This repository has been archived by the owner on Sep 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector_class.py
428 lines (332 loc) · 11.9 KB
/
vector_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from math import atan2, sqrt, degrees, radians, cos, sin
from random import randint
class Vector2D:
#region INIT
def _get_xy(self, args):
"""Generates a x and y from any input
Returns:
[tuple]: x, y
"""
number_of_args = len(args)
if number_of_args == 0 : return 0, 0 # no arguments
elif number_of_args == 2 : x, y = args ; return x, y # both x and y passed in
if number_of_args == 1: # one argument
arg_type = type(args[0])
if arg_type is float or arg_type is int: # single int or float argument
return args[0], args[0]
if arg_type is list or arg_type is tuple:
return args[0][0], args[0][1] # single list argument
if arg_type is Vector2D:
return args[0].x, args[0].y
def __init__(self, *args):
self.x, self.y = self._get_xy(args)
self.data = {}
#endregion
#region AUTO CREATE METHODS
def random_pos():
"""Returns a vector in normalised 0-1 space
Returns:
Vector2D: a vector in normal space
"""
return Vector2D(randint(0, 1000)/1000, randint(0, 1000)/1000)
def random_unit():
"""Generates a unit vector with a random heading
Returns:
Vector2D: unit vector
"""
pos = Vector2D(randint(-1000, 1000), randint(-1000, 1000))
pos.normalise()
return pos
def from_angle(angle):
"""Creates a unit vector with the same heading as the angle
Args:
angle (float): angle of direction in radians
Returns:
Vector2D: unit vector
"""
return Vector2D(cos(angle), sin(angle))
#endregion
#region CUSTOM METHODS
def get(self):
"""Gets the x and y components as an integer tuple
Returns:
tuple: contains x and y as integers
"""
return (int(self.x), int(self.y))
def set(self, *args):
"""Sets the x and y components
"""
x, y = self._get_xy(args)
self.x = x ; self.y = y
def copy(self):
"""Gets a copy of this vector
Returns:
Vector2D: a copy of this vector
"""
return Vector2D(self.x, self.y)
def clear(self):
"""Sets both components to 0
"""
self.x = self.y = 0
#endregion
#region CUSTOM MATHEMATICAL METHODS
def dist_sqrt(self, *args):
"""Gets the distance between this point and another (uses square root)
Returns:
float: distance
"""
x, y = self._get_xy(args)
return sqrt((self.x - x)**2 + (self.y - y)**2)
def dist(self, *args):
"""Gets the distance between this point and another (does not use square root)
Returns:
float: distance
"""
x, y = self._get_xy(args)
return (self.x - x)**2 + (self.y - y)**2
def get_heading_angle(self):
"""Returns the heading angle in radians assuming 0 is aligned with x
Returns:
float: angle in radians
"""
return atan2(self.x, self.y)
def get_magnitude(self):
"""Gets the magnitude/length of the vector
Returns:
float: magnitude
"""
return sqrt(self.x**2 + self.y**2)
def normalise(self):
"""Normalises this vector making it a unit vector
"""
mag = self.get_magnitude()
if mag == 0 : return
self.div(mag)
def normalize(self):
"""Normalises this vector making it a unit vector
"""
self.normalise()
def truncate(self, max_val):
"""Clamps the x and y components to be in range -max_val to max_val
Args:
max_val (float): max and min for each component
"""
if self.x > max_val : self.x = max_val
if self.y > max_val : self.y = max_val
if self.x < -max_val : self.x = -max_val
if self.y < -max_val : self.y = -max_val
def add(self, *args):
x, y = self._get_xy(args)
self.x += x ; self.y += y
def sub(self, *args):
x, y = self._get_xy(args)
self.x /= x ; self.y /= y
def mult(self, *args):
x, y = self._get_xy(args)
self.x *= x ; self.y *= y
def div(self, *args):
x, y = self._get_xy(args)
self.x /= x ; self.y /= y
def linear_interpolate(self, *args, t=0.5):
"""Linearly interpolates between current position and passed in position
Args:
t (float, optional): speed. Defaults to 0.5.
