forked from seoungwugoh/RGMP
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
316 lines (268 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
import argparse, threading, time
import numpy as np
from tqdm import tqdm
from model import *
from utils import *
from tensorboardX import SummaryWriter
# Constants
MODEL_DIR = 'saved_models'
NUM_EPOCHS = 1000
def Propagate_MS(ms, model, F2, P2):
h, w = F2.size()[2], F2.size()[3]
msv_F2, msv_P2 = ToCudaVariable([F2, P2])
r5, r4, r3, r2 = model.Encoder(msv_F2, msv_P2)
e2 = model.Decoder(r5, ms, r4, r3, r2)
return F.softmax(e2[0], dim=1)[:,1], r5
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='RGMP')
parser.add_argument('--epochs', dest='num_epochs',
help='number of epochs to train',
default=NUM_EPOCHS, type=int)
parser.add_argument('--bs', dest='bs',
help='batch_size',
default=1, type=int)
parser.add_argument('--num_workers', dest='num_workers',
help='num_workers',
default=1, type=int)
parser.add_argument('--disp_interval', dest='disp_interval',
help='display interval',
default=10, type=int)
parser.add_argument('--eval_epoch', dest='eval_epoch',
help='interval of epochs to perform validation',
default=10, type=int)
parser.add_argument('--output_dir', dest='output_dir',
help='output directory',
default=MODEL_DIR, type=str)
# BPTT
parser.add_argument('--bptt', dest='bptt_len',
help='length of BPTT',
default=12, type=int)
parser.add_argument('--bptt_step', dest='bptt_step',
help='step of truncated BPTT',
default=4, type=int)
# config optimization
parser.add_argument('--o', dest='optimizer',
help='training optimizer',
default="sgd", type=str)
parser.add_argument('--lr', dest='lr',
help='starting learning rate',
default=1e-3, type=float)
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=5, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# resume trained model
parser.add_argument('--loadepoch', dest='loadepoch',
help='epoch to load model',
default=-1, type=int)
args = parser.parse_args()
return args
def log_mask(frames, masks, info, writer, F_name='Train/frames', M_name='Train/masks'):
print('[tensorboard] Updating mask..')
_,C,T,H,W = masks.size()
# (lh,uh), (lw,uw) = info['pad']
vid = np.zeros((1,3,T,H,W))
print_dbg('[mask] mean: {}, max: {}'.format(torch.mean(masks[:,:,1]), torch.max(masks[:,:,1])))
masks = torch.cat((1-masks, masks), dim=1)
for f in range(T):
E = masks[0,:,f].cpu().data.numpy()
# make hard label
E = ToLabel(E)
# E = E[lh[0]:-uh[0], lw[0]:-uw[0]]
# need to implement mask overlay
img_E = Image.fromarray(E)
img_E.putpalette(PALETTE)
arr_E = np.array(E)
vid[0,:,f,:,:] = np.array(img_E)
vid_tensor = torch.FloatTensor(vid)
writer.add_video(F_name, vid_tensor=frames)
writer.add_video(M_name, vid_tensor=vid_tensor)
print('[tensorboard] Mask updated')
def log_scalar(writer, name, tensor, iteration):
value = tensor.cpu().data.numpy()
writer.add_scalar(name, value, iteration)
def repackage_hidden(h, volatile=False, requires_grad=False):
"""Wraps hidden states in new Variables, to detach them from their history."""
if type(h) == Variable:
return Variable(h.data, volatile=volatile, requires_grad=requires_grad)
else:
return tuple(repackage_hidden(v, volatile=volatile,
requires_grad=requires_grad) for v in h)
def bptt_hsm(data, hidden, target, model, criterion, bptt_len, bptt_step):
hidden_v = repackage_hidden(hidden, volatile=True)
data_v, _ = repackage_hidden(data, volatile=True)
hsm = { -1 : repackage_hidden(hidden) }
intervals = list(enumerate(range(0, data.size(0), bptt_step)))
# Record states at selective intervals and flag the need for grads.
# Note we don't need to forward the last interval as we'll do it below.
# This loop is most of the extra computation for this approach.
for f_i,f_v in intervals[:-1]:
output,hidden_v = model(data_v[f_v:f_v+args.bptt_step], hidden_v)
hsm[f_i] = repackage_hidden(hidden_v, volatile=False,
requires_grad=True)
save_grad=None
loss = 0
for b_i, b_v in reversed(intervals):
output,h = model(data[b_v:b_v+args.bptt_step], hsm[b_i-1])
iloss = criterion(output.view(-1, ntokens),
targets[b_v:b_v+args.bptt_step].view(-1))
if b_v+args.bptt_step >= data.size(0):
