From 662af2e6b42bbb88fff5b7273d6d294d63ac204c Mon Sep 17 00:00:00 2001 From: yallup Date: Fri, 26 Jul 2024 09:13:05 +0100 Subject: [PATCH] Network refactor (#40) * implemented Bayesian model dimensionality * Added mutual information and total dimensionality * Updated model dimensionality for tests * Tests now passing * added monte carlo error estimates * Trying to debug underestimate of dimensionality error * Made some notes about bmd error estimation. To naut. Let's just give it generous error bars * Cleaned up stats.py * Tests now up to date * bump version to 0.13.0 * Fixed documentation * remove torch dep * Removed BMD changes * removed temporary file --------- Co-authored-by: Will Handley --- README.rst | 3 +- docs/source/lsbi.rst | 9 +- lsbi/_version.py | 2 +- lsbi/network.py | 205 ----------------------------------------- pyproject.toml | 1 - tests/test_networks.py | 81 ---------------- 6 files changed, 3 insertions(+), 298 deletions(-) delete mode 100644 lsbi/network.py delete mode 100644 tests/test_networks.py diff --git a/README.rst b/README.rst index 903756e..89e21c3 100644 --- a/README.rst +++ b/README.rst @@ -3,7 +3,7 @@ lsbi: Linear Simulation Based Inference ======================================= :lsbi: Linear Simulation Based Inference :Author: Will Handley & David Yallup -:Version: 0.12.2 +:Version: 0.12.3 :Homepage: https://github.com/handley-lab/lsbi :Documentation: http://lsbi.readthedocs.io/ @@ -134,7 +134,6 @@ There are many ways you can contribute via the `GitHub repository `__ to report bugs or to propose new features. - Pull requests are very welcome. Note that if you are going to propose major changes, be sure to open an issue for discussion first, to make sure that your PR will be accepted before you spend effort coding it. -- Adding models and data to the grid. Contact `Will Handley `__ to request models or ask for your own to be uploaded. Questions/Comments diff --git a/docs/source/lsbi.rst b/docs/source/lsbi.rst index 287a8e5..f404b0f 100644 --- a/docs/source/lsbi.rst +++ b/docs/source/lsbi.rst @@ -16,20 +16,13 @@ lsbi.model module :show-inheritance: -lsbi.network module -------------------- - -.. automodule:: lsbi.network - :members: - :undoc-members: - - lsbi.stats module ----------------- .. automodule:: lsbi.stats :members: :undoc-members: + :show-inheritance: lsbi.utils module diff --git a/lsbi/_version.py b/lsbi/_version.py index 76da4a9..8e1395b 100644 --- a/lsbi/_version.py +++ b/lsbi/_version.py @@ -1 +1 @@ -__version__ = "0.12.2" +__version__ = "0.12.3" diff --git a/lsbi/network.py b/lsbi/network.py deleted file mode 100644 index ad3c0ed..0000000 --- a/lsbi/network.py +++ /dev/null @@ -1,205 +0,0 @@ -"""Simple binary classifiers to perform model comparison.""" - -import torch -import torch.nn as nn -import torch.optim as optim -from torch.optim.lr_scheduler import ExponentialLR - - -class BinaryClassifierBase(nn.Module): - """Base model for binary classification. Following 2305.11241. - - A simple binary classifier: - - 5 hidden layers: - - Layer 1 with initial_dim units - - Layers 2-4 with internal_dim units - - Leaky ReLU activation function - - Batch normalization - - Output layer with 1 unit linear classifier unit - - Adam optimizer with default learning rate 0.001 - - Exponential learning rate decay with default decay rate 0.95 - - Parameters - ---------- - input_dim : int - Dimension of the input data. - internal_dim : int, optional (default=16) - Dimension of the internal layers of the network. - initial_dim : int, optional (default=130) - Dimension of the first layer of the network. - """ - - def __init__(self, input_dim, internal_dim=16, initial_dim=130): - super(BinaryClassifierBase, self).