diff --git a/.gitignore b/.gitignore index fd086bc..c986386 100644 --- a/.gitignore +++ b/.gitignore @@ -2,6 +2,9 @@ *.sublime-* +# swp files +*.swp + # C extensions *.so diff --git a/.travis.yml b/.travis.yml index 93ddffd..67e750a 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,13 +1,15 @@ sudo: false # Use container-based infrastructure language: python -cache: +cache: pip: true - directories: + directories: - $HOME/.cached_models python: - "2.7" - "3.4" + - "3.6" env: + - TEST=lint - TEST=test/test_exp_survival_model.py - TEST=test/test_exp_survival_model_sim.py - TEST=test/test_pem_survival_model.py @@ -21,6 +23,8 @@ env: - TEST=test/test_byo-gamma_survival_model.py - TEST=test/test_byo-gamma_survival_model_sim.py - TEST=test/test_jointmodel_datasets.py + - TEST=test/test_formulas.py + - TEST=test/test_SurvivalStanData.py before_install: # Commands below copied from: http://conda.pydata.org/docs/travis.html # We do this conditionally because it saves us some downloading if the @@ -38,7 +42,7 @@ before_install: - conda update -q conda # Useful for debugging any issues with conda - conda info -a - # borrow following from http://github.com/stan-dev/rstan + # borrow following from http://github.com/stan-dev/rstan - echo -e "#\x21/bin/bash\n\$@ > wait4.out 2>&1 3>&1 &\nPROCESS=\"\$!\"\nfunction finish {\ncat wait4.out\n}\ntrap finish EXIT\nwhile :\ndo\n RESULT=\`ps -p \${PROCESS} -o comm=\`" > wait4.sh - echo -e " if [ -z \"\${RESULT}\" ]; then\n wait \${PROCESS}; exit \$?\n else\n echo \"-\"; sleep 10\n fi\ndone\nexit \$?" >> wait4.sh - more wait4.sh @@ -57,8 +61,11 @@ install: - pip install . - pip install coveralls script: - - ./lint.sh - - ./wait4.sh nosetests $TEST --with-coverage --cover-package=survivalstan + - if [[ "$TEST" == "lint" ]]; then + ./lint.sh; + else + ./wait4.sh nosetests $TEST --with-coverage --cover-package=survivalstan; + fi after_success: coveralls deploy: diff --git a/example-notebooks/Test new_gamma_survival_model with simulated data.ipynb b/example-notebooks/Test new_gamma_survival_model with simulated data.ipynb index fa51925..fcfc4de 100644 --- a/example-notebooks/Test new_gamma_survival_model with simulated data.ipynb +++ b/example-notebooks/Test new_gamma_survival_model with simulated data.ipynb @@ -2,27 +2,13 @@ "cells": [ { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, + "execution_count": 1, + "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/Cython/Distutils/old_build_ext.py:30: UserWarning: Cython.Distutils.old_build_ext does not properly handle dependencies and is deprecated.\n", - " \"Cython.Distutils.old_build_ext does not properly handle dependencies \"\n", - "/home/jacquelineburos/.local/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.\n", - " \"`IPython.html.widgets` has moved to `ipywidgets`.\", ShimWarning)\n", "INFO:stancache.seed:Setting seed to 1245502385\n" ] } @@ -60,16 +46,20 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, + "execution_count": 2, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:sim_data_exp_correlated: cache_filename set to sim_data_exp_correlated.cached.N_100.censor_time_20.rate_coefs_54462717316.rate_form_1 + sex.pkl\n", + "INFO:stancache.stancache:sim_data_exp_correlated: cache_filename set to sim_data_exp_correlated.cached.N_100.censor_time_20.rate_coefs_54462717316.rate_form_1 + sex.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "INFO:stancache.stancache:sim_data_exp_correlated: Loading result from cache\n" ] } @@ -108,21 +98,32 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, + "execution_count": 3, + "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", @@ -134,73 +135,73 @@ " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
agesexageratetrue_tt
059male540.08208520.94877120.000000False1.0138551.013855True04.18-1.12
158male390.08208512.82751912.8275194.8905974.890597True13.18-16.12
261female450.04978727.01888620.000000False4.0934044.093404True26.18-10.12
357female430.04978762.22029620.000000False7.0362267.036226True32.18-12.12
455male0.08208510.46204510.462045female570.0497875.7122995.712299True40.181.88
\n", "
" ], "text/plain": [ - " age sex rate true_t t event index age_centered\n", - "0 59 male 0.082085 20.948771 20.000000 False 0 4.18\n", - "1 58 male 0.082085 12.827519 12.827519 True 1 3.18\n", - "2 61 female 0.049787 27.018886 20.000000 False 2 6.18\n", - "3 57 female 0.049787 62.220296 20.000000 False 3 2.18\n", - "4 55 male 0.082085 10.462045 10.462045 True 4 0.18" + " sex age rate true_t t event index age_centered\n", + "0 male 54 0.082085 1.013855 1.013855 True 0 -1.12\n", + "1 male 39 0.082085 4.890597 4.890597 True 1 -16.12\n", + "2 female 45 0.049787 4.093404 4.093404 True 2 -10.12\n", + "3 female 43 0.049787 7.036226 7.036226 True 3 -12.12\n", + "4 female 57 0.049787 5.712299 5.712299 True 4 1.88" ] }, - "execution_count": 5, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -225,29 +226,29 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 4, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAHcCAYAAAAa41gWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4VOX9///nzGSyk30lYQsJBhKSgKiAiAq2UlfEqtWK\nK9qKXaz2g/5arfLVtlZbq9S9LtBKXSqKG6LWXQgoS9gDhEDIvsBk3yYz8/sjEEsJSGByTiZ5Pa6r\n14Vnzpl5T3jn9MU597lvi8fj8SAiIiIi0kdYzS5AREREROS/KaCKiIiISJ+igCoiIiIifYoCqoiI\niIj0KQqoIiIiItKnKKCKiIiISJ+igCoiIiIifYoCqoiIiIj0KQqoIiIiItKnKKCKiIiISJ/S44C6\nZs0afvrTn3LGGWeQnp7Oxx9//J3HrF69mlmzZjF27FjOPfdc3nzzzeMqVkRERET6vx4H1ObmZkaP\nHs29996LxWL5zv1LSkr46U9/ysSJE3nrrbe45ppruPvuu1mxYsVxFSwiIiIi/ZtfTw+YOnUqU6dO\nBcDj8Xzn/i+//DLJycnMmzcPgJSUFNauXcvChQs5/fTTe/rxIiIiItLP9foY1A0bNjB58uRDtk2Z\nMoW8vLze/mgRERER8UG9HlCrq6uJjo4+ZFt0dDSNjY20t7f39seLiIiIiI/p8S1+s1z+6i1HfO2X\nOb/i9JNGGViNiIiIiPSWXg+osbGx7Nu375Bt+/btIzQ0FH9//2N+n2tPupHW1nbcbiiraSI3vwj3\nsLUAPPz6J3wUW8OlZ44kOS7Uq/XLwGKzWQkLC6K+vgWXy212OdKPqdfEKOo1McrBXvOGXg+oOTk5\nfPHFF4dsW7FiBTk5OT16n/NzJuBwNNHR4YY0uHjceH6zchMdtGMJrmft9mrWba9mYkY8F08ZQVxk\nsDe/hgwwLpe7s9dEepl6TYyiXhNfclzTTOXn57Nt2zYAiouLyc/Pp7y8HIC//OUv3HnnnV37/+hH\nP6K4uJiHH36YwsJCFi9ezAcffMD1119/QoWHBPozLDwJgLjBHdj9rHiA3C2V/Pbvq/nH8nwcDW0n\n9BkiIiIiYrweB9TNmzczc+ZMZs2ahcVi4U9/+hOXXHIJCxYsAKCmpqYrrAIkJyfzzDPPkJuby8yZ\nM1m0aBEPPPDAYU/2H4/kQYMBcPnX8uBPJnH2+CRsVgsut4fP8sq48+lcXvl4J/XNehhLRERExFdY\nPMcymWkf0XWL/4CVZd+wOP/fAPzh9HsIDxhEVW0Lb3+1m9wtFRz8ZgH+Nr4/YQjnnjqU4ECfeS5M\nTODnZyUyMuSwXhPxNvWaGEW9JkY52Gve0OvTTPWm5EGJXX8ubSwDIC4iiDkXjOH/3XgaJ58UC0Bb\nu4t3Vu7hzqdX8v6qItqcLlPqFREREZHv5tMBNTE4Hqul8yuUHAioByXFhHDrJWO559oJZI6IAqCp\ntYN/f7aLu57OZU1+leH1ioiIiMh38+mAarfZSQiOA6CkoazbfUYkhnH7FTncedU40pLDAahraufJ\npZv58Jtiw2oVERERkWPj0wEVvn1QqrixlKMNpz1paCR3/Xg8t12WRVhI5/yrr3y8k9c+LcDtO8Nw\nRURERPo93w+ooZ0Btaq5hvtX/4VPi7+i2dnS7b4Wi4WskTH8ZvbJxEV2TiS7fPVenn93Gx2avFhE\nRESkT/D5gJodm0mY/yAAKpureH3n2/xmxQMs3vZv9taXdHtMXEQQv7n6ZEYkdh6Xu6WCBa9vpLW9\nw7C6RURERKR7Pj3N1EHtLifrqjbwRWkuRfWHjisdFjaEM5ImcXJcNv42+yGvtbZ38OSbm9m8ez8A\nwxMGcdtl2V1DAGTg0XQsYhT1mhhFvSZG8eY0U/0ioP63vfUlfFmayzeVeTjdzq7twX5BTEycwBlJ\nE4kLju3a3uFy8+KyfHK3VAAQFxnE7VfkEBfhnbVkxbfoRC5GUa+JUdRrYhQF1GPQ7GxhdcVavizN\npbK5+pDX0iPTOCN5EmOjR2Oz2vB4PLz+2S7eX70XgLAQf351WTbDEgZ5/TtI36YTuRhFvSZGUa/1\nDX/60+/5/PNPaGxs4IUXFpOammZ4DRUV5Vx22UW8+OK/euXzvRlQ++2ySsH2IM4eMoWzkk9nZ+0u\nvijJZUPNFtweN/mOneQ7dhIREM7pg0/l9MGncdnZqYSHBnQujdrUzp/+tY5bLxlLxoE5VEVERESO\nx6pVK/ngg/f429+eZfDgwYSHR5hWi8ViMe2ze6LfBtSDLBYLoyJTGRWZSm1bHSvLvmZF2dfUttVR\n21bHe7s/4v09H5Mdk8HU1EncHDyG59/bRmu7i7+8mkf2yGh+MHEYo4aY10wiIiLiu0pLi4mOjiEj\nI9PsUo46JWdf0u8D6n+LCAjnvBHf49xh09i0bxtfluSS79iJ2+NmffUm1ldvIj44jmnnZvHVZ1Za\nWqxs2LWPDbv2kZocznmnDSMrNRqrj/zrQ0REpD9rbu2gfH+ToZ+ZGBVCcOCxx6c//GE+77//LhaL\nhTPOOIWEhMH8+99v8c9/vsjbby9l//4ahg4dxrXX3shZZ00HYP36tfziFz/lL3/5G08//TeKivaQ\nmZnNfff9nvz8rTzxxKNUV1cxefIZ3HXXPQQEBACwenUuixY9T2HhLmw2KxkZWfzyl3eQlJR8xPoK\nCwt48skFbNiQR1BQEKecchq/+MXtpl7lhX48BvVYVTVX82XpKlaVr6G549v5U+1WO7GekZRtj6Wl\n9tvxFINjQvjBaUM5bUw8fjafn6VL/ofGaolR1GtilP7aa82tHcx7aiXNbcZOERkc4MdDt0w+5pDa\n3NzEa6+9zDvvLOW55/6J1Wph6dIlfPTRB/zyl3eQnDyEvLx1/PnPf+SRRx4nO3tcV0DNzBzLrbf+\nioCAAO655y5iY2Px9w/gllt+TnNzE7/5za+56qpruOqqawD4/PNPsFisjByZSktLC88//zRlZWUs\nWvQycPgY1MbGRq68chYXXXQJM2acT2trK0899TdcLhePPfZkj382GoPqRXHBsVyadiEXpsxgbdUG\nvjwwVZXT7aSMfBiVT6I1nsbiRBrKYimraeL597bxxheFnHvKEKbmDCbQf8D/GEVERKQbwcEhBAeH\nYLXaiIyMxOl08tJLC3n00ae6bvknJg5m48Y83nrrDbKzxwGdQxRvumkumZljAbjggot49tknee21\nt0hISATgrLOms27dmq6AeuaZ0w757Hnz7uaii77P7t2FjBiRclhtS5a8yqhR6dx00y1d2+66624u\nvfQCSkqKSU4e4v0fyDFSsjrA32ZnUuIEJiVOOGyqqlp3JSRVEp4ciGXfcGoLhuFoaOOVTwp4Z+Ue\npo1PZvqEZMKCNX+qiIiIEYIDO69k9vVb/P+rpKSY1tZWfvWrWw8ZD+pydTBqVPoh+44cmdr156io\naAICArvCKUBkZBTbtm095L2fe+5ptm7dTF1dLW63B4vFQmVlRbcBtaBgJ+vWfcP3vjf1kO0Wi4XS\n0hIF1L5maFgyPw67jEtSz2d1xbquqaraPa0Qlc9p08Op2TaMXWX1NLV28M7KPXzw9V6mZCVy7qlD\nidUcqiIiIr0uONCPkYPDzS6jR1pamgF4+OHHiImJOeQ1f/9DL3T5+X0b0ywWyyH/fXCbx/PtsI15\n824jMTGJu+66h5iYGNxuD7NnX05Hh5PutLQ0c/rpU5k79xeHPTz1v7UZTQH1KILtwV1TVe1w7OLN\nXe9R3FDKxobVXH3OUH7YMY5lq/ayqXAf7R1uPllXymfryzh1dBwzThvK0HjNoyoiIiLfGj48Bbvd\nn8rKcrKzc7z2vvX1dRQX7+Wuu+4hK6vzfTdsyDvqMaNGpfPFF5+SkJCI1dq3nqvpW9X0URaLhZOi\nUpmbfQORAZ1Ptb28/Q1sYbX86vJs5t9wKhMz4rFaLLg9HlZtreS+F7/hkdfyyC9y+MyUDiIiItK7\ngoODufLKq1mw4BHef/9dSktL2LEjnyVLXmX58ve69utpdhg0KIzw8HDefvtNSktLWLv2Gx5//K9H\nnfd01qzLqa+v5957f0N+/lZKS0tYvTqXP/xhvunZRQG1B8L8B3FL9vUE2PxxeVw8u2kR1c37GBIX\nys0XZvDgTyYyfXwy/n6dP9bNhft56OX1zH/xG177pIC126upa2o3+VuIiIiImW666Rauv34Oixcv\nYvbsy/n1r39Jbu4KEhOTuvbp6YT6FouF+fP/yPbt27jmmit4/PG/8rOf3dbtfgfFxMTw1FPP4/G4\nuf32n3PddVfyt7/9lUGDwkyf0H/ATzN1PDbVbOWZjYvw4CEhOI47Tr6VYPu3407rm9v5ZG0JH68t\noan18Okv4iKCSE0OJzUpnNTkcAbHhGhu1T6iv07HIn2Pek2Mol4To3hzmikF1OP0yd4vWFLwLgCj\no0ZxS9b12Ky2Q/Zpbe/gq43lbCioYVdZPa3trm7fKyjAj5FJYZ2BNSmclMFhmrrKJDqRi1HUa2IU\n9ZoYRQG1D/B4PLy8fQkryr4GYGrSZK44aeYR93e7PZRUN7KrtI6dpXUUlNRRU9fa7b4WCwyJCyUt\nKYKRyWGkJUUQFRZg+uX2gUAncjGKek2Mol4Toyig9hEut4vHNzzPDkcBAJeNupizkk8/5uNrG9so\nKKmjoLTzf0UVDbjc3f91RA4K6LrCmpoczpC4UK1k1Qt0IhejqNfEKOo1MYoCah/S5Gzmz2sep6ql\nBgsWbsm+gYzok47rvdqdLvZUNHQG1gPBtbGl+7nL/O1WUhLDGJkUTlpyOCmDwwkNsp/IVxF0Ihfj\nqNfEKOo1MYoCah9T2VzNn9c8TnNHC4G2QH494VYSQ+JP+H09Hg8V+5spKK3rHBpQUkf5vuYj7p8Y\nHUxacviB0BpBfGSQhgX0kE7kYhT1mhhFvSZGUUDtg3Y4Cvhb3nO4PW6iA6P47Wm3E2Dz/tKnjS1O\ndh0YElBQUsfu8nraj/AzCQ2ydw0JSE0KZ0TiIOx+tm73lU46kYtR1GtiFPWaGEUBtY/6qnQVL29/\nA4AbM69mfFxWr39mh8tNcVXjIWNZHQ1t3e5rs1oYnjCIkUnhjB0ZzZhhkbrC+j90IhejqNfEKOo1\nMYoCah/l9ri588v5NHe0cPaQKfww7SLDa/B4POyvb2NnaS27SurZWVpLcVUj3f0t33ZZNlkjow2v\nsS/TiVyMol4To6jXxCjeDKiabNOLrBYrI8KHsWVfPoV1RabUYLFYiA4PJDo8gYljEoDO+Vh3l9V3\nTm9VWsfmwv0AlNU0KaCKiIj4mD/8YT6NjY384Q8Pm11Kr9E8RV6WEj4MgOKGUtpdfWNZ00B/P0YP\nj+Ki00dw++U5XU/7N7V2P0OAiIiIiJkUUL3sYEB1e9wU1ZeYXE33QgI7L5x3twyriIiIiNl0i9/L\nhoUNxWqx4va42V1XRFpkitklHSYkyA6OFpp1BVVERKRX/fznP2HkyFSsVivvv/8edrudm2++hXPO\nmcEjj/yJzz77hKioKG677f+YOHEybrebhx76PWvXrmH//hri4xO45JLLuOyyHx3xMzweDy+9tJC3\n317K/v01DB06jGuvvZGzzppu4Df1LgVULwuw+ZMcmsjehlIK6/eYXU63gg9eQT3CIgAiIiK+oKWj\nhYqmakM/MyEkliC/oB4ds3z5e1x11TU899w/+PjjD3n44T/y+eefcuaZZ3PttTfyyiuLeeCB37Fk\nyXvYbDbi4uJ54IE/ER4ezqZNG3jooT8QExPD2Wef0+37/+MfL/DRRx8wb95vSE4eQl7eOu6//3dE\nRkaRnT3OG1/bcAqovWBE+PDOgFpXhMfj6XNTOYUGHhyDqlv8IiLim1o6Wrhn5YO0dLQY+rlBfkHc\nP/muHoXU1NRRXHPNDQBcffV1/POfC4mIiOSCC2YCcP31c1i69HV27drJmDGZ3HDDzV3HJiQksnnz\nRj755D/dBlSn08lLLy3k0UefIiMjE4DExMFs3JjHW2+9oYAq30oJH8bnJStocjZT1VxNfEic2SUd\n4uAV1GYFVBERkV43cmRq15+tVivh4eGkpHy7LSqqc0Ydh8MBwJIlr7Fs2TtUVlbQ1tZGR4eTtLTu\nl1EvKSmmtbWVX/3qVv575lCXq+OIx/gCBdReMDJ8eNefC+uK+lxADTlwBdXR2MZHa4rJSY0hNqJn\ntytERETMdPBKpi/c4vfzOzRuWSyWw7YBeDxuPv74Q5588jF+/vPbycgYS3BwMP/61z/Ytm1Lt+/d\n0tK5BPrDDz9GTEzMIa/5+3t/RUujHFdAXbx4Mc8//zw1NTWkp6dz9913k5XV/apJHR0dPP3007z1\n1ltUVlaSkpLCHXfcwRlnnHFChfdlkYERRASEU9tWx6clX5EYGs/wsKFml9UlJjwQAGeHm5f/s5OX\n/7OT5NgQctJiyEmNZXjiIKx9bFiCiIjI/wryC2JEeN/5/1dv2LRpA2PHZjNz5qVd20pLjzwr0PDh\nKdjt/lRWlpOdnWNEiYbocUBdtmwZDz74IPfffz9jx45l0aJFzJkzh+XLlxMVFXXY/n/961959913\neeCBBxgxYgRffvklP/vZz3j11VdJT0/3ypfoi06Oy+bj4i8obSzn4TWPc3JcNhemzCA22PyJ8Sdm\nJFDf3M43+VXsrWwEoKS6iZLqJt5dWUR4iD/ZqTHkpMUwZlgk/nabyRWLiIgMDMnJQ1i+fBlff72K\nxMTBfPDBMvLztzJ4cFK3+wcHB3PllVezYMEjuFwusrJyaGpqZNOmDYSEhDJjxvkGfwPv6HFAXbhw\nIVdccQUzZ3YO7J0/fz6fffYZS5Ys4aabbjps/7fffpu5c+d2XTG98soryc3N5YUXXuChhx46wfL7\nrotGziDUHsIHRZ/S6mplbdUG8qo3MzVpEjOGTyfU3ztLgR0Pu5+V8ycN5/xJw9lX10peQQ15BTXk\nFzlwuT3UNbXzxYYyvthQhr/dSsbwKHLSYsgeGUNYiO/eLhARETFa9w9KH76tcz8LM2f+kJ07d3Dv\nvb/BYrFwzjnf55JLLmP16pVH/IybbrqFqKgoFi9exMMP/4HQ0EGMGnUSs2ff4L0vYjCLx9PdKu3d\nczqd5OTksGDBAqZP/3ZurbvuuouGhgaeeOKJw4457bTTmDdvHpde+u2l6v/7v/9j3bp1fPzxxz0q\n1hfXEW5sb2L5no/5ojQXl8cFQKAtkHOHnc1ZQ6bgb7ObXOG3Wto62Lx7P3k7q9m4a99hT/lbgJFJ\n4QeGAsSQGB3c52YoOFFas1qMol4To6jXxCgHe80r79WTnR0OBy6X67BBuNHR0ezevbvbY6ZMmcLC\nhQuZMGECQ4cOZeXKlXz00Ue43T3/JbHZfG/hqwi/QfxozEymD5/C0oLlrKnIo9XVyluF7/NF6Uou\nSp3BxMEnY7WY/90G+fkzKTOBSZkJuNxudhbXsW5HNet2VFPlaMEDFJTWUVBax+uf7SI+Mohxo2IZ\nPyqWtCHh2Kzmf4cTdbDHfLHXxLeo18Qo6jUxijd7rEdXUKuqqpg6dSqvvvoq2dnZXdsfeugh1q1b\nxyuvvHLYMfv37+d3v/sdn3zyCVarlSFDhjB58mTeeOMN1q9f751v4UMK9u3hnxveYFv1zq5tQ8OT\nuDr7ErITxvTJK5Iej4eSqkZWb6lg9eZytu918L9dExpkZ8KYeE7LSGD8SXEEB/adK8MiIiLiW3r9\nFv9B7e3t1NbWEhcXx5///Gc+//xz3nnnnR4VW1/fgsvl+7cnPB4Pm2q28caOdylvquranh6VxqWj\nzmdoWLKJ1X23usY28gpqWL+jhs2F+2j/n1tGNquF0cMjGT8qlnFpsUQfmDXAF9hsVsLCgvpNr0nf\npV4To6jXxCgHe80behRQAS6//HKysrK4++67gc6wddZZZzF79mzmzJnzncc7nU7OP/98zjvvPG67\n7bYeFdvfxs+43C5WVazhvcIPqWtv6No+IT6Hi1JmEB10+KwIfU2708XWIgd5O2vYUFBDXVP7YfsM\njQ8lJzWGs8YlEREaYEKVx05jtcQo6jUxinpNjOLNMai2++67776eHBASEsJjjz1GYmIidrudRx99\nlO3bt/P73/+eoKAg5s2bx6ZNm5g0aRIAGzduZOPGjfj7+7Nz507uuece6uvreeihh3o8gWxrqxO3\nu0d5uk+zWqwMHZTMlKRJ2K12ihqKcXlclDVV8GVpLs0dLQwLG9KnHqT6XzablYSoYHLSYvj+qUPI\nGhlDWIid5tYO6pudANQ1tbO9uJbP88qw26wMSxiE1dr3hjIAWK0WgoL8+12vSd+jXhOjqNfEKAd7\nzRt6PM3Ueeedh8PhYMGCBdTU1DB69Giee+65rjlQKyoqsNm+nTezra2NRx99lJKSEoKDgznrrLN4\n+OGHCQ0N9coX6A8CbP78YMR0piSdxrLd/+GrslV0eFx8UvwlueVrmDF8GmcmTcbeh4MqgNViIWVw\nGCmDw5g1dSTVtS2dU1jt7JzCqrXdxSufFPDlpnKu/t4oThoaaXbJIiIi0gf1+Ba/mQbK7YnK5mre\n3rWcvOpNXdsiAyK4eOQPOCVhnImVHb/d5fW89OF2dpd/O5RhUkY8l5+dSngfuu2vW2FiFPWaGEW9\nJkbx5i1+BdQ+rLBuD28WvEdhXVHXth+nX8bkwaeYWNXxc3s8fLmhjNc/29U1x2pQgI2ZZ6QwbXxS\nn5imSidyMYp6TYyiXhOjKKAOIB6Ph401W/j3jrdxtNUS5BfE7yb+mjD/QWaXdtwaW5ws+XwXX+SV\ncbD5kmNDmX3uKNKSI0ytTSdyMYp6TYyiXhOjeDOgmn/JSo7KYrGQHZvJDZlXAdDS0cLrO942uaoT\nExpk59oZ6fz2mgkMS+gM2iXVjfzxpXU8/+7WbmcCEBERkYFDAdVHpIQP54ykzpkR1lZtYHPNNpMr\nOnEpg8O455oJzD73JEICO5/XW7G5gt88u4qP15bgOo7VxkRERMT3KaD6kItHziD8wK39V3cspbWj\nzeSKTpzVauHscUn8/uaJnJGVCEBLWweLP9rB/QvXUFBaZ3KFIiIiYrQez4NqpoE+h5vdaic6MIp1\nVRtp6Wilw93BmOiTzC7LKwLsNsalxZIxIoqiygbqmtqpa2rny43l7Cqrw2qxEBcR1OtrSWu+QDGK\nek2Mol4To3hzHlQFVB8THxxHcWMZVc3V7KkvJjN6NOEBYWaX5TVRYYFMzR5MWIg/BSV1OF1uqhwt\nrN1ezcfrSqiubSE40E5UWAAWi/cn+9eJXIyiXhOjqNfEKN4MqHqK3wc5Wmu5f/WfaXO1MyR0MP83\n4efYrLbvPtDH1De18/HaElZurmBffeshr8VGBDI5M5FJmQnERXhn3V/Q065iHPWaGEW9JkYxdalT\nM+lff52C/AIJsAWwdf926tsbCPQLJCV8uNlleV2Av43RwyI5Z0Iyo4dFYsFCZW0LLpeH5tYOtu+t\n5T9rSti2Zz9uD8RGBGH3O7EhALrSIEZRr4lR1GtiFF1BFdweN39e+wRF9cX4W+389rQ7iAmKMrus\nXtfmdLFuRzUrN5WzdY+D/25eu5+V8aNimZyZQMbwKKzWng8B0JUGMYp6TYyiXhOjaKJ+AaC0sZwH\nv3kMt8fN6KhR3Jp9Y6+My+yrHA1t5G6pYMWmcsr3NR/yWnioP5MyEpicmUBybOgxv6dO5GIU9ZoY\nRb0mRlFAlS5v7XqfD4s+BeCe0+4gISTe5IqM5/F42FPRwMpNFazeVklji/OQ14fFD2Ly2AROGxNP\nWPDRbz3oRC5GUa+JUdRrYhRvBlQ/r7yLmOaU+HFdAdXRVjcgA6rFYmFEYhgjEsO4YnoqG3ftY8Wm\ncjbu2ofL7aGosoGiygZe+6SAsSnRTM5MIDs15oTHq4qIiEjvUED1cSH2b/+l0tTeZGIlfYOfrXMc\n6vhRsTQ0t/P1tipWbCpnT0UDLreHvIIa8gpqCAn047Qx8cw8I4XQILvZZYuIiMh/UUD1caH24K4/\nNzqbj7LnwDMo2J/pJycz/eRkSmuaWLm5nNzNFdQ2ttPU2sEn60opqW5i3lXjsA6gsbsiIiJ9ne5x\n+jib1UaQXyAATU5dQT2SpJgQLjsrlT/PPZ07rsghe2Q0ADuKa/l8fanJ1YmIiMh/U0DtB0L8Oq+i\n6grqd7NaLWSMiOLWWWNJju0cHvHaZ7uoqWsxuTIRERE5SAG1Hwjx7wxauoJ67PxsVm44fzRWi4W2\ndheLlm/Hhya0EBER6dcUUPuBUPvBgKorqD0xPCGMGacNBWDL7v18tanc5IpEREQEFFD7hYMBtVFX\nUHvs4inDSYjqHCLxyscF7K9vNbkiERERUUDtB0LsB8egKqD2lN3Pxg3njcYCtLR1sPD9fN3qFxER\nMZkCaj8QYv92DKrCVc+lJodzzoQhAOTtrNFT/SIiIiZTQO0HogMjAXC6O/ig6BOTq/FNs6amEBvR\nOV3XM29sZPveWpMrEhERGbgUUPuB7NhMhoQOBuDdwg/ZVLPV5Ip8T4C/jet/0Hmrv7HFyYMvreXD\nb4p1RVpERMQECqj9gL/Nzs1Z1xJqD8GDh4VbXqaiqdLssnxO+rBIfv7DLIIC/HC5Pbzy8U6efmsL\nLW0dZpcmIiIyoCig9hNRgZHMyZyN1WKl1dXGMxsX0ezU5PM9NSE9jr/+6syuSfy/ya/igX+soaxG\nD6CJiIgYRQG1H0mLTOGytIsBqGqp4cWt/8LtcZtcle9Jig3l3utPZeKYeADK9zVz/z/W8PU2XZUW\nERExggJqP3NG0kROH3wqAFv3beftXctNrsg3BfjbuOnCMfz4e6OwWTtXm3r6rS28/J+ddLgU+kVE\nRHqTAmo/Y7FYuHzUTFLChwPw0d7PWFOZZ25RPspisTD95GTu/PF4IgcFAPDRmmIeenk9joY2k6sT\nERHpvxRQ+yE/qx9zMmcTERAOwEvb/k1xg+b2PF6pSeHce90pjB7WOZ1XQUkd8xd+w/a9DpMrExER\n6Z8UUPup8IBB3Dz2GuxWP5xuJ89sXERDe6PZZfmssBB/7rgih/MnDQOgvqmdh1/O47VPCti+14Gz\nQ7f9RUQIQ+sEAAAgAElEQVREvMXi8aGJHh2OJjoUBHrk64p1LNr6CgCpESP4Rc7N2Kw2k6vqu/z8\nrERGhhy119bvqOa597YdMv2U3c9KalI46UMjSB8WyYjEMPxs+vefHNmx9JqIN6jXxCgHe80bFFAH\ngCU73+GT4i8BODVhPFenX6aQegTHeiKvdDSz+MMdbCty4HIf/ivkb7eSlhzRFViHJwzCZlVglW8p\nNIhR1GtiFAVU6RGX28WTG14g37ETgKyYDG7IuAq7zW5yZX1PT0/kbU4XBaV15Bc5yN/rYE95Q7eB\nNdDfxqghEaQPjSR9WARD4wZhtVp64yuIj1BoEKOo18QoCqjSY60drTy76R9sdxQAkBaRwk+yriXI\nL8jkyvqWEz2Rt7Z3sLPkvwJrRQPd/YYFB/h1BtZhkaQPjSA5LhSrRYF1IFFoEKOo18QoCqhyXJzu\nDhZu+Rd51ZsBGBI6mFtz5jDIP9TkyvoOb5/Im1s72FFS2xVYiysb6e4XLjTIzkn/FVgHx4RgUWDt\n1xQaxCjqNTGKAqocN7fHzcv5b7Cy/GsA4oJi+FnOHKKDokyurG/o7RN5Y4uT7Xtryd/bGVhLq7tf\nQjUs2M5JQyO7AmtCVLACaz+j0CBGUa+JUUwPqIsXL+b555+npqaG9PR07r77brKyso64/8KFC3nl\nlVcoLy8nMjKSc889lzvuuAN/f/8efa5+ubzD4/HwduFyPiz6FICIgHBuzb6RwaEJJldmPqNP5PXN\n7ezYW8u2vQ7yixyU72vudr+IUP8D41c7A2tsRJACq49TaBCjqNfEKKYG1GXLlnHnnXdy//33M3bs\nWBYtWsTy5ctZvnw5UVGHX4V75513+O1vf8uDDz5ITk4Oe/bs4c477+SCCy7gzjvv7FGx+uXyrv/s\n/Zw3C94DINgviLnZNzAifJjJVZnL7BN5XWMb+QevsBY5qHS0dLtfVFhAZ2AdGknGiKiula7Ed5jd\nazJwqNfEKKYG1Msvv5ysrCzuvvtuoPNq3Jlnnsns2bO56aabDtv//vvvp7CwkBdffLFr25/+9Cc2\nbtzI4sWLe1Ssfrm8L7fsGxbnv44HD/5WOzePvZbR0aPMLss0fe1Evr++le3/dYW1pq71sH38bBbm\nXDCGU0fHm1ChHK++1mvSf6nXxCjeDKg9mpjR6XSyZcsWJk2a1LXNYrEwefJk8vK6X+993LhxbNmy\nhY0bNwJQXFzM559/zplnnnkCZYu3TBp8CjeNnY2f1Y92t5OnNr7I2soNZpclB0SFBTIpM4EbzhvN\nQ7dM5qGfTuL689KZlJHQddW0w+Xh7+9sZVPhPpOrFRER8Q6/nuzscDhwuVzExMQcsj06Oprdu3d3\ne8wFF1yAw+HgqquuAsDlcvGjH/2Im2++ucfF2rQyT684OTGL0IBgnlz/Iq2uNl7c8i9a3S2cOWSy\n2aUZ7mCP9dVeS4gJISEmhLPHJ+PxeCgoqePhl9fT2u7iiTc2Me/H4xk1JMLsMuUY9PVek/5DvSZG\n8WaP9SigHonH4zniAxurV6/mmWeeYf78+WRlZVFUVMTvf/97YmNjmTt3bo8+JyxMc3b2lomR2cRF\n/orff/E4DW2N/GvbG7hsTmaN+cGAfBjHV3rt1KhQ7g0J4N5nc2nvcPPXV/P4461TGDE43OzS5Bj5\nSq+J71OviS/pUUCNjIzEZrNRU1NzyPb9+/cTHR3d7TELFizg4osv5tJLLwUgLS2N5uZm7r333h4H\n1Pr6FlwujZ/pLZGWGH49YS6PrX2W/a21vLr5HWLtsYyNHWN2aYax2ayEhQX5VK8lRQXxs0uzeOzf\nG2hq7eCep1fy22snkBAVbHZpchS+2Gvim9RrYpSDveYNPQqodrudjIwMcnNzmT59OtB59TQ3N5fZ\ns2d3e0xLSwvW/1mD3Gq14vF4jnrltTsul1sDvHtZTEAMt4+fyx+/fpSmjmbyqrYyOjLd7LIM52u9\nljkiihvPH83f39lKXVM7f3ppHb+ZfbKe7vcBvtZr4rvUa+JLejxY4LrrruO1115j6dKl7Nq1i3vv\nvZfW1lZmzZoFwLx583jkkUe69p82bRovv/wyy5Yto6SkhBUrVrBgwQKmT58+IG8d+4LIwAjSIlMA\nKKzdY24xcswmZiTw4+93zsCwr76VP7+ynobmdpOrEhER6bkej0E977zzcDgcLFiwgJqaGkaPHs1z\nzz3XNQdqRUUFNputa/+5c+disVh47LHHqKysJCoqimnTpnHbbbd571uI16WEDyevejPlTZU0O1sI\ntmvski+YNj6ZptYO3vyikPJ9zTz67w38+kfjCArwynBzERERQ2ipU+nW7rq9/Hnt4wDMzb6BjOiB\ncZu/P8wX6PF4ePWTAj78phiA9KER/PpH47BadceiL+kPvSa+Qb0mRjFtHlQZOIYMGozd2nnVTbf5\nfYvFYuGKaalMGZsIQP6Bif5FRER8hQKqdMvP6sewsCEA7KrbY24x0mMWi4Uff+/bFcEq9jWbWI2I\niEjPKKDKEaWEDwdgT30xLrfL3GKkxwL8bUSE+gNQ6VBAFRER36GAKkc08kBAdbqdlDSWmVuMHJf4\nyM65UKscLSZXIiIicuwUUOWIUsKHdf15V233S9lK3xYX2Tn7QqUCqoiI+BAFVDmiYHswiSHxAOyq\nKzK5GjkeBwNqTW0LLree3hUREd+ggCpHdXAc6qaarayr2mhuMdJjB2/xu9we9te3mVyNiIjIsVFA\nlaM6M3kygbYAXB4XL2xezFelq8wuSXrg4BVU0DhUERHxHQqoclRJoYn8ctxPCLWH4MHDy9vf4IM9\nn+BD6zsMaLER3wbUnSW1JlYiIiJy7BRQ5TsNDUvm9vG3EBkQAcDbhct5s+A9hVQfEBTgx4jEMADe\nyy1iR7FCqoiI9H0KqHJM4kPiuOPkucQHxwHwcfEXvJT/b82P6gPmXDCaQH8bLreHp5ZuprZRY1FF\nRKRvU0CVYxYZGMHt429h6KBkAFaVr+H5zS/hdDlNrkyOJjE6hBvPHwNAXVM7Ty7dTIdLT/SLiEjf\npYAqPRLqH8Ivx93MqMhUADbUbOHJDS/Q0tFqcmVyNCefFMv5kzrntS0oqePVjwtMrkhEROTIFFCl\nxwL9ApmbdT3ZsZkA7KjdxYL1z9DQ3mhyZXI0l5yRQsbwSAA+XlfCys3lJlckIiLSPQVUOS52m50b\nM37M5MRTANjbUMpf1z3F/laHyZXJkVitFn5ycSbRYYEALFq+naKKBpOrEhEROZwCqhw3m9XGVek/\n5JyhZwJQ2VzNX9Y+SUVTlcmVyZGEBtn52ayx2P2sODvcPPHmJhpbNIZYRET6FgVUOSEWi4VLUs/n\n4pE/AKC2rY5H1j1JcUOZyZXJkQxLGMQ1554EQE1dK8++vQW3W1OGiYhI36GAKl7x/WFnc9VJl2LB\nQpOzmSfynqOqudrssuQITh+byNnjkgDYvHs/S78qNLkiERGRbymgitecnnQa1435ERYsNDgb+Vve\nczhaNTF8X3XlOWmMTOqcxP/dlUWs26F/UIiISN+ggCpeNSFhHJePmgnA/lYHj294nkZnk8lVSXf8\nbFbmzhxLWIg/AM+9u5Xyffq7EhER8ymgitdNTZ7EBSPOBaCiqZInN7xAa4dWL+qLIgcFMHdmJjar\nhdZ2F4+/sYmWtg6zyxIRkQFOAVV6xYzh0zh7yBQAiuqL+fumf+B0K/j0RaOGRHDFtM6FF8r3NfPC\nsm14PHpoSkREzKOAKr3CYrEwK/UCTks4GYB8x04WbXkZt0dLbPZF009OZlJGAgBrt1fz/uq9Jlck\nIiIDmQKq9BqrxcqP03/I2JjOdeDXV2/i5fw3dHWuD7JYLFwz4ySGxoUCsOTzXWzZvd/kqkREZKBS\nQJVeZbPauCHjx6RGjABgZfnXvF243OSqpDsBdhu3zhpLSKAfHg88/dZmampbzC5LREQGIAVU6XX+\nNjs/zbqOIaGDAfiw6FP+s/dzk6uS7sRGBPGTizOwAE2tHTzz9hbcuuItIiIGU0AVQwT5BXFrzhzi\ngmIAeLPgPVaWfWNyVdKdzBHRzDyj84r3rrJ6PltfanJFIiIy0CigimEG+Yfys5ybiAgIB+Bf+a/z\nz22vUdygANTX/GDiMIYcGI/6+me7cDRomjARETGOAqoYKjookp/lzCHELxgPHlaVr+HBbx7jL2uf\nYE3Fejo0FVWf4Gezcu2MdCxAa7uLf320w+ySRERkALHdd99995ldxLFqbXXidms8nK8b5B9KTuxY\nnG4nFU1VuD1uHG115FVvZmXZ17R1tBEXHEOgX6DhtVmtFoKC/NVrdE7i39jiZHd5PeX7mhkaH0pi\ndIjZZfUb6jUxinpNjHKw17zB4vGhOX8cjiY6OjSPZn/S7Gwmt3wNX5SspKb122mNrBYr42LHMjV5\nMiPDh2OxWAypx8/PSmRkiHrtgJa2Du5+bjWOhjYiBwXwwJzTCArwM7usfkG9JkZRr4lRDvaaN+gK\nqpjKbrOTEj6MM5MnMzxsCM3OFqpb9uHBQ3lTJavK17CxZis2i5X44FhsVluv1qMrDYey+1mJiwji\n621VtLa7aO9wMTYl2uyy+gX1mhhFvSZG0RVU6deqmqv5oiSX3PI1tLpau7YH+wUxafApTE2aTExQ\nVK98tq40dO/xNzaxbkc1FuDuaycwIjHM7JJ8nnpNjKJeE6N48wqqAqr0Wa0dbXxTuY7PS1ZS3lTZ\ntd2ChcyYdM5MOp2TolKxWrz3rJ9O5N1zNLTx27+vorXdxdC4UH533SlYrcYMu+iv1GtiFPWaGEW3\n+GVA8LP6MSxsCGckTSItciRtrjYqm6vx4KGquYavK9extioPPBAfEofdeuJjI3UrrHtBAX4E+vux\nqXAfdU3tDE8IIyE62OyyfJp6TYyiXhOj6Ba/DFj7Wx18VbqaFWWraXQ2dW0PsPlzWsLJTE2eTGJI\n/HG/v640HFmHy83/PbWSusZ2MlOiuP3yHLNL8mnqNTGKek2MYvot/sWLF/P8889TU1NDeno6d999\nN1lZWd3uO3v2bL755vAVg8466yyefvrpHn2ufrnkIKfLybqqjXxWsoK9DSWHvDYqMpWzkieTGT26\nxw9V6UR+dEu/LOTtFXsAePAnE4mL1FXU46VeE6Oo18Qo3gyoPb4numzZMh588EHuv/9+xo4dy6JF\ni5gzZw7Lly8nKurwB1eeeOIJnE5n1387HA4uvvhiZsyYcWKVy4Bmt9k5LfFkTks8mT31e/m8ZCXr\nKjfQ4XGxw1HADkcBkQERTE2axJSkiQTbg8wuuV84MyeJd1cW4fZ4+Gx9GZdPSzW7JBER6Yd6/HTJ\nwoULueKKK5g5cyYjR45k/vz5BAYGsmTJkm73DwsLIzo6uut/X331FUFBQQqo4jXDw4Zy7Zgf8cDp\nv+XClHO7llJ1tNXyVuH7PLz2b7R2tH7Hu8ixiBwUwLhRMQB8ubGMdqfL5IpERKQ/6lFAdTqdbNmy\nhUmTJnVts1gsTJ48mby8vGN6jyVLlnD++ecTGGj8KkHSvw3yD2XG8On8v0l3MSdzNmkRKQBUNdfw\n+s53TK6u/5g2LgmAptYOvt5WZXI1IiLSH/XoFr/D4cDlchETE3PI9ujoaHbv3v2dx2/cuJGCggL+\n+Mc/9qzKA2w2700nJP2XH1ZOGZzNhMQsntu0mDUVeeSWf0NOfAY5cZlHPfZgj6nXjixzZDSJ0cGU\n72vms7xSzhqfZHZJPkm9JkZRr4lRvNljXlmz0OPxHNNSlK+//jppaWlkZh49JBxJWJjGEUrPzJ10\nNb9evof9LbW8tO11xg1NJyIo/DuPU68d3YVnjOTZpZsoLKunuqGdUUMjzS7JZ6nXxCjqNfElPQqo\nkZGR2Gw2ampqDtm+f/9+oqOPvvxha2sry5Yt47bbbut5lQfU17fgcukJROmZa8ZcwaNrn6GhrZEF\nKxfys3E3HvEfVDablbCwIPXadxifGo2/3Uq7082bn+7k5osyzC7J56jXxCjqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzj3rssmXLcDqdXHjhhcddrMvl1hQZ0mNp4SM5e8gUPi3+is01\n+XxatJKpyZOOeox67ej8/axMzkzks/WlrNpSwaVTUwgPDTC7LJ+kXhOjqNfEl/R4sMB1113Ha6+9\nxtKlS9m1axf33nsvra2tzJo1C4B58+bxyCOPHHbc66+/zjnnnEN4+HffXhXxtotTftA1gf8bBe9S\n2aSHe07UOScnA9Dh8vDp+lKTqxERkf6kxwH1vPPO484772TBggVccsklbN++neeee65rDtSKigqq\nq6sPOWbPnj2sX7+eH/7wh96pWqSH7DY71425EpvFhtPtZOHWV3C5NUXSiRgcE0JmSufv/WfrS3F2\n6OcpIiLeoaVOZUD5qOgzlu5aBsCM4dO5MOXcQ17Xiis9s7lwH4+8tgGAG84bzZSsRJMr8h3qNTGK\nek2M4s2VpDTnhAwo04dO7Zof9YM9n1BYt8fcgnxcxogoEqM7lzv9aE0xPvTvXRER6cMUUGVAsVqs\nzB59BYG2QDx4WLTlFa0ydQIsFgvfmzAEgOKqRvL31ppckYiI9AcKqDLgRAdFcsVJMwGoad3PmwXv\nmVyRb5uUmUBIYOeEIB99U2xyNSIi0h8ooMqAdEr8OMbFjgXgq7LV7HAUmFyR7wqw2zjrwPKnGwpq\nWPL5LqoczSZXJSIivkwBVQYki8XC5SfNJMTeOX5y8bbXaXO1m1yV75o2Phl/Pyse4L3cIu56ZhUP\nv7yeVVsq9HS/iIj0mO2+++67z+wijlVrqxO3Ww9hiHcE2AKICAgnr3ozzR0ttLvbyYxNJyjIX73W\nQ0EBfqQPi6SuqZ2q2hYAaupaWbujmk/XleKobyMi1F+T+f8Xq9WiXhNDqNfEKAd7zRs0zZQMaB6P\nh2c2LWJTzVYsWPj1KXM5JSVTvXYC9te3smJTOV9uLKem7tAH0IYlDGJq9mBOGx1PcGCPFrLrdzT1\njxhFvSZG8eY0UwqoMuDVttXxwOq/0NLRSnxwLH/5wd00NTjVayfI7fGQX+Tgy43lrN1eRYfr21ON\nv5+VCelxTM0eTFpyOBaLxcRKzaHQIEZRr4lRFFBFvCy37Bteyv83ABenf5/zhn5fveZFjS1OVm2p\n4IsNZZRUNx3yWnxUMFOzEpmcmTCghgAoNIhR1GtiFAVUES/zeDw8seF5tu3fgcVi4a5Tf05ySLLZ\nZfU7Ho+HPRUNfLmhjFVbK2lt//YBKqvFQnZqNFOzB5OZEoXN2r+f4VRoEKOo18QoCqgivWBfi4Pf\nf/0Iba42BocmcOeEX+BnHdjjJHtTW7uLNdur+HJDGTtK6g55LSLUnylZiUzJGkxcRJBJFfYuhQYx\ninpNjKKAKtJLVpSv4l/b3gDgvOHncH7K902uaGAo39fEVxvLWbGpnPpm5yGvpQ+N4PxJw8kYEWVS\ndb1DoUGMol4To3gzoGqaKZH/MjwimT2NRVQ37WNX3R48eLAAYf6DsFltZpfXbw0K9idjRBTnTBjC\n0PhBtDldh0xXtWpLBelDI4gJ7z9XUzX1jxhFvSZG0TRTIr3Ez89Km72ZO96/H6f72yt5fhYbw8KG\nkhYxgtSIFEaEDyPQb+A80GMGR0MbX20qZ/nqIlraXESHBTD/hlMJDrSbXZpX6KqWGEW9JkbRLX6R\nXnLwl2tlwXre2vkBRQ3FuD2H95zVYmXIoCRSI0aQFpHCyPDhBB9YlUq86+ttlTz91hYAJo6J5+aL\nMkyuyDsUGsQo6jUxigKqSC/53xN5u6ud3XV7KagtZGdtIXvq9+J0dxx2nAULg0MTSI1IIS0ihdSI\nEQzyDzXhG/RPz727lZWbKwC46cIxTMpIMLmiE6fQIEZRr4lRFFBFesl3ncid7g721pews7aQgtpC\nCuv20OZq7/a94oPjuoYEpEaMIDIworfL77da2jq494WvqalrJSjAxvzrTyXGx5/uV2gQo6jXxCgK\nqCK9pKcncpfbRUlj2YHAuptdtbtp7mjpdt/owKiuq6upESnEBEUNyBWUjtfOkloeXLwOjwdGJYcz\n76rxWK2++/NTaBCjqNfEKAqoIr3kRE/kbo+b8qbKrsBaUFtIQ3tjt/tGBIQfCKudgTUhOE6B9Tss\n/bKQt1fsAWDW1BQumDzc1HpOhEKDGEW9JkZRQBXpJd4+kXs8Hqqaqymo3c3OA4HV0Vbb7b6h9pCu\nsJoaMYKk0ESslv69mlJPudxu/vjSOgrL6rFZLfxm9smMSAwzu6zjotAgRlGviVEUUEV6iREn8n0t\n+7uurhbU7qaqpabb/YL8AhkZPvxAYE1h6KAkzcUKVDqaue+Fb2hzuggJ9OPkk2LJSYtlzLBI/O2+\n8/NRaBCjqNfEKAqoIr3EjBN5bVsdu2p3Hwituylrquh2P3+rnZTw4V1XWYeHDcFu6x9zgvbUlxvL\neHFZ/iHb/O1WMkdEk5MaQ3ZqNIOCvTNZdG9RaBCjqNfEKAqoIr2kL5zIG9ub2FW3+8CwgEJKGsrw\ncPivadfiAZGdQwJGhA2sxQM2795H7uYKNu7aR1ProVN/WSyQlhROTlos49JiiI/qe3PU9oVek4FB\nvSZGUUAV6SV98UTe0tFCYV1RZ2B1FB518YBpQ87g4pE/GFBjV11uNzuL61i/s4b1O6upqWs9bJ/E\n6GBy0mIYlxZLyuAwrH3gYbS+2GvSP6nXxCgKqCK9xBdO5N+1eMAp8eOYPfryATle1ePxUFrTxPqd\nNeTtrGF3ef1h+4QF28lO7QyrY4abN27VF3pN+gf1mhhFAVWkl/jiifzg4gFvFrzH7voiADKj07kx\n82r8bX17HGZvczS0saGghryCGrbucdDhOvTv1N/PSsaIKHLSYsgeGUNYiHE/L1/sNfFN6jUxigKq\nSC/x5RN5m6udv2/6B9v27wBgZPhwfpp1PcF2315xyVta2zvYXLifvIIaNhTUHD5uFRiZHM64tBhy\nUmNIjPbOSfZIfLnXxLeo18QoCqgivcTXT+Qd7g7+sfVV1lZtACApNJFbs+cQHjDI5Mr6FpfbTUHJ\nt+NWq2sPH7eaEBXcGVbTYhg5ONzrq1b5eq+J71CviVEUUEV6SX84kbs9bl7dsZSvSlcBEBMUzc9z\nbiImKMrkyvomj8dD2cFxqwU1FJYdPm51ULCdcWkxXDwlhchB3pkpoT/0mvgG9ZoYRQFVpJf0lxO5\nx+Ph3d0fsnzPxwCE+4fxs5w5DA5NMLmyvq+2sY28gs6HrP533Gp8VDD/39XjCfPCHKv9pdek71Ov\niVEUUEV6SX87kX+y9wuWFLwLQLBfEHOzb2BE+DCTq/Idre0dbNnt4Jv8Sr7eVgXAiMQw5l05jgD/\nE3v6v7/1mvRd6jUxijcD6sCZLFFkAJo2dCqzR1+O1WKluaOFBeufZdu+HWaX5TMC/TuXUv3pxZl8\n/5QhAOwur+fJpZsPmxFARES8RwFVpJ+bmDiBOZmz8bP60e528tTGF1lXtdHssnzO5dNSmZgRD8Cm\nwn0sej8fH7oBJSLiUxRQRQaA7NgMbs2+kUBbAC6Pixc2L+56iEqOjdVi4YbzRpMxovNhsxWbK1jy\neaHJVYmI9E8KqCIDxKjIkfxy3E8ItYfgwcPL299gy77tZpflU/xsVubOzGRYQue0XctWFfHRmmKT\nqxIR6X8UUEUGkKFhydw+/hZC7Z2D2FeWfW1yRb4nKMCPX12WTVxE5wIIr/xnJ19vqzS5KhGR/uW4\nAurixYuZNm0aWVlZXH755WzcePTxbA0NDcyfP58pU6aQlZXFjBkz+OKLL46rYBE5MfEhcZySMA6A\nLfvyaXO1m1yR7wkL8ef2K7IJC7bjAf7+zla27tlvdlkiIv1GjwPqsmXLePDBB/nFL37Bm2++SXp6\nOnPmzGH//u5Pzk6nk+uuu47y8nIef/xxli9fzgMPPEB8fPwJFy8ix2dcbBYATreTLfvyTa7GN8VF\nBvOry3MI8Lfhcnt4/I1N1NS1mF2WiEi/0OOAunDhQq644gpmzpzJyJEjmT9/PoGBgSxZsqTb/V9/\n/XUaGhp44oknyMnJYfDgwUyYMIGTTjrphIsXkeMzInwo4f6d4yjzqjaZXI3vGpYwiJ/PGovVYqG1\n3cU7K/aYXZKISL/Qo4DqdDrZsmULkyZN6tpmsViYPHkyeXl53R7z6aefkpOTw/z58zn99NO58MIL\neeaZZ3C7NYegiFmsFis5cWMB2LRvG+0up8kV+a4xw6M4fWznCl0rNlVQub/Z5IpERHyfX092djgc\nuFwuYmJiDtkeHR3N7t27uz2muLiYVatWcdFFF/H3v/+dPXv2MH/+fFwuF3Pnzu1RsTabnumS3nWw\nxwZCr01IyObzkpW0u9rZXruDcfFjzS7JZ10yNYWVmytwuT28s3IPP52Z+Z3HDKReE3Op18Qo3uyx\nHgXUI/F4PFgslm5fc7vdxMTEcP/992OxWBgzZgxVVVU8//zzPQ6oYWFB3ihX5DsNhF47JTyT8M1h\n1LXWs9mxlWnpE80uyWdFRoYwY9Jw3luxm9wtFVz1g9EMSwg7pmMHQq9J36BeE1/So4AaGRmJzWaj\npqbmkO379+8nOjq622Pi4uKw2+2HBNiUlBRqamro6OjAz+/YS6ivb8Gl5QWlF9lsVsLCggZMr+XE\nZPB5SS5rSjdSVVOL3WY3uySf9f0JyXy4ughnh5tF72zh5z/MOur+A63XxDzqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzuz1m/PjxvPvuu4ds2717N7GxsT0KpwAul5uODv1ySe8bKL2W\nHTOWz0tyaXW1sbl6O2Njxphdks8aFGRn2vgkPvi6mG/yq9hVUtc1of/RDJReE/Op18SX9HiwwHXX\nXcdrr73G0qVL2bVrF/feey+tra3MmjULgHnz5vHII4907X/llVdSW1vLAw88wJ49e/jss8949tln\nuVM8GY4AACAASURBVPrqq733LUTkuKRGjOiatH+9nuY/YT+YOIwAuw2AN7/UMqgiIserx2NQzzvv\nPBwOBwsWLKCmpobRo0fz3HPPERXVuT51RUUFNputa/+EhAReeOEF/vjHP3LxxRcTHx/Ptddey003\n3eS9byEix8VmtZEdm8mKstWsq9rAqQnjSY9KM7ssnxUW7M/3Tknm3ZVFbNy1j2WrishOjWFwdPAR\nx+mLiMjhLB6Px2N2EcfK4WjS7QnpVX5+ViIjQwZUr5U2lvPwmr/hdHdgt/rx06zrFVJPQFOrk3lP\n5dLS1tG1LSzEn9HDIhk9LJL0YZHERQQNyF4Tc6jXxCgHe80bFFBF/stAPZHn79/J0xsX4nQ7sVv9\n+EnWdYyOGmV2WT5r6579vPyfnZTWNHX7ekx4IGOGR3FKRgJDY0MYFKSH06T3DNTzmhhPAVWklwzk\nE/kORwFPbngRp9uJn9WPn4y9ljHRWvHtRNQ1tpG/t5ZtRQ7yixxU1Xa/FGpidDDpwyIZPbTzCmuo\nAqt40UA+r4mxFFBFeslAP5HvcOziqQ0v0H4gpN489hoyotPNLqvfqKlr6Qqr24oc1Da2H7aPBRgS\nH9o1JCAtOYKgAK9MWS0D1EA/r4lxFFBFeolO5LDTUciTG1+g3dWOn8XG/9/encdHWd77/3/NTCb7\nPtlD2JcgSSBhR0HBHW2larGnirVHrd0O7c/Teuw5nlbbY7Wtx1alp18tWrWl1VpqtYpaN7RiEBFC\n2NcAScieyTpJZv39EQhEQBiYmXsyvJ+PRx/gzD33fCgfLt5c931d9+3FN1OUMdHosiKOxWLC4fax\ntvIQW/a1sOOAne5e93HHmU0mRuUlHQ6s6YzNT8YaZTnBGUVOTOOahIoCqkiQaCDvt6etil9venIg\npN5WvER7pAbYp3vN6/NR09jF9sOzqzur2+hzeo7/nMXMuGEp/bcEjEhjZE4SUXqEpXwGjWsSKgqo\nIkGigfyoPW1V/N+mJ+nzOLGYLNyukBpQp+o1t8fL/vrOgVsCdte04z7BU4Bioy2ML0gduCVgWFYi\nZm1pJcfQuCahooAqEiQayAfb176fX1c8Sa+nD4vJwq1FNzE5c5LRZUUEf3vN5fawp7ZjILDuO9SB\n9wTDd0Js1MDsatGodLLS4oNRvgwhGtckVBRQRYJEA/nx9rUf4NcVy+n19GE2mbm16CamZBYZXdaQ\nd7a91tPnZndN28AtAdUNXZxoMJ8yNoMrZw1n3LDUsy9ahiSNaxIqCqgiQaKB/MSq2g+wrOJJej29\nmE1mvlZ8sy73n6VA91pXj4udB+1sOzzDWtfiGPT+uGEpLJw1gpIxNj3V6hyjcU1CRQFVJEg0kJ/c\n/o6DLKtYTo+7l7yEHP5r5p1GlzSkBbvXWjt6eXdjLe9sqB30VKv8zAQWzhzB9IlZWlx1jtC4JqES\nyICq0UlETsvI5OFcNnw+APWORjze41eYS/hIT47lugvH8NA35/DF+WNISYwGoLapm9++so0fPF7O\nW+ur6XPp91FEwo8CqoictpyELAC8Pi9NPS0GVyOnIy4miitnjuDnX5/DLVcWkp0WB0BLRx9/fGs3\n3/+/D3n5gyq6elwGVyoicpQeTyIipy37cEAFaHA0DgRWCX/WKDPzJudxQXEuG3Y1sWrtAfbXd9LV\n4+JvH1Tx2kcHmTc5j8tnFJCeHGt0uSJyjlNAFZHTlhGbjsVkwePz0NDdBJlGVyT+MptNTCvMYuqE\nTHYcsLNq7QG27rfT5/Lw5vpq3tlQw6zzsrli1gjyMwJzL5mIiL8UUEXktFnMFjLjbNQ7Gql3NBpd\njpwFk8nExJHpTByZzoH6TlatPcD6nY14vD7WbKlnzZZ6SsdlsHDWCMbkpxhdroicYxRQRcQv2QlZ\n1DsaaXA0GV2KBMiInCS+saiIBruDNz46yAeb63F7vGzc3czG3c2MH5bC+SW5TB2fRXys/toQkeDT\nSCMifsmO77+u3+BoxOfzaU/NCJKdFs/NVxRyzQWjeHN9De9urKGnz8OumnZ21bTz+zd2MXmMjVmT\nsikZY8MaZTG6ZBGJUAqoIuKXnPj+hVE97l46nF2kxCQZXJEEWkpiDNdfNIaFs0bwXkUt71fW0dDq\nwO3x8smuJj7Z1URcjIWp47OYOSmbicPTMJv1DxURCRwFVBHxS3bC0ZVRDY5GBdQIFh8bxZWzRnDF\nzOEcaOhk7dYGPtreQHuXk54+Dx9sruODzXWkJEQzY2I2syZlMzInSbPqInLWFFBFxC9HLvFDf0Ad\nnzbGwGokFEwmEyNzkhmZk8zi+WPZedDO2m0NrN/ZRE+fm/ZuJ2+ur+bN9dVkpcUx67xsZp6XTa5N\nuwCIyJlRQBURv8RFxZFgjafb5aC1t83ociTEzOajq/9vumwCm/e1sHZrPRV7WnB7vDTae3h5zX5e\nXrOfETlJzDovmxkTs0lLijG6dBEZQhRQRcRv0eZounHg8urpQ+cya5SZsvGZlI3PpKfPzYZdTazd\n1sC2/a34fHCgvpMD9Z38+Z09FI5IY+Z52UybkEl8rNXo0kUkzCmgiojfoi39AcPldRtciYSLuJgo\nzi/O5fziXNq7nazb3sBH2xrYd6gDH7D9gJ3tB+z84R87KRmTwazz+ncCiLZqJwAROZ4Cqoj4zWo+\nHFA9mkGV46UkRHPptAIunVZAo93BR9saWLutgboWB26Pjw27mtiwq4nYaAtTx2cyrTCLUbnJJCdE\nG126iIQJBVQR8ZvV3D906BK/nEpWWjyfO38UV88ZycGGLj7a1r8TgL2zj16nZ+CpVdAfbIdlJVKQ\nlUhBZv+PObZ4oixmg38VIhJqCqgi4reBGVRd4pfTZDKZGJGTxIicJK6fP4bd1W2Ub21g/Y5GHH39\nfdTe7aS9qpWtVa0Dn7OYTeRlJDDscGAtyEpkWFYiKZptFYloCqgi4jerRZf45cyZTSYmDE9jwvA0\nbrpsPNWNXdQ0dvX/2NT/Y3dvf2j1eH1UH36vfOvRcyQnRFOQmUBBVhLDsvp/zNVsq0jEUEAVEb/p\nEr8ESpTFzKjcZEblJg+85vP5sHf2DQqs1Y1d1Lc68Pn6j+nodrK128nW/faBz1nMJnJtCRRkHRNc\nMxNJSdQWVyJDjQKqiPhNl/glmEwmE+nJsaQnxzJ5bMbA606Xh0Mt3QOB9cis67GzrTVN/aG2fGvD\nwOeS460D97YeuVUgLyNBs60iYUwBVUT8phlUMUK01TLwRKsjfD4fbV1Oqhs7jwbXpm7qWxx4D0+3\ndjhcbNtvZ9txs63xxy3KSk6I1qNaRcKAAqqI+O3IPagOlwOP14PFrL0sxRgmk4m0pBjSkmIoGXN0\nttXl9nCo2cHBxk5qGrsHAuzg2dZuapq6WXvMbGtSvHXQTGtBViK5tgSsUZptFQklBVQR8VtuQg4A\n7c5OVu1/i8+NvtzgikQGs0ZZBnYNOOLobGsX1Y2d1DT13y5w7Gxr50lmW3Ns8QOzrEdmXVM02yoS\nNAqoIuK3ObnTWVe/gX3t+3lj/zuMTRnFRNt4o8sS+UyDZ1ttA68fmW2t/tROAl09/beweLw+apu6\nqW3qZu22o7OtiXFWJo1KZ35pPuOGpSisigSQyec7siYy/Nnt3bjdXqPLkAgWFWUmLS1BvXYa7L1t\nPPjxI3S5ukm0JvCDGd8lNSbF6LKGDPVaeDt2tvVIYK1p7KLumNnWY+VnJDC/LJ/Zk3KIiwmvuR/1\nmoTKkV4LBAVUkWNoIPfP1pad/GbTU/jwMSZlJN8pvUP3o54m9drQ5HJ7OdTcTU1TF3sPdfDRtgZ6\n+o7uZhETbWH2pBzml+ZTkJVoYKVHqdckVBRQRYJEA7n//r73dV4/8A4Alw6/iEVjFxpc0dCgXosM\nfU4PH21v4J0NNRxs6Br03thhKcwvzWfahCxDF1mp1yRUFFBFgkQDuf88Xg+PVfyW3W37APhGyVcp\nyphocFXhT70WWXw+H/vqOli9oZaPtjfi9hz9PU2Kt3JBSS4XTcknMzUu5LWp1yRUDA+oK1as4Mkn\nn6S5uZnCwkLuueceSkpKTnjsiy++yA9+8ANMJhNHviomJoZNmzb5Xaz+cEmwaSA/M+19HTyw7ld0\nurpIiIrn7hnfIT02zeiywpp6LXJ19bj4oLKO1RtraWzrGXjdBBSPsTG/NJ/i0TbM5tAsqlKvSagE\nMqD6fSf3qlWrePDBB/nJT35CcXExzzzzDLfddhuvv/466enpJ/xMUlISb7zxxkBA1UpHkciSEpPM\nLZP+hWUVy+l2O3hqywq+W/Z1oszhtVhEJBQS46xcMXM4l80oYNv+Vt7dUEvFnmZ8Pqjc20Ll3hZs\nybFcVJrH3JI8khOijS5ZJOz4fVPM008/zQ033MCiRYsYM2YM9913H7GxsaxcufKknzGZTKSnp2Oz\n2bDZbCcNsiIydBWmj+PKUZcAUNVxkJf2vmZwRSLGMptMFI2y8W/XlfCLb8zh6jkjSTkcRls6eln5\n3j7+/ddreOLlreyqbmMI3XEnEnR+TW+4XC62bt3KHXfcMfCayWRizpw5VFRUnPRzDoeDBQsW4PV6\nOe+887jzzjsZO3bsmVctImHpypEXs69tPzvsu3mn+p+MTR3F5Mwio8sSMVx6cizXzhvN588fycbd\nzby7oYYdB9vweH2s3dbA2m0NDMtMYMHUYcybnIdZVxrlHOdXQLXb7Xg8HjIyMga9brPZqKqqOuFn\nRo0axf3338+ECRPo6upi+fLlfOlLX+LVV18lOzvbr2ItFj1qToLrSI+p186UmVtLvsxPyh+mw9nJ\n8i1/4LKRF3HV6EuJPvx4VOmnXjs3RUWZmV2Uw+yiHGqbunhnQy0fVB6ip89DTVM3z76+k06Hiy/M\nGx2w71SvSagEssf8WiTV2NjIvHnzeP7555k8efLA6z//+c/ZsGEDzz333CnP4Xa7WbhwIVdffTVL\nly49s6pFJKxtb9rNT99bRp/HCUBOYia3T/syxdmFBlcmEn56+ty8v7GGle/uoa65m9hoC8v/61JS\nEmOMLk3EMH7NoKalpWGxWGhubh70emtrKzab7SSf+tQXRkUxceJEDhw44M9XA9DR0YPHoxWIEjwW\ni5nk5Dj12lnKicrjh7P/nRXb/8q2lp3UdzXxk9WPMDtvGteP/xyJ0YFZ5TmUqdfkWDMmZJKVHMMP\nn1xHr9PDite28S+XBObxweo1CZUjvRYIfgVUq9XKpEmTKC8v5+KLLwb6934rLy9nyZIlp3UOr