# No gradient from the future needed.
# These are the hidden states for the next sequence.
hidden = h
iloss.backward()
else:
variables=[iloss]
grad_variables=[None] # scalar = None
# Associate stored gradients with state variables for
# multi-variable backprop
for l in h:
variables.append(l)
g = save_grad.popleft()
grad_variables.append(g)
torch.autograd.backward(variables, grad_variables)
if b_i > 0:
# Save the gradients left on the input state variables
save_grad = collections.deque()
for l in hsm[b_i-1]:
# If this fails, could be a non-leaf, in which case exclude;
# its grad will be handled by a leaf
assert(l.grad is not None)
save_grad.append(l.grad)
loss += iloss.data[0]
av = 1/(args.batch_size*args.bptt)
loss *= av
for g in model.parameters():
g.grad.data.mul_(av)
if __name__ == '__main__':
args = parse_args()
Trainset = DAVIS(DAVIS_ROOT, imset='2016/train.txt')
Trainloader = data.DataLoader(Trainset, batch_size=1, shuffle=True, num_workers=2)
Testset = DAVIS(DAVIS_ROOT, imset='2016/val.txt')
Testloader = data.DataLoader(Testset, batch_size=1, shuffle=True, num_workers=2)
model = RGMP()
if torch.cuda.is_available():
model.cuda()
writer = SummaryWriter()
start_epoch = 0
# load saved model if specified
if args.loadepoch >= 0:
print('Loading checkpoint {}@Epoch {}{}...'.format(font.BOLD, args.loadepoch, font.END))
load_name = os.path.join(args.output_dir,
'{}.pth'.format(args.loadepoch))
state = model.state_dict()
checkpoint = torch.load(load_name)
start_epoch = checkpoint['epoch'] + 1
checkpoint = {k: v for k, v in checkpoint['model'].items() if k in state}
state.update(checkpoint)
model.load_state_dict(state)
if 'optimizer' in checkpoint.keys():
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
POOLING_MODE = checkpoint['pooling_mode']
del checkpoint
torch.cuda.empty_cache()
print(' - complete!')
# params
params = []
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
params += [{'params':[value],'lr':args.lr, 'weight_decay': 4e-5}]
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=0.9)
iters_per_epoch = len(Trainloader)
for epoch in range(start_epoch, args.num_epochs):
if epoch % args.eval_epoch == 1:
# testing
with torch.no_grad():
print('[Val] Epoch {}{}{}'.format(font.BOLD, epoch, font.END))
model.eval()
loss = 0
iOU = 0
pbar = tqdm.tqdm(total=len(Testloader))
for i, (all_F, all_M, info) in enumerate(Testloader):
pbar.update(1)
all_F, all_M = all_F[0], all_M[0]
seq_name = info['name'][0]
num_frames = info['num_frames'][0]
num_objects = info['num_objects'][0]
B,C,T,H,W = all_M.shape
all_E = torch.zeros(B,C,T,H,W)
all_E[:,0,0] = all_M[:,:,0]
msv_F1, msv_P1, all_M = ToCudaVariable([all_F[:,:,0], all_E[:,0,0], all_M])
ms = model.Encoder(msv_F1, msv_P1)[0]
for f in range(0, all_M.shape[2] - 1):
output, ms = Propagate_MS(ms, all_F[:,:,f+1], all_E[:,0,f])
all_E[:,0,f+1] = output.detach()
loss = loss + criterion(output.permute(1,2,0), all_M[:,0,f+1].float()) / all_M.size(2)
iOU = iOU + iou(torch.cat((1-all_E, all_E), dim=1), all_M)
pbar.close()
loss = loss / len(Testloader)
iOU = iOU / len(Testloader)
writer.add_scalar('Val/BCE', loss, epoch)
writer.add_scalar('Val/IOU', iOU, epoch)
print('loss: {}'.format(loss))
print('IoU: {}'.format(iOU))
video_thread = threading.Thread(target=log_mask, args=(all_F,all_E,info,writer,'Val/frames', 'Val/masks'))
video_thread.start()
# training
model.train()
print('[Train] Epoch {}{}{}'.format(font.BOLD, epoch, font.END))
for i, (all_F, all_M, info) in enumerate(Trainloader):
optimizer.zero_grad()
all_F, all_M = all_F[0], all_M[0]
seq_name = info['name'][0]
num_frames = info['num_frames'][0]
num_objects = info['num_objects'][0]
if (args.bptt_len < num_frames):
start_frame = random.randint(0, num_frames - args.bptt_len)
all_F = all_F[:,:, start_frame : start_frame + args.bptt_len]
all_M = all_M[:,:, start_frame : start_frame + args.bptt_len]
tt = time.time()
B,C,T,H,W = all_M.shape
all_E = torch.zeros(B,C,T,H,W)
all_E[:,0,0] = all_M[:,:,0]
msv_F1, msv_P1, all_M = ToCudaVariable([all_F[:,:,0], all_E[:,0,0], all_M])
ms = model.Encoder(msv_F1, msv_P1)[0]
num_bptt = all_M.shape[2]
loss = 0
counter = 0
for f in range(0, num_bptt - 1):
output, ms = Propagate_MS(ms, all_F[:,:,f+1], all_E[:,0,f])
all_E[:,0,f+1] = output.detach()
loss = loss + criterion(output.permute(1,2,0), all_M[:,0,f+1].float())
counter += 1
if (f+1) % args.bptt_step == 0:
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
output.detach()
if f < num_bptt - 2:
loss = 0
counter = 0
if loss > 0:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# logging and display
if (i+1) % args.disp_interval == 0:
writer.add_scalar('Train/BCE', loss/counter, i + epoch * iters_per_epoch)
writer.add_scalar('Train/IOU', iou(torch.cat((1-all_E, all_E), dim=1), all_M), i + epoch * iters_per_epoch)
print('loss: {}'.format(loss/counter))
if epoch % 10 == 1 and i == 0:
video_thread = threading.Thread(target=log_mask, args=(all_F,all_E,info,writer))
video_thread.start()
if epoch % 10 == 0 and epoch > 0:
save_name = '{}/{}.pth'.format(MODEL_DIR, epoch)
torch.save({'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
},
save_name)