;
if (lab) {
interp_factor = 0.005;
sigma = 0.4;
//output_sigma_factor = 0.025;
output_sigma_factor = 0.1;
_labfeatures = true;
_labCentroids = cv::Mat(nClusters, 3, CV_32FC1, &data);
cell_sizeQ = cell_size*cell_size;
}
else{
_labfeatures = false;
}
}
else { // RAW
interp_factor = 0.075;
sigma = 0.2;
cell_size = 1;
_hogfeatures = false;
if (lab) {
printf("Lab features are only used with HOG features.\n");
_labfeatures = false;
}
}
if (multiscale) { // multiscale
template_size = 96;
//template_size = 100;
scale_step = 1.05;
scale_weight = 0.95;
if (!fixed_window) {
//printf("Multiscale does not support non-fixed window.\n");
fixed_window = true;
}
}
else if (fixed_window) { // fit correction without multiscale
template_size = 96;
//template_size = 100;
scale_step = 1;
}
else {
template_size = 1;
scale_step = 1;
}
}
// Initialize tracker
void KCFTracker::init(const cv::Rect &roi, cv::Mat image)
{
_roi = roi;
assert(roi.width >= 0 && roi.height >= 0);
_tmpl = getFeatures(image, 1);
_prob = createGaussianPeak(size_patch[0], size_patch[1]);
_alphaf = cv::Mat(size_patch[0], size_patch[1], CV_32FC2, float(0));
//_num = cv::Mat(size_patch[0], size_patch[1], CV_32FC2, float(0));
//_den = cv::Mat(size_patch[0], size_patch[1], CV_32FC2, float(0));
train(_tmpl, 1.0); // train with initial frame
}
// Update position based on the new frame
cv::Rect KCFTracker::update(cv::Mat image)
{
if (_roi.x + _roi.width <= 0) _roi.x = -_roi.width + 1;
if (_roi.y + _roi.height <= 0) _roi.y = -_roi.height + 1;
if (_roi.x >= image.cols - 1) _roi.x = image.cols - 2;
if (_roi.y >= image.rows - 1) _roi.y = image.rows - 2;
float cx = _roi.x + _roi.width / 2.0f;
float cy = _roi.y + _roi.height / 2.0f;
float peak_value;
cv::Point2f res = detect(_tmpl, getFeatures(image, 0, 1.0f), peak_value);
if (scale_step != 1) {
// Test at a smaller _scale
float new_peak_value;
cv::Point2f new_res = detect(_tmpl, getFeatures(image, 0, 1.0f / scale_step), new_peak_value);
if (scale_weight * new_peak_value > peak_value) {
res = new_res;
peak_value = new_peak_value;
_scale /= scale_step;
_roi.width /= scale_step;
_roi.height /= scale_step;
}
// Test at a bigger _scale
new_res = detect(_tmpl, getFeatures(image, 0, scale_step), new_peak_value);
if (scale_weight * new_peak_value > peak_value) {
res = new_res;
peak_value = new_peak_value;
_scale *= scale_step;
_roi.width *= scale_step;
_roi.height *= scale_step;
}
}
// Adjust by cell size and _scale
_roi.x = cx - _roi.width / 2.0f + ((float) res.x * cell_size * _scale);
_roi.y = cy - _roi.height / 2.0f + ((float) res.y * cell_size * _scale);
if (_roi.x >= image.cols - 1) _roi.x = image.cols - 1;
if (_roi.y >= image.rows - 1) _roi.y = image.rows - 1;
if (_roi.x + _roi.width <= 0) _roi.x = -_roi.width + 2;
if (_roi.y + _roi.height <= 0) _roi.y = -_roi.height + 2;
assert(_roi.width >= 0 && _roi.height >= 0);
cv::Mat x = getFeatures(image, 0);
train(x, interp_factor);
return _roi;
}
// Detect object in the current frame.
cv::Point2f KCFTracker::detect(cv::Mat z, cv::Mat x, float &peak_value)
{
using namespace FFTTools;
cv::Mat k = gaussianCorrelation(x, z);
cv::Mat res = (real(fftd(complexMultiplication(_alphaf, fftd(k)), true)));
//minMaxLoc only accepts doubles for the peak, and integer points for the coordinates
cv::Point2i pi;
double pv;
cv::minMaxLoc(res, NULL, &pv, NULL, &pi);
peak_value = (float) pv;
//subpixel peak estimation, coordinates will be non-integer
cv::Point2f p((float)pi.x, (float)pi.y);
if (pi.x > 0 && pi.x < res.cols-1) {
p.x += subPixelPeak(res.at<float>(pi.y, pi.x-1), peak_value, res.at<float>(pi.y, pi.x+1));
}
if (pi.y > 0 && pi.y < res.rows-1) {
p.y += subPixelPeak(res.at<float>(pi.y-1, pi.x), peak_value, res.at<float>(pi.y+1, pi.x));
}
p.x -= (res.cols) / 2;
p.y -= (res.rows) / 2;
return p;
}
// train tracker with a single image
void KCFTracker::train(cv::Mat x, float train_interp_factor)
{
using namespace FFTTools;
cv::Mat k = gaussianCorrelation(x, x);
cv::Mat alphaf = complexDivision(_prob, (fftd(k) + lambda));
_tmpl = (1 - train_interp_factor) * _tmpl + (train_interp_factor) * x;
_alphaf = (1 - train_interp_factor) * _alphaf + (train_interp_factor) * alphaf;
/*cv::Mat kf = fftd(gaussianCorrelation(x, x));
cv::Mat num = complexMultiplication(kf, _prob);
cv::Mat den = complexMultiplication(kf, kf + lambda);
_tmpl = (1 - train_interp_factor) * _tmpl + (train_interp_factor) * x;
_num = (1 - train_interp_factor) * _num + (train_interp_factor) * num;
_den = (1 - train_interp_factor) * _den + (train_interp_factor) * den;
_alphaf = complexDivision(_num, _den);*/
}
// Evaluates a Gaussian kernel with bandwidth SIGMA for all relative shifts between input images X and Y, which must both be MxN. They must also be periodic (ie., pre-processed with a cosine window).