9fL\n7t27ufDCC/0u1uPxaosMCQn12tlLjU7jmyX/yvqGCv6y+2W6XN2UH1rP5qbtXDfuc0zPLtWOHqjX\n5KhhmYlMHZ/JJ7uaeGt9DZdOKyA1gLOo6jUZSiz33nvvvf58ICEhgUceeYTc3FysViu/+tWv2Llz\nJ/fffz9xcXHcddddbN68mdmzZwPw61//GpfLhclkora2lgcffJDKykruu+8+v1fz9/a68Hq1ylGC\nx2w2ERcXrV4LEJPJRH5iLrPzptPl7Kam6xBOr4tNTVuo6jjI6JQRxFvjjS7TEOo1OZG8jARWb6zF\n4/XhdvsoGXN6Vyc/i3pNQuVIrwWC35sULly4ELvdzqOPPkpzczMTJ05k+fLlA2Gzvr4ei+Xos7g7\nOjr47//+b5qbm0lOTqaoqIjnnnuOMWPGBOQXICLhL9GawJLzFjMjp4w/7VxJU08L21t38T8fPcxV\noy5lQcFcLGbLqU8kEuGGZSYy87xs1m5rYHVFLZfPLCAjJfRPnxIxmh51KnIMPXEl+JweF6/vf5s3\nD67G6+v//zg/MZcbC69nRHKBwdWFjnpNTqa+1cF//XYtPh/Mm5zLLVee3aOD1WsSKoF8kpT2nBCR\nkIq2WPn8mCu4e/p3GJk8HIDarjp+sX4Zf9n9Mr3uPoMrFDFWTno85xflAvBBZT0NdofBFYmEngKq\niBgiPzGXf5/6TRaPX0SsJQYfPt6t/oD/+eh/2dK83ejyRAz1+fNHYjGb8Pp8vPTPE+8zLhLJFFBF\nxDBmk5kLh83hnpn/TknGJADsfW38pvJ3PLnlD7T3dRpcoYgxMlLjmDc5D4C12xrYUtVicEUioaWA\nKiKGS4tN5Y6Sr3B78c2kRCcBsKGxkp989Av+Wbt24F5VkXPJF+aNJjm+/wlsT7+2g54+t8EViYSO\nAqqIhI0pmUX896zvMS9/NiZM9Lh7eW7nX/n5+sfY177f6PJEQioxzsqSyycA0NrRxwvv7jG4IpHQ\nUUAVkbASFxXHDRO+wJ1Tv0FeQg4A1Z21/O8n/8cz256jva/D4ApFQmfqhCymF2YBsLriENv2txpc\nkUhoKKCKSFganTKSu6d/hy+Ou4a4qP59INfVb+DHa3/BWwffw+3V5U45N9x42XgS4/ov9f9ulS71\ny7lBAVVEwpbFbOGigvP50azvMyd3BiZM9Hr6eHHPq/x03S/Z3rLL6BJFgi45PpqbLhsPQEtHL395\nb6/BFYkEnwKqiIS9pOhEbpx4Pd+f9u2BvVMbHE0s27ScxyufoblHlz0lsk0vzGLqhEwA3t1Qy44D\ndoMrEgkuy7333nuv0UWcLj1HWIJNz6wOb6kxKczOnYYtLp2q9gM4vU4aHE18cGgtHq+bkcnDh8wj\nU9Vr4g+TycSE4Wms2VyH0+1lZ3UbWWlxmE0QFxOFyWQ66WfVaxIqR3otEPSoU5Fj6JGAQ0ePu4dV\nVW+xumbNwDZUaTGpXDvuakoziz/zL+xwoF6TM7F2Wz1PvLxt0GtRFhPZ6fHkpseTY0sg1xZPri2e\nnPR4YqOj1GsSMoF81KkCqsgxNJAPPXXdDfxl18vssO8eeG182li+OO7z5CXmGFjZZ1OvyZnw+Xy8\n8O5e3vj4IKfzt3daUgx5GQmMykshPSmarNQ4cm0JpCZGh/0/4mToUUAVCRKFhqHJ5/OxqWkLK/e8\nQmtv/715R55SddWoSwd2AQgn6jU5Gy63l0a7g7oWB3WtDupbugd+3uf0nPLzsdGWw7Osx8y42hLI\nTosjyqLlKXJmFFBFgkShYWhzepy8eWA1bx5cjevwNlRJ1kSuGXMlM3OnYjaFz1+86jUJBp/PR1uX\nk7rDgbW+xUG93UF9q4OW9t5Tft5sMpGZGkuuLYEcW/9tA0d+fmSrK5GTUUAVCRKFhsjQ0tPKyj2v\nsKlpy8Bro5KH89VJN2KLSzOwsqPUaxIqR3rtUH07NY1d1Lc4qGs9GmAb7A7cnlNHgaR46/H3udoS\nyEiOxWzW7QKigGp0GRLBFBoiy/bWXbyw62UaHI0AJFoTuK1oCePSRhtcmXpNQudUvebxemlu7x0I\nrHUt3dS1Oqhr7qa799QPBYiymMlJj+sPrunxh8NrAjnp8cRED41dNSQwFFBFgkShIfJ4vB7eOPAO\nq6rewocPs8nM4vHXMDd/tqF1qdckVM6m1zodzv7g2uoYdNtAU3vPaS3SSk+OIfeY4Hpk9jUlQYu0\nIpECqkiQKDRErs3N23h665/o9fQBcEHeTL44/hqizFGG1KNek1AJRq+53B4a7D2DZ1wPh9c+16kX\nacXFWAYv0Dr88ywt0hrSFFBFgkShIbLVdTfweOXTNPW0ADAmZRS3Fy8hKTox5LWo1yRUQtlrPp8P\ne2ff4Z0Fjpl1bXVg7+w7da0WM9MLM5lfNowxecmaZR1iFFBFgkShIfI5XA6e2vpHtrfuAvo397+j\n5CsUJOWHtA71moRKuPRaT5/7uFsF6lodNLQ68JzgCVfDsxNZUDaMmedlE2PVvaxDgQKqSJCEy0Au\nweXxenhp32u8ffB9AKxmKzdN/CLTsqeErAb1moRKuPeax+ulua1/kdbmqhY+3FI/aC/X+Jgozi/O\nZX5ZPjnp8QZWKqeigCoSJOE+kEtgfVT3CX/cuRL34T1TLxsxn8+Nvjwk+6Wq1yRUhlqv9fS5Kd9a\nzzsbajnU3D3ovUkj05hfNozJY21YzLpXNdwooIoEyVAbyOXsHeio5vHKZ2h3dgBQZCvklkn/EvSn\nT6nXJFSGaq/5fD52VbfxzoZaNuxqGnQbQHpyDBdOyWfe5DxSEqINrFKOpYAqEiRDdSCXs9Pe18Fv\nN/+eqo4DAGTHZ3JHyS1kx2cG7TvVaxIqkdBr9s4+/rnpEKsramnrcg68bjGbmFaYxYKyfMbmp2hR\nlcEUUEWCJBIGcjkzLq+b53e+SHndxwDERcXy1UlfZpKtMCjfp16TUImkXnN7vFTsbubdjbVsP2Af\n9N6wzEQWlOUza1I2sdHGbB93rlNAFQmSSBrIxX8+n4/3aj5k5Z6/4/V5MWHi36bczoT0sQH/LvWa\nhEqk9tqh5m7e3VjLh1vq6Ok7uqgqLsbCnKJcFpTlk2sLTFiS06OAKhIkkTqQi392tu7hic3P0uvp\nZVr2FL466csB/w71moRKpPdar9PN2q0NvLOhhpqmwYuqJo5IY35pPqXjM7SoKgQCGVA1By4i8ikT\n0sdSllXCh3Xr2Nm6B5/Pp3vbRMJUbHQUF5Xmc+GUPHbXtPPuxlrW72jE4/Wx/YCd7QfspCXFcOHk\nPOZNySM1McbokuU0KKCKiJxAYfpYPqxbR6eri0Pd9eQn5hpdkoh8BpPJxPiCVMYXpPKlBWN5v7KO\n1RtrsXf2Ye/s428fVPH3D/dTNj6TBWX5jC9I1T88w5gCqojICYxPO3rf6c7W3QqoIkNISmIMn5sz\nkoWzhrNpTwvvbqhh6347Hq+Pj3c08vGORvIzEphfls/sSTnExSgOhRv9joiInEBSdCL5ibnUdtWx\nw76HBcPnGV2SiPjJYjZTNj6TsvGZ1LV0s3rjIT7YXEdPn5va5m7+8I9dvLB6L3OKcphfms+wzESj\nS5bDFFBFRE6iMG0ctV117G7bh9vrJsqsIVNkqMq1JfAvl4zj2nmj+Wh7/6Kqgw1d9Dk9vLuhlnc3\n1DK+IJUFZfmUjc8kyqJFVUbSaCsichIT0sfxdvX7OD1O9ndUMzZ1lNElichZiom2MG9yHnNLctl3\nqIN3NtTy8Y4G3J7+J1ftqm4jJSGaeZPzuHBKHunJsUaXfE5SQBUROYmxqaOwmCx4fB52tu5WQBWJ\nICaTiTH5KYzJT+GGi8fyQWUd726opaWjl/ZuJ3//cD+vlh+gdFwG88vymTgiTYuqQkgBVUTkJGIs\n0YxOGcHutn3ssO/hKi4zuiQRCYLk+GgWzhrBFTOGU7mvhXc31LJlXwten49PdjXxya4mctLjmV+W\nz/lFOcTHWo0uOeIpoIqIfIYJaePY3baP/R0H6XH3Ehely30ikcpsNjFlbAZTxmbQaHeweuMh/ll5\niO5eN/WtDv701m5WvreXOZNyWDB1mBZVBdEZ3QG8YsUKFixYQElJCYsXL6aysvK0Pvfqq69SWFjI\nt7/97TP5WhGRkCs8/JhTr8/L/216kj1tVQZXJCKhkJUWz+IFY/nfb53PrVdNZFRuEgBOl5fVFYf4\n4ZPr+PkfN/DJzkY83sh7QpfR/H7U6apVq/iP//gPfvKTn1BcXMwzzzzD66+/zuuvv056evpJP1db\nW8uXv/xlhg8fTkpKCsuWLfO72Eh9TJuEj0h/JKD4z+P18MsN/4+qjgMDrxVnTOTzo68kLzHnjM+r\nXpNQUa8FTlVdB29/UsO67f2Lqo6wJcdwUWk+8ybnkRQfbWCFxgrko079DqiLFy+mpKSEe+65BwCf\nz8eFF17IkiVLuP3220/4Ga/Xy0033cR1113H+vXr6ezsVECVsKSBXE7E6XHxXs0a3jjwLj3uHgBM\nmJiZM5WrRl9Kemya3+dUr0moqNcCr8Ph5P2KQ7x7+ElVR0RZzMw8L4tLphYwIifJwAqNEciA6tc9\nqC6Xi61bt3LHHXcMvGYymZgzZw4VFRUn/dyyZcuw2WwDAVVEZCiJtli5dMRFnJ83g38cWM3qmg9w\ned2srV/P+sYK5uXP5vKRC0i0BmZgFpHwlhwfzdVzRnLlrOFs3NXM25/UsLO6DbfHy5rN9azZXM/Y\n/BQWTM1n2oQs7al6BvwKqHa7HY/HQ0ZGxqDXbTYbVVUnvi/rk08+4a9//SsvvfTSmVd5mEW/wRJk\nR3pMvSYnkhyVyPWFV3PxyLm8svcffHjoY9xeN+9U/5MP6z7m8pEXcfHwucRExZzyXOo1CRX1WvBE\nYWZWUQ6zinI42NDJW+tr+HBzHU63lz217eypbef5xD0sKBvG/NJ8UpNOPTYMZYHssYCs4vf5fCfc\nG6y7u5u77rqLn/zkJ6SkpJz19yQnx531OUROh3pNPksaCSzNvYXrOq7guc0v81HNRnrdvby053Xe\nq/mQ6yctZMHoC4gyW055LvWahIp6LbjS0hKYXJjDHQ4nb647yKtrqmhoddDe5eTF9/fx9zVVzCnJ\n43MXjGaC9lQ9Jb/uQXW5XEyZMoVHH32Uiy++eOD1u+++m87OTn79618POn7Hjh184QtfwGKxcORr\nvIdXulksFl577TUKCgpOu9iOjh48Ht0/I8FjsZhJTo5Tr4lfqtoO8Nfdq9hl3zvwWlZ8Bp8fewVT\ns0swm46fVVCvSaio14zh9frYtLeZNz+uZsu+1kHvjcxJ4tLpBcyclE101Kn/ITtUHOm1QAjIIqmL\nLrqIJUuWcNtttw061ul0cvDgwUGv/fKXv8ThcHDPPfcwYsQIoqJOfxJXN3hLsGkxgZwpn8/HttZd\nvLR3FbVddQOvD0/K55oxCylMHzfoePWahIp6zXh1Ld28s6GWNZvr6HV6Bl5PjLNyfnEOUydkMTov\nGfMQn1UN5CIpy7333nuvPx9ISEjgkUceITc3F6vVyq9+9St27tzJ/fffT1xcHHfddRebN29m9uzZ\nWCwW0tPTB/3vgw8+wOfzcdNNN2E2+3evQm+vC6/Xrzwt4hez2URcXLR6TfxmMpnIis/g/LyZZMdn\nUt15iB53D+3OTtbVb2Bf235yE7JJiUkG1GsSOuo14yXFR1MyxsaCsmGkJcXQ1NZDV48Lp9vL4ViX\nOQAAIABJREFU3toO/llZx+qKQzTYHZhNJtKTY7GYh15YPdJrgeD3PagLFy7Ebrfz6KOP0tzczMSJ\nE1m+fPnAHqj19fVYLJEzXS0i4g+zycz0nFJKs4r5oPYjXtv/Fl2ubnbYd7Nj/W7Kskr43OjLyUvO\nNrpUEQmxuJgoLp46jAVl+Wzbb+edDTVs3teK2+Olo9vJexWHeK/iEDHRFkpG2ygdl0HJGNs5+WhV\nvy/xG0mXJyTYdClMAq3X3cvb1f/k7YPv0edxAv0hdt6wWdw+80t0dTjVaxJUGtfCW6/TzZZ9rWzc\n3cSmPS04+tyD3reYTRQOT6V0fCal4zJJC+OdAAzdqN9I+sMlwaaBXIKl09nF6/vf5p+1a/H4+u9B\nWzTxcq4suFS9JkGlcW3ocHu87KpuY+OuZjbsbhr0EIAjRuUmUTouk9LxmeTZ4sNqNwAFVJEg0UAu\nwdbc08rTW/9EVccBYqNiuP+C/yTWrO1/JHg0rg1NPp+PAw2dbNjVzMbdTdQ2dR93THZaHKXjMykb\nl8nofOMXWSmgigSJBnIJhYMdNfxs/aMAXD5yPp8ffaXBFUkk07gWGRrtDjbubmbjriZ217Tz6fCW\nnBDNlLEZlI3PYOKINKwGbF+lgCoSJBrIJVSe2PwMm5q2EmOJ5r7Zd5MUnWh0SRKhNK5Fno5uJ5v2\nNLNxdzNbqvoXWR0rJtpC8WgbZSFeZKWAKhIkGsglVA456rh/7S8BuGT4hXxh7FUGVySRSuNaZOt1\nutla1cqGXc1U7m2mu/fEi6ymjMtk6oRMUhODt8hKAVUkSDSQS6hERZlZvvX3fFy7iWizlR/P+YFm\nUSUoNK6dO9weL7ur29iwu/++1daOwYusYqwWvvvFEiYMTwvK9yugigSJBnIJlagoM+3Yuesf9wNw\nccE8rh13tcFVSSTSuHZu8vl8HGzoYuPuJjbsaqamqQvo34v1BzeVMSwz8P8gDmRA9e9RTiIiEjAj\n04ZRmlUMwPu15bT3dRpckYhECpPJxIicJBbNHc2Pb53Bd79YgsVsoqfPzS//vInWjl6jS/xMCqgi\nIga6esylALi8Lt46uNrYYkQkYpWMyeCWKwsBsHf28cs/b6K712VwVSengCoiYqBhSXmUZvbPov6z\ntpz2vg6DKxKRSHV+cS7XzhsNQG1zN4+t3IzL7TG4qhNTQBURMdjCUZdiwoTL6+aNA+8YXY6IRLCr\nZo9gflk+ALuq2/jt37fh9YbfciQFVBERg+Ul5gzci/pezYd8XL/R4IpEJFKZTCZuvGQ8ZeMzAVi/\ns4k/vb2bcFszr4AqIhIGrhv3OVKikwH4w/Y/s9u+1+CKRCRSmc0mvva58xg7LAWAtz+p4fWPDhpc\n1WAKqCIiYSA1JoVvTP5XYizRuH0eHt/8LPXdDUaXJSIRKtpqYel1JeTa4gF4YfVe1myuM7iqoxRQ\nRUTCREFSHrcVLcFsMtPj7uH/Nj1Fh1NbT4lIcCTGWblz8RRSE6MBeOrV7XxQGR4hVQFVRCSMnGeb\nwJcmfAGAll47v9n0O/o8ToOrEpFIZUuJ5c4bppAYZ8UHPLVqO6srao0uSwFVRCTcnJ83k8tHLADg\nYGcNv9u6Aq9PTwASkeAYlpnIf3y5lOSE/pnUZ1/fyduf1BhakwKqiEgY+tzoy5mWPQWAzc3b+cvu\nl8Nula2IRI78wyH1yOX+FW/u4o11xi2cUkAVEQlDJpOJmyYuZlxq/6ba79V8yDvV/zS4KhGJZLm2\nBO6+sQxbcgwAz7+zh1fL9xtSiwKqiEiYspqj+FrxzWTHZwHw1z2vsKGx0uCqRCSSZaXF8x9fLiMj\nJRaAle/t46UPqkJ+BUcBVUQkjMVb4/nm5H8lyZoIwDPbnmNf+35jixKRiJaRGsfdN5aRnRYHwEsf\nVPHX9/eFNKQqoIqIhLmMuHS+MfmrRJutuL1ullUs59ltz1PZtBWnx2V0eSISgdKTY/mPG8sG9kl9\ntfwAf353T8hCqsk3hO66t9u7cbu1klWCJyrKTFpagnpNgu5Meq2yaStPbH4WH0eH7WhLNJNshZRm\nFjHJVkhsVGywSpYhSuOanI32bicPPbeR2qZuAC6ZNox/uXgcJpPpuGOP9FogKKCKHEMDuYTKmfZa\nVftByuvWsalpK12u7sHnNEcxMX0ckzOLKc6YSKI1MH9RyNCmcU3OVqfDyf8+V8HBxi4ALp1WwJcu\nHntcSFVAFQkSDeQSKmfba16fl71tVVQ0baGiaQttfe2D3jebzIxPHcPkzCImZ04iJSY5UKXLEKNx\nTQKhq8fFQ3/aOBBSL5tewA0LBodUBVSRINFALqESyF7z+rwc7KyhonELFU2baeppGfS+CROjUkYw\nJbOIKZlF2OLSz+r7ZGjRuCaBcqqQqoAqEiQayCVUgtVrPp+PQ931VDRupqJpC4e66487piAp/3BY\nLSYnIStg3y3hSeOaBFJXj4tf/Gkj1YdD6uUzClg8vz+kKqCKBIkGcgmVUPVao6Np4DaAAx3Vx72f\nE5/FlKxipmQWMSwx74QLH2Ro07gmgdbpcPLQcxUDIfWKGcP54vwxWK0WBVSRYNBALqFiRK/Ze9uo\naNrCpqYt7GmrGrQbAIAtNr1/ZjWriJHJwzGbtBNhJNC4JsHQ6XDyiz9VUNN0OKTOHM6/XDKO9PTE\ngJxfAVXkGBrIJVSM7rVOZxeVTVupaNrCTvsePD7PoPdTopMOL7AqYlzqaCxmS8hrlMAwutckcn06\npF41ewRfv35KQM6tgCpyDA3kEirh1GsOVw9bWrZT0biZba07cXndg95PiIqnOPM8pmQWUZg+Hqs5\nyqBK5UyEU69J5OkPqRupObxP6t//95qAnFcBVeQYGsglVMK11/o8Tra17KSiaTNbmrfT6+kb9H6s\nJYZJtsKB+1Z1G0D4C9dek8jR4XDy0OGQqoAqEgQayCVUhkKvubxudrbupqJpC5XNW+l2OQa9Pyd3\nOjdO/KJB1cnpGgq9JkNfp8PJuxtruXVRSUDOp4AqcgwN5BIqQ63XPF4Pew4/GGBT02banZ0AfKf0\nDsanjTG4OvksQ63XZOgK5DZTujYjIiKnZDFbmJA+lhsmLOK/Zv77wGNUn9/5Iu5P3bMqInK2FFBF\nRMQvCdZ4rhmzEIB6RyPvVn9gcEUiEmkUUEVExG+zcqcyOmUEAKuq3qS1125wRSISSc4ooK5YsYIF\nCxZQUlLC4sWLqaysPOmxb775Jtdddx3Tp0+ntLSURYsW8dJLL51xwSIiYjyzycwN47+ACRNOr4uV\nu/9udEkiEkH8DqirVq3iwQcfZOnSpbz44osUFhZy22230draesLjU1NT+cY3vsHzzz/Pyy+/zLXX\nXst//ud/smbNmrMuXkREjDMsKY+Lhp0PQEXTFra27DC4IhGJFH4H1KeffpobbriBRYsWMWbMGO67\n7z5iY2NZuXLlCY+fPn06l1xyCaNHj6agoICbb76ZCRMm8Mknn5x18SIiYqyrRl9KcnQSAH/e9RIu\nj8vgikQkEvgVUF0uF1u3bmX27NkDr5lMJubMmUNFRcVpnaO8vJyqqiqmT5/uX6UiIhJ24qLiuG7s\n1QA097Twj4OrjS1IRCKCX8+rs9vteDweMjIyBr1us9moqqo66ee6urqYO3cuLpcLi8XCj370o0Eh\n93RZLFrTJcF1pMfUaxJskdRrM/PL+LBuHTvte/nHgXeZkz+VzPiMU39QQiKSek3CWyB7LCAPVPb5\nfJhMppO+n5CQwMsvv0x3dzdr167lgQceoKCgwO9Z1OTkuLMtVeS0qNckVCKl1+6YdSPff+N+3F43\nf9nzMj+Y9+3P/HtBQi9Sek3ODX4F1LS0NCwWC83NzYNeb21txWaznfRzJpOJgoICAAoLC9mzZw+P\nP/643wG1o6MHj0dPwZDgsVjMJCfHqdck6CKt1xJI5tIRF/J61TtU1G/jVx88xU3nXU+UOSDzIHIW\nIq3XJHwd6bVA8GvksFqtTJo0ifLyci6++GKgf/a0vLycJUuWnPZ5vF4vTqfTv0oBj8erx7RJSKjX\nJFQiqdcuG76ArU07qO46RPmh9TQ7Wrm9+GYSrPFGlyZEVq9J5PP7ZoFbbrmFP//5z/ztb39j7969\n/OhHP6K3t5drr70WgLvuuouHH3544PgnnniCDz/8kOrqavbu3ctTTz3Fyy+/zDXXXBO4X4WIiBgu\nxhLNd8u+ziRbIQC72/bx0CfLaHK0GFyZiAw1fl97WbhwIXa7nUcffZTm5mYmTpzI8uXLSU9PB6C+\nvh6LxTJwvMPh4L777qOhoYGYmBhGjx7NQw89xBVXXBG4X4WIiISF2KhY7ij+Cn/Z/Xfer/2QRkcz\nD32yjK8Vf4UxqSONLk9EhgiTz+fzGV3E6bLbu3V5QoIqKspMWlqCek2CLtJ7zefzsbpmDSt3/x0f\nPqLMUSwp/CLTckqNLu2cE+m9JuHjSK8FgvacEBGRgDOZTMwvuICvFd9MtNmK2+vmd9v+xOv732YI\nzYuIiEEUUEVEJGhKMifx/039BimHnzb1931v8Pvtf8btdRtcmYiEMwVUEREJquFJw/j+tH8jPzEX\ngI/qP2FZxXIcLofBlYlIuFJAFRGRoEuLTeXOsm98aoX/r7XCX0ROSAFVRERC4sgK/3n5cwBocDTx\n0CfL2Ne+39jCRCTsKKCKiEjIWMwWFo+/huvHfR4TJrpc3Tyy8Qm2t+wyujQRCSMKqCIiElInWuH/\njwPvGl2WiIQRBVQRETFESeYkJmcWAdDr6TO4GhEJJwqoIiJiINPhH7U3qogcpYAqIiKGMR3Op4qn\nInIsBVQRERERCSsKqCIiYhjTkUv8evypiBxDAVVEREREwooCqoiIGE7zpyJyLAVUERExzJFL/D5F\nVBE5hgKqiIiIiIQVBVQRETHO4TVSfR4nHq/H2FpEJGwooIqIiGEyYm0ANPe08P8qn6bX3WtwRSIS\nDhRQRUTEMBcVnM/4tLEAbGvdycMbfoO9t83gqkTEaAqoIiJimLioWL41+V+ZlTMNgNquOn6xfhnV\nnYcMrkxEjKSAKiIihooyR3HTxC9y9ajLAWh3dvDLDf/HlubtBlcmIkZRQBUREcOZTCauHHUxXznv\nS0SZLPR5nPy/yqd5v6bc6NJExAAKqCIiEjZm5JTx7Sm3ER8Vhw8fz+96kb/ueQWvz2t0aSISQgqo\nIiISVsaljeF7U79FRmw6AG8ffJ8nt6zA6XEZXJmIhIoCqoiIhJ3shCy+N+3bjEoeDkBF02Ye3fg4\nnc4ugysTkVBQQBURkbCUFJ3I0tI7mJJZDEBVx0F+sX4Z9d2NBlcmIsGmgCoiImEr2mLl1qIbuWT4\nhQC09Lbyv5/8mt32vQZXJiLBpIAqIiJhzWwy84WxV/GlCddiNplxuHtYVrGcfe0HjC5NRIJEAVVE\nRIaEufmz+HrJV4m2ROP2eXhyyx90T6pIhFJAFRGRIWOSbQJLJi4GoK2vnae2/lFbUIlEIAVUEREZ\nUsqySlhQMBeAXfY9vLLvHwZXJCKBpoAqIiJDzqIxCxmdMhKANw68w+bmbcYWJCIBpYAqIiJDjsVs\n4daiG0myJgLwzLbnaO5pMbgqEQkUBVQRERmSUmNS+NeiGzFhosfdy283/15PmxKJEAqoIiIyZI1P\nG8M1Y64EoKbrEH/e9TeDKxKRQFBAFRGRIe2S4RcyOWMSAOV1H/PhoXUGVyQiZ+uMAuqKFStYsGAB\nJSUlLF68mMrKypMe+8ILL3DjjTcyY8YMZsyYwVe/+tXPPF5ERMQfJpOJJectJjPOBsDzu/7Gwc4a\ng6sSkbPhd0BdtWoVDz74IEuXLuXFF1+ksLCQ2267jdbW1hMev27dOq6++mqeffZZnn/+eXJycrj1\n1ltpbNSzlEVEJDDiouK4vfhmrGYrbq+b5Zt/T6Oj2eiyROQMmXw+n8+fDyxevJiSkhLuueceAHw+\nHxdeeCFLlizh9ttvP+XnvV4v06dP54c//CHXXHONX8Xa7d243dqQWYInKspMWlqCek2CTr0WHB/V\nfcKz258f+O/RKSOYnl1KWdZkEqMTDKzMOOo1CZUjvRaQc/lzsMvlYuvWrdxxxx0Dr5lMJubMmUNF\nRcVpncPhcOB2u0lNTfWvUhERkVOYmTuVekcjbx5YjQ8f+9oPsK/9AC/sfplJtglMzy6lOOM8oi3R\nRpcqIp/Br4Bqt9vxeDxkZGQMet1ms1FVVXVa53jooYfIzs5m9uzZ/nw1ABaL1nRJcB3pMfWaBJt6\nLXium3AVC0acz8f1FXxUt4GazkN4fV42N29nc/N2Yi0xlGYXMzO3jAnpYzGbIvv3QL0moRLIHvMr\noJ6Mz+fDZDKd8rgnnniC1157jT/84Q9ER/v/r9fk5LgzKU/Eb+o1CRX1WnCkkcDo3HxuKL2Kg221\nfHDwY/55YB0tDju9nj7KD62n/NB60mJTOH/4NOaOnMnI1GGn9XfZUKVek6HEr4CalpaGxWKhuXnw\njeetra3YbLbP/OyTTz7J8uXLefrppxk3bpz/lQIdHT14PLp/RoLHYjGTnBynXpOgU6+FThKpXFlw\nKZcPu5g99io+qtvAhoZKHO4e7L3tvLLrbV7Z9Ta5CVnMyJ3KjNxSMuLSjS47YNRrEipHei0Q/Aqo\nVquVSZMmUV5ezsUXXwz0z56Wl5ezZMmSk35u+fLlPP744zz55JOcd955Z1ysx+PVDd4SEuo1CRX1\nWmiNTh7F6ORRXD/uGra27ODj+g1sad6O2+ehrruRl/a8xkt7XmNMykim55RRllVCgjXe6LIDQr0m\nQ4nfl/hvueUW7r77boqKiiguLuaZZ56ht7eXa6+9FoC77rqLnJwc7rzzTgB++9vf8uijj/Lwww+T\nl5c3MPsaHx9PfHxk/KEXEZGhxWqOYkpmEVMyi3C4HGxs2szH9RvZ3bYPgL3t+9nbvp8Xdr3EJFsh\n03NKKbJNJNpiNbhykXOD3wF14cKF2O12Hn30UZqbm5k4cSLLly8nPb3/ckh9fT0Wi2Xg+D/96U+4\n3W6WLl066Dzf+ta3+Pa3v32W5YuIiJydeGs85+fN5Py8mbT22lnfUMHH9Rs51F2Px+ehsnkrlc1b\nibXEUppVzPTsUsaljY74xVUiRvJ7H1QjaQ83CTbtFyihol4Lf7Vddayr38D6hgra+toHvZcak8LU\n7MnMyC4jPzE3rBdXqdckVAK5D6oCqsgxNJBLqKjXhg6vz8uetn18XL+RDY2b6fX0Dno/NyGbGdll\nTMuZQnpsmkFVnpx6TUJFAVUkSDSQS6io14Yml8fFliOLq1p24PF5Br0/JmUkw5OGYYtLJyMunYw4\nG7bYNEMfDKBek1Ax7ElSIiIi5zKrxUppVjGlWcV0uxxsbKxkXf1G9rb3P6zmyOKqT0uJTsIWl44t\n1nY4uPaH14y4dJKjk3Q/q8inaAZV5BiaaZBQUa9FlpYeO+sbNrKtdSfNPa3H3bP6WaLMUdhi048G\n19h0bIfDqy02ndiomLOqTb0moaJL/CJBooFcQkW9FtlcHhctvXaae1po7m2lpaeV5p7Wgf92epyn\nfa4ka+LRWwaOCa8ZcemkxqSccvZVvSahokv8IiIiYcxqsZKTkEVOQtZx7/l8Prpc3TT3tNJyOLAO\nhNfDs68+js4ddbq66HR1sb/j4HHnspgs2GLTDgdY26dCbBpxUXq8qQxNCqgiIiIhZDKZSIpOJCk6\nkVEpw4973+V1Y++1Hw6trTT3thwzA9s6aBcBj89DY08zjT3Nx50HIMEaT2acjdyULFKiUkiPPhpm\n02JSsJgtJ/yciNEUUEVERMKI1RxFVnwmWfGZx73n8/lwuHsGZltbDgfYI+HV3teG13f0Mn63y0G3\ny8H+jurjzmU2mUmPSe3faeDYhVuH74eNj5BHvMrQpIAqIiIyRJhMJhKs8SRY4xmRXHDc+x6vB3tf\n28AtAy29dlp6W2lztlHf1US3yzFwrNfn7b+9oLcV7Md/V1xU3MBCraMLuPrDbHpsKlFmRQgJHnWX\niIhIhLCYLYfvRbUB44DBi6Q6erpp6R28YKvlmDB77Oxrj7uH6s5aqjtrj/seEybSYlMHZluPXbiV\nEWsjwRof1k/XkvCngCoiInKOiLfGEW/NpyAp/7j3vD4v9t52WnqPvX3gaJjtcnUPHOvDR2uvndZe\nO7va9h53rlhLzMC9rrbYtEELuNLj0rFq9lVOQR0iIiIimE1mbHFp2OLSGH+CJ7b2unuPbp31qQVc\nLT2tuI95qlavp4/arjpqu+qOO48JEykxyQOzrf0zsEd3IUiyJmr2VRRQRURE5NRio2LJT8wlPzH3\nuPe8Pi8dzs5B22U197QOzMZ2ODsHjvXho62vnba+dvZQddy5os1WUmNTSIlOJiUmmZToZJJjkkiN\nTiY55uhrZ/sAAwlvCqgiIiJyVswmM6kxKaTGpDA2ddRx7/d5nP0zrZ/a8/XIf7u8roFjnV4XjY5m\nGh0n3jrriBhL9EBY/XSQTYk5HGYVZIcsBVQREREJqhhLNHmJOeQl5hz3ns/no8PZNTDb2tzTQntf\nB+3ODtr7Omnv66DD2Tno4QXQH3oVZCOXAqqIiIgYxmQykRKTREpMEqNTRp7wGK/PS6ezm3Zne39g\n7eukzdlBx0CQ7Q+zZxNkYy0xJMckDQqy/T8mKcgaQAFVREREwprZZB4IsSSd/LizCbK9nj56HX0K\nsmFCAVVEREQiwlAKsikxySQryJ6UAqqIiIicU/wLsl0DofVIkO2/LzZwQbY/rCYNDrLHzsqeg0FW\nAVVERETkBPqDbH9YDG6QbaLB0fSZtZxrQVYBVUREROQshHWQPdF9skMgyCqgioiIiITAmQbZ/m23\nOj8VZDvocHYFNcimxKQQY4kOxC/dbwqoIiIiImEkHIPskf1jP72nbFZ8Rn+dAaaAKiIiIjIEhUOQ\nNWHiG5P/lUm2CYH8pSmgioiIiEQyv4PssdttHQ6yx4bZY4OsDx9ratcqoIqIiIhI4A0Ksp/hSJB9\nteofrDm0jm2tO+nzOImKig1cLQE7k4iIiIhEvCNBdlbuNABcXjfbWnYG9jsCejYREREROSeMTB5O\ncnT/PQMVTZsDem4FVBERERHxm9lkZnJmEQBbmnfg8roDd+6AnUlEREREzilTDgfUXk8vO1p2B+y8\nCqgiIiIickbGpY4mISoegI2NgbvMr4AqIiIiImfEYrZQnHEeABWNWwJ2XgVUERERETljU7L6L/N3\nuxwBO6cCqoiIiIicscK0ccRYogN6TgVUERERETljVouVItvEgJ5TAVVEREREzsolwy8kyZoQsPOd\nUUBdsWIFCxYsoKSkhMWLF1NZWXnSY/fs2cPSpUtZsGABhYWFPPvss2dcrIiIiIiEn+HJw3ho/n0B\nO5/fAXXVqlU8+OCDLF26lBdffJHCwkJuu+02WltbT3h8T08PBQUFfO973yMzM/OsCxYRERGRyOZ3\nQH366ae54YYbWLRoEWPGjOG+++4jNjaWlStXnvD44uJivv/977Nw4UKsVutZFywiIiIikc2vgOpy\nudi6dSuzZ88eeM1kMjFnzhwqKioCXpyIiIiInHui/DnYbrfj8XjIyMgY9LrNZqOqqiqghZ2IxaI1\nXRJcR3pMvSbBpl6TUFGvSagEssf8Cqgn4/P5MJlMgTjVZ0pOjgv6d4iAek1CR70moaJek6HEr6ib\nlpaGxWKhubl50Outra3YbLaAFiYiIiIi5ya/AqrVamXSpEmUl5cPvObz+SgvL6e0tDTgxYmIiIjI\nucfvS/y33HILd999N0VFRRQXF/PMM8/Q29vLtddeC8Bdd91FTk4Od955J9C/sGrv3r34fD5cLhcN\nDQ3s2LGD+Ph4hg8fHthfjYiIiIgMeX4H1IULF2K323n00Udpbm5m4sSJLF++nPT0dADq6+uxWCwD\nxzc2NrJo0aKBe1SfeuopnnrqKaZPn65N+0VERETkOCafz+czuggRERERkSO054SIiIiIhBUFVBER\nEREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwEvYBdcWKFSxYsICSkhIWL15MZWWl\n0SVJhFm2bBmFhYWD/rdw4UKjy5IIsH79er7+9a8zd+5cCgsLefvtt4875pFHHuGCCy5g8uTJfPWr\nX+XAgQMGVCpD3al67Qc/+MFx49ztt99uULUylD3++ONcf/31lJWVMWfOHL71rW9RVVU16Bin08l9\n993HzJkzKS0tZenSpbS0tPj1PWEdUFetWsWDDz7I0qVLefHFFyksLOS2226jtbXV6NIkwowbN44P\nP/yQNWvWsGbNGv74xz8aXZJEAIfDwcSJE/nRj3408LCSYz3xxBOsWLGCH//4x7zwwgvExcVx6623\n4nQ6DahWhrJT9RrAvHnzBo1zDz/8cIirlEiwfv16brrpJl544QV+97vf4Xa7ufXWW+nt7R045v77\n7+e9997jscceY8WKFTQ2NvJv//Zvfn2P30+SCqWnn36aG264gUWLFgFw3333sXr1alauXKl/+UlA\nRUVFDTwNTSRQ5s2bx7x58wA40TNRnn32Wb75zW+yYMECAH7+858zZ84c3nrrLc3ii19O1WsA0dHR\nGufkrP32t78d9N8PPPAAc+bMYcuWLUybNo2uri5WrlzJL3/5S2bMmAHAT3/6UxYuXEhlZSUlJSWn\n9T1hO4PqcrnYunUrs2fPHnjNZDIxZ84cKioqDKxMItH+/fuZO3cul1xyCd/73veoq6szuiSJcNXV\n1TQ3NzNr1qyB1xITE5k8ebLGOAmKdevWMWfOHK644gruvfde2trajC5JIkBnZycmk4nU1FQAtmzZ\ngsfjGZTfRo8eTV5eHhs3bjzt84btDKrdbsfj8ZCRkTHodZvNdty9DiJnY/LkyTz44IOMGjWKpqYm\nHnvsMW688UZeeeUV4uPjjS5PIlRzczMmk+mEY1xzc7NBVUmkmjt3LpdddhnDhg3j4MEHMJdqAAAD\nQklEQVSDPPzww3zta1/j+eefP+ktASKn4vP5+OlPf8rUqVMZO3Ys0D+2Wa1WEhMTBx3r79gWtgH1\nZHw+n/4wSUDNnTt34Ofjx4+npKSE+fPn89prr3HdddcZWJmcizTGSTAce8vIuHHjGD9+PJdeeikf\nffTRoFl8EX/ce++97Nmz57TWbfg7toXtJf60tDQsFstxabu1tRWbzWZQVXIuSEpKYuTIkRw8eNDo\nUiSCZWRk4PP5NMaJIQoKCkhLS9M4J2fsxz/+Me+//z6///3vyc7OHng9IyMDl8tFV1fXoOP9HdvC\nNqBarVYmTZpEeXn5wGs+n4/y8nJKS0sNrEwiXXd3N9XV1WRmZhpdikSwgoICMjIyWLt27cBrXV1d\nbNq0SWOcBF19fT1tbW0a5+SM/PjHP+btt9/m2WefJS8vb9B7RUVFWCyWQfmtqqqKQ4cO+TW2hfUl\n/ltuuYW7776boqIiiouLeeaZZ+jt7eXaa681ujSJID/72c9YsGABeXl5NDQ08Nhjj2GxWLjqqquM\nLk2GOIfDwcGDBwdWVVdXV7Njxw5SUlLIzc3lK1/5Cr/5zW8YPnw4+fn5PPLII+Tk5HDxxRcbXLkM\nNZ/VaykpKSxbtozLL7+cjIwMDh48yC9+8QtGjhzJBRdcYHDlMtTce++9vPrqq/zmN78hLi5u4CpQ\nUlISMTExJCYmcv311/PAAw+QnJxMQkIC//M//0NZWdlpr+AHMPlOth9FmFixYgVPPvkkzc3NTJw4\nkXvuuYfi4mKjy5IIcuedd7J+/Xra2tpIT09n6tSpfPe736WgoMDo0mSIW7duHTfffPNx910tWrSI\nBx54AIDHHnuM559/ns7OTqZNm8YPf/hDRowYYUS5MoR9Vq/de++9fPOb32THjh10dHSQlZXFBRdc\nwHe+8x1tOyV+KywsPOG9pA888MDAtqBOp5Of/exnvPLKKzidTubOncuPfvQjvy7xh31AFREREZFz\nS9jegyoiIiIi5yYFVBEREREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwooAqIiIi\nImFFAVVEREREwooCqoiIiIiEFQVUEREREQkrCqgiIiIiElb+fyq5ocPMu4sBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VFX+x/H3mfTeE0JCSEIPHUK30AREir2uws+C2Nay7i7rqquurrqWtawNFAVFBcXCIqKAIL33DgkBAqRDSALp5/fHHSCEhCRkZm4y+b6eZ55pd+795s7kk5Mz956jtNYIIYRwLhazCxBCCGF7Eu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4IQl3IYRwQq5mbTg0NFTHxsaatXkhhGiUNmzYkKW1DqtpOdPCPTY2lvXr15u1eSGEaJSUUgdrs5x0ywghhBOScBdCCCck4S6EEE7ItD53IYQAKCkpITU1lcLCQrNLaVA8PT2Jjo7Gzc3tkl4v4S6EMFVqaip+fn7ExsailDK7nAZBa012djapqanExcVd0jpq7JZRSk1VSmUopbZX87xSSr2jlNqvlNqqlOpxSZUIIZqkwsJCQkJCJNgrUEoREhJSr/9matPn/hkw4iLPXw20sV4mAB9ccjVCiCZJgv1C9d0nNXbLaK2XKqViL7LIWGC6NubrW62UClRKRWqtj9WrsmrsWvMLGTuXs7XZ9ZS4eNtjEwD4ebrxfwNicXWR75yFEI2PLfrco4DDFe6nWh+7INyVUhMwWvfExMRc0sZy967gyoPvEHHge+4veYJDRFzSei7mzLSyPVoG0rNlsM3XL4RoeN555x0++OADevTowYwZM2y+/ueeew5fX1+efPJJm6+7Kg79QlVrPRmYDJCYmHhJM3P3vfMFSBpI+2/v5nf9PNz4CbQeatM6dx07ydVvLyPjZJFN1yuEaLjef/99Fi5cSHR0tNml2IQt+hyOAC0q3I+2PmY/rQbDfYvBPwpm3ATL3zrX3LaBMD8PADLyJNyFaAomTpxIcnIyV199NS+99BJ33303vXv3pnv37vz4448AfPbZZ1x77bVcddVVxMbG8t///pc333yT7t2707dvX3JycgCYMmUKvXr1omvXrtxwww2cOnXqgu0lJSUxYsQIevbsyeWXX87u3btt/jPZouU+B3hYKfU10AfItVd/+3mC4+DeBfDjQ7DwH3BsM4x9D9x96r3qIG93XCyKTAl3IRzq+f/tYOfRkzZdZ0Jzf/4xuuNFl/nwww+ZP38+ixcv5s0332Tw4MFMnTqVEydO0Lt3b4YONXoHtm/fzqZNmygsLKR169a8+uqrbNq0iccff5zp06fz2GOPcf3113PfffcB8PTTT/PJJ5/wyCOPnLe9CRMm8OGHH9KmTRvWrFnDgw8+yG+//WbTn7vGcFdKfQUMBEKVUqnAPwA3AK31h8A8YCSwHzgF/J9NK7wYdx+48VOI7AoLn4eM3XDDx9CsU71W62JRhPi4S7gL0QT9+uuvzJkzh9dffx0wDtU8dOgQAIMGDcLPzw8/Pz8CAgIYPXo0AJ07d2br1q2A8Qfg6aef5sSJE+Tn5zN8+PDz1p+fn8/KlSu56aabzj5WVGT7rKnN0TK31fC8Bh6yWUV1pRRc9jg06wLfT4Qpg+Gq56HPROO5SxTq60FmvoS7EI5UUwvbEbTWzJ49m3bt2p33+Jo1a/Dw8Dh732KxnL1vsVgoLS0FYPz48fzwww907dqVzz77jCVLlpy3nvLycgIDA9m8ebNdfw7nOc6v9RB4YCXED4T5k2DGjZCfccmrC/F1J7ug2GblCSEah+HDh/Puu++ird/jbdq0qU6vz8vLIzIykpKSkiqPuvH39ycuLo5vvvkGMP6YbNmypf6FV+I84Q7gGwa3z4SRr0PKcni/H+z95ZJWFerrQba03IVocp555hlKSkro0qULHTt25JlnnqnT6//5z3/Sp08fBgwYQPv27atcZsaMGXzyySd07dqVjh07nv3S1paUtuFRJnWRmJio7TpZR8YumH0vpG+Hfg/D8Jfq9PJ/zt3Jl2sOseufFzs5VwhRX7t27aJDhw5ml9EgVbVvlFIbtNaJNb3WuVruFYV3gHsXQeebYNV/IS+9Ti8P8XXndEmZtN6FEI2S84Y7gJsntLW2vAtP1Oml8aHGIZX9XvmNB2dsYP72NApLymxdoRBC2IXzD/nrGWBcF+bW6WUjOkXy3YP9mbP5KHO3HmXetjT8PF0Z2SmSsd2a0yc+BBeLDHYkhGiYmlC41/3EiB4xQfSICeLpazqwIimbHzcfYe7Wo8xcf5gIfw9Gd2nO2G5RdIryl1HthBANShMI90DjOnsftLm0MWhcXSxc2TaMK9uGcfraMhbtTufHzUeZtiqFj5cfID7Mh7FdoxjTrTlxofU/Q1YIIerL+cM9pDXE9IPF/4L2oyCwRc2vuQgvdxdGdWnOqC7NOXGqmJ+3p/Hj5iO8tWgv/1m4l67RAYztFsUtvVrg4+H8u1cI0TA59xeqABYLXPch6HL44QEoL7fZqgO93bmtdwxfT+jHykmDeWpke0rLNS/M3cm0VSk2244QouFasmQJo0aNMruMCzh/uAMExcKIVyBlGax+3y6biAzwYsIVrfjpj5cT4e9BcmaBXbYjhBC10TTCHaD7H6DdNbDoeeMEJztqGezDoewLh/kUQjRMKSkptG/fnvHjx9O2bVvuuOMOFi5cyIABA2jTpg1r165l7dq19OvXj+7du9O/f3/27NlzwXoKCgqqHC7YDE2nU1gpGP02vNEOtn0LQ+p2SnFdtAj2Zvn+TLutXwin9fMkSNtm23U26wxXv1LjYvv37+ebb75h6tSp9OrViy+//JLly5czZ84c/vWvfzF9+nSWLVuGq6srCxcu5KmnnmL27NnnreOll16qcrhgHx/HH2jRdMIdjLFnAqLhxEG7bqZliDezNxZxqrgUb/emtYuFaKzi4uLo3LkzAB07dmTIkCEopejcuTMpKSnk5uYybtw49u3bh1KKkpKSC9ZR3XDBZgyv0PSSJ6glHE+x6ybahPsC0P+V3xjcPpxhCRFc0TZMgl6ImtSihW0vNQ3n+8wzzzBo0CC+//57UlJSGDhw4AXrqG64YDM0nT73M4Ji4bh9W+7DOzbjozt7Mrh9OIt2ZTDxi410f2EB905bx6x1h8mS8WqEaHRyc3OJiooCjCn3qlLf4YJtqek1JYPjoSADNn8JXW+r14Qe1bFYFMM7NmN4x2aUlpWzNiWHBTvT+XVHOgt3ZaAUJLYMYlhCM65KiCBWTnwSosH7y1/+wrhx43jxxRe55pprqlzmmWee4bHHHqNLly6Ul5cTFxfH3LlzHVypwXmH/K1OQTbMuhMOroCO18Go/4BXkEM2rbVm57GT/LojnQU709l5zBgSoW2EL1clRDAsoRmdowKwyJg1ogmRIX+rV58hf5teuAOUl8GKt2HxS+AbAdd9BHGXO7yMwzmnWLDTCPq1KTmUlWua+XsyNCGcYQnNuKx1qAS9cHoS7tWTcL9URzYaE3rkJMNlj8HAp8DV3ZRSjhcU89vuDBbsTOf3vZmcLiljdNfmvHVLNxl9Ujg1Cffq1Sfcm16fe0VRPWDiMpj/N1j+H0haDHd8axwy6WBBPu7c0DOaG3pGU1hSxpSlybyxYC/uLhZeu7GLtOCFU9Nay8iqldS34d30jpapzN0HxrwDN0+HY5th2yyzK8LTzYVHhrTh8aFtmb0xlWd+3F7vN1qIhsrT05Ps7Gz5jFegtSY7OxtPT89LXkfTbrlXlDAWvEPtPjRBXfxxSGsKS8v4YEkSHq4uPDOqg7RuhNOJjo4mNTWVzEw5q7siT09PoqOjL/n1Eu4VhXeAzN1mV3GWUoq/DG9HYUkZU1ccwNPNwp+Ht5OAF07Fzc2NuLg4s8twOtItU1FYe8jcAw3o30OlFM+OSuD2PjG8vySJtQdyzC5JCNEISLhXFJEARSdhziOQc8Dsas5SSjG+fywA2QXF5hYjhGgUJNwr6nob9LoXts6Cd3vCd/dD5l6zqxJCiDqTcK/IzQuueQMe3QJ9H4Bdc+C93vDNeEjbbnZ1QIPqMRJCNGAS7lXxj4ThL8Fj2+DyJ2DfQvhwAHx1G6RuMLs6IYSokYT7xfiEwpBn4fFtxtmrB1fCx4Ph8+sgfadDS3G1nsS0JfWEHA8shKiRhHtteAXBwL/C49th6PNwdDNMvhKWv2WMU+MAcaE+XNc9islLk3nl590S8EKIi5JwrwsPP2MMmofWQpthsPAf8OlIY2waO1NK8cZNXbmrX0s+WprMpNnbKCuXgBdCVE3C/VL4hsEtX8B1k40zWj8YAOs+tvu3nRaL4vkxHfnj4NbMXH+YR77aSFGpY/5zEEI0LhLul0op6HoLPLgKWvSBn/4EX1wPuUfsvFnFE8Pa8fQ1HZi3LY17p62noKjUrtsUQjQ+Eu71FRAFd35vHEJ5aDVMGQzFBXbf7L2Xx/PvG7uwYn8Wj35t3lReQoiGScLdFpQyTn664xvIT4NNMxyy2ZsTW/DokLYs3JXB/ow8h2xTCNE4SLjbUuxlEN0bVv3XYUfR3NE3BncXC5+vsu+k30KIxkXC3dYG/BFOHDTObnWAUF8PrukSyeyNR8iXvnchhFWtwl0pNUIptUcptV8pNamK52OUUouVUpuUUluVUiNtX2oj0W4kBMfDinccNlbAnf1akl9UyvcbUx2yPSFEw1djuCulXID3gKuBBOA2pVRCpcWeBmZprbsDtwLv27rQRsPiAv0ehqMb4eAKh2yye4tAOkcF8NbCffxr3i7WHsihtKzcIdsWQjRMtWm59wb2a62TtdbFwNfA2ErLaMDfejsAOGq7EhuhbreDT5hxBqsDKKX413WdSWjuz6crDnDzR6vo9dJCnpi1mXnbjkl3jRBNUG1mYooCDle4nwr0qbTMc8CvSqlHAB9gqE2qa6zcvKDP/fDbi8Zoks062X2TnaMD+PyePuQVlrB0bxaLdqXz2+4Mvtt4BHcXC31bhTC0QzhDOkQQFehl93qEEOZSNY1RopS6ERihtb7Xev9OoI/W+uEKyzxhXdcbSql+wCdAJ611eaV1TQAmAMTExPQ8eNCJj/A4fRze7AgdRsH1k00pobSsnA0Hj7NodwYLdqZzIMs4/r5DpD9XdQhnaEIEnZoHYLHItH1CNBZKqQ1a68Qal6tFuPcDntNaD7fe/xuA1vrlCsvswPgDcNh6Pxnoq7XOqG69iYmJev369bX5WRqv+U/Bmg+NAcf8m5tdDUmZ+Szalc7CnRmsP5hDuYZwPw+GdIjgqoRw+rcKxdPNxewyhRAXYctwdwX2AkOAI8A64Hat9Y4Ky/wMzNRaf6aU6gAsAqL0RVbeJMI9Owne7WEMG3z5n8yu5jw5BcUs2ZPBwl3p/L4nk4LiMrzcXHh+bEduTmxhdnlCiGrUNtxr/EJVa10KPAz8AuzCOCpmh1LqBaXUGOtifwLuU0ptAb4Cxl8s2JuMkFbQ8jLY9EWDm0Ip2Med63tE8/4dPdn47FVMv7s3Ph4uLN2baXZpQggbqM0Xqmit5wHzKj32bIXbO4EBti3NSXT/A/ww0ZjoI7Zh7iIPVxeuaBtGdJA3uadLzC5HCGEDcoaqvSWMAXc/o/XewAV5u3HilIS7EM5Awt3e3H2MgN/zE5Q17OPNA73dOX6q2OwyhBA2IOHuCG2GQWEuHGnYXyAHeruRcbKIdxftY11KDsWlcparEI1VrfrcRT3FDwTlAvsWQExfs6up1oiOzViVlM0bC/bCAvB0s5DYMpi+8cH0axVC56hA3F2lPSBEY1DjoZD20iQOhaxo6ggoOQ33/252JTU6XlDMmgM5rE7OZnVyNrvTjLHivdxcSIwNom98CH3jQ+gSHYCbi4S9EI5U20MhpeXuKK0Gw+KX4PQJ8Ao0u5qLCvJxZ0SnZozo1AwwjolfeyCbVUnZrE7O4bVf9gDg7e5CYqy1ZR8fQueoAFwl7IVoECTcHcUv0rguymvw4V5ZsI87IzpFMqKT8TNk5Rex1tqyX5WUzb/nG2HvYw37fq2Mln2n5v4S9kKYRMLdUVw9jevSInPrsIFQXw9Gdo5kZGcj7DPzjLBflZzF6uQcXvl5NwC+Hq5c2S6Mf9/QBR8P+agJ4UjyG+corh7GdWmhuXXYQZifMRvUNV3Ohf3q5GxWJmXx1drDNA/w5O/XVJ4CQAhhTxLujnIm3Msaf8u9JmF+Hozu2pzRXZsDiqkrUhjbLYpOUQFmlyZEkyEdoo7iHWpc5x4xtw4HmzSiPUHe7jz1/TbKyhvW+DpCODMJd0eJ6AgWVzi6yexKHCrA241nRyewNTWX6atSzC5HiCZDumUcxc0TwhOMuVWbmNFdIpm9IZXXf9lDWbmmT1wIHSL95EgaIexIwt2RmneHnT8Yw/+qpjP7kVKKF6/txD3T1vHiT7sA47DJnrHB9IkLpndcMF2iA/BwlYlChLAVCXdHat4dNk6DE4cgqKXZ1ThUi2Bvfn38StJyC1mbksPaA9msO3D87AlR7q4WurUIPBv2PWKC5PBJIepBfnscyTfCuD6d0+TC/YxmAZ6M6dqcMV2NaQePFxSzLiWHtQdyWJuSw/tLknj3t/24WBSdmvvTOy6Y3nEh9IoNItDb3eTqhWg8JNwdycPPuC7KM7eOBiTIx51hHZsxrKMx1EF+USkbDx43wv5ADtNWHWTKsgMAtG/mR6/YYGvgBxPh72lm6UI0aBLujiThXiNfD1euaBvGFW3DACgsKWNrai5rD2Sz5kAO321M5fPVBwGIDfGmf+tQJl3dHn9PNzPLFqLBkXB3pDPhnrXP3DoaEU83l7Mt9YeB0rJydh47ydoDOaw5kMNXaw8R5uvB41e1NbtUIRoUORbNkQKiIaw9LPwHzLgZMveYXVGj4+pioUt0IPdeHs+UuxK5sm0YX609REmZTCwiREUS7o7k6gETfoerXoBDq+H9fjD3ccjPMLuyRuvOvi3JyCtiwc50s0sRokGRcHc0N08Y8Cj8cRP0ugc2Tod3esDS143JPESdDGwXTlSgF5+vOmh2KUI0KBLuZvEJgZGvwYOrIe4K+O2f8G5P2PI1lEsXQ225WBR39I1hVXI2v+1Ox6yZxYRoaCTczRbaBm77Esb/BD5h8P398NEVsPcX40xWUaNbElsQ5ufB3Z+tZ/Abv/PBkiQy8pxvaGUh6kLmUG1Iysth+2xY/CIcT4GYfjDkH9Cyn9mVNXinikuZty2NWesOszYlBxeLYnD7cG5JbMHAdmEyjo1wGrWdQ1XCvSEqLYZN0+H3f0N+OrQZBkOehWadza6sUUjKzGfW+sPM3nCErPwiwv08uLFnNDcntiA21Mfs8oSoFwl3Z1B8CtZ+BMv/A4W50OlGGPQUhLQyu7JGoaSsnN92ZzBr3WEW78mgXEPf+GBu7RXDiE7N8HSTgcpE4yPh7kxOH4cV78CaD6GsGHqMg8FPg3ew2ZU1Gmm5hXy74TCz1qdyKOcU/p6ujO0WxSODWxMuwxiIRkTC3RnlpcPSf8P6T8HT3+iq6TEOLNICra3ycs3qA9nMXHeYn7enEe7nwRf39JHuGtFoSLg7s/SdMO/PcHA5RHaDa96A6Brfa1HJ1tQTjJu6FheLhel39yahub/ZJQlRo9qGuxxC0BhFJMD4uXDDJ5CXBh8PgR8fhoIssytrVLpEB/LNxP64uShumbyKdSk5ZpckhM1IuDdWSkHnG+GR9dD/EdjylXES1NopUF5mdnWNRutwX759oD9hvh7c+ckaFu+WoSCEc5Bwb+w8/GDYizBxhXGo5Lwn4Ze/m11VoxIV6MU3E/vROtyX+6av5+u1hygrlxPIROMm4e4swtvDuP9B4j2w5gNIWWF2RY1KiK8HX93Xl8TYICZ9t40r/r2YD5YkkVNQbHZpQlwS+ULV2RQXwAf9AQUPrAR3b7MralRKy8pZuCudaSsPsio5G3dXC2O6Nueufi3pEh1odnlCyNEyTdqBZTBtFPR9EEa8bHY1jdbe9Dymr0rhu41HOFVcRrcWgYzr35KRnSPxcJXDT4U5JNybup+ehHUfw//9LGPT1NPJwhK+25DK9FUHSc4qIMTHndt6x3B7nxiaB3qZXZ5oYiTcm7qifGMyEDcvmLgcXN3NrqjRKy/XrEjKYvqqgyzalY5Siqs6RDBxYCu6tZAuG+EYcpx7U+fha5zclLUHVr5tdjVOwWJRXN4mjCl3JfL7nwdx3+XxrDmQzS0frSIzr8js8oQ4T63CXSk1Qim1Rym1Xyk1qZplblZK7VRK7VBKfWnbMsUlaTsMEsYaszxlJ5ldjVNpEezNpKvb892DAyguK+fTFQfMLkmI89QY7kopF+A94GogAbhNKZVQaZk2wN+AAVrrjsBjdqhVXIoRr4LFDX76k0z+YQdxoT6M7BTJ56sOcrKwxOxyhDirNi333sB+rXWy1roY+BoYW2mZ+4D3tNbHAbTWcppfQ+EfaQwwlrzYmMpPAt7mHhjYiryiUmasPmR2KUKcVZtwjwIOV7ifan2sorZAW6XUCqXUaqXUiKpWpJSaoJRar5Ran5mZeWkVi7rrda8xeuSyN2D+3yTgbaxTVACXtwnlk+UHyD0lrXfRMLjacD1tgIFANLBUKdVZa32i4kJa68nAZDCOlrHRtkVNLBYY/Ta4+8Dq96GkAEa9JUMF29BDg1pz6+TVdP/nr3SOCqBvqxD6xYfQKzYYHw9b/ZoJUXu1+dQdAVpUuB9tfayiVGCN1roEOKCU2osR9utsUqWoP6Vg+L+MgF/6mjHL03Ufgoub2ZU5hb7xIXz3YH+W7M5gVXI2U5cf4KPfk3G1KLpEB9CvVQj94kPp2TIIL3f5oyrsrzbhvg5oo5SKwwj1W4HbKy3zA3Ab8KlSKhSjmybZloUKG1DKmMHJzRsWPQ+lhXDTNHCRlqUt9IgJokdMEGBM2L3h4HFWJWWzKjmbD39P5r3FSbi5KLq1CKRffAh9W4XQIyZIpvsTdlGrk5iUUiOBtwAXYKrW+iWl1AvAeq31HKWUAt4ARgBlwEta668vtk45iclkqz+A+ZNkiAIHyS8qZV1KDqutYb/9SC7lGtxdLfSICaRffCj9WoXQrUUg7q5y+omonpyhKmr28yRjBMnRb0PP8WZX06Tkni5h3YEcViVnsyopm11pJ9EaPN0sJLYMpl+rEPrGB5MQGSDdOOI8Eu6iZmWl8NUtkLwE7vwB4i43u6Im68SpYlYn57DaGvZ70vMAoyetZbA3bSP8aN/Mj7bNjOvYEB9cXaSF3xRJuIvaKcyFj6+Cggy4dxGEtDK7IgFk5xexLuU4u9NOsjc9j91peaRkFXBmDhF3Fwutwn2NwLcGf7tmfkQGeGL0kgpnJeEuai8nGaYMNlryve+Dfg+BT6jZVYlKCkvK2J+Rz560vLOBvyctj7SThWeX8fN0pV3EuRZ+uwgj9AO9ZeA4ZyHhLuomcy8seRl2fA+unpB4tzE3q3+k2ZWJGuSeKmFPep5xSTvJnjQj+PMKS88uE+HvUaGF70+7CD/aRPjKkTqNkIS7uDRZ+2DZm7B1pnGSU/c7YcCjENTS7MpEHWitSTtZyB5r635PmhH++zLyKS4tB8CioGWIz9nWfbtmfiRE+hMb6mNy9eJiJNxF/RxPgeVvwaYvAA1dboXLn5A++UautKyclOxTFbp1TrI3PZ+U7IKzo1L8dUR7Hhgo73NDJeEubCP3CKx8BzZ8BmXF0HsCXP2q2VUJGztdbPTnf/D7fuZtS2PynT0Z1rGZ2WWJKshkHcI2AqKMMH9sG7QbCWs+hKI8s6sSNubl7kLn6ADevLkbXaMDeGzmZnYePWl2WaIeJNxF7fiGQ4cxxu28dHNrEXbj6ebClLsS8fd0477p62WGqUZMwl3Unp/13/S8o+bWIewq3N+TKXclkl1QxMQvNlBUWmZ2SeISSLiL2vNvblznpZlbh7C7ztEBvHFTNzYcPM7Vby9jytJksvOlFd+YSLiL2vOLBBSkbTO7EuEA13SJ5IM7ehDk7c5L83bR9+VFPDRjI0v3ZlJeLtMxNHRytIyom5l/gANL4fEd4OFndjXCQfam5zFz3WG+25jK8VMlRAV6cUuvFtyUGE1kgJfZ5TUpciiksI/UDfDxYBj2onEGq2hSikrL+HVHOjPXHWb5/iwsCga2C+eWXi0Y3D4cNxnMzO4k3IX9TBttnMn66BZw9TC7GmGSQ9mnmLX+MN9sOEz6ySLC/Dy4sWc0tyS2kLNc7UiOcxf2c9njkHcM1n9qdiXCRDEh3jw5vB0r/jqYT8Yl0q1FIJOXJjPw9SX8uLnyTJzC0STcRd3FDzIuv/wNtsw0uxphMlcXC0M6RDDlrkRWThpMbIg3325INbusJk/CXdSdUnDrDIi9DL6/3zr+jBAQ4e/J0A4RrEnO4VRxac0vEHYj4S4ujbsP3D4LWg2CHx+SLhpx1sB24RSXlbMqKdvsUpo0CXdx6dy84NavoM0wmPsYrJ1idkWiAegVF4SXmwu/7800u5QmTcJd1I+bJ9zyBbS7BuY9CV/fYQwXLJosD1cX+rcK4dcd6eSeKjG7nCZLwl3Un6sH3DwNhjwLSb/Be31g8b+g+JTZlQmT3H9lK7ILirhv+noKS2RsGjNIuAvbcHGDy/8ED6+H9tfA768aIb9zDph0LoUwT++4YN68uRtrU3J47OvNlMlwBQ4n4S5sKyAKbpwK438yhieYdSd8fi1k7jG7MuFgo7s259lRCczfkcZzc3Zg1gmTTZWr2QUIJxV7Gdy/FNZPhcUvwgf9IWEsNO8OzTpDsy7gHWx2lcLO7r4sjvSThXy0NJkIfw8eHtzG7JKaDAl3YT8urtBnAnS63uiD3/MzbJ997nn/KGvQV7gExoJF/qF0Jn8d0Z6MvCJe/3Uvob4e3No7xuySmgQJd2F/PqEw6k3jUpBlDBlc8bJvAWjrl27uftCs0/mBH9bBOCpHNEoWi+LVG7qQU1DM377fho+HK6O7Nje7LKcnA4cJ85Wchoxd5wd++nYozjeeVy4Q1u78wI/oDD4h5tYt6uR0cRnjpq5l46HwHrjiAAASzklEQVTjTL6rJ4PbR5hdUqMko0KKxq28HI4fuLCVX3GKv8rdOq0GyxjzDdzJwhJun7Kafen5TLu7N33j5Q90XUm4C+dUVbdO1h7Q5dBqCNz5ndkVihrkFBRz80erOHbiNF/e15euLQLNLqlRkXAXTUfJaVj8Eqx8Fx7bDoEtzK5I1CAtt5CbPlpJ7qkSBrYLJy7Uh/gwH+JDfYkN9cbP083sEhus2oa7fKEqGj83L0i8xwj3bbOMk6lEg9YswJMZ9/Tlhbk72XT4OP/bevS8c93C/DyItwZ+XKgPcaG+xIf50CLIG3dXOZqqNqTlLpzHJ8Pg9Al4aI0xLLFoNApLyjiUc4rkzAKSs/I5kFnAgawCkrMKyCkoPruci0XRIsiL+DBfa+j7WP8I+BLh74FqAu+7tNxF09PlFvjpCTi6CaJ6mF2NqANPNxfaRvjRNuLCL8RPnCo2gt4a+AeyCkjKzGdlUhaFJeVnl/N2dyE25Ez3jg9x1m6euDAf/JtgN4+03IXzOH0c/tMZWg+Gm6ebXY2ws/JyTdrJQmvw55NsDf7kzAJSj5+i4nA2ob7u1la+EfZxoT60CvOhRbA3Hq4u5v0Ql0Ba7qLp8QqCPvfDstchbbtxMpRwWhaLonmgF80DvRjQOvS854pKyzicc4qkM619a3fPot3pZK0/181jURAd5E2bcF/6xAfTv1UoCZH+WCyNv3tHWu7CuZzKgbe7QvyVxjjzQlSSe7rE2r1j9O0nZRWw69hJkjMLAAj0dqNvXAgDWofQv3Uo8aE+DaovX1ruomnyDoa+DxhDDqcsh5j+MlaNOE+AlxvdWgTSrdLx9Wm5haxKzmLF/mxW7s9i/o40ACL8PRjQKpR+rYywjwr0MqPsOqtVy10pNQJ4G3ABPtZav1LNcjcA3wK9tNYXbZZLy13YzekTRuu98AS4+UB4B4joCBGdICIBwhNkREpxUVprDmafYmVSNiuSsliVlH32qJ3YEG/6tQplQOsQ+sWHEOLr4dDabHYSk1LKBdgLXAWkAuuA27TWOyst5wf8BLgDD0u4C1OdOATJSyB9h/Wy3fjC9Qz/KCPkIzqeu4S0AVd300oWDVd5uWZPeh4rk4xW/ZoDOeQXlQLQvpkfA1qH0r9VCL3jgu1+ApYtw70f8JzWerj1/t8AtNYvV1ruLWAB8GfgSQl30aBoDXlpRtBn7DgX+pl7oNw6z6fFDULbnh/4ER3BL1KOmxfnKS0rZ+uRXFYlZbMyKYt1KccpLi3HxaLoEh3A40PbckXbMLts25Z97lHA4Qr3U4E+lTbWA2ihtf5JKfXnOlUqhCMoBf6RxqXN0HOPl5VA1r7zQ//gSuNM1zO8giD8TNgnGN074R3A3cfxP4doEFxdLPSICaJHTBAPDWpNYUkZGw8dZ+X+bOZsOcojX21i4RNXEubn2C6b82qs7wqUUhbgTWB8LZadAEwAiImRAftFA+DiZg3sBOCmc4+fPg7pOyFjp9Glk74DNs84NwwxCoJioe0IGPw0ePiaULxoKDzdXOjfKpT+rUIZ260517yznBfm7uTd27qbVlNtwv0IUHEkpmjrY2f4AZ2AJdbDhZoBc5RSYyp3zWitJwOTweiWqUfdQtiXVxDEDjAuZ5SXw4mD1lb+Tji2BdZ8CHt/hus+gpi+5tUrGow2EX48NKg1/1m4l2u7NWdIB3PGra9Nn7srxheqQzBCfR1wu9Z6RzXLL0H63EVTcXAlfD/R+AJ3wKMw6ClwNe9fcdEwFJeWM+rdZeQVlrLgiSvx9bDdUee17XOv8QBgrXUp8DDwC7ALmKW13qGUekEpNab+pQrRiLXsDw+sgB53wYq3YPIgY4x50aS5u1p4+foupJ0s5OV5u0ypQc5QFcJW9v4CPz5s9NcPegr6/9GYJFw0WS/9tJMpyw7w3OgExg+Is8k6bdZyF0LUUtvh8OBqaD8SFj0PHw+Go5vNrkqYaNLVHbgqIYLn5+7kp63HHLptCXchbMknBG6aBjd+ahxXP2UQzH8KivJrfq1wOi4Wxbu3dadHTBCPz9zMqqRsh21bwl0IW1MKOl0PD62FHuNg9Xvwfl/YM9/syoQJPN1c+GRcIjEh3kyYvp5dx046ZLsS7kLYi1cgjH4L7v7FOOHpq1tg1l1Gi140KYHe7ky7uzc+Hq6M/3QtqcdP2X2bEu5C2FtMX7h/mXGy05758N9esPlLs6sSDhYV6MW0u3tzuriMZfuy7L49OVpGCEfKToI5j8DBFdDlVrjmdfC4cGo54byy84vqNZKkHC0jREMU0grG/Q8GPmWMX/PRlcaZrqLJcNQQwRLuQjiaxQUG/tUI+ZJT8PFQWPORMXKlEDYi4S6EWWIvg4krIH4Q/PwX+PoOyM8wuyrhJCTchTCTTwjcPhOGvwz7foU3Oxghv+dnKCs1uzrRiMm50UKYTSno9yC0GQYbP4MtM2H3XPAJh663Qvc/QFg7s6sUjYwcLSNEQ1NWAvsXwqYvYO98KC+F6F7Q7Q7j5CjPALMrFCay2TR79iLhLkQt5GfC1plG0GfuAlcvSBhjtOZbXgYW6VltaiTchXAmWsPRjbBpBmz7FopyISAGontCcDwEt7Jex4NvuMz56sRsOYeqEMJsSkFUT+My/CXY/RNsn20cI79zDuiyc8u6+RghHxJ/LvDPBn8zae03ERLuQjQ2bl7Q+UbjAkYffe5hyE6GnAqX9J2wex6Ul5x7rauXNejjLgx+/ygJfici4S5EY+fidi6gKysvM4L/bOgfMK6z98O+BVBWVGE9HpVCP+5cl09AtHHylWg0JNyFcGYWFwiKNS6tBp//XHk5nDxyfmv/zCVpMZSerrAeN2MdFVv64e3lS90GTMJdiKbKYoHAFsYl/srznysvh/y0C0M/OxlSlkNJgbFcZFcY+tyFfziE6STchRAXsljAv7lxib3s/Oe0NoZJSFoEi1+Gz6+DuCuNkI/qYUa1ogry/5QQom6UAr8I6HY7PLIeRrwC6duNKQVnjYOs/WZXKJBwF0LUh6sH9H0AHt0CV04yvqR9rzf87zGZccpkchKTEMJ28jNg6Wuw/lOwuELsAONIG/9o4zogGgKijMMuXR0zrrmzkZOYhBCO5xsOI1+Dvg/C8jfh2FbjRKuCzCqWjbAGfxQEtDgX/AHRxn3vUDkSpx4k3IUQthccB2PePXe/5DScPAq5qRUuh41DMTN3GwOllVSaNNrFw/hC90zYnw3+Cv8JePg69udqRCTchRD25+ZlTDEY0qrq57WG08fPD/+TFW4fWAp5R0GXn/86z8Dqgz8gGvwiwaVpxlzT/KmFEA2LUuAdbFwiu1S9TFkp5B2zBv8Ro+Wfmwq5R4zrQ6uh8ESl9VqMgD8b/NYuoOA4YwYsJw5+5/3JhBDOxcX13ElX1SnKrzr4cw/D0U2w639QVmwsG9beGISt9VDH1O9gEu5CCOfh4WvMWlXdzFXl5XAqCw6uhIXPwRc3QOurjJB3stmu5KtoIUTTYbEYR/R0vBYeWgPDXoTDa+H9fjDvL3Aqx+wKbUbCXQjRNLl6QP9H4I8boed4WDcF3ukOqz8whlFu5CTchRBNm08ojHoTJq6A5t1h/iTjLNvFLxvH6Zt0omd9yRmqQghxhtaw71dY/hYcWgVoCIyB9qOMS0xf08e1lzlUhRCiPvIzYe/PsGsuJC8xJjbxDoF2VxtBHz/QOH7fwSTchRDCVoryjLNod/8Ee3+BopPGXLWthxhB33YYeAU5pBQZW0YIIWzFww86XmdcSoshZZkR9Lt/gl1zrIOkXWYEfddbjeVNJi13IYS4VOXlcHSjcXLU7rnG3LThHeH2mRc/2aoeattyl6NlhBDiUlksEJ0IVz0Pj2yAP8w2zob9eAgc2WhuaaZuXQghnEnroXDPr8aIlp+ONFr0JqlVuCulRiil9iil9iulJlXx/BNKqZ1Kqa1KqUVKqZa2L1UIIRqB8A5w3yKI6Agz74SV75pyrHyN4a6UcgHeA64GEoDblFIJlRbbBCRqrbsA3wL/tnWhQgjRaPiGw/i5kDAGfn0alr3u8BJq03LvDezXWidrrYuBr4GxFRfQWi/WWp8ZaX81EG3bMoUQopFx84IbP4O4K2DL1w7ffG3CPQo4XOF+qvWx6twD/FyfooQQwilYLMbJTtn7jclIHLlpW65MKfUHIBF4rZrnJyil1iul1mdmVjGnohBCOJso61GLRzY4dLO1CfcjQMUDNqOtj51HKTUU+DswRmtdVNWKtNaTtdaJWuvEsLCwS6lXCCEal+bdAQWpjj2vpzbhvg5oo5SKU0q5A7cCcyouoJTqDnyEEewZti9TCCEaKU9/aNYZtn/n0KGEawx3rXUp8DDwC7ALmKW13qGUekEpNca62GuAL/CNUmqzUmpONasTQoimZ9BTkLUHVr/vsE3K8ANCCOEIX91mjC758Dpjsu5LJMMPCCFEQzLiFeNkpvl/c8jmJNyFEMIRglrCFU8ao0juW2j3zcmQv0II4Sj9HzEm5Hb1sPumJNyFEMJRXD3gjlkO2ZR0ywghhBOScBdCCCck4S6EEE5Iwl0IIZyQhLsQQjghCXchhHBCEu5CCOGEJNyFEMIJmTZwmFIqEzh4iS8PBbJsWI6tSF11I3XVXUOtTeqqm/rU1VJrXeOEGKaFe30opdbXZlQ0R5O66kbqqruGWpvUVTeOqEu6ZYQQwglJuAshhBNqrOE+2ewCqiF11Y3UVXcNtTapq27sXlej7HMXQghxcY215S6EEOIiGnS4K6VGKKX2KKX2K6UmVfG8h1JqpvX5NUqpWAfU1EIptVgptVMptUMp9WgVywxUSuVaJwvfrJR61t51WbebopTaZt3mBRPUKsM71v21VSnVwwE1tauwHzYrpU4qpR6rtIzD9pdSaqpSKkMptb3CY8FKqQVKqX3W66BqXjvOusw+pdQ4O9f0mlJqt/V9+l4pFVjNay/6ntuptueUUkcqvF8jq3ntRX9/7VDXzAo1pSilNlfzWrvss+qywbTPl9a6QV4AFyAJiAfcgS1AQqVlHgQ+tN6+FZjpgLoigR7W237A3irqGgjMNWGfpQChF3l+JPAzoIC+wBoT3tM0jON0TdlfwBVAD2B7hcf+DUyy3p4EvFrF64KBZOt1kPV2kB1rGga4Wm+/WlVNtXnP7VTbc8CTtXivL/r7a+u6Kj3/BvCsI/dZddlg1uerIbfcewP7tdbJWuti4GtgbKVlxgLTrLe/BYYopZQ9i9JaH9Nab7TezgN2AVH23KYNjQWma8NqIFApFenA7Q8BkrTWl3ryWr1prZcCOZUervg5mgZcW8VLhwMLtNY5WuvjwAJghL1q0lr/qrUutd5dDUTbYlt1Vc3+qo3a/P7apS5rBtwMfGWr7dWypuqywZTPV0MO9yjgcIX7qVwYomeXsf4i5AIhDqkOsHYDdQfWVPF0P6XUFqXUz0qpjg4qSQO/KqU2KKUmVPF8bfapPd1K9b9wZuyvMyK01sest9OAiCqWMXPf3Y3xH1dVanrP7eVha5fR1Gq6GczcX5cD6VrrfdU8b/d9VikbTPl8NeRwb9CUUr7AbOAxrfXJSk9vxOh66Aq8C/zgoLIu01r3AK4GHlJKXeGg7dZIKeUOjAG+qeJps/bXBbTxP3KDOYRMKfV3oBSYUc0iZrznHwCtgG7AMYwukIbkNi7earfrPrtYNjjy89WQw/0I0KLC/WjrY1Uuo5RyBQKAbHsXppRyw3jzZmitv6v8vNb6pNY633p7HuCmlAq1d11a6yPW6wzge4x/jSuqzT61l6uBjVrr9MpPmLW/Kkg/0z1lvc6oYhmH7zul1HhgFHCHNRQuUIv33Oa01ula6zKtdTkwpZptmvJZs+bA9cDM6pax5z6rJhtM+Xw15HBfB7RRSsVZW323AnMqLTMHOPOt8o3Ab9X9EtiKtT/vE2CX1vrNapZpdqbvXynVG2M/2/WPjlLKRynld+Y2xhdy2ystNge4Sxn6ArkV/l20t2pbU2bsr0oqfo7GAT9WscwvwDClVJC1G2KY9TG7UEqNAP4CjNFan6pmmdq85/aoreL3NNdVs83a/P7aw1Bgt9Y6taon7bnPLpIN5ny+bP2NsS0vGEd37MX41v3v1sdewPjAA3hi/Ju/H1gLxDugpssw/q3aCmy2XkYCE4GJ1mUeBnZgHCGwGujvgLrirdvbYt32mf1VsS4FvGfdn9uARAe9jz4YYR1Q4TFT9hfGH5hjQAlGv+Y9GN/TLAL2AQuBYOuyicDHFV57t/Wzth/4PzvXtB+jD/bMZ+zMUWHNgXkXe88dsL8+t35+tmIEV2Tl2qz3L/j9tWdd1sc/O/O5qrCsQ/bZRbLBlM+XnKEqhBBOqCF3ywghhLhEEu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4of8HOxEhzr3d4vsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -266,10 +267,8 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "model_code = '''\n", @@ -347,20 +346,48 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, + "execution_count": 6, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n", - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_14429915565770599621.pystan_2_12_0_0.stanmodel.pkl\n", - "INFO:stancache.stancache:StanModel: Loading result from cache\n", - "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n", - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_14429915565770599621.pystan_2_12_0_0.stanfit.chains_4.data_25476010973.iter_5000.seed_9001.pkl\n", + "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_14429915565770599621.pystan_2_18_1_0.stanmodel.