"""
x, y = self._get_xy(args)
x = self.x + t * (x - self.x);
y = self.y + t * (y - self.y);
self.set(x, y)
def dot_product(self, *args):
"""Dot product of this and another vector
Returns:
float: dot product result
"""
x, y = self._get_xy(args)
return sum([self.x * x, self.y * y])
#endregion
#region MAGIC METHODS
def __iadd__(self, *args):
x, y = self._get_xy(args)
self.x += x ; self.y += y
return self
def __isub__(self, *args):
x, y = self._get_xy(args)
self.x -= x ; self.y -= y
return self
def __imul__(self, *args):
x, y = self._get_xy(args)
self.x *= x ; self.y *= y
return self
def __idiv__(self, *args):
x, y = self._get_xy(args)
self.x /= x ; self.y /= y
return self
def __add__(self, *args):
x, y = self._get_xy(args)
return Vector2D(self.x + x, self.y + y)
def __sub__(self, *args):
x, y = self._get_xy(args)
return Vector2D(self.x - x, self.y - y)
def __mul__(self, *args):
x, y = self._get_xy(args)
return Vector2D(self.x * x, self.y * y)
def __div__(self, *args):
x, y = self._get_xy(args)
return Vector2D(self.x / x, self.y / y)
#endregion
class Vector3D:
#region INIT
def _get_xyz(self, args):
"""Generates a x, y and z from any input
Returns:
[tuple]: x, y, z
"""
number_of_args = len(args)
if number_of_args == 0 : return 0, 0, 0 # no arguments
elif number_of_args == 3 : x, y, z = args ; return x, y, z # both x and y passed in
if number_of_args == 1: # one argument
arg_type = type(args[0])
if arg_type is float or arg_type is int: # single int or float argument
return args[0], args[0], args[0]
if arg_type is list or arg_type is tuple:
return args[0][0], args[0][1], args[0][2] # single list argument
if arg_type is Vector3D:
return args[0].x, args[0].y, args[0].z
def __init__(self, *args):
self.x, self.y, self.z = self._get_xyz(args)
self.data = {}
#endregion
#region AUTO CREATE METHODS
def random_pos():
"""Returns a vector in normalised 0-1 space
Returns:
Vector2D: a vector in normal space
"""
return Vector3D(randint(0, 1000)/1000, randint(0, 1000)/1000, randint(0, 1000)/1000)
def random_unit():
"""Generates a unit vector with a random heading
Returns:
Vector2D: unit vector
"""
pos = Vector2D(randint(-1000, 1000), randint(-1000, 1000), randint(-1000, 1000))
pos.normalise()
return pos
#endregion
#region CUSTOM METHODS
def get(self):
"""Gets the x and y components as an integer tuple
Returns:
tuple: contains x and y as integers
"""
return (int(self.x), int(self.y), int(self.z))
def set(self, *args):
"""Sets the x and y components
"""
x, y, z = self._get_xyz(args)
self.x = x ; self.y = y ; self.z = z
def copy(self):
"""Gets a copy of this vector
Returns:
Vector2D: a copy of this vector
"""
return Vector2D(self.x, self.y, self.z)
def clear(self):
"""Sets both components to 0
"""
self.x = self.y = self.z = 0
#endregion
#region CUSTOM MATHEMATICAL METHODS
def dist_sqrt(self, *args):
"""Gets the distance between this point and another (uses square root)
Returns:
float: distance
"""
x, y, z = self._get_xyz(args)
return sqrt((self.x - x)**2 + (self.y - y)**2 + (self.z - z)**2)
def dist(self, *args):
"""Gets the distance between this point and another (does not use square root)
Returns:
float: distance
"""
x, y, z = self._get_xyz(args)
return (self.x - x)**2 + (self.y - y)**2 + (self.z - z)**2
def get_magnitude(self):
"""Gets the magnitude/length of the vector
Returns:
float: magnitude
"""
return sqrt(self.x**2 + self.y**2 + self.z**2)
def normalise(self):
"""Normalises this vector making it a unit vector
"""
mag = self.get_magnitude()
if mag == 0 : return
self.div(mag)
def normalize(self):
"""Normalises this vector making it a unit vector
"""
self.normalise()
def truncate(self, max_val):
"""Clamps the x and y components to be in range -max_val to max_val
Args:
max_val (float): max and min for each component
"""
if self.x > max_val : self.x = max_val
if self.y > max_val : self.y = max_val
if self.z > max_val : self.z = max_val
if self.x < -max_val : self.x = -max_val
if self.y < -max_val : self.y = -max_val
if self.z < -max_val : self.z = -max_val
def add(self, *args):
x, y, z = self._get_xyz(args)
self.x += x ; self.y += y ; self.z += z
def sub(self, *args):
x, y, z = self._get_xyz(args)
self.x /= x ; self.y /= y ; self.z /= z
def mult(self, *args):
x, y, z = self._get_xyz(args)
self.x *= x ; self.y *= y ; self.z *= z
def div(self, *args):
x, y, z = self._get_xyz(args)
self.x /= x ; self.y /= y ; self.z /= z
def linear_interpolate(self, *args, t=0.5):
"""Linearly interpolates between current position and passed in position
Args:
t (float, optional): speed. Defaults to 0.5.
"""
x, y, z = self._get_xyz(args)
x = self.x + t * (x - self.x);
y = self.y + t * (y - self.y);
z = self.z + t * (y - self.z);
self.set(x, y, z)
#endregion
#region MAGIC METHODS
def __iadd__(self, *args):
x, y, z = self._get_xyz(args)
self.x += x ; self.y += y ; self.z += z
return self
def __isub__(self, *args):
x, y, z = self._get_xyz(args)
self.x -= x ; self.y -= y ; self.z -= z
return self
def __imul__(self, *args):
x, y, z = self._get_xyz(args)
self.x *= x ; self.y *= y ; self.z *= z
return self
def __idiv__(self, *args):
x, y, z = self._get_xyz(args)
self.x /= x ; self.y /= y ; self.z /= z
return self
def __add__(self, *args):
x, y, z = self._get_xyz(args)
return Vector3D(self.x + x, self.y + y, self.z + z)
def __sub__(self, *args):
x, y, z = self._get_xyz(args)
return Vector3D(self.x - x, self.y - y, self.z - z)
def __mul__(self, *args):
x, y, z = self._get_xyz(args)
return Vector3D(self.x * x, self.y * y, self.z * z)
def __div__(self, *args):
x, y, z = self._get_xyz(args)
return Vector3D(self.x / x, self.y / y, self.z / z)
#endregion