-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlemmas-or-append.agda
378 lines (360 loc) · 16.6 KB
/
lemmas-or-append.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
open import Prelude
open import constraints-core
open import contexts
open import core
open import lemmas-patterns
open import lemmas-satisfy
open import patterns-core
open import result-judgements
open import statics-core
-- For the ITFailMatch instruction transition, we move the pointer
-- of a zippered list of rules one step forward. Essentially, we step
-- (rs-pre / r / (r-post / rs-post)) ↦
-- (rs-pre ++ [ r ] / r-post / rs-post).
--
-- To prove, say, preservation, we need to reason about the constraint
-- emitted by all previously seen rules. However, our judgement for
-- determining this constraint builds it inductively from the head
-- of the list, e.g., if r emits ξr, r' emits ξr', and rs emits ξrs,
-- then ξr / (ξr' / ξrs) emits ξr ∨ (ξr' ∨ ξrs). Thus, appending to
-- the end of a list must ∨ the constraint at the deepest nested level,
-- not the top level. That is, rs ++ [ r ] does not emit ξrs ∨ ξr,
-- but rather ξrs is a sequence of nested ∨s, and ξr must be added to the
-- end of this list. This necessitates the ∨+ function below which
-- performs that operation.
--
-- Most of this module consists of easy lemmas showing that
-- ξ1 ∨+ ξ2 is semantically equivalent to ξ1 ∨ ξ2, then proves
-- the result mentioned above.
module lemmas-or-append where
_∨+_ : constr → constr → constr
·⊤ ∨+ ξ = ·⊤ ∨ ξ
·⊥ ∨+ ξ = ·⊥ ∨ ξ
·? ∨+ ξ = ·? ∨ ξ
(N n) ∨+ ξ = (N n) ∨ ξ
(inl ξ1) ∨+ ξ = (inl ξ1) ∨ ξ
(inr ξ1) ∨+ ξ = (inr ξ1) ∨ ξ
⟨ ξ1 , ξ2 ⟩ ∨+ ξ = ⟨ ξ1 , ξ2 ⟩ ∨ ξ
(ξ1 ∨ ξ2) ∨+ ξ = ξ1 ∨ (ξ2 ∨+ ξ)
∨+-type : ∀{ξ1 ξ2 τ} →
ξ1 :c: τ →
ξ2 :c: τ →
(ξ1 ∨+ ξ2) :c: τ
∨+-type CTTruth ct2 = CTOr CTTruth ct2
∨+-type CTFalsity ct2 = CTOr CTFalsity ct2
∨+-type CTUnknown ct2 = CTOr CTUnknown ct2
∨+-type CTNum ct2 = CTOr CTNum ct2
∨+-type (CTInl ct1) ct2 = CTOr (CTInl ct1) ct2
∨+-type (CTInr ct1) ct2 = CTOr (CTInr ct1) ct2
∨+-type (CTPair ct1₁ ct1₂) ct2 =
CTOr (CTPair ct1₁ ct1₂) ct2
∨+-type (CTOr ct1₁ ct1₂) ct2 =
CTOr ct1₁ (∨+-type ct1₂ ct2)
ref-∨+-ref-∨ : ∀{ξ1 ξ2} →
(ξ1 ∨+ ξ2) xrefutable →
(ξ1 ∨ ξ2) xrefutable
ref-∨+-ref-∨ {ξ1 = ·⊤} ref = ref
ref-∨+-ref-∨ {ξ1 = ·⊥} ref = ref
ref-∨+-ref-∨ {ξ1 = ·?} ref = ref
ref-∨+-ref-∨ {ξ1 = N n} ref = ref
ref-∨+-ref-∨ {ξ1 = inl ξ1} ref = ref
ref-∨+-ref-∨ {ξ1 = inr ξ1} ref = ref
ref-∨+-ref-∨ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} ref = ref
ref-∨+-ref-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (RXOr ref1₁ ref)
with ref-∨+-ref-∨ ref
... | RXOr ref1₂ ref2 =
RXOr (RXOr ref1₁ ref1₂) ref2