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: Loading result from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_14429915565770599621.pystan_2_18_1_0.stanfit.chains_4.data_36753546383.iter_5000.seed_9001.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } @@ -383,32 +410,28 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ - "# 0:00:40.518775 elapsed" + "# 0:01:33.270480 elapsed" ] }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, + "execution_count": 8, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -278.113380 0.021718 1.358348 -281.579969 -277.815032 -276.424942 1.000465\n", - "alpha 1.220129 0.002561 0.170488 0.913076 1.209632 1.581949 1.000245\n", - "beta[0] -2.703902 0.003699 0.226779 -3.173168 -2.695839 -2.275841 1.000271\n", - "beta[1] 0.608266 0.002897 0.199169 0.221442 0.606373 1.003776 1.000226\n", - "beta[2] 0.006018 0.000183 0.014844 -0.023068 0.005959 0.035536 1.000075\n" + "lp__ -272.845825 0.022499 1.435829 -276.502302 -272.511241 -271.047870 1.000226\n", + "alpha 1.023739 0.002147 0.152227 0.755217 1.014877 1.349258 1.001638\n", + "beta[1] -3.029740 0.004090 0.274891 -3.614153 -3.011143 -2.532143 1.001077\n", + "beta[2] 0.618876 0.003042 0.239763 0.156590 0.614498 1.108694 1.000019\n", + "beta[3] -0.003055 0.000162 0.013851 -0.030628 -0.002910 0.023814 1.000772\n" ] } ], @@ -425,10 +448,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, + "execution_count": 9, + "metadata": {}, "outputs": [], "source": [ "model_code2 = '''\n", @@ -475,20 +496,48 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, + "execution_count": 10, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n", - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_9177012762674257483.pystan_2_12_0_0.stanmodel.pkl\n", - "INFO:stancache.stancache:StanModel: Loading result from cache\n", - "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n", - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_9177012762674257483.pystan_2_12_0_0.stanfit.chains_4.data_25476010973.iter_5000.seed_9001.pkl\n", + "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_9177012762674257483.pystan_2_18_1_0.stanmodel.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: Loading result from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_9177012762674257483.pystan_2_18_1_0.stanfit.chains_4.data_36753546383.iter_5000.seed_9001.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } @@ -511,32 +560,33 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ - "# 0:00:21.081723 elapsed" + "# 0:01:20.742172 elapsed" ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, + "execution_count": 12, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -278.122019 0.022342 1.367441 -281.523430 -277.808097 -276.440635 1.001051\n", - "alpha 1.218976 0.002590 0.171529 0.906313 1.208893 1.586105 1.000714\n", - "beta[0] -2.704073 0.003788 0.228848 -3.187193 -2.693108 -2.287256 1.000886\n", - "beta[1] 0.604867 0.002814 0.201056 0.208092 0.605508 0.993031 1.000143\n", - "beta[2] 0.006629 0.000188 0.014733 -0.021872 0.006506 0.036200 1.000063\n" + "lp__ -272.859001 0.023962 1.470993 -276.580657 -272.522315 -271.028212 1.000202\n", + "alpha 1.022005 0.002037 0.150233 0.749135 1.014273 1.341307 1.000132\n", + "beta[1] -3.032481 0.003923 0.273614 -3.612430 -3.020702 -2.543998 1.000088\n", + "beta[2] 0.614401 0.003031 0.241061 0.152624 0.610390 1.103668 0.999922\n", + "beta[3] -0.003198 0.000161 0.013956 -0.031153 -0.003048 0.023837 0.999972\n" ] } ], @@ -553,10 +603,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ "model_code3 = '''\n", @@ -600,20 +648,48 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, + "execution_count": 14, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n", - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_1293841621968646714.pystan_2_12_0_0.stanmodel.pkl\n", - "INFO:stancache.stancache:StanModel: Loading result from cache\n", - "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n", - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_1293841621968646714.pystan_2_12_0_0.stanfit.chains_4.data_25476010973.iter_5000.seed_9001.pkl\n", + "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_1293841621968646714.pystan_2_18_1_0.stanmodel.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: Loading result from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_1293841621968646714.pystan_2_18_1_0.stanfit.chains_4.data_36753546383.iter_5000.seed_9001.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } @@ -636,32 +712,28 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, + "execution_count": 15, + "metadata": {}, "outputs": [], "source": [ - "#0:00:20.284146 elapsed" + "# 0:00:42.036498 elapsed" ] }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, + "execution_count": 16, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -278.092768 0.021055 1.344719 -281.491359 -277.783232 -276.425885 1.000812\n", - "alpha 1.216429 0.002640 0.166944 0.905732 1.207800 1.576275 1.000432\n", - "beta[0] -2.708385 0.003770 0.220966 -3.173480 -2.697460 -2.307317 1.000622\n", - "beta[1] 0.609834 0.002799 0.199563 0.223234 0.609396 1.008451 1.000295\n", - "beta[2] 0.006028 0.000180 0.014812 -0.022443 0.006036 0.036197 1.000265\n" + "lp__ -272.836212 0.023769 1.461660 -276.474541 -272.493666 -271.040873 1.001796\n", + "alpha 1.023676 0.001992 0.149010 0.746153 1.017081 1.331976 0.999766\n", + "beta[1] -3.030396 0.004034 0.267378 -3.606247 -3.013798 -2.553470 1.000366\n", + "beta[2] 0.619250 0.003194 0.242402 0.156037 0.617779 1.106182 1.000445\n", + "beta[3] -0.003286 0.000155 0.013740 -0.030794 -0.003000 0.023025 1.000123\n" ] } ], @@ -678,10 +750,8 @@ }, { "cell_type": "code", - "execution_count": 40, - "metadata": { - "collapsed": true - }, + "execution_count": 17, + "metadata": {}, "outputs": [], "source": [ "model_code4 = '''\n", @@ -755,30 +825,49 @@ }, { "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": false - }, + "execution_count": 18, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n", - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_16881928540873162731.pystan_2_12_0_0.stanmodel.pkl\n", - "INFO:stancache.stancache:StanModel: Starting execution\n", - "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_b18a6495e568fcff90662e16a3d2aa85 NOW.\n", - "INFO:stancache.stancache:StanModel: Execution completed (0:01:09.439292 elapsed)\n", - "INFO:stancache.stancache:StanModel: Saving results to cache\n", - "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n", - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_16881928540873162731.pystan_2_12_0_0.stanfit.chains_4.data_25476010973.iter_5000.seed_9001.pkl\n", - "INFO:stancache.stancache:sampling: Starting execution\n", - "INFO:stancache.stancache:sampling: Execution completed (0:00:06.245552 elapsed)\n", - "INFO:stancache.stancache:sampling: Saving results to cache\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stancache/stancache.py:284: UserWarning: Pickling fit objects is an experimental feature!\n", - "The relevant StanModel instance must be pickled along with this fit object.\n", - "When unpickling the StanModel must be unpickled first.\n", - " pickle.dump(res, open(cache_filepath, 'wb'), pickle.HIGHEST_PROTOCOL)\n" + "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_16881928540873162731.pystan_2_18_1_0.stanmodel.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:StanModel: Loading result from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_16881928540873162731.pystan_2_18_1_0.stanfit.chains_4.data_36753546383.iter_5000.seed_9001.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } ], @@ -800,32 +889,28 @@ }, { "cell_type": "code", - "execution_count": 42, - "metadata": { - "collapsed": true - }, + "execution_count": 19, + "metadata": {}, "outputs": [], "source": [ - "# 0:00:06.245552 elapsed" + "# 0:00:16.703755 elapsed" ] }, { "cell_type": "code", - "execution_count": 43, - "metadata": { - "collapsed": false - }, + "execution_count": 20, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -278.097416 0.020380 1.353386 -281.543138 -277.782205 -276.445123 0.999867\n", - "alpha 1.216149 0.002525 0.169578 0.913312 1.206908 1.574024 1.000702\n", - "beta[0] -2.708518 0.003627 0.228658 -3.188661 -2.700493 -2.278788 1.000723\n", - "beta[1] 0.610593 0.002824 0.201974 0.224438 0.607700 1.030164 1.000744\n", - "beta[2] 0.006211 0.000171 0.014493 -0.022229 0.006113 0.035095 1.000222\n" + "lp__ -272.823550 0.022981 1.461548 -276.488239 -272.492426 -271.021688 1.000197\n", + "alpha 1.023161 0.002054 0.150942 0.749636 1.011858 1.346196 1.000033\n", + "beta[1] -3.030795 0.003943 0.275100 -3.610841 -3.013843 -2.531514 0.999949\n", + "beta[2] 0.615333 0.002998 0.240180 0.152485 0.613556 1.096432 0.999838\n", + "beta[3] -0.003085 0.000159 0.013548 -0.030261 -0.002951 0.023048 1.000245\n" ] } ], @@ -842,19 +927,19 @@ }, { "cell_type": "code", - "execution_count": 44, - "metadata": { - "collapsed": false - }, + "execution_count": 21, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAHrCAYAAACNT7MTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XtcVVX+//HXPoDiAeUOIumEGniZMcTKvHSdGie8p/ab\nLMtLmnwzzW+N5kiZVn4Vp9HU0rKmxr5pF03CpGls5utUU6Y5Y9OYkopmIaLcDDggHM75/aHsOIHI\n5XB/Px+PHo999t5rrc9hrYoPa+29DKfT6URERERERETaPEtTByAiIiIiIiLNgxJEERERERERAZQg\nioiIiIiIyAVKEEVERERERARQgigiIiIiIiIXKEEUERERERERQAmiiIiIiIiIXKAEUURERERERADw\nbOoApPlzOp3k5BTicDibOhSpwGIxCAz0Ud80Q+qb5k3903ypb5ov9U3zZrEYBAX5NnUY0kpoBlEu\nyTAMLBajqcOQn7BYDPVNM6W+ad7UP82X+qb5Ut80b+oXcScliCIiIiIiIgIoQRQREREREZELlCCK\niIiIiIgIoARRRERERERELtBbTEVERERExK0KCgooLi5utPa8vb3x9dWbXN1BCaKIiIiIiLhNQUEB\n06bdh81W2GhtWq0+vPzyS80ySZw0aRJ9+vRhwYIFNbp/27ZtLF26lL179zZwZFVTgigiIiIiIm5T\nXFyMzVaI9fJbMTw7NHh7TnsRtuM7KS4ubpYJYl0YRvVbl6xfv55du3Zx6NAh2rVrx549e9zWthJE\nERERERFxO8OzAxYva4O342jwFpofu93ObbfdRv/+/dm6datb61aCKCIiIiIibcqkSZOIjo7GYrGQ\nlJSEl5cXDz30ECNGjGDJkiV88MEHBAcHk5CQwPXXX2+W27NnDytWrODQoUP4+fkxduxY5s6di8Vy\n/t2fRUVFLFq0iJ07d+Lr68vUqVMrtV1SUsLKlSvZsWMH+fn5REVF8fDDD3PNNdfUOP5Zs2YB55ej\nupveYioiIiIiIm1OUlISgYGBbNmyhUmTJvHEE08wZ84cYmNjSUpKYsiQIcyfP59z584BkJmZyf33\n38+VV15JcnIyixcvZsuWLTz//PNmncuXL+eLL75g/fr1/PGPf+Tzzz/nwIEDLu0uWbKEL7/8klWr\nVpGcnMyvf/1rpk+fzokTJxr1+1+MEkQREREREWlzevXqxcyZM+nWrRszZsygXbt2BAYGMmHCBLp1\n68YDDzxAbm4uqampAGzatInw8HASEhKIjIzkl7/8JQ8++CCvvPIKADabja1bt/Loo48ycOBArrji\nCpYvX47D8eMi2JMnT7Jt2zaeffZZYmNj6dq1K1OmTCE2NtbtS0XrSktMRdqg4uJi0tO/r1d5OP9K\n6bqKiLisXuVFRERE6iM6Oto8tlgsBAQEEBUVZZ4LDg4GIDs7G4C0tDRiYmJc6oiNjcVms3Hq1Cny\n8vKw2+3069fPvO7n50dkZKT5+fDhw5SVlTFs2DCcTqd5vrS0lICAAPd+wTpSgijSBqWnf8/TTz/e\npDEsXLiEHj16NmkMIiIi0nZ5elZOhao6Vz4D6HQ6L/p20Yrnq3sDaWFhIZ6enmzbts18brGc1drw\nL/SpCS0xFRERERERuYQePXrwr3/9y+Xcvn378PHxISwsjG7duuHh4cH+/fvN62fPnuX48ePm5z59\n+lBWVkZWVhZdu3Z1+ScoKKixvkq1NIMo0sa1D78aj/b+Nb6/7NxZzmXsuVD2Gjza+9WibB7nMppm\n01cRERFpXE57UaNsQeG0FzVCKzBx4kQ2btzIk08+yV133UVaWhpr165lypQpwPkZwPHjx5OYmIif\nnx+BgYGsWrXKZabw8ssvZ8SIEcyfP5/58+fTu3dvcnJy2L17N9HR0dxwww01iiUjI4OzZ8+Snp5O\nWVkZhw4dAqBbt271nolUgijSxnm098ejQ93+YuXR3q/OZUVERKR18vb2xmr1wXZ8Z6O1abX61Ord\nBlUtA73UubCwMDZs2EBiYiJjxozBz8+PO+64g/j4ePOeefPmUVRURHx8PD4+PkydOpWCggKXOpct\nW8a6detYvnw5mZmZ+Pv7079/f2666aYax7969WqSkpLMz2PHjgVg48aNXH311TWupyqGs+LTkSIX\nkZtbiN3eFrchbb48PS0EBPjUqW+OHj1iPoNovfzWWiV5ZUXZ5n/w61O2NT+DWJ++kYan/mm+1DfN\nl/qmeSvvn+akoKDAfKldY/D29sbX17fR2mvNNIMoIiIiIiJu5evrq4SthdJLakTqyWazYbPZmjoM\naWDqZxEREWkLlCCK1IPNZmPevNnMmzdbyUMrpn4WERGRtkIJokg9ZGScNGeWMjJONnU40kDUzyIi\nItJWKEEUERERERERQC+pkWZs//59gAE4AYOYmFjz2jvvvEVq6kH8/QMYNGgoMTGx7N+/j88++4TO\nnbswduwE83NeXi69evXF6XSSmXmKvLwcAgICcTqdGIbBzJmzWbfuWb7++gDt2rVziSE/P5/27dtj\nt9spLS3FYrHgcDhwOMqAql+HLK3b4cOp5Oef5e23N1NcXIy3dwd8fX0pKMjH17cjCxYsYsuWN+nQ\noR1dunSjrMxJVWO4OuVjv6b3i4iIiLiLEkRplkpLS9i0aSMATqcTi8VC374/x8urHTZbASkpyTgc\n51+zfezYEaKionj99T+RnZ2FxWLh5ptvMT8DHD78DYZhUNWuLnFxo9i793MACgsrx2K3l5rH5Ylh\nuYr1VbxPWq8PPtiBxWIhNzenyusnThznvffeBSAgIND8I4JhGOYYrk752K/p/SIiIiLupCWm0izt\n2JFMVtYZsrLOkJ2dxZkzp0lJ2Q7A6tV/MJNDgKysLNasWWkmgw6Hg6eeWmR+LnexLT+XLElwS8yf\nfvqJW+qR5u3s2byLJodwfjydn2V2kJ2dZY7jimO4OuVjv6b3i4iIiLiTZhCl2Tl9OpP336/8i3FK\nSjJhYZ355ptDla6lph50+fzT5LA6FZPN+vj44/+jX78Y/P0D3FLfpXh6GnTs2IH8/CLs9qqT34tJ\nT/+ugaJqWTHU1KFDB2p8b3XjKSUlmcGDryMkJLTK6z8d+5e6X0REpLkqKCiguLi40drz9vbWvotu\nogRRmp3NmzdSWlp5uWZpaSl//OMLTRBRzT333MqmDqHWnI7GWxpbsa1XX93QaO02F6WlpWza9Cfm\nzPltldd/OvYvdb+IiEhzVFBQwLT7pmErbLytoaw+Vl5+6eVmmSROmjSJPn36sGDBghrdv23bNpYu\nXcrevXsbOLKqKUEUERERERG3KS4uxlZow+/GLhjeDZ9uOIvtnN11kuLi4maZINZFdS9CTE9P5/nn\nn2f37t1kZWURFhbGyJEjmTlzJl5eXvVuWwmiNDt33nkPX3/9n0qziF5eXkyZMoMXX3yuiSK7tAce\nmNtilpiWz+AZlvr/h6SmKrY1efJ0IiK6Nlrb9XHo0AG2bn2z3vV4eXkxceK9F73+07F/qftFRESa\nM8PbEw9rw6cbZZe+pVVJS0vD6XTy1FNP0bVrVw4fPkxCQgJFRUXMmzev3vUrQZRmJzQ0jNtuG0ly\n8jsu5+PiRnHttUPYteuvlZ5DjI7u7fIcYlBQcI2fQyzfuqK+rrvuJgYMuLre9dSUp6eFgAAfcnML\nsdvd8xxlY4qI6EqPHj2bOgy3q248xcWNqvZ5wp+O/UvdLyIiInUzadIkoqOjsVgsJCUl4eXlxUMP\nPcSIESNYsmQJH3zwAcHBwSQkJHD99deb5fbs2cOKFSs4dOgQfn5+jB07lrlz52KxnH/3Z1FREYsW\nLWLnzp34+voyderUSm2XlJSwcuVKduzYQX5+PlFRUTz88MNcc801NYr9uuuu47rrrjM/X3bZZUyd\nOpU33njDLQmi3mIqzdLw4aMIDg4hODiEoKBgQkJCiYsbCcDs2f9t/ksIEBwczIMPziUoKBg4/wt6\nQsJi83O5i03VP/74U26JefDgoW6pR5o3Pz9/AgICL3r98cefwmKxYLFYCAoKNsdxxTFcnfKxX9P7\nRUREpG6SkpIIDAxky5YtTJo0iSeeeII5c+YQGxtLUlISQ4YMYf78+Zw7dw6AzMxM7r//fq688kqS\nk5NZvHgxW7Zs4fnnnzfrXL58OV988QXr16/nj3/8I59//jkHDri+7G7JkiV8+eWXrFq1iuTkZH79\n618zffp0Tpw4Uefv8sMPP+Dn51fn8hVpBlGaJS+vdkyceA9gUL7JePl+cFarL3Fxo0hNPYi/fwCD\nBg3FavXlrrvu5bPPPqFz5y74+QWYn/PycunVqy9Op5PMzFPk5eUQEBCI0+nEMAy6dbucq68eyNdf\nH6BdO9c95/Lz82nfvj12u53S0lJzdqh8P8SKeyt6ejbeUk1pOsOGDadz5868/fZmiouL8fbugK+v\nLwUF+fj6dqRbt8sZMWI0HTq0o0uXbpSVOfnpGK5OxbGvPRBFREQaTq9evZg5cyYAM2bM4IUXXiAw\nMJAJEyYA8MADD7B582ZSU1Pp168fmzZtIjw8nISE81ukRUZGkpmZyTPPPMOsWbOw2Wxs3bqVZ555\nhoEDBwLnE8YbbrjBbPPkyZNs27aNXbt2ERISAsCUKVP46KOP2Lp1K3Pnzq319/j22295/fXXefTR\nR+v18yinBFGarZiYARe9dvvtd1R5f8UyP/1cnfj4ObUPEDh69AhPP/14ncpKy3TFFdH06NGz2rE1\nfvz/q9fy35qOWxEREam76Oho89hisRAQEEBUVJR5Ljj4/Gq07Oxs4PyzfzExMS51xMbGYrPZOHXq\nFHl5edjtdvr162de9/PzIzIy0vx8+PBhysrKGDZsmMse3aWlpQQE1P49FpmZmUyfPp24uDjGjx9f\n6/JVUYIoUg/h4V2wWq3msbRO6mcREZHWx9OzcipU1bnydwuUrz6rSsXz1b2BtLCwEE9PT7Zt2+by\nyBRg/q5RU5mZmdxzzz0MGDCAJUuW1KpsdZQgitSD1WolMXG1eSytk/pZREREevTowc6dO13O7du3\nDx8fH8LCwujYsSMeHh7s37+fYcOGAXD27FmOHz9uvoCmT58+lJWVkZWVxYABdV8xVJ4c/uIXv2Dp\n0qV1/1JVUIIoUk9KGNoG9bOIiEjtOIvtjbIFhbPY3gitwMSJE9m4cSNPPvkkd911F2lpaaxdu5Yp\nU6YA539XGD9+PImJifj5+REYGMiqVatcZgovv/xyRowYwfz585k/fz69e/cmJyeH3bt3Ex0d7fK8\n4sWcPn2aSZMmERERwW9/+1tzCSz8uCy2PpQgioiIiIiI23h7e2P1sXJ218lGa9PqY8Xb27vG91e1\nDPRS58LCwtiwYQOJiYmMGTMGPz8/7rjjDuLj48175s2bR1FREfHx8fj4+DB16lQKCgpc6ly2bBnr\n1q1j+fLlZGZm4u/vT//+/bnppptqFPs//vEPvvvuO7777jtuvPFG4MflrwcPHqy+cA0YzopPR4pc\nREvda681q88+iBVfrmO9/FY8OgTVuGxZUTa24zvrXXbhwiWtch9EaPl7VLZ26p/mS33TfKlvmrfy\n/mlOCgoKKC4ubrT2vL298fX1bbT2WjPNIIq0cWXn8mp5/9kqjxuiLREREWmZfH19lbC1UEoQRdqY\n4uJi0tO/Mz+fy9hb57rOZeypc9n09O+IiLisVstBRERERKRhWS59i4i0Junp3/PqqxuaOgxefXUD\n6enfN3UYIiIiIlKBEkQREREREREBtMRUpE3ziQ3Go1O7Wpez/1CC7Z9ZAFhjg/GsRR1lP5RQeKGs\niIiIiDQvShBF2jCPTu3wCqzfM4CebqhDRERERJoHLTEVERERERERQAmiiIiIiIiIXKAlpiJ1ZLPZ\nALBarU0ciTQm9buIiMilFRQUUFxc3GjteXt7N9t9FydNmkSfPn1YsGBBje7ftm0bS5cuZe/eum9F\nVh9KEEXqwGazMW/ebAASE1crWWgj1O8iIiKXVlBQwH3TplF44Y+qjcHHauWll19utklibRmGUe31\n+Ph4Dh06RHZ2Np06dWLw4ME88sgjhIaG1rttJYgidZCRcdKcScrIOEmPHj2bOCJpDOp3ERGRSysu\nLqbQZmNcRz+sloZ/os3mcLA1/yzFxcWtJkG8lGuvvZb4+HhCQkLIzMxk2bJlzJkzh82bN9e7biWI\nIiIiIiLidlaLBV+LR1OHUaVJkyYRHR2NxWIhKSkJLy8vHnroIUaMGMGSJUv44IMPCA4OJiEhgeuv\nv94st2fPHlasWMGhQ4fw8/Nj7NixzJ07F8uFRLioqIhFixaxc+dOfH19mTp1aqW2S0pKWLlyJTt2\n7CA/P5+oqCgefvhhrrnmmhrHf++995rH4eHhzJgxg1mzZlFWVoaHR/1+5koQpdnav38fYBATE2ue\ne+edt8jMPMWgQUPN8z+9b//+fbz//nsA+PsH0LlzOJGR3Xn//e2AwW23jQScpKWlYRhOPvnkIwC8\nvTuQmXmqylj8/Pzw9u7AqVMZOJ0O8z8C0nb94Q//g79/IF27dmXmzNmVxuGePXsoKCimrMzBT8ex\niIiINL2kpCTuu+8+tmzZQkpKCk888QQ7d+7k1ltvJT4+nldeeYX58+eza9cu2rdvT2ZmJvfffz/j\nxo0jMTGRtLQ0EhISaN++PbNmzQJg+fLlfPHFF6xfv57AwECeeeYZDhw4QJ8+fcx2lyxZQlpaGqtW\nrSIkJIQPP/yQ6dOns337drp161br75GXl8f27duJjY2td3IIShClmSotLWHTpo0YhkHfvj/Hy6sd\nNlsBO3a8i9Pp5NixI/Tt+3MAl/sAXnvtFXJzc8y6LBYLnTr5kZeXC0B29hnAIC8vF4fDUaN4KtYH\n1LictF5FRUUUFaWTkZHO+PG/cRmHDoeFF198EYfDicNx/g8K5eNYREREmodevXoxc+ZMAGbMmMEL\nL7xAYGAgEyZMAOCBBx5g8+bNpKam0q9fPzZt2kR4eDgJCQkAREZGkpmZyTPPPMOsWbOw2Wxs3bqV\nZ555hoEDBwLnE8YbbrjBbPPkyZNs27aNXbt2ERISAsCUKVP46KOP2Lp1K3Pnzq1x/L///e95/fXX\nKSoqIiYmhhdeeMEtPxcliNIs7diRTFbWGQBSUrYzevQ4Vq/+A06nE4CsrCxSUrbjdDpd7nM6nVUm\nc+XJIUBOjut1kfpatOh3FBWdfzYxJWU7hgGZmZku95SPYxEREWkeoqOjzWOLxUJAQABRUVHmueDg\nYACys7MBSEtLIyYmxqWO2NhYbDYbp06dIi8vD7vdTr9+/czrfn5+REZGmp8PHz5MWVkZw4YNM3+v\nBSgtLSUgIKBW8d93331MmDCBkydPsnbtWubNm+eWJFEJojQ7p09nXlgOel5KSjJhYZ355ptDLve9\n916SyxueduxIpqzM3mhxltu+/R1Gjry90dv19DTo2LED+flF2O3OSxe4ID39uwaMqnaaUyw1kZz8\nTpXny5NDgB073gUqv3ksJSWZwYOvIySk/m8XExERkfrz9KycClV1rnzlmNPpvOjbRSuer+4NpIWF\nhXh6erJt27ZKjyzV9u3o/v7++Pv787Of/Yzu3btzww038OWXX3LllVfWqp6fUoIozc7mzRspLS01\nP5eWlvLHP1b+a0hZWZnLZ7u9tNI9jeHf/97Pv/+9v0nari+nvfGXylZs89VXNzR6+w3Nbq/6jxSl\npaVs2vQn5sz5bSNHJCIiIu7Qo0cPdu7c6XJu3759+Pj4EBYWRseOHfHw8GD//v0MGzYMgLNnz3L8\n+HHzBTR9+vShrKyMrKwsBgwY4LbYyn8vLikpqXddShBFREREREQuYeLEiWzcuJEnn3ySu+66i7S0\nNNauXcuUKVOA8zOA48ePJzExET8/PwIDA1m1apXLTOHll1/OiBEjmD9/PvPnz6d3797k5OSwe/du\noqOjXZ5XvJh///vffPXVVwwYMIBOnTrx7bffsnr1an72s59VWgJbF0oQpdm58857+Prr/5iziF5e\nXkyZMoMXX3zO5T4PDw8MwzBnbDw9vSgrs7us524M/frFtLglpuUzd4Zn47+NtWKbkydPJyKia6PH\nUFfJye/w1VfVzxafX5piVJrR9vLyYuLEe6suJCIi0grZGumlfnVpp6ploJc6FxYWxoYNG0hMTGTM\nmDH4+flxxx13EB8fb94zb948ioqKiI+Px8fHh6lTp1JQUOBS57Jly1i3bh3Lly8nMzMTf39/+vfv\nz0033VSj2L29vfnLX/7CmjVrKCoqIiQkhOuvv56ZM2fi5eVV0x/BRRnOxv5tWlqk3NxC7I24HDEp\naYv5vNfo0eMYPXocy5YtcXkOcfTocTidTpf7Kn5uLAsXLmmSDdM9PS0EBPjUum+OHj3C008/DkCn\nG7vgFehd67ZLc4r5YdfJOtVRsWxT/ezqquLPrqIOHazmc4ijR4/DMCApaavLPeXjWJpeXf/dkYan\nvmm+1DfNW3n/NBcFBQXcN20ahTbbpW92Ex+rlZdefhlfX99Ga7O10gyiNEvDh4/i008/xjAM4uJG\nAjB79n/z4IP343Q6CQ4ONs//9L6PP95V7TYXgYGB1HabC5HqLF68lMTEp81x6OFh4bPPPnHZ5qJ8\nfIqIiLR2vr6+vPTyyxQXFzdam97e3koO3UQJojRLXl7tmDjxHsAw946zWn0ZPnw0mZmnGDRoqHn+\np/dNmjSF999/DwB//wA6dw4nMrL7hTejGtx220jASVpaGobh5JNPPgLA27sDmZmnqozHz88Pb+8O\nnDqVgdN5/hd+JZdtW4cOHfD3D6Rr164EB4e6jENPTwszZsygoKCYsjIHFceniIhIW+Dr66uErYVS\ngijNVkxM5Tc73X77HZe8LyZmQJVlq7oPYOzYynVeysWWGkrb8d//vcBleexPx9c111yjpVgiIiLS\n4jT+GypERERERESkWdIMokgdhId3MTczDQ/v0sTRSGNRv4uIiEhrpwRRpA6sViuJiavNY2kb1O8i\nIiLS2mmJKbBgwQJmzZpV4/t79erFX//61waMyL327NlDr169Ku3BIvVjtVqVJLRB6ncRERFpzZQg\nNqHyDd4bmtPpxDCMRt9AXkREREREWhYliD8xadIknnrqKVasWMHAgQMZOnQoa9euNa/ffPPNGIbB\nAw88QK9evfjlL39pXvvwww+5/fbb6devH7feeitr166lrKzMvN6rVy82b95MfHw8/fv3Z/369QAc\nPnyYmTNnMmDAAGJjY7n77rv57rvvzHJvv/02cXFx9OvXj7i4ODZt2mReS09Pp1evXqSkpPCb3/yG\nfv36MXLkSPbu3Wtev/feewG4+uqr6d27NwsWLGiYH56IiIiIiLRoegaxCu+++y6TJ0/m7bff5p//\n/CcLFixgwIABDBo0iC1btjB48GCWLVvGddddh8VyPsf+4osvePTRR3nssce46qqrOHHiBI899piZ\nTJZ77rnnePjhh1m4cCGenp5kZmZy9913c+211/Laa6/h4+PDP//5TzOxTE5OZs2aNTz++OP07t2b\ngwcPkpCQgNVqZcyYMWa9K1asYOHChXTv3p1XXnmFmTNn8re//Y3w8HDWrFnD7Nmz+ctf/oKPjw/t\n27dv3B+oNFslGYXYfyipdbmKZc7Vsg5HYWmt2xMREZGWpaCggOLi4kZrz9vbu9nuuzhp0iT69OlT\n40mabdu2sXTpUnPCp7EpQaxCdHS0mdR169aN119/nc8++4xBgwYRGBgIQMeOHQkKCjLLPPfcc8yY\nMYPRo0cDEBERwezZs1mxYoVLgjhy5EjGjh1rfv7DH/5Ap06d+MMf/oCHhwcAP/vZz8zra9eu5dFH\nH+WWW24x6z18+DBvvPGGS4J49913m/c88cQTfPzxx2zZsoVp06bh5+cHQGBgYLP9F0eaRnHq2XrX\ncc4NdYiIiEjrUVBQwLRp92GzFTZam1arDy+//FKr+V3XMIwa3VdSUsKECRNITU0lKSmJXr161btt\nJYhViI6OdvkcEhJCdnZ2tWUOHTrEv/71L9atW2eeczgclJaWcu7cOXPWrm/fvpXKXXXVVWZyWFFR\nUREnTpxg4cKFLFy40KXejh07utx75ZVXmsceHh78/Oc/5+jRo5f4piIiIiIi7lVcXIzNVsgvesbh\n5dmhwdsrtRfx1ZEUiouLW02CWFMrVqygc+fOfPPNN26rUwliFTw9XX8shmHgcDiqLWOz2Zg9eza/\n+tWvKl2ruKSzQwfXf0m8vb2rrRPgqaeeol+/fi7Xype2Vqemf3mQtiUi4jImT57Oq69uAOBGqy+B\nVfyB4mJyyuzsuvAXwaEdrIR6etWibBm7bOffpjt58nQiIi6rReQiIiLSknh5dqB9O5+mDqNKkyZN\nIjo6GovFQlJSEl5eXjz00EOMGDGCJUuW8MEHHxAcHExCQgLXX3+9WW7Pnj2sWLGCQ4cO4efnx9ix\nY5k7d675u3lRURGLFi1i586d+Pr6MnXq1Eptl5SUsHLlSnbs2EF+fj5RUVE8/PDDXHPNNbX6Dn//\n+9/59NNPWb16NX//+9/r9wOpQAliHXh6elZKGPv06cOxY8fo2rVrreqKiori3XffpaysrNIsYlBQ\nEGFhYZw4cYLhw4dXW8+XX37JVVddBUBZWRkHDhxg0qRJAHh5eZnnRby9vYmI+HGcBnp4EFaLJK+i\nUE+vOpeNiOha7R9IRERERBpSUlIS9913H1u2bCElJYUnnniCnTt3cuuttxIfH88rr7zC/Pnz2bVr\nF+3btyczM5P777+fcePGkZiYSFpaGgkJCbRv397cMm/58uV88cUXrF+/nsDAQJ555hkOHDhAnz59\nzHaXLFlCWloaq1atIiQkhA8//JDp06ezfft2unXrVqPYs7KyePzxx1m3bp3bf5/SW0zrICIigs8+\n+4ysrCx++OEHAB544AGSkpJYu3YtR44c4ejRo6SkpLBq1apq67r77rspKChg7ty5/Oc//+Hbb7/l\n3Xff5fjx4wDMmjWLF198kddee43jx4/zzTff8M477/Dqq6+61PP666/z4YcfkpaWxuLFi/nhhx+4\n/fbbAeihE0ynAAAgAElEQVTSpQuGYfB///d/5OTkmDOTIiIiIiJtVa9evZg5cybdunVjxowZtGvX\njsDAQCZMmEC3bt144IEHyM3NJTU1FYBNmzYRHh5OQkICkZGR/PKXv+TBBx/klVdeAc6v/tu6dSuP\nPvooAwcO5IorrmD58uUuE0snT55k27ZtPPvss8TGxtK1a1emTJlCbGwsW7durXHsCxYsYOLEiS6J\np7toBvGC2izHfPTRR1m2bBlvvfUWYWFh/PWvf2Xo0KG88MILPPfcc7z88st4enrSvXt3xo8fX20b\n/v7+/OlPfyIxMZFJkybh4eFB7969GTBgAAATJkzAarXy0ksvsWLFCjp06EBUVJS5dUW5Rx55hBdf\nfJFDhw7xs5/9jPXr1+Pv7w9AWFgYDz74IL///e/53e9+x+jRo/mf//mfuvyYRERERERahYrvHbFY\nLAQEBBAVFWWeCw4OBjDfRZKWlkZMTIxLHbGxsdhsNk6dOkVeXh52u93l0TA/Pz8iIyPNz4cPH6as\nrIxhw4a57FFeWlpKQEBAjeLeuHEjhYWFTJ8+HcDte50rQQSXZOm1116rdP25555z+XzTTTdx0003\nVbpvyJAhDBky5KLtHDx4sMrzUVFRvPTSSxctN3z48GqXmBqGQffu3Xnrrbcuek98fDzx8fEXvS51\nVz4ja7VamzgSaUjqZxERkdblp+8dudi58hlAp9N50Umliuerm3gqLCzE09OTbdu2VXqnSE1/x/j8\n88/58ssv+cUvfuFyfvz48YwcObLeE0FKEFsBd//VQGrOZrMxb95sABITVyt5aKXUzyIiItKjRw92\n7tzpcm7fvn34+PgQFhZGx44d8fDwYP/+/QwbNgyAs2fPcvz4cfMFNH369KGsrIysrCxzxWBtPfbY\nY8ydO9f8fPr0aaZNm8aqVasqJY11oQSxFdDbSptORsZJc2YpI+MkPXr0bOKIpCGon0VERGqv1F7U\nqtqZOHEiGzdu5Mknn+Suu+4iLS2NtWvXMmXKFOD8DOD48eNJTEzEz8+PwMBAVq1a5TJTePnllzNi\nxAjmz5/P/Pnz6d27Nzk5OezevZvo6GhuuOGGS8bRuXNnl88dOnTA6XRy2WWXERYWVu/vqQSxhYuI\niLjo0lURERERkcbm7e2N1erDV0dSGq1Nq9WnVm/zrGqC5VLnwsLC2LBhA4mJiYwZMwY/Pz/uuOMO\nl8e45s2bR1FREfHx8fj4+DB16lQKCgpc6ly2bBnr1q1j+fLlZGZm4u/vT//+/at8hK0+36fOdTm1\nPlFqIDe3ELu9+r0gm8L+/ftIS0uje/cegJNjx44SGdmTmJhY8/pnn30CGISFhZOa+jUFBflcddVA\nIiO78/777wEQHd2H1NSvAcjKOkNJSQl2u52ysjIiI7sDTo4ePYrT6cTDwwOHw4HFYsHhKDPXpS9c\nuKRRZ5Y8PS0EBPjUqW+OHj3C008/DsDtHf1qtVVFpr2Ud/LP1rtsY/+86qPiz2vChIkcP56GYUBo\naDjdu/fg/feTAYMFCxaxf/8+PDws3Hzz9bXqm/379wGGOXal4dTn3x1pWOqb5kt907yV909zUlBQ\nQHFxcaO15+3tja+vb6O115ppBlFarNLSEl5//U/k5uYQEBAIQG5uDoGBQfTt+3MAXn/9T2RnZ1Uq\nu337Nvz9A8jLywXg8OHUi7bz02vl/2N0OFz3lSwoyK/7l5FmzW4vNY///Of3yM8/v72NYRgEBASQ\nk5MDQEZGOps2bcRiMRg69Noa119aWsKmTRsxDIO+fX+Ol1c7934BERGRRubr66uErYXSPojSYu3Y\nkUx2dhYOh4Ps7CzzOCvrDCkp283rF1OeHLrLq69ucGt90nx8+unH5nF5cgjnXxBVnhwCLFq0gKys\nM5w+fbpWexnt2JFMVtYZzpw5TUrKdvcELSIiIlIHmkGUFun06UxSUpIvev2995IaMZrzzp7NIzl5\nG3371v/tUTXh6WnQsWMH8vOLsNtrt1I8Pf27BoqqZcVQE7m5OS4JYnXsdrt5vGXLFgYMuJaAgOBq\ny5w+ncn77/+YFKakJDN48HWEhITWLWARERGRelCCKC3S5s0bXX4Z/6mysrKLXmtISUlvk5T0dpO0\nXVeljfgYcsW2WvuMa0lJCa+99iqzZz9S7X2bN2+ktPTHJaylpaVs2vQn5sz5bUOHKCIiIlKJlpiK\niIiIiIgIoBlEaaHuvPMeDhz46qKziB4eHkDjzySOGTOhxSwxLZ/B82rEfTQrtjV58nQiIro2Wtt1\nlZubwwsvrKn1WGrXrh2TJk2+5H133nkPX3/9H3MW0cvLi4kT761LqCIiIiL1pgRRWqTQ0DDi4kaR\nnPxOlddHjBiD0+m86PWG4Ofnz6hRYxutvZb+yvGIiK4tZpuLr766jo8/3nXJ+zw9Pc0/WowfP56Q\nkNBL9k1oaBi33TbSHKtxcaP0/KGIiIg0GS0xlRZr+PBRBAUFY7FYCAoKNo+Dg0OIixtpXr8Yf/8A\nt8YzefJ0t9YnzcfgwdeZxx07djKPDcMgMDDQ/Lx48f8QHBxCaGgo48aNq3H9w4ePIjg4hJCQUOLi\nRronaBEREZE60AyitFheXu246657SUtLo3v3HoCTY8eOEhnZ09xH7q677uWzzz4BDMLCwklN/ZqC\ngnyuumogkZHdef/99wCIju5DaurXAGRlnaGkpAS73U5ZWRmRkd0BJ0ePHsXpdOLh4YHD4cBiseBw\nlOFwnJ8h8vXt2AQ/BWkMnp5e5vGvfz2C48fTMAwIDQ2ne/cevP9+MmAQHh7BxIn34OFhoV27dhQW\nll680gq8vNoxceI9gKE9EEVERKRJKUGUFi0mZgAxMQNcPld3vary9XH06BGefvrxetUhLUtUVC9u\nu22Ey7mYmNgKxwPw9Kz94oz6jkURERERd9ASUxEREREREQE0gyhSL+HhXbBareaxtE7qZxEREWkr\nlCCK1IPVaiUxcbV5LK2T+llERETaCiWIIvWkhKFtUD+LiIhIW6BnEEVERERERARQgigiIiIiIiIX\naImpSBuXU1ZWy/vtVR43RFsiIiIi0riUIIq0QSUl58zjXbaCOtezy1bolhhEREREpHnQElORNujM\nmdNNHUKziEFEREREXClBFGmDQkJCmzqEZhGDiIiIiLjSElORNqhdu/bmcffLBmH19q9xWVtxHmnf\nf1bvshVjEBEREZHmQQmiSBtn9fanozWk0cuKiIiISPOjJaYiIiIiIiICKEEUERERERGRC5QgitST\nzWbDZrM1dRjSgNTHIiIi0lYoQRSpB5vNxrx5s5k3b7YSiFZKfSwiIiJtiRJEkXrIyDhpzi5lZJxs\n6nCkAaiPRUREpC1RgigiIiIiIiKAtrmQJrJ//z7AICYm1i31pKUdwTAMxo6dwDvvvGUel1u37lny\n8vIoKMinuLiYnj2jAMjLyyUr6wwAV1wRhdPpJC8vj2PH0rDb7fj4+ABQWFiAYVjw8PDAbi+tV8zS\nci1dugjDsNCjR0+io/uwb9/nFBcXExx8fqsPf/8AwMnZs2fp3/9Khg8fW6kOd419ERERkYagBFEa\nXWlpCZs2bcQwDPr2/TleXu3qVQ84yc7OxjAMrrvuBlJSkgEYNuw2rFZfzp7NZe/ez13K7t27u1J9\ne/ZUPldYWGAeO50O7HbHRePJy8ut0/eQlsPpdOJ0lnH4cCqHD6ea53Nzcyrde+TIN9x44620b281\nz7lr7IuIiIg0FC0xlUa3Y0cyWVlnOHPmNCkp2+tdT1ZWFk6nE4fDwaJFv8PhcOBwOFizZiUATz75\nuLtCr9ZLL61rlHakZXA4HDz77B9czrlr7IuIiIg0FM0gSqM6fTqT99//8RfjlJRkBg++jpCQ0HrV\nU66o6Me3TKamHuSdd94iJye77gHXwrlzxWze/L9cc821jdKep6dBx44dyM8vwm531qpsevp3DRRV\ny4qhJj74IKXOZQ8d+prU1INER/d229gXERERaUhKEKVRbd68kdLSH5/hKy0tZdOmPzFnzm/rVc/F\nvPdeUq1jrI+dO1PYubPuCUVTKCtrvGcqK7b16qsbGq3dprRu3bOsWrXebWNfREREpCFpiamIiIiI\niIgAmkGURnbnnffw9df/MWdSvLy8mDjx3nrXczEjRoxp1FnEW2+NazFLTMtn8Dw8vBoivCpVbGvy\n5OlERHRttLbr6oMPUvjii8ovMKqp+Pg5gPvGvoiIiEhDUoIojSo0NIzbbhtJcvI7AMTFjarTM1g/\nradchw5W8znE6Oje3H77HXz66ceN8hxi+/be3Hnn3Q3eTjlPTwsBAT7k5hZW+3bV5ioiois9evRs\n6jAuadiwuDoniL169SE6ujfgvrEvIiIi0pC0xFQa3fDhowgODiEkJJS4uJH1ric4OBjDMLBYLCxe\nvBSLxYLFYuHBB+cC8NhjS9wVerXuuy++UdqRlsFisTBnzn+7nHPX2BcRERFpKJpBlEbn5dWOiRPv\nAYx67QNXsZ60tCMYhkFwcChxcaMwDAOr1RcAP78Arr56IHl5eRQU5FNcXEzPnlHA+b0Ls7LOAHDF\nFVE4nU7y8vI4diwNu92Oj48PcH4/RMOw4OHhgd1e9bLW85ukS2tmGAaGYaFHj55ER/dh377PKS4u\nJjg4BCgfA07Onj1L//5X4uPj6zK7666xLyIiItJQlCBKk4iJGeDWemJiYs1zt99+R6X7yp8Dc7ej\nR4/w9NONs8+iNL3f/W6xy7LY22+fUOV9FZf//pS7xr6IiIhIQ9ASUxEREREREQE0gyhSL+HhXbBa\nreaxtD7qYxEREWlLlCCK1IPVaiUxcbV5LK2P+lhERETaEiWIIvWkpKH1Ux+LiIhIW6FnEEVERERE\nRARQgigiIiIiIiIXaImpSBtnK86r8/31KSsiIiIizY8SRJE2Lu37z5qkrIiIiIg0P1piKiIiIiIi\nIoBmEEXapIiIy1i4cEmdyxcXFwPg7e1drxhEREREpHlRgijSBnl7e9OjR8+mDkNEREREmhktMRUR\nERERERFACaKIiIiIiIhcoARRREREREREACWIIiIiIiIicoESRBEREREREQGUIIqIiIiIiMgFShBF\nREREREQEUIIoIiIiIiIiFyhBFBEREREREUAJooiIiIiIiFygBFFEREREREQAJYgiIiIiIiJygRJE\nERERERERAZQgioiIiIiIyAVKEEVERERERARQgigiIiIiIiIXKEEUERERERERQAmiiIiIiIiIXKAE\nUURERERERAAliCIiIiIiInKBEkQREREREREBlCCKiIiIiIjIBUoQRUREREREBFCCKCIiIiIiIhd4\nNnUAIiIiIq1BcXEx6enf17ksgLe3d63LRkRcVqdyIiJVUYIoIiIi4gbp6d/z9NOPN3q7CxcuoUeP\nno3eroi0TlpiKiIiIiIiIoBmEEVERETcrn341Xi096/RvWXnznIuY8+Fctfg0d6vBmXyOJext14x\niohURQmiiIiIiJt5tPfHo0NQHcr51amciIi7aImpiIiIiIiIAEoQRURERERE5AIliCIiItIi2Gw2\nbDZbU4chtaR+E2lZlCCKiIhIs2ez2Zg3bzbz5s1WstGCqN9EWh4liCIiItLsZWScNGeiMjJONnU4\nUkPqN5GWRwmiiIiIiIiIANrmQkRERNxs//59gEFMTGylc2lpR0hNPYi/fwDgBAzCwsLJzMwgLy+X\n778/wblzJfj5+dGzZ5RZPjKyR2N/DXGzp59+HE9PL0JCQrnqqqv55JOPsNlsBAYG4evrC0BAQACh\noeGkph4gICCQa68dwmef/QOAQYOGkpZ2hMzMUwwaNNRlfImI+yhBFBEREbcpLS1h06aNGIZB374/\nx8urnXnO6XSSk5ON0+l0KWOxWHA4HC7ncnNz2Lt3t/n5m28ONUr80rDs9lIyMtLZvj3dPJeRkX7R\n+7/5JpW8vFwAjh79hry8PBwOB2lpR8zxJSLupSWmIiIi4jY7diSTlXWGM2dOk5Ky3eVcdnZWpeQQ\nqJQcVuXs2Ty3xyrNX3lyCJCTk2OOlezsLHN8iYh7aQZRRERE3OL06Uzef//HX9pTUpKJju7tcs4d\n0tO/c2t97tJUcTVGu56eBh07diA/vwi7vXKSfzHPP/9sg8X03nvvMnjwdYSEhDZYGyJtkRJEERER\ncYvNmzdSWlpqfi4tLWX9+tUu59zh1Vc3uLW+huB0uPc7V1d/S/h5NISyMjubNv2JOXN+29ShiLQq\nWmIqIiIiIiIigGYQRURExE3uvPMevv76P+aMoZeXFzNnzmblyuVunUWcPHk6ERFd3Vafu6Snf2fO\n5hkWrwZtq2L9jfHzqM8S09zc7AaJycPDk4kT722QukXaMiWIIiIi4hahoWHcdttIkpPfASAubhS9\nevVxOecOERFd6dGjp9vqa+ka4+fh6WkhIMCH3NxC7PZLv1So3H/91xyefvrxBolpxIjRev5QpAFo\niamIiIi4zfDhowgODiEkJJS4uJEu54KCgjEMo1IZi+XSv474+fm7PVZp/s7vl3leYGCgOVaCgoLN\n8SUi7qUZRBEREXEbL692TJx4D2CYe9RVPJeWdoTU1IMXfvF3AgZhYeFkZmaQl5fL99+f4Ny5Evz8\n/OjZM8qsNzKyB2+99XpTfCVxI09PL0JCQrnqqqv55JOPsNlsBAYG4evrC0BAQAChoeGkph4gICCQ\na68dwmef/QOAQYOGkpZ2hMzMUwwaNFR7IIo0ECWIIiIi4lYxMQMuei4mJvai5apbxnj06BH3BimN\nbuHCJS5LYceOvaOauyeYRxXHU3XjR0TcQ0tMRUREREREBNAMooiIiLQA4eFdsFqt5rG0DOo3kZZH\nCaKIiIg0e1arlcTE1eaxtAzqN5GWRwmiiIiItAhKMFom9ZtIy6JnEEVERERERARQgigiIiIiIiIX\naImpiIiIiBuUlJwzj0vzv6fs3NkalXOUFFQol16jco6SfPM4Pf07IiIuw9vbuxbRiohUTQmiiIiI\niBucOXPaPC7NPlinOkqzv651mVdf3UBERFeXPQZFROpKS0xFREREREQEqOMM4uHDh3n++ef56quv\nOHXqFG+++SZ9+/Zl5cqVxMbGcsMNN7g7ThEREZFmLSQk1Dz2iQ3Go1O7GpWz/1CC7Z9ZAFhjg/Gs\nYbmyH0oovFBORMRdaj2D+I9//IOxY8dy8uRJRo4cid1uN695enqyefNmtwYoIiIi0hK0a9fePPbo\n1A6vQO8a/VMxIfSsRbmaJqAiIrVR6wTxmWeeIS4ujjfffJMHHnjA5Vrv3r35+uvar50XERERERGR\nplfrBPHw4cOMHj0aAMMwXK516tSJ3Nxc90QmIiIiIiIijarWCaKfnx+nT5+u8trx48cJCQmpd1Ai\nIiIiFdlsNmw2W1OHIXWk/hNpOWqdIN5yyy2sWbOGtLQ085xhGJw5c4aXX36ZYcOGuTVAERERadts\nNhvz5s1m3rzZSjJaIPWfSMtS6wTx4YcfJiAggFGjRjFhwgQAfve73/HrX/+ajh07MmvWLLcHKSIi\nIm1XRsZJcwYqI+NkU4cjtaT+E2lZar3NRceOHXnjjTdITk7m008/xd/fHz8/P+666y5Gjx5Nu3Z6\no5aIiIiIiEhLVKd9EL28vBg3bhzjxo1zdzwiIiLSjOzfvw8wiImJveS977zzFoZhMHbsBPPcunXP\nYhgG1147hGPHjuJ0GhiGk8jInoATMAAn77+/HTDw8vLAbneQn/8DxcXF9OwZxb59exro20lje+GF\n1RQVFXPu3Dk8PDwIDAziqquuNsdDWloamZkn6dy5izmOysfQzJmzAdcxWX4MTo4dO0pkZM9K52s6\nfkXkvDoliCIiItL6lZaWsGnTRgzDoG/fn+PldfFVQjZbASkpyQAMG3YbVqsvZ8/msnfv5wAcPvwN\neXm55hvQAwICgfPvMSgrKyM3N6fKevfu3e3OryRNoKAg3zzOysoyj+32UjIy0nnvvZMEBgYBkJOT\njdPpxGKxMGzYbZSWlppj6M47J2G1+phjMioqik2bNgLgdDrJzc0hMDDI5TxQo/ErIj+qUYLYv3//\nSltaXIxhGOzbt69eQYmIiEjT27EjmaysMwCkpGxn9OiLrxxavfoPOBwOANasWcn8+Y/x5JOPm9fL\nE0Cn0wlAdnZW5UqkVXrllRerve50OiuNB4fDwZo1Kzlz5sc35z/11CKGDLneHJNr1qw0j8tlZZ2p\n8vylxq+I/KhGCeLUqVNrnCCKiIhIy3f6dOaFZZ/npaQkM3jwdYSEhFa69+DBA3zzzSHzc2rqQbZu\nfYucnGy3x/XHP65n6tSZbq/XHdLTv2u1bXt6GnTs2IH8/CLsdmeNy3311b/54YezdWozNfWgy+fs\n7Cx27Hj3oterO1/d+BURV4az/E95ItXIzS3Ebnc0dRhSgaenhYAAH/VNM6S+ad7UPzXz7LMr+PLL\nf7mcu/LK/syZ89tK9z700Ex++OGHxgqtReg4tDPtQq01urc0p5gfdp1/u2enG7vgFehdo3Ilp23k\nf3KqzjG2NRcbv61B+X/XRNyhXs8gnjp1itOnTxMaGkrnzp3dFZOIiIiIiIg0gToliG+++Sbr16/n\n1Kkf/2oVGhpKfHw8v/nNb9wWnIiIiDSNO++8h6+//g+lpaXA+TeYT5x4b5X33n//g6xY8bTLueHD\nx7BjR5Lb4woP79Ksl5i++uoGAAzPWm81XWsV25g8eToREV0brK36LDFNTt7itjg8PDwoKyurdbnq\nxq+IuKp1gvjCCy+wcuVKRo8ezbBhwwgODiYrK4s///nPLF68mLNnz3L//fc3RKwiIiLSSEJDw7jt\ntpEkJ78DQFzcqIs+v9W7d1+ionqZzyFGR/dm3Lg7+Oyzj93+HOLUqTPp0aOnW+tsDSIiujboz6Wu\nS7N79OjJrl076/QcYnR0b86cOW2OoaCgYIYMud4ck9HRvat83rCq89WNXxFxVes/b7322mtMmzaN\n5cuXc/PNN9OvXz9uvvlmEhMTmTx5Mq+99lpDxCkiIiKNbPjwUQQHhxASEkpc3Mhq7509+7+xWCxY\nLBYefHAuAI89tsS8HhAQiGEY5j1BQcEEBQUTHBxibnkhrdOUKTOqvW4Yhjkeyl+KWD6OKo6hhITF\nLmPywQfnEhwcQnBwCEFBwVgsFoKDQ1zO13T8isiPaj2DWFhYyODBg6u8NnToUN544416ByUiIiJN\nz8urHRMn3sP5Deyr30POavUlLm4UhmFgtfoC4OcXwNVXD8QwDK69dgjHjh3F6TQwDKe5MXr5Zubn\n35hq4OXlgd3uID//B4qLi+nZM4p9+/aYW2hIy+Pr29E8Dg4OpqiomHPnzuHh4UFgYBBXXXW1OR7S\n0tLIzDxJ585dzHFUPob8/AIAzDFptfqax+Dk2LGjREb2rHS+JuNXRH5U6wRx6NChfPrppwwZMqTS\ntX/84x9ce+21bglMREREml5MzIAa33v77XdUOhcfP6dGdcXEDLjoMsajR4/w9NOPX7SstBz33z+7\n2qWwVY2RimPop/fU5FhEaqdGCeKBAwfM4/Hjx7No0SJycnL45S9/SVBQENnZ2Xz44Yfs3r2bxYsX\nN1iwIiIiIiIi0nBqlCCOGzfOXBMO4HQ62bZtG9u2bcMwDCpupThz5kwOHqx641IRERGR2goP74LV\najWPpWVR/4m0LDVKEDdu3NjQcTQrN998MydPnsQwDPbu3Yuvr29Th+Ti7bff5plnnmH37t01LnPD\nDTeQmZmJYRj885//pEOHDg0YoYiIiPtYrVYSE1ebx9KyqP9EWpYaJYjXXHNNQ8fR7Dz00EPccccd\n+Pr6smDBgipnS8tFRETw17/+tVHjqzijWxNJSUl8/vnnzJ07t4EiEhERaThKLFo29Z9Iy1Hrl9S0\nFVarlcDA86/dXrhwIY888oh5bciQISxbtozrrrsOOP8q5uYuICAAPz+/pg5DRERERESasTplNu++\n+y533nkngwYNIjY2ttI/jeHPf/4zI0eO5Morr2TgwIFMnTqV4uJi4PwSzLi4OPr160dcXBybNm0y\nyyUlJdG/f39OnDhhnlu0aBFxcXGUlJRU2Zavry9BQUHmPwAdO3Y0PwcEBFRZbtWqVYwbN463336b\nG2+8kdjYWJ566ikcDgcvvvgiQ4cOZciQIWzYsMGl3Msvv8zIkSOJiYnhxhtv5Mknn6SoqKjan8df\n/vIXxo4dS79+/fjVr37F888/r1eCi4iIiIhIrdR6BvHdd98lISGBsWPH8q9//Ytx48bhcDj429/+\nRqdOnRg9enRDxOnizJkzPPLII8ybN49bbrmFwsJCvvjiC5xOJ8nJyaxZs4bHH3+c3r17c/DgQRIS\nErBarYwZM4YxY8bw97//nYcffpg333yTjz76iG3btvHmm2/Srp3798g5duwYu3fv5uWXX+bbb79l\n9uzZHD9+nJ49e/K///u/7N27l8cee4whQ4bQp08fADw9PVm0aBFdunThxIkTPPHEE1gsFhYuXFhl\nG59//jkJCQkkJCQwYMAAvv32WxISEvDw8OD+++93+3cSERGRykpKzv14nFGI/Yeq//D8U2WFpebx\nuVqUc1QoV7FtEZH6qHWC+Morr/Bf//VfzJgxg7feeouJEyfSt29fCgoKmDZtGj4+Pg0Rp4szZ85Q\nVlbGrbfeSnh4OABXXHEFAGvXruXRRx/llltuAc4/H3j48GHeeOMNxowZA8DixYsZPXo0Tz75JDt3\n7mTWrFn07t27QWI1DIOlS5fSvn17evTowdVXX813333HSy+9BMDll1/Ohg0b+Pzzz80E8d577zXL\nd+nShdmzZ7N06dKLJohr165l5syZjBo1yvzODz74IKtXr1aCKCIi0kjOnDltHhennq1THefqWO7M\nmdP07t23TmVFRCqqdYL47bffEhsbi4eHBx4eHhQUFADnl2FOnz6dpUuXMmXKFLcHWlGvXr0YNGgQ\nI7Xr8M8AACAASURBVEaMYOjQoQwdOpRhw4bh5eXFiRMnWLhwoUsy5XA46Nixo/m5U6dOPPXUU0yb\nNo3Y2FhmzJjRYLF27dqV9u3bm5+DgoIqPahdvpdkuU8++YQNGzZw7Ngx8vPzcTgclJSUUFpaipeX\nV6U2vvnmG7766ivWrFljnnM4HNjt9ouWERERERER+alaJ4i+vr7ms3phYWEcOXKEgQMHAlBW9v/b\nu/PoKMp8/+Ofyp4mEkIIkAB6WZRA2BFki0gQ0CAiio7CgIzACOIEHR00ggFDQhyIoqCDoIiCoBev\nrCb8vDqcuSKigAzIMOwgIAlLFlnShGz9+4PQQ9sREtJb6PfrHM/pep6nqr6dCgc+Pk9VlSo/P9+x\nFVbAx8dH77//vv75z39q48aNWrJkid544w3NmzdPkpSSkqJ27drZ7XOlzZs3y8/PT6dOnVJBQYHT\nZj79/Gx/xIZhVNh2+X7BY8eOafz48RoxYoSee+45hYaGavPmzUpKSlJJSUmFYa+goEDPP/+8+vbt\na9dHOAQAwDUiIupbP99lClFdX99K7ZdXWqJ/mAvK96ulur6V++dZXmmp/mE+b3duAKiOKgfENm3a\naO/evYqNjVVcXJzefvttWSwW+fn5acGCBWrfvr0z6qxQx44d1bFjRz311FPq06ePtm3bpoYNG+ro\n0aMaOHDgb+63bds2vf/++5o3b57S09M1ffp0vfrqqy6r+2p27twpHx8fTZo0ydq2Zs2aq+7TunVr\nHT58WE2aNHF2eQAA4DcEBPxnxVBdX1818Kv6/6St6+t3XftdeW4AqI4qB8Qnn3xSWVlZkqSEhAQd\nP35caWlpKi0tVdu2bTV9+nSHF/lrP/74ozZt2qSePXsqPDxc27dvV35+vpo3b64JEyZoxowZCgkJ\nUWxsrIqKivSvf/1LZ8+e1ahRo3T+/Hm98MILGjFihGJjY9WgQQM9/PDDuuuuu3TPPfdUq65Zs2Yp\nPz9fM2bMuO5j3HLLLSoqKtLSpUt15513auvWrVq+fPlV95kwYYImTJigBg0aaMCAAZKkPXv26ODB\ng0pISLjuWgAAAAB4lyoHxA4dOqhDhw6SLt3LN2/ePBUVFamoqEghISEOL7AitWrV0pYtW7R48WKd\nP39eUVFRevHFF63vJTSZTHrvvfc0a9YsBQcH67bbbrM++GXGjBmqVauW9YXxt912m5599llNmzZN\nnTp1Uv36116i8VsvqT916pTNvYSVdeXxYmJiNGnSJL3zzjtKT09X165d9dxzzykxMfE39+/du7fm\nzZunt99+WwsWLJC/v7+aNWum3/3ud1WuBQAAAID3MiwWi8XdRXiauLg4jRo1SiNHjnR3KQ717bff\navTo0dq2bZuCg4OrtG9+foFKSnivoifx8/NRWFgtro0H4tp4Nq6P57ratTGbzZJk96A3T3Lw4AGl\npiZJkh68KbTSS0VPlhRrxbkz1dpv8uRkNW/e4jqqrpzq/rmpCdevJrt8fQBHqNQMYkpKip544glF\nRUUpJSXlmuOnTJlS7cLcLT09XW+88Ya+/vprl82MOtM999yj7Ozs35z9BADAU5nNZk2adOmWiZkz\n5xAyahiuH1CzVCogrl+/XkOHDlVUVJTWr19/1bGGYdT4gLh06VKVlJRI0g0RDiXp/fffV2lpqSRV\nefYQAAB3ys7Oss5AZWdnOXWmDI7H9QNqlkoHxIo+36giIyPdXYLDRUVFubsEAAAAAB6uSg+puXjx\noiZOnKjRo0erS5cuzqoJAADUINu3/yDJUIcOnWzaDh8+qKZNW9i1Hzp0SIZhkcVy6baHZs2aS7Lo\nu+82qmnTW3T48BHt379PQUHBKiy8oMLCCy7+RnCWGTOmWl/J4efnp5iYNtq/f5+KiorUunUbSVLD\nhpGyWCz64YfNCgm5SffeO0gdOnTSihXLdfLkCXXv3sv6O7VixXIZhqEhQx5223cCbjRVCoiBgYHa\nsmWLRo0a5aRyAABATVJcXKRlyxbLMAzFxLSRv3+AtS0vL1d164bbtC9d+qHy8/MkSWVlZfLx8VHd\nunVVWlqm/Pw8bd26WWVlv/0QlF9+yXfVV4ODlJQUWz9bLBZdvFgoSbp4Udq8+Ttr35Ytlz77+PjI\nYrHo8nMU8/Jy1bRpU2VkrJbFYtHhwwcUE9NGxcVFysy89K7oAQPulcl0Y9wWBLibT1V36NmzpzZu\n3OiMWgAAQA2TkbFGOTmndfr0KWVmrrVpKysrU07OaZv23NwclZWVWUPgpTE5NqHxat57b54Tvw2c\n4dtvN1RpfFlZma58yH5ubo5SUqZa23JycpSZuVZz5rxu/V2aO3e2Q2sGvFmV34P40EMPaerUqSoo\nKFDv3r0VHh5u92TMmJgYhxUIAAA806lTJ7Vu3VrrdmbmGrVs2coaCC/LyFhd3r6m2ue8eLFQH3/8\nkbp27VbtYzna8ePHbthz+/kZuummYJ07d0ElJZV/Q1p+fp42bPhHtc+fm5tjs/3556usD9+TpL17\nd2vv3t1q2bJVtc8FeLsqvwcxOjra9gBXhEOLxSLDMLR7927HVAePwfvCPA/vcvNcXBvPxvVxnDff\nnKUdO/5p01a7dm2dPXvWbuxvtd+oBoXUVmP/gEqNvd73IP5cXKS1573nZ3ottWvX1htvvOPuMtyC\n9yDCkao8g7h48WJn1AEAAAAAcLMqB8SuXbs6ow4AAFDDPPbYSP373/9ScfGlh5D4+/tr3LgEvf76\nX20eTOLn51fe/qr1PcPV0a9fvMcuMf3gg3clSf6/uv3GGa48x6hRY9WoUROnnas6S0z/9rc3HF6P\nr6+vzRJTSRo/fqLDzwN4oyoHRAAAAEmqX7+B7r13kNasWSFJio+/X9HRrRUf/582SRo4cHB5+/02\n7dcjMDBIjz32+2od40bUqFETp76AvjpLs2Nj76r2fYjh4fVs7kO8774HtHv3Lu3bt0eS1LJlK+4/\nBBykyk8xlaTVq1frscceU/fu3dWpUye7/wAAgHcYOPB+1asXoYiI+oqPH2TT5uPjo3r1Imzaw8Pr\nycfHRz4+l/4JcmlMPYWF1bVuX82YMeOd+G3gDD16xFZpvI+Pj80zLsLD62nKlFesbfXq1VN8/CAl\nJPzZ+rv0pz8969CaAW9W5RnE1atXa8qUKRoyZIj++c9/6qGHHlJZWZnWr1+v2rVra/Dgwc6oEwAA\neCB//wANGzZSkiH/8oeyXG47fPigmjZtYdM+fPjjOnTokAzDIovl0j/4mzVrLsmi777bqKZNb9Hh\nw0e0f/8+BQUFq7DwggoLL+jChQuSpDp1wtzxNVENflc8dMcwDAUEBJa3+ykmpo3279+noqIitW7d\nRpLUsGGkLBaLfvhhs0JCbtK99w5SaGiYBg4crJMnT6h7917y9w+Qv3+A4uPvl2EYvAMRcKAqB8RF\nixbpqaee0h//+EctX75cw4YNU0xMjM6fP6/Ro0erVi2eoAQAgDfp0KFzhW1VaZek22/vUuEyxoMH\nDyg1NclxBcNtXnrplUovhX3wwUeuuv1bbQCqp8pLTI8cOaJOnTrJ19dXvr6+On/+vCQpJCREY8eO\n1ZIlSxxeJAAAAADA+aocEENCQlRUVCRJatCggQ4cOGDtKy0tVX5+vuOqAwAAXi8yMkomk0kmk0mR\nkVHuLgdVxPUDapYqLzFt06aN9u7dq9jYWMXFxentt9+WxWKRn5+fFixYoPbt2zujTgAA4KVMJpNm\nzpxj/YyahesH1CxVDohPPvmksrKyJEkJCQk6fvy40tLSVFpaqrZt22r69OkOLxIAAHg3gkXNxvUD\nao4qB8T9+/erf//+kqTatWtr3rx5KioqUlFRkUJCeIIUAAAAANRUVb4H8ZVXXlGvXr00btw4ZWZm\n6sKFCwoICCAcAgAAAEANV+UZxI0bN+qLL75QRkaGnn/+eQUGBiouLk6DBg1Sr1695OdX5UMCAADc\nUPJKS6swtqTCz448BwBUVpXTXGhoqB555BE98sgjysnJUUZGhtatW6dx48YpNDRUAwYMUHJysjNq\nBQAA8FhFRRetn/9hPn9dx/iHucBR5QDAdanyEtMr1atXT48//rg++eQTvffeewoMDNSnn37qqNoA\nAABqjNOnT7m7BACotmqtBz1x4oQyMjKUkZGh3bt3W2cXAQAAvE1ERH23nHfUqLFq1KixW84N4MZT\n5YCYl5endevWKSMjQ9u3b1dwcLD69u2riRMnqmfPntyDCAAAvFJAQKD1c7PG3WUKqlOp/cyFv+jQ\nz5uqtN+V+zRq1ERBQUHXUTEA2KtymouNjZWvr6969+6t119/XX369FFgYOC1dwQAAPASpqA6uskU\n4bL9AMBRqhwQU1JS1K9fP15rAQAAAAA3mCoHxCFDhjijDgAAAACAm1XrKaYAAACuZDabZTab3V0G\nKonrBdQ8BEQAAFAjmM1mTZqUoEmTEggdNQDXC6iZCIgAAKBGyM7Oss5IZWdnubscXAPXC6iZCIgA\nAAAAAEnX8ZAaAACAypg3700ZhqFx4xIkSdu3/6DDhw/KYjFkGBY1bdpCkkULF86XJPXt20/BwQE6\nfPiIJGnXrn/JbDbLYimTZCggwN9N3wTVlZqaJEny8/NXSUmJDMNQixa36ujRI7p48aIiI6N0++1d\ndOLECTVsGKmmTZvp0KFDOnkyW5LUvXsvSRZt2vSNGjaMksVikWEYGjLkYUmXfrckQx06dHLTNwRu\nHAREAADgcGfO5GvLlu8lSY89NkImUy0tW7ZYeXm51n/ch4XVVUlJiQoKzkuS1q5dJcMwVFZWVsER\nLSoqKnLhN0B1FRZesGsrKSmWJFksFu3fv9fanp19XGvXHpck+fj4qE6dMP3yS771d+Hgwf2SpLy8\nXPn4+Fh/hwYMuFf+/gFatmyxDMNQTEwb+fsHOPurATc0AiIAAHC46dOTrJ9TUqaqZ887lZNz2tpm\nsViUm5tjs4/FYpHFYnFZjXCuTz9ddl37lZWVKS8v16btyu3LodFisWju3Nlq2bKV9XcrM3OtBg9+\n6DorBiAREAEAgINt2vSNzT/oc3Nz9Pnnqxx6jrVrV2jQoAcdeszqOn782A17Xj8/QzfdFKxz5y6o\npOTaIf6nnw7r6NEjTq9r797dOnBgn3U7M3ONevSIVUREfaefG7hRERABAIBDLVq0wK6t4mWj1+/H\nH7frxx+3O/SYjlRaWuyy43/wwbtOPZenKy0ttX4uLi7WsmUfauLEv7ixIqBm4ymmAAAAAABJzCAC\nAAAH+8Mf/qh33/2bTZuPj49DZxHbtevgkUtML8/m+fo694mrVx5/1KixatSoiVPPdz1LTJcuXeTU\nmi7z9fW1ziL6+/tr2LDHXXJe4EZFQAQAAA7VvXsvffbZf1vvQwwPr6eePe/UmjUrHHaOQYMeVPPm\nLRx2vJqsUaMmTv9Z+Pn5KCyslvLzC1RScu2g37x5C23YsN7p9yG2bNlKLVu2sv5uxcffz/2HQDWx\nxBQAADjcyy8nWz9PmfKKBg68X/XqRcjHx0eGYcjHx0fh4fUUGlrHOu5yO24MDz887Lr28/HxUd26\n4Ta/C3Xrhqtu3XBr/+XflT/96Vnr71ZERH3Fxw9ySO2AN2MGEQAAOFxoaJi6dLlDhmEoNDRMkjRs\n2EgdPnxQFoshw7CoadMWkixauHC+JKlv334KDg7Q4cOXZp127fqXzGazLJYySYYCAvx5F2INEhQU\nbNfm5+evkpISGYahFi1u1dGjR3Tx4kVFRkbp9tu76MSJE2rYMFJNmzbToUOHdPJktqRLs9KSRZs2\nfaOGDaOs70E0mUIkXfrdkgzegQg4AAERAAA4xfjxE222O3TorA4dOtuNmzv30lNPr7WM8eDBA0pN\nTbJrh+ebPDm5ystgK/pdqajtau0Aqo51HAAAAAAAScwgAgCAGiIyMkomk8n6GZ6N6wXUTAREAABQ\nI5hMJs2cOcf6GZ6N6wXUTAREAABQYxA0ahauF1DzcA8iAAAAAEASAREAAAAAUI4lpgAAAA5mLvzl\nusZWdr+qHB8AqoKACAAA4GCHft7k0v0AwFFYYgoAAAAAkMQMIgAAgEM0atRYkycnX9e+hYWFkqSg\noKDrOi8AOAoBEQAAwAGCgoLUvHkLd5cBANXCElMAAAAAgCQCIgAAAACgHAERAAAAACCJgAgAAAAA\nKEdABAAAAABIIiACAAAAAMoREAEAAAAAkgiIAAAAAIByBEQAAAAAgCQCIgAAAACgHAERAAAAACCJ\ngAgAAAAAKEdABAAAAABIIiACAAAAAMoREAEAAAAAkgiIAAAAAIByBEQAAAAAgCQCIgAAAACgHAER\nAAAAACCJgAgAAAAAKEdABAAAAABIIiACAAAAAMoREAEAAAAAkgiIAAAAAIByfu4uAAAAoLCwUCdP\nHpefn3T+fKH8/ALVqFFjBQUFubs0APAqBEQAAOB2x4//rNTUJJu2yZOT1bx5CzdVBADeiSWmAAAA\nAABJBEQAAAAAQDkCIgAAAABAEgERAAAAAFCOgAgAAAAAkERABAAAbmI2m2U2m6s9BgDgOLzmAgAA\nuJzZbNakSQmSpJkz51Q4prCw0GaMyWRyWX0A4K2YQQQAAC6XnZ1lnR3Mzs6qcExu7ulrjgEAOBYB\nEQAAAAAgiYAIAADc4B//+KpK49PSpjmnEACADQIiAABwKbP5vDZu/Nq6/dln/13huG+//cb6uays\nTDt2bHN6bQDg7QiIAADApebMed1me8+eXRWO27dvt832m2+mO60mAMAlBEQAAOAyu3fv0r59e+za\nU1OTKrV/Wtorji4JAHAFAiIAAHCZ+fPnVmv//fv3OqgSAEBFCIgAAAAAAEkERAAA4EJPPvmnau1/\n660tHVQJAKAiBEQAAOAyrVrF6Lbbou3aJ09OrtT+iYlTHV0SAOAKBEQAAOBSCQl/ttmOjo6pcNxt\nt7Wy2Z448Xmn1QQAuISACAAAXMpkClHPnndatx966HcVjuvRo5f1s4+Pj9q37+T02gDA2xEQAQCA\ny911191VGp+YOM05hQAAbBAQAQAAAACSCIgAAMANIiOjZDKZZDKZFBkZVeGY8PCIa44BADiWn7sL\nAAAA3sdkMmnmzDnWzxUJCgq65hgAgGMREAEAgFtUJvQRDAHAtVhiCgAAAACQREAEAAAAAJQjIAIA\nALcrKrpYqTYAgHMREAEAgNudPn2qUm0AAOciIAIAAAAAJBEQAQCAB4iIqF+pNgCAcxEQAQCA2wUE\nBFaqDQDgXAREAAAAAIAkAiIAAAAAoJyfuwsAAADey2w2V6rfZDK5ohwA8HoERAAA4BZms1mTJiVI\nksaPf8auv7Cw0No/c+YcQiIAuABLTAEAgFtkZ2fJbDbLbDYrN/e0XX9u7mlrf3Z2lhsqBADvQ0AE\nAAAAAEhiiSkAAHCxefPe1L//vUsFBecrvU9qapISEp5Xhw6dnFgZAIAZRAAA4DJnzuRry5bv7cLh\nnj3/thu7YsWnNtsLF85TcXGRU+sDAG9HQAQAAC4zfXpShe3ffbfRru3s2V9stgsKCpSZudYpdQEA\nLiEgAgAAl9i06Rvl5eVW6xirV3+m06dPOagiAMCvERABAIBLLFq0wCHHWbbsQ4ccBwBgj4AIAAAA\nAJBEQAQAAC7yhz/80SHHGTbscYccBwBgj4AIAABconv3XqpbN7xaxxg8+CFFRNR3UEUAgF8jIAIA\nAJd5+eXkCtu7detp11a7dh2b7Vq1aik+fpBT6gIAXEJABAAALhMaGqYuXe5QrVohNu3R0a3txj74\n4MM226NHj5e/f4BT6wMAb+fn7gIAAIB3GT9+oiTp4MEDSk2t+L2IvzZ5crKaN2/hzLIAAGIGEQAA\nAABQjhlEAADgFpGRUTKZTJKk8PAIu/7w8Ahrf2RklEtrAwBvRUD0MomJiTp37pzeeustd5cCAPBy\nJpNJM2fOkSRlZ2fZ9QcFBVn7LwdFAIBzscTUheLi4rR48WJ3lwEAgMcwmUxXDX/X6gcAOBYBsQYq\nLi52dwkAAAAAbkAeExA3bNigYcOGqUuXLrrjjjs0btw4HTt2zNq/bds2PfDAA2rXrp2GDh2qr776\nStHR0dqzZ491zL59+zR27Fh17NhRPXv21KRJk5Sfn1+p81ssFr377rvq37+/2rZtq7i4OM2fP9/a\nf+LECT3zzDPW+p566ikdP37c2p+YmKgJEybo/fffV69evXTHHXcoOTlZpaWlkqQRI0YoKytLaWlp\nio6OVqtWraz7bt26VcOHD1f79u3Vp08fpaSk6MKFC9b+uLg4/e1vf9MLL7yg22+/XUlJSZWqqays\nTGlpaerSpYu6deumWbNmyWKxVPaSAAAAAPAyHhMQL1y4oCeeeEIrVqzQhx9+KB8fH02YMEGSVFBQ\noPHjxys6OlorV67UxIkTlZ6eLsMwrPufO3dOo0aNUkxMjFauXKmFCxcqNzdXzz77bKXOn56ervfe\ne08TJkxQZmam0tPTFR4eLkkqKSnR6NGjddNNN+njjz/Wxx9/rFq1amnMmDEqKSmxHuP777/XsWPH\ntGTJEs2cOVMrV67UihUrJElvvfWWGjZsqIkTJ2rjxo365ptvJElHjx7V2LFjdc899+jzzz/X7Nmz\ntW3bNk2fPt2mvkWLFqlVq1ZauXKlnnrqqUrVtHDhQq1atUppaWlatmyZzpw5oy+//PI6rxAAAACA\nG53HPKSmf//+NtspKSnq0aOHDhw4oC1btsjHx0fJyckKCAhQ8+bNNXr0aOtMmiR99NFHat26tZ55\n5hlrW2pqqu666y4dOXJEt9xyy2+eu6CgQEuWLNHUqVM1ePBgSVKTJk3UqVMnSVJmZqYsFotNaEtN\nTVXXrl21efNm9ejRQ5IUGhqqpKQkGYahpk2bqnfv3vruu+/08MMPKzQ0VD4+PjKZTNbgKUkLFizQ\n/fffrxEjRljP+9JLL2nkyJGaNm2aAgIuvRC4e/fuGjVqlHW/NWvWXLOmxYsXa9y4cbr77rslSa+8\n8oo1mAIA4EmKii5Wqg0A4FweExCPHDmiOXPmaMeOHcrPz1dZWZkMw1BWVpZ++ukntWzZ0hqWJKld\nu3Y2yyX37Nmj7777Th07drQ5rmEYOnr06FUD4sGDB1VcXKxu3bpV2L9nzx4dOXLE7thFRUU6evSo\nNSDeeuutNrOaERER2r9//1W/9549e7Rv3z6tWbPGru/nn39Ws2bNJEkxMTFVqqldu3Y6ffq02rZt\na+3z9fVVmzZtrloPAADucPr0qQrbWrWKqWA0AMBZPCYgPvnkk2rcuLFSUlJUv359lZWV6b777lNx\ncbEsFotN8JJkdy+d2WxWXFyc/vKXv9gdOyLC/t1KVwoKCrpqv9lsVps2bZSenm7XFxYWZv3s52f7\n4zQMQ2VlZdc89u9+9zuNHDnSri8yMtL6OTg4+Lpq+vXPDQAATxQRUb9SbQAA5/KIgPjLL7/op59+\nUmpqqjp37izp0oNbLoebZs2a6fPPP1dxcbH8/f0lSTt37rQJP61bt9aXX36pRo0aycenardW/td/\n/ZcCAwO1adMmDR061K4/JiZG69atU926dVWrVq3r/Zry9/e3C4ytW7fWgQMH1KRJkyodqzI1RURE\naMeOHdafaWlpqXbt2mU3GwkAgLsFBARWqg0A4Fwe8ZCa0NBQ1alTR8uXL9fRo0e1adMm/fWvf7X2\n33fffSotLdXLL7+sgwcPasOGDVq0aJGk/8yQDR8+XGfOnNGzzz6rnTt36tixY9qwYYMSExOv+eTO\ngIAAjRkzRrNmzdKqVat07Ngx7dixQ//zP/8jSRo0aJDCwsL01FNPaevWrfr555/1/fffKyUlRSdP\nnqz092zcuLG2bNmikydPWp+uOnbsWG3fvl3Tp0+3Lhv96quv7B5S82uVqWnkyJFasGCBvvrqKx06\ndEivvPKKzp49W+l6AQAAAHgXj5hBNAxDs2fPVmpqqgYNGqSmTZtqypQp1ge3hISEaP78+Zo2bZqG\nDBmi2267TU8//bSee+45BQZe+r+L9evX18cff6z09HSNGTNGRUVFioqKUmxsbKWWWT799NPy9/fX\n3LlzderUKUVEROjRRx+VdGkJ6tKlS5Wenq6EhAQVFBSoQYMG6tatm0JCQir9PRMSEjR16lT169dP\nxcXF2r17t1q2bKklS5Zo9uzZGj58uCwWi26++WbFx8fb/Hx+rTI1PfHEE8rJyVFiYqJ8fHz04IMP\nqn///jp37lylawYAAADgPQxLDX0x3po1azR58mT98MMPNg+vgXPk5xeopOTq91PCtfz8fBQWVotr\n44G4Np6N6+OZDh48oNTUJJu2yZOT1bx5CzdVhCvx58azXb4+gCN4xAxiZaxatUpNmjRRgwYNtGfP\nHr322muKj48nHAIAUIOZzeZK9ZtMJleUAwBer8YExJycHM2ZM0e5ubmKiIhQfHy8zTsPryY7O1vx\n8fEyDMPufkTDMJSZmamGDRs6o2wAAPAbzGazJk1KkCSNH2//d3phYaG1f+bMOYREAHCBGhMQx4wZ\nozFjxlzXvvXr16/wPYNX9gMAANfKzs6yzhDm5p6268/NPW3tz87OYrkpALhAjQmI1eHr61vl10gA\nAAAAgLfxioAIAAA8S1raNO3fv6/S41NTkzRo0BANGfKwE6sCAHjEexABAID3yMk5ZRcOf/kl327c\nkiUf2Gx//vkqmc3nnVkaAHg9AiIAAHCppKREu7a1a1fatZWWFttsWywWzZ0722l1AQAIiAAAwIW+\n+CJDhYUX7NpLS0srtf/evbu1d+9uR5cFAChHQAQAAC6zfPmyah9j3rw3HVAJAKAiBEQAAAAAgCQC\nIgAAcKFHHhlW7WOMHz/RAZUAACpCQAQAAC4zYMBABQUF27X7+vpWav+WLVupZctWji4LAFCOgAgA\nAFwqOTnNrm3QoCF2bb6+/jbbhmHoT3961ml1AQAIiAAAwMXq1auvW2+9zaatTp0wu3EjRoyymgg9\n6wAADb1JREFU2b7vvgdkMoU4szQA8Hp+7i4AAAB4n8TEaTp48IBSU5MqNX7y5GQ1b97CyVUBAAiI\nAADALSIjo2QymSRJ4eERdv3h4RHW/sjIKJfWBgDeioAIAADcwmQyaebMOZKk7Owsu/6goCBr/+Wg\nCABwLgIiAABwm2sFP4IhALgWD6kBAAAAAEgiIAIAAAAAyhEQAQAAAACSCIgAAMADFBVdrFQbAMC5\nCIgAAMDtTp8+Vak2AIBzERABAIDbRUTUr1QbAMC5CIgAAMDtAgICK9UGAHAuAiIAAAAAQBIBEQAA\nAABQjoAIAAAAAJAk+bm7AAAA4L3MZnOl+k0mkyvKAQCvR0AEAABuYTabNWlSgiRp/Phn7PoLCwut\n/TNnziEkAoALsMQUAAC4RXZ2lsxms8xms3JzT9v15+aetvZnZ2e5oUIA8D4ERAAAAACAJAIiAABw\ng8mTn1dqalKlx6emJmn79m1OrAgAIBEQAQCAi2VnH7dbMvrzz8fsxq1evcJm+4MPFqi4uMiptQGA\ntyMgAgAAl0pKSrRr++qr/2fXlp+fa7N99uxZZWaudVpdAAACIgAAcKHPPvtEpaUl173/6tWf6fTp\nUw6sCABwJQIiAABwmYyMNdU+xrJlHzqgEgBARQiIAAAAAABJBEQAAOBCAwfeX+1jDBv2uAMqAQBU\nhIAIAABc5qGHHpWvr9917z948EOKiKjvwIoAAFciIAIAAJdKTk6za7v77nvs2sLCwm22a9eurfj4\nQU6rCwBAQAQAAC4WGdlIkZFRNm2NGzexGzd48IM226NG/VH+/gFOrQ0AvB0BEQAAuFxqaromT06u\n9PjJk5PVoUMnJ1YEAJAIiAAAAACActd/lzgAAEA1REZGyWQySZLCwyPs+sPDI6z9v16SCgBwDgIi\nAABwC5PJpJkz50iSsrOz7PqDgoKs/ZeDIgDAuQiIAADAba4V/AiGAOBa3IMIAAAAAJBEQAQAAAAA\nlCMgAgAAAAAkERABAAAAAOUIiAAAAAAASTzFFAAAeIBGjRpr6tTp8vOTzp8vlJ9foBo1auzusgDA\n6xAQAQCA2wUFBal581sVFlZL+fkFKikpc3dJAOCVWGIKAAAAAJBEQAQAAAAAlCMgAgAAAAAkERAB\nAAAAAOUIiAAAAAAASQREAAAAAEA5AiIAAAAAQBIBEQAAAABQjoAIAAAAAJBEQAQAAAAAlCMgAgAA\nAAAkSYbFYrG4uwgAAAAAgPsxgwgAAAAAkERABAAAAACUIyACAAAAACQREAEAAAAA5QiIAAAAAABJ\nBEQAAAAAQDkCIgAAAABAEgERAAAAAFCOgAgAAAAAkERABAAAAACUIyACAAAAACQREHEdioqKNHjw\nYEVHR2vPnj3uLgeSxo8frz59+qhdu3bq1auXJk2apFOnTrm7LEg6fvy4Jk+erL59+6p9+/bq37+/\n5s6dq+LiYneXBknvvPOOHn30UXXo0EFdu3Z1dzlebenSpYqLi1O7du30yCOP6Mcff3R3SZC0detW\njRs3TrGxsYqOjtbf//53d5eEcvPnz9fQoUPVqVMn9ejRQxMmTNDhw4fdXRZuAAREVNmsWbPUsGFD\nGYbh7lJQrlu3bnrzzTf1xRdf6K233tLRo0c1ceJEd5cFSYcOHZLFYlFKSooyMjKUmJioTz75RLNn\nz3Z3aZBUUlKie++9V4899pi7S/FqmZmZevXVV5WQkKCVK1cqOjpaY8aMUV5enrtL83pms1mtWrXS\n1KlT+Xvfw2zdulW///3v9emnn2rRokUqKSnR6NGjVVhY6O7SUMMZFovF4u4iUHP83//9n2bOnKk5\nc+Zo4MCBWrVqlaKjo91dFn5l/fr1evrpp7Vz5075+vq6uxz8ysKFC/XJJ5/oyy+/dHcpKLdy5Uql\npaVp8+bN7i7FKz3yyCNq166dpkyZIkmyWCzq3bu3RowYobFjx7q5OlwWHR2tt99+W3379nV3KahA\nXl6eevTooY8++ki33367u8tBDcYMIiotJydHSUlJmjVrloKCgtxdDn7DL7/8orVr16pTp06EQw91\n9uxZhYaGursMwCMUFxdr165d6t69u7XNMAz16NFD27dvd2NlQM1y7tw5GYahOnXquLsU1HAERFRa\nYmKihg0bptatW7u7FFQgPT1dHTt2VLdu3ZSdna23337b3SWhAkeOHNHSpUv16KOPursUwCPk5+er\ntLRU9erVs2kPDw9XTk6Om6oCahaLxaIZM2aoc+fOatGihbvLQQ3n5+4C4F6vvfaa3n333d/sNwxD\nmZmZ2rBhgwoKCqxLfViZ7HyVvTZNmzaVJI0ZM0YPP/ywsrKy9NZbb2nSpEmaP3++q8r1OlW9PpJ0\n8uRJjR07VvHx8Ro6dKgryvRK13Nt4HksFgv3vAGVNG3aNB04cEAff/yxu0vBDYCA6OWeeOIJPfjg\ng1cd07hxY33//ffasWOH2rZta9M3dOhQDRo0SGlpac4s0ytV5to0adLE+rlOnTqqU6eObrnlFjVr\n1ky9e/fWjh071L59e2eX6pWqen1OnjypkSNHqnPnzkpOTnZ2eV6tqtcG7hUWFiZfX1+72cK8vDyF\nh4e7qSqg5khOTtbXX3+tpUuXqn79+u4uBzcAAqKXCwsLU1hY2DXHvfzyy3r22Wet26dOndLo0aP1\nxhtv2IVGOEZlr01FSktLJV16JQmcoyrX53I4bNu2rWbMmOHkylCdPztwPX9/f8XExGjTpk3Wh59Y\nLBZt2rRJI0aMcHN1gGdLTk7W3//+d3300UeKiopydzm4QRAQUSkNGza02Q4ODpbFYlHjxo3VoEED\nN1UFSfrxxx+1c+dOde7cWbVr19aRI0c0Z84c3XLLLerQoYO7y/N6p06d0ogRI9SoUSP95S9/UW5u\nrrXv1/dcwfWys7N15swZHT9+XKWlpdZ3u958880ymUxurs57jBo1Si+++KLatGmjtm3b6sMPP1Rh\nYeE1Z4LhfGazWUePHrXeWnLs2DHt2bNHoaGhioyMdHN13m3atGnKyMjQvHnzFBwcbJ2Fv+mmmxQY\nGOjm6lCT8ZoLXJfjx4/r7rvvtr6vCu6zb98+paamau/evbpw4YIiIiJ05513aty4cSw18QArV67U\nSy+9ZNN2+d6q3bt3u6kqXJaYmKhVq1bZtS9evFhdunRxQ0Xea+nSpVq4cKFycnLUqlUrTZkyhRUq\nHmDz5s0aOXKk3f2gDzzwALeXuFl0dHSF9+mmpaXpgQcecENFuFEQEAEAAAAAknjNBQAAAACgHAER\nAAAAACCJgAgAAAAAKEdABAAAAABIIiACAAAAAMoREAEAAAAAkgiIAAAAAIByBEQAAAAAgCQCIgAA\nAACgHAERAOAVNm/erOjoaO3atcvdpQAA4LEIiAAAr2EYhrtLAADAoxEQAQAAAACSCIgAAA+3cuVK\nxcTEKC8vz6b9zJkzatOmjT799FNt375d48ePV2xsrDp27KgHHnhAq1evvupxjx8/rujoaP3v//6v\nTXtqaqri4uJs2k6ePKnnn39e3bp1U/v27fX73/+epaoAgBsSAREA4NH69esnX19frVu3zqb9iy++\nkGEY6t+/v7KystS5c2fNmDFD77zzjgYMGKApU6ZcMyRWxDAMm6WoZ8+e1WOPPaa9e/cqKSlJc+fO\nVXBwsEaNGmUXWgEAqOn83F0AAABXExISot69eysjI0PDhw+3tmdkZKhnz54KDQ1VfHy8zT633367\nsrOz9cknn2jw4MHVOv8HH3yg8+fP67PPPlNYWJgkqXv37howYIDef/99Pf/889U6PgAAnoSACADw\neAMHDtSf//xnnThxQg0bNlROTo62bNmi9PR0SZdm+ebMmaP169fr5MmTKi0tlSRroKuOb7/9Vnfc\ncYdq165tPa5hGOrSpYt27txZ7eMDAOBJCIgAAI/Xp08fBQcHKyMjQ6NHj1ZGRoYCAwPVp08fSdIL\nL7ygHTt2aMKECWrRooVCQkK0bNkyu2Wp1yM/P187duxQTEyMTbthGLr55purfXwAADwJAREA4PEC\nAwPVt29fa0Bct26d4uLiFBwcrKKiIn399ddKTEy0WYJaVlZ2zWNKUnFxsU37mTNnbLZDQ0MVGxur\nZ555RhaLxaYvICCgOl8LAACPQ0AEANQIAwcO1Lhx4/TNN99o+/btGjdunCSpqKhIpaWl8vP7z19p\n58+f1/r16696vPDwcPn7++vgwYPWtqKiIm3ZssXmITXdu3fX2rVr1axZMwUFBTn4WwEA4FkIiACA\nGuHyA2leeuklhYaGqlevXpIuPcSmbdu2WrBggcLCwuTr66t3331XtWvXVm5urs0xrpwBNAxD/fr1\n09KlS3XzzTcrLCxMH330kd15//CHP+jzzz/X8OHDNXLkSEVFRSkvL087duxQgwYN9Pjjjzv3iwMA\n4EK85gIAUCP4+flpwIABOn36tAYMGGAzY/j666/r5ptv1osvvqgZM2bonnvuqfDppVfODErSlClT\n1LVrV6Wmpmrq1Km688471a9fP5sxderU0fLly9W6dWu99tprGj16tF599VVlZWWpffv2zvmyAAC4\niWH59Q0VAAAAAACvxAwiAAAAAEASAREAAAAAUI6ACAAAAACQREAEAAAAAJQjIAIAAAAAJBEQAQAA\nAADlCIgAAAAAAEkERAAAAABAOQIiAAAAAEASAREAAAAAUI6ACAAAAACQJP1/d9KlysGYmHEAAAAA\nSUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAEKCAYAAACoktfqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8k+X5P/DPlTb0QJFKW0VbMZQ2YpXiABHn1g0PDIq4KZtz4qwTh3NK/Q5Utq8tAwpfRcR9VzwyUYpf3UScQwVU/M3DdDpWEAER0oItFC2QKofSlh5y/f5I0rUlaZImaZLm83698mry3Pfz5MrTQq/ez/3cl6gqiIiIiHrKEOoAiIiIKLIxmSAiIiK/MJkgIiIivzCZICIiIr8wmSAiIiK/MJkgIiIivzCZICIiIr8wmSAiIiK/MJkgIiIiv8SGOoBol5qaqiaTKdRhEBFFlM2bN1tVNc3PY5wRGxv7NIALwT+uu2MDsKO1tfW20aNHH3LVgclEiJlMJpSXl4c6DCKiiCIi1f4eIzY29unBgwefn5aW9o3BYGBtCTdsNpscPnw4p7a29mkA17jqw0yMiIii1YVpaWnHmEh0z2AwaFpa2lHYR3Bc9+nFeIiIiMKJgYmEdxznyW3OwGSCiIiI/MI5E0RERACm3zHzvLpvjvYL1PFSTh/YvOKJZbsDdTxP0tPTR5SXl39+1llntfraZ+bMmekvvfRSyrFjx2IaGho+8fW9mUwQEREBqPvmaL/951wZsGQC+98O2KGC7Uc/+tGRe+6559D555/vdl5Ed5hMUEQqLS1FZWVlt31qamoAABkZGW77ZGVlobCwMKCxERF5Y/fu3f0mTpyYPWrUqBObN29Oys3NPXHrrbdaFyxYkF5XVxe7cuXKvePHj284ePBgzLRp00z79u2LS0hIsC1fvrz6kksuaaytrY2ZOnVq5sGDB/uNHj26XvU/0z8ef/zxQU888cSZLS0tMmrUqBOrVq2qjo11/yv/iiuuOOHPZ2EyQRGpsrISn2zfCVviILd9DA1HAQAHT7r+MTc0fB2U2IiIvLV///74F198ce/o0aOrcnNzz3/++edTysvLd73wwgvJixYtOmv8+PF77rvvvrNHjhzZ8Pbbb+959dVXBxQUFAzdtWvXzt/+9rdnX3rppfUPP/zwV3/5y18Grl69OhUAtmzZEr9mzZpB5eXlu+Li4vSmm24a8uSTT6bcdddddcH6HEwmKGLZEgehKedqt+3xO18HALd9nO1ERKGSnp5+cuzYsY0AYDabGy+//PJjBoMBo0aNali4cOHZALBp06YBL7/8ciUAXHPNNcdnzJgR+/XXXxs+/vjjAX/9618rAeCGG244evvtt7cBwBtvvDFgx44diSNHjjwfAJqamgxnnHGG23kUgcBkggKutLQUAHj5ADwXRNS9fv36tV+bMBgMiI+PVwCIiYlBW1ub9OSYqio/+clP6h577LEDgYrTEyYTUcxqtWL+/PmYN28eVLX9eUpKCqxWK4qKigAAs2fPxtKlS9HU1IQvv/wSycnJqK2tRVZWltt5C/Hx8fwFCmDLli3Yu3cv1qxZA6PRiNbWVgwdOhRLly5FSkpKqMMjoghwySWXHH/22WdTlixZ8tXrr78+4PTTT28dNGiQbdy4ccdXrlyZ8tBDD321evXq044dOxYDABMnTjx23XXXZf33f//3wfT09NaDBw/GHD16NMZsNjcHK0YmE1GsrKwM27ZtQ1lZGVS1/fmsWbNQVlaGnTt3AgBKSkpQVVXVvl9tbS0AdDsBsqmpKaixR4qO562lpQUAsHfv3vbzTEThI+X0gc2BvAMj5fSBAfnlvXjx4i+nTZtmMpvNOQkJCbaVK1d+AQAPPvjgl1OnTs3Mysq6YMyYMfVnnXVWMwCMHj26qaio6MAVV1xhttlsMBqNWlpauq+7ZOJXv/pVxiuvvDKoqanJcOaZZ+ZOmzbN+sgjj3zpbYzScfYn9b4xY8ZoKGpzWK1W3HDDDWhubka/fvY7oZqbmxEXF4fHH38cv/rVr9p/+fXUiBEj8NhjjwUi3FMUFhZi855av+dMjB42uP1SRKBt2rQJ99xzj8u22NhYvPTSSxydIOohEdmsqmP8Ocann35aNXLkSGugYurrPv3009SRI0eaXLVxZCJKOUcjAHRKGmw2G0pKStDa6v9cne3btwftUkdFRQWk2b9EWJqOoaLieNBi3LZtm9u21tZWjk4QUZ/B5bSj1MaNG9uTCFXtlFhUVVWBI1b+s9ls3ba/9dZbvRQJEVFwcWQiSl111VVYv349WlpaIGKfMKyqMBqNSE9PR3V1dUASimBdQnBe5vCHxp+G7CBe5sjPz0d9fb3b9gkTJgTlfYmIehtHJqJUQUFBexJhNBphNBoB2G9NKi4uRncrpXlrxIgRfh8jks2bN89tW2xsLAoKCnovGCKiIGIyEaVSU1MxadIkiAjy8/Pbn0+aNAnZ2dnIz89v72symXr0HsGafBkpxo4d256kdXX11Vdz8iUR9RlMJqJYQUEBcnNzUVBQ0Om5sy0nJwc5OTkoLi5GTk4OMjMzER8fj8GDBwOw17VwJ9pHJZweeOCBTiNAIoLMzEyOShBRn8I5E1EsNTUVy5Yta3/d8XlqaiqefPLJ9tcdn5P3xo4di/feey/UYRCRF2b9evp59UesAasampSc2vzI4yvCvgT58ePHDVOmTMmsrq6Oi4mJwYQJE448/vjjPq2eyWSCIlJNTQ0Mx+uQWF7muoOtDVAbAHHfp60VNTVBXa6eiCJI/RFrv6LhewOWTCzcFagjBd/s2bMPTpky5XhTU5Ncdtll5tWrV592/fXXH/N2f17moIjVP7YN5w9ocPlINLTCKIpB/Vrd9ukf2xbqj0BEUWz37t39hg4desHUqVNNJpPpwmuuuWbo3/72twGjRo0afu655174zjvvJALAwYMHY6688sphZrM5Z+TIkcP/9a9/JQBAbW1tzGWXXZadlZV1wU9/+tNzu5YgHzFixPnDhw/PufHGG8/tbu2gAQMG2KZMmXIcAOLj4zU3N7dh//79PiVVHJmgiJSRkYGm1q9QNMb1rZcLy5MAwG27s098RkZQ4iMi8ka4lSC3Wq0xGzduTL733nsP+vI5ODJBREQUIs4S5DExMaeUIK+pqYkD7CXIp0+fXgfYS5AfOXKkvQT5rbfeWgfYS5Cfdtppp5QgHz58eM4HH3xw2t69e+M8xdLS0oLrrrsuc8aMGQdzcnJ8qivCkYk+pmMl0K63HlosFhQWFiIjIwOLFy9GSkoKLBYL7r77bixbtgzJycmYPXs2qqurMXfuXLzwwguorq5u399gMGDRokVYunQpDhzwPDdn/vz5GD9+fMA/YyQpLS3Fvn37sGnTJgDAsGHD8PDDD7dXZnX3vSKi6BBOJchvvPFGU2ZmZtPcuXMP+fqeHJnoYzpWAu1q4cKFaGhogMViaW9fuHAhTpw4gQULFqCsrAxffPEFbDYbFi5cCIvFgpMnT7Y/GhsbMXfuXK8SCcBebTTaVVZWticSALBnz572c9/d94qIyMlZghwAXJUgB4CuJchff/310w8cOBAL2OdcWCyWbudAFBYWnn3s2LGYFStW7O9JjByZ6EOsVis2bNgAVcWGDRtQUFDQ/hevxWLpVA573bp1+O53v9u+raqqqtMohLvJOt0tD91Va2sr3nnnnagenfj6669P2bZu3TpMmTLF7feKiEIjKTm1OZB3YCQlp0ZECfI9e/YYly1bdtbQoUObLrjgghwAmDFjxqFZs2Z5XVGVJchDLJAlyJcuXdpeb8NoNGLy5MntVSlvvvnmTskEACQlJfmUHPTURRddFPBjVlRUoF/LMSzLc33nkjcTMGe+fxqajachOzs74PE5bd261eV2k8mEAwcOuPxeEZFnLEHe+7orQc7LHH1Ix0qgLS0tnapSdk0kAN9GGSiwqqqq3H6viIgiDS9z9CEdK4EajcZOVSlNJlNIRiZiY2ODUpWzsLAQTVX/9usYZybaEG/KDlrVUADIy8tzub3ryAQriBJRJOPIRB/SsRKowWDoVP+hqKioU1+j0Yj58+d32ubcN5CKi4sDfsxIMmTIkFO2GY1GFBcXu/1eERFFGiYTfUjHSqCTJk3qNKHPbDZ3qv45efJkXHzxxe3bTCYTrrnmmvZ2dyXIk5KSvI4nNjY2qidfAsCgQYNO2TZ58mRkZ2e7/V4REUWaiEwmRMTj2LyI/JeIJPZGPOH0/l2rf3ZUVFSExMREmM3m9vaioiL0798fc+fORUFBAYYOHQqDwYCioiKYzWbExcW1PxISErBgwQKkp6d7FUu0j0oA9sqqY8eObX89bNiwTpVZ3X2viIgiSUTezSEi9ara7Z/IIlIFYIyqen9ri0iMqgakYIO37x/IuzmiiXPOhN/LaZsuDuqcCSIKDt7N0fu6u5sjoidgisj3AcwDYAVwIYDNAG4CMBPA2QDeERGrqo4XkQkA5gOIA7AHwC9Utd7xS/9FAFcBeEhEygE8CSANQBuAn6jqHhG5F8D1jv1fUdXfi4gJwBuO9x0F4DMANwO4rev7B/lURKV99THtSUNX1cdjAMBtu3N/c1AiI6JIdNudt51Xd7QuYFVDUwamND/92NNhX4IcAL773e9mHzp0yNjW1iZjx449vmrVqn3uLne7EtHJhMO3AFwA4EsAHwK4TFVLRWQWgPGqahWRVABFAK5U1RMiMgfALAALHMeoU9VRACAi/wLwoKq+IiLxAAyORCQbwFgAAuBVEckDsA/AeQCmq+qHIvIMgF+r6sMd37+XzkNUqa+vh8QNwP4W1+0tchJtbW2orO+HuDjXS9InJicgKysriFESUSSpO1rX79AlhwKWTOBfATtS0K1du3bPoEGDbDabDZMmTRr2zDPPnD5jxoxvvN0/IudMdLFJVWtU1QZgKwCTiz7jAOQA+FBEtgIoAHBuh/YXAUBEBgBIV9VXAEBVm1S1AcAEx+MTAFsADIc9uQCA/ar6oeP5/wH4jqeARWSGiJSLSPnhw4d9+rBkl5SUhPrmetQnun60nN4CW6wNLdLiuk9zPTIyMlBYWBjqj0JEUSpcSpADwKBBg2wA0NLSIi0tLeLr3X19IZk42eF5G1yPtgiAjap6keORo6rTO7Sf8PAeAuCBDvtnqeoKR1vXSSceJ6Go6nJVHaOqY9LS0jx1J3eSAdv3bW4fSHbfB8mhDp6IyF6CfM6cOQf37NmzY8+ePfHOEuSLFi2qWbRo0VkA4CxBbrFYdpaUlBwoKCgYCgDOEuSVlZWfXXvttUe++uqrfkDnEuS7du3aaTAY9Mknn/R4y9h3vvOd7LS0tJH9+/dv+8UvfuH1qATQN5IJd44DGOB4/jGAy0QkCwBEpL+InHK5XFWPA6gRkR85+sU57sh4E8CtIpLk2J4uImc4dhsiIpc6nt8I4AMX7x91SktLo35iI88BEXkSTiXIP/jgg4ra2tpPm5ubDa+99tppvnyOvjBnwp3lAN4QkS8dEzBvAfBnEXGe0CIAFhf7/RzAUyKyAEAL7BMw3xKR8wF85Bj6qYd9omcbgN0A7nTMl9gJ4AlX7x+cjxh4VqsVc+bMQU1NDc466ywA6FQltK2tzW0RsK769+8f1ZcRPv/8c+zZswcvv/wyHnnkEYwePbpTyXfO1yCicCpBDgCJiYk6ZcqUI6+88krytdde67r4kQsROTLhvC1UVd9V1as7bL9LVVc6ni9T1fOcv8hV9e+qerGq5joerzq2mzpOklTVClW93NFntKrudWz/o6qOcDwuVdU9jl1aVfUmVT1fVac65lic8v6RoqysDBUVFWhsbMTevXuxd+/eTmXIvU0kAODECU9Xj/q22tpaNDU1QVXb19zoWPKdiMgbwS5BfvToUUN1dbURsNcK2rBhw8Dhw4c3+hJjXx6ZIB9ZrVasW7cuoMe877778NBDDwX0mJHAarV2Kj9eX1+PtWvXdir5XllZydEJojCSMjClOZB3YKQMTImIEuTHjh0zTJ48Oau5uVlUVb797W8fu/fee326OyAiF63qS8Jp0aqlS5di7dq1AT9usEqQ19vqYbva5raP4V37wJvt+6f2MbxuQJIhKWjlx/fv34+6urpO20QEHf+9mUwmrFq1KijvT9TXcdGq3scS5OSVjRs3hjqEPuObb06dCN01cXdVFp6IKBLxMge1u+qqq4IyMhGsEuSfHPik5wdIArLTg1d+3NUoj6uRCSKivoAjE9SuoKDAbbXQnho3blxAjxcpOpaDd5o1a1an13Pnzu3NkIiIgobJBLVLTU3F5MmTA3rMaJx8CdjP5dChQ9tfJyUl4Yc//GGnku+cfElEfQWTCeqkoKAA2dnZSEhIQGZmJjIzMzuVIfdl5CJaRyWcHn74YWRmZkJEUFJSAqBzyXcior6Ccyaok9TUVKxYscJzR/IoNTUVK1eu7LTNbDZjw4YNoQmIiChImExQRKqpqQHqAMPfuhlcc1QUddmnFahoqEBpaWlUr9JJRP9x922/PO94nTVgVUMHpKQ2//HpP0VECXKnyy+/PGv//v1xFRUVn/ny3kwmKGIlqGCwmxLkALDf8fUcN31qT5xAZWVlwOMiosh0vM7ar6Du64AlE2WBOlAvKSsrS+7fv39bT/ZlMkERKSMjA0esVkyH+6XrVzgKuLrrs8JzgVcioqDZvXt3v4kTJ2aPGjXqxObNm5Nyc3NP3HrrrdYFCxak19XVxa5cuXLv+PHjGw4ePBgzbdo00759++ISEhJsy5cvr77kkksaa2trY6ZOnZp58ODBfqNHj67vWoL8iSeeOLOlpUVGjRp1YtWqVdXdzXk7evSoobS09Mzly5dX33DDDcN8/SycgElERBQi4VKCfNasWel33333waSkJPfLCneDyUQEs1qtmDlz5inLNnu73V0/ANi0aRO+973v4aabbsItt9yCiRMn4sEHH0ReXp7Xj1dffTV4Hz4ClJaWYvHixZg+fTomTJiAH/zgBygvL8fMmTNRUVHh9twTUfQIhxLk//znPxO++OKLuJtvvvlITz8Hk4kIVlZWhm3btqGsrKxH2931A4B58+ZBVbFv3z7s3bsXDQ0NWL9+vU/xLV261MdP1LdUVlbi448/RkVFBZqamtDY2Ii5c+di27ZtKCkpcXvuiSh6BLME+a5du3bu2rVrZ1VV1Y5HHnnkS3f9//GPfyTt2LEjMT09fUReXt7wqqqquLFjx57ny3symYhQVqsVGzZsgKpiw4YNnUYbvNleUVHhsh9gH5Wor6/3O0ZVjerRiZaWllNGHurr66GqqKqqcnnuiYi6CnYJ8jlz5hw+dOjQtgMHDmx///33d5lMppObNm3y6S4UTsCMUGVlZe11Hmw2G8rKyjBr1iyvt5eUlLjsB9hHJQLl4Ycfxttvvx2w4zlVVFT4nQnXAThcURG0W0N37/b8b7HruSei0BmQktocyLHCASmpEVGCPBBYgjzEelqCfOLEiWhoaGh/nZiYiDfeeMPr7V05+wFAXl6ez/F0J1glyA0nTuA+P+7meAgKW//+QStDvnXrVq/6dTz3ROQdliDvfd2VIOfIRIS66qqrsH79erS0tMBoNGLChAk+bU9PT8eBAwdO6QfY60gE4jIHYK+UGayqoUe8/GXtTgqA5OzgVQ699tprPV7C6HruiYgiEedMRKiOVSkNBgMKCgp82l5cXOyyHxDYyxyzZ88O2LEizeDBgz326XruiYgiEZOJCJWamopJkyZBRDBp0iSkpKT4tD07O9tlPwAYO3YskpKS/I5RRHDNNdf4fZxIZTQaO51XwD7qIyIwmUwuzz0R9SqbzWbr0R0T0cZxntyuQcFkIoIVFBQgNzf3lL9svd3urh9gH50QEQwZMgSZmZlITExEfn6+T/FF86gEAGRlZWHcuHHIzs5GfHw8EhISsGDBAuTm5qK4uNjtuSeiXrPj8OHDA5lQdM9ms8nhw4cHAtjhrg8nYIZYTydgRjvnnAl/l9NOvuiioM2ZIKLgCcQEzM2bN58RGxv7NIALwT+uu2MDsKO1tfW20aNHH3LVgRMwKWLVovv6Gl85vrrrUwsgOeBREVGkcPxijN5rsQHEZIIiUlZWlsc+9TU1AIDkjAyX7cleHoeIiLrHZIIiUrAWmiIiIt/xGhERERH5hckEERER+YXJBBEREfmFyQQRERH5hckEERER+YXJBBEREfmFyQQRERH5hckEERER+YXJBBEREfmFyQQRERH5hckEERER+YXJBBEREfmFhb6IiAKotLQUlZWVLttqHJVsM9xUss3KymIRO4pITCaIiAKosrISn2zfCVvioFPaDA1HAQAHT576X6+h4eugx0YULEwmiIgCzJY4CE05V5+yPX7n6wDQbRtRJOKcCSIiIvILRyaIKGxZrVbMnz8f8+bNQ0pKSo/2nzNnDmpqatC/f39YrdZT+px77rl47rnnAhFu2LnttttgsVg89ktLS8Px48chIrjvvvuwZMkSZGRkYPHixT067xR9ODJBRGGrrKwM27ZtQ1lZWY/3r6ioQGNjo8tEAgCqq6v9CTGseZNIAMDhw4fR1NSExsZGLFq0CA0NDbBYLD0+7xR9mEwQUViyWq3YsGEDVBUbNmxAXV2dz/uvX7/eq75LlizpSYhh7amnnurRfq2tre3P161b5/N5p+jEyxxEFJbKysqgqgAAm82GsrIyzJo1y6f9W1pavOr72muvYf/+/T2Ks6uKigpIs/q8nzQdQ0XF8YDdGrp161a/j9HS0uLzeafoxJEJIgpLGzdubE8GWlpa8NZbb/m8P/nP1/NO0YkjE0QUlq666iqsX78eLS0tMBqNmDBhgs/7r1271uv+paWlvoboUmFhITbvqfV5P40/DdnDBgcsjry8vIAcx9fzTtGJIxNEFJYKCgogIgAAg8GAgoICn/c3Go1e9Z0yZYrP8YW7adOm+X0Mo9Ho83mn6MRkgojCUmpqKiZNmgQRwaRJk3y+RTE1NRX5+fle9b333nt7EmJYu/3223u0X2zsfwasJ0+ezFtDyStMJogobBUUFCA3N7fHfx0XFBQgOzsbCQkJSE1Nddnn3HPP9SfEsGY2m73ql5aWhvj4eCQkJOD+++9HYmIizGYzRyXIax7nTIjImQD+B8DZqjpJRHIAXKqqK4IeHRFFtdTUVCxbtsyv/VesiN7/qp5++uke7XfFFVcEOBLq67yZgLkSwLMA7ne8tgB4EUD0/gslIuqGoeFrl7U2DA32NRtct30NYHCwQyMKCm+SiVRVXS0ivwMAVW0VkbYgx0VEFHFKS0tRU1ODpHgjYDt+SnuDzb4gVJKLNsQbUV9fH+wQiYLCm2TihIikAFAAEJFxAI4GNSoioghUWVmJhiOHMCTJ9d9b1YYYAMA5xiOntO2rj0FSUnZQ4yMKFm+SiVkAXgUwTEQ+BJAG4MdBjYqIKEINSWpD0RjXIwwLy5MAwGW7s40oEnlMJlR1i4h8D8B5AATAblX1bo1aIqIw5VwcKlDLV4ejaPiMFB7cJhMicp2bJrOIQFX/GqSYiIj85ixfXlhYiNLSUtx888343e9+h+bm5vY+IoL8/HxkZWWFMNLg2bZtGywWC9asWXNKW0JCAhobG9tfx8XFIT09vX2didjYWCxatKjH60x4Kh/vb3l5Ci/drTMxpZvH1cEPjYio55zly0tKSrBt2zb8/ve/75RIAICqYsGCBSGKMPi6K6/eMZEAgJMnT2Lv3r2wWCywWCzYuXOnXyXIPZWP97e8PIUXt8mEqv6im8etvRkkEZEvOpYvr6qqgqq6vVOiqqoKlZWVvRxh8FksFpw8edKvY6xfv75HJcg9lY/3t7w8hR9vFq1KAfB7AN+B/Y6ODwAsUFV+94koLHUsX+6NO+64A+eff77f71tRUYF+LT1bWPhggwHNFRUBm9/w+eef+32MnpYg91Q+3t/y8hR+vPmp/wuAwwCmwn4Xx2HYF60iIgpLHcuXe8Pfv+DDUSA+k6r2qAS5p/Lx/paXp/Djza2hZ6lqSYfXC0Xkp8EKiIjIXx3Ll3vDZDIFpPR3YWEhmqr+3aN9z0y0Id6UHbAS5DfffDOqqqr8OoaI9KgEuafy8f6Wl6fw483IxFsicoOIGByP6wG8GezAiIh6qmP5cm/MnTs3iNGERlFRkd/H6GkJck/l4/0tL0/hx20yISLHReQYgF8CeAFAs+PxFwAzeic8IiLfdSxfbjKZICJISnK9KJTJZOqTt4aazWYMGDDAr2Pk5+f36LZNT+Xj/S0vT+Gnu7s5BqjqaY6vBlWNdTwMqnpabwZJROQrZ/ny4uJi5ObmYv78+ejXr1+nPnFxcX1yVMLpD3/4g9sRmoSEhE6v4+LikJmZCbPZDLPZjJycHL9GDDyVj/e3vDyFF2/mTEBETgeQDSDeuU1V3w9WUOFGRPoDWA0gA0AMgBIAlQAeAZAEwArgFtgnp34E4F5VfVdEHgBgU9X7XR2XiIKnY/ly59e33347lCH1OrPZjPfeey8k7+2pfLy/5eUpvHhza+htAO6G/RfpVgDjYP+FeXlwQwsrEwF8qaqTAUBEBgLYAOCHqnrYMSF1kareKiK3AFgjIjMd+10SqqCJqHfV1NTg6yOx+OU7A122N7bZRwlctZ9sEwyqqQlqfETB4s3IxN0ALgbwsaqOF5HhAP4nuGGFne0AlorIYgCvA/gGwIUANjqGEGMAfAUAqvqZiDzn6HepqjZ3PZiIzIBj3smQIUN65QMQUe9oMwINyW4mfzpW52kY5KL91EKiRBHDm2SiSVWbRAQiEqequ0TkvKBHFkZU1SIiowDkA1gI4O8APlPVS93sMgL2/xrOcHO85QCWA8CYMWO8X1mHiMJaRkYGDsth2L5vc9lueNc+Tc1Vu+FdAzLSM4IaH1GweHNraI2IJAP4G+x/ia8F4H7B9z5IRM4G0KCq/wdgCeyXLtJE5FJHu1FELnA8vw7AIAB5AJY5zh0REVGf5U0J8msdT+eJyDsABgJ4I6hRhZ8RAJaIiA1AC4A7ALQCKHXMn4gF8L8ichDAgwCuUNX9IvIogD8C4HRloiBzVqH80Y9+hJKSEvzmN7/BY489BpvNhpbbV6e4AAATAElEQVSWFpfLaw8bNgzPPvtsCKLtPYsXL8bf//73Uwp7AfY7OH77299iyZIlyMjIwOLFi5GSktKpomddXR1mzpyJc845B3PmzEFpaSnmzZsHVWXVT2rXXQny01T1mIgM6rB5u+NrEoCvgxpZGFHVN+F6oa48F9vMHfYLzFJ2ROSRswrlZ599BpvNhkceecRjfY49e/b0UnSh8/HHH7tMJAD7ktuLFi1Ca2srLBZLe42MjhU9t27disbGRlgsFpSUlKC6urq9toazD+tqUHeXOV5wfN0MoNzFVyKisNCxCmVraysAeF3o69FHHw1maCFltVo9VuR0ni8AWLduHSoqKtrP5bp16zotye2swLp+/XqsX7+eVT+pnduRCVW9Wuy3KnxPVff1YkxERD7xtUpoR6tXr4bFYglIHBUVFYDruZee1dv3D1TVUADYv3+/T/1bWlpQUlLSfi7d1TbpuJ1VPwnwMAFT7T9R63opFiKiHvG1Smi0+Oabb3zep6qqyuO5VNVOCQerfpI3t4ZuEZGLVbVnpfCIiILM1yqhXQWqUmdhYSE+OfBJz3ZOArLTA1c1FACWLl2KtWvX+rSPyWTCgQMHuj2XziW6VZVVPwmAd7eGXgLgIxHZIyLbRGS7iGwLdmBERN7ytUpoR9dff32Aowkfvta9MBqNKC4ubj+XRqPRbb/YWPvfoqz6SYB3ycQPAAyDffnsKQCudnwlIgoLHatQOn/JeZtc3HXXXcEMLaRSU1M93rbpPF8AMHnyZGRnZ7efy8mTJ8NkMrW3Oyuw5ufnIz8/n1U/qZ3HZEJVq1W1GkAjAO3wICIKG84qlPfffz8MBgNmzZqF+Ph49OvXz21iMWzYsF6OsveNGzfulAqhTnFxcbj//vuRmJgIs9ncPsLQsaJnUVEREhISYDab2yuwFhQUsOondSKeZkCLyDUAlgI4G8AhAOcC+FxVLwh+eH3fmDFjtLycd9oS9QXOORM9XU77W+nfCuicib5MRDar6phQx0F23kzALIG9UujbqvotERkP4KbghkVEFKGO/CdpcNUGuGk/AiA9aFERBZU3yUSLqtaJiEFEDKr6joj8b9AjIyKKMFlZWaipqUFjg+sVJxtaGwAAiQ2Jpzb2A+rr64MZHlHQeJNMHBGRJAD/APC8iBwCcCK4YRERRZ7CwkJUVlZi19atGOyi/SvH17QTp/4XWgsgKSkpmOERBY03yYSzuNfdsF/eGAhgQTCDIiKKZIMBTMepkz5XOOaud9dGFIm8uTU0FsBbAN4FMADAi6rKhdiJKKKVlpb2+cmO0fAZKTx4U4J8PoD5IpIL4KcA3hORGlW9MujRERH5yFk+u7CwEEuXLkVjYyMOHDiA5uZml/3T0tLws5/9rJej7B1btmzB3r17sWbNGpftsbGxaG1txezZs/HSSy9h3759GDJkCP74xz9CVVFUVISmpiZ8+eWXGDJkCObMmdN+Tg8ePIhHH30UWVlZvfypKBx5c5nD6RDsl/XqAJwRnHCIiPzjLJ9dUlLSqeKlO0888USfTSY8fX5nxdCO5dr37dvXXjht586d7X2dJcg7HnPBggVYtWpVwOOmyOPxMoeI/FpE3gXw/wCkAPilquYGOzAiIl91LEXuTSLh9Oc//zl4QYXIpk2bYLN5V8K063pDr732GtatO7XGY9dzWlVVhcrKyh7HSH2HNyMT5wD4L1XdGuxgiIj80dNS5E888QQ++uijgMRQUVHh1WS0ruoAHA5gCfJt23peQqmtrc3rvhydIMC7ORO/641AiIj8xVLk/+HtqIS/fBkBor7LlzkTRERhzZ9S5IEsQ35kq+8DuSkAkrMDV4I8Pz+/VxbB6lgIjKJXT0bjiIjCUk9Lkd9xxx1BiCa05s2b1+N9Y2JiOlUT7c7cuXN7/D7UdzCZIKI+o2Mpcl/+Yu6Ld3OMHTsWRqPRq75dE7ApU6Zg8uTJp/Trek5NJhNvDSUATCaIqI9xlsYuLi5GTk4Ohg4din79+rnt3xdHJZweeOCBbtudow+zZs3CkCFDAABDhgxpLzGek5ODzMxMxMfHt5cgd57TxMREjkpQO48lyCm4WIKcqG9xzpnoyXLayRddxBUrvcQS5OGFEzCJiAKsFq5rbTgLfblqqwWQHNSoiIKHyQQRUQB1N4egvqYGAJCckXFKW7KHfYnCGZMJIqIACtSiU0SRhBMwiYiIyC9MJoiIiMgvTCaIiIjIL0wmiIiIyC9MJoiIiMgvTCaIiIjIL0wmiIiIyC9MJoiIiMgvTCaIiIjIL0wmiIiIyC9MJoiIiMgvTCaIiIjILyz0RURRqbS0FO+++y6Sk5PxzDPPhDocoojGZIKIolJlZSWsVisaGxtDHQpRxONlDiIiIvILkwkiijqlpaWoqakBAJw8eRKlpaUhjogosjGZIKKoYrFYsGbNGlitVgBAa2sr1qxZg7y8PLzzzjshjo4oMjGZIKKosnDhQrdtJSUlvRgJUd/BZIKIoobFYkFVVZXb9tbWVo5OEPUAkwkiihrdjUo4cXSCyHdMJogoanQ3KuHU2toa/ECI+hgmE0QUNUwmk8c+sbFcfofIV0wmiChqFBUVeexTXFzcC5EQ9S1MJogoapjN5m5HJ2JjYzF+/PjeC4ioj2AyQURRpbvRCY5KEPUMLw4SUVQxm814//33UVhYiK1bt6J///7YsGFDqMMiimgcmSCiqORcTruhoSHEkRBFPiYTRERE5BcmE0QUlTIyMgAAiYmJIY6EKPIxmSAiIiK/MJkgoqjy1FNPIS8vD1u3bgUAnDhxAnl5ecjLy8OKFStCHB1RZGIyQURR5fnnn3fbVlZW1ouREPUdTCaIKGo89dRTHvtwdILId0wmiChqdDcq4cTRCSLfMZkgIiIivzCZICIiIr8wmSCiqDFt2jSPfQoKCnohEqK+hckEEUWN22+/3WOf6dOn90IkRH0LkwkiiirdjU5wVIKoZ0RVQx1DyIjI9wE0q+o/g3T8lQBeV9U17vqMGTNGy8vLg/H2RNQNVg2NbCKyWVXHhDoOsov2kYnvA/i2LzuICMu2ExERdRDUZEJE/iYim0XkMxGZ4dg2XUQsIrJJRP4kIo86tqeJyMsi8m/H47JujpskIs+KyHYR2SYiUx3bJ4jIRyKyRUReEpEkx/YqEZnv2L5dRIaLiAnArwD8RkS2ish33cUgIvNE5DkR+RDAcyISIyJLHH22icjtjn4iIo+KyG4ReRvAGcE7u0Tkj/r6eogIWlpaQh0KUcQL9l/Zt6rq1yKSAODfIrIOQDGAUQCOA/g7gE8dff8I4A+q+oGIDAHwJoDz3Ry3GMBRVR0BACJyuoikAigCcKWqnhCROQBmAVjg2MeqqqNE5NcA7lHV20TkSQD1qvqw4zgvdBNDDoDvqGqjIzE6qqoXi0gcgA9F5C0A3wJwnqPvmQB2Anima/CO/WcAwJAhQ3w6oUQUGElJSVBVGI3GUIdCFPGCnUwUisi1jufnAPg5gPdU9WsAEJGXAJgd7VcCyBER576niUiSqta7OO6VAG5wvlDVb0Tkath/iX/oOEY/AB912Oevjq+bAVznJl6XMTiev6qqjY7nEwDkisiPHa8HAsgGkAfgz6raBuBLEfm7qzdR1eUAlgP2ORNuYiEiIooIQUsmHJMbrwRwqao2iMi7AHbB/WiDAcA4VW3q6VsC2KiqP3PTftLxtQ3uP7fLGBzJxYku7zVTVd/s0i/f16CJqPeVlpaipqYGAHDy5EmUlpaisLAwxFERRa5gzpkYCOAbRyIxHMA4AP0BfM9xWSIWwNQO/d8CMNP5QkQu6ubYGwHc2aHv6QA+BnCZiGQ5tvUXEbOb/Z2OAxjQgxjeBHCHiBgd/cwi0h/A+wB+6phTcRaA8R7en4h62XPPPYc1a9bAarUCAFpbW7FmzRrk5eXhzjvv9LA3EbkSzGTiDQCxIvI5gAdh/2V/AMD/ANgE4EMAVQCOOvoXAhjjmNC4E/bJke4sBHC6iOwQkU8BjFfVwwBuAfBnEdkG+yWO4R5ifA3Atc4JmD7E8DTs8yG2iMgOAE/BPtrxCoAKR9sqdL7MQkRh4E9/+pPbtu3bt/diJER9R6+vM+GcB+EYmXgFwDOq+kqvBhFGuM4EUe957rnnuk0mAGDEiBF47LHHeiki6imuMxFeQrHOxDwR2QpgB4AvAPwtBDEQURTylEgAHJ0g6oleX4BJVe/xtq+I/ALA3V02f6iqvLBJREQUJsJ6NUdVfRbAs6GOg4iIiNyL9uW0iSiK/PKXv/TYZ8SIEb0QCVHfwmSCiKLGz3/+c499OPmSyHdMJogoqnQdneiw4i1HJYh6KKpLkIcD3hpKFBosQR7ZeGtoeOHIBBFFJedy2g0NDSGOhCjyMZkgIiIivzCZIKKolJGRAQBITEwMcSREkY/JBBEREfklrBetIiIKNIvFgttuu6399YkTJ5CXlweAdTmIeoojE0QUVRYuXOi2jXU5iHqGyQQRRQ2LxYKqqqpu+9x5J0v/EPmKyQQRRY3uRiWcODpB5DsmE0QUNTyNShBRzzCZIKKoYTKZQh0CUZ/EZIKIokZRUZHHPqzPQeQ7JhNEFDXMZrPH0QneGkrkOyYTRBRVuhud4KgEUc9w0Soiiipmsxnvv/8+q4YSBRBHJoiIiMgvHJkgoqiUlZWFmpoaJCcnhzoUoognqhrqGKLamDFjtLy8PNRhEBFFFBHZrKpjQh0H2fEyBxEREfmFyQQRERH5hckEERER+YXJBBEREfmFyQQRERH5hckEERER+YW3hoaYiBwGUB3qOLyUCsAa6iB8FIkxA5EZdyTGDERm3JEYMxDYuM9V1bQAHYv8xGSCvCYi5ZF2X3ckxgxEZtyRGDMQmXFHYsxA5MZNnvEyBxEREfmFyQQRERH5hckE+WJ5qAPogUiMGYjMuCMxZiAy447EmIHIjZs84JwJIiIi8gtHJoiIiMgvTCbIZyIyW0RURFJDHYs3RKRERLaJyFYReUtEzg51TJ6IyBIR2eWI+xURiYg62SLyExH5TERsIhLWs/ZFZKKI7BaRShH5bajj8YaIPCMih0RkR6hj8ZaInCMi74jITsfPxt2hjokCj8kE+UREzgEwAcC+UMfigyWqmquqFwF4HcDcUAfkhY0ALlTVXAAWAL8LcTze2gHgOgDvhzqQ7ohIDIDHAEwCkAPgZyKSE9qovLISwMRQB+GjVgCzVTUHwDgAd0bIuSYfMJkgX/0BwH0AImayjaoe6/CyPyIgdlV9S1VbHS8/BpARyni8paqfq+ruUMfhhbEAKlV1r6o2A/gLgB+GOCaPVPV9AF+HOg5fqOpXqrrF8fw4gM8BpIc2Kgq02FAHQJFDRH4I4ICqfioioQ7HJyKyCMDNAI4CGB/icHx1K4AXQx1EH5MOYH+H1zUALglRLFFDREwAvgXgX6GNhAKNyQR1IiJvAxjsoul+AP8N+yWOsNNd3Kq6VlXvB3C/iPwOwF0Aft+rAbrgKWZHn/thHyZ+vjdj6443cRN1JSJJAF4G8F9dRgupD2AyQZ2o6pWutovICABDAThHJTIAbBGRsapa24shuuQubheeB7AeYZBMeIpZRG4BcDWAKzSM7uH24VyHswMAzunwOsOxjYJARIywJxLPq+pfQx0PBR6TCfKKqm4HcIbztYhUARijqmFfbEhEslW1wvHyhwB2hTIeb4jIRNjnpnxPVRtCHU8f9G8A2SIyFPYk4gYAN4Y2pL5J7H99rADwuao+Eup4KDg4AZOiwYMiskNEtsF+mSYSbk17FMAAABsdt7Q+GeqAvCEi14pIDYBLAawTkTdDHZMrjsmtdwF4E/YJgatV9bPQRuWZiPwZwEcAzhORGhGZHuqYvHAZgJ8DuNzxs7xVRPJDHRQFFlfAJCIiIr9wZIKIiIj8wmSCiIiI/MJkgoiIiPzCZIKIiIj8wmSCiIiI/MJkgohOISL1oY6BiCIHkwkiIiLyC5MJoiggIg+KyJ0dXs8TkSIR+X8iskVEtjsKuXXd7/si8nqH1486lvmGiIwWkfdEZLOIvCkiZ/XKhyGisMNkgig6vAjg+g6vrwdQBuBaVR0FeyXVpeJlOVhHrYVlAH6sqqMBPANgUWBDJqJIwdocRFFAVT8RkTNE5GwAaQC+AVAL4A8ikgfABntZ7jMd2z05D8CFsC/3DQAxAL4KRuxEFP6YTBBFj5cA/Bj28uEvApgGe2IxWlVbHMXb4rvs04rOI5jOdgHwmapeGtSIiSgi8DIHUfR4EfbqmD+GPbEYCOCQI5EYD+BcF/tUA8gRkTgRSQZwhWP7bgBpInIpYL/sISIXBP0TEFFY4sgEUZRQ1c9EZACAA6r6lYg8D+A1EdkOoBwuSrOr6n4RWQ1gB4AvAHzi2N4sIj8GUCoiA2H/v+R/AYR95U0iCjxWDSUiIiK/8DIHERER+YXJBBEREfmFyQQRERH5hckEERER+YXJBBEREfmFyQQRERH5hckEERER+YXJBBEREfnl/wP5P4c2ObsVxAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -866,10 +951,20 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -889,9 +984,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 2 } diff --git a/example-notebooks/Test pem_survival_model with simulated data.ipynb b/example-notebooks/Test pem_survival_model with simulated data.ipynb index 7aeed4b..26188a9 100644 --- a/example-notebooks/Test pem_survival_model with simulated data.ipynb +++ b/example-notebooks/Test pem_survival_model with simulated data.ipynb @@ -7,28 +7,10 @@ "collapsed": false }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/Cython/Distutils/old_build_ext.py:30: UserWarning: Cython.Distutils.old_build_ext does not properly handle dependencies and is deprecated.\n", - " \"Cython.Distutils.old_build_ext does not properly handle dependencies \"\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/jacquelineburos/.local/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.\n", - " \"`IPython.html.widgets` has moved to `ipywidgets`.\", ShimWarning)\n", "INFO:stancache.seed:Setting seed to 1245502385\n" ] } @@ -154,7 +136,7 @@ " vector[T] log_t_dur; // log-duration for each timepoint\n", " int n_trans[S, T]; \n", " \n", - " log_t_dur = log(t_obs);\n", + " log_t_dur = log(t_dur);\n", "\n", " // n_trans used to map each sample*timepoint to n (used in gen quantities)\n", " // map each patient/timepoint combination to n values\n", @@ -254,7 +236,8 @@ " y_hat_event[samp] = 0;\n", " }\n", " } // end per-sample loop \n", - "}\n" + "}\n", + "\n" ] } ], @@ -345,12 +328,25 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", @@ -362,70 +358,70 @@ " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