__init__() - - self.model = nn.Sequential( - nn.Linear(input_dim, initial_dim), - nn.LeakyReLU(), - nn.BatchNorm1d(initial_dim), - nn.Linear(initial_dim, internal_dim), - nn.LeakyReLU(), - nn.BatchNorm1d(internal_dim), - nn.Linear(internal_dim, internal_dim), - nn.LeakyReLU(), - nn.BatchNorm1d(internal_dim), - nn.Linear(internal_dim, internal_dim), - nn.LeakyReLU(), - nn.BatchNorm1d(internal_dim), - nn.Linear(internal_dim, internal_dim), - nn.LeakyReLU(), - nn.Linear(internal_dim, 1), - ) - - def forward(self, x): - """Forward pass through the network, logit output.""" - return self.model(x) - - def loss(self, x, y): - """Loss function for the network.""" - raise NotImplementedError - - def predict(self, x): - """Predict the Bayes Factor.""" - raise NotImplementedError - - def fit(self, X, y, **kwargs): - """Fit classifier on input features X to predict labels y. - - Parameters - ---------- - X : array-like, shape (n_samples, n_features) - Input data. - y : array-like, shape (n_samples,) - Target values. - num_epochs : int, optional (default=10) - Number of epochs to train the network. - batch_size : int, optional (default=128) - Batch size for training. - decay_rate : float, optional (default=0.95) - Decay rate for the learning rate scheduler. - lr : float, optional (default=0.001) - Learning rate for the optimizer. - device : str, optional (default="cpu") - Device to use for training. - """ - num_epochs = kwargs.get("num_epochs", 10) - batch_size = kwargs.get("batch_size", 128) - decay_rate = kwargs.get("decay_rate", 0.95) - lr = kwargs.get("lr", 0.001) - device = torch.device(kwargs.get("device", "cpu")) - - print("Using device: ", device) - - # Convert labels to torch tensor - X = torch.tensor(X, dtype=torch.float32) - labels = torch.tensor(y, dtype=torch.float32) - labels = labels.unsqueeze(1) - labels = labels.to(device) - - # Create a DataLoader for batch training - dataset = torch.utils.data.TensorDataset(X, labels) - dataloader = torch.utils.data.DataLoader( - dataset, batch_size=batch_size, shuffle=True - ) - - # Define the loss function and optimizer - criterion = self.loss - optimizer = optim.Adam(self.parameters(), lr=lr) - - # Create the scheduler and pass in the optimizer and decay rate - scheduler = ExponentialLR(optimizer, gamma=decay_rate) - - # Create a DataLoader for batch training - self.to(device=device, dtype=torch.float32) - - for epoch in range(num_epochs): - epoch_loss = [] - for i, (inputs, targets) in enumerate(dataloader): - # Clear gradients - optimizer.zero_grad() - inputs = inputs.to(device) - # Forward pass - loss = criterion(inputs, targets) - epoch_loss.append(loss.item()) - # Backward pass and optimize - loss.backward() - optimizer.step() - - # Print loss for every epoch - scheduler.step() - mean_loss = torch.mean(torch.tensor(epoch_loss)).item() - print(f"Epoch {epoch+1}/{num_epochs}, Loss: {mean_loss}") - - # once training is done, set the model to eval(), ensures batchnorm - # and dropout are not used during inference - self.model.eval() - - -class BinaryClassifier(BinaryClassifierBase): - """ - Extends the BinaryClassifierBase to use a BCE loss function. - - Furnishes with a direction prediction of the Bayes Factor. - """ - - def loss(self, x, y): - """Binary cross entropy loss function for the network.""" - y_ = self.forward(x) - return nn.BCEWithLogitsLoss()(y_, y) - - def predict(self, x): - """Predict the log Bayes Factor. - - log K = lnP(Class 1) - lnP(Class 0) - """ - # ensure model is in eval just in case - self.model.eval() - - x = torch.tensor(x, dtype=torch.float32) - x = torch.atleast_2d(x) - pred = self.forward(x) - pred = nn.Sigmoid()(pred) - return (torch.log(pred) - torch.log(1 - pred)).detach().numpy() - - -class BinaryClassifierLPop(BinaryClassifierBase): - """ - Extends the BinaryClassifierBase to use a LPop Exponential loss. - - Furnishes with a direction prediction of the Bayes Factor. - - Parameters - ---------- - alpha : float, optional (default=2.0) - Scale factor for the exponent transform. - """ - - def __init__(self, *args, **kwargs): - self.alpha = kwargs.pop("alpha", 2.0) - super(BinaryClassifierLPop, self).