-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmain_fpn.py
473 lines (385 loc) · 17.1 KB
/
main_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import numpy as np
import os, sys
from constants import *
from model_fpn import I2D
import argparse, time
from utils.net_utils import adjust_learning_rate
import torch
from torch.autograd import Variable
# from dataset.dataloader import DepthDataset
from dataset.nyuv2_dataset import NYUv2Dataset
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.data.sampler import Sampler
from collections import Counter
import matplotlib, cv2
matplotlib.use('Agg')
import matplotlib.pyplot as plt
class RMSE_log(nn.Module):
def __init__(self):
super(RMSE_log, self).__init__()
def forward(self, fake, real):
if not fake.shape == real.shape:
_,_,H,W = real.shape
fake = F.upsample(fake, size=(H,W), mode='bilinear')
loss = torch.sqrt( torch.mean( torch.abs(torch.log(real)-torch.log(fake)) ** 2 ) )
return loss
class L1(nn.Module):
def __init__(self):
super(L1, self).__init__()
def forward(self, fake, real):
if not fake.shape == real.shape:
_,_,H,W = real.shape
fake = F.upsample(fake, size=(H,W), mode='bilinear')
loss = torch.mean( torch.abs(10.*real-10.*fake) )
return loss
class L1_log(nn.Module):
def __init__(self):
super(L1_log, self).__init__()
def forward(self, fake, real):
if not fake.shape == real.shape:
_,_,H,W = real.shape
fake = F.upsample(fake, size=(H,W), mode='bilinear')
loss = torch.mean( torch.abs(torch.log(real)-torch.log(fake)) )
return loss
class BerHu(nn.Module):
def __init__(self, threshold=0.2):
super(BerHu, self).__init__()
self.threshold = threshold
def forward(real, fake):
mask = real>0
if not fake.shape == real.shape:
_,_,H,W = real.shape
fake = F.upsample(fake, size=(H,W), mode='bilinear')
fake = fake * mask
diff = torch.abs(real-fake)
delta = self.threshold * torch.max(diff).data.cpu().numpy()[0]
part1 = -F.threshold(-diff, -delta, 0.)
part2 = F.threshold(diff**2 - delta**2, 0., -delta**2.) + delta**2
part2 = part2 / (2.*delta)
loss = part1 + part2
loss = torch.sum(loss)
return loss
class RMSE(nn.Module):
def __init__(self):
super(RMSE, self).__init__()
def forward(self, fake, real):
if not fake.shape == real.shape:
_,_,H,W = real.shape
fake = F.upsample(fake, size=(H,W), mode='bilinear')
loss = torch.sqrt( torch.mean( torch.abs(10.*real-10.*fake) ** 2 ) )
return loss
class GradLoss(nn.Module):
def __init__(self):
super(GradLoss, self).__init__()
# L1 norm
def forward(self, grad_fake, grad_real):
return torch.sum( torch.mean( torch.abs(grad_real-grad_fake) ) )
class NormalLoss(nn.Module):
def __init__(self):
super(NormalLoss, self).__init__()
def forward(self, grad_fake, grad_real):
prod = ( grad_fake[:,:,None,:] @ grad_real[:,:,:,None] ).squeeze(-1).squeeze(-1)
fake_norm = torch.sqrt( torch.sum( grad_fake**2, dim=-1 ) )
real_norm = torch.sqrt( torch.sum( grad_real**2, dim=-1 ) )
return 1 - torch.mean( prod/(fake_norm*real_norm) )
# def get_acc(output, target):
# # takes in two tensors to compute accuracy
# pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
# correct = pred.eq(target.data.view_as(pred)).cpu().sum()
# print("Target: ", Counter(target.data.cpu().numpy()))
# print("Pred: ", Counter(pred.cpu().numpy().flatten().tolist()))
# return float(correct)*100 / target.size(0)
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Single image depth estimation')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='nyuv2', type=str)
parser.add_argument('--epochs', dest='max_epochs',
help='number of epochs to train',
default=NUM_EPOCHS, type=int)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--bs', dest='bs',
help='batch_size',
default=16, type=int)
parser.add_argument('--num_workers', dest='num_workers',
help='num_workers',
default=1, type=int)
parser.add_argument('--disp_interval', dest='disp_interval',
help='display interval',
default=10, type=int)
parser.add_argument('--output_dir', dest='output_dir',
help='output directory',
default='saved_models', type=str)
# config optimization
parser.add_argument('--o', dest='optimizer',
help='training optimizer',
default="sgd", type=str)
parser.add_argument('--lr', dest='lr',
help='starting learning rate',
default=1e-3, type=float)
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=5, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# set training session
parser.add_argument('--s', dest='session',
help='training session',
default=1, type=int)
parser.add_argument('--eval_epoch', dest='eval_epoch',
help='number of epoch to evaluate',
default=2, type=int)
# resume trained model
parser.add_argument('--r', dest='resume',
help='resume checkpoint or not',
default=False, type=bool)
parser.add_argument('--start_at', dest='start_epoch',
help='epoch to start with',
default=0, type=int)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load model',
default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load model',
default=0, type=int)
# training parameters
parser.add_argument('--gamma_sup', dest='gamma_sup',
help='factor of supervised loss',
default=1., type=float)
parser.add_argument('--gamma_unsup', dest='gamma_unsup',
help='factor of unsupervised loss',
default=1., type=float)
parser.add_argument('--gamma_reg', dest='gamma_reg',
help='factor of regularization loss',
default=10., type=float)
args = parser.parse_args()
return args
def get_coords(b, h, w):
i_range = Variable(torch.arange(0, h).view(1, h, 1).expand(b,1,h,w)) # [B, 1, H, W]
j_range = Variable(torch.arange(0, w).view(1, 1, w).expand(b,1,h,w)) # [B, 1, H, W]
coords = torch.cat((j_range, i_range), dim=1)
norm = Variable(torch.Tensor([w,h]).view(1,2,1,1))
coords = coords * 2. / norm - 1.