agesexageratetrue_tt
059male540.08208520.94877120.000000False1.0138551.013855True04.18-1.12
158male390.08208512.82751912.8275194.8905974.890597True13.18-16.12
261female450.04978727.01888620.000000False4.0934044.093404True26.18-10.12
357female430.04978762.22029620.000000False7.0362267.036226True32.18-12.12
455male0.08208510.46204510.462045female570.0497875.7122995.712299True40.181.88
\n", "
" ], "text/plain": [ - " age sex rate true_t t event index age_centered\n", - "0 59 male 0.082085 20.948771 20.000000 False 0 4.18\n", - "1 58 male 0.082085 12.827519 12.827519 True 1 3.18\n", - "2 61 female 0.049787 27.018886 20.000000 False 2 6.18\n", - "3 57 female 0.049787 62.220296 20.000000 False 3 2.18\n", - "4 55 male 0.082085 10.462045 10.462045 True 4 0.18" + " sex age rate true_t t event index age_centered\n", + "0 male 54 0.082085 1.013855 1.013855 True 0 -1.12\n", + "1 male 39 0.082085 4.890597 4.890597 True 1 -16.12\n", + "2 female 45 0.049787 4.093404 4.093404 True 2 -10.12\n", + "3 female 43 0.049787 7.036226 7.036226 True 3 -12.12\n", + "4 female 57 0.049787 5.712299 5.712299 True 4 1.88" ] }, "execution_count": 4, @@ -461,7 +457,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -470,12 +466,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAHcCAYAAAAa41gWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4VOX9///nzGSyk30lYQsJBhKSgKiAiAq2UlfEqtWK\nK9qKXaz2g/5arfLVtlZbq9S9LtBKXSqKG6LWXQgoS9gDhEDIvsBk3yYz8/sjEEsJSGByTiZ5Pa6r\n14Vnzpl5T3jn9MU597lvi8fj8SAiIiIi0kdYzS5AREREROS/KaCKiIiISJ+igCoiIiIifYoCqoiI\niIj0KQqoIiIiItKnKKCKiIiISJ+igCoiIiIifYoCqoiIiIj0KQqoIiIiItKnKKCKiIiISJ/S44C6\nZs0afvrTn3LGGWeQnp7Oxx9//J3HrF69mlmzZjF27FjOPfdc3nzzzeMqVkRERET6vx4H1ObmZkaP\nHs29996LxWL5zv1LSkr46U9/ysSJE3nrrbe45ppruPvuu1mxYsVxFSwiIiIi/ZtfTw+YOnUqU6dO\nBcDj8Xzn/i+//DLJycnMmzcPgJSUFNauXcvChQs5/fTTe/rxIiIiItLP9foY1A0bNjB58uRDtk2Z\nMoW8vLze/mgRERER8UG9HlCrq6uJjo4+ZFt0dDSNjY20t7f39seLiIiIiI/p8S1+s1z+6i1HfO2X\nOb/i9JNGGViNiIiIiPSWXg+osbGx7Nu375Bt+/btIzQ0FH9//2N+n2tPupHW1nbcbiiraSI3vwj3\nsLUAPPz6J3wUW8OlZ44kOS7Uq/XLwGKzWQkLC6K+vgWXy212OdKPqdfEKOo1McrBXvOGXg+oOTk5\nfPHFF4dsW7FiBTk5OT16n/NzJuBwNNHR4YY0uHjceH6zchMdtGMJrmft9mrWba9mYkY8F08ZQVxk\nsDe/hgwwLpe7s9dEepl6TYyiXhNfclzTTOXn57Nt2zYAiouLyc/Pp7y8HIC//OUv3HnnnV37/+hH\nP6K4uJiHH36YwsJCFi9ezAcffMD1119/QoWHBPozLDwJgLjBHdj9rHiA3C2V/Pbvq/nH8nwcDW0n\n9BkiIiIiYrweB9TNmzczc+ZMZs2ahcVi4U9/+hOXXHIJCxYsAKCmpqYrrAIkJyfzzDPPkJuby8yZ\nM1m0aBEPPPDAYU/2H4/kQYMBcPnX8uBPJnH2+CRsVgsut4fP8sq48+lcXvl4J/XNehhLRERExFdY\nPMcymWkf0XWL/4CVZd+wOP/fAPzh9HsIDxhEVW0Lb3+1m9wtFRz8ZgH+Nr4/YQjnnjqU4ECfeS5M\nTODnZyUyMuSwXhPxNvWaGEW9JkY52Gve0OvTTPWm5EGJXX8ubSwDIC4iiDkXjOH/3XgaJ58UC0Bb\nu4t3Vu7hzqdX8v6qItqcLlPqFREREZHv5tMBNTE4Hqul8yuUHAioByXFhHDrJWO559oJZI6IAqCp\ntYN/f7aLu57OZU1+leH1ioiIiMh38+mAarfZSQiOA6CkoazbfUYkhnH7FTncedU40pLDAahraufJ\npZv58Jtiw2oVERERkWPj0wEVvn1QqrixlKMNpz1paCR3/Xg8t12WRVhI5/yrr3y8k9c+LcDtO8Nw\nRURERPo93w+ooZ0Btaq5hvtX/4VPi7+i2dnS7b4Wi4WskTH8ZvbJxEV2TiS7fPVenn93Gx2avFhE\nRESkT/D5gJodm0mY/yAAKpureH3n2/xmxQMs3vZv9taXdHtMXEQQv7n6ZEYkdh6Xu6WCBa9vpLW9\nw7C6RURERKR7Pj3N1EHtLifrqjbwRWkuRfWHjisdFjaEM5ImcXJcNv42+yGvtbZ38OSbm9m8ez8A\nwxMGcdtl2V1DAGTg0XQsYhT1mhhFvSZG8eY0U/0ioP63vfUlfFmayzeVeTjdzq7twX5BTEycwBlJ\nE4kLju3a3uFy8+KyfHK3VAAQFxnE7VfkEBfhnbVkxbfoRC5GUa+JUdRrYhQF1GPQ7GxhdcVavizN\npbK5+pDX0iPTOCN5EmOjR2Oz2vB4PLz+2S7eX70XgLAQf351WTbDEgZ5/TtI36YTuRhFvSZGUa/1\nDX/60+/5/PNPaGxs4IUXFpOammZ4DRUV5Vx22UW8+OK/euXzvRlQ++2ySsH2IM4eMoWzkk9nZ+0u\nvijJZUPNFtweN/mOneQ7dhIREM7pg0/l9MGncdnZqYSHBnQujdrUzp/+tY5bLxlLxoE5VEVERESO\nx6pVK/ngg/f429+eZfDgwYSHR5hWi8ViMe2ze6LfBtSDLBYLoyJTGRWZSm1bHSvLvmZF2dfUttVR\n21bHe7s/4v09H5Mdk8HU1EncHDyG59/bRmu7i7+8mkf2yGh+MHEYo4aY10wiIiLiu0pLi4mOjiEj\nI9PsUo46JWdf0u8D6n+LCAjnvBHf49xh09i0bxtfluSS79iJ2+NmffUm1ldvIj44jmnnZvHVZ1Za\nWqxs2LWPDbv2kZocznmnDSMrNRqrj/zrQ0REpD9rbu2gfH+ToZ+ZGBVCcOCxx6c//GE+77//LhaL\nhTPOOIWEhMH8+99v8c9/vsjbby9l//4ahg4dxrXX3shZZ00HYP36tfziFz/lL3/5G08//TeKivaQ\nmZnNfff9nvz8rTzxxKNUV1cxefIZ3HXXPQQEBACwenUuixY9T2HhLmw2KxkZWfzyl3eQlJR8xPoK\nCwt48skFbNiQR1BQEKecchq/+MXtpl7lhX48BvVYVTVX82XpKlaVr6G549v5U+1WO7GekZRtj6Wl\n9tvxFINjQvjBaUM5bUw8fjafn6VL/ofGaolR1GtilP7aa82tHcx7aiXNbcZOERkc4MdDt0w+5pDa\n3NzEa6+9zDvvLOW55/6J1Wph6dIlfPTRB/zyl3eQnDyEvLx1/PnPf+SRRx4nO3tcV0DNzBzLrbf+\nioCAAO655y5iY2Px9w/gllt+TnNzE7/5za+56qpruOqqawD4/PNPsFisjByZSktLC88//zRlZWUs\nWvQycPgY1MbGRq68chYXXXQJM2acT2trK0899TdcLhePPfZkj382GoPqRXHBsVyadiEXpsxgbdUG\nvjwwVZXT7aSMfBiVT6I1nsbiRBrKYimraeL597bxxheFnHvKEKbmDCbQf8D/GEVERKQbwcEhBAeH\nYLXaiIyMxOl08tJLC3n00ae6bvknJg5m48Y83nrrDbKzxwGdQxRvumkumZljAbjggot49tknee21\nt0hISATgrLOms27dmq6AeuaZ0w757Hnz7uaii77P7t2FjBiRclhtS5a8yqhR6dx00y1d2+66624u\nvfQCSkqKSU4e4v0fyDFSsjrA32ZnUuIEJiVOOGyqqlp3JSRVEp4ciGXfcGoLhuFoaOOVTwp4Z+Ue\npo1PZvqEZMKCNX+qiIiIEYIDO69k9vVb/P+rpKSY1tZWfvWrWw8ZD+pydTBqVPoh+44cmdr156io\naAICArvCKUBkZBTbtm095L2fe+5ptm7dTF1dLW63B4vFQmVlRbcBtaBgJ+vWfcP3vjf1kO0Wi4XS\n0hIF1L5maFgyPw67jEtSz2d1xbquqaraPa0Qlc9p08Op2TaMXWX1NLV28M7KPXzw9V6mZCVy7qlD\nidUcqiIiIr0uONCPkYPDzS6jR1pamgF4+OHHiImJOeQ1f/9DL3T5+X0b0ywWyyH/fXCbx/PtsI15\n824jMTGJu+66h5iYGNxuD7NnX05Hh5PutLQ0c/rpU5k79xeHPTz1v7UZTQH1KILtwV1TVe1w7OLN\nXe9R3FDKxobVXH3OUH7YMY5lq/ayqXAf7R1uPllXymfryzh1dBwzThvK0HjNoyoiIiLfGj48Bbvd\nn8rKcrKzc7z2vvX1dRQX7+Wuu+4hK6vzfTdsyDvqMaNGpfPFF5+SkJCI1dq3nqvpW9X0URaLhZOi\nUpmbfQORAZ1Ptb28/Q1sYbX86vJs5t9wKhMz4rFaLLg9HlZtreS+F7/hkdfyyC9y+MyUDiIiItK7\ngoODufLKq1mw4BHef/9dSktL2LEjnyVLXmX58ve69utpdhg0KIzw8HDefvtNSktLWLv2Gx5//K9H\nnfd01qzLqa+v5957f0N+/lZKS0tYvTqXP/xhvunZRQG1B8L8B3FL9vUE2PxxeVw8u2kR1c37GBIX\nys0XZvDgTyYyfXwy/n6dP9bNhft56OX1zH/xG177pIC126upa2o3+VuIiIiImW666Rauv34Oixcv\nYvbsy/n1r39Jbu4KEhOTuvbp6YT6FouF+fP/yPbt27jmmit4/PG/8rOf3dbtfgfFxMTw1FPP4/G4\nuf32n3PddVfyt7/9lUGDwkyf0H/ATzN1PDbVbOWZjYvw4CEhOI47Tr6VYPu3407rm9v5ZG0JH68t\noan18Okv4iKCSE0OJzUpnNTkcAbHhGhu1T6iv07HIn2Pek2Mol4To3hzmikF1OP0yd4vWFLwLgCj\no0ZxS9b12Ky2Q/Zpbe/gq43lbCioYVdZPa3trm7fKyjAj5FJYZ2BNSmclMFhmrrKJDqRi1HUa2IU\n9ZoYRQG1D/B4PLy8fQkryr4GYGrSZK44aeYR93e7PZRUN7KrtI6dpXUUlNRRU9fa7b4WCwyJCyUt\nKYKRyWGkJUUQFRZg+uX2gUAncjGKek2Mol4Toyig9hEut4vHNzzPDkcBAJeNupizkk8/5uNrG9so\nKKmjoLTzf0UVDbjc3f91RA4K6LrCmpoczpC4UK1k1Qt0IhejqNfEKOo1MYoCah/S5Gzmz2sep6ql\nBgsWbsm+gYzok47rvdqdLvZUNHQG1gPBtbGl+7nL/O1WUhLDGJkUTlpyOCmDwwkNsp/IVxF0Ihfj\nqNfEKOo1MYoCah9T2VzNn9c8TnNHC4G2QH494VYSQ+JP+H09Hg8V+5spKK3rHBpQUkf5vuYj7p8Y\nHUxacviB0BpBfGSQhgX0kE7kYhT1mhhFvSZGUUDtg3Y4Cvhb3nO4PW6iA6P47Wm3E2Dz/tKnjS1O\ndh0YElBQUsfu8nraj/AzCQ2ydw0JSE0KZ0TiIOx+tm73lU46kYtR1GtiFPWaGEUBtY/6qnQVL29/\nA4AbM69mfFxWr39mh8tNcVXjIWNZHQ1t3e5rs1oYnjCIkUnhjB0ZzZhhkbrC+j90IhejqNfEKOo1\nMYoCah/l9ri588v5NHe0cPaQKfww7SLDa/B4POyvb2NnaS27SurZWVpLcVUj3f0t33ZZNlkjow2v\nsS/TiVyMol4To6jXxCjeDKiabNOLrBYrI8KHsWVfPoV1RabUYLFYiA4PJDo8gYljEoDO+Vh3l9V3\nTm9VWsfmwv0AlNU0KaCKiIj4mD/8YT6NjY384Q8Pm11Kr9E8RV6WEj4MgOKGUtpdfWNZ00B/P0YP\nj+Ki00dw++U5XU/7N7V2P0OAiIiIiJkUUL3sYEB1e9wU1ZeYXE33QgI7L5x3twyriIiIiNl0i9/L\nhoUNxWqx4va42V1XRFpkitklHSYkyA6OFpp1BVVERKRX/fznP2HkyFSsVivvv/8edrudm2++hXPO\nmcEjj/yJzz77hKioKG677f+YOHEybrebhx76PWvXrmH//hri4xO45JLLuOyyHx3xMzweDy+9tJC3\n317K/v01DB06jGuvvZGzzppu4Df1LgVULwuw+ZMcmsjehlIK6/eYXU63gg9eQT3CIgAiIiK+oKWj\nhYqmakM/MyEkliC/oB4ds3z5e1x11TU899w/+PjjD3n44T/y+eefcuaZZ3PttTfyyiuLeeCB37Fk\nyXvYbDbi4uJ54IE/ER4ezqZNG3jooT8QExPD2Wef0+37/+MfL/DRRx8wb95vSE4eQl7eOu6//3dE\nRkaRnT3OG1/bcAqovWBE+PDOgFpXhMfj6XNTOYUGHhyDqlv8IiLim1o6Wrhn5YO0dLQY+rlBfkHc\nP/muHoXU1NRRXHPNDQBcffV1/POfC4mIiOSCC2YCcP31c1i69HV27drJmDGZ3HDDzV3HJiQksnnz\nRj755D/dBlSn08lLLy3k0UefIiMjE4DExMFs3JjHW2+9oYAq30oJH8bnJStocjZT1VxNfEic2SUd\n4uAV1GYFVBERkV43cmRq15+tVivh4eGkpHy7LSqqc0Ydh8MBwJIlr7Fs2TtUVlbQ1tZGR4eTtLTu\nl1EvKSmmtbWVX/3qVv575lCXq+OIx/gCBdReMDJ8eNefC+uK+lxADTlwBdXR2MZHa4rJSY0hNqJn\ntytERETMdPBKpi/c4vfzOzRuWSyWw7YBeDxuPv74Q5588jF+/vPbycgYS3BwMP/61z/Ytm1Lt+/d\n0tK5BPrDDz9GTEzMIa/5+3t/RUujHFdAXbx4Mc8//zw1NTWkp6dz9913k5XV/apJHR0dPP3007z1\n1ltUVlaSkpLCHXfcwRlnnHFChfdlkYERRASEU9tWx6clX5EYGs/wsKFml9UlJjwQAGeHm5f/s5OX\n/7OT5NgQctJiyEmNZXjiIKx9bFiCiIjI/wryC2JEeN/5/1dv2LRpA2PHZjNz5qVd20pLjzwr0PDh\nKdjt/lRWlpOdnWNEiYbocUBdtmwZDz74IPfffz9jx45l0aJFzJkzh+XLlxMVFXXY/n/961959913\neeCBBxgxYgRffvklP/vZz3j11VdJT0/3ypfoi06Oy+bj4i8obSzn4TWPc3JcNhemzCA22PyJ8Sdm\nJFDf3M43+VXsrWwEoKS6iZLqJt5dWUR4iD/ZqTHkpMUwZlgk/nabyRWLiIgMDMnJQ1i+fBlff72K\nxMTBfPDBMvLztzJ4cFK3+wcHB3PllVezYMEjuFwusrJyaGpqZNOmDYSEhDJjxvkGfwPv6HFAXbhw\nIVdccQUzZ3YO7J0/fz6fffYZS5Ys4aabbjps/7fffpu5c+d2XTG98soryc3N5YUXXuChhx46wfL7\nrotGziDUHsIHRZ/S6mplbdUG8qo3MzVpEjOGTyfU3ztLgR0Pu5+V8ycN5/xJw9lX10peQQ15BTXk\nFzlwuT3UNbXzxYYyvthQhr/dSsbwKHLSYsgeGUNYiO/eLhARETFa9w9KH76tcz8LM2f+kJ07d3Dv\nvb/BYrFwzjnf55JLLmP16pVH/IybbrqFqKgoFi9exMMP/4HQ0EGMGnUSs2ff4L0vYjCLx9PdKu3d\nczqd5OTksGDBAqZP/3ZurbvuuouGhgaeeOKJw4457bTTmDdvHpde+u2l6v/7v/9j3bp1fPzxxz0q\n1hfXEW5sb2L5no/5ojQXl8cFQKAtkHOHnc1ZQ6bgb7ObXOG3Wto62Lx7P3k7q9m4a99hT/lbgJFJ\n4QeGAsSQGB3c52YoOFFas1qMol4To6jXxCgHe80r79WTnR0OBy6X67BBuNHR0ezevbvbY6ZMmcLC\nhQuZMGECQ4cOZeXKlXz00Ue43T3/JbHZfG/hqwi/QfxozEymD5/C0oLlrKnIo9XVyluF7/NF6Uou\nSp3BxMEnY7WY/90G+fkzKTOBSZkJuNxudhbXsW5HNet2VFPlaMEDFJTWUVBax+uf7SI+Mohxo2IZ\nPyqWtCHh2Kzmf4cTdbDHfLHXxLeo18Qo6jUxijd7rEdXUKuqqpg6dSqvvvoq2dnZXdsfeugh1q1b\nxyuvvHLYMfv37+d3v/sdn3zyCVarlSFDhjB58mTeeOMN1q9f751v4UMK9u3hnxveYFv1zq5tQ8OT\nuDr7ErITxvTJK5Iej4eSqkZWb6lg9eZytu918L9dExpkZ8KYeE7LSGD8SXEEB/adK8MiIiLiW3r9\nFv9B7e3t1NbWEhcXx5///Gc+//xz3nnnnR4VW1/fgsvl+7cnPB4Pm2q28caOdylvquranh6VxqWj\nzmdoWLKJ1X23usY28gpqWL+jhs2F+2j/n1tGNquF0cMjGT8qlnFpsUQfmDXAF9hsVsLCgvpNr0nf\npV4To6jXxCgHe80behRQAS6//HKysrK4++67gc6wddZZZzF79mzmzJnzncc7nU7OP/98zjvvPG67\n7bYeFdvfxs+43C5WVazhvcIPqWtv6No+IT6Hi1JmEB10+KwIfU2708XWIgd5O2vYUFBDXVP7YfsM\njQ8lJzWGs8YlEREaYEKVx05jtcQo6jUxinpNjOLNMai2++67776eHBASEsJjjz1GYmIidrudRx99\nlO3bt/P73/+eoKAg5s2bx6ZNm5g0aRIAGzduZOPGjfj7+7Nz507uuece6uvreeihh3o8gWxrqxO3\nu0d5uk+zWqwMHZTMlKRJ2K12ihqKcXlclDVV8GVpLs0dLQwLG9KnHqT6XzablYSoYHLSYvj+qUPI\nGhlDWIid5tYO6pudANQ1tbO9uJbP88qw26wMSxiE1dr3hjIAWK0WgoL8+12vSd+jXhOjqNfEKAd7\nzRt6PM3Ueeedh8PhYMGCBdTU1DB69Giee+65rjlQKyoqsNm+nTezra2NRx99lJKSEoKDgznrrLN4\n+OGHCQ0N9coX6A8CbP78YMR0piSdxrLd/+GrslV0eFx8UvwlueVrmDF8GmcmTcbeh4MqgNViIWVw\nGCmDw5g1dSTVtS2dU1jt7JzCqrXdxSufFPDlpnKu/t4oThoaaXbJIiIi0gf1+Ba/mQbK7YnK5mre\n3rWcvOpNXdsiAyK4eOQPOCVhnImVHb/d5fW89OF2dpd/O5RhUkY8l5+dSngfuu2vW2FiFPWaGEW9\nJkbx5i1+BdQ+rLBuD28WvEdhXVHXth+nX8bkwaeYWNXxc3s8fLmhjNc/29U1x2pQgI2ZZ6QwbXxS\nn5imSidyMYp6TYyiXhOjKKAOIB6Ph401W/j3jrdxtNUS5BfE7yb+mjD/QWaXdtwaW5ws+XwXX+SV\ncbD5kmNDmX3uKNKSI0ytTSdyMYp6TYyiXhOjeDOgmn/JSo7KYrGQHZvJDZlXAdDS0cLrO942uaoT\nExpk59oZ6fz2mgkMS+gM2iXVjfzxpXU8/+7WbmcCEBERkYFDAdVHpIQP54ykzpkR1lZtYHPNNpMr\nOnEpg8O455oJzD73JEICO5/XW7G5gt88u4qP15bgOo7VxkRERMT3KaD6kItHziD8wK39V3cspbWj\nzeSKTpzVauHscUn8/uaJnJGVCEBLWweLP9rB/QvXUFBaZ3KFIiIiYrQez4NqpoE+h5vdaic6MIp1\nVRtp6Wilw93BmOiTzC7LKwLsNsalxZIxIoqiygbqmtqpa2rny43l7Cqrw2qxEBcR1OtrSWu+QDGK\nek2Mol4To3hzHlQFVB8THxxHcWMZVc3V7KkvJjN6NOEBYWaX5TVRYYFMzR5MWIg/BSV1OF1uqhwt\nrN1ezcfrSqiubSE40E5UWAAWi/cn+9eJXIyiXhOjqNfEKN4MqHqK3wc5Wmu5f/WfaXO1MyR0MP83\n4efYrLbvPtDH1De18/HaElZurmBffeshr8VGBDI5M5FJmQnERXhn3V/Q065iHPWaGEW9JkYxdalT\nM+lff52C/AIJsAWwdf926tsbCPQLJCV8uNlleV2Av43RwyI5Z0Iyo4dFYsFCZW0LLpeH5tYOtu+t\n5T9rSti2Zz9uD8RGBGH3O7EhALrSIEZRr4lR1GtiFF1BFdweN39e+wRF9cX4W+389rQ7iAmKMrus\nXtfmdLFuRzUrN5WzdY+D/25eu5+V8aNimZyZQMbwKKzWng8B0JUGMYp6TYyiXhOjaKJ+AaC0sZwH\nv3kMt8fN6KhR3Jp9Y6+My+yrHA1t5G6pYMWmcsr3NR/yWnioP5MyEpicmUBybOgxv6dO5GIU9ZoY\nRb0mRlFAlS5v7XqfD4s+BeCe0+4gISTe5IqM5/F42FPRwMpNFazeVklji/OQ14fFD2Ly2AROGxNP\nWPDRbz3oRC5GUa+JUdRrYhRvBlQ/r7yLmOaU+HFdAdXRVjcgA6rFYmFEYhgjEsO4YnoqG3ftY8Wm\ncjbu2ofL7aGosoGiygZe+6SAsSnRTM5MIDs15oTHq4qIiEjvUED1cSH2b/+l0tTeZGIlfYOfrXMc\n6vhRsTQ0t/P1tipWbCpnT0UDLreHvIIa8gpqCAn047Qx8cw8I4XQILvZZYuIiMh/UUD1caH24K4/\nNzqbj7LnwDMo2J/pJycz/eRkSmuaWLm5nNzNFdQ2ttPU2sEn60opqW5i3lXjsA6gsbsiIiJ9ne5x\n+jib1UaQXyAATU5dQT2SpJgQLjsrlT/PPZ07rsghe2Q0ADuKa/l8fanJ1YmIiMh/U0DtB0L8Oq+i\n6grqd7NaLWSMiOLWWWNJju0cHvHaZ7uoqWsxuTIRERE5SAG1Hwjx7wxauoJ67PxsVm44fzRWi4W2\ndheLlm/Hhya0EBER6dcUUPuBUPvBgKorqD0xPCGMGacNBWDL7v18tanc5IpEREQEFFD7hYMBtVFX\nUHvs4inDSYjqHCLxyscF7K9vNbkiERERUUDtB0LsB8egKqD2lN3Pxg3njcYCtLR1sPD9fN3qFxER\nMZkCaj8QYv92DKrCVc+lJodzzoQhAOTtrNFT/SIiIiZTQO0HogMjAXC6O/ig6BOTq/FNs6amEBvR\nOV3XM29sZPveWpMrEhERGbgUUPuB7NhMhoQOBuDdwg/ZVLPV5Ip8T4C/jet/0Hmrv7HFyYMvreXD\nb4p1RVpERMQECqj9gL/Nzs1Z1xJqD8GDh4VbXqaiqdLssnxO+rBIfv7DLIIC/HC5Pbzy8U6efmsL\nLW0dZpcmIiIyoCig9hNRgZHMyZyN1WKl1dXGMxsX0ezU5PM9NSE9jr/+6syuSfy/ya/igX+soaxG\nD6CJiIgYRQG1H0mLTOGytIsBqGqp4cWt/8LtcZtcle9Jig3l3utPZeKYeADK9zVz/z/W8PU2XZUW\nERExggJqP3NG0kROH3wqAFv3beftXctNrsg3BfjbuOnCMfz4e6OwWTtXm3r6rS28/J+ddLgU+kVE\nRHqTAmo/Y7FYuHzUTFLChwPw0d7PWFOZZ25RPspisTD95GTu/PF4IgcFAPDRmmIeenk9joY2k6sT\nERHpvxRQ+yE/qx9zMmcTERAOwEvb/k1xg+b2PF6pSeHce90pjB7WOZ1XQUkd8xd+w/a9DpMrExER\n6Z8UUPup8IBB3Dz2GuxWP5xuJ89sXERDe6PZZfmssBB/7rgih/MnDQOgvqmdh1/O47VPCti+14Gz\nQ7f9RUQIQ+sEAAAgAElEQVREvMXi8aGJHh2OJjoUBHrk64p1LNr6CgCpESP4Rc7N2Kw2k6vqu/z8\nrERGhhy119bvqOa597YdMv2U3c9KalI46UMjSB8WyYjEMPxs+vefHNmx9JqIN6jXxCgHe80bFFAH\ngCU73+GT4i8BODVhPFenX6aQegTHeiKvdDSz+MMdbCty4HIf/ivkb7eSlhzRFViHJwzCZlVglW8p\nNIhR1GtiFAVU6RGX28WTG14g37ETgKyYDG7IuAq7zW5yZX1PT0/kbU4XBaV15Bc5yN/rYE95Q7eB\nNdDfxqghEaQPjSR9WARD4wZhtVp64yuIj1BoEKOo18QoCqjSY60drTy76R9sdxQAkBaRwk+yriXI\nL8jkyvqWEz2Rt7Z3sLPkvwJrRQPd/YYFB/h1BtZhkaQPjSA5LhSrRYF1IFFoEKOo18QoCqhyXJzu\nDhZu+Rd51ZsBGBI6mFtz5jDIP9TkyvoOb5/Im1s72FFS2xVYiysb6e4XLjTIzkn/FVgHx4RgUWDt\n1xQaxCjqNTGKAqocN7fHzcv5b7Cy/GsA4oJi+FnOHKKDokyurG/o7RN5Y4uT7Xtryd/bGVhLq7tf\nQjUs2M5JQyO7AmtCVLACaz+j0CBGUa+JUUwPqIsXL+b555+npqaG9PR07r77brKyso64/8KFC3nl\nlVcoLy8nMjKSc889lzvuuAN/f/8efa5+ubzD4/HwduFyPiz6FICIgHBuzb6RwaEJJldmPqNP5PXN\n7ezYW8u2vQ7yixyU72vudr+IUP8D41c7A2tsRJACq49TaBCjqNfEKKYG1GXLlnHnnXdy//33M3bs\nWBYtWsTy5ctZvnw5UVGHX4V75513+O1vf8uDDz5ITk4Oe/bs4c477+SCCy7gzjvv7FGx+uXyrv/s\n/Zw3C94DINgviLnZNzAifJjJVZnL7BN5XWMb+QevsBY5qHS0dLtfVFhAZ2AdGknGiKiula7Ed5jd\nazJwqNfEKKYG1Msvv5ysrCzuvvtuoPNq3Jlnnsns2bO56aabDtv//vvvp7CwkBdffLFr25/+9Cc2\nbtzI4sWLe1Ssfrm8L7fsGxbnv44HD/5WOzePvZbR0aPMLss0fe1Evr++le3/dYW1pq71sH38bBbm\nXDCGU0fHm1ChHK++1mvSf6nXxCjeDKg9mpjR6XSyZcsWJk2a1LXNYrEwefJk8vK6X+993LhxbNmy\nhY0bNwJQXFzM559/zplnnnkCZYu3TBp8CjeNnY2f1Y92t5OnNr7I2soNZpclB0SFBTIpM4EbzhvN\nQ7dM5qGfTuL689KZlJHQddW0w+Xh7+9sZVPhPpOrFRER8Q6/nuzscDhwuVzExMQcsj06Oprdu3d3\ne8wFF1yAw+HgqquuAsDlcvGjH/2Im2++ucfF2rQyT684OTGL0IBgnlz/Iq2uNl7c8i9a3S2cOWSy\n2aUZ7mCP9dVeS4gJISEmhLPHJ+PxeCgoqePhl9fT2u7iiTc2Me/H4xk1JMLsMuUY9PVek/5DvSZG\n8WaP9SigHonH4zniAxurV6/mmWeeYf78+WRlZVFUVMTvf/97YmNjmTt3bo8+JyxMc3b2lomR2cRF\n/orff/E4DW2N/GvbG7hsTmaN+cGAfBjHV3rt1KhQ7g0J4N5nc2nvcPPXV/P4461TGDE43OzS5Bj5\nSq+J71OviS/pUUCNjIzEZrNRU1NzyPb9+/cTHR3d7TELFizg4osv5tJLLwUgLS2N5uZm7r333h4H\n1Pr6FlwujZ/pLZGWGH49YS6PrX2W/a21vLr5HWLtsYyNHWN2aYax2ayEhQX5VK8lRQXxs0uzeOzf\nG2hq7eCep1fy22snkBAVbHZpchS+2Gvim9RrYpSDveYNPQqodrudjIwMcnNzmT59OtB59TQ3N5fZ\ns2d3e0xLSwvW/1mD3Gq14vF4jnrltTsul1sDvHtZTEAMt4+fyx+/fpSmjmbyqrYyOjLd7LIM52u9\nljkiihvPH83f39lKXVM7f3ppHb+ZfbKe7vcBvtZr4rvUa+JLejxY4LrrruO1115j6dKl7Nq1i3vv\nvZfW1lZmzZoFwLx583jkkUe69p82bRovv/wyy5Yto6SkhBUrVrBgwQKmT58+IG8d+4LIwAjSIlMA\nKKzdY24xcswmZiTw4+93zsCwr76VP7+ynobmdpOrEhER6bkej0E977zzcDgcLFiwgJqaGkaPHs1z\nzz3XNQdqRUUFNputa/+5c+disVh47LHHqKysJCoqimnTpnHbbbd571uI16WEDyevejPlTZU0O1sI\ntmvski+YNj6ZptYO3vyikPJ9zTz67w38+kfjCArwynBzERERQ2ipU+nW7rq9/Hnt4wDMzb6BjOiB\ncZu/P8wX6PF4ePWTAj78phiA9KER/PpH47BadceiL+kPvSa+Qb0mRjFtHlQZOIYMGozd2nnVTbf5\nfYvFYuGKaalMGZsIQP6Bif5FRER8hQKqdMvP6sewsCEA7KrbY24x0mMWi4Uff+/bFcEq9jWbWI2I\niEjPKKDKEaWEDwdgT30xLrfL3GKkxwL8bUSE+gNQ6VBAFRER36GAKkc08kBAdbqdlDSWmVuMHJf4\nyM65UKscLSZXIiIicuwUUOWIUsKHdf15V233S9lK3xYX2Tn7QqUCqoiI+BAFVDmiYHswiSHxAOyq\nKzK5GjkeBwNqTW0LLree3hUREd+ggCpHdXAc6qaarayr2mhuMdJjB2/xu9we9te3mVyNiIjIsVFA\nlaM6M3kygbYAXB4XL2xezFelq8wuSXrg4BVU0DhUERHxHQqoclRJoYn8ctxPCLWH4MHDy9vf4IM9\nn+BD6zsMaLER3wbUnSW1JlYiIiJy7BRQ5TsNDUvm9vG3EBkQAcDbhct5s+A9hVQfEBTgx4jEMADe\nyy1iR7FCqoiI9H0KqHJM4kPiuOPkucQHxwHwcfEXvJT/b82P6gPmXDCaQH8bLreHp5ZuprZRY1FF\nRKRvU0CVYxYZGMHt429h6KBkAFaVr+H5zS/hdDlNrkyOJjE6hBvPHwNAXVM7Ty7dTIdLT/SLiEjf\npYAqPRLqH8Ivx93MqMhUADbUbOHJDS/Q0tFqcmVyNCefFMv5kzrntS0oqePVjwtMrkhEROTIFFCl\nxwL9ApmbdT3ZsZkA7KjdxYL1z9DQ3mhyZXI0l5yRQsbwSAA+XlfCys3lJlckIiLSPQVUOS52m50b\nM37M5MRTANjbUMpf1z3F/laHyZXJkVitFn5ycSbRYYEALFq+naKKBpOrEhEROZwCqhw3m9XGVek/\n5JyhZwJQ2VzNX9Y+SUVTlcmVyZGEBtn52ayx2P2sODvcPPHmJhpbNIZYRET6FgVUOSEWi4VLUs/n\n4pE/AKC2rY5H1j1JcUOZyZXJkQxLGMQ1554EQE1dK8++vQW3W1OGiYhI36GAKl7x/WFnc9VJl2LB\nQpOzmSfynqOqudrssuQITh+byNnjkgDYvHs/S78qNLkiERGRbymgitecnnQa1435ERYsNDgb+Vve\nczhaNTF8X3XlOWmMTOqcxP/dlUWs26F/UIiISN+ggCpeNSFhHJePmgnA/lYHj294nkZnk8lVSXf8\nbFbmzhxLWIg/AM+9u5Xyffq7EhER8ymgitdNTZ7EBSPOBaCiqZInN7xAa4dWL+qLIgcFMHdmJjar\nhdZ2F4+/sYmWtg6zyxIRkQFOAVV6xYzh0zh7yBQAiuqL+fumf+B0K/j0RaOGRHDFtM6FF8r3NfPC\nsm14PHpoSkREzKOAKr3CYrEwK/UCTks4GYB8x04WbXkZt0dLbPZF009OZlJGAgBrt1fz/uq9Jlck\nIiIDmQKq9BqrxcqP03/I2JjOdeDXV2/i5fw3dHWuD7JYLFwz4ySGxoUCsOTzXWzZvd/kqkREZKBS\nQJVeZbPauCHjx6RGjABgZfnXvF243OSqpDsBdhu3zhpLSKAfHg88/dZmampbzC5LREQGIAVU6XX+\nNjs/zbqOIaGDAfiw6FP+s/dzk6uS7sRGBPGTizOwAE2tHTzz9hbcuuItIiIGU0AVQwT5BXFrzhzi\ngmIAeLPgPVaWfWNyVdKdzBHRzDyj84r3rrJ6PltfanJFIiIy0CigimEG+Yfys5ybiAgIB+Bf+a/z\nz22vUdygANTX/GDiMIYcGI/6+me7cDRomjARETGOAqoYKjookp/lzCHELxgPHlaVr+HBbx7jL2uf\nYE3Fejo0FVWf4Gezcu2MdCxAa7uLf320w+ySRERkALHdd99995ldxLFqbXXidms8nK8b5B9KTuxY\nnG4nFU1VuD1uHG115FVvZmXZ17R1tBEXHEOgX6DhtVmtFoKC/NVrdE7i39jiZHd5PeX7mhkaH0pi\ndIjZZfUb6jUxinpNjHKw17zB4vGhOX8cjiY6OjSPZn/S7Gwmt3wNX5SspKb122mNrBYr42LHMjV5\nMiPDh2OxWAypx8/PSmRkiHrtgJa2Du5+bjWOhjYiBwXwwJzTCArwM7usfkG9JkZRr4lRDvaaN+gK\nqpjKbrOTEj6MM5MnMzxsCM3OFqpb9uHBQ3lTJavK17CxZis2i5X44FhsVluv1qMrDYey+1mJiwji\n621VtLa7aO9wMTYl2uyy+gX1mhhFvSZG0RVU6deqmqv5oiSX3PI1tLpau7YH+wUxafApTE2aTExQ\nVK98tq40dO/xNzaxbkc1FuDuaycwIjHM7JJ8nnpNjKJeE6N48wqqAqr0Wa0dbXxTuY7PS1ZS3lTZ\ntd2ChcyYdM5MOp2TolKxWrz3rJ9O5N1zNLTx27+vorXdxdC4UH533SlYrcYMu+iv1GtiFPWaGEW3\n+GVA8LP6MSxsCGckTSItciRtrjYqm6vx4KGquYavK9extioPPBAfEofdeuJjI3UrrHtBAX4E+vux\nqXAfdU3tDE8IIyE62OyyfJp6TYyiXhOj6Ba/DFj7Wx18VbqaFWWraXQ2dW0PsPlzWsLJTE2eTGJI\n/HG/v640HFmHy83/PbWSusZ2MlOiuP3yHLNL8mnqNTGKek2MYvot/sWLF/P8889TU1NDeno6d999\nN1lZWd3uO3v2bL755vAVg8466yyefvrpHn2ufrnkIKfLybqqjXxWsoK9DSWHvDYqMpWzkieTGT26\nxw9V6UR+dEu/LOTtFXsAePAnE4mL1FXU46VeE6Oo18Qo3gyoPb4numzZMh588EHuv/9+xo4dy6JF\ni5gzZw7Lly8nKurwB1eeeOIJnE5n1387HA4uvvhiZsyYcWKVy4Bmt9k5LfFkTks8mT31e/m8ZCXr\nKjfQ4XGxw1HADkcBkQERTE2axJSkiQTbg8wuuV84MyeJd1cW4fZ4+Gx9GZdPSzW7JBER6Yd6/HTJ\nwoULueKKK5g5cyYjR45k/vz5BAYGsmTJkm73DwsLIzo6uut/X331FUFBQQqo4jXDw4Zy7Zgf8cDp\nv+XClHO7llJ1tNXyVuH7PLz2b7R2tH7Hu8ixiBwUwLhRMQB8ubGMdqfL5IpERKQ/6lFAdTqdbNmy\nhUmTJnVts1gsTJ48mby8vGN6jyVLlnD++ecTGGj8KkHSvw3yD2XG8On8v0l3MSdzNmkRKQBUNdfw\n+s53TK6u/5g2LgmAptYOvt5WZXI1IiLSH/XoFr/D4cDlchETE3PI9ujoaHbv3v2dx2/cuJGCggL+\n+Mc/9qzKA2w2700nJP2XH1ZOGZzNhMQsntu0mDUVeeSWf0NOfAY5cZlHPfZgj6nXjixzZDSJ0cGU\n72vms7xSzhqfZHZJPkm9JkZRr4lRvNljXlmz0OPxHNNSlK+//jppaWlkZh49JBxJWJjGEUrPzJ10\nNb9evof9LbW8tO11xg1NJyIo/DuPU68d3YVnjOTZpZsoLKunuqGdUUMjzS7JZ6nXxCjqNfElPQqo\nkZGR2Gw2ampqDtm+f/9+oqOPvvxha2sry5Yt47bbbut5lQfU17fgcukJROmZa8ZcwaNrn6GhrZEF\nKxfys3E3HvEfVDablbCwIPXadxifGo2/3Uq7082bn+7k5osyzC7J56jXxCjqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzj3rssmXLcDqdXHjhhcddrMvl1hQZ0mNp4SM5e8gUPi3+is01\n+XxatJKpyZOOeox67ej8/axMzkzks/WlrNpSwaVTUwgPDTC7LJ+kXhOjqNfEl/R4sMB1113Ha6+9\nxtKlS9m1axf33nsvra2tzJo1C4B58+bxyCOPHHbc66+/zjnnnEN4+HffXhXxtotTftA1gf8bBe9S\n2aSHe07UOScnA9Dh8vDp+lKTqxERkf6kxwH1vPPO484772TBggVccsklbN++neeee65rDtSKigqq\nq6sPOWbPnj2sX7+eH/7wh96pWqSH7DY71425EpvFhtPtZOHWV3C5NUXSiRgcE0JmSufv/WfrS3F2\n6OcpIiLeoaVOZUD5qOgzlu5aBsCM4dO5MOXcQ17Xiis9s7lwH4+8tgGAG84bzZSsRJMr8h3qNTGK\nek2M4s2VpDTnhAwo04dO7Zof9YM9n1BYt8fcgnxcxogoEqM7lzv9aE0xPvTvXRER6cMUUGVAsVqs\nzB59BYG2QDx4WLTlFa0ydQIsFgvfmzAEgOKqRvL31ppckYiI9AcKqDLgRAdFcsVJMwGoad3PmwXv\nmVyRb5uUmUBIYOeEIB99U2xyNSIi0h8ooMqAdEr8OMbFjgXgq7LV7HAUmFyR7wqw2zjrwPKnGwpq\nWPL5LqoczSZXJSIivkwBVQYki8XC5SfNJMTeOX5y8bbXaXO1m1yV75o2Phl/Pyse4L3cIu56ZhUP\nv7yeVVsq9HS/iIj0mO2+++67z+wijlVrqxO3Ww9hiHcE2AKICAgnr3ozzR0ttLvbyYxNJyjIX73W\nQ0EBfqQPi6SuqZ2q2hYAaupaWbujmk/XleKobyMi1F+T+f8Xq9WiXhNDqNfEKAd7zRs0zZQMaB6P\nh2c2LWJTzVYsWPj1KXM5JSVTvXYC9te3smJTOV9uLKem7tAH0IYlDGJq9mBOGx1PcGCPFrLrdzT1\njxhFvSZG8eY0UwqoMuDVttXxwOq/0NLRSnxwLH/5wd00NTjVayfI7fGQX+Tgy43lrN1eRYfr21ON\nv5+VCelxTM0eTFpyOBaLxcRKzaHQIEZRr4lRFFBFvCy37Bteyv83ABenf5/zhn5fveZFjS1OVm2p\n4IsNZZRUNx3yWnxUMFOzEpmcmTCghgAoNIhR1GtiFAVUES/zeDw8seF5tu3fgcVi4a5Tf05ySLLZ\nZfU7Ho+HPRUNfLmhjFVbK2lt//YBKqvFQnZqNFOzB5OZEoXN2r+f4VRoEKOo18QoCqgivWBfi4Pf\nf/0Iba42BocmcOeEX+BnHdjjJHtTW7uLNdur+HJDGTtK6g55LSLUnylZiUzJGkxcRJBJFfYuhQYx\ninpNjKKAKtJLVpSv4l/b3gDgvOHncH7K902uaGAo39fEVxvLWbGpnPpm5yGvpQ+N4PxJw8kYEWVS\ndb1DoUGMol4To3gzoGqaKZH/MjwimT2NRVQ37WNX3R48eLAAYf6DsFltZpfXbw0K9idjRBTnTBjC\n0PhBtDldh0xXtWpLBelDI4gJ7z9XUzX1jxhFvSZG0TRTIr3Ez89Km72ZO96/H6f72yt5fhYbw8KG\nkhYxgtSIFEaEDyPQb+A80GMGR0MbX20qZ/nqIlraXESHBTD/hlMJDrSbXZpX6KqWGEW9JkbRLX6R\nXnLwl2tlwXre2vkBRQ3FuD2H95zVYmXIoCRSI0aQFpHCyPDhBB9YlUq86+ttlTz91hYAJo6J5+aL\nMkyuyDsUGsQo6jUxigKqSC/53xN5u6ud3XV7KagtZGdtIXvq9+J0dxx2nAULg0MTSI1IIS0ihdSI\nEQzyDzXhG/RPz727lZWbKwC46cIxTMpIMLmiE6fQIEZRr4lRFFBFesl3ncid7g721pews7aQgtpC\nCuv20OZq7/a94oPjuoYEpEaMIDIworfL77da2jq494WvqalrJSjAxvzrTyXGx5/uV2gQo6jXxCgK\nqCK9pKcncpfbRUlj2YHAuptdtbtp7mjpdt/owKiuq6upESnEBEUNyBWUjtfOkloeXLwOjwdGJYcz\n76rxWK2++/NTaBCjqNfEKAqoIr3kRE/kbo+b8qbKrsBaUFtIQ3tjt/tGBIQfCKudgTUhOE6B9Tss\n/bKQt1fsAWDW1BQumDzc1HpOhEKDGEW9JkZRQBXpJd4+kXs8Hqqaqymo3c3OA4HV0Vbb7b6h9pCu\nsJoaMYKk0ESslv69mlJPudxu/vjSOgrL6rFZLfxm9smMSAwzu6zjotAgRlGviVEUUEV6iREn8n0t\n+7uurhbU7qaqpabb/YL8AhkZPvxAYE1h6KAkzcUKVDqaue+Fb2hzuggJ9OPkk2LJSYtlzLBI/O2+\n8/NRaBCjqNfEKAqoIr3EjBN5bVsdu2p3Hwituylrquh2P3+rnZTw4V1XWYeHDcFu6x9zgvbUlxvL\neHFZ/iHb/O1WMkdEk5MaQ3ZqNIOCvTNZdG9RaBCjqNfEKAqoIr2kL5zIG9ub2FW3+8CwgEJKGsrw\ncPivadfiAZGdQwJGhA2sxQM2795H7uYKNu7aR1ProVN/WSyQlhROTlos49JiiI/qe3PU9oVek4FB\nvSZGUUAV6SV98UTe0tFCYV1RZ2B1FB518YBpQ87g4pE/GFBjV11uNzuL61i/s4b1O6upqWs9bJ/E\n6GBy0mIYlxZLyuAwrH3gYbS+2GvSP6nXxCgKqCK9xBdO5N+1eMAp8eOYPfryATle1ePxUFrTxPqd\nNeTtrGF3ef1h+4QF28lO7QyrY4abN27VF3pN+gf1mhhFAVWkl/jiifzg4gFvFrzH7voiADKj07kx\n82r8bX17HGZvczS0saGghryCGrbucdDhOvTv1N/PSsaIKHLSYsgeGUNYiHE/L1/sNfFN6jUxigKq\nSC/x5RN5m6udv2/6B9v27wBgZPhwfpp1PcF2315xyVta2zvYXLifvIIaNhTUHD5uFRiZHM64tBhy\nUmNIjPbOSfZIfLnXxLeo18QoCqgivcTXT+Qd7g7+sfVV1lZtACApNJFbs+cQHjDI5Mr6FpfbTUHJ\nt+NWq2sPH7eaEBXcGVbTYhg5ONzrq1b5eq+J71CviVEUUEV6SX84kbs9bl7dsZSvSlcBEBMUzc9z\nbiImKMrkyvomj8dD2cFxqwU1FJYdPm51ULCdcWkxXDwlhchB3pkpoT/0mvgG9ZoYRQFVpJf0lxO5\nx+Ph3d0fsnzPxwCE+4fxs5w5DA5NMLmyvq+2sY28gs6HrP533Gp8VDD/39XjCfPCHKv9pdek71Ov\niVEUUEV6SX87kX+y9wuWFLwLQLBfEHOzb2BE+DCTq/Idre0dbNnt4Jv8Sr7eVgXAiMQw5l05jgD/\nE3v6v7/1mvRd6jUxijcD6sCZLFFkAJo2dCqzR1+O1WKluaOFBeufZdu+HWaX5TMC/TuXUv3pxZl8\n/5QhAOwur+fJpZsPmxFARES8RwFVpJ+bmDiBOZmz8bP60e528tTGF1lXtdHssnzO5dNSmZgRD8Cm\nwn0sej8fH7oBJSLiUxRQRQaA7NgMbs2+kUBbAC6Pixc2L+56iEqOjdVi4YbzRpMxovNhsxWbK1jy\neaHJVYmI9E8KqCIDxKjIkfxy3E8ItYfgwcPL299gy77tZpflU/xsVubOzGRYQue0XctWFfHRmmKT\nqxIR6X8UUEUGkKFhydw+/hZC7Z2D2FeWfW1yRb4nKMCPX12WTVxE5wIIr/xnJ19vqzS5KhGR/uW4\nAurixYuZNm0aWVlZXH755WzcePTxbA0NDcyfP58pU6aQlZXFjBkz+OKLL46rYBE5MfEhcZySMA6A\nLfvyaXO1m1yR7wkL8ef2K7IJC7bjAf7+zla27tlvdlkiIv1GjwPqsmXLePDBB/nFL37Bm2++SXp6\nOnPmzGH//u5Pzk6nk+uuu47y8nIef/xxli9fzgMPPEB8fPwJFy8ix2dcbBYATreTLfvyTa7GN8VF\nBvOry3MI8Lfhcnt4/I1N1NS1mF2WiEi/0OOAunDhQq644gpmzpzJyJEjmT9/PoGBgSxZsqTb/V9/\n/XUaGhp44oknyMnJYfDgwUyYMIGTTjrphIsXkeMzInwo4f6d4yjzqjaZXI3vGpYwiJ/PGovVYqG1\n3cU7K/aYXZKISL/Qo4DqdDrZsmULkyZN6tpmsViYPHkyeXl53R7z6aefkpOTw/z58zn99NO58MIL\neeaZZ3C7NYegiFmsFis5cWMB2LRvG+0up8kV+a4xw6M4fWznCl0rNlVQub/Z5IpERHyfX092djgc\nuFwuYmJiDtkeHR3N7t27uz2muLiYVatWcdFFF/H3v/+dPXv2MH/+fFwuF3Pnzu1RsTabnumS3nWw\nxwZCr01IyObzkpW0u9rZXruDcfFjzS7JZ10yNYWVmytwuT28s3IPP52Z+Z3HDKReE3Op18Qo3uyx\nHgXUI/F4PFgslm5fc7vdxMTEcP/992OxWBgzZgxVVVU8//zzPQ6oYWFB3ihX5DsNhF47JTyT8M1h\n1LXWs9mxlWnpE80uyWdFRoYwY9Jw3luxm9wtFVz1g9EMSwg7pmMHQq9J36BeE1/So4AaGRmJzWaj\npqbmkO379+8nOjq622Pi4uKw2+2HBNiUlBRqamro6OjAz+/YS6ivb8Gl5QWlF9lsVsLCggZMr+XE\nZPB5SS5rSjdSVVOL3WY3uySf9f0JyXy4ughnh5tF72zh5z/MOur+A63XxDzqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzuz1m/PjxvPvuu4ds2717N7GxsT0KpwAul5uODv1ySe8bKL2W\nHTOWz0tyaXW1sbl6O2Njxphdks8aFGRn2vgkPvi6mG/yq9hVUtc1of/RDJReE/Op18SX9HiwwHXX\nXcdrr73G0qVL2bVrF/feey+tra3MmjULgHnz5vHII4907X/llVdSW1vLAw88wJ49e/jss8949tln\nuVM8GY4AACAASURBVPrqq733LUTkuKRGjOiatH+9nuY/YT+YOIwAuw2AN7/UMqgiIserx2NQzzvv\nPBwOBwsWLKCmpobRo0fz3HPPERXVuT51RUUFNputa/+EhAReeOEF/vjHP3LxxRcTHx/Ptddey003\n3eS9byEix8VmtZEdm8mKstWsq9rAqQnjSY9KM7ssnxUW7M/3Tknm3ZVFbNy1j2WrishOjWFwdPAR\nx+mLiMjhLB6Px2N2EcfK4WjS7QnpVX5+ViIjQwZUr5U2lvPwmr/hdHdgt/rx06zrFVJPQFOrk3lP\n5dLS1tG1LSzEn9HDIhk9LJL0YZHERQQNyF4Tc6jXxCgHe80bFFBF/stAPZHn79/J0xsX4nQ7sVv9\n+EnWdYyOGmV2WT5r6579vPyfnZTWNHX7ekx4IGOGR3FKRgJDY0MYFKSH06T3DNTzmhhPAVWklwzk\nE/kORwFPbngRp9uJn9WPn4y9ljHRWvHtRNQ1tpG/t5ZtRQ7yixxU1Xa/FGpidDDpwyIZPbTzCmuo\nAqt40UA+r4mxFFBFeslAP5HvcOziqQ0v0H4gpN489hoyotPNLqvfqKlr6Qqr24oc1Da2H7aPBRgS\nH9o1JCAtOYKgAK9MWS0D1EA/r4lxFFBFeolO5LDTUciTG1+g3dWOn8XG/9/encdHWd77/3/NTCb7\nPtlD2JcgSSBhR0HBHW2larGnirVHrd0O7c/Teuw5nlbbY7Wtx1alp18tWrWl1VpqtYpaN7RiEBFC\n2NcAScieyTpJZv39EQhEQBiYmXsyvJ+PRx/gzD33fCgfLt5c931d9+3FN1OUMdHosiKOxWLC4fax\ntvIQW/a1sOOAne5e93HHmU0mRuUlHQ6s6YzNT8YaZTnBGUVOTOOahIoCqkiQaCDvt6etil9venIg\npN5WvER7pAbYp3vN6/NR09jF9sOzqzur2+hzeo7/nMXMuGEp/bcEjEhjZE4SUXqEpXwGjWsSKgqo\nIkGigfyoPW1V/N+mJ+nzOLGYLNyukBpQp+o1t8fL/vrOgVsCdte04z7BU4Bioy2ML0gduCVgWFYi\nZm1pJcfQuCahooAqEiQayAfb176fX1c8Sa+nD4vJwq1FNzE5c5LRZUUEf3vN5fawp7ZjILDuO9SB\n9wTDd0Js1MDsatGodLLS4oNRvgwhGtckVBRQRYJEA/nx9rUf4NcVy+n19GE2mbm16CamZBYZXdaQ\nd7a91tPnZndN28AtAdUNXZxoMJ8yNoMrZw1n3LDUsy9ahiSNaxIqCqgiQaKB/MSq2g+wrOJJej29\nmE1mvlZ8sy73n6VA91pXj4udB+1sOzzDWtfiGPT+uGEpLJw1gpIxNj3V6hyjcU1CRQFVJEg0kJ/c\n/o6DLKtYTo+7l7yEHP5r5p1GlzSkBbvXWjt6eXdjLe9sqB30VKv8zAQWzhzB9IlZWlx1jtC4JqES\nyICq0UlETsvI5OFcNnw+APWORjze41eYS/hIT47lugvH8NA35/DF+WNISYwGoLapm9++so0fPF7O\nW+ur6XPp91FEwo8CqoictpyELAC8Pi9NPS0GVyOnIy4miitnjuDnX5/DLVcWkp0WB0BLRx9/fGs3\n3/+/D3n5gyq6elwGVyoicpQeTyIipy37cEAFaHA0DgRWCX/WKDPzJudxQXEuG3Y1sWrtAfbXd9LV\n4+JvH1Tx2kcHmTc5j8tnFJCeHGt0uSJyjlNAFZHTlhGbjsVkwePz0NDdBJlGVyT+MptNTCvMYuqE\nTHYcsLNq7QG27rfT5/Lw5vpq3tlQw6zzsrli1gjyMwJzL5mIiL8UUEXktFnMFjLjbNQ7Gql3NBpd\njpwFk8nExJHpTByZzoH6TlatPcD6nY14vD7WbKlnzZZ6SsdlsHDWCMbkpxhdroicYxRQRcQv2QlZ\n1DsaaXA0GV2KBMiInCS+saiIBruDNz46yAeb63F7vGzc3czG3c2MH5bC+SW5TB2fRXys/toQkeDT\nSCMifsmO77+u3+BoxOfzaU/NCJKdFs/NVxRyzQWjeHN9De9urKGnz8OumnZ21bTz+zd2MXmMjVmT\nsikZY8MaZTG6ZBGJUAqoIuKXnPj+hVE97l46nF2kxCQZXJEEWkpiDNdfNIaFs0bwXkUt71fW0dDq\nwO3x8smuJj7Z1URcjIWp47OYOSmbicPTMJv1DxURCRwFVBHxS3bC0ZVRDY5GBdQIFh8bxZWzRnDF\nzOEcaOhk7dYGPtreQHuXk54+Dx9sruODzXWkJEQzY2I2syZlMzInSbPqInLWFFBFxC9HLvFDf0Ad\nnzbGwGokFEwmEyNzkhmZk8zi+WPZedDO2m0NrN/ZRE+fm/ZuJ2+ur+bN9dVkpcUx67xsZp6XTa5N\nuwCIyJlRQBURv8RFxZFgjafb5aC1t83ociTEzOajq/9vumwCm/e1sHZrPRV7WnB7vDTae3h5zX5e\nXrOfETlJzDovmxkTs0lLijG6dBEZQhRQRcRv0eZounHg8urpQ+cya5SZsvGZlI3PpKfPzYZdTazd\n1sC2/a34fHCgvpMD9Z38+Z09FI5IY+Z52UybkEl8rNXo0kUkzCmgiojfoi39AcPldRtciYSLuJgo\nzi/O5fziXNq7nazb3sBH2xrYd6gDH7D9gJ3tB+z84R87KRmTwazz+ncCiLZqJwAROZ4Cqoj4zWo+\nHFA9mkGV46UkRHPptAIunVZAo93BR9saWLutgboWB26Pjw27mtiwq4nYaAtTx2cyrTCLUbnJJCdE\nG126iIQJBVQR8ZvV3D906BK/nEpWWjyfO38UV88ZycGGLj7a1r8TgL2zj16nZ+CpVdAfbIdlJVKQ\nlUhBZv+PObZ4oixmg38VIhJqCqgi4reBGVRd4pfTZDKZGJGTxIicJK6fP4bd1W2Ub21g/Y5GHH39\nfdTe7aS9qpWtVa0Dn7OYTeRlJDDscGAtyEpkWFYiKZptFYloCqgi4jerRZf45cyZTSYmDE9jwvA0\nbrpsPNWNXdQ0dvX/2NT/Y3dvf2j1eH1UH36vfOvRcyQnRFOQmUBBVhLDsvp/zNVsq0jEUEAVEb/p\nEr8ESpTFzKjcZEblJg+85vP5sHf2DQqs1Y1d1Lc68Pn6j+nodrK128nW/faBz1nMJnJtCRRkHRNc\nMxNJSdQWVyJDjQKqiPhNl/glmEwmE+nJsaQnxzJ5bMbA606Xh0Mt3QOB9cis67GzrTVN/aG2fGvD\nwOeS460D97YeuVUgLyNBs60iYUwBVUT8phlUMUK01TLwRKsjfD4fbV1Oqhs7jwbXpm7qWxx4D0+3\ndjhcbNtvZ9txs63xxy3KSk6I1qNaRcKAAqqI+O3IPagOlwOP14PFrL0sxRgmk4m0pBjSkmIoGXN0\nttXl9nCo2cHBxk5qGrsHAuzg2dZuapq6WXvMbGtSvHXQTGtBViK5tgSsUZptFQklBVQR8VtuQg4A\n7c5OVu1/i8+NvtzgikQGs0ZZBnYNOOLobGsX1Y2d1DT13y5w7Gxr50lmW3Ns8QOzrEdmXVM02yoS\nNAqoIuK3ObnTWVe/gX3t+3lj/zuMTRnFRNt4o8sS+UyDZ1ttA68fmW2t/tROAl09/beweLw+apu6\nqW3qZu22o7OtiXFWJo1KZ35pPuOGpSisigSQyec7siYy/Nnt3bjdXqPLkAgWFWUmLS1BvXYa7L1t\nPPjxI3S5ukm0JvCDGd8lNSbF6LKGDPVaeDt2tvVIYK1p7KLumNnWY+VnJDC/LJ/Zk3KIiwmvuR/1\nmoTKkV4LBAVUkWNoIPfP1pad/GbTU/jwMSZlJN8pvUP3o54m9drQ5HJ7OdTcTU1TF3sPdfDRtgZ6\n+o7uZhETbWH2pBzml+ZTkJVoYKVHqdckVBRQRYJEA7n//r73dV4/8A4Alw6/iEVjFxpc0dCgXosM\nfU4PH21v4J0NNRxs6Br03thhKcwvzWfahCxDF1mp1yRUFFBFgkQDuf88Xg+PVfyW3W37APhGyVcp\nyphocFXhT70WWXw+H/vqOli9oZaPtjfi9hz9PU2Kt3JBSS4XTcknMzUu5LWp1yRUDA+oK1as4Mkn\nn6S5uZnCwkLuueceSkpKTnjsiy++yA9+8ANMJhNHviomJoZNmzb5Xaz+cEmwaSA/M+19HTyw7ld0\nurpIiIrn7hnfIT02zeiywpp6LXJ19bj4oLKO1RtraWzrGXjdBBSPsTG/NJ/i0TbM5tAsqlKvSagE\nMqD6fSf3qlWrePDBB/nJT35CcXExzzzzDLfddhuvv/466enpJ/xMUlISb7zxxkBA1UpHkciSEpPM\nLZP+hWUVy+l2O3hqywq+W/Z1oszhtVhEJBQS46xcMXM4l80oYNv+Vt7dUEvFnmZ8Pqjc20Ll3hZs\nybFcVJrH3JI8khOijS5ZJOz4fVPM008/zQ033MCiRYsYM2YM9913H7GxsaxcufKknzGZTKSnp2Oz\n2bDZbCcNsiIydBWmj+PKUZcAUNVxkJf2vmZwRSLGMptMFI2y8W/XlfCLb8zh6jkjSTkcRls6eln5\