ref-∨-ref-∨+ : ∀{ξ1 ξ2} →
(ξ1 ∨ ξ2) xrefutable →
(ξ1 ∨+ ξ2) xrefutable
ref-∨-ref-∨+ {ξ1 = ·⊤} ref = ref
ref-∨-ref-∨+ {ξ1 = ·⊥} ref = ref
ref-∨-ref-∨+ {ξ1 = ·?} ref = ref
ref-∨-ref-∨+ {ξ1 = N n} ref = ref
ref-∨-ref-∨+ {ξ1 = inl ξ1} ref = ref
ref-∨-ref-∨+ {ξ1 = inr ξ1} ref = ref
ref-∨-ref-∨+ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} ref = ref
ref-∨-ref-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(RXOr (RXOr ref1₁ ref1₂) ref2) =
RXOr ref1₁ (ref-∨-ref-∨+ (RXOr ref1₂ ref2))
pos-∨+-pos-∨ : ∀{ξ1 ξ2} →
(ξ1 ∨+ ξ2) possible →
(ξ1 ∨ ξ2) possible
pos-∨+-pos-∨ {ξ1 = ·⊤} pos = pos
pos-∨+-pos-∨ {ξ1 = ·⊥} pos = pos
pos-∨+-pos-∨ {ξ1 = ·?} pos = pos
pos-∨+-pos-∨ {ξ1 = N n} pos = pos
pos-∨+-pos-∨ {ξ1 = inl ξ1} pos = pos
pos-∨+-pos-∨ {ξ1 = inr ξ1} pos = pos
pos-∨+-pos-∨ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} pos = pos
pos-∨+-pos-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (POrL pos1₁) =
POrL (POrL pos1₁)
pos-∨+-pos-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (POrR pos)
with pos-∨+-pos-∨ pos
... | POrL pos1₂ = POrL (POrR pos1₂)
... | POrR pos2 = POrR pos2
pos-∨-pos-∨+ : ∀{ξ1 ξ2} →
(ξ1 ∨ ξ2) possible →
(ξ1 ∨+ ξ2) possible
pos-∨-pos-∨+ {ξ1 = ·⊤} pos = pos
pos-∨-pos-∨+ {ξ1 = ·⊥} pos = pos
pos-∨-pos-∨+ {ξ1 = ·?} pos = pos
pos-∨-pos-∨+ {ξ1 = N n} pos = pos
pos-∨-pos-∨+ {ξ1 = inl ξ1} pos = pos
pos-∨-pos-∨+ {ξ1 = inr ξ1} pos = pos
pos-∨-pos-∨+ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} pos = pos
pos-∨-pos-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (POrL (POrL pos1₁)) =
POrL pos1₁
pos-∨-pos-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (POrL (POrR pos1₂)) =
POrR (pos-∨-pos-∨+ (POrL pos1₂))
pos-∨-pos-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (POrR pos) =
POrR (pos-∨-pos-∨+ (POrR pos))
sat-∨+-sat-∨ : ∀{e ξ1 ξ2} →
e ⊧̇ (ξ1 ∨+ ξ2) →
e ⊧̇ (ξ1 ∨ ξ2)
sat-∨+-sat-∨ {ξ1 = ·⊤} sat = sat
sat-∨+-sat-∨ {ξ1 = ·⊥} sat = sat
sat-∨+-sat-∨ {ξ1 = ·?} sat = sat
sat-∨+-sat-∨ {ξ1 = N n} sat = sat
sat-∨+-sat-∨ {ξ1 = inl ξ1} sat = sat
sat-∨+-sat-∨ {ξ1 = inr ξ1} sat = sat
sat-∨+-sat-∨ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} sat = sat
sat-∨+-sat-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (CSOrL sat) = CSOrL (CSOrL sat)
sat-∨+-sat-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (CSOrR sat)
with sat-∨+-sat-∨ sat
... | CSOrL sat1₂ = CSOrL (CSOrR sat1₂)
... | CSOrR sat2 = CSOrR sat2
sat-∨-sat-∨+ : ∀{e ξ1 ξ2} →
e ⊧̇ (ξ1 ∨ ξ2) →
e ⊧̇ (ξ1 ∨+ ξ2)
sat-∨-sat-∨+ {ξ1 = ·⊤} sat = sat
sat-∨-sat-∨+ {ξ1 = ·⊥} sat = sat
sat-∨-sat-∨+ {ξ1 = ·?} sat = sat
sat-∨-sat-∨+ {ξ1 = N n} sat = sat
sat-∨-sat-∨+ {ξ1 = inl ξ1} sat = sat
sat-∨-sat-∨+ {ξ1 = inr ξ1} sat = sat