__init__(*args, **kwargs) - - def lpop(self, x): - """Leaky parity odd power transform.""" - return x + x * torch.pow(torch.abs(x), self.alpha - 1.0) - - def loss(self, x, y): - """Lpop Loss function for the network.""" - x = self.forward(x) - return torch.exp( - torch.logsumexp((0.5 - y) * self.lpop(x), dim=0) - - torch.log(torch.tensor(x.shape[0], dtype=torch.float64)) - ).squeeze() - - def predict(self, x): - """Predict the log Bayes Factor. - - log K = lnP(Class 1) - lnP(Class 0) - """ - # ensure model is in eval just in case - self.model.eval() - - x = torch.tensor(x, dtype=torch.float32) - x = torch.atleast_2d(x) - pred = self.forward(x) - pred = self.lpop(pred) - return pred.detach().numpy() diff --git a/pyproject.toml b/pyproject.toml index f998f19..c231ccd 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -17,7 +17,6 @@ dependencies = [ 'numpy', 'scipy', 'matplotlib', - 'torch', ] classifiers = [ "Programming Language :: Python :: 3", diff --git a/tests/test_networks.py b/tests/test_networks.py deleted file mode 100644 index afe1caf..0000000 --- a/tests/test_networks.py +++ /dev/null @@ -1,81 +0,0 @@ -import numpy as np -import pytest -import torch - -from lsbi.network import BinaryClassifier, BinaryClassifierBase, BinaryClassifierLPop - - -@pytest.mark.parametrize("input_dim", [1, 100]) -@pytest.mark.parametrize("internal_dim", [16, 32]) -@pytest.mark.parametrize("initial_dim", [130, 256]) -class TestClassifierBase: - CLS = BinaryClassifierBase - - @pytest.fixture - def model(self, input_dim, internal_dim, initial_dim): - return self.CLS(input_dim, internal_dim, initial_dim) - - @pytest.fixture - def x(self, input_dim): - return torch.tensor(np.random.rand(10, input_dim), dtype=torch.float32) - - @pytest.fixture - def y(self): - return torch.tensor(np.random.randint(0, 2, size=(10, 1)), dtype=torch.float32) - - def fit_model(self, model, input_dim): - data_size = 10 - data = np.random.rand(data_size, input_dim) - labels = np.random.randint(0, 2, size=(data_size)) - y_start = model.predict(data) - model.fit(data, labels, num_epochs=1) - y_end = model.predict(data) - return y_start, y_end - - def test_init(self, model): - assert isinstance(model, BinaryClassifierBase) - - def test_forward(self, model, x): - y = model.forward(x) - assert y.shape == (10, 1) - - def test_loss(self, model, x, y): - with pytest.raises(NotImplementedError): - model.loss(x, y) - - def test_predict(self, model, x): - with pytest.raises(NotImplementedError): - model.predict(x) - - def test_fit(self, model, x): - with pytest.raises(NotImplementedError): - y_start, y_end = self.fit_model(model, x.shape[1]) - - -class TestClassifier(TestClassifierBase): - CLS = BinaryClassifier - - def test_loss(self, model, x, y): - loss = model.loss(x, y) - assert loss.detach().numpy().shape == () - - @pytest.mark.filterwarnings("ignore::UserWarning") - def test_fit(self, model, x): - y_start, y_end = self.fit_model(model, x.shape[1]) - assert (y_start != y_end).any() - - @pytest.mark.parametrize("size", [-1, 1]) - @pytest.mark.filterwarnings("ignore::UserWarning") - def test_predict(self, model, x, size): - y = model.predict(x[:size].squeeze(0)) - assert y.shape == (len(x[:size]), 1) - assert isinstance(y, np.ndarray) - - -@pytest.mark.parametrize("alpha", [2, 5]) -class TestClassifierLPop(TestClassifier): - CLS = BinaryClassifierLPop - - @pytest.fixture - def model(self, input_dim, internal_dim, initial_dim, alpha): - return self.CLS(input_dim, internal_dim, initial_dim, alpha=alpha)