-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsave_inter_outputs.py
139 lines (112 loc) · 4.56 KB
/
save_inter_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from global_settings import *
from utility import save_data_hdf5, CustomDataset
import backbone_models.densenet as densenet
import backbone_models.resnet as resnet
import backbone_models.vgg as vgg
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='vgg16', type=str,
help='model name')
parser.add_argument('--ind', default='cifar10', type=str,
help='InD dataset name')
def main():
args = parser.parse_args()
save_inter_outputs(args.model, args.ind, args.ind, is_training_set=True)
save_inter_outputs(args.model, args.ind, args.ind)
for ood_name in OOD_LIST:
save_inter_outputs(args.model, args.ind, ood_name)
def save_inter_outputs(model_name, id_name, ds_name=None, is_training_set=False):
if not is_training_set and ds_name == None:
print("Must set the test dataset name!")
return
save_dir = f"inter_outputs/{model_name}/{id_name}_vs_others"
if is_training_set:
file_address = f"{save_dir}/{ds_name}_train"
else:
file_address = f"{save_dir}/{ds_name}_test"
if os.path.exists(f"{file_address}.hdf5"):
print("Features already exists.")
return
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if is_training_set:
print(f"saving {ds_name} training set outputs ...")
else:
print(f"saving {ds_name} testing set outputs ...")
if is_training_set:
sample_size = IND_SAMPLE_SIZE
else:
sample_size = OOD_SAMPLE_SIZE
batch_size = BATCH_SIZE
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
data_loader = DataLoader(
CustomDataset(ds_name=ds_name, is_training=is_training_set, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]), sample_size=sample_size),
batch_size=batch_size)
if len(data_loader.dataset) < sample_size:
sample_size = len(data_loader.dataset)
print(f'{ds_name} number of available samples: {len(data_loader.dataset)}')
print(f'{ds_name} number of outputting samples: {sample_size}')
# Load pre-trained model
if model_name == "vgg16":
if id_name == "cifar100":
model = vgg.vgg16_cifar100().cuda()
elif id_name == "cifar10":
model = vgg.vgg16().cuda()
elif model_name == "resnet34":
if id_name == "cifar100":
model = resnet.ResNet34_cifar100().cuda()
else:
model = resnet.ResNet34().cuda()
elif model_name == "densenet100":
if id_name == "cifar100":
model = densenet.DenseNet100_cifar100().cuda()
elif id_name == "cifar10":
model = densenet.DenseNet100().cuda()
if os.path.exists(f'pre_trained_backbones/{model_name}-{id_name}.h5'):
print(f'Loading pre-trained {model_name}-{id_name} model ...')
model.load_state_dict(torch.load(f'pre_trained_backbones/{model_name}-{id_name}.h5'))
print(f'Pre-trained {model_name}-{id_name} model successfully loaded.')
else:
print("Pre-trained model not found!")
return
model.cuda().eval()
with torch.no_grad():
total = 0
features = None
for data, _ in data_loader:
total += batch_size
if total > sample_size:
remains = batch_size - (total - sample_size)
data = data[:remains]
data = data.cuda()
outputs = model.get_inter_outputs(data) # layers x batch_size x C x H X W
# get channel mean
for i in range(len(outputs)):
if len(outputs[i].shape) == 4:
outputs[i] = np.mean(outputs[i], axis=(2, 3)) # batch_size x C
if features is None:
features = outputs # layers x batch_size x C
else:
for i in range(len(features)):
features[i] = np.vstack((features[i], outputs[i])) # stack each batch
if total >= sample_size:
break
# save data
for i in range(len(features)):
save_data_hdf5(features[i], str(i), file_address, "a")
if is_training_set:
print(f"{ds_name} training set intermediate outputs successfully saved!")
else:
print(f"{ds_name} testing set intermediate outputs successfully saved!")
print()
if __name__ == '__main__':
main()