coords = coords.permute(0, 2, 3, 1)
return coords
def resize_tensor(img, coords):
return nn.functional.grid_sample(img, coords, mode='bilinear', padding_mode='zeros')
def imgrad(img):
img = torch.mean(img, 1, True)
fx = np.array([[1,0,-1],[2,0,-2],[1,0,-1]])
conv1 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
weight = torch.from_numpy(fx).float().unsqueeze(0).unsqueeze(0)
if img.is_cuda:
weight = weight.cuda()
conv1.weight = nn.Parameter(weight)
grad_x = conv1(img)
fy = np.array([[1,2,1],[0,0,0],[-1,-2,-1]])
conv2 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
weight = torch.from_numpy(fy).float().unsqueeze(0).unsqueeze(0)
if img.is_cuda:
weight = weight.cuda()
conv2.weight = nn.Parameter(weight)
grad_y = conv2(img)
# grad = torch.sqrt(torch.pow(grad_x,2) + torch.pow(grad_y,2))
return grad_y, grad_x
def imgrad_yx(img):
N,C,_,_ = img.size()
grad_y, grad_x = imgrad(img)
return torch.cat((grad_y.view(N,C,-1), grad_x.view(N,C,-1)), dim=1)
def reg_scalor(grad_yx):
return torch.exp(-torch.abs(grad_yx)/255.)
class sampler(Sampler):
def __init__(self, train_size, batch_size):
self.num_data = train_size
self.num_per_batch = int(train_size / batch_size)
self.batch_size = batch_size
self.range = torch.arange(0,batch_size).view(1, batch_size).long()
self.leftover_flag = False
if train_size % batch_size:
self.leftover = torch.arange(self.num_per_batch*batch_size, train_size).long()
self.leftover_flag = True
def __iter__(self):
rand_num = torch.randperm(self.num_per_batch).view(-1,1) * self.batch_size
self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range
self.rand_num_view = self.rand_num.view(-1)
if self.leftover_flag:
self.rand_num_view = torch.cat((self.rand_num_view, self.leftover),0)
return iter(self.rand_num_view)
def __len__(self):
return self.num_data
def collate_fn(data):
imgs, depths = zip(*data)
B = len(imgs)
im_batch = torch.ones((B,3,376,1242))
d_batch = torch.ones((B,1,376,1242))
for ind in range(B):
im, depth = imgs[ind], depths[ind]
im_batch[ind, :, -im.shape[1]:, :im.shape[2]] = im
d_batch[ind, :, -depth.shape[1]:, :depth.shape[2]] = depth
return im_batch, d_batch
if __name__ == '__main__':
args = parse_args()
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You might want to run with --cuda")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# dataset
if args.dataset == 'kitti':
train_dataset = DepthDataset(root='/disk2/depth_data/kitti/train') # KittiDataset(train=True)
eval_dataset = DepthDataset(root='/disk2/depth_data/kitti/train') # KittiDataset(train=False)
# train_dataset = DepthDataset(root='../data/kitti/train') # KittiDataset(train=True)
# eval_dataset = DepthDataset(root='../data/kitti/train') # KittiDataset(train=False)
train_size = len(train_dataset)
eval_size = len(eval_dataset)
print(train_size, eval_size)
train_batch_sampler = sampler(train_size, args.bs)
eval_batch_sampler = sampler(eval_size, args.bs)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.bs,
shuffle=True, collate_fn=collate_fn, num_workers=args.num_workers)
eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=args.bs,
shuffle=True, collate_fn=collate_fn, num_workers=args.num_workers)
elif args.dataset == 'nyuv2':
train_dataset = NYUv2Dataset()
train_size = len(train_dataset)
eval_dataset = NYUv2Dataset(train=False)
eval_size = len(eval_dataset)
print(train_size)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.bs,
shuffle=True, num_workers=args.num_workers)
eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=args.bs,
shuffle=True, num_workers=args.num_workers)
elif args.dataset == 'scannet':
pass
# network initialization
print('Initializing model...')
i2d = I2D(fixed_feature_weights=False)
if args.cuda:
i2d = i2d.cuda()
print('Done!')
