-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathenv.py
138 lines (116 loc) · 4.35 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
from collections import deque
import cv2
import numpy as np
from ale_python_interface import ALEInterface
# glb_counter = 0
def preprocess_frame(observ, output_size):
gray = cv2.cvtColor(observ, cv2.COLOR_RGB2GRAY)
output = cv2.resize(gray, (output_size, output_size))
output = output.astype(np.float32, copy=False)
return output
class Environment(object):
def __init__(self,
rom_file,
frame_skip,
num_frames,
frame_size,
no_op_start,
rand_seed,
dead_as_eoe):
self.ale = self._init_ale(rand_seed, rom_file)
# normally (160, 210)
self.actions = self.ale.getMinimalActionSet()
self.frame_skip = frame_skip
self.num_frames = num_frames
self.frame_size = frame_size
self.no_op_start = no_op_start
self.dead_as_eoe = dead_as_eoe
self.clipped_reward = 0
self.total_reward = 0
screen_width, screen_height = self.ale.getScreenDims()
self.prev_screen = np.zeros(
(screen_height, screen_width, 3), dtype=np.float32)
self.frame_queue = deque(maxlen=num_frames)
self.end = True
@staticmethod
def _init_ale(rand_seed, rom_file):
assert os.path.exists(rom_file), '%s does not exists.'
ale = ALEInterface()
ale.setInt('random_seed', rand_seed)
ale.setBool('showinfo', False)
ale.setInt('frame_skip', 1)
ale.setFloat('repeat_action_probability', 0.0)
ale.setBool('color_averaging', False)
ale.loadROM(rom_file)
return ale
@property
def num_actions(self):
return len(self.actions)
def _get_current_frame(self):
# global glb_counter
screen = self.ale.getScreenRGB()
max_screen = np.maximum(self.prev_screen, screen)
frame = preprocess_frame(max_screen, self.frame_size)
frame /= 255.0
# cv2.imwrite('test_env/%d.png' % glb_counter, cv2.resize(frame, (800, 800)))
# glb_counter += 1
# print 'glb_counter', glb_counter
return frame
def reset(self):
for _ in range(self.num_frames - 1):
self.frame_queue.append(
np.zeros((self.frame_size, self.frame_size), dtype=np.float32))
self.ale.reset_game()
self.clipped_reward = 0
self.total_reward = 0
self.prev_screen = np.zeros(self.prev_screen.shape, dtype=np.float32)
n = np.random.randint(0, self.no_op_start)
for i in range(n):
if i == n - 1:
self.prev_screen = self.ale.getScreenRGB()
self.ale.act(0)
self.frame_queue.append(self._get_current_frame())
assert not self.ale.game_over()
self.end = False
return np.array(self.frame_queue)
def step(self, action_idx):
"""Perform action and return frame sequence and reward.
Return:
state: [frames] of length num_frames, 0 if fewer is available
reward: float
"""
assert not self.end
reward = 0
clipped_reward = 0
old_lives = self.ale.lives()
for _ in range(self.frame_skip):
self.prev_screen = self.ale.getScreenRGB()
r = self.ale.act(self.actions[action_idx])
reward += r
clipped_reward += np.sign(r)
dead = (self.ale.lives() < old_lives)
if self.ale.game_over() or (self.dead_as_eoe and dead):
self.end = True
break
self.frame_queue.append(self._get_current_frame())
self.total_reward += reward
self.clipped_reward += clipped_reward
return np.array(self.frame_queue), clipped_reward
if __name__ == '__main__':
env = Environment('roms/breakout.bin', 4, 4, 84, 30, 33, False)
print 'starting with game over?', env.ale.game_over()
state = env.reset()
i = 0
while not env.end:
print i
action = np.random.randint(0, env.num_actions)
state, reward = env.step(action)
if i % 100 == 0:
for idx, f in enumerate(state):
filename = 'test_env/f%d-%d.png' % (i, idx)
cv2.imwrite(filename, cv2.resize(f, (800, 800)))
i += 1
print 'total_reward:', env.total_reward
print 'clipped_reward', env.clipped_reward
print 'total steps:', i