cv::Mat KCFTracker::gaussianCorrelation(cv::Mat x1, cv::Mat x2)
{
using namespace FFTTools;
cv::Mat c = cv::Mat( cv::Size(size_patch[1], size_patch[0]), CV_32F, cv::Scalar(0) );
// HOG features
if (_hogfeatures) {
cv::Mat caux;
cv::Mat x1aux;
cv::Mat x2aux;
for (int i = 0; i < size_patch[2]; i++) {
x1aux = x1.row(i); // Procedure do deal with cv::Mat multichannel bug
x1aux = x1aux.reshape(1, size_patch[0]);
x2aux = x2.row(i).reshape(1, size_patch[0]);
cv::mulSpectrums(fftd(x1aux), fftd(x2aux), caux, 0, true);
caux = fftd(caux, true);
rearrange(caux);
caux.convertTo(caux,CV_32F);
c = c + real(caux);
}
}
// Gray features
else {
cv::mulSpectrums(fftd(x1), fftd(x2), c, 0, true);
c = fftd(c, true);
rearrange(c);
c = real(c);
}
cv::Mat d;
cv::max(( (cv::sum(x1.mul(x1))[0] + cv::sum(x2.mul(x2))[0])- 2. * c) / (size_patch[0]*size_patch[1]*size_patch[2]) , 0, d);
cv::Mat k;
cv::exp((-d / (sigma * sigma)), k);
return k;
}
// Create Gaussian Peak. Function called only in the first frame.
cv::Mat KCFTracker::createGaussianPeak(int sizey, int sizex)
{
cv::Mat_<float> res(sizey, sizex);
int syh = (sizey) / 2;
int sxh = (sizex) / 2;
float output_sigma = std::sqrt((float) sizex * sizey) / padding * output_sigma_factor;
float mult = -0.5 / (output_sigma * output_sigma);
for (int i = 0; i < sizey; i++)
for (int j = 0; j < sizex; j++)
{
int ih = i - syh;
int jh = j - sxh;
res(i, j) = std::exp(mult * (float) (ih * ih + jh * jh));
}
return FFTTools::fftd(res);
}
// Obtain sub-window from image, with replication-padding and extract features
cv::Mat KCFTracker::getFeatures(const cv::Mat & image, bool inithann, float scale_adjust)
{
cv::Rect extracted_roi;
float cx = _roi.x + _roi.width / 2;
float cy = _roi.y + _roi.height / 2;
if (inithann) {
int padded_w = _roi.width * padding;
int padded_h = _roi.height * padding;
if (template_size > 1) { // Fit largest dimension to the given template size
if (padded_w >= padded_h) //fit to width
_scale = padded_w / (float) template_size;
else
_scale = padded_h / (float) template_size;
_tmpl_sz.width = padded_w / _scale;
_tmpl_sz.height = padded_h / _scale;
}
else { //No template size given, use ROI size
_tmpl_sz.width = padded_w;
_tmpl_sz.height = padded_h;
_scale = 1;
// original code from paper:
/*if (sqrt(padded_w * padded_h) >= 100) { //Normal size
_tmpl_sz.width = padded_w;
_tmpl_sz.height = padded_h;
_scale = 1;
}
else { //ROI is too big, track at half size
_tmpl_sz.width = padded_w / 2;
_tmpl_sz.height = padded_h / 2;
_scale = 2;
}*/
}
if (_hogfeatures) {
// Round to cell size and also make it even
_tmpl_sz.width = ( ( (int)(_tmpl_sz.width / (2 * cell_size)) ) * 2 * cell_size ) + cell_size*2;
_tmpl_sz.height = ( ( (int)(_tmpl_sz.height / (2 * cell_size)) ) * 2 * cell_size ) + cell_size*2;
}
else { //Make number of pixels even (helps with some logic involving half-dimensions)
_tmpl_sz.width = (_tmpl_sz.width / 2) * 2;
_tmpl_sz.height = (_tmpl_sz.height / 2) * 2;
}
}
extracted_roi.width = scale_adjust * _scale * _tmpl_sz.width;
extracted_roi.height = scale_adjust * _scale * _tmpl_sz.height;
// center roi with new size
extracted_roi.x = cx - extracted_roi.width / 2;
extracted_roi.y = cy - extracted_roi.height / 2;
cv::Mat FeaturesMap;
cv::Mat z = RectTools::subwindow(image, extracted_roi, cv::BORDER_REPLICATE);
if (z.cols != _tmpl_sz.width || z.rows != _tmpl_sz.height) {
cv::resize(z, z, _tmpl_sz);
}
// HOG features
