-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNat.agda
144 lines (122 loc) · 4.07 KB
/
Nat.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
open import Prelude
module Nat where
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
-- the succ operation is injective
suc-inj : (x y : Nat) →
(suc x == suc y) →
x == y
suc-inj zero .0 refl = refl
suc-inj (suc x) .(suc x) refl = refl
-- equality of naturals is decidable
nat-dec : (x y : Nat) →
((x == y) + ((x == y) → ⊥))
nat-dec zero zero = Inl refl
nat-dec zero (suc y) = Inr (λ ())
nat-dec (suc x) zero = Inr (λ ())
nat-dec (suc x) (suc y) with nat-dec x y
... | Inl refl = Inl refl
... | Inr x≠y = Inr (λ refl → x≠y (suc-inj x y refl))
-- we already use + for sum types, so we use ✦ for the sum of nats
infixl 6 _✦_
_✦_ : Nat → Nat → Nat
zero ✦ y = y
(suc x) ✦ y = suc (x ✦ y)
✦-identityʳ : (n : Nat) → n ✦ 0 == n
✦-identityʳ zero = refl
✦-identityʳ (suc n) =
ap1 (λ qq → suc qq) (✦-identityʳ n)
✦-suc : (m n : Nat) → m ✦ (suc n) == suc (m ✦ n)
✦-suc zero n = refl
✦-suc (suc m) n = ap1 (λ qq → suc qq) (✦-suc m n)
✦-comm : (m n : Nat) → m ✦ n == n ✦ m
✦-comm m zero = ✦-identityʳ m
✦-comm m (suc n) =
✦-suc m n · ap1 (λ qq → suc qq) (✦-comm m n)
✦-assoc : (a b c : Nat) →
a ✦ (b ✦ c) == (a ✦ b) ✦ c
✦-assoc zero b c = refl
✦-assoc (suc a) b c = ap1 suc (✦-assoc a b c)
infix 4 _<_
data _<_ : Nat → Nat → Set where
z<suc : ∀{n} → zero < (suc n)
suc<suc : ∀{m n} → m < n → (suc m) < (suc n)
n<sucn : (n : Nat) →
n < (suc n)
n<sucn zero = z<suc
n<sucn (suc n) = suc<suc (n<sucn n)
<-≠ : ∀{n m} →
n < m →
n ≠ m
<-≠ (suc<suc m<m) refl = <-≠ m<m refl
<suc-≤ : ∀{n m} →
n < suc m →
(n < m) + (n == m)
<suc-≤ {n = .zero} {m = zero} z<suc = Inr refl
<suc-≤ {n = .zero} {m = suc m} z<suc = Inl z<suc
<suc-≤ {n = suc n} {m = suc m} (suc<suc n<sucm)
with <suc-≤ n<sucm
... | Inl n<m = Inl (suc<suc n<m)
... | Inr refl = Inr refl
<-trans-suc : ∀{a b c} →
a < suc b →
b < c →
a < c
<-trans-suc z<suc z<suc = z<suc
<-trans-suc z<suc (suc<suc b<c) = z<suc
<-trans-suc (suc<suc a<sucb) (suc<suc b<c) =
suc<suc (<-trans-suc a<sucb b<c)
<-trans : {a b c : Nat} →
a < b →
b < c →
a < c
<-trans z<suc (suc<suc b<c) = z<suc
<-trans (suc<suc a<b) (suc<suc b<c) =
suc<suc (<-trans a<b b<c)
✦-monoʳ-< : (a b c : Nat) →
b < c →
(a ✦ b) < (a ✦ c)
✦-monoʳ-< zero b c b<c = b<c
✦-monoʳ-< (suc a) b c b<c = suc<suc (✦-monoʳ-< a b c b<c)
✦-monoˡ-< : (a b c : Nat) →
b < c →
(b ✦ a) < (c ✦ a)
✦-monoˡ-< a b c b<c =
tr (λ qq → qq < (c ✦ a)) (✦-comm a b)
(tr (λ qq → (a ✦ b) < qq) (✦-comm a c)
(✦-monoʳ-< a b c b<c))
✦-mono-< : {a b c d : Nat} →
a < b →
c < d →
(a ✦ c) < (b ✦ d)
✦-mono-< {a = a} {b = b} {c = c} {d = d}
a<b c<d =
<-trans (✦-monoˡ-< c a b a<b)
(✦-monoʳ-< b c d c<d)
✦-mono-<-suc : {a b c d : Nat} →
a < b →
c < suc d →
(a ✦ c) < (b ✦ d)
✦-mono-<-suc {a = a} {b = b} {c = c} {d = d}
a<b c<sucd
with <suc-≤ c<sucd
... | Inl c<d = ✦-mono-< a<b c<d
... | Inr refl = ✦-monoˡ-< c a b a<b
max : Nat → Nat → Nat
max zero n = n
max (suc m) zero = suc m
max (suc m) (suc n) = suc (max m n)
arg1<sucmax : (m n : Nat) →
m < suc (max m n)
arg1<sucmax zero n = z<suc
arg1<sucmax (suc m) zero = suc<suc (n<sucn m)
arg1<sucmax (suc m) (suc n) =
suc<suc (arg1<sucmax m n)
arg2<sucmax : (m n : Nat) →
n < suc (max m n)
arg2<sucmax zero n = n<sucn n
arg2<sucmax (suc m) zero = z<suc
arg2<sucmax (suc m) (suc n) =
suc<suc (arg2<sucmax m n)