# hyperparams
lr = args.lr
bs = args.bs
lr_decay_step = args.lr_decay_step
lr_decay_gamma = args.lr_decay_gamma
# params
params = []
for key, value in dict(i2d.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params':[value],'lr':lr*(DOUBLE_BIAS + 1), \
'weight_decay': 4e-5 and WEIGHT_DECAY or 0}]
else:
params += [{'params':[value],'lr':lr, 'weight_decay': 4e-5}]
# optimizer
if args.optimizer == "adam":
optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=4e-5)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params, lr=lr, momentum=0.9)
rmse = RMSE()
depth_criterion = RMSE_log()
grad_criterion = GradLoss()
normal_criterion = NormalLoss()
eval_metric = RMSE_log()
# resume
if args.resume:
load_name = os.path.join(args.output_dir,
'i2d_1_{}.pth'.format(args.checkepoch))
print("loading checkpoint %s" % (load_name))
state = i2d.state_dict()
checkpoint = torch.load(load_name)
args.start_epoch = checkpoint['epoch']
checkpoint = {k: v for k, v in checkpoint['model'].items() if k in state}
state.update(checkpoint)
i2d.load_state_dict(state)
# optimizer.load_state_dict(checkpoint['optimizer'])
# lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
POOLING_MODE = checkpoint['pooling_mode']
print("loaded checkpoint %s" % (load_name))
del checkpoint
torch.cuda.empty_cache()
# constants
iters_per_epoch = int(train_size / args.bs)
grad_factor = 10.
normal_factor = 1.
for epoch in range(args.start_epoch, args.max_epochs):
# setting to train mode
i2d.train()
start = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
img = Variable(torch.FloatTensor(1))
z = Variable(torch.FloatTensor(1))
if args.cuda:
img = img.cuda()
z = z.cuda()
train_data_iter = iter(train_dataloader)
for step in range(iters_per_epoch):
start = time.time()
data = train_data_iter.next()
img.data.resize_(data[0].size()).copy_(data[0])
z.data.resize_(data[1].size()).copy_(data[1])
optimizer.zero_grad()
z_fake = i2d(img)
depth_loss = depth_criterion(z_fake, z)
grad_real, grad_fake = imgrad_yx(z), imgrad_yx(z_fake)
grad_loss = grad_criterion(grad_fake, grad_real) * grad_factor * (epoch>3)
normal_loss = normal_criterion(grad_fake, grad_real) * normal_factor * (epoch>7)
loss = depth_loss + grad_loss + normal_loss
loss.backward()
optimizer.step()
end = time.time()
# info
if step % args.disp_interval == 0:
print("[epoch %2d][iter %4d] loss: %.4f RMSElog: %.4f grad_loss: %.4f normal_loss: %.4f" \
% (epoch, step, loss, depth_loss, grad_loss, normal_loss))
# print("[epoch %2d][iter %4d] loss: %.4f iRMSE: %.4f" \
# % (epoch, step, loss, metric))
# save model
save_name = os.path.join(args.output_dir, 'i2d_{}_{}.pth'.format(args.session, epoch))
torch.save({'epoch': epoch+1,
'model': i2d.state_dict(),
# 'optimizer': optimizer.state_dict(),
},
save_name)
print('save model: {}'.format(save_name))
print('time elapsed: %fs' % (end - start))
if epoch % 1 == 0:
# setting to eval mode
i2d.eval()
img = Variable(torch.FloatTensor(1), volatile=True)
z = Variable(torch.FloatTensor(1), volatile=True)
if args.cuda:
img = img.cuda()
z = z.cuda()
print('evaluating...')
eval_loss = 0
rmse_accum = 0
count = 0
eval_data_iter = iter(eval_dataloader)
for i, data in enumerate(eval_data_iter):
print(i,'/',len(eval_data_iter)-1)
img.data.resize_(data[0].size()).copy_(data[0])
z.data.resize_(data[1].size()).copy_(data[1])
z_fake = i2d(img)
depth_loss = float(img.size(0)) * rmse(z_fake, z)**2
eval_loss += depth_loss
rmse_accum += float(img.size(0)) * eval_metric(z_fake, z)**2
count += float(img.size(0))
print("[epoch %2d] RMSE_log: %.4f RMSE: %.4f" \
% (epoch, torch.sqrt(eval_loss/count), torch.sqrt(rmse_accum/count)))
with open('val.txt', 'a') as f:
f.write("[epoch %2d] RMSE_log: %.4f RMSE: %.4f\n" \
% (epoch, torch.sqrt(eval_loss/count), torch.sqrt(rmse_accum/count)))