-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathList.agda
41 lines (33 loc) · 1010 Bytes
/
List.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
open import Prelude
open import Nat
module List where
infixr 5 _::_
-- standard definition of polymorphic lists
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
{-# BUILTIN LIST List #-}
-- list append
infixr 5 _++_
_++_ : {A : Set} → List A → List A → List A
[] ++ l2 = l2
(x :: l1) ++ l2 = x :: (l1 ++ l2)
-- number of elements in a list
length : {A : Set} → List A → Nat
length [] = 0
length (x :: xs) = suc (length xs)
-- map f to every element of a list
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x :: xs) = f x :: map f xs
-- O(n^2) list reverse
reverse : {A : Set} → List A → List A
reverse [] = []
reverse (x :: l) = l ++ (x :: [])
-- an element is contained within a list
data _∈l_ {A : Set} : A → List A → Set where
here : ∀{y xs} →
y ∈l (y :: xs)
there : ∀{y x xs} →
y ∈l xs →
y ∈l (x :: xs)