sat-∨-sat-∨+ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} sat = sat
sat-∨-sat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (CSOrL (CSOrL sat1₁)) =
CSOrL sat1₁
sat-∨-sat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (CSOrL (CSOrR sat1₂)) =
CSOrR (sat-∨-sat-∨+ (CSOrL sat1₂))
sat-∨-sat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (CSOrR sat2) =
CSOrR (sat-∨-sat-∨+ (CSOrR sat2))
maysat-∨+-maysat-∨ : ∀{e ξ1 ξ2} →
e ⊧̇? (ξ1 ∨+ ξ2) →
e ⊧̇? (ξ1 ∨ ξ2)
maysat-∨+-maysat-∨ {ξ1 = ·⊤} msat = msat
maysat-∨+-maysat-∨ {ξ1 = ·⊥} msat = msat
maysat-∨+-maysat-∨ {ξ1 = ·?} msat = msat
maysat-∨+-maysat-∨ {ξ1 = N n} msat = msat
maysat-∨+-maysat-∨ {ξ1 = inl ξ1} msat = msat
maysat-∨+-maysat-∨ {ξ1 = inr ξ1} msat = msat
maysat-∨+-maysat-∨ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} msat = msat
maysat-∨+-maysat-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (CMSOrL msat1₁ ¬sat) =
CMSOrL (CMSOrL msat1₁
(λ sat1₂ → ¬sat (sat-∨-sat-∨+ (CSOrL sat1₂))))
(λ sat2 → ¬sat (sat-∨-sat-∨+ (CSOrR sat2)))
maysat-∨+-maysat-∨ {ξ1 = ξ1₁ ∨ ξ1₂} (CMSOrR ¬sat1₁ msat)
with maysat-∨+-maysat-∨ msat
... | CMSOrL msat1₂ ¬sat2 =
CMSOrL (CMSOrR ¬sat1₁ msat1₂) ¬sat2
... | CMSOrR ¬sat1₂ msat2 =
CMSOrR (λ{(CSOrL sat1₁) → ¬sat1₁ sat1₁
; (CSOrR sat1₂) → ¬sat1₂ sat1₂})
msat2
... | CMSNotIntro ni (RXOr ref1₂ ref2) (POrL pos1₂) =
CMSNotIntro ni
(RXOr (RXOr (notintro-not-sat-ref ni ¬sat1₁)
ref1₂)
ref2)
(POrL (POrR pos1₂))
... | CMSNotIntro ni (RXOr ref1₂ ref2) (POrR pos2) =
CMSNotIntro ni (RXOr (RXOr (notintro-not-sat-ref ni ¬sat1₁)
ref1₂)
ref2)
(POrR pos2)
maysat-∨+-maysat-∨ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSNotIntro ni (RXOr ref1₁ ref)
(POrL pos1₁))
with ref-∨+-ref-∨ ref
... | RXOr ref1₂ ref2 =
CMSNotIntro ni (RXOr (RXOr ref1₁ ref1₂) ref2)
(POrL (POrL pos1₁))
maysat-∨+-maysat-∨ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSNotIntro ni (RXOr ref1₁ ref)
(POrR pos))
with ref-∨+-ref-∨ ref | pos-∨+-pos-∨ pos
... | RXOr ref1₂ ref2 | POrL pos1₂ =
CMSNotIntro ni (RXOr (RXOr ref1₁ ref1₂) ref2)
(POrL (POrR pos1₂))
... | RXOr ref1₂ ref2 | POrR pos2 =
CMSNotIntro ni (RXOr (RXOr ref1₁ ref1₂) ref2)
(POrR pos2)
maysat-∨-maysat-∨+ : ∀{e ξ1 ξ2} →
e ⊧̇? (ξ1 ∨ ξ2) →
e ⊧̇? (ξ1 ∨+ ξ2)
maysat-∨-maysat-∨+ {ξ1 = ·⊤} msat = msat
maysat-∨-maysat-∨+ {ξ1 = ·⊥} msat = msat
maysat-∨-maysat-∨+ {ξ1 = ·?} msat = msat
maysat-∨-maysat-∨+ {ξ1 = N n} msat = msat
maysat-∨-maysat-∨+ {ξ1 = inl ξ1} msat = msat
maysat-∨-maysat-∨+ {ξ1 = inr ξ1} msat = msat
maysat-∨-maysat-∨+ {ξ1 = ⟨ ξ1₁ , ξ1₂ ⟩} msat = msat
maysat-∨-maysat-∨+ {e = e} {ξ1 = ξ1₁ ∨ ξ1₂} {ξ2 = ξ2}
(CMSOrL (CMSOrL msat1₁ ¬sat1₂) ¬sat2) =
CMSOrL msat1₁ ¬sat
where