if (_hogfeatures) {
IplImage z_ipl = z;
CvLSVMFeatureMapCaskade *map;
getFeatureMaps(&z_ipl, cell_size, &map);
normalizeAndTruncate(map,0.2f);
PCAFeatureMaps(map);
size_patch[0] = map->sizeY;
size_patch[1] = map->sizeX;
size_patch[2] = map->numFeatures;
FeaturesMap = cv::Mat(cv::Size(map->numFeatures,map->sizeX*map->sizeY), CV_32F, map->map); // Procedure do deal with cv::Mat multichannel bug
FeaturesMap = FeaturesMap.t();
freeFeatureMapObject(&map);
// Lab features
if (_labfeatures) {
cv::Mat imgLab;
cvtColor(z, imgLab, CV_BGR2Lab);
unsigned char *input = (unsigned char*)(imgLab.data);
// Sparse output vector
cv::Mat outputLab = cv::Mat(_labCentroids.rows, size_patch[0]*size_patch[1], CV_32F, float(0));
int cntCell = 0;
// Iterate through each cell
for (int cY = cell_size; cY < z.rows-cell_size; cY+=cell_size){
for (int cX = cell_size; cX < z.cols-cell_size; cX+=cell_size){
// Iterate through each pixel of cell (cX,cY)
for(int y = cY; y < cY+cell_size; ++y){
for(int x = cX; x < cX+cell_size; ++x){
// Lab components for each pixel
float l = (float)input[(z.cols * y + x) * 3];
float a = (float)input[(z.cols * y + x) * 3 + 1];
float b = (float)input[(z.cols * y + x) * 3 + 2];
// Iterate trough each centroid
float minDist = FLT_MAX;
int minIdx = 0;
float *inputCentroid = (float*)(_labCentroids.data);
for(int k = 0; k < _labCentroids.rows; ++k){
float dist = ( (l - inputCentroid[3*k]) * (l - inputCentroid[3*k]) )
+ ( (a - inputCentroid[3*k+1]) * (a - inputCentroid[3*k+1]) )
+ ( (b - inputCentroid[3*k+2]) * (b - inputCentroid[3*k+2]) );
if(dist < minDist){
minDist = dist;
minIdx = k;
}
}
// Store result at output
outputLab.at<float>(minIdx, cntCell) += 1.0 / cell_sizeQ;
//((float*) outputLab.data)[minIdx * (size_patch[0]*size_patch[1]) + cntCell] += 1.0 / cell_sizeQ;
}
}
cntCell++;
}
}
// Update size_patch[2] and add features to FeaturesMap
size_patch[2] += _labCentroids.rows;
FeaturesMap.push_back(outputLab);
}
}
else {
FeaturesMap = RectTools::getGrayImage(z);
FeaturesMap -= (float) 0.5; // In Paper;
size_patch[0] = z.rows;
size_patch[1] = z.cols;
size_patch[2] = 1;
}
if (inithann) {
createHanningMats();
}
FeaturesMap = hann.mul(FeaturesMap);
return FeaturesMap;
}
// Initialize Hanning window. Function called only in the first frame.
void KCFTracker::createHanningMats()
{
cv::Mat hann1t = cv::Mat(cv::Size(size_patch[1],1), CV_32F, cv::Scalar(0));
cv::Mat hann2t = cv::Mat(cv::Size(1,size_patch[0]), CV_32F, cv::Scalar(0));
for (int i = 0; i < hann1t.cols; i++)
hann1t.at<float > (0, i) = 0.5 * (1 - std::cos(2 * 3.14159265358979323846 * i / (hann1t.cols - 1)));
for (int i = 0; i < hann2t.rows; i++)
hann2t.at<float > (i, 0) = 0.5 * (1 - std::cos(2 * 3.14159265358979323846 * i / (hann2t.rows - 1)));
cv::Mat hann2d = hann2t * hann1t;
// HOG features
if (_hogfeatures) {
cv::Mat hann1d = hann2d.reshape(1,1); // Procedure do deal with cv::Mat multichannel bug
hann = cv::Mat(cv::Size(size_patch[0]*size_patch[1], size_patch[2]), CV_32F, cv::Scalar(0));
for (int i = 0; i < size_patch[2]; i++) {
for (int j = 0; j<size_patch[0]*size_patch[1]; j++) {
hann.at<float>(i,j) = hann1d.at<float>(0,j);
}
}
}
// Gray features
else {
hann = hann2d;
}
}
// Calculate sub-pixel peak for one dimension
float KCFTracker::subPixelPeak(float left, float center, float right)
{
float divisor = 2 * center - right - left;
if (divisor == 0)
return 0;
return 0.5 * (right - left) / divisor;
}