n3j7+/ddreOLlreyqbmMI3XEnEnR+TW+4XC62bt3KHXfcMfCayWRizpw5VFRUnPRzDoeDBQsW4PV6\nOe+887jzzjsZO3bsmVctImHpypEXs69tPzvsu3mn+p+MTR3F5Mwio8sSMVx6cizXzhvN588fycbd\nzby7oYYdB9vweH2s3dbA2m0NDMtMYMHUYcybnIdZVxrlHOdXQLXb7Xg8HjIyMga9brPZqKqqOuFn\nRo0axf3338+ECRPo6upi+fLlfOlLX+LVV18lOzvbr2ItFj1qToLrSI+p186UmVtLvsxPyh+mw9nJ\n8i1/4LKRF3HV6EuJPvx4VOmnXjs3RUWZmV2Uw+yiHGqbunhnQy0fVB6ip89DTVM3z76+k06Hiy/M\nGx2w71SvSagEssf8WiTV2NjIvHnzeP7555k8efLA6z//+c/ZsGEDzz333CnP4Xa7WbhwIVdffTVL\nly49s6pFJKxtb9rNT99bRp/HCUBOYia3T/syxdmFBlcmEn56+ty8v7GGle/uoa65m9hoC8v/61JS\nEmOMLk3EMH7NoKalpWGxWGhubh70emtrKzab7SSf+tQXRkUxceJEDhw44M9XA9DR0YPHoxWIEjwW\ni5nk5Dj12lnKicrjh7P/nRXb/8q2lp3UdzXxk9WPMDtvGteP/xyJ0YFZ5TmUqdfkWDMmZJKVHMMP\nn1xHr9PDite28S+XBObxweo1CZUjvRYIfgVUq9XKpEmTKC8v5+KLLwb6934rLy9nyZIlp3UOr9fL\n7t27ufDCC/0u1uPxaosMCQn12tlLjU7jmyX/yvqGCv6y+2W6XN2UH1rP5qbtXDfuc0zPLtWOHqjX\n5KhhmYlMHZ/JJ7uaeGt9DZdOKyA1gLOo6jUZSiz33nvvvf58ICEhgUceeYTc3FysViu/+tWv2Llz\nJ/fffz9xcXHcddddbN68mdmzZwPw61//GpfLhclkora2lgcffJDKykruu+8+v1fz9/a68Hq1ylGC\nx2w2ERcXrV4LEJPJRH5iLrPzptPl7Kam6xBOr4tNTVuo6jjI6JQRxFvjjS7TEOo1OZG8jARWb6zF\n4/XhdvsoGXN6Vyc/i3pNQuVIrwWC35sULly4ELvdzqOPPkpzczMTJ05k+fLlA2Gzvr4ei+Xos7g7\nOjr47//+b5qbm0lOTqaoqIjnnnuOMWPGBOQXICLhL9GawJLzFjMjp4w/7VxJU08L21t38T8fPcxV\noy5lQcFcLGbLqU8kEuGGZSYy87xs1m5rYHVFLZfPLCAjJfRPnxIxmh51KnIMPXEl+JweF6/vf5s3\nD67G6+v//zg/MZcbC69nRHKBwdWFjnpNTqa+1cF//XYtPh/Mm5zLLVee3aOD1WsSKoF8kpT2nBCR\nkIq2WPn8mCu4e/p3GJk8HIDarjp+sX4Zf9n9Mr3uPoMrFDFWTno85xflAvBBZT0NdofBFYmEngKq\niBgiPzGXf5/6TRaPX0SsJQYfPt6t/oD/+eh/2dK83ejyRAz1+fNHYjGb8Pp8vPTPE+8zLhLJFFBF\nxDBmk5kLh83hnpn/TknGJADsfW38pvJ3PLnlD7T3dRpcoYgxMlLjmDc5D4C12xrYUtVicEUioaWA\nKiKGS4tN5Y6Sr3B78c2kRCcBsKGxkp989Av+Wbt24F5VkXPJF+aNJjm+/wlsT7+2g54+t8EViYSO\nAqqIhI0pmUX896zvMS9/NiZM9Lh7eW7nX/n5+sfY177f6PJEQioxzsqSyycA0NrRxwvv7jG4IpHQ\nUUAVkbASFxXHDRO+wJ1Tv0FeQg4A1Z21/O8n/8cz256jva/D4ApFQmfqhCymF2YBsLriENv2txpc\nkUhoKKCKSFganTKSu6d/hy+Ou4a4qP59INfVb+DHa3/BWwffw+3V5U45N9x42XgS4/ov9f9ulS71\ny7lBAVVEwpbFbOGigvP50azvMyd3BiZM9Hr6eHHPq/x03S/Z3rLL6BJFgi45PpqbLhsPQEtHL395\nb6/BFYkEnwKqiIS9pOhEbpx4Pd+f9u2BvVMbHE0s27ScxyufoblHlz0lsk0vzGLqhEwA3t1Qy44D\ndoMrEgkuy7333nuv0UWcLj1HWIJNz6wOb6kxKczOnYYtLp2q9gM4vU4aHE18cGgtHq+bkcnDh8wj\nU9Vr4g+TycSE4Wms2VyH0+1lZ3UbWWlxmE0QFxOFyWQ66WfVaxIqR3otEPSoU5Fj6JGAQ0ePu4dV\nVW+xumbNwDZUaTGpXDvuakoziz/zL+xwoF6TM7F2Wz1PvLxt0GtRFhPZ6fHkpseTY0sg1xZPri2e\nnPR4YqOj1GsSMoF81KkCqsgxNJAPPXXdDfxl18vssO8eeG182li+OO7z5CXmGFjZZ1OvyZnw+Xy8\n8O5e3vj4IKfzt3daUgx5GQmMykshPSmarNQ4cm0JpCZGh/0/4mToUUAVCRKFhqHJ5/OxqWkLK/e8\nQmtv/715R55SddWoSwd2AQgn6jU5Gy63l0a7g7oWB3WtDupbugd+3uf0nPLzsdGWw7Osx8y42hLI\nTosjyqLlKXJmFFBFgkShYWhzepy8eWA1bx5cjevwNlRJ1kSuGXMlM3OnYjaFz1+86jUJBp/PR1uX\nk7rDgbW+xUG93UF9q4OW9t5Tft5sMpGZGkuuLYEcW/9tA0d+fmSrK5GTUUAVCRKFhsjQ0tPKyj2v\nsKlpy8Bro5KH89VJN2KLSzOwsqPUaxIqR3rtUH07NY1d1Lc4qGs9GmAb7A7cnlNHgaR46/H3udoS\nyEiOxWzW7QKigGp0GRLBFBoiy/bWXbyw62UaHI0AJFoTuK1oCePSRhtcmXpNQudUvebxemlu7x0I\nrHUt3dS1Oqhr7qa799QPBYiymMlJj+sPrunxh8NrAjnp8cRED41dNSQwFFBFgkShIfJ4vB7eOPAO\nq6rewocPs8nM4vHXMDd/tqF1qdckVM6m1zodzv7g2uoYdNtAU3vPaS3SSk+OIfeY4Hpk9jUlQYu0\nIpECqkiQKDRErs3N23h665/o9fQBcEHeTL44/hqizFGG1KNek1AJRq+53B4a7D2DZ1wPh9c+16kX\nacXFWAYv0Dr88ywt0hrSFFBFgkShIbLVdTfweOXTNPW0ADAmZRS3Fy8hKTox5LWo1yRUQtlrPp8P\ne2ff4Z0Fjpl1bXVg7+w7da0WM9MLM5lfNowxecmaZR1iFFBFgkShIfI5XA6e2vpHtrfuAvo397+j\n5CsUJOWHtA71moRKuPRaT5/7uFsF6lodNLQ68JzgCVfDsxNZUDaMmedlE2PVvaxDgQKqSJCEy0Au\nweXxenhp32u8ffB9AKxmKzdN/CLTsqeErAb1moRKuPeax+ulua1/kdbmqhY+3FI/aC/X+Jgozi/O\nZX5ZPjnp8QZWKqeigCoSJOE+kEtgfVT3CX/cuRL34T1TLxsxn8+Nvjwk+6Wq1yRUhlqv9fS5Kd9a\nzzsbajnU3D3ovUkj05hfNozJY21YzLpXNdwooIoEyVAbyOXsHeio5vHKZ2h3dgBQZCvklkn/EvSn\nT6nXJFSGaq/5fD52VbfxzoZaNuxqGnQbQHpyDBdOyWfe5DxSEqINrFKOpYAqEiRDdSCXs9Pe18Fv\nN/+eqo4DAGTHZ3JHyS1kx2cG7TvVaxIqkdBr9s4+/rnpEKsramnrcg68bjGbmFaYxYKyfMbmp2hR\nlcEUUEWCJBIGcjkzLq+b53e+SHndxwDERcXy1UlfZpKtMCjfp16TUImkXnN7vFTsbubdjbVsP2Af\n9N6wzEQWlOUza1I2sdHGbB93rlNAFQmSSBrIxX8+n4/3aj5k5Z6/4/V5MWHi36bczoT0sQH/LvWa\nhEqk9tqh5m7e3VjLh1vq6Ok7uqgqLsbCnKJcFpTlk2sLTFiS06OAKhIkkTqQi392tu7hic3P0uvp\nZVr2FL466csB/w71moRKpPdar9PN2q0NvLOhhpqmwYuqJo5IY35pPqXjM7SoKgQCGVA1By4i8ikT\n0sdSllXCh3Xr2Nm6B5/Pp3vbRMJUbHQUF5Xmc+GUPHbXtPPuxlrW72jE4/Wx/YCd7QfspCXFcOHk\nPOZNySM1McbokuU0KKCKiJxAYfpYPqxbR6eri0Pd9eQn5hpdkoh8BpPJxPiCVMYXpPKlBWN5v7KO\n1RtrsXf2Ye/s428fVPH3D/dTNj6TBWX5jC9I1T88w5gCqojICYxPO3rf6c7W3QqoIkNISmIMn5sz\nkoWzhrNpTwvvbqhh6347Hq+Pj3c08vGORvIzEphfls/sSTnExSgOhRv9joiInEBSdCL5ibnUdtWx\nw76HBcPnGV2SiPjJYjZTNj6TsvGZ1LV0s3rjIT7YXEdPn5va5m7+8I9dvLB6L3OKcphfms+wzESj\nS5bDFFBFRE6iMG0ctV117G7bh9vrJsqsIVNkqMq1JfAvl4zj2nmj+Wh7/6Kqgw1d9Dk9vLuhlnc3\n1DK+IJUFZfmUjc8kyqJFVUbSaCsichIT0sfxdvX7OD1O9ndUMzZ1lNElichZiom2MG9yHnNLctl3\nqIN3NtTy8Y4G3J7+J1ftqm4jJSGaeZPzuHBKHunJsUaXfE5SQBUROYmxqaOwmCx4fB52tu5WQBWJ\nICaTiTH5KYzJT+GGi8fyQWUd726opaWjl/ZuJ3//cD+vlh+gdFwG88vymTgiTYuqQkgBVUTkJGIs\n0YxOGcHutn3ssO/hKi4zuiQRCYLk+GgWzhrBFTOGU7mvhXc31LJlXwten49PdjXxya4mctLjmV+W\nz/lFOcTHWo0uOeIpoIqIfIYJaePY3baP/R0H6XH3Ehely30ikcpsNjFlbAZTxmbQaHeweuMh/ll5\niO5eN/WtDv701m5WvreXOZNyWDB1mBZVBdEZ3QG8YsUKFixYQElJCYsXL6aysvK0Pvfqq69SWFjI\nt7/97TP5WhGRkCs8/JhTr8/L/216kj1tVQZXJCKhkJUWz+IFY/nfb53PrVdNZFRuEgBOl5fVFYf4\n4ZPr+PkfN/DJzkY83sh7QpfR/H7U6apVq/iP//gPfvKTn1BcXMwzzzzD66+/zuuvv056evpJP1db\nW8uXv/xlhg8fTkpKCsuWLfO72Eh9TJuEj0h/JKD4z+P18MsN/4+qjgMDrxVnTOTzo68kLzHnjM+r\nXpNQUa8FTlVdB29/UsO67f2Lqo6wJcdwUWk+8ybnkRQfbWCFxgrko079DqiLFy+mpKSEe+65BwCf\nz8eFF17IkiVLuP3220/4Ga/Xy0033cR1113H+vXr6ezsVECVsKSBXE7E6XHxXs0a3jjwLj3uHgBM\nmJiZM5WrRl9Kemya3+dUr0moqNcCr8Ph5P2KQ7x7+ElVR0RZzMw8L4tLphYwIifJwAqNEciA6tc9\nqC6Xi61bt3LHHXcMvGYymZgzZw4VFRUn/dyyZcuw2WwDAVVEZCiJtli5dMRFnJ83g38cWM3qmg9w\ned2srV/P+sYK5uXP5vKRC0i0BmZgFpHwlhwfzdVzRnLlrOFs3NXM25/UsLO6DbfHy5rN9azZXM/Y\n/BQWTM1n2oQs7al6BvwKqHa7HY/HQ0ZGxqDXbTYbVVUnvi/rk08+4a9//SsvvfTSmVd5mEW/wRJk\nR3pMvSYnkhyVyPWFV3PxyLm8svcffHjoY9xeN+9U/5MP6z7m8pEXcfHwucRExZzyXOo1CRX1WvBE\nYWZWUQ6zinI42NDJW+tr+HBzHU63lz217eypbef5xD0sKBvG/NJ8UpNOPTYMZYHssYCs4vf5fCfc\nG6y7u5u77rqLn/zkJ6SkpJz19yQnx531OUROh3pNPksaCSzNvYXrOq7guc0v81HNRnrdvby053Xe\nq/mQ6yctZMHoC4gyW055LvWahIp6LbjS0hKYXJjDHQ4nb647yKtrqmhoddDe5eTF9/fx9zVVzCnJ\n43MXjGaC9lQ9Jb/uQXW5XEyZMoVHH32Uiy++eOD1u+++m87OTn79618POn7Hjh184QtfwGKxcORr\nvIdXulksFl577TUKCgpOu9iOjh48Ht0/I8FjsZhJTo5Tr4lfqtoO8Nfdq9hl3zvwWlZ8Bp8fewVT\ns0swm46fVVCvSaio14zh9frYtLeZNz+uZsu+1kHvjcxJ4tLpBcyclE101Kn/ITtUHOm1QAjIIqmL\nLrqIJUuWcNtttw061ul0cvDgwUGv/fKXv8ThcHDPPfcwYsQIoqJOfxJXN3hLsGkxgZwpn8/HttZd\nvLR3FbVddQOvD0/K55oxCylMHzfoePWahIp6zXh1Ld28s6GWNZvr6HV6Bl5PjLNyfnEOUydkMTov\nGfMQn1UN5CIpy7333nuvPx9ISEjgkUceITc3F6vVyq9+9St27tzJ/fffT1xcHHfddRebN29m9uzZ\nWCwW0tPTB/3vgw8+wOfzcdNNN2E2+3evQm+vC6/Xrzwt4hez2URcXLR6TfxmMpnIis/g/LyZZMdn\nUt15iB53D+3OTtbVb2Bf235yE7JJiUkG1GsSOuo14yXFR1MyxsaCsmGkJcXQ1NZDV48Lp9vL4ViX\nOQAAIABJREFU3toO/llZx+qKQzTYHZhNJtKTY7GYh15YPdJrgeD3PagLFy7Ebrfz6KOP0tzczMSJ\nE1m+fPnAHqj19fVYLJEzXS0i4g+zycz0nFJKs4r5oPYjXtv/Fl2ubnbYd7Nj/W7Kskr43OjLyUvO\nNrpUEQmxuJgoLp46jAVl+Wzbb+edDTVs3teK2+Olo9vJexWHeK/iEDHRFkpG2ygdl0HJGNs5+WhV\nvy/xG0mXJyTYdClMAq3X3cvb1f/k7YPv0edxAv0hdt6wWdw+80t0dTjVaxJUGtfCW6/TzZZ9rWzc\n3cSmPS04+tyD3reYTRQOT6V0fCal4zJJC+OdAAzdqN9I+sMlwaaBXIKl09nF6/vf5p+1a/H4+u9B\nWzTxcq4suFS9JkGlcW3ocHu87KpuY+OuZjbsbhr0EIAjRuUmUTouk9LxmeTZ4sNqNwAFVJEg0UAu\nwdbc08rTW/9EVccBYqNiuP+C/yTWrO1/JHg0rg1NPp+PAw2dbNjVzMbdTdQ2dR93THZaHKXjMykb\nl8nofOMXWSmgigSJBnIJhYMdNfxs/aMAXD5yPp8ffaXBFUkk07gWGRrtDjbubmbjriZ217Tz6fCW\nnBDNlLEZlI3PYOKINKwGbF+lgCoSJBrIJVSe2PwMm5q2EmOJ5r7Zd5MUnWh0SRKhNK5Fno5uJ5v2\nNLNxdzNbqvoXWR0rJtpC8WgbZSFeZKWAKhIkGsglVA456rh/7S8BuGT4hXxh7FUGVySRSuNaZOt1\nutla1cqGXc1U7m2mu/fEi6ymjMtk6oRMUhODt8hKAVUkSDSQS6hERZlZvvX3fFy7iWizlR/P+YFm\nUSUoNK6dO9weL7ur29iwu/++1daOwYusYqwWvvvFEiYMTwvK9yugigSJBnIJlagoM+3Yuesf9wNw\nccE8rh13tcFVSSTSuHZu8vl8HGzoYuPuJjbsaqamqQvo34v1BzeVMSwz8P8gDmRA9e9RTiIiEjAj\n04ZRmlUMwPu15bT3dRpckYhECpPJxIicJBbNHc2Pb53Bd79YgsVsoqfPzS//vInWjl6jS/xMCqgi\nIga6esylALi8Lt46uNrYYkQkYpWMyeCWKwsBsHf28cs/b6K712VwVSengCoiYqBhSXmUZvbPov6z\ntpz2vg6DKxKRSHV+cS7XzhsNQG1zN4+t3IzL7TG4qhNTQBURMdjCUZdiwoTL6+aNA+8YXY6IRLCr\nZo9gflk+ALuq2/jt37fh9YbfciQFVBERg+Ul5gzci/pezYd8XL/R4IpEJFKZTCZuvGQ8ZeMzAVi/\ns4k/vb2bcFszr4AqIhIGrhv3OVKikwH4w/Y/s9u+1+CKRCRSmc0mvva58xg7LAWAtz+p4fWPDhpc\n1WAKqCIiYSA1JoVvTP5XYizRuH0eHt/8LPXdDUaXJSIRKtpqYel1JeTa4gF4YfVe1myuM7iqoxRQ\nRUTCREFSHrcVLcFsMtPj7uH/Nj1Fh1NbT4lIcCTGWblz8RRSE6MBeOrV7XxQGR4hVQFVRCSMnGeb\nwJcmfAGAll47v9n0O/o8ToOrEpFIZUuJ5c4bppAYZ8UHPLVqO6srao0uSwFVRCTcnJ83k8tHLADg\nYGcNv9u6Aq9PTwASkeAYlpnIf3y5lOSE/pnUZ1/fyduf1BhakwKqiEgY+tzoy5mWPQWAzc3b+cvu\nl8Nula2IRI78wyH1yOX+FW/u4o11xi2cUkAVEQlDJpOJmyYuZlxq/6ba79V8yDvV/zS4KhGJZLm2\nBO6+sQxbcgwAz7+zh1fL9xtSiwKqiEiYspqj+FrxzWTHZwHw1z2vsKGx0uCqRCSSZaXF8x9fLiMj\nJRaAle/t46UPqkJ+BUcBVUQkjMVb4/nm5H8lyZoIwDPbnmNf+35jixKRiJaRGsfdN5aRnRYHwEsf\nVPHX9/eFNKQqoIqIhLmMuHS+MfmrRJutuL1ullUs59ltz1PZtBWnx2V0eSISgdKTY/mPG8sG9kl9\ntfwAf353T8hCqsk3hO66t9u7cbu1klWCJyrKTFpagnpNgu5Meq2yaStPbH4WH0eH7WhLNJNshZRm\nFjHJVkhsVGywSpYhSuOanI32bicPPbeR2qZuAC6ZNox/uXgcJpPpuGOP9FogKKCKHEMDuYTKmfZa\nVftByuvWsalpK12u7sHnNEcxMX0ckzOLKc6YSKI1MH9RyNCmcU3OVqfDyf8+V8HBxi4ALp1WwJcu\nHntcSFVAFQkSDeQSKmfba16fl71tVVQ0baGiaQttfe2D3jebzIxPHcPkzCImZ04iJSY5UKXLEKNx\nTQKhq8fFQ3/aOBBSL5tewA0LBodUBVSRINFALqESyF7z+rwc7KyhonELFU2baeppGfS+CROjUkYw\nJbOIKZlF2OLSz+r7ZGjRuCaBcqqQqoAqEiQayCVUgtVrPp+PQ931VDRupqJpC4e66487piAp/3BY\nLSYnIStg3y3hSeOaBFJXj4tf/Gkj1YdD6uUzClg8vz+kKqCKBIkGcgmVUPVao6Np4DaAAx3Vx72f\nE5/FlKxipmQWMSwx74QLH2Ro07gmgdbpcPLQcxUDIfWKGcP54vwxWK0WBVSRYNBALqFiRK/Ze9uo\naNrCpqYt7GmrGrQbAIAtNr1/ZjWriJHJwzGbtBNhJNC4JsHQ6XDyiz9VUNN0OKTOHM6/XDKO9PTE\ngJxfAVXkGBrIJVSM7rVOZxeVTVupaNrCTvsePD7PoPdTopMOL7AqYlzqaCxmS8hrlMAwutckcn06\npF41ewRfv35KQM6tgCpyDA3kEirh1GsOVw9bWrZT0biZba07cXndg95PiIqnOPM8pmQWUZg+Hqs5\nyqBK5UyEU69J5OkPqRupObxP6t//95qAnFcBVeQYGsglVMK11/o8Tra17KSiaTNbmrfT6+kb9H6s\nJYZJtsKB+1Z1G0D4C9dek8jR4XDy0OGQqoAqEgQayCVUhkKvubxudrbupqJpC5XNW+l2OQa9Pyd3\nOjdO/KJB1cnpGgq9JkNfp8PJuxtruXVRSUDOp4AqcgwN5BIqQ63XPF4Pew4/GGBT02banZ0AfKf0\nDsanjTG4OvksQ63XZOgK5DZTujYjIiKnZDFbmJA+lhsmLOK/Zv77wGNUn9/5Iu5P3bMqInK2FFBF\nRMQvCdZ4rhmzEIB6RyPvVn9gcEUiEmkUUEVExG+zcqcyOmUEAKuq3qS1125wRSISSc4ooK5YsYIF\nCxZQUlLC4sWLqaysPOmxb775Jtdddx3Tp0+ntLSURYsW8dJLL51xwSIiYjyzycwN47+ACRNOr4uV\nu/9udEkiEkH8DqirVq3iwQcfZOnSpbz44osUFhZy22230draesLjU1NT+cY3vsHzzz/Pyy+/zLXX\nXst//ud/smbNmrMuXkREjDMsKY+Lhp0PQEXTFra27DC4IhGJFH4H1KeffpobbriBRYsWMWbMGO67\n7z5iY2NZuXLlCY+fPn06l1xyCaNHj6agoICbb76ZCRMm8Mknn5x18SIiYqyrRl9KcnQSAH/e9RIu\nj8vgikQkEvgVUF0uF1u3bmX27NkDr5lMJubMmUNFRcVpnaO8vJyqqiqmT5/uX6UiIhJ24qLiuG7s\n1QA097Twj4OrjS1IRCKCX8+rs9vteDweMjIyBr1us9moqqo66ee6urqYO3cuLpcLi8XCj370o0Eh\n93RZLFrTJcF1pMfUaxJskdRrM/PL+LBuHTvte/nHgXeZkz+VzPiMU39QQiKSek3CWyB7LCAPVPb5\nfJhMppO+n5CQwMsvv0x3dzdr167lgQceoKCgwO9Z1OTkuLMtVeS0qNckVCKl1+6YdSPff+N+3F43\nf9nzMj+Y9+3P/HtBQi9Sek3ODX4F1LS0NCwWC83NzYNeb21txWaznfRzJpOJgoICAAoLC9mzZw+P\nP/643wG1o6MHj0dPwZDgsVjMJCfHqdck6CKt1xJI5tIRF/J61TtU1G/jVx88xU3nXU+UOSDzIHIW\nIq3XJHwd6bVA8GvksFqtTJo0ifLyci6++GKgf/a0vLycJUuWnPZ5vF4vTqfTv0oBj8erx7RJSKjX\nJFQiqdcuG76ArU07qO46RPmh9TQ7Wrm9+GYSrPFGlyZEVq9J5PP7ZoFbbrmFP//5z/ztb39j7969\n/OhHP6K3t5drr70WgLvuuouHH3544PgnnniCDz/8kOrqavbu3ctTTz3Fyy+/zDXXXBO4X4WIiBgu\nxhLNd8u+ziRbIQC72/bx0CfLaHK0GFyZiAw1fl97WbhwIXa7nUcffZTm5mYmTpzI8uXLSU9PB6C+\nvh6LxTJwvMPh4L777qOhoYGYmBhGjx7NQw89xBVXXBG4X4WIiISF2KhY7ij+Cn/Z/Xfer/2QRkcz\nD32yjK8Vf4UxqSONLk9EhgiTz+fzGV3E6bLbu3V5QoIqKspMWlqCek2CLtJ7zefzsbpmDSt3/x0f\nPqLMUSwp/CLTckqNLu2cE+m9JuHjSK8FgvacEBGRgDOZTMwvuICvFd9MtNmK2+vmd9v+xOv732YI\nzYuIiEEUUEVEJGhKMifx/039BimHnzb1931v8Pvtf8btdRtcmYiEMwVUEREJquFJw/j+tH8jPzEX\ngI/qP2FZxXIcLofBlYlIuFJAFRGRoEuLTeXOsm98aoX/r7XCX0ROSAFVRERC4sgK/3n5cwBocDTx\n0CfL2Ne+39jCRCTsKKCKiEjIWMwWFo+/huvHfR4TJrpc3Tyy8Qm2t+wyujQRCSMKqCIiElInWuH/\njwPvGl2WiIQRBVQRETFESeYkJmcWAdDr6TO4GhEJJwqoIiJiINPhH7U3qogcpYAqIiKGMR3Op4qn\nInIsBVQRERERCSsKqCIiYhjTkUv8evypiBxDAVVEREREwooCqoiIGE7zpyJyLAVUERExzJFL/D5F\nVBE5hgKqiIiIiIQVBVQRETHO4TVSfR4nHq/H2FpEJGwooIqIiGEyYm0ANPe08P8qn6bX3WtwRSIS\nDhRQRUTEMBcVnM/4tLEAbGvdycMbfoO9t83gqkTEaAqoIiJimLioWL41+V+ZlTMNgNquOn6xfhnV\nnYcMrkxEjKSAKiIihooyR3HTxC9y9ajLAWh3dvDLDf/HlubtBlcmIkZRQBUREcOZTCauHHUxXznv\nS0SZLPR5nPy/yqd5v6bc6NJExAAKqCIiEjZm5JTx7Sm3ER8Vhw8fz+96kb/ueQWvz2t0aSISQgqo\nIiISVsaljeF7U79FRmw6AG8ffJ8nt6zA6XEZXJmIhIoCqoiIhJ3shCy+N+3bjEoeDkBF02Ye3fg4\nnc4ugysTkVBQQBURkbCUFJ3I0tI7mJJZDEBVx0F+sX4Z9d2NBlcmIsGmgCoiImEr2mLl1qIbuWT4\nhQC09Lbyv5/8mt32vQZXJiLBpIAqIiJhzWwy84WxV/GlCddiNplxuHtYVrGcfe0HjC5NRIJEAVVE\nRIaEufmz+HrJV4m2ROP2eXhyyx90T6pIhFJAFRGRIWOSbQJLJi4GoK2vnae2/lFbUIlEIAVUEREZ\nUsqySlhQMBeAXfY9vLLvHwZXJCKBpoAqIiJDzqIxCxmdMhKANw68w+bmbcYWJCIBpYAqIiJDjsVs\n4daiG0myJgLwzLbnaO5pMbgqEQkUBVQRERmSUmNS+NeiGzFhosfdy283/15PmxKJEAqoIiIyZI1P\nG8M1Y64EoKbrEH/e9TeDKxKRQFBAFRGRIe2S4RcyOWMSAOV1H/PhoXUGVyQiZ+uMAuqKFStYsGAB\nJSUlLF68mMrKypMe+8ILL3DjjTcyY8YMZsyYwVe/+tXPPF5ERMQfJpOJJectJjPOBsDzu/7Gwc4a\ng6sSkbPhd0BdtWoVDz74IEuXLuXFF1+ksLCQ2267jdbW1hMev27dOq6++mqeffZZnn/+eXJycrj1\n1ltpbNSzlEVEJDDiouK4vfhmrGYrbq+b5Zt/T6Oj2eiyROQMmXw+n8+fDyxevJiSkhLuueceAHw+\nHxdeeCFLlizh9ttvP+XnvV4v06dP54c//CHXXHONX8Xa7d243dqQWYInKspMWlqCek2CTr0WHB/V\nfcKz258f+O/RKSOYnl1KWdZkEqMTDKzMOOo1CZUjvRaQc/lzsMvlYuvWrdxxxx0Dr5lMJubMmUNF\nRcVpncPhcOB2u0lNTfWvUhERkVOYmTuVekcjbx5YjQ8f+9oPsK/9AC/sfplJtglMzy6lOOM8oi3R\nRpcqIp/Br4Bqt9vxeDxkZGQMet1ms1FVVXVa53jooYfIzs5m9uzZ/nw1ABaL1nRJcB3pMfWaBJt6\nLXium3AVC0acz8f1FXxUt4GazkN4fV42N29nc/N2Yi0xlGYXMzO3jAnpYzGbIvv3QL0moRLIHvMr\noJ6Mz+fDZDKd8rgnnniC1157jT/84Q9ER/v/r9fk5LgzKU/Eb+o1CRX1WnCkkcDo3HxuKL2Kg221\nfHDwY/55YB0tDju9nj7KD62n/NB60mJTOH/4NOaOnMnI1GGn9XfZUKVek6HEr4CalpaGxWKhuXnw\njeetra3YbLbP/OyTTz7J8uXLefrppxk3bpz/lQIdHT14PLp/RoLHYjGTnBynXpOgU6+FThKpXFlw\nKZcPu5g99io+qtvAhoZKHO4e7L3tvLLrbV7Z9Ta5CVnMyJ3KjNxSMuLSjS47YNRrEipHei0Q/Aqo\nVquVSZMmUV5ezsUXXwz0z56Wl5ezZMmSk35u+fLlPP744zz55JOcd955Z1ysx+PVDd4SEuo1CRX1\nWmiNTh7F6ORRXD/uGra27ODj+g1sad6O2+ehrruRl/a8xkt7XmNMykim55RRllVCgjXe6LIDQr0m\nQ4nfl/hvueUW7r77boqKiiguLuaZZ56ht7eXa6+9FoC77rqLnJwc7rzzTgB++9vf8uijj/Lwww+T\nl5c3MPsaHx9PfHxk/KEXEZGhxWqOYkpmEVMyi3C4HGxs2szH9RvZ3bYPgL3t+9nbvp8Xdr3EJFsh\n03NKKbJNJNpiNbhykXOD3wF14cKF2O12Hn30UZqbm5k4cSLLly8nPb3/ckh9fT0Wi2Xg+D/96U+4\n3W6WLl066Dzf+ta3+Pa3v32W5YuIiJydeGs85+fN5Py8mbT22lnfUMHH9Rs51F2Px+ehsnkrlc1b\nibXEUppVzPTsUsaljY74xVUiRvJ7H1QjaQ83CTbtFyihol4Lf7Vddayr38D6hgra+toHvZcak8LU\n7MnMyC4jPzE3rBdXqdckVAK5D6oCqsgxNJBLqKjXhg6vz8uetn18XL+RDY2b6fX0Dno/NyGbGdll\nTMuZQnpsmkFVnpx6TUJFAVUkSDSQS6io14Yml8fFliOLq1p24PF5Br0/JmUkw5OGYYtLJyMunYw4\nG7bYNEMfDKBek1Ax7ElSIiIi5zKrxUppVjGlWcV0uxxsbKxkXf1G9rb3P6zmyOKqT0uJTsIWl44t\n1nY4uPaH14y4dJKjk3Q/q8inaAZV5BiaaZBQUa9FlpYeO+sbNrKtdSfNPa3H3bP6WaLMUdhi048G\n19h0bIfDqy02ndiomLOqTb0moaJL/CJBooFcQkW9FtlcHhctvXaae1po7m2lpaeV5p7Wgf92epyn\nfa4ka+LRWwaOCa8ZcemkxqSccvZVvSahokv8IiIiYcxqsZKTkEVOQtZx7/l8Prpc3TT3tNJyOLAO\nhNfDs68+js4ddbq66HR1sb/j4HHnspgs2GLTDgdY26dCbBpxUXq8qQxNCqgiIiIhZDKZSIpOJCk6\nkVEpw4973+V1Y++1Hw6trTT3thwzA9s6aBcBj89DY08zjT3Nx50HIMEaT2acjdyULFKiUkiPPhpm\n02JSsJgtJ/yciNEUUEVERMKI1RxFVnwmWfGZx73n8/lwuHsGZltbDgfYI+HV3teG13f0Mn63y0G3\ny8H+jurjzmU2mUmPSe3faeDYhVuH74eNj5BHvMrQpIAqIiIyRJhMJhKs8SRY4xmRXHDc+x6vB3tf\n28AtAy29dlp6W2lztlHf1US3yzFwrNfn7b+9oLcV7Md/V1xU3MBCraMLuPrDbHpsKlFmRQgJHnWX\niIhIhLCYLYfvRbUB44DBi6Q6erpp6R28YKvlmDB77Oxrj7uH6s5aqjtrj/seEybSYlMHZluPXbiV\nEWsjwRof1k/XkvCngCoiInKOiLfGEW/NpyAp/7j3vD4v9t52WnqPvX3gaJjtcnUPHOvDR2uvndZe\nO7va9h53rlhLzMC9rrbYtEELuNLj0rFq9lVOQR0iIiIimE1mbHFp2OLSGH+CJ7b2unuPbp31qQVc\nLT2tuI95qlavp4/arjpqu+qOO48JEykxyQOzrf0zsEd3IUiyJmr2VRRQRURE5NRio2LJT8wlPzH3\nuPe8Pi8dzs5B22U197QOzMZ2ODsHjvXho62vnba+dvZQddy5os1WUmNTSIlOJiUmmZToZJJjkkiN\nTiY55uhrZ/sAAwlvCqgiIiJyVswmM6kxKaTGpDA2ddRx7/d5nP0zrZ/a8/XIf7u8roFjnV4XjY5m\nGh0n3jrriBhL9EBY/XSQTYk5HGYVZIcsBVQREREJqhhLNHmJOeQl5hz3ns/no8PZNTDb2tzTQntf\nB+3ODtr7Omnv66DD2Tno4QXQH3oVZCOXAqqIiIgYxmQykRKTREpMEqNTRp7wGK/PS6ezm3Zne39g\n7eukzdlBx0CQ7Q+zZxNkYy0xJMckDQqy/T8mKcgaQAFVREREwprZZB4IsSSd/LizCbK9nj56HX0K\nsmFCAVVEREQiwlAKsikxySQryJ6UAqqIiIicU/wLsl0DofVIkO2/LzZwQbY/rCYNDrLHzsqeg0FW\nAVVERETkBPqDbH9YDG6QbaLB0fSZtZxrQVYBVUREROQshHWQPdF9skMgyCqgioiIiITAmQbZ/m23\nOj8VZDvocHYFNcimxKQQY4kOxC/dbwqoIiIiImEkHIPskf1jP72nbFZ8Rn+dAaaAKiIiIjIEhUOQ\nNWHiG5P/lUm2CYH8pSmgioiIiEQyv4PssdttHQ6yx4bZY4OsDx9ratcqoIqIiIhI4A0Ksp/hSJB9\nteofrDm0jm2tO+nzOImKig1cLQE7k4iIiIhEvCNBdlbuNABcXjfbWnYG9jsCejYREREROSeMTB5O\ncnT/PQMVTZsDem4FVBERERHxm9lkZnJmEQBbmnfg8roDd+6AnUlEREREzilTDgfUXk8vO1p2B+y8\nCqgiIiIickbGpY4mISoegI2NgbvMr4AqIiIiImfEYrZQnHEeABWNWwJ2XgVUERERETljU7L6L/N3\nuxwBO6cCqoiIiIicscK0ccRYogN6TgVUERERETljVouVItvEgJ5TAVVEREREzsolwy8kyZoQsPOd\nUUBdsWIFCxYsoKSkhMWLF1NZWXnSY/fs2cPSpUtZsGABhYWFPPvss2dcrIiIiIiEn+HJw3ho/n0B\nO5/fAXXVqlU8+OCDLF26lBdffJHCwkJuu+02WltbT3h8T08PBQUFfO973yMzM/OsCxYRERGRyOZ3\nQH366ae54YYbWLRoEWPGjOG+++4jNjaWlStXnvD44uJivv/977Nw4UKsVutZFywiIiIikc2vgOpy\nudi6dSuzZ88eeM1kMjFnzhwqKioCXpyIiIiInHui/DnYbrfj8XjIyMgY9LrNZqOqqiqghZ2IxaI1\nXRJcR3pMvSbBpl6TUFGvSagEssf8Cqgn4/P5MJlMgTjVZ0pOjgv6d4iAek1CR70moaJek6HEr6ib\nlpaGxWKhubl50Outra3YbLaAFiYiIiIi5ya/AqrVamXSpEmUl5cPvObz+SgvL6e0tDTgxYmIiIjI\nucfvS/y33HILd999N0VFRRQXF/PMM8/Q29vLtddeC8Bdd91FTk4Od955J9C/sGrv3r34fD5cLhcN\nDQ3s2LGD+Ph4hg8fHthfjYiIiIgMeX4H1IULF2K323n00Udpbm5m4sSJLF++nPT0dADq6+uxWCwD\nxzc2NrJo0aKBe1SfeuopnnrqKaZPn65N+0VERETkOCafz+czuggRERERkSO054SIiIiIhBUFVBER\nEREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwEvYBdcWKFSxYsICSkhIWL15MZWWl\n0SVJhFm2bBmFhYWD/rdw4UKjy5IIsH79er7+9a8zd+5cCgsLefvtt4875pFHHuGCCy5g8uTJfPWr\nX+XAgQMGVCpD3al67Qc/+MFx49ztt99uULUylD3++ONcf/31lJWVMWfOHL71rW9RVVU16Bin08l9\n993HzJkzKS0tZenSpbS0tPj1PWEdUFetWsWDDz7I0qVLefHFFyksLOS2226jtbXV6NIkwowbN44P\nP/yQNWvWsGbNGv74xz8aXZJEAIfDwcSJE/nRj3408LCSYz3xxBOsWLGCH//4x7zwwgvExcVx6623\n4nQ6DahWhrJT9RrAvHnzBo1zDz/8cIirlEiwfv16brrpJl544QV+97vf4Xa7ufXWW+nt7R045v77\n7+e9997jscceY8WKFTQ2NvJv//Zvfn2P30+SCqWnn36aG264gUWLFgFw3333sXr1alauXKl/+UlA\nRUVFDTwNTSRQ5s2bx7x58wA40TNRnn32Wb75zW+yYMECAH7+858zZ84c3nrrLc3ii19O1WsA0dHR\nGufkrP32t78d9N8PPPAAc+bMYcuWLUybNo2uri5WrlzJL3/5S2bMmAHAT3/6UxYuXEhlZSUlJSWn\n9T1hO4PqcrnYunUrs2fPHnjNZDIxZ84cKioqDKxMItH+/fuZO3cul1xyCd/73veoq6szuiSJcNXV\n1TQ3NzNr1qyB1xITE5k8ebLGOAmKdevWMWfOHK644gruvfde2trajC5JIkBnZycmk4nU1FQAtmzZ\ngsfjGZTfRo8eTV5eHhs3bjzt84btDKrdbsfj8ZCRkTHodZvNdty9DiJnY/LkyTz44IOMGjWKpqYm\nHnvsMW688UZeeeUV4uPjjS5PIlRzczMmk+mEY1xzc7NBVUmkmjt3LpdddhnDhg3j4MEHMJdqAAAD\nQklEQVSDPPzww3zta1/j+eefP+ktASKn4vP5+OlPf8rUqVMZO3Ys0D+2Wa1WEhMTBx3r79gWtgH1\nZHw+n/4wSUDNnTt34Ofjx4+npKSE+fPn89prr3HdddcZWJmcizTGSTAce8vIuHHjGD9+PJdeeikf\nffTRoFl8EX/ce++97Nmz57TWbfg7toXtJf60tDQsFstxabu1tRWbzWZQVXIuSEpKYuTIkRw8eNDo\nUiSCZWRk4PP5NMaJIQoKCkhLS9M4J2fsxz/+Me+//z6///3vyc7OHng9IyMDl8tFV1fXoOP9HdvC\nNqBarVYmTZpEeXn5wGs+n4/y8nJKS0sNrEwiXXd3N9XV1WRmZhpdikSwgoICMjIyWLt27cBrXV1d\nbNq0SWOcBF19fT1tbW0a5+SM/PjHP+btt9/m2WefJS8vb9B7RUVFWCyWQfmtqqqKQ4cO+TW2hfUl\n/ltuuYW7776boqIiiouLeeaZZ+jt7eXaa681ujSJID/72c9YsGABeXl5NDQ08Nhjj2GxWLjqqquM\nLk2GOIfDwcGDBwdWVVdXV7Njxw5SUlLIzc3lK1/5Cr/5zW8YPnw4+fn5PPLII+Tk5HDxxRcbXLkM\nNZ/VaykpKSxbtozLL7+cjIwMDh48yC9+8QtGjhzJBRdcYHDlMtTce++9vPrqq/zmN78hLi5u4CpQ\nUlISMTExJCYmcv311/PAAw+QnJxMQkIC//M//0NZWdlpr+AHMPlOth9FmFixYgVPPvkkzc3NTJw4\nkXvuuYfi4mKjy5IIcuedd7J+/Xra2tpIT09n6tSpfPe736WgoMDo0mSIW7duHTfffPNx910tWrSI\nBx54AIDHHnuM559/ns7OTqZNm8YPf/hDRowYYUS5MoR9Vq/de++9fPOb32THjh10dHSQlZXFBRdc\nwHe+8x1tOyV+KywsPOG9pA888MDAtqBOp5Of/exnvPLKKzidTubOncuPfvQjvy7xh31AFREREZFz\nS9jegyoiIiIi5yYFVBEREREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwooAqIiIi\nImFFAVVEREREwooCqoiIiIiEFQVUEREREQkrCqgiIiIiElb+fyq5ocPMu4sBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VFX+x/H3mfTeE0JCSEIPHUK30AREir2uws+C2Nay7i7rqquurrqWtawNFAVFBcXCIqKAIL33DgkBAqRDSALp5/fHHSCEhCRkZm4y+b6eZ55pd+795s7kk5Mz956jtNYIIYRwLhazCxBCCGF7Eu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4IQl3IYRwQq5mbTg0NFTHxsaatXkhhGiUNmzYkKW1DqtpOdPCPTY2lvXr15u1eSGEaJSUUgdrs5x0ywghhBOScBdCCCck4S6EEE7ItD53IYQAKCkpITU1lcLCQrNLaVA8PT2Jjo7Gzc3tkl4v4S6EMFVqaip+fn7ExsailDK7nAZBa012djapqanExcVd0jpq7JZRSk1VSmUopbZX87xSSr2jlNqvlNqqlOpxSZUIIZqkwsJCQkJCJNgrUEoREhJSr/9matPn/hkw4iLPXw20sV4mAB9ccjVCiCZJgv1C9d0nNXbLaK2XKqViL7LIWGC6NubrW62UClRKRWqtj9WrsmrsWvMLGTuXs7XZ9ZS4eNtjEwD4ebrxfwNicXWR75yFEI2PLfrco4DDFe6nWh+7INyVUhMwWvfExMRc0sZy967gyoPvEHHge+4veYJDRFzSei7mzLSyPVoG0rNlsM3XL4RoeN555x0++OADevTowYwZM2y+/ueeew5fX1+efPJJm6+7Kg79QlVrPRmYDJCYmHhJM3P3vfMFSBpI+2/v5nf9PNz4CbQeatM6dx07ydVvLyPjZJFN1yuEaLjef/99Fi5cSHR0tNml2IQt+hyOAC0q3I+2PmY/rQbDfYvBPwpm3ATL3zrX3LaBMD8PADLyJNyFaAomTpxIcnIyV199NS+99BJ33303vXv3pnv37vz4448AfPbZZ1x77bVcddVVxMbG8t///pc333yT7t2707dvX3JycgCYMmUKvXr1omvXrtxwww2cOnXqgu0lJSUxYsQIevbsyeWXX87u3btt/jPZouU+B3hYKfU10AfItVd/+3mC4+DeBfDjQ7DwH3BsM4x9D9x96r3qIG93XCyKTAl3IRzq+f/tYOfRkzZdZ0Jzf/4xuuNFl/nwww+ZP38+ixcv5s0332Tw4MFMnTqVEydO0Lt3b4YONXoHtm/fzqZNmygsLKR169a8+uqrbNq0iccff5zp06fz2GOPcf3113PfffcB8PTTT/PJJ5/wyCOPnLe9CRMm8OGHH9KmTRvWrFnDgw8+yG+//WbTn7vGcFdKfQUMBEKVUqnAPwA3AK31h8A8YCSwHzgF/J9NK7wYdx+48VOI7AoLn4eM3XDDx9CsU71W62JRhPi4S7gL0QT9+uuvzJkzh9dffx0wDtU8dOgQAIMGDcLPzw8/Pz8CAgIYPXo0AJ07d2br1q2A8Qfg6aef5sSJE+Tn5zN8+PDz1p+fn8/KlSu56aabzj5WVGT7rKnN0TK31fC8Bh6yWUV1pRRc9jg06wLfT4Qpg+Gq56HPROO5SxTq60FmvoS7EI5UUwvbEbTWzJ49m3bt2p33+Jo1a/Dw8Dh732KxnL1vsVgoLS0FYPz48fzwww907dqVzz77jCVLlpy3nvLycgIDA9m8ebNdfw7nOc6v9RB4YCXED4T5k2DGjZCfccmrC/F1J7ug2GblCSEah+HDh/Puu++ird/jbdq0qU6vz8vLIzIykpKSkiqPuvH39ycuLo5vvvkGMP6YbNmypf6FV+I84Q7gGwa3z4SRr0PKcni/H+z95ZJWFerrQba03IVocp555hlKSkro0qULHTt25JlnnqnT6//5z3/Sp08fBgwYQPv27atcZsaMGXzyySd07dqVjh07nv3S1paUtuFRJnWRmJio7TpZR8YumH0vpG+Hfg/D8Jfq9PJ/zt3Jl2sOseufFzs5VwhRX7t27aJDhw5ml9EgVbVvlFIbtNaJNb3WuVruFYV3gHsXQeebYNV/IS+9Ti8P8XXndEmZtN6FEI2S84Y7gJsntLW2vAtP1Oml8aHGIZX9XvmNB2dsYP72NApLymxdoRBC2IXzD/nrGWBcF+bW6WUjOkXy3YP9mbP5KHO3HmXetjT8PF0Z2SmSsd2a0yc+BBeLDHYkhGiYmlC41/3EiB4xQfSICeLpazqwIimbHzcfYe7Wo8xcf5gIfw9Gd2nO2G5RdIryl1HthBANShMI90DjOnsftLm0MWhcXSxc2TaMK9uGcfraMhbtTufHzUeZtiqFj5cfID7Mh7FdoxjTrTlxofU/Q1YIIerL+cM9pDXE9IPF/4L2oyCwRc2vuQgvdxdGdWnOqC7NOXGqmJ+3p/Hj5iO8tWgv/1m4l67RAYztFsUtvVrg4+H8u1cI0TA59xeqABYLXPch6HL44QEoL7fZqgO93bmtdwxfT+jHykmDeWpke0rLNS/M3cm0VSk2244QouFasmQJo0aNMruMCzh/uAMExcKIVyBlGax+3y6biAzwYsIVrfjpj5cT4e9BcmaBXbYjhBC10TTCHaD7H6DdNbDoeeMEJztqGezDoewLh/kUQjRMKSkptG/fnvHjx9O2bVvuuOMOFi5cyIABA2jTpg1r165l7dq19OvXj+7du9O/f3/27NlzwXoKCgqqHC7YDE2nU1gpGP02vNEOtn0LQ+p2SnFdtAj2Zvn+TLutXwin9fMkSNtm23U26wxXv1LjYvv37+ebb75h6tSp9OrViy+//JLly5czZ84c/vWvfzF9+nSWLVuGq6srCxcu5KmnnmL27NnnreOll16qcrhgHx/HH2jRdMIdjLFnAqLhxEG7bqZliDezNxZxqrgUb/emtYuFaKzi4uLo3LkzAB07dmTIkCEopejcuTMpKSnk5uYybtw49u3bh1KKkpKSC9ZR3XDBZgyv0PSSJ6glHE+x6ybahPsC0P+V3xjcPpxhCRFc0TZMgl6ImtSihW0vNQ3n+8wzzzBo0CC+//57UlJSGDhw4AXrqG64YDM0nT73M4Ji4bh9W+7DOzbjozt7Mrh9OIt2ZTDxi410f2EB905bx6x1h8mS8WqEaHRyc3OJiooCjCn3qlLf4YJtqek1JYPjoSADNn8JXW+r14Qe1bFYFMM7NmN4x2aUlpWzNiWHBTvT+XVHOgt3ZaAUJLYMYlhCM65KiCBWTnwSosH7y1/+wrhx43jxxRe55pprqlzmmWee4bHHHqNLly6Ul5cTFxfH3LlzHVypwXmH/K1OQTbMuhMOroCO18Go/4BXkEM2rbVm57GT/LojnQU709l5zBgSoW2EL1clRDAsoRmdowKwyJg1ogmRIX+rV58hf5teuAOUl8GKt2HxS+AbAdd9BHGXO7yMwzmnWLDTCPq1KTmUlWua+XsyNCGcYQnNuKx1qAS9cHoS7tWTcL9URzYaE3rkJMNlj8HAp8DV3ZRSjhcU89vuDBbsTOf3vZmcLiljdNfmvHVLNxl9Ujg1Cffq1Sfcm16fe0VRPWDiMpj/N1j+H0haDHd8axwy6WBBPu7c0DOaG3pGU1hSxpSlybyxYC/uLhZeu7GLtOCFU9Nay8iqldS34d30jpapzN0HxrwDN0+HY5th2yyzK8LTzYVHhrTh8aFtmb0xlWd+3F7vN1qIhsrT05Ps7Gz5jFegtSY7OxtPT89LXkfTbrlXlDAWvEPtPjRBXfxxSGsKS8v4YEkSHq4uPDOqg7RuhNOJjo4mNTWVzEw5q7siT09PoqOjL/n1Eu4VhXeAzN1mV3GWUoq/DG9HYUkZU1ccwNPNwp+Ht5OAF07Fzc2NuLg4s8twOtItU1FYe8jcAw3o30OlFM+OSuD2PjG8vySJtQdyzC5JCNEISLhXFJEARSdhziOQc8Dsas5SSjG+fywA2QXF5hYjhGgUJNwr6nob9LoXts6Cd3vCd/dD5l6zqxJCiDqTcK/IzQuueQMe3QJ9H4Bdc+C93vDNeEjbbnZ1QIPqMRJCNGAS7lXxj4ThL8Fj2+DyJ2DfQvhwAHx1G6RuMLs6IYSokYT7xfiEwpBn4fFtxtmrB1fCx4Ph8+sgfadDS3G1nsS0JfWEHA8shKiRhHtteAXBwL/C49th6PNwdDNMvhKWv2WMU+MAcaE+XNc9islLk3nl590S8EKIi5JwrwsPP2MMmofWQpthsPAf8OlIY2waO1NK8cZNXbmrX0s+WprMpNnbKCuXgBdCVE3C/VL4hsEtX8B1k40zWj8YAOs+tvu3nRaL4vkxHfnj4NbMXH+YR77aSFGpY/5zEEI0LhLul0op6HoLPLgKWvSBn/4EX1wPuUfsvFnFE8Pa8fQ1HZi3LY17p62noKjUrtsUQjQ+Eu71FRAFd35vHEJ5aDVMGQzFBXbf7L2Xx/PvG7uwYn8Wj35t3lReQoiGScLdFpQyTn664xvIT4NNMxyy2ZsTW/DokLYs3JXB/ow8h2xTCNE4SLjbUuxlEN0bVv3XYUfR3NE3BncXC5+vsu+k30KIxkXC3dYG/BFOHDTObnWAUF8PrukSyeyNR8iXvnchhFWtwl0pNUIptUcptV8pNamK52OUUouVUpuUUluVUiNtX2oj0W4kBMfDinccNlbAnf1akl9UyvcbUx2yPSFEw1djuCulXID3gKuBBOA2pVRCpcWeBmZprbsDtwLv27rQRsPiAv0ehqMb4eAKh2yye4tAOkcF8NbCffxr3i7WHsihtKzcIdsWQjRMtWm59wb2a62TtdbFwNfA2ErLaMDfejsAOGq7EhuhbreDT5hxBqsDKKX413WdSWjuz6crDnDzR6vo9dJCnpi1mXnbjkl3jRBNUG1mYooCDle4nwr0qbTMc8CvSqlHAB9gqE2qa6zcvKDP/fDbi8Zoks062X2TnaMD+PyePuQVlrB0bxaLdqXz2+4Mvtt4BHcXC31bhTC0QzhDOkQQFehl93qEEOZSNY1RopS6ERihtb7Xev9OoI/W+uEKyzxhXdcbSql+wCdAJ611eaV1TQAmAMTExPQ8eNCJj/A4fRze7AgdRsH1k00pobSsnA0Hj7NodwYLdqZzIMs4/r5DpD9XdQhnaEIEnZoHYLHItH1CNBZKqQ1a68Qal6tFuPcDntNaD7fe/xuA1vrlCsvswPgDcNh6Pxnoq7XOqG69iYmJev369bX5WRqv+U/Bmg+NAcf8m5tdDUmZ+Szalc7CnRmsP5hDuYZwPw+GdIjgqoRw+rcKxdPNxewyhRAXYctwdwX2AkOAI8A64Hat9Y4Ky/wMzNRaf6aU6gAsAqL0RVbeJMI9Owne7WEMG3z5n8yu5jw5BcUs2ZPBwl3p/L4nk4LiMrzcXHh+bEduTmxhdnlCiGrUNtxr/EJVa10KPAz8AuzCOCpmh1LqBaXUGOtifwLuU0ptAb4Cxl8s2JuMkFbQ8jLY9EWDm0Ip2Med63tE8/4dPdn47FVMv7s3Ph4uLN2baXZpQggbqM0Xqmit5wHzKj32bIXbO4EBti3NSXT/A/ww0ZjoI7Zh7iIPVxeuaBtGdJA3uadLzC5HCGEDcoaqvSWMAXc/o/XewAV5u3HilIS7EM5Awt3e3H2MgN/zE5Q17OPNA73dOX6q2OwyhBA2IOHuCG2GQWEuHGnYXyAHeruRcbKIdxftY11KDsWlcparEI1VrfrcRT3FDwTlAvsWQExfs6up1oiOzViVlM0bC/bCAvB0s5DYMpi+8cH0axVC56hA3F2lPSBEY1DjoZD20iQOhaxo6ggoOQ33/252JTU6XlDMmgM5rE7OZnVyNrvTjLHivdxcSIwNom98CH3jQ+gSHYCbi4S9EI5U20MhpeXuKK0Gw+KX4PQJ8Ao0u5qLCvJxZ0SnZozo1AwwjolfeyCbVUnZrE7O4bVf9gDg7e5CYqy1ZR8fQueoAFwl7IVoECTcHcUv0rguymvw4V5ZsI87IzpFMqKT8TNk5Rex1tqyX5WUzb/nG2HvYw37fq2Mln2n5v4S9kKYRMLdUVw9jevSInPrsIFQXw9Gdo5kZGcj7DPzjLBflZzF6uQcXvl5NwC+Hq5c2S6Mf9/QBR8P+agJ4UjyG+corh7GdWmhuXXYQZifMRvUNV3Ohf3q5GxWJmXx1drDNA/w5O/XVJ4CQAhhTxLujnIm3Msaf8u9JmF+Hozu2pzRXZsDiqkrUhjbLYpOUQFmlyZEkyEdoo7iHWpc5x4xtw4HmzSiPUHe7jz1/TbKyhvW+DpCODMJd0eJ6AgWVzi6yexKHCrA241nRyewNTWX6atSzC5HiCZDumUcxc0TwhOMuVWbmNFdIpm9IZXXf9lDWbmmT1wIHSL95EgaIexIwt2RmneHnT8Yw/+qpjP7kVKKF6/txD3T1vHiT7sA47DJnrHB9IkLpndcMF2iA/BwlYlChLAVCXdHat4dNk6DE4cgqKXZ1ThUi2Bvfn38StJyC1mbksPaA9msO3D87AlR7q4WurUIPBv2PWKC5PBJIepBfnscyTfCuD6d0+TC/YxmAZ6M6dqcMV2NaQePFxSzLiWHtQdyWJuSw/tLknj3t/24WBSdmvvTOy6Y3nEh9IoNItDb3eTqhWg8JNwdycPPuC7KM7eOBiTIx51hHZsxrKMx1EF+USkbDx43wv5ADtNWHWTKsgMAtG/mR6/YYGvgBxPh72lm6UI0aBLujiThXiNfD1euaBvGFW3DACgsKWNrai5rD2Sz5kAO321M5fPVBwGIDfGmf+tQJl3dHn9PNzPLFqLBkXB3pDPhnrXP3DoaEU83l7Mt9YeB0rJydh47ydoDOaw5kMNXaw8R5uvB41e1NbtUIRoUORbNkQKiIaw9LPwHzLgZMveYXVGj4+pioUt0IPdeHs+UuxK5sm0YX609REmZTCwiREUS7o7k6gETfoerXoBDq+H9fjD3ccjPMLuyRuvOvi3JyCtiwc50s0sRokGRcHc0N08Y8Cj8cRP0ugc2Tod3esDS143JPESdDGwXTlSgF5+vOmh2KUI0KBLuZvEJgZGvwYOrIe4K+O2f8G5P2PI1lEsXQ225WBR39I1hVXI2v+1Ox6yZxYRoaCTczRbaBm77Esb/BD5h8P398NEVsPcX40xWUaNbElsQ5ufB3Z+tZ/Abv/PBkiQy8pxvaGUh6kLmUG1Iysth+2xY/CIcT4GYfjDkH9Cyn9mVNXinikuZty2NWesOszYlBxeLYnD7cG5JbMHAdmEyjo1wGrWdQ1XCvSEqLYZN0+H3f0N+OrQZBkOehWadza6sUUjKzGfW+sPM3nCErPwiwv08uLFnNDcntiA21Mfs8oSoFwl3Z1B8CtZ+BMv/A4W50OlGGPQUhLQyu7JGoaSsnN92ZzBr3WEW78mgXEPf+GBu7RXDiE7N8HSTgcpE4yPh7kxOH4cV78CaD6GsGHqMg8FPg3ew2ZU1Gmm5hXy74TCz1qdyKOcU/p6ujO0WxSODWxMuwxiIRkTC3RnlpcPSf8P6T8HT3+iq6TEOLNICra3ycs3qA9nMXHeYn7enEe7nwRf39JHuGtFoSLg7s/SdMO/PcHA5RHaDa96A6Brfa1HJ1tQTjJu6FheLhel39yahub/ZJQlRo9qGuxxC0BhFJMD4uXDDJ5CXBh8PgR8fhoIssytrVLpEB/LNxP64uShumbyKdSk5ZpckhM1IuDdWSkHnG+GR9dD/EdjylXES1NopUF5mdnWNRutwX759oD9hvh7c+ckaFu+WoSCEc5Bwb+w8/GDYizBxhXGo5Lwn4Ze/m11VoxIV6MU3E/vROtyX+6av5+u1hygrlxPIROMm4e4swtvDuP9B4j2w5gNIWWF2RY1KiK8HX93Xl8TYICZ9t40r/r2YD5YkkVNQbHZpQlwS+ULV2RQXwAf9AQUPrAR3b7MralRKy8pZuCudaSsPsio5G3dXC2O6Nueufi3pEh1odnlCyNEyTdqBZTBtFPR9EEa8bHY1jdbe9Dymr0rhu41HOFVcRrcWgYzr35KRnSPxcJXDT4U5JNybup+ehHUfw//9LGPT1NPJwhK+25DK9FUHSc4qIMTHndt6x3B7nxiaB3qZXZ5oYiTcm7qifGMyEDcvmLgcXN3NrqjRKy/XrEjKYvqqgyzalY5Siqs6RDBxYCu6tZAuG+EYcpx7U+fha5zclLUHVr5tdjVOwWJRXN4mjCl3JfL7nwdx3+XxrDmQzS0frSIzr8js8oQ4T63CXSk1Qim1Rym1Xyk1qZplblZK7VRK7VBKfWnbMsUlaTsMEsYaszxlJ5ldjVNpEezNpKvb892DAyguK+fTFQfMLkmI89QY7kopF+A94GogAbhNKZVQaZk2wN+AAVrrjsBjdqhVXIoRr4LFDX76k0z+YQdxoT6M7BTJ56sOcrKwxOxyhDirNi333sB+rXWy1roY+BoYW2mZ+4D3tNbHAbTWcppfQ+EfaQwwlrzYmMpPAt7mHhjYiryiUmasPmR2KUKcVZtwjwIOV7ifan2sorZAW6XUCqXUaqXUiKpWpJSaoJRar5Ran5mZeWkVi7rrda8xeuSyN2D+3yTgbaxTVACXtwnlk+UHyD0lrXfRMLjacD1tgIFANLBUKdVZa32i4kJa68nAZDCOlrHRtkVNLBYY/Ta4+8Dq96GkAEa9JUMF29BDg1pz6+TVdP/nr3SOCqBvqxD6xYfQKzYYHw9b/ZoJUXu1+dQdAVpUuB9tfayiVGCN1roEOKCU2osR9utsUqWoP6Vg+L+MgF/6mjHL03Ufgoub2ZU5hb7xIXz3YH+W7M5gVXI2U5cf4KPfk3G1KLpEB9CvVQj94kPp2TIIL3f5oyrsrzbhvg5oo5SKwwj1W4HbKy3zA3Ab8KlSKhSjmybZloUKG1DKmMHJzRsWPQ+lhXDTNHCRlqUt9IgJokdMEGBM2L3h4HFWJWWzKjmbD39P5r3FSbi5KLq1CKRffAh9W4XQIyZIpvsTdlGrk5iUUiOBtwAXYKrW+iWl1AvAeq31HKWUAt4ARgBlwEta668vtk45iclkqz+A+ZNkiAIHyS8qZV1KDqutYb/9SC7lGtxdLfSICaRffCj9WoXQrUUg7q5y+omonpyhKmr28yRjBMnRb0PP8WZX06Tkni5h3YEcViVnsyopm11pJ9EaPN0sJLYMpl+rEPrGB5MQGSDdOOI8Eu6iZmWl8NUtkLwE7vwB4i43u6Im68SpYlYn57DaGvZ70vMAoyetZbA3bSP8aN/Mj7bNjOvYEB9cXaSF3xRJuIvaKcyFj6+Cggy4dxGEtDK7IgFk5xexLuU4u9NOsjc9j91peaRkFXBmDhF3Fwutwn2NwLcGf7tmfkQGeGL0kgpnJeEuai8nGaYMNlryve+Dfg+BT6jZVYlKCkvK2J+Rz560vLOBvyctj7SThWeX8fN0pV3EuRZ+uwgj9AO9ZeA4ZyHhLuomcy8seRl2fA+unpB4tzE3q3+k2ZWJGuSeKmFPep5xSTvJnjQj+PMKS88uE+HvUaGF70+7CD/aRPjKkTqNkIS7uDRZ+2DZm7B1pnGSU/c7YcCjENTS7MpEHWitSTtZyB5r635PmhH++zLyKS4tB8CioGWIz9nWfbtmfiRE+hMb6mNy9eJiJNxF/RxPgeVvwaYvAA1dboXLn5A++UautKyclOxTFbp1TrI3PZ+U7IKzo1L8dUR7Hhgo73NDJeEubCP3CKx8BzZ8BmXF0HsCXP2q2VUJGztdbPTnf/D7fuZtS2PynT0Z1rGZ2WWJKshkHcI2AqKMMH9sG7QbCWs+hKI8s6sSNubl7kLn6ADevLkbXaMDeGzmZnYePWl2WaIeJNxF7fiGQ4cxxu28dHNrEXbj6ebClLsS8fd0477p62WGqUZMwl3Unp/13/S8o+bWIewq3N+TKXclkl1QxMQvNlBUWmZ2SeISSLiL2vNvblznpZlbh7C7ztEBvHFTNzYcPM7Vby9jytJksvOlFd+YSLiL2vOLBBSkbTO7EuEA13SJ5IM7ehDk7c5L83bR9+VFPDRjI0v3ZlJeLtMxNHRytIyom5l/gANL4fEd4OFndjXCQfam5zFz3WG+25jK8VMlRAV6cUuvFtyUGE1kgJfZ5TUpciiksI/UDfDxYBj2onEGq2hSikrL+HVHOjPXHWb5/iwsCga2C+eWXi0Y3D4cNxnMzO4k3IX9TBttnMn66BZw9TC7GmGSQ9mnmLX+MN9sOEz6ySLC/Dy4sWc0tyS2kLNc7UiOcxf2c9njkHcM1n9qdiXCRDEh3jw5vB0r/jqYT8Yl0q1FIJOXJjPw9SX8uLnyTJzC0STcRd3FDzIuv/wNtsw0uxphMlcXC0M6RDDlrkRWThpMbIg3325INbusJk/CXdSdUnDrDIi9DL6/3zr+jBAQ4e/J0A4RrEnO4VRxac0vEHYj4S4ujbsP3D4LWg2CHx+SLhpx1sB24RSXlbMqKdvsUpo0CXdx6dy84NavoM0wmPsYrJ1idkWiAegVF4SXmwu/7800u5QmTcJd1I+bJ9zyBbS7BuY9CV/fYQwXLJosD1cX+rcK4dcd6eSeKjG7nCZLwl3Un6sH3DwNhjwLSb/Be31g8b+g+JTZlQmT3H9lK7ILirhv+noKS2RsGjNIuAvbcHGDy/8ED6+H9tfA768aIb9zDph0LoUwT++4YN68uRtrU3J47OvNlMlwBQ4n4S5sKyAKbpwK438yhieYdSd8fi1k7jG7MuFgo7s259lRCczfkcZzc3Zg1gmTTZWr2QUIJxV7Gdy/FNZPhcUvwgf9IWEsNO8OzTpDsy7gHWx2lcLO7r4sjvSThXy0NJkIfw8eHtzG7JKaDAl3YT8urtBnAnS63uiD3/MzbJ997nn/KGvQV7gExoJF/qF0Jn8d0Z6MvCJe/3Uvob4e3No7xuySmgQJd2F/PqEw6k3jUpBlDBlc8bJvAWjrl27uftCs0/mBH9bBOCpHNEoWi+LVG7qQU1DM377fho+HK6O7Nje7LKcnA4cJ85Wchoxd5wd++nYozjeeVy4Q1u78wI/oDD4h5tYt6uR0cRnjpq5l46HwHrjiAAASzklEQVTjTL6rJ4PbR5hdUqMko0KKxq28HI4fuLCVX3GKv8rdOq0GyxjzDdzJwhJun7Kafen5TLu7N33j5Q90XUm4C+dUVbdO1h7Q5dBqCNz5ndkVihrkFBRz80erOHbiNF/e15euLQLNLqlRkXAXTUfJaVj8Eqx8Fx7bDoEtzK5I1CAtt5CbPlpJ7qkSBrYLJy7Uh/gwH+JDfYkN9cbP083sEhus2oa7fKEqGj83L0i8xwj3bbOMk6lEg9YswJMZ9/Tlhbk72XT4OP/bevS8c93C/DyItwZ+XKgPcaG+xIf50CLIG3dXOZqqNqTlLpzHJ8Pg9Al4aI0xLLFoNApLyjiUc4rkzAKSs/I5kFnAgawCkrMKyCkoPruci0XRIsiL+DBfa+j7WP8I+BLh74FqAu+7tNxF09PlFvjpCTi6CaJ6mF2NqANPNxfaRvjRNuLCL8RPnCo2gt4a+AeyCkjKzGdlUhaFJeVnl/N2dyE25Ez3jg9x1m6euDAf/JtgN4+03IXzOH0c/tMZWg+Gm6ebXY2ws/JyTdrJQmvw55NsDf7kzAJSj5+i4nA2ob7u1la+EfZxoT60CvOhRbA3Hq4u5v0Ql0Ba7qLp8QqCPvfDstchbbtxMpRwWhaLonmgF80DvRjQOvS854pKyzicc4qkM619a3fPot3pZK0/181jURAd5E2bcF/6xAfTv1UoCZH+WCyNv3tHWu7CuZzKgbe7QvyVxjjzQlSSe7rE2r1j9O0nZRWw69hJkjMLAAj0dqNvXAgDWofQv3Uo8aE+DaovX1ruomnyDoa+DxhDDqcsh5j+MlaNOE+AlxvdWgTSrdLx9Wm5haxKzmLF/mxW7s9i/o40ACL8PRjQKpR+rYywjwr0MqPsOqtVy10pNQJ4G3ABPtZav1LNcjcA3wK9tNYXbZZLy13YzekTRuu98AS4+UB4B4joCBGdICIBwhNkREpxUVprDmafYmVSNiuSsliVlH32qJ3YEG/6tQplQOsQ+sWHEOLr4dDabHYSk1LKBdgLXAWkAuuA27TWOyst5wf8BLgDD0u4C1OdOATJSyB9h/Wy3fjC9Qz/KCPkIzqeu4S0AVd300oWDVd5uWZPeh4rk4xW/ZoDOeQXlQLQvpkfA1qH0r9VCL3jgu1+ApYtw70f8JzWerj1/t8AtNYvV1ruLWAB8GfgSQl30aBoDXlpRtBn7DgX+pl7oNw6z6fFDULbnh/4ER3BL1KOmxfnKS0rZ+uRXFYlZbMyKYt1KccpLi3HxaLoEh3A40PbckXbMLts25Z97lHA4Qr3U4E+lTbWA2ihtf5JKfXnOlUqhCMoBf6RxqXN0HOPl5VA1r7zQ//gSuNM1zO8giD8TNgnGN074R3A3cfxP4doEFxdLPSICaJHTBAPDWpNYUkZGw8dZ+X+bOZsOcojX21i4RNXEubn2C6b82qs7wqUUhbgTWB8LZadAEwAiImRAftFA+DiZg3sBOCmc4+fPg7pOyFjp9Glk74DNs84NwwxCoJioe0IGPw0ePiaULxoKDzdXOjfKpT+rUIZ260517yznBfm7uTd27qbVlNtwv0IUHEkpmjrY2f4AZ2AJdbDhZoBc5RSYyp3zWitJwOTweiWqUfdQtiXVxDEDjAuZ5SXw4mD1lb+Tji2BdZ8CHt/hus+gpi+5tUrGow2EX48NKg1/1m4l2u7NWdIB3PGra9Nn7srxheqQzBCfR1wu9Z6RzXLL0H63EVTcXAlfD/R+AJ3wKMw6ClwNe9fcdEwFJeWM+rdZeQVlrLgiSvx9bDdUee17XOv8QBgrXUp8DDwC7ALmKW13qGUekEpNab+pQrRiLXsDw+sgB53wYq3YPIgY4x50aS5u1p4+foupJ0s5OV5u0ypQc5QFcJW9v4CPz5s9NcPegr6/9GYJFw0WS/9tJMpyw7w3OgExg+Is8k6bdZyF0LUUtvh8OBqaD8SFj0PHw+Go5vNrkqYaNLVHbgqIYLn5+7kp63HHLptCXchbMknBG6aBjd+ahxXP2UQzH8KivJrfq1wOi4Wxbu3dadHTBCPz9zMqqRsh21bwl0IW1MKOl0PD62FHuNg9Xvwfl/YM9/syoQJPN1c+GRcIjEh3kyYvp5dx046ZLsS7kLYi1cgjH4L7v7FOOHpq1tg1l1Gi140KYHe7ky7uzc+Hq6M/3QtqcdP2X2bEu5C2FtMX7h/mXGy05758N9esPlLs6sSDhYV6MW0u3tzuriMZfuy7L49OVpGCEfKToI5j8DBFdDlVrjmdfC4cGo54byy84vqNZKkHC0jREMU0grG/Q8GPmWMX/PRlcaZrqLJcNQQwRLuQjiaxQUG/tUI+ZJT8PFQWPORMXKlEDYi4S6EWWIvg4krIH4Q/PwX+PoOyM8wuyrhJCTchTCTTwjcPhOGvwz7foU3Oxghv+dnKCs1uzrRiMm50UKYTSno9yC0GQYbP4MtM2H3XPAJh663Qvc/QFg7s6sUjYwcLSNEQ1NWAvsXwqYvYO98KC+F6F7Q7Q7j5CjPALMrFCay2TR79iLhLkQt5GfC1plG0GfuAlcvSBhjtOZbXgYW6VltaiTchXAmWsPRjbBpBmz7FopyISAGontCcDwEt7Jex4NvuMz56sRsOYeqEMJsSkFUT+My/CXY/RNsn20cI79zDuiyc8u6+RghHxJ/LvDPBn8zae03ERLuQjQ2bl7Q+UbjAkYffe5hyE6GnAqX9J2wex6Ul5x7rauXNejjLgx+/ygJfici4S5EY+fidi6gKysvM4L/bOgfMK6z98O+BVBWVGE9HpVCP+5cl09AtHHylWg0JNyFcGYWFwiKNS6tBp//XHk5nDxyfmv/zCVpMZSerrAeN2MdFVv64e3lS90GTMJdiKbKYoHAFsYl/srznysvh/y0C0M/OxlSlkNJgbFcZFcY+tyFfziE6STchRAXsljAv7lxib3s/Oe0NoZJSFoEi1+Gz6+DuCuNkI/qYUa1ogry/5QQom6UAr8I6HY7PLIeRrwC6duNKQVnjYOs/WZXKJBwF0LUh6sH9H0AHt0CV04yvqR9rzf87zGZccpkchKTEMJ28jNg6Wuw/lOwuELsAONIG/9o4zogGgKijMMuXR0zrrmzkZOYhBCO5xsOI1+Dvg/C8jfh2FbjRKuCzCqWjbAGfxQEtDgX/AHRxn3vUDkSpx4k3IUQthccB2PePXe/5DScPAq5qRUuh41DMTN3GwOllVSaNNrFw/hC90zYnw3+Cv8JePg69udqRCTchRD25+ZlTDEY0qrq57WG08fPD/+TFW4fWAp5R0GXn/86z8Dqgz8gGvwiwaVpxlzT/KmFEA2LUuAdbFwiu1S9TFkp5B2zBv8Ro+Wfmwq5R4zrQ6uh8ESl9VqMgD8b/NYuoOA4YwYsJw5+5/3JhBDOxcX13ElX1SnKrzr4cw/D0U2w639QVmwsG9beGISt9VDH1O9gEu5CCOfh4WvMWlXdzFXl5XAqCw6uhIXPwRc3QOurjJB3stmu5KtoIUTTYbEYR/R0vBYeWgPDXoTDa+H9fjDvL3Aqx+wKbUbCXQjRNLl6QP9H4I8boed4WDcF3ukOqz8whlFu5CTchRBNm08ojHoTJq6A5t1h/iTjLNvFLxvH6Zt0omd9yRmqQghxhtaw71dY/hYcWgVoCIyB9qOMS0xf08e1lzlUhRCiPvIzYe/PsGsuJC8xJjbxDoF2VxtBHz/QOH7fwSTchRDCVoryjLNod/8Ee3+BopPGXLWthxhB33YYeAU5pBQZW0YIIWzFww86XmdcSoshZZkR9Lt/gl1zrIOkXWYEfddbjeVNJi13IYS4VOXlcHSjcXLU7rnG3LThHeH2mRc/2aoeattyl6NlhBDiUlksEJ0IVz0Pj2yAP8w2zob9eAgc2WhuaaZuXQghnEnroXDPr8aIlp+ONFr0JqlVuCulRiil9iil9iulJlXx/BNKqZ1Kqa1KqUVKqZa2L1UIIRqB8A5w3yKI6Agz74SV75pyrHyN4a6UcgHeA64GEoDblFIJlRbbBCRqrbsA3wL/tnWhQgjRaPiGw/i5kDAGfn0alr3u8BJq03LvDezXWidrrYuBr4GxFRfQWi/WWp8ZaX81EG3bMoUQopFx84IbP4O4K2DL1w7ffG3CPQo4XOF+qvWx6twD/FyfooQQwilYLMbJTtn7jclIHLlpW65MKfUHIBF4rZrnJyil1iul1mdmVjGnohBCOJso61GLRzY4dLO1CfcjQMUDNqOtj51HKTUU+DswRmtdVNWKtNaTtdaJWuvEsLCwS6lXCCEal+bdAQWpjj2vpzbhvg5oo5SKU0q5A7cCcyouoJTqDnyEEewZti9TCCEaKU9/aNYZtn/n0KGEawx3rXUp8DDwC7ALmKW13qGUekEpNca62GuAL/CNUmqzUmpONasTQoimZ9BTkLUHVr/vsE3K8ANCCOEIX91mjC758Dpjsu5LJMMPCCFEQzLiFeNkpvl/c8jmJNyFEMIRglrCFU8ao0juW2j3zcmQv0II4Sj9HzEm5Hb1sPumJNyFEMJRXD3gjlkO2ZR0ywghhBOScBdCCCck4S6EEE5Iwl0IIZyQhLsQQjghCXchhHBCEu5CCOGEJNyFEMIJmTZwmFIqEzh4iS8PBbJsWI6tSF11I3XVXUOtTeqqm/rU1VJrXeOEGKaFe30opdbXZlQ0R5O66kbqqruGWpvUVTeOqEu6ZYQQwglJuAshhBNqrOE+2ewCqiF11Y3UVXcNtTapq27sXlej7HMXQghxcY215S6EEOIiGnS4K6VGKKX2KKX2K6UmVfG8h1JqpvX5NUqpWAfU1EIptVgptVMptUMp9WgVywxUSuVaJwvfrJR61t51WbebopTaZt3mBRPUKsM71v21VSnVwwE1tauwHzYrpU4qpR6rtIzD9pdSaqpSKkMptb3CY8FKqQVKqX3W66BqXjvOusw+pdQ4O9f0mlJqt/V9+l4pFVjNay/6ntuptueUUkcqvF8jq3ntRX9/7VDXzAo1pSilNlfzWrvss+qywbTPl9a6QV4AFyAJiAfcgS1AQqVlHgQ+tN6+FZjpgLoigR7W237A3irqGgjMNWGfpQChF3l+JPAzoIC+wBoT3tM0jON0TdlfwBVAD2B7hcf+DUyy3p4EvFrF64KBZOt1kPV2kB1rGga4Wm+/WlVNtXnP7VTbc8CTtXivL/r7a+u6Kj3/BvCsI/dZddlg1uerIbfcewP7tdbJWuti4GtgbKVlxgLTrLe/BYYopZQ9i9JaH9Nab7TezgN2AVH23KYNjQWma8NqIFApFenA7Q8BkrTWl3ryWr1prZcCOZUervg5mgZcW8VLhwMLtNY5WuvjwAJghL1q0lr/qrUutd5dDUTbYlt1Vc3+qo3a/P7apS5rBtwMfGWr7dWypuqywZTPV0MO9yjgcIX7qVwYomeXsf4i5AIhDqkOsHYDdQfWVPF0P6XUFqXUz0qpjg4qSQO/KqU2KKUmVPF8bfapPd1K9b9wZuyvMyK01sest9OAiCqWMXPf3Y3xH1dVanrP7eVha5fR1Gq6GczcX5cD6VrrfdU8b/d9VikbTPl8NeRwb9CUUr7AbOAxrfXJSk9vxOh66Aq8C/zgoLIu01r3AK4GHlJKXeGg7dZIKeUOjAG+qeJps/bXBbTxP3KDOYRMKfV3oBSYUc0iZrznHwCtgG7AMYwukIbkNi7earfrPrtYNjjy89WQw/0I0KLC/WjrY1Uuo5RyBQKAbHsXppRyw3jzZmitv6v8vNb6pNY633p7HuCmlAq1d11a6yPW6wzge4x/jSuqzT61l6uBjVrr9MpPmLW/Kkg/0z1lvc6oYhmH7zul1HhgFHCHNRQuUIv33Oa01ula6zKtdTkwpZptmvJZs+bA9cDM6pax5z6rJhtM+Xw15HBfB7RRSsVZW323AnMqLTMHOPOt8o3Ab9X9EtiKtT/vE2CX1vrNapZpdqbvXynVG2M/2/WPjlLKRynld+Y2xhdy2ystNge4Sxn6ArkV/l20t2pbU2bsr0oqfo7GAT9WscwvwDClVJC1G2KY9TG7UEqNAP4CjNFan6pmmdq85/aoreL3NNdVs83a/P7aw1Bgt9Y6taon7bnPLpIN5ny+bP2NsS0vGEd37MX41v3v1sdewPjAA3hi/Ju/H1gLxDugpssw/q3aCmy2XkYCE4GJ1mUeBnZgHCGwGujvgLrirdvbYt32mf1VsS4FvGfdn9uARAe9jz4YYR1Q4TFT9hfGH5hjQAlGv+Y9GN/TLAL2AQuBYOuyicDHFV57t/Wzth/4PzvXtB+jD/bMZ+zMUWHNgXkXe88dsL8+t35+tmIEV2Tl2qz3L/j9tWdd1sc/O/O5qrCsQ/bZRbLBlM+XnKEqhBBOqCF3ywghhLhEEu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4of8HOxEhzr3d4vsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -510,7 +508,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_33772694934.event_col_event.time_col_t.pkl\n" + "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_14209590808.event_col_event.time_col_t.pkl\n" ] }, { @@ -546,1011 +544,509 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", "
