-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrelude.agda
33 lines (27 loc) · 1.07 KB
/
Prelude.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax)
open import Data.Bool hiding (_<_; _≟_)
open import Data.Empty
open import Data.Fin
open import Data.List hiding (lookup)
open import Data.Nat
open import Data.Product hiding (map)
open import Data.Sum renaming (_⊎_ to _+_; inj₁ to Inl ; inj₂ to Inr) hiding (map)
open import Data.Unit renaming (tt to <>)
open import Data.Vec hiding (map; _++_; concat; filter)
open import Function
open import Relation.Binary.PropositionalEquality hiding (inspect)
open import Relation.Nullary
open import Relation.Unary
module Prelude where
private
variable
ℓ : Level
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
assimilation : ∀ {A : Set} (¬x ¬x' : ¬ A) → ¬x ≡ ¬x'
assimilation ¬x ¬x' = extensionality (λ x → ⊥-elim (¬x x))
¬-≡ : ∀ {A : Set} → (¬a : ¬ A) → (¬a' : ¬ A) → ¬a ≡ ¬a'
¬-≡ ¬a ¬a' = extensionality λ { a → ⊥-elim (¬a a) }