¬sat : e ⊧̇ (ξ1₂ ∨+ ξ2) → ⊥
¬sat sat with sat-∨+-sat-∨ sat
... | CSOrL sat1₂ = ¬sat1₂ sat1₂
... | CSOrR sat2 = ¬sat2 sat2
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSOrL (CMSOrR ¬sat1₁ msat1₂) ¬sat2) =
CMSOrR ¬sat1₁
(maysat-∨-maysat-∨+ (CMSOrL msat1₂ ¬sat2))
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSOrL (CMSNotIntro ni (RXOr ref1₁ ref1₂)
(POrL pos1₁))
¬sat2) =
CMSNotIntro ni
(RXOr ref1₁
(ref-∨-ref-∨+
(RXOr ref1₂
(notintro-not-sat-ref ni ¬sat2))))
(POrL pos1₁)
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSOrL (CMSNotIntro ni (RXOr ref1₁ ref1₂)
(POrR pos1₂))
¬sat2) =
CMSNotIntro ni
(RXOr ref1₁
(ref-∨-ref-∨+
(RXOr ref1₂
(notintro-not-sat-ref ni ¬sat2))))
(POrR (pos-∨-pos-∨+ (POrL pos1₂)))
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂} (CMSOrR ¬sat1 msat2) =
CMSOrR (λ sat1₁ → ¬sat1 (CSOrL sat1₁))
(maysat-∨-maysat-∨+
(CMSOrR (λ sat1₂ → ¬sat1 (CSOrR sat1₂)) msat2))
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSNotIntro ni (RXOr (RXOr ref1₁ ref1₂) ref2)
(POrL (POrL pos1₁))) =
CMSNotIntro ni (RXOr ref1₁ (ref-∨-ref-∨+ (RXOr ref1₂ ref2)))
(POrL pos1₁)
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSNotIntro ni (RXOr (RXOr ref1₁ ref1₂) ref2)
(POrL (POrR pos1₂))) =
CMSNotIntro ni (RXOr ref1₁ (ref-∨-ref-∨+ (RXOr ref1₂ ref2)))
(POrR (pos-∨-pos-∨+ (POrL pos1₂)))
maysat-∨-maysat-∨+ {ξ1 = ξ1₁ ∨ ξ1₂}
(CMSNotIntro ni (RXOr (RXOr ref1₁ ref1₂) ref2)
(POrR pos2)) =
CMSNotIntro ni (RXOr ref1₁ (ref-∨-ref-∨+ (RXOr ref1₂ ref2)))
(POrR (pos-∨-pos-∨+ (POrR pos2)))
satormay-∨+-satormay-∨ : ∀{e ξ1 ξ2} →
e ⊧̇†? (ξ1 ∨+ ξ2) →
e ⊧̇†? (ξ1 ∨ ξ2)
satormay-∨+-satormay-∨ (CSMSSat sat) =
CSMSSat (sat-∨+-sat-∨ sat)
satormay-∨+-satormay-∨ (CSMSMay msat) =
CSMSMay (maysat-∨+-maysat-∨ msat)
satormay-∨-satormay-∨+ : ∀{e ξ1 ξ2} →
e ⊧̇†? (ξ1 ∨ ξ2) →
e ⊧̇†? (ξ1 ∨+ ξ2)
satormay-∨-satormay-∨+ (CSMSSat sat) =
CSMSSat (sat-∨-sat-∨+ sat)
satormay-∨-satormay-∨+ (CSMSMay msat) =
CSMSMay (maysat-∨-maysat-∨+ msat)
-- a pattern by itself should never emit a constraint involving
-- an ∨, so ξp ∨+ ξ behaves just like ξp ∨ ξ
pattern-∨+ : ∀{Δp p τ ξp Γp} →
Δp ⊢ p :: τ [ ξp ]⊣ Γp →
(ξ : constr) →
ξp ∨+ ξ == ξp ∨ ξ
pattern-∨+ PTUnit ξ = refl
pattern-∨+ PTVar ξ = refl
pattern-∨+ PTNum ξ = refl
pattern-∨+ (PTInl pt) ξ = refl
pattern-∨+ (PTInr pt) ξ = refl
pattern-∨+ (PTPair Γ1##Γ2 pt1 pt2) ξ = refl
pattern-∨+ (PTEHole w∈Δp) ξ = refl
pattern-∨+ (PTHole w∈Δp pt) ξ = refl
pattern-∨+ PTWild ξ = refl
-- appending more rules to the end of a list of rules
-- ∨+s the emitted constraints
rules-erase-constr : ∀{rs-pre r rs-post rss Γ Δ Δp τ ξpre ξrest τ'} →
erase-r (rs-pre / r / rs-post) rss →
Γ , Δ , Δp ⊢ rs-pre ::s τ [ ξpre ]=> τ' →
Γ , Δ , Δp ⊢ (r / rs-post) ::s τ [ ξrest ]=> τ' →
Γ , Δ , Δp ⊢ rss ::s τ [ ξpre ∨+ ξrest ]=> τ'
rules-erase-constr
{rs-pre = (p => e) / nil} {r = r} {rs-post = rs-post}
{Γ = Γ} {Δ = Δ} {Δp = Δp}
{τ = τ} {ξpre = ξpre} {ξrest = ξrest} {τ' = τ'}
(ERNZPre ERZPre)
(RTOneRule (RTRule pt Γ##Γp wt')) restt =
tr (λ qq → Γ , Δ , Δp ⊢ (p => e) / (r / rs-post) ::s τ [ qq ]=> τ')
(! (pattern-∨+ pt ξrest))
(RTRules (RTRule pt Γ##Γp wt') restt)
rules-erase-constr
{rs-pre = r' / (_ / _)}
(ERNZPre (ERNZPre er))
(RTRules (RTRule pt Γ##Γp wt') rst') restt =
RTRules (RTRule pt Γ##Γp wt')
(rules-erase-constr (ERNZPre er) rst' restt)
-- same as above but for the rule typing judgement
-- without the target type
rules-erase-constr-no-target : ∀{rs-pre r rs-post rss Δp τ ξpre ξrest} →
erase-r (rs-pre / r / rs-post) rss →
Δp ⊢ rs-pre ::s τ [ ξpre ] →
Δp ⊢ (r / rs-post) ::s τ [ ξrest ] →
Δp ⊢ rss ::s τ [ ξpre ∨+ ξrest ]
rules-erase-constr-no-target
{rs-pre = (p => e) / nil} {r = r} {rs-post = rs-post}
{Δp = Δp} {τ = τ} {ξpre = ξpre} {ξrest = ξrest}
(ERNZPre ERZPre) (RTOneRule pt) restt =
tr (λ qq → Δp ⊢ (p => e) / (r / rs-post) ::s τ [ qq ])
(! (pattern-∨+ pt ξrest))
(RTRules pt restt)
rules-erase-constr-no-target
{rs-pre = r' / (_ / _)}
(ERNZPre (ERNZPre er)) (RTRules rt' rst') restt =
RTRules rt' (rules-erase-constr-no-target (ERNZPre er) rst' restt)
-- same as above but for the rule typing judgement
-- keeping track of nonredundancy
rules-erase-constr-nonredundant : ∀{rs-pre r rs-post rss Δp τ ξnr ξpre ξrest} →
ξnr :c: τ →
erase-r (rs-pre / r / rs-post) rss →
Δp ⊢ rs-pre ::s τ [ ξnr nr/ ξpre ] →
Δp ⊢ (r / rs-post) ::s τ [ ξnr ∨ ξpre nr/ ξrest ] →
Δp ⊢ rss ::s τ [ ξnr nr/ ξpre ∨+ ξrest ]
rules-erase-constr-nonredundant
{rs-pre = (p => e) / nil} {r = r} {rs-post = rs-post}
{Δp = Δp} {τ = τ} {ξnr = ξnr} {ξpre = ξpre} {ξrest = ξrest}
ctnr (ERNZPre ERZPre) (RTOneRule pt ¬red) restt =
tr (λ qq → Δp ⊢ (p => e) / (r / rs-post) ::s τ [ ξnr nr/ qq ])
(! (pattern-∨+ pt ξrest))
(RTRules pt ¬red restt)
rules-erase-constr-nonredundant
{rs-pre = r' / (_ / _)} {τ = τ} {ξnr = ξnr} {ξpre = ξr ∨ ξrs}
ctnr (ERNZPre (ERNZPre er)) (RTRules pt ¬red rst) restt =
RTRules pt ¬red
(rules-erase-constr-nonredundant
(CTOr ctnr (pattern-constr-same-type pt))
(ERNZPre er)
rst
(weaken-nonredundant
(CTOr ctnr
(CTOr (pattern-constr-same-type pt)
(rules-constr-same-type-nonredundant rst)))
restt
ent))
where
ent : ∀{Δ Δp e} →
∅ , Δ , Δp ⊢ e :: τ →
e val →
e ⊧̇ ((ξnr ∨ ξr) ∨ ξrs) →
e ⊧̇ (ξnr ∨ (ξr ∨ ξrs))
ent wt eval (CSOrL (CSOrL sat)) = CSOrL sat
ent wt eval (CSOrL (CSOrR sat)) = CSOrR (CSOrL sat)
ent wt eval (CSOrR sat) = CSOrR (CSOrR sat)