agesexageratetrue_tteventindexage_centeredkeyend_timeend_failure
14058male0.08208512.82751912.827519True13.1810.118611False
8158male0.08208512.82751912.827519True13.1810.196923False
13958male0.08208512.82751912.827519True13.1810.262114False
14958male0.08208512.82751912.827519True13.1810.641174False
10458male0.08208512.82751912.827519True13.1810.944220False
13658male0.08208512.82751912.827519True13.1811.105340False
14658male0.08208512.82751912.827519True13.1811.397562False
8658male0.08208512.82751912.827519True13.1811.476557False
13558148male390.08208512.82751912.8275194.8905974.890597True13.1811.530035-16.120.009787False
10358140male390.08208512.82751912.8275194.8905974.890597True13.1812.111333-16.120.377535False
14758male390.08208512.82751912.8275194.8905974.890597True13.1812.330953-16.120.791192False
8358133male390.08208512.82751912.8275194.8905974.890597True13.1812.357800-16.120.808987False
1385875male390.08208512.82751912.8275194.8905974.890597True13.1812.639054-16.121.013855False
11358128male390.08208512.82751912.8275194.8905974.890597True13.1812.724832-16.121.052508False
12558106male390.08208512.82751912.8275194.8905974.890597True13.1812.743388-16.121.467963False
14258102male390.08208512.82751912.8275194.8905974.890597True13.1813.015604-16.121.517398False
11858male0.08208512.82751912.827519True13.1813.095814False
10858male0.08208512.82751912.827519True13.1813.471401False
14358male0.08208512.82751912.827519True13.1813.637968False
12658male390.08208512.82751912.8275194.8905974.890597True13.1813.792521-16.121.653389False
13358male0.08208512.82751912.827519True13.1814.090998False
12858123male390.08208512.82751912.8275194.8905974.890597True13.1814.613828-16.121.684769False
11958male0.08208512.82751912.827519True13.1814.829138False
11758male390.08208512.82751912.8275194.8905974.890597True13.1814.856847False
9658male0.08208512.82751912.827519True13.1815.008202False
9558male0.08208512.82751912.827519True13.1815.084885-16.121.713038False
14158male0.08208512.82751912.827519True13.1815.359748False
14458male0.08208512.82751912.827519True13.1816.434233False
11658male0.08208512.82751912.827519True13.1816.512257False
9058male0.08208512.82751912.827519True13.1816.688216False
....................................
8858male0.08208512.82751912.827519True13.1817.001683False
12758male0.08208512.82751912.827519True13.1817.157144False
13058male0.08208512.82751912.827519True13.1817.329006False
15358male0.08208512.82751912.827519True13.1817.351628False
14858male0.08208512.82751912.827519True13.1817.405822False
10558male0.08208512.82751912.827519True13.1817.417478False
10158male0.08208512.82751912.827519True13.1817.442196False
13158male0.08208512.82751912.827519True13.1817.561702False
9158104male390.08208512.82751912.8275194.8905974.890597True13.1817.679609-16.122.125944False
11258103male390.08208512.82751912.8275194.8905974.890597True13.1818.228047-16.122.558112False
15158male0.08208512.82751912.827519True13.1818.263575False
10658135male390.08208512.82751912.8275194.8905974.890597True13.1818.456715-16.122.656621False
1145892male390.08208512.82751912.8275194.8905974.890597True13.1818.817222-16.122.692360False
8258138male390.08208512.82751912.8275194.8905974.890597True13.1819.244121-16.122.701946False
9858male0.08208512.82751912.827519True13.1819.336164False
1095895male390.08208512.82751912.8275194.8905974.890597True13.1819.344597-16.122.829331False
1235887male390.08208512.82751912.8275194.8905974.890597True13.1819.590623-16.122.942428False
9258108male390.08208512.82751912.8275194.8905974.890597True13.1819.731395-16.123.025977False
12458125male390.08208512.82751912.8275194.8905974.890597True13.1819.984362-16.123.034875False
1215893male390.08208512.82751912.8275194.8905974.890597True13.18110.159427-16.123.095593False
8058129male390.08208512.82751912.8275194.8905974.890597True13.18110.462045-16.123.111741False
9358139male390.08208512.82751912.8275194.8905974.890597True13.18110.787069-16.123.641794False
10258117male390.08208512.82751912.8275194.8905974.890597True13.18111.371130-16.123.771836False
855883male390.08208512.82751912.8275194.8905974.890597True13.18111.540905-16.124.092917False
1555877male390.08208512.82751912.8275194.8905974.890597True13.18111.751679-16.124.093404False
9758145male390.08208512.82751912.8275194.8905974.890597True13.18112.145235-16.124.200436False
12258126male390.08208512.82751912.8275194.8905974.890597True13.18112.156584-16.124.451497False
1155889male390.08208512.82751912.8275194.8905974.890597True13.18112.157394-16.124.591072False
895881male390.08208512.82751912.8275194.8905974.890597True13.18112.559011-16.124.694461False
795876male390.08208512.82751912.8275194.8905974.890597True13.18112.827519-16.124.890597True
\n", - "

63 rows × 11 columns

\n", "
" ], "text/plain": [ - " age sex rate true_t t event index age_centered \\\n", - "140 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "81 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "139 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "149 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "104 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "136 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "146 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "86 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "135 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "103 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "147 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "83 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "138 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "113 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "125 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "142 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "118 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "108 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "143 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "126 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "133 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "128 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "119 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "117 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "96 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "95 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "141 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "144 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "116 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "90 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - ".. ... ... ... ... ... ... ... ... \n", - "88 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "127 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "130 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "153 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "148 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "105 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "101 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "131 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "91 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "112 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "151 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "106 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "114 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "82 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "98 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "109 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "123 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "92 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "124 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "121 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "80 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "93 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "102 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "85 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "155 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "97 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "122 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "115 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "89 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", - "79 58 male 0.082085 12.827519 12.827519 True 1 3.18 \n", + " sex age rate true_t t event index age_centered \\\n", + "148 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "140 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "147 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "133 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "75 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "128 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "106 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "102 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "118 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "123 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "119 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "104 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "103 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "135 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "92 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "138 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "95 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "87 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "108 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "125 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "93 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "129 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "139 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "117 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "83 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "77 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "145 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "126 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "89 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "81 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", + "76 male 39 0.082085 4.890597 4.890597 True 1 -16.12 \n", "\n", - " key end_time end_failure \n", - "140 1 0.118611 False \n", - "81 1 0.196923 False \n", - "139 1 0.262114 False \n", - "149 1 0.641174 False \n", - "104 1 0.944220 False \n", - "136 1 1.105340 False \n", - "146 1 1.397562 False \n", - "86 1 1.476557 False \n", - "135 1 1.530035 False \n", - "103 1 2.111333 False \n", - "147 1 2.330953 False \n", - "83 1 2.357800 False \n", - "138 1 2.639054 False \n", - "113 1 2.724832 False \n", - "125 1 2.743388 False \n", - "142 1 3.015604 False \n", - "118 1 3.095814 False \n", - "108 1 3.471401 False \n", - "143 1 3.637968 False \n", - "126 1 3.792521 False \n", - "133 1 4.090998 False \n", - "128 1 4.613828 False \n", - "119 1 4.829138 False \n", - "117 1 4.856847 False \n", - "96 1 5.008202 False \n", - "95 1 5.084885 False \n", - "141 1 5.359748 False \n", - "144 1 6.434233 False \n", - "116 1 6.512257 False \n", - "90 1 6.688216 False \n", - ".. ... ... ... \n", - "88 1 7.001683 False \n", - "127 1 7.157144 False \n", - "130 1 7.329006 False \n", - "153 1 7.351628 False \n", - "148 1 7.405822 False \n", - "105 1 7.417478 False \n", - "101 1 7.442196 False \n", - "131 1 7.561702 False \n", - "91 1 7.679609 False \n", - "112 1 8.228047 False \n", - "151 1 8.263575 False \n", - "106 1 8.456715 False \n", - "114 1 8.817222 False \n", - "82 1 9.244121 False \n", - "98 1 9.336164 False \n", - "109 1 9.344597 False \n", - "123 1 9.590623 False \n", - "92 1 9.731395 False \n", - "124 1 9.984362 False \n", - "121 1 10.159427 False \n", - "80 1 10.462045 False \n", - "93 1 10.787069 False \n", - "102 1 11.371130 False \n", - "85 1 11.540905 False \n", - "155 1 11.751679 False \n", - "97 1 12.145235 False \n", - "122 1 12.156584 False \n", - "115 1 12.157394 False \n", - "89 1 12.559011 False \n", - "79 1 12.827519 True \n", - "\n", - "[63 rows x 11 columns]" + " end_time end_failure \n", + "148 0.009787 False \n", + "140 0.377535 False \n", + "147 0.791192 False \n", + "133 0.808987 False \n", + "75 1.013855 False \n", + "128 1.052508 False \n", + "106 1.467963 False \n", + "102 1.517398 False \n", + "118 1.653389 False \n", + "123 1.684769 False \n", + "119 1.713038 False \n", + "104 2.125944 False \n", + "103 2.558112 False \n", + "135 2.656621 False \n", + "92 2.692360 False \n", + "138 2.701946 False \n", + "95 2.829331 False \n", + "87 2.942428 False \n", + "108 3.025977 False \n", + "125 3.034875 False \n", + "93 3.095593 False \n", + "129 3.111741 False \n", + "139 3.641794 False \n", + "117 3.771836 False \n", + "83 4.092917 False \n", + "77 4.093404 False \n", + "145 4.200436 False \n", + "126 4.451497 False \n", + "89 4.591072 False \n", + "81 4.694461 False \n", + "76 4.890597 True " ] }, "execution_count": 7, @@ -1591,6 +1087,8 @@ "name": "stderr", "output_type": "stream", "text": [ + "/home/jacki/projects/survivalstan/survivalstan/survivalstan.py:368: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n", + " 'x': self.x_df.as_matrix(),\n", "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n" ] }, @@ -1598,7 +1096,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_49777972005.pystan_2_12_0_0.stanmodel.pkl\n" + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_6711018461227478976.pystan_2_18_1_0.stanmodel.pkl\n" ] }, { @@ -1619,50 +1117,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_49777972005.pystan_2_12_0_0.stanfit.chains_4.data_31278094506.iter_5000.seed_9001.pkl\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Starting execution\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Execution completed (0:03:04.556861 elapsed)\n" + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_6711018461227478976.pystan_2_18_1_0.stanfit.chains_4.data_75284643319.iter_5000.seed_9001.pkl\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:sampling: Saving results to cache\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stancache/stancache.py:251: UserWarning: Pickling fit objects is an experimental feature!\n", - "The relevant StanModel instance must be pickled along with this fit object.\n", - "When unpickling the StanModel must be unpickled first.\n", - " pickle.dump(res, open(cache_filepath, 'wb'), pickle.HIGHEST_PROTOCOL)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:228: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", - " elif sort == 'in-place':\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:246: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", - " bs /= 3 * x[sort[np.floor(n/4 + 0.5) - 1]]\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:262: RuntimeWarning: overflow encountered in exp\n", - " np.exp(temp, out=temp)\n" + "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } ], @@ -1711,8 +1173,8 @@ "name": "stdout", "output_type": "stream", "text": [ - " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -278.136728 5.000714 50.256551 -360.824357 -284.525363 -177.241899 1.023704\n" + " mean se_mean sd 2.5% 50% 97.5% Rhat\n", + "lp__ -343.716157 29.967469 84.346802 -428.904008 -371.820577 -101.853053 1.943707\n" ] } ], @@ -1739,84 +1201,81 @@ "output_type": "stream", "text": [ " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "log_baseline_raw[0] 0.018405 0.001410 0.141042 -0.266412 0.008231 0.349270 0.999859\n", - "log_baseline_raw[1] 0.018517 0.001413 0.141319 -0.263341 0.008995 0.342834 1.000190\n", - "log_baseline_raw[2] 0.018302 0.001414 0.141387 -0.257858 0.009377 0.347234 0.999925\n", - "log_baseline_raw[3] 0.016333 0.001371 0.137110 -0.253927 0.008481 0.330025 1.000333\n", - "log_baseline_raw[4] 0.011990 0.001368 0.136849 -0.259225 0.005920 0.325580 1.000145\n", - "log_baseline_raw[5] 0.013532 0.001370 0.137043 -0.259307 0.007282 0.324367 1.000157\n", - "log_baseline_raw[6] 0.011470 0.001354 0.135406 -0.266722 0.004746 0.319663 0.999911\n", - "log_baseline_raw[7] 0.012491 0.001347 0.134695 -0.260132 0.006712 0.316462 1.000008\n", - "log_baseline_raw[8] 0.011526 0.001393 0.139255 -0.270375 0.004809 0.331765 1.000029\n", - "log_baseline_raw[9] 0.007375 0.001363 0.136255 -0.279145 0.003548 0.308510 0.999796\n", - "log_baseline_raw[10] 0.005951 0.001356 0.135572 -0.269977 0.004103 0.304337 0.999750\n", - "log_baseline_raw[11] 0.005699 0.001387 0.138687 -0.286487 0.002771 0.312076 0.999869\n", - "log_baseline_raw[12] 0.004665 0.001376 0.137565 -0.283921 0.000912 0.311435 0.999783\n", - "log_baseline_raw[13] 0.007392 0.001347 0.134663 -0.270574 0.002433 0.308283 1.000123\n", - "log_baseline_raw[14] 0.004534 0.001342 0.134165 -0.285146 0.001556 0.292968 0.999952\n", - "log_baseline_raw[15] 0.005103 0.001340 0.134046 -0.277456 0.002392 0.301938 0.999905\n", - "log_baseline_raw[16] 0.003518 0.001378 0.137844 -0.277368 0.002277 0.307551 0.999839\n", - "log_baseline_raw[17] 0.002659 0.001332 0.133164 -0.275810 0.001411 0.295238 0.999671\n", - "log_baseline_raw[18] 0.003533 0.001351 0.135064 -0.277553 0.001838 0.292063 0.999870\n", - "log_baseline_raw[19] 0.002062 0.001383 0.138273 -0.287297 -0.000670 0.307131 1.000221\n", - "log_baseline_raw[20] 0.003071 0.001356 0.135590 -0.292247 0.000741 0.302829 0.999768\n", - "log_baseline_raw[21] -0.001834 0.001394 0.139369 -0.296805 -0.000915 0.287677 0.999744\n", - "log_baseline_raw[22] -0.002089 0.001341 0.134124 -0.286115 -0.000353 0.282904 0.999881\n", - "log_baseline_raw[23] -0.002234 0.001374 0.137426 -0.304963 -0.001630 0.291352 1.000080\n", - "log_baseline_raw[24] -0.000190 0.001343 0.134303 -0.283250 -0.000253 0.294825 0.999723\n", - "log_baseline_raw[25] -0.001287 0.001369 0.136858 -0.295716 -0.000231 0.287421 0.999792\n", - "log_baseline_raw[26] -0.002714 0.001372 0.137223 -0.308940 -0.001566 0.291775 0.999712\n", - "log_baseline_raw[27] -0.006300 0.001364 0.136440 -0.302099 -0.003365 0.270088 0.999816\n", - "log_baseline_raw[28] -0.006234 0.001344 0.134426 -0.304960 -0.002756 0.279475 1.000183\n", - "log_baseline_raw[29] -0.005409 0.001320 0.131976 -0.292328 -0.002348 0.274455 0.999847\n", - "log_baseline_raw[30] -0.007161 0.001320 0.132008 -0.300255 -0.003781 0.268071 0.999809\n", - "log_baseline_raw[31] -0.006813 0.001362 0.136225 -0.312780 -0.002422 0.278778 0.999783\n", - "log_baseline_raw[32] -0.005802 0.001366 0.136638 -0.308640 -0.002019 0.280386 1.000023\n", - "log_baseline_raw[33] -0.008136 0.001322 0.132165 -0.294911 -0.005311 0.267101 0.999791\n", - "log_baseline_raw[34] -0.005414 0.001347 0.134679 -0.301907 -0.001826 0.271617 0.999739\n", - "log_baseline_raw[35] -0.005833 0.001332 0.133184 -0.294655 -0.003908 0.264071 0.999886\n", - "log_baseline_raw[36] -0.005597 0.001333 0.133337 -0.292467 -0.002439 0.264261 0.999732\n", - "log_baseline_raw[37] -0.006969 0.001347 0.134747 -0.301223 -0.002385 0.271992 0.999948\n", - "log_baseline_raw[38] -0.004569 0.001330 0.133014 -0.291487 -0.003056 0.271717 1.000080\n", - "log_baseline_raw[39] -0.005369 0.001377 0.137687 -0.311480 -0.001002 0.278568 0.999943\n", - "log_baseline_raw[40] -0.004928 0.001316 0.131619 -0.293840 -0.002247 0.271888 0.999953\n", - "log_baseline_raw[41] -0.006589 0.001354 0.135430 -0.310065 -0.002537 0.275856 0.999951\n", - "log_baseline_raw[42] -0.005687 0.001369 0.136899 -0.308345 -0.002883 0.281115 0.999867\n", - "log_baseline_raw[43] -0.007082 0.001337 0.133696 -0.307673 -0.002852 0.269971 1.000021\n", - "log_baseline_raw[44] -0.006966 0.001380 0.138005 -0.305034 -0.004202 0.277748 0.999742\n", - "log_baseline_raw[45] -0.006925 0.001344 0.134400 -0.302803 -0.003980 0.271892 0.999753\n", - "log_baseline_raw[46] -0.007264 0.001343 0.134262 -0.300234 -0.005482 0.274120 0.999905\n", - "log_baseline_raw[47] -0.008346 0.001373 0.137330 -0.312680 -0.003998 0.273031 1.000193\n", - "log_baseline_raw[48] -0.006099 0.001325 0.132452 -0.296824 -0.002946 0.271214 0.999884\n", - "log_baseline_raw[49] -0.007845 0.001339 0.133894 -0.307824 -0.002242 0.268274 0.999954\n", - "log_baseline_raw[50] -0.006161 0.001353 0.135278 -0.310913 -0.002115 0.270951 1.000001\n", - "log_baseline_raw[51] -0.004106 0.001367 0.136722 -0.305186 -0.000375 0.280699 0.999947\n", - "log_baseline_raw[52] -0.006734 0.001337 0.133681 -0.307962 -0.003439 0.277566 0.999966\n", - "log_baseline_raw[53] -0.004135 0.001350 0.134955 -0.294451 -0.000209 0.275918 0.999780\n", - "log_baseline_raw[54] -0.006873 0.001353 0.135333 -0.303199 -0.002728 0.273141 1.000029\n", - "log_baseline_raw[55] -0.007751 0.001396 0.139585 -0.318518 -0.003133 0.285527 0.999913\n", - "log_baseline_raw[56] -0.007375 0.001338 0.133818 -0.307137 -0.002825 0.275709 0.999920\n", - "log_baseline_raw[57] -0.008380 0.001351 0.135141 -0.311733 -0.004041 0.267765 0.999744\n", - "log_baseline_raw[58] -0.003854 0.001357 0.135702 -0.297579 -0.001496 0.288015 0.999748\n", - "log_baseline_raw[59] -0.005154 0.001355 0.135456 -0.299541 -0.001827 0.272893 0.999782\n", - "log_baseline_raw[60] -0.005536 0.001351 0.135127 -0.309023 -0.002620 0.279765 0.999889\n", - "log_baseline_raw[61] -0.005031 0.001368 0.136847 -0.310338 -0.002176 0.283778 1.000248\n", - "log_baseline_raw[62] -0.004126 0.001335 0.133517 -0.292910 -0.001112 0.273674 0.999906\n", - "log_baseline_raw[63] -0.006565 0.001341 0.134096 -0.299221 -0.003177 0.267685 1.000108\n", - "log_baseline_raw[64] -0.005644 0.001361 0.136146 -0.307535 -0.002344 0.276061 0.999890\n", - "log_baseline_raw[65] -0.005163 0.001322 0.132204 -0.288991 -0.002578 0.277272 1.000024\n", - "log_baseline_raw[66] -0.003780 0.001344 0.134406 -0.298615 -0.002005 0.282805 0.999966\n", - "log_baseline_raw[67] -0.003824 0.001327 0.132728 -0.292247 -0.003482 0.279543 0.999709\n", - "log_baseline_raw[68] -0.007090 0.001373 0.137329 -0.304829 -0.004162 0.273670 0.999759\n", - "log_baseline_raw[69] -0.006359 0.001352 0.135188 -0.300134 -0.003754 0.273260 0.999711\n", - "log_baseline_raw[70] -0.004139 0.001339 0.133909 -0.299168 -0.001363 0.278754 0.999813\n", - "log_baseline_raw[71] -0.005135 0.001337 0.133750 -0.302788 -0.002349 0.277571 0.999863\n", - "log_baseline_raw[72] -0.004251 0.001329 0.132932 -0.295977 -0.003475 0.273927 0.999838\n", - "log_baseline_raw[73] -0.004634 0.001385 0.138541 -0.305831 -0.001851 0.290301 0.999982\n", - "log_baseline_raw[74] -0.004999 0.001328 0.132767 -0.298910 -0.002887 0.269649 0.999897\n", - "log_baseline_raw[75] -0.004575 0.001344 0.134395 -0.304516 -0.001487 0.278224 0.999981\n", - "log_baseline_raw[76] -0.003373 0.001372 0.137236 -0.301230 -0.001954 0.288494 0.999889\n", - "log_baseline_raw[77] -0.021396 0.001397 0.139665 -0.349297 -0.009878 0.254990 1.000517\n" + "log_baseline_raw[1] 0.127908 0.011206 0.390646 -0.574587 0.045060 1.112140 1.009859\n", + "log_baseline_raw[2] -0.180508 0.023764 0.347081 -1.042441 -0.093197 0.359572 1.024901\n", + "log_baseline_raw[3] -0.204398 0.026817 0.353415 -1.078168 -0.110903 0.339344 1.031154\n", + "log_baseline_raw[4] 0.111204 0.010062 0.374736 -0.587863 0.032338 1.035699 1.008499\n", + "log_baseline_raw[5] -0.076325 0.005433 0.334775 -0.865588 -0.019305 0.555003 1.004544\n", + "log_baseline_raw[6] 0.088543 0.005141 0.366412 -0.627267 0.028007 0.930208 1.004422\n", + "log_baseline_raw[7] -0.192198 0.026126 0.345796 -1.023044 -0.100468 0.334006 1.028990\n", + "log_baseline_raw[8] 0.077545 0.005527 0.362746 -0.625327 0.021046 0.914410 1.003724\n", + "log_baseline_raw[9] -0.007915 0.002938 0.340064 -0.792517 0.000030 0.720585 0.999816\n", + "log_baseline_raw[10] 0.102421 0.008460 0.372675 -0.585478 0.031353 1.009513 1.006293\n", + "log_baseline_raw[11] 0.105546 0.008672 0.375497 -0.595675 0.028599 1.018843 1.007367\n", + "log_baseline_raw[12] -0.179333 0.024334 0.341492 -1.029340 -0.095580 0.361123 1.024614\n", + "log_baseline_raw[13] -0.189801 0.025664 0.351737 -1.063312 -0.098743 0.337103 1.027370\n", + "log_baseline_raw[14] 0.030662 0.002810 0.348627 -0.716552 0.007330 0.795914 1.000677\n", + "log_baseline_raw[15] 0.099584 0.007343 0.363191 -0.583793 0.027420 0.982254 1.006853\n", + "log_baseline_raw[16] 0.127511 0.013778 0.396442 -0.575169 0.040235 1.085049 1.010791\n", + "log_baseline_raw[17] 0.008104 0.002762 0.334577 -0.717536 0.001003 0.718622 0.999951\n", + "log_baseline_raw[18] 0.017583 0.002839 0.348238 -0.739866 0.004059 0.786641 1.000018\n", + "log_baseline_raw[19] 0.051770 0.003351 0.346987 -0.643967 0.012692 0.845073 1.001971\n", + "log_baseline_raw[20] 0.129739 0.012444 0.392641 -0.551537 0.043589 1.088190 1.010026\n", + "log_baseline_raw[21] 0.070802 0.003980 0.362372 -0.631452 0.017359 0.915291 1.003119\n", + "log_baseline_raw[22] 0.120558 0.011412 0.401495 -0.612580 0.037298 1.107091 1.008950\n", + "log_baseline_raw[23] -0.200919 0.026878 0.348461 -1.059523 -0.105612 0.319076 1.031085\n", + "log_baseline_raw[24] 0.011504 0.002747 0.333063 -0.706409 0.002467 0.729663 0.999909\n", + "log_baseline_raw[25] -0.100401 0.008833 0.342553 -0.927089 -0.029254 0.510422 1.007842\n", + "log_baseline_raw[26] 0.145832 0.013621 0.409583 -0.548009 0.052751 1.148941 1.012278\n", + "log_baseline_raw[27] 0.036857 0.003076 0.347189 -0.713045 0.009555 0.804570 1.000600\n", + "log_baseline_raw[28] -0.050060 0.003738 0.332868 -0.821535 -0.009052 0.584618 1.002173\n", + "log_baseline_raw[29] 0.013071 0.002745 0.343440 -0.723283 0.001292 0.748862 0.999932\n", + "log_baseline_raw[30] 0.043152 0.002941 0.357395 -0.685283 0.009026 0.833400 1.000904\n", + "log_baseline_raw[31] -0.017653 0.002685 0.326895 -0.761066 -0.002277 0.657733 0.999965\n", + "log_baseline_raw[32] -0.011146 0.002848 0.338459 -0.777028 -0.001224 0.691604 0.999987\n", + "log_baseline_raw[33] -0.081954 0.006583 0.333594 -0.883221 -0.020265 0.535545 1.005413\n", + "log_baseline_raw[34] -0.036392 0.003265 0.329612 -0.797439 -0.006231 0.625224 1.000900\n", + "log_baseline_raw[35] 0.083989 0.005369 0.368764 -0.641116 0.024087 0.950388 1.004270\n", + "log_baseline_raw[36] 0.121632 0.011415 0.385119 -0.553989 0.042020 1.075079 1.008250\n", + "log_baseline_raw[37] -0.159254 0.019448 0.336448 -1.001608 -0.074673 0.368831 1.020632\n", + "log_baseline_raw[38] 0.113074 0.010449 0.376970 -0.574158 0.037438 1.059475 1.008356\n", + "log_baseline_raw[39] 0.032572 0.002982 0.358596 -0.729394 0.006928 0.822086 1.000807\n", + "log_baseline_raw[40] -0.055043 0.004043 0.325454 -0.800246 -0.011163 0.576579 1.002306\n", + "log_baseline_raw[41] -0.061538 0.004504 0.332419 -0.848531 -0.010646 0.567399 1.002538\n", + "log_baseline_raw[42] 0.018537 0.002863 0.344790 -0.722493 0.004048 0.762626 0.999984\n", + "log_baseline_raw[43] 0.111469 0.008624 0.385652 -0.614831 0.034014 1.066727 1.007120\n", + "log_baseline_raw[44] -0.349024 0.055005 0.388294 -1.290931 -0.256493 0.149242 1.077350\n", + "log_baseline_raw[45] 0.036941 0.003198 0.348631 -0.681573 0.009248 0.808613 1.001145\n", + "log_baseline_raw[46] 0.122952 0.011257 0.391445 -0.574266 0.039055 1.060185 1.008966\n", + "log_baseline_raw[47] 0.066934 0.004777 0.367302 -0.659741 0.016456 0.916417 1.003241\n", + "log_baseline_raw[48] 0.037662 0.002894 0.339226 -0.679402 0.007427 0.806976 1.000927\n", + "log_baseline_raw[49] -0.128401 0.011939 0.335784 -0.942981 -0.049412 0.446420 1.013169\n", + "log_baseline_raw[50] -0.055320 0.004402 0.336685 -0.840916 -0.009793 0.588261 1.002597\n", + "log_baseline_raw[51] -0.165098 0.020264 0.340715 -1.012617 -0.080189 0.391560 1.022408\n", + "log_baseline_raw[52] 0.092579 0.006717 0.370705 -0.615379 0.025183 0.976427 1.005714\n", + "log_baseline_raw[53] 0.045766 0.003043 0.351404 -0.703664 0.012100 0.817258 1.001124\n", + "log_baseline_raw[54] 0.026354 0.003112 0.344165 -0.711943 0.006029 0.780290 1.000427\n", + "log_baseline_raw[55] -0.071239 0.004947 0.324377 -0.836377 -0.018402 0.548979 1.004454\n", + "log_baseline_raw[56] -0.046464 0.003635 0.329123 -0.799863 -0.007735 0.591899 1.001597\n", + "log_baseline_raw[57] 0.014518 0.002704 0.330862 -0.686842 0.003498 0.726152 1.000012\n", + "log_baseline_raw[58] -0.085550 0.006782 0.332717 -0.889072 -0.026227 0.513838 1.006755\n", + "log_baseline_raw[59] -0.265427 0.038779 0.366346 -1.158705 -0.168329 0.241646 1.048854\n", + "log_baseline_raw[60] 0.009246 0.002874 0.348016 -0.762312 0.002954 0.751171 0.999709\n", + "log_baseline_raw[61] -0.047970 0.003617 0.328642 -0.812721 -0.008988 0.596939 1.001983\n", + "log_baseline_raw[62] -0.034102 0.003274 0.338180 -0.822991 -0.005110 0.650844 1.000867\n", + "log_baseline_raw[63] 0.086715 0.006781 0.375946 -0.623444 0.022383 0.968243 1.004879\n", + "log_baseline_raw[64] 0.119084 0.010080 0.388406 -0.582728 0.036834 1.049734 1.008377\n", + "log_baseline_raw[65] 0.020136 0.002904 0.347704 -0.729227 0.005366 0.773813 1.000058\n", + "log_baseline_raw[66] 0.012625 0.002687 0.337372 -0.712615 0.003221 0.729694 0.999990\n", + "log_baseline_raw[67] -0.310176 0.046909 0.382413 -1.237388 -0.211220 0.198496 1.062100\n", + "log_baseline_raw[68] 0.034832 0.003038 0.352946 -0.716226 0.007045 0.844364 1.000556\n", + "log_baseline_raw[69] 0.029941 0.002712 0.346389 -0.706197 0.006358 0.781630 1.000219\n", + "log_baseline_raw[70] -0.126101 0.013032 0.337670 -0.955255 -0.048448 0.460451 1.012497\n", + "log_baseline_raw[71] 0.112147 0.009344 0.374716 -0.573337 0.036359 1.004377 1.007726\n", + "log_baseline_raw[72] 0.055285 0.003619 0.355362 -0.657008 0.011551 0.863396 1.001964\n", + "log_baseline_raw[73] 0.120600 0.009427 0.386573 -0.576560 0.037674 1.075977 1.008553\n", + "log_baseline_raw[74] 0.119699 0.010666 0.391956 -0.601395 0.037771 1.085140 1.008365\n", + "log_baseline_raw[75] -0.053538 0.004350 0.370626 -0.922223 -0.008979 0.685980 1.002351\n" ] } ], @@ -1840,12 +1299,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAHyCAYAAAADXLOQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt4VOW9//3PmkOSyflMCAEkERKRQxBBxMDWeuxBq7VW\n3VRbnrZuHp+q9dJiPbRSraIitrTu7ie79VerorXu6k/d9rfV2lYQEUTkJASEcAiQQCbnZCaZzOH3\nxySD8QBMyGJNZt6v6/ISM3dWvnM7JJ/c8133bYRCoZAAAACABGazugAAAADAaoRiAAAAJDxCMQAA\nABIeoRgAAAAJj1AMAACAhEcoBgAAQMIjFAMAACDhEYoBAACQ8AjFAAAASHiEYgAAACS8qELxc889\np8suu0zTp0/X9OnTdc0112jFihWRx6+77jpVVFRE/jnttNO0aNGiAdeor6/XDTfcoMrKSp1zzjl6\n5JFHFAwGB4xZs2aNvvGNb2jy5Mm6+OKL9dJLLw3+GQIAAADH4Ihm8MiRI3X77bdr7NixkqQXX3xR\nN954o15++WWVlZVJkr71rW/pRz/6kUKhkCQpJSUl8vnBYFA33HCDCgsL9fzzz+vw4cNauHChnE6n\nbr31VknS/v37tWDBAl177bV69NFHtXr1at1zzz0qLCzUOeecMyRPGgAAAPikqELxueeeO+C/b731\nVv3pT3/Shg0bIqHY5XIpNzf3cz9/5cqVqq2t1R//+Efl5uaqvLxct9xyi5YuXaqbbrpJDodDzz33\nnEpKSrRw4UJJUmlpqT744AM9+eSThGIAAACYYtA9xcFgUK+99pq8Xq+mTZsW+firr76qWbNm6dJL\nL9Vjjz2m7u7uyGMbN27UhAkTBoTmqqoqdXR0aOfOnZExs2fPHvC1qqqqtGHDhsGWCgAAABxVVCvF\nkrRjxw5dffXV8vl8SktL0+OPP67S0lJJ0mWXXabi4mIVFhZq+/btWrJkifbs2aNf//rXkiS32628\nvLwB18vPz5ckNTY2qqKiQo2NjZ8Zk5eXp87OTvl8PiUlJQ3qiQIAAABfJOpQXFpaqldeeUXt7e16\n4403dMcdd+iZZ55RWVmZrrrqqsi48ePHKz8/X9/97ndVV1en0aNHH/W6hmFEX/0xhEIhU64LAACA\n+BJ1KHY4HJGAe/rpp2vTpk166qmn9POf//wzY6dOnSpJ2rdvn0aPHq38/Hxt3rx5wBi32y3pyIpx\nQUGBmpqaBoxpampSenp61KvEhmGovd2rQCB47MGIit1uU2ami/k1EXNsPubYXMyv+ZhjczG/5uuf\n41gQdSj+tGAwKJ/P97mPbd26VYZhqKCgQJJUWVmp6upqNTc3R/qKV61apYyMjMiNepWVlQO2eesf\nU1lZOaj6AoGg/H5eyGZhfs3HHJuPOTYX82s+5thczG9iiOpGu1/+8pdat26dDhw4oB07dmjp0qV6\n//33ddlll6murk6//e1v9dFHH+nAgQN666239JOf/EQzZszQhAkTJIVvmCsrK9PChQtVU1OjlStX\natmyZZo3b56cTqck6ZprrlFdXZ2WLFmi2tpaLV++XK+//rrmz58/9M8eAAAAUJQrxW63W3fccYca\nGxuVkZGh8vJyPfHEEzr77LPV0NCg1atX66mnnpLX61VRUZEuueQSLViwIPL5NptN1dXVWrRoka69\n9lq5XC5dccUVuvnmmyNjSkpKVF1drYceekhPP/20ioqK9Itf/OIzO1IAAAAAQ8UI9Z+yEadaWrp4\ny8MEDodNOTlpzK+JmGPzMcfmYn7Nxxybi/k1X/8cx4JB71MMAAAAxAtCMQAAABIeoRgAAAAJj1AM\nAACAhEcoBgAAQMIjFAMAACDhEYoBAACQ8AjFAAAASHiEYgAAACQ8QjEAAAASHqEYAAAACY9QDAAA\ngIRHKAYAAEDCIxQDAAAg4RGKAQAAkPAIxQAAAEh4hGIAAAAkPEIxAAAAEh6hGAAAAAmPUAwAAICE\nRygGAABAwnNYXQAAawWDQTU3N1tdxnHJzc2Vzcbv8gCAoUcoBhJcc3Oz3nivRunpWVaXclSdnW26\naFaF8vPzrS4FABCHCMUAlJ6epczsXKvLAADAMrwPCQAAgIRHKAYAAEDCIxQDAAAg4RGKAQAAkPAI\nxQAAAEh4hGIAAAAkPEIxAAAAEh6hGAAAAAmPUAwAAICERygGAABAwiMUAwAAIOERigEAAJDwCMUA\nAABIeIRiAAAAJDxCMQAAABIeoRgAAAAJj1AMAACAhEcoBgAAQMIjFAMAACDhEYoBAACQ8AjFAAAA\nSHiEYgAAACQ8QjEAAAASHqEYAAAACY9QDAAAgIRHKAYAAEDCiyoUP/fcc7rssss0ffp0TZ8+Xddc\nc41WrFgRedzn8+nnP/+5zjrrLE2bNk0333yzmpqaBlyjvr5eN9xwgyorK3XOOefokUceUTAYHDBm\nzZo1+sY3vqHJkyfr4osv1ksvvXQCTxEAAAA4uqhC8ciRI3X77bfrxRdf1IsvvqizzjpLN954o3bt\n2iVJeuCBB/T222/rN7/5jZYvX67Dhw/rpptuinx+MBjUDTfcoEAgoOeff14PPfSQXnrpJS1btiwy\nZv/+/VqwYIFmzZqll19+Wddff73uuecerVq1aoieMgAAADBQVKH43HPP1dy5czV27FiNHTtWt956\nq9LS0rRhwwZ1dnbqL3/5i+68807NnDlTEydO1IMPPqj169dr06ZNkqSVK1eqtrZWS5YsUXl5uebM\nmaNbbrlFzz77rPx+v6TwanRJSYkWLlyo0tJSzZs3TxdffLGefPLJIX/yAAAAgHQCPcXBYFCvvfaa\nvF6vKisrtWXLFgUCAZ199tmRMaWlpSouLtaHH34oSdq4caMmTJig3NzcyJiqqip1dHRo586dkTGz\nZ88e8LWqqqq0YcOGwZYKAAAAHJUj2k/YsWOHrr76avl8PqWlpenxxx9XWVmZtm3bJqfTqfT09AHj\n8/Ly5Ha7JUlut1t5eXkDHs/Pz5ckNTY2qqKiQo2NjZ8Zk5eXp87OTvl8PiUlJUVVr93OvYRm6J9X\n5tc8J2uOHQ5DNpshu80w9eucKJvNkMNhyOEYuvngdWwu5td8zLG5mF/zxdLcRh2KS0tL9corr6i9\nvV1vvPGG7rjjDj3zzDNfOD4UCskwjv3D9njGDEZmpsuU6yKM+TWf2XPs93vkciUpNTXZ1K9zonw9\nScrOTlNOTtqQX5vXsbmYX/Mxx+ZifhND1KHY4XBo9OjRkqTTTz9dmzZt0lNPPaUvf/nL6u3tVWdn\n54DV4ubm5sjKb35+vjZv3jzgev2ryP0rxgUFBZ/ZsaKpqUnp6elRrxJLUnu7V4FA8NgDERW73abM\nTBfza6KTNcetrV3yen1KSu4x7WsMBa/Xp9bWLjkcqUN2TV7H5mJ+zcccm4v5NV//HMeCqEPxpwWD\nQfl8Pk2aNEl2u12rV6/WhRdeKEnavXu3Dh48qGnTpkmSKisrVV1drebm5khf8apVq5SRkaGysrLI\nmE9u89Y/prKyclD1BQJB+f28kM3C/JrP7Dn2+0MKBkMKBEOmfY2hEAyG5PeHTJkLXsfmYn7Nxxyb\ni/lNDFE1cvzyl7/UunXrdODAAe3YsUNLly7V+++/r8suu0zp6en65je/qcWLF2vNmjXasmWL7rzz\nTp1xxhmaMmWKpPANc2VlZVq4cKFqamq0cuVKLVu2TPPmzZPT6ZQkXXPNNaqrq9OSJUtUW1ur5cuX\n6/XXX9f8+fOH/tkDAAAAinKl2O1264477lBjY6MyMjJUXl6uJ554IrLjxF133SW73a6bb75ZPp9P\nc+bM0b333hv5fJvNpurqai1atEjXXnutXC6XrrjiCt18882RMSUlJaqurtZDDz2kp59+WkVFRfrF\nL37xmR0pAAAAgKFihEKh2H7P9AS1tHTxlocJHA6bcnLSmF8Tnaw5drvdendLvTKzc4892ELtrc2a\nPWlk5P6DocDr2FzMr/mYY3Mxv+brn+NYEDv7YAAAAAAWIRQDAAAg4RGKAQAAkPAIxQAAAEh4hGIA\nAAAkPEIxAAAAEh6hGAAAAAmPUAwAAICERygGAABAwiMUAwAAIOERigEAAJDwCMUAAABIeIRiAAAA\nJDxCMQAAABIeoRgAAAAJj1AMAACAhEcoBgAAQMIjFAMAACDhEYoBAACQ8AjFAAAASHiEYgAAACQ8\nQjEAAAASHqEYAAAACY9QDAAAgIRHKAYAAEDCIxQDAAAg4RGKAQAAkPAIxQAAAEh4hGIAAAAkPEIx\nAAAAEh6hGAAAAAmPUAwAAICERygGAABAwiMUAwAAIOERigEAAJDwCMUAAABIeIRiAAAAJDxCMQAA\nABIeoRgAAAAJj1AMAACAhEcoBgAAQMIjFAMAACDhEYoBAACQ8AjFAAAASHiEYgAAACQ8QjEAAAAS\nHqEYAAAACY9QDAAAgIRHKAYAAEDCIxQDiEqvP6geX8DqMgAAGFKOaAZXV1frzTffVG1trVJSUjRt\n2jTdfvvtGjduXGTMddddp/fffz/y34Zh6Oqrr9aiRYsiH6uvr9e9996rtWvXKi0tTV//+td1++23\ny2Y7ktHXrFmjhx9+WB9//LGKi4u1YMECXXHFFSfwVAFEIxAMqr7Jo7ZOn9q7fGr3+NTR1StPj1+S\nlJHqVEG2SwXZLhXmpCgrPVk2w7C4agAABieqULxu3Tp9+9vf1uTJk+X3+/XYY4/pe9/7nv76178q\nJSUlMu5b3/qWfvSjHykUCknSgMeCwaBuuOEGFRYW6vnnn9fhw4e1cOFCOZ1O3XrrrZKk/fv3a8GC\nBbr22mv16KOPavXq1brnnntUWFioc845ZyieN4Av0O3za0ddm7bva5G354tXhDs8verw9Kr2YLsk\nyemwadzIDJ0xoUBJTvvJKhcAgCERVSj+3e9+N+C/Fy9erNmzZ2vLli0688wzIx93uVzKzc393Gus\nXLlStbW1+uMf/6jc3FyVl5frlltu0dKlS3XTTTfJ4XDoueeeU0lJiRYuXChJKi0t1QcffKAnn3yS\nUAyYpLWzR9v2tKj2YLsCwVDk44akNJdTmWlJykwN/1uG5G7tVmOrVx2eXknhtooddW3af7hLsyaN\nUElBukXPBACA6EUVij+to6NDhmEoOzt7wMdfffVVvfzyyyooKNB5552nG2+8MbJavHHjRk2YMGFA\naK6qqtKiRYu0c+dOVVRUaOPGjZo9e/aAa1ZVVWnx4sUnUi6Az9HS6dN729vU0NI44ONFeamaODZH\nI/PTZLd9TlvEmPC/vD1+NbZ6tae+Q3saOuTp8evvHxxQ2ahMzagoZNUYADAsDDoUh0IhPfjgg5o+\nfbpOPfXUyMcvu+wyFRcXq7CwUNu3b9eSJUu0Z88e/frXv5Ykud1u5eXlDbhWfn6+JKmxsVEVFRVq\nbGz8zJi8vDx1dnbK5/MpKSnpuOu027mX0Az988r8msfsOQ6FQvrH+gN67m871NMblCTZbIZKR2bq\n9HE5ys1MOcYVwtJdTqW7nBo3MlP7DnXo3S0N8vYEtOtAu+rdHs2eXKTRhSe+amyzGXI4DDkcQzcf\nvI7Nxfyajzk2F/Nrvlia20GH4v6V3eeee27Ax6+66qrIn8ePH6/8/Hx997vfVV1dnUaPHn3Uaxom\n3KSTmeka8mviCObXfGbMcUNTl37z543atNMtKdwiMWV8gaaVFygtxTno61aMS9Ypo7K1csNB7djX\nIk+PX39bt19nTx6pM8oLT6hmX0+SsrPTlJOTdkLX+Ty8js3F/JqPOTYX85sYBhWK77vvPq1YsULL\nly9XYeHRf9BNnTpVkrRv3z6NHj1a+fn52rx584Axbnf4B3P/inFBQYGampoGjGlqalJ6enpUq8SS\n1N7uVSAQjOpzcGx2u02ZmS7m10RmzHEwFNJb6/brz3/fqZ7e8E10RTkpqihxadzoPCkYlMfTc8Jf\n55xJIzS6IDWyarx6c72cNqlsVNagr+n1+tTa2iWHI/WE6+vH69hczK/5mGNzMb/m65/jWBB1KL7v\nvvv01ltv6ZlnnlFxcfExx2/dulWGYaigoECSVFlZqerqajU3N0f6iletWqWMjAyVlZVFxqxYsWLA\ndVatWqXKyspoy1UgEJTfzwvZLMyv+YZqjj3dvap+Zas214Z/4bQZhr5y9ljNLk/X2m2HBtxcNxRG\nFaTry7PG6v+8t1fenoDe2VSvlCSHivIGF2qDwZD8/pAprzdex+Zifs3HHJuL+U0MUTVyLFq0SK++\n+qqWLl0ql8slt9stt9utnp7wylJdXZ1++9vf6qOPPtKBAwf01ltv6Sc/+YlmzJihCRMmSArfMFdW\nVqaFCxeqpqZGK1eu1LJlyzRv3jw5neG3ba+55hrV1dVpyZIlqq2t1fLly/X6669r/vz5Q/z0gcRQ\n39Sl+5/6IBKISwrS9dPvnKlvzC2Vw8R+rnSXU+dPL5HDbigYkv7x4QG1dpz4SjQAAEPNCPVvJnwc\nKioqPrfvd/Hixbr88svV0NCgH//4x/r444/l9XpVVFSkiy66SAsWLFBa2pE+wPr6ei1atEhr166V\ny+XSFVdcodtuu23A4R1r167VQw89pJ07d6qoqEg33nijLr/88qifYEtLF7/dmcDhsCknJ435NdFQ\nzfGmXW5Vv/JRZM/huVOL9e2LJkTCsNvt1rtb6pWZ/fnbKA6FA41d+vv6/QqFpLQUh748a6xSU6J7\no6q9tVmzJ42MtFkNBV7H5mJ+zcccm4v5NV//HMeCqELxcMQL2Rx8ozDfic5xKBTS/1mzT3/55y6F\nJNlthq69YLzOmzZqwC+3JyMUS9LH+9u0ekuDJCknI1mXnDVGzih2kiAUDz/Mr/mYY3Mxv+aLpVAc\nO/tgABgyvf6AfvfqVv1XXyBOdzl129WV+tIZJabs8nI8xpdkaUpZeKvFlo4evb3hoILx/Ts5AGAY\nOaHDOwDEnm6fX7/5y2Zt29siKdw/fPOVk5Wfbf3dvVNPzVOXt1e7DrbroLtLH9e1qXxM9rE/EQAA\nk7FSDMSRTm+vlv5pQyQQV56ar7uuOyMmArEU3ot81qQiZaeHt1Zcv6NR3h6/xVUBAEAoBuJGW2eP\nHnl2vXYdbJcknX16kf6/b0xSSlJsvSFktxmadXqRJKnXH9S6msMWVwQAAKEYiAvuNq8WL1+v/Y1d\nkqTzzyjR9752muy22PwrXpjj0viS8EEeu+s7dNDdZXFFAIBEF5s/MQEct/qmLi1+Zr0Ot3glSV+b\nfYr+9cLxsll0Q93xOmNCgVKS7JKkNVsPcVoUAMBShGJgGDvc4tEjz36olr4DMb513qn6xtxSy3aY\niEZykl3Ty8MnXXZ4erW5ttniigAAiYxQDAxTLR09evRPG9TW5ZMkXX9JuS45a4zFVUWntDhTRbnh\nY5+31Darve+5AABwshGKgWGow+PTo3/6UO62bknSvAsn6NzKURZXFT3DMHTWxBGyGYaCoZDe23pI\ncX6eEAAgRhGKgWHG0+3XY3/eqPomjyTpirmlOn96icVVDV5WepImlYZP02to8mh3fYfFFQEAEhGh\nGBhGenoD+vV/bdTehnBwvHjmaH3t7LEWV3XiJpfmKiPVKUn6cEejgkFWiwEAJxehGBgm/IGgfvvS\nFu3Y3yZJmjNlpL513qnD4qa6Y7HbbTpjQvimu65uv2r79loGAOBkIRQDw0AoFNIzb+zQ5tomSdKZ\nFYX6ziUVcRGI+40Zka6stPBJd5trmxSktxgAcBIRioFh4J8bDmrFxoOSpNPH5eqGSyfKZoufQCyF\nb7qbXBbuLe7w9EZaRAAAOBkIxUCM276vRc++uUOSNCLHpf/366fLYY/Pv7qnFGVGeos372piJwoA\nwEkTnz9ZgTjR2OLVb/6yWYFgSClJdt105RSlpjitLss0NpsR2YmitdOnusOdFlcEAEgUhGIgRvl6\nA3rwyTWRAy1+8LWJKs5Ps7gq85UWZyk1xSGJ1WIAwMlDKAZiUCgU0v96bZt29u00cXnVOE3r250h\n3tlthiaNC68WN7X36KDbY3FFAIBEQCgGYtCb79fp3S0NkqTp5QX62jmnWFvQSXZqSZZcyXZJ0qZd\nblaLAQCmIxQDMWZ3fbv+/I9dkqQxRRm64bLTZYujrdeOh8Nu08RTwqvFja3dOtTstbgiAEC8IxQD\nMaTXH9ATr21TMBRSstOuu+fPlCvZYXVZlpgwOlvJzr7V4r79mQEAMAuhGIgh/3vlbh10d0mSrr1g\nvIrz0y2uyDpOh00TT8mRJDU0edTS2WtxRQCAeEYoBmLEzgNt+p+1+ySFD+g474xRFldkvfIx2XLY\nw60jtQ20UAAAzEMoBmJAT29AT/z3VoVCkivZrvlfjq8jnAcryWlXaXGmJOlAU4883X6LKwIAxCtC\nMRADXny7Vodawiuh154/QbmZKRZXFDsmjM6WJAVD0rqPWyyuBgAQrwjFgMW272vR39bVSZKmluXp\nnMlFFlcUW3IzU1SQHf4l4b1tTQqyPRsAwASEYsBC3T6/nnhtm0KS0lIc+g5tE5+rf7XY3e5TzV5W\niwEAQ49QDFjopRW75W7rliTNu3CCstOTLa4oNp1SlCGnI/zLwj8+PGBxNQCAeEQoBixyqNmjv6/f\nL0maNj5fZ00cYXFFsctut2lsQbiF4sMdbrV09FhcEQAg3hCKAYv81z93KRAMyW4zdPX542mbOIZT\nCsOhOBgKaeWmgxZXAwCIN4RiwAI76lr1wY5GSdL500tUmO2yuKLYl+5yaHxx+DCTtzccVCAYtLgi\nAEA8IRQDJ1koFNKf/7FTUvjmuq/NPsXagoaRWaflSZJaOnq0aRdHPwMAhg6hGDjJ3q85rNqD7ZKk\nS2efonSX0+KKho+JYzOVlZ4kiRvuAABDi1AMnES9/qD+65+7JEkF2Sk674wSiysaXuw2Q/8ytViS\n9FFtsw63cvQzAGBoEIqBk+jv6/dHtmD75rmnyungr2C05k4tlmFIIUlvb2C1GAAwNPiJDJwknd5e\nvbpqjySprDhTZ5YXWFvQMJWbmaLKU/MlSas21csf4IY7AMCJIxQDJ8l/v7tHnh6/JOnqL7EF24mY\nMyXcQtHu6dXWPc0WVwMAiAeEYuAkcLd69dYH4YM6ziwv0KklWRZXNLxNKs2N3KD47pYGi6sBAMQD\nQjFwErzxfp0CwZBshqErzy2zupxhz2G36azTwicAfvixW96+FXgAAAaLUAyYrNPbq5Wb6iVJZ1YU\naEROqsUVxYezJxVJCu/osW77YYurAQAMd4RiwGT//PCAenoDkqRLzhpjcTXxY9zIDI3IDf+CsZoW\nCgDACSIUAybq9Qf1t75e4oox2TqlKNPiiuKHYRiafXq4hWL7vlY1t3dbXBEAYDgjFAMmeu+jBrV3\n+SRJl5w11uJq4s/Zp4dbKEKSVn/EajEAYPAIxYBJgqGQ/mftPklScX6aJpfmWlxR/MnPdmlC304e\nqz86pFAoZHFFAIDhilAMmGTzribVN3kkSRfPHM2+xCbpv+HuoLtL+w51WlwNAGC4IhQDJvmfNeFV\n4qz0JM2aWGRxNfFrRkWhHPbwtzL2LAYADBahGDDB7vp2ba9rlSRdML1ETgd/1cySmuJU5al5kqQ1\n2w4pEOTYZwBA9PhJDZigf5U4Ocmu86aNsria+NffQtHe5dNHu1ssrgYAMBw5rC4AiDeNrd7IYRJz\nJo+Up7NNnkG0ujochvx+j1pbu+T3m3cDWXNzk0LB4X2D2uTSPKW7nOr09mr1Rw2aUpZndUkAgGGG\nUAwMsTffr1MoJNkMQzNOTdcb79UoPT0r6uvYbIZcriR5vT4FTQytDQf3KT0rT1kavkHSYbdp5mmF\n+vv6A/pwR6O8PX65kvn2BgA4flH91Kiurtabb76p2tpapaSkaNq0abr99ts1bty4yBifz6fFixfr\nr3/9q3w+n+bMmaN7771XeXlHfuDW19fr3nvv1dq1a5WWlqavf/3ruv3222WzHenmWLNmjR5++GF9\n/PHHKi4u1oIFC3TFFVcMwVMGzNPTG9CqLUeOdM7JSFJ6epYys6Pfjs1uM5Samqyk5B4FTAzFHe3x\n0W5w9qQi/X39Afn8QX2wvVFVU0ZaXRIAYBiJqqd43bp1+va3v60XXnhBf/jDH+T3+/W9731P3d1H\nTpJ64IEH9Pbbb+s3v/mNli9frsOHD+umm26KPB4MBnXDDTcoEAjo+eef10MPPaSXXnpJy5Yti4zZ\nv3+/FixYoFmzZunll1/W9ddfr3vuuUerVq0agqcMmGf9jkZ5e8JHOp9bSS/xyVQ6MlMjclySpLU1\nhyyuBgAw3EQVin/3u9/p8ssvV1lZmcrLy7V48WIdPHhQW7ZskSR1dnbqL3/5i+68807NnDlTEydO\n1IMPPqj169dr06ZNkqSVK1eqtrZWS5YsUXl5uebMmaNbbrlFzz77rPx+vyTpueeeU0lJiRYuXKjS\n0lLNmzdPF198sZ588smhffbAEHtnU3iVOD8rRRPGZFtcTWIxDEMzTiuUJG3b06JOb6/FFQEAhpMT\n2n2io6NDhmEoOzv8w3/Lli0KBAI6++yzI2NKS0tVXFysDz/8UJK0ceNGTZgwQbm5R95OrqqqUkdH\nh3bu3BkZM3v27AFfq6qqShs2bDiRcgFTudu8qtkbbkWomjxSNg7rOOlmVoyQJAWCIa3f0WhxNQCA\n4WTQd6KEQiE9+OCDmj59uk499VRJktvtltPpVHp6+oCxeXl5crvdkTGf7C+WpPz8fElSY2OjKioq\n1NjY+JkxeXl56uzslM/nU1JS0nHXabez65wZ+ueV+T3ivY8OKSTJkDS3slgOh00OhyGbzZDdFn1A\n7u+xD//bvL13DSNc32BqPJlsNkMOhyHHUfZ8HjsyQyPzUlXf5NH7NYf1peklR70mr2NzMb/mY47N\nxfyaL5bmdtCheNGiRdq5c6eeffbZY44NhULHdcStGcfgZma6hvyaOIL5DQsGQ1rVd5ralPH5Gj8u\n/Iue3++Ry5Wk1NTkQV87JcU5JDV+EZcrSXaH84RqPBl8PUnKzk5TTk7aUcedO320nntju7btaZbN\n6VBW+rG9Ekx7AAAgAElEQVSfF69jczG/5mOOzcX8JoZBheL77rtPK1as0PLlyzVixIjIx/Pz89Xb\n26vOzs4Bq8XNzc2Rld/8/Hxt3rx5wPX6V5H7V4wLCgrU1NQ0YExTU5PS09OjWiWWpPZ2rwIBTrga\nana7TZmZLua3z7Y9zTrU7JEknT1xhFpauiRJra1d8np9SkruifqaNptNKSlOdXf3KmjiKW1er092\nh+TxRF/jyeT1+tTa2iWHI/Wo46aMy9FzkoIh6W/v7TnqajGvY3Mxv+Zjjs3F/Jqvf45jQdSh+L77\n7tNbb72lZ555RsXFxQMemzRpkux2u1avXq0LL7xQkrR7924dPHhQ06ZNkyRVVlaqurpazc3Nkb7i\nVatWKSMjQ2VlZZExK1asGHDtVatWqbKyMuonGAgE5ffzQjYL8xv29oaDkiRXsl1TT82PzInfH1Iw\nGBrklmrhawSDQVO3ZAuFwvWZ+TWGQjAYkt8fOubrbUROqkYVpOlAY5fe+6hBc6cWH3W8xOvYbMyv\n+ZhjczG/iSGqRo5Fixbp1Vdf1dKlS+VyueR2u+V2u9XTE15hSk9P1ze/+U0tXrxYa9as0ZYtW3Tn\nnXfqjDPO0JQpUySFb5grKyvTwoULVVNTo5UrV2rZsmWaN2+enM7w28TXXHON6urqtGTJEtXW1mr5\n8uV6/fXXNX/+/CF++sCJ8/b4IyfYzTxthJKddosrwsyK8C4U2+ta1dYZ2yvgAIDYENVK8Z/+9CcZ\nhqHrrrtuwMcXL16syy+/XJJ01113yW636+abbx5weEc/m82m6upqLVq0SNdee61cLpeuuOIK3Xzz\nzZExJSUlqq6u1kMPPaSnn35aRUVF+sUvfvGZHSmAWPB+zWH5esMrCFWTOTAiFsw4bYReWrlboZC0\nbnujzj/GDXcAAEQVimtqao45JikpST/96U/105/+9AvHjBw5UtXV1Ue9zsyZM/Xiiy9GUx5giXc2\nh/cmHpmXqtLiTIurgSQV5aZqTGG69h3u1PvbDhGKAQDHFDv7YADDUEOzRzv3t0kKrxKbsYMKBqf/\nII+P97eppYMWCgDA0RGKgROwqm+V2GYYOntSkcXV4JNm9PUVhyStqzlsbTEAgJhHKAYGKRgM6d2+\nvYknleYq+zj2w8XJU5iTqrFFGZKktTWHLK4GABDrCMXAIG3d0xx5W54b7GLTzL4Wil0H2tXU1m1x\nNQCAWDboE+0AK3V1dWnbx7ssreHvmzskSclOQwFPvdZtaPjMmFCgV1J0B85g6MwoL9QL/wi/Tt6v\nOaxLzhpjcUUAgFhFKMaw1NTcrMNdSUpNy7Dk6weDIe0+3CJJKinMkNeW/7nj3Ac+UlImq8hWyc92\nqbQ4U7UH2/V+zSFCMQDgC9E+AQzCoRaPenoDkqSxI6wJ5jg+/Tfc7a7vkLvVa3E1AIBYRSgGBmFv\nQ6ckyWm3aWR+qsXV4GjOLC+M/Hnd9kYLKwEAxDJCMRClYCikusPhfuJRhWmy2/hrFMvyslI0bmT4\nUJUPdrA1GwDg8/HTHIhSY4tX3h5aJ4aTM8sLJIV3oWhuZxcKAMBnEYqBKO07FG6dcNgNjSpIs7ga\nHI/pfaFYktbvoIUCAPBZhGIgCqFQSHsPhVsnivPT5LDzV2g4KMxJ1ZjCdEn0FQMAPh8/0YEoNLV1\ny9Ptl0TrxHAzvW8Xio/rWtXW5bO4GgBArCEUA1HY29c6YTMMjSqkdWI46e8rDokWCgDAZxGKgeMU\nCoW0t6G/dSJVSQ67xRUhGiPz0jQqP/yLzAfb2YUCADAQoRg4Ti0dPer09kqSxhbROjEc9d9wV7O3\nNfL/EgAAiVAMHLf+1gnDkEr6btrC8NJ/kEcwFNKHtFAAAD6BUAwcp319rRNFualKdtI6MRyNKkjT\niNzwCYTsQgEA+CRCMXAcWjt7IjsW0DoxfBmGEbnhbuueZnV100IBAAgjFAPHof/ADkPSaFonhrX+\nFopAMKQNO9wWVwMAiBWEYuA49O86UZjjkivZYXE1OBFjRqQrPytFkrS25pDF1QAAYgWhGDiGLm+v\nWjp6JEljOLBj2Au3UIRXi7fsapaHFgoAgAjFwDEdcHdF/lzCgR1xoX9rtt5AUOu2sVoMACAUA8d0\noDEcijPTkpSRmmRxNRgK44ozlZORLElatemgxdUAAGIBoRg4ikAwqPqmcCjuPw0Nw5/NMDR9Qni1\n+IOaw+rpDVhcEQDAaoRi4CgOt3jlD4Qkhfe4Rfw4syLcV9zjC2jTriaLqwEAWI1QDBxFf+uEw25o\nRK7L4mowlE4dlaWstHA7zLpthy2uBgBgNUIxcBT9obgoL012G39d4onNZkRuuPvw40b1+oMWVwQA\nsBI/5YEv0OHxRU6xo584Ps04bYQkqdsX0Ed7mi2uBgBgJUIx8AU+uRUb/cTxqWJsdmRHkQ9qaKEA\ngERGKAa+QH/rRHZ6ktJdTourgRnsNptmTSqSJG3Y6ZY/QAsFACQqQjHwOQKBoBqaPJKkYlon4trs\nKcWSpK5uv2r2tVhcDQDAKoRi4HM0NHsVCIa3YispSLe4Gphp6vgCpSY7JEnrahotrgYAYBVCMfA5\nDrg7JUlOu00FOWzFFs+cDpumTciXFN6FItj3yxAAILEQioHP0d9PPDI/VXabYXE1MFv/QR4dnl7t\nqGu1uBoAgBUIxcCntHf51OHplcRWbIlicmmekp12SdK67exCAQCJiFAMfEr/KrHEVmyJIslp19RT\n8yRJH+xoVDBECwUAJBqH1QUAsaa/nzgnI1mpKWzFFiuCwaCam5uG9JoOhyG/36PW1i5NGJmitduk\ntk6f1n+0T6cUDe4XotzcXNk4/RAAhh1CMfAJ/kBQDc1eSbROxJquzjat2HBIhYW+IbumzWbI5UqS\n1+uTrzcou00KBKXX1x3U5FOi33Wks7NNF82qUH5+/pDVCAA4OQjFwCc0NHkiuw/QOhF7UtMylZmd\nO2TXs9sMpaYmKym5R4FgSKMKurXvUKcaWns1OytHhsFNlgCQKHiPD/iE/qOdnQ6bCrLZii3RjBmR\nISl8kEdTW7fF1QAATiZCMfAJ/afYjcxLlY2t2BJOSWFa5P/7noYOi6sBAJxMhGKgj6e7V21d4X7V\nkXmpFlcDKyQ57JFe8r0NHQqxCwUAJAxCMdCnvm+VWJJG5tFPnKjGFh1poXDTQgEACYNQDPTpD8Wp\nKQ5lpLIVW6IaXZgeaaHYSwsFACQMQjEgKRQKqb6p72jnvFR2HUhgTodNJX07j+yhhQIAEgahGJDU\n1uWTtycgidYJSGP7dqHw0EIBAAmDUAzo0/3E3GSX6EoK02Xv34WinhYKAEgEhGJAR0JxdnqSXMmc\naZPonA5b5PCWvYdooQCAREAoRsILBkM6FNmfmNYJhPXvQuHp9quxlRYKAIh3UYfidevWacGCBZoz\nZ44qKir01ltvDXj8zjvvVEVFxYB/fvCDHwwY09bWpttuu03Tp0/XjBkzdPfdd8vj8QwYU1NTo3nz\n5mnKlCk677zz9Pvf/34QTw84tqa2bvUGgpJoncARJQVHWijYhQIA4l/Uodjj8ei0007Tvffe+4V3\n6M+dO1fvvvuuVq1apVWrVumxxx4b8Phtt92m2tpaPfnkk6qurta6dev0s5/9LPJ4Z2envv/976uk\npEQvvfSSfvzjH+vxxx/XCy+8EG25wDHVN4d/ITMMaUQuoRhhn9yFgoM8ACD+Rd08OXfuXM2dO1eS\nvvCHRFJSknJzcz/3sV27dumdd97Riy++qIkTJ0qS7rnnHv3bv/2b7rjjDhUUFOiVV15Rb2+vHnjg\nATkcDpWVlWnbtm36wx/+oKuuuirakoGjqneHt2LLz3LJ6aCjCEeMHZmpvYc65enxq7HVq8IcfmkC\ngHhlSgJYu3atZs+erUsuuUSLFi1Sa2tr5LENGzYoKysrEoglafbs2TIMQxs3bpQkbdy4UTNmzJDD\ncSSzV1VVaffu3ero4G1MDJ1ef1CNrV5JtE7gs0blp8lh79uFghYKAIhrQ36b/Zw5c3TRRReppKRE\n+/bt02OPPaYbbrhBzz//vAzDkNvt/swqst1uV1ZWltxutyTJ7XarpKRkwJj8/HxJUmNjozIyMo67\nHrudlT8z9M+rVfPrcNhkM4xIz+dg1bd5Fex7w6OkIO2Er/dpdpshm21wddpstk/8OzikdX2S0TeP\nQ/3ch5oZdR5rju1JdpUUpmtPfYf2NnRq1sQRRz3YxWYz5HAYcvCOgyTrv08kAubYXMyv+WJpboc8\nFH/lK1+J/Hn8+PGaMGGCLrzwQq1Zs0azZs36ws8LhUJH/WHT36oR7UljmZmuqMYjOlbNb2tbqlJT\nfUpNTT6h6zS2NUkK94+OKc4e8mDoSk2W05V0QnWmpJh75LTLlSS7w3nCc2k2M+s82hxXjM3VnvoO\neXv8avP4VVyQ/oVjfT1Jys5OU04Ou5h8Et+Hzcccm4v5TQymb8g6evRo5eTkaN++fZo1a5by8/PV\n3Nw8YEwgEFB7e3tkNTg/P19NTU0DxvT/d/+Y49Xe7lUgYN4qW6Ky223KzHRZNr/t7R55PD4Ztp4T\nus6+hnZJ0ogcl3q6fUNR2gBeT4/8Dp+SkqOv02azKSXFqe7uXgWD5s2x1+uT3SF5PCc2l2Yzo87j\nmeOCrGQ57Ib8gZC27WlSdtoXB2iv16fW1i45HLTiSNZ/n0gEzLG5mF/z9c9xLDA9FDc0NKi1tVUF\nBQWSpMrKSrW3t2vr1q2RvuLVq1crFAppypQpkTG/+tWvFAgEZLfbJUmrVq3SuHHjomqdkKRAICi/\nnxeyWayaX78/qGAopEBw8DsCdPv8am4PB6yivNQTutYXCQRDsgcHW2d4XoPBoCm19Qv1zaOZX2Mo\nmFPnsefYMAyVFKRrT0OH9tR36MzyQtm+4B2FYDAkvz/E95xP4fuw+ZhjczG/iWFQW7LV1NRo27Zt\nkqS6ujrV1NSovr5eHo9HjzzyiDZu3KgDBw5o9erVuvHGG3XKKaeoqqpKklRWVqaqqirdc8892rRp\nkz744APdf//9+upXvxoJzpdeeqmcTqfuuusu7dy5U3/961/19NNPa/78+UP41JHoBh7tzNvd+GLj\nijMlSd2+wIDXDQAgfkS9UrxlyxZdf/31MgxDhmHo4YcfliRdfvnlWrRokbZv366XX35Z7e3tKiws\nVFVVlW655RY5nUfecly6dKnuu+8+zZ8/XzabTRdffLHuvvvuyOPp6el64okndP/99+vKK69UTk6O\nfvjDH7IdG4ZUQ1+4SUmyKzs9yeJqEMuK89OU5LTJ1xvU7vr2yBHQAID4EXUonjlzpmpqar7w8See\neOKY18jMzNSjjz561DHl5eV65plnoi0POG71kaOdU6O+gROJxW4zdEpRhnbUtWnfoQ75AyPkiKE7\npgEAJ47v6khIHR6fOr29kqQiWidwHMaNDLdQ+AMh1R3utLgaAMBQIxQjITU0f6KfmKOdcRwKc1xK\nSwm/ubb7YLvF1QAAhhqhGAnpUHP4FLt0l1PpqebuA4z4YBhGZLX4gLtL3T6/xRUBAIYSoRgJJxQK\nRW6yG5EbG3sjYnjo34UiFJL2cuwzAMQVQjESToenV56e8CpfEa0TiEJORrJyMsIn6tUeJBQDQDwh\nFCPhfLKfmFCMaI0bGT5AqLHVq05Pr8XVAACGCqEYCac/FGekOpXmop8Y0envK5ak3fXccAcA8YJQ\njIQSCoV0qLm/n5hVYkQvzeXUiJxwL3ptfbtCodg+HhsAcHwIxUgo7V0+eXsCkmidwOD133DX1ulT\nS0ePxdUAAIYCoRgJhX5iDIWxRRmy9Z2CWMuexQAQFwjFSCgNffsTZ6Y6lZoS9SnngCQp2WnXqILw\nSYi76zsUpIUCAIY9QjESxif7iYvyWCXGiSnta6Hw9vgjrysAwPBFKEbCaOv0qdsX7ifmJjucqJKC\nNDkd4W+hO/e3WVwNAOBEEYqRMOgnxlCy222R1eJ9hzrV0xuwuCIAwIkgFCNh9IfirLQkuZLpJ8aJ\nO3VUliQpEAxpNzfcAcCwRihGQgj3E4dvsqOfGEMlLytFuZnhY593HqCFAgCGM0IxEkJrZ0/k7W1a\nJzCU+leLm9t71NrFsc8AMFwRipEQGpq8kT+PyHVZWAnizbjiTNls4T2L9x7utrgaAMBgEYqREPr7\nibPTk5SSRD8xhk6y066xI9IlSXXuHvX6gxZXBAAYDEIx4l4oFNKhlr79iWmdgAnGl2RLkvyBkDbv\nprcYAIYjQjHiXnNHj3y94dU7brKDGUbkupSR6pQkrd3RbHE1AIDBIBQj7h1qOrI/8YgcQjGGnmEY\nkRvuauu7Iu9MAACGD0Ix4l5/P3FORrKSk+wWV4N4VdYXiiXpnU31FlYCABgMQjHiWjAU0qGWvv2J\n6SeGiVJTHBqRnSRJemdzvQJBbrgDgOGEUIy41tJ+ZDcAtmKD2U4pTJEktXX6tHkXvcUAMJwQihHX\n+lsnJGkEK8Uw2YjsJKW7wlv+rdh40OJqAADRIBQjrh3qC8W5mclKdtJPDHPZbIbOHJ8jSdq4yy13\nm/cYnwEAiBWEYsStYPBIPzG7TuBkmXVangxDCoWkv68/YHU5AIDjRChG3GruONJPzP7EOFlyM5J0\nxvgCSdKKDQfV7fNbXBEA4HgQihG3Dn2ynziHm+xw8lw4Y7QkydPj17tbGiyuBgBwPAjFiFsNn+gn\nTqKfGCfR+JIsjRmRLkn627r9CoZCFlcEADgWQjHiUjAY0uFm9ieGNQzD0IVnhleLG5o92lLL9mwA\nEOsIxYhLzR3d6g30709MKMbJN/O0EcpMCx/m8ea6OourAQAcC6EYcamhb5XYEP3EsIbTYdOXpo2S\nJH20u1kH3F0WVwQAOBpCMeLSoSb6iWG9f5k2Sg67IUl6i9ViAIhphGLEnfD+xOFQTOsErJSVlqSz\nJo6QJL27pUGd3l6LKwIAfBFCMeJOc3u3/IHw3f7cZAer9d9w5/MH9fYGDvMAgFhFKEbc6d+KzZBU\nSD8xLDZmRIYqxmRLCp9w5++7ARQAEFsIxYg7/TfZ5Wam0E+MmHBB32pxS0eP1m0/bHE1AIDPQyhG\nXAkGQzoc6SdmlRixofLUfBVkp0iSXnt3L4d5AEAMIhQjrjTRT4wYZLMZ+trZp0iSDri7tK6G1WIA\niDWEYsSVAf3ErBQjhpw9qSiyWvzyO7sVDLJaDACxhFCMuHKoLxTnZqUoyUE/MWKHw27TZeeMkyTV\nN3m0dtshiysCAHwSoRhxI9xPHL7JrohVYsSgWaePiJyw+PKqPQoE2YkCAGIFoRhxo6ntSD8xh3Yg\nFtltNl16zimSwu9qrNnKajEAxApCMeJGpJ/YYH9ixK6zJo6I3AT6CqvFABAzCMWIG/V9oTgvk35i\nxC67zabL+laLD7d4tXoLq8UAEAsIxYgLgUBQjX39xCPzaJ1AbJt52ojI6/TVd3dzyh0AxABCMeJC\nY2u3An1bXBURihHjbDZDX68K70TR2Nqt1VsaLK4IABB1KF63bp0WLFigOXPmqKKiQm+99dZnxixb\ntkxVVVWaOnWq5s+fr7179w54vK2tTbfddpumT5+uGTNm6O6775bH4xkwpqamRvPmzdOUKVN03nnn\n6fe//320pSKB9LdO2GyGCrLpJ0bsO7OiUKPy0yRJr767R71+VosBwEpRh2KPx6PTTjtN9957rwzD\n+Mzj//mf/6nly5frvvvu0wsvvCCXy6Xvfe978vl8kTG33Xabamtr9eSTT6q6ulrr1q3Tz372s8jj\nnZ2d+v73v6+SkhK99NJL+vGPf6zHH39cL7zwwiCfJuJdQ1OXJKkw2yWHnTdAEPtsxpHVYndbt15f\nu8/iigAgsUWdHubOnatbbrlFF1xwgUKhz57I9NRTT+nGG2/Ul770JU2YMEGPPPKIDh8+rL/97W+S\npF27dumdd97RAw88oMmTJ+uMM87QPffco7/+9a9qbGyUJL3yyivq7e3VAw88oLKyMn3lK1/Rdddd\npz/84Q8n+HQRj3r9QbnbuiXROoHhZXp5gSaUZEmS/vvdPWrqex0DAE6+IV1Sq6urk9vt1qxZsyIf\nS09P19SpU7VhwwZJ0oYNG5SVlaWJEydGxsyePVuGYWjjxo2SpI0bN2rGjBlyOByRMVVVVdq9e7c6\nOjqGsmTEgUMtHvX/fjaS/YkxjBiGoW9fVC6bYcjnD+pPb31sdUkAkLCGNBS73W4ZhqH8/PwBH8/L\ny5Pb7Y6Myc3NHfC43W5XVlbWgDF5eXkDxvRfs381GejX0BTuJ3bYDeVlpVhcDRCdksJ0nT+9RJL0\nwY5GbaltsrgiAEhMjmMPOXGhUOhz+4+jGdPfqnGs63yanf5SU/TPq1Xz63DYZDMM2W1G5NCOotxU\nOR2x9f/bbjNks4XrjJbNZvvEv827Ccvom8fB1HgymVHnUM+xzWbI4TDkiPJ1eOW5ZVpbc0htnT4t\n/9vHevCGvJh7LQ+G1d8nEgFzbC7m13yxNLdDGorz8/MVCoXkdrsHrBY3NzfrtNNOi4xpbm4e8HmB\nQEDt7e2Rz8nPz1dT08DVkv7//vQq9LFkZrITgZmsmt/WtlSlpvpks9vV3N4jSRo7MkupqcmW1PNF\nXKnJcrqSTqiulBTnEFb0WS5XkuwOZ8zN3aeZWedQzbGvJ0nZ2WnKyUmL6vNyJH3/skla+ux6HWr2\n6J8b6/WtCyYMSU2xgO/D5mOOzcX8JoYhDcWjR49Wfn6+3nvvPVVUVEgK7ySxceNG/eu//qskqbKy\nUu3t7dq6dWukr3j16tUKhUKaMmVKZMyvfvUrBQIB2e3hk8lWrVqlcePGKSMjI6qa2tu9CrAx/pCz\n223KzHRZNr/t7R55PD41dvREPpaXmSSPp+con3XyeT098jt8SkqOvi6bzaaUFKe6u3sVNPEoYK/X\nJ7tDMTd3n2ZGnUM9x16vT62tXXI4ou9tnzIuR+VjsrV9X6uef3O7ppXlKn+Yby9o9feJRMAcm4v5\nNV//HMeCqEOxx+PRvn37Iu0MdXV1qqmpUVZWlkaOHKnvfOc7+o//+A+NGTNGo0aN0rJly1RUVKTz\nzz9fklRWVqaqqirdc889WrRokXp7e3X//ffrq1/9qgoKCiRJl156qf793/9dd911l37wgx9ox44d\nevrpp3XXXXdF/QQDgaD87P9pGqvm1+8PKhgK6WBfP3GS06astKTIAR6xIhAMyR4MDbKu8LwGg0FT\nn1coFK4v1ubu08ypc2jnOBgMye8PDfrvxLwLJmjRH96Xzx/UM2/s0A+/MfmEa4oFfB82H3NsLuY3\nMUQdirds2aLrr79ehmHIMAw9/PDDkqTLL79cixcv1g9+8AN1d3frZz/7mTo6OnTmmWfqd7/7nZKS\nkiLXWLp0qe677z7Nnz9fNptNF198se6+++7I4+np6XriiSd0//3368orr1ROTo5++MMf6qqrrhqC\np4x40n+TXVFuatT95kCsKSlM1wVnluiN9+u0fkejNtc2aXJp3rE/EQBwwqIOxTNnzlRNTc1Rx9x0\n00266aabvvDxzMxMPfroo0e9Rnl5uZ555ploy0MC8fYE1NYVPhSG/YkRL75eNU5rth5SW5dPT/6f\nGv38/5mpdJe5feUAgCHekg04mQ63HektHZkb3Y1NQKxyJTv07YvKJUktHT36X69t+9yDkgAAQ4tQ\njGGrsTUcil3JDmWmsZKG+DG9vEDnTRslSdqw0623PthvcUUAEP8IxRiWQqGQDreGWydG5tFPjPhz\n9ZdOVUlB+B2QP/9jp/Yd4jRPADAToRjDUkunX56egKTwTXZAvEly2vVvX5+kJIdN/kBI///LH6nH\nF7C6LACIW4RiDEu7D3kif+YmO8SrUflpuvaC8ZKkhmaPlr+5w+KKACB+EYoxLO1uCIfijFQnd+Yj\nrs2dWqwzKwolSe9srtd7WxssrggA4hOhGMNOMBTS7kNeSdIIWicQ5wzD0HcvKVdeZook6an/2a4D\njZ0WVwUA8YdQjGGn7lCnurrDvZXF+WzFhviXmuLUv339dNkMQ92+gB7780Y1t3dbXRYAxBVCMYad\nLbubIn8eST8xEsSpo7L0nS8f2b/4sT9vVFd3r8VVAUD8IBRj2Plod7MkKTfDqWSn3eJqgJNnzpRi\nfWNuqSTpoLtLv/6vTfL1siMFAAwFQjGGlW6fXx/vb5MkjchJtrga4OT76tljdf4ZJZKkj/e3qfqV\njxQIBi2uCgCGP0IxhpWafa0KBMNH3o7ISbG4GuDkMwxD114wXmeWF0iSPvzYrWfe2MFR0ABwggjF\nGFY+qg23TiQ7bcrNYCs2JCabzdAPLp2o8tHZkqS3NxzUiytqCcYAcAIIxRhW+m+yKy1yycbRzkhg\nToddN105RSUF6ZKk11bv1dNv7FAwSDAGgMEgFGPYaGz16lBLeH/ispFsxQakpjh029VTI8H4nx8e\n0H/87y3q9XPzHQBEi1CMYaN/1wlJOnUkW7EBkpSVnqyfzJumCX2tFB/saNQv/7xRnm6/xZUBwPDi\nsLoA4Hht6QvFRbmpyk53an+zz+KKgNiQmuLUbVdPVfUrW7V+R6Nq9rXq4WfX69ZvTVV2+md3aQkG\ng2pubv6cKw0th8OQ3+9Ra2uX/P7BtXXk5ubKZmP9BoD5CMUYFvyBoLbtDf8QP31crsXVALHH6bDr\nxssn6anXt2vFxoOqO9ypB5/+QDd/80jfcb/m5ma98V6N0tOzTK3JZjPkciXJ6/UNqte5s7NNF82q\nUH5+vgnVAcBAhGIMC7UH2+XtCfdJThqXK8lrbUFADLLZDH3nknJlpSXp1Xf3yN3WrV88tU7fubhC\nZ08qGjA2PT1Lmdnm/oJptxlKTU1WUnJPZCtFAIhVvCeFYaG/n9huM1QxJsfiaoDYZRiGrphbqu9c\nUi6H3ZCvN6jf/fdWPfU/NdyABwBHQSjGsNDfTzy+JEvJSRztDBzLv1SO0p3fnq68zPAhN//ccFAP\nPmaB/EcAACAASURBVLNeja28ywIAn4dQjJjX6e3Vnvp2SdKk0jyLqwGGj3EjM3Xv/BmaUhb+e7O3\noUM//8P7+mhvm8WVAUDsIRQj5m3d06z+bsRJ3GQHRCXd5dTN35yiK/+lVIYheXr8+uObe7WhtkO9\n/qDV5QFAzCAUI+b1t05kpiWppDD9GKMBfJrNMPTVs0/R7ddMU1ZakiRpz+Fu/fe7e3S4hXYKAJAI\nxYhxoVAocpPd6afkcLQzcAJOG5uj+743U5NPCW/F1uHp1etr9mn9jkZ2hwCQ8AjFiGkH3V1q6eiR\n9H/bu/P4pqq0D+C/m6VtujfdKFC2ltJSutsCBWRcGQUd1JFRZ1DREUcURsVXEEF0EGVRR4R5Z3DE\nbURxA/EFQUYFUaiAQCmURap0oXu6p2mb7bx/hEYrW1uS3tv29/2QT5ubc2+e+9A2T07OPQcYMZjj\niYkulZ+3B/501QCkRvlBq1FBADjyUzU+yypw/q4REfVGLIpJ0Q7/9POqW8M5npjIJSRJwoBQL9ww\nZhD66B1Lptc0tGDz7gIc+akKdsFeYyLqfVgUk6IdyjMAAAb28XOOhSQi1/DVaXFNen9cFhsKtUqC\nXQgc+MGAz/cUor6Ry6gTUe/CopgUy9hkwQ+nawEAKUO5zCuRO0iShOGD9JiUORAhAY45jStrm/F/\nu/JxvKAGgr3GRNRLsCgmxcr50YDW1+OUoaHyBkPUwwX4euK3IwcgeWgIVBJgswvsPVaB/35/GqZm\ni9zhERG5HYtiUqzsk46hE8H+Xugf6iNzNEQ9n0olITEqGNePHoggP08AQFmVCZ/uykdheYPM0RER\nuReLYlIki9WOw2emYkseGgKJU7ERdRm9vxeuHz0A8WcubjVb7NhxsATf5ZbBauOCH0TUM7EoJkU6\nXliDFrMNgKMoJqKupVapkDYsFNek94fOUwMA+KGoDpt3F6C6vlnm6IiIXI9FMSlS69AJnacGwyID\nZY6GqPeKCPbBDWMGIvLMapJ1jWZ8llWI44W8CI+IehYWxaQ4Qghkn5mKLWGIHho1f0yJ5OTlocFv\nUvpi5PBw59Rte49WYPdhDqcgop6D1QYpTmG50bmyFodOECmDJEkYNiAQE0cPhP+ZOcN/LKnH1j2F\nMDZxdgoi6v5YFJPiHDxZCQBQqyQkDuHSzkRKEujnietHD3AOp6iud6yEV2JolDkyIqJLw6KYFKd1\nPHFMZCC8vbQyR0NEv+ahUeM3KX2di+q0WGz48vvTOPJTFccZE1G3xaKYFKWqrhmFFUYAHDpBpGSS\nJCEhKhhXpfWHh1YFAeDADwZk5ZbDbmdhTETdD4tiUpTWC+wAICWaRTGR0vUL9cHEXyz2kXe6Dl8d\nKIbFygvwiKh7YVFMipJ9Zjxx/1BfhATqZI6GiNrDz9sDE0ZGIiLYGwBQYmjE53sLYWqxyhwZEVH7\nsSgmxTA1W3G8sBYAh04QdTceGjWuTOuPIX39AbRegJfPhT6IqNtgUUyKceRUFWxnxiKmsCgm6nbU\nKgljEvogMcoxa4yxyYr12/NQXm2SOTIiootjUUyK0TqeONDXAwP7+MkcDRF1hiRJSB4aglHx4ZAk\nx8wUn+8t4pRtRKR4LIpJEaw2O3LyqgAAydEhUEmSzBER0aWIiQzEVWn9oVZJsNkFvjpQjNOVRrnD\nIiI6LxbFpAi5p6qdF+WkxITKHA0RuUJkmC8mjR0CjVqC3S6w40AxCssb5A6LiOicWBSTIuw5Wg4A\n8PPWIm5gkMzREJGr9A/zxbXpkdCqVbAL4OvsEpwqrZc7LCKis7AoJtm1mG04eGYVu8tiw6BR88eS\nqCcJ13vjmvT+8NCoIATw7aFS/FhcJ3dYRERtsPog2WXnGdBisQEARg0PlzkaInKHkEAdrkmPhKdW\nDQFg1+EyFsZEpCgauQMgah06Eezviah+ATJHQ9R5drsd1dVVcodxUdXVVRAyLMUcHOCFazMi8d99\nRWg227D7cBlUKgmDI/y7PBYiol9zeVG8atUqrFq1qs22IUOG4LPPPgMAmM1mPP/88/jss89gNpsx\nbtw4LFy4EMHBwc72paWlWLhwIfbu3QsfHx/87ne/w2OPPQaVih3bPY2xyYLDPzmKiIzh4Zx1grq1\nRmMddmaXIyzMLHcoF1RWUgjfgGAEIPjijV0syM8T16RHYtveIrRYbPg2pxRqlYQB4ZyGkYjk5Zae\n4qFDh+Ktt96CEI6eCLVa7Xxs8eLF+Oabb7By5Ur4+vrib3/7G2bOnIl3330XgKOnZfr06QgLC8P7\n77+PiooKPP7449BqtXjkkUfcES7JaP+JCueCHaOG95E5GqJL5+3jD/9AvdxhXFBDfY2szx/k54mr\n0/tj294iWKx27MwuxRWpKvQL9ZE1LiLq3dzS9arRaKDX6xEcHIzg4GAEBgYCAIxGIz7++GM88cQT\nyMjIwPDhw/Hcc8/hwIEDyMnJAQB88803+Omnn7B8+XIMGzYM48aNw1//+le8++67sFqt7giXZNQ6\ndKJviA/68wWRqNcI9vfC1Zf1d0zXJgR2HCxGWRVXviMi+bilKM7Pz8e4ceNw9dVX47HHHkNpaSkA\n4MiRI7DZbBg9erSz7ZAhQ9C3b18cPHgQAHDo0CHExMRAr/+5p2Xs2LFoaGhAXl6eO8IlmdQ0tOBE\nYS0AYOTwcEgcOkHUq4QG6n61wMdpVNY0yR0WEfVSLh8+kZSUhCVLlmDw4MGorKzEypUr8cc//hGb\nNm2CwWCAVquFr69vm32Cg4NhMDim5DIYDG3GFwNASEgIAKCyshKxsbEdikfN6b3cojWvl5Lf709U\noPVSnzEJfaDRtP9YGo0KKkmCWqXsQlqtkqBSdS7O1jH0jq92F0f2M+lMHpWeS3fE6eoc9+Zcnkt7\n8ts3xAdXpfXHF/tPw2oT+HL/afx21AAE+3tBpZKg0Ugd+tvQ27jibzGdH/PrfkrKrcuL4nHjxjm/\nj4mJQWJiIq644gps2bIFnp6e59xHCNGuXsLO9CT6++s6vA+136Xkd9+JSgDAsAFBGDakY6vY1dZ5\nw9vbDG/vc/9MKYXO2xNancclxenlpXVhRGfT6Tyg1miVn0s3xumqHDOX53ax/A4d6AmNVo2tWfkw\nW+34777TuPmKaOh0HggM9EFQEIdWXQxf69yL+e0d3D4lm5+fHwYNGoTCwkKMHj0aFosFRqOxTW9x\ndXW1s3c4JCQEhw8fbnOM1l7k1h7jjqivb4LN5r5ett5KrVbB31/X6fyWVjUir8gxdCI9NhQ1NY0d\n2r++3gSTyQxJ1dLh5+5KTaYWWDVmeHh2PE6VSgUvLy2amy2w2933M9zUZIZaA5hMCs+lG+J0dY57\ncy7PpSP5DQ/0wtjECOw8VIqmFis2fv0jxg33R21tIzQab7fG2Z1d6t9iujDm1/1ac6wEbi+KGxsb\nUVRUhLCwMIwYMQJqtRpZWVm45pprAACnTp1CSUkJUlJSAADJyclYvXo1qqurneOKd+3aBT8/P0RF\nRXX4+W02O6xW/iC7S2fzu/twGQBAkoC0mNAOH8NqtcMuhHPmCqWy2QXU9s7G6ciJ3W5363mKM3lU\nei7dE6drc9y7c3kuHcvvoAh/NJtt2HusAsYmC749WouRceEIDOTf8Ivha517Mb+9g8sHcixduhT7\n9u1DcXExDhw4gIceeghqtRrXX389fH198fvf/x7PP/889uzZgyNHjuCJJ55AamoqEhMTATguqouK\nisLjjz+O48eP45tvvsGKFSvwxz/+EVqtez9Gpq4hhHDOOhE3MAgBvsr+qJmIuk7swCAkRTs+OWxo\nsuH1bfloMdtkjoqIegOX9xSXl5dj9uzZqK2thV6vR1paGt5//30EBQUBAObNmwe1Wo1Zs2a1Wbyj\nlUqlwurVq/H000/j9ttvh06nw0033YRZs2a5OlSSSWG5EWXVjqmXRnJZZyL6lcSoYLSYbTheWIvC\nChNWbTiMWbckQssL7ojIjVxeFL/00ksXfNzDwwMLFizAggULztsmIiICq1evdnVopBBZuY6hExq1\nhLSYjl1gR0Q9nyRJSI8Lg9HUhNOGFuSeqsZrm47i/hvjoVL4zB5E1H3xbTd1KbPFhl2HHfNWJ0eH\nwNvNMysQUfckSRJSh/ghLtKx/PO+4xV4Z9sJ50qpRESuxqKYutTeYxVobHasTHhFan+ZoyEiJVOp\nJPzpqoGI6R8AANiRXYIN35ySOSoi6qlYFFOX+urAaQBARLA3YgcEyhwNESmdVqPCrN8nIjLMMY3n\npt352LavSOaoiKgnYlFMXeZUaT3yyxoAAFek9OOyzkTULt5eWjw6JQlhgY65TNd9eRK7j5TKHBUR\n9TQsiqnLtPYSe2rVyBwRIXM0RNSdBPh64tHbkhHg4wEAeH3zcWSfNMgcFRH1JCyKqUsYmyzYe6wC\nADA6PhzeXm5fN4aIepiwQB0e/UMyvD01sAuBf248ghOFNXKHRUQ9BIti6hLf5pTCcmY1oN+k9JM5\nGiLqriLDfPHXWxPhoVHBYrXj5Y9y8FNJvdxhEVEPwKKY3M4uBLYfdAydiO4fgAHhfjJHRETd2dD+\ngXjo5gRo1BJazDb8/YNsnK4wyh0WEXVzLIrJ7XJPVaOythkAcCV7iYnIBUYMCcb9N46ASpLQ2GzF\nC+9nO1fKJCLqDBbF5HbbDxQDAPy8tUgbFiZzNETUU6QNC8W9E+MAAPWNZryw7iAMdU0yR0VE3RWL\nYnIrQ20TDuU5rhC/PKkvtBr+yBGR64we0QdTr40BAFTXt+CFddmoM7bIHBURdUesUMitdmSXQACQ\nJGB8cl+5wyGiHuiK1P649YooAEBFTROWr8tGXaNZ5qiIqLthUUxuY7HasPNQCQAgKSoEIQE6mSMi\nop7qupEDcUPmIABAiaERy949wB5jIuoQFsXkNjsPlcLYZAEAXJHKC+yIyL0mjxuMSZkDAQClVSYs\ne+8galkYE1E7sSgmtzBbbNiclQ8AGBDuixGD9bLGQ0Q9nyRJuGncEGePcWmVCcveZWFMRO3Dopjc\n4uvsEtQaHWP6Jo8bAkmSZI6IiHoDSZIwedxg3DhmEACgrNqEpe8eRE0DC2MiujAWxeRyLRYbNn9X\nAAAYHOGHpKhgmSMiot7EURgPcRbG5dUmLHv3AKrrm+UNjIgUjUUxudz2A8Wob2QvMRHJa/K4Ifjd\n2MEAgPKaJiz+z34UGxpljoqIlIpFMblUs9mKLXscvcRR/fw5lpiIZPW7sYNxy/ghAICahhYseWc/\nfiyukzkqIlIiFsXkUl8dKEaDyTHjBHuJiUgJJo4ehLuvi4UkAY3NVixfdxA5P1bJHRYRKQyLYnKZ\nphYrtpwZSxzTPwDDBwbJHBERkcPlSX3x4E0J0KhVMFvsWPlxDrJyy+QOi4gUhEUxucwX+0+jsdkK\ngL3ERKQ8qTGhmP2HJOg8NbDZBf79f0exdU8hhBByh0ZECsCimFzC1GzF53sKAQCxAwIRy15iIlKg\nYQOCMPePqQjw8QAAfLA9D69/dgwWq13myIhIbiyKySW27SuEqeXnXmIiIqWKDPPFvKlp6BviAwDY\ndbgMy949wEU+iHo5FsV0ycqrTdhyppd4+KAgxEQGyhwREdGFhQbq8OTUNCRHhwAAfiypx9/e3IdT\npfUyR0ZEcmFRTJdECIG3th6HxWqHWiXh9quGyh0SEVG76Dw1eOiWBEzKHAgAqDWa8fw7B5B1hBfg\nEfVGLIrpkuzMLsHxwloAwMTRA9Ev1FfmiIiI2k8lSbj58ij85Xfx8NCoYLXZ8e9NR/Gfz0/AbLHJ\nHR4RdSEWxdRp1fXNeO/LkwCAiGBvTBw9SN6AiIg6KSMuHE/8KQ16f08AwPaDxfjbW9+jqMIoc2RE\n1FVYFFOnvbrhMEzNVkgApl0XB62GP05E1H0N7OOHhXenO8cZlxgaseit7/Hf74s4bRtRL8Aqhjpl\n/4kK7MopAQBckdoP0f0DZI6IiOjS+Xl7YOYtCZh6bQy0Z4ZTvPfFSaz4KAf1jWa5wyMiN2JRTB1m\narbgrS3HAQB6P0/cMj5K5oiIiFxHkiRckdofT911GfqHOqZty/mxCgvW7EHWkTL2GhP1UCyKqcM+\n2vEjao2OHpO7ro+FzlMjc0RERK7XL9QXC+66DFen9QcANJgs+Pemo3hhXTbKq00yR0dErsaimDok\n58cq7Mh2DJu4PLkfUoaGyhwREZH7aDVq3HFNDB67LRlhQToAwLGCGixYsxf/t+sUV8Ij6kFYFFO7\nFVca8a+NRwAAvjot/jx5hMwRERF1jeGD9Fh0bwZuyBwEtUqC1WbHhm9O4ek39iL3VLXc4RGRC7Ao\npnZpMJmx4qMcNJttUKskPHRLAoL8vOQOi4ioy2g1atx0+RA8c08GYs5cXFxaZcKL72fjhXUHkV/G\n1fCIujMWxXRRVpsd/1h/GIa6ZgDAn66NwfBBepmjIiKSR98QHzz+x1TcfV0s/L21AICj+TX425vf\n418bj6CihuONibojXiFFFySEwNtbT+CH03UAgGvTIzE+uZ/MURERyUslSbg8qS8y4sKwbW8Rtuwt\nRIvZhr3HKrD/RCUuT+6L6zIGICRQJ3eoRNROLIrpgj7fW4RvD5cCABKjgjHlimiZIyIiUg4vDw1u\nHDsYv0nph//bnY8dB4thswtsP1CMrw+WICMuDL8dOQADwv3kDpWILoJFMZ3XwZOV+HB7HgCgX4gP\n7r8xHiqVJHNURNRb2O12VFdXyR3GBdntjtknVCoVJqTocVmUD7btL0f2T7WwC4Hvjpbju6PliOnn\ni/GJoYju6wtJct3fUY1GgtVqQm1tI6zW88+f/Ms4lU6v13eLOKnnYVFM57T3WDle23QUAo6ZJmb9\nPpHzERNRl2o01mFndjnCwpS7klxZSSFUGi3CwiKc2waGahHip0deqQmFlc2w2YEfio34odgIf50a\nA8O8EBniBQ/tpRd+KpUEnc4DTU1m2O3nL4rPFacSGY11uHZULEJCQuQOhXohVjl0ls/3FuL9rxw9\nxJ4easy8JQGhHBdHRDLw9vGHf6ByL+xtqK+BpPY4K0Z/ABF9gGazFScKa3G8oBYtFhvqm2w4XNCI\n3EITBoT7YmhkAProvTvde6xWSfD29oSHZwtsFyiKzxcnEf2MRTE52YXAB1/lYdu+IgCAv48HHrk1\nCQP7cCwcEVFneHlokBQdgvjBevxUUo+803Uw1DXDLgTyyxqQX9YAX50WA/v4YkC4H0ICvFw6vIKI\n2o9FMQEALFY7Xtt0FPuOVwAAwvXeeHRKEnuIiYhcQKNWISYyEDGRgahpaMbJ03X4qaQeZosdxiYL\nck/VIPdUDby9NBgQ7iiQw4J0ULFAJuoyLIoJ9SYz/rnhCE4U1QIAovr5Y9YtifDz9pA5MiKinifI\nzwsZcV5IiwlFQbkR+aX1KKkywW4XMDVbcbzAMdzCQ6NCuN4bfYK90UfvjUBfD/YiE7kRi+JeTAiB\nrNwyrPsyD8YmCwAgZWgIpt8YD0+tWuboiIh6NrVahSF9/TGkrz8sVjtOVxpRWG5EcaURVpuA2WpH\nUYURRRVGAICXhxrhem8EB3hB7+cJvb8XfLyU+zIuhIDNLmC22GG12WGx2WG1Or632gTsQgCOfwAE\nhACam5pxJL8OIQ0SPDRqeGrV8NCq4KvTwkenZc85uZVyf5vIrSprm/D25yeQe6raue3qtP647aqh\nnHaNiKiLaTUqDI7wx+AIf1htdpRWmVBa1YiyKhNqjY7ZN5rNNhSUNaCgrMG5n7eXBmFB3vDTaeDj\n5SgcfXUa+Oi00KhdO62ZzWZHi8WGFosNzeafby1mG5rNVsf3Fsf9Fouj7YVmxDif/XkNAArO2q5W\nSfDz1sLfxwP+Ph4I9PFESKAXQgN1zpu/t5a96dRpLIp7Gbtd4Ivvi7D+m59gtjjmrQwP0uGu38Yi\ndmCQzNEREZFGrUJkmC8iw3wBAE0tVpRVm1BebUJFTRPqjGa0lpqmZivyS+vPeRwvD0dPq1ajgt1q\ng1bTgoKasrOK5dYa0moTZ3pxf+7NtVjtzkL3QrNbdAWbXaDWaHa+STgXD60K4UHe6Bvi47gF+6Bv\niDfCgnRQc+5juggWxb2E1WbHvmMV2LKnEKcrHR/FqSQJ140agBsyB8GDwyWIiBRJ56lx9iIDjr/n\ntQ0tqK5vQY2xxVEoNrSgxWJrs19rT+7PbCivq3N5fB4aFTw91M4i3LP165nvtRqV46ZWQaN2fK9W\nS86hEJIESJAACaivrUHy0FD4+AbAbG3tdbahwWRBvcmM+safbzVGMwy1TTBb7c5YzJa2Q05aadQS\n+gb7ON9sRIb5IjLcD746rcvzQd0Xi+IerrHZgq+zS/DF90Vt3l0P7OOHadfFculRIqJuRqNWISRQ\nh5BAnXOeYpOpBc1mG4xNFjQ2WRxfm60wW2ywWO1oaDDCapcAlQY2u4AQbXt9BQCNSoJG4yhcNWrJ\nUcCqVfD4ZaHroYanVgVPrRpeHhp4eahdOuTOU6tCkK8HQkJ82tVeCIG6RjMqa5tQWduEipomlFWb\nUGIwoay6EVab4zytNoHCCiMKf1UsB/l5YsCZAnlguONrKKfF67VYFPdAdiFQUNaA3UfK8G1OaZve\ng/AgHSZkDMC4pAh+lERE1INoNSoE+XkiyM/zrMeKC3+EpPZA336RMkTmPpIkIdDXE4G+nhjaP7DN\nYza7HZW1zSgxNKK40ujsQa6oaXIOP6lpaEFNQwsO/fjzcuI6Tw0iQ33QP8wXA/v4IT46FAFeGqh5\nvU2Pp+iieO3atVizZg0MBgNiY2Mxf/58JCYmyh2WIpktNhwrqEF2ngHZeQbU/WrMVUxkICZkRCIp\nOoRX7xIRUY+nVqnQR++Yzi41JtS5vcVsw+kzRXJhhRFF5Q0oqjQ6r7NparHih9N1+OF061CT45AA\nhAbpzoxRdoxT7hvigwi9Dzw9OPywp1BsUfzZZ59hyZIlWLRoERISEvDWW2/hz3/+M7Zu3Qq9nstU\n1jS0IL+sHgVnVkQ6Xljj/IVupVZJSBsWigkZA5xj0YiIiHozTw81ovoFIKpfgHOb3S5QXmNCYbkR\nhWeK5NMVRuewQwGgosYxPCM7z9DmeHp/T4QF6hAW5I1wvQ5hgY4L+4L9veCt4Cnz6GyK/d968803\n8Yc//AGTJ08GADzzzDPYsWMHPv74Y9x3330yR9c1Wsw2GOqaUFnXjKq6ZlTWOsZKFZQ1oK7x3Fff\n+nhpkBgVjOShoRgxWA+dp2L/i4mIiBRBpZIQEeyDiGAfjBwe7tzeZLaitsmK3DwDCssbUFrViBJD\nI5pafh6WWF3vuOjxeGHtWcfVeaqh9/OC3t8Len9PBPl6OqeUa70FeHuwt1khFFkxWSwW5Obm4v77\n73dukyQJmZmZyM7OljGy9hFCoMFkcUxWbj0zYbnNDqtVoNliPTOn489zPTa1WNFgclwYYTSZ0dBk\ncd6/GK1GhQFhvojqF4CUoSGI7h/AscJEREQu4OftgQH9ghAZ7A3rmVkuhHBMDVdS1YiSykZU1DSh\nvNYxXZ6httmxKMkZTS02FLc0otjQeMHn0ahV8PFyzC/t7aWBr5cWOk/HhYxeHo4LHL20anh5aqDV\nqODROqOHRv2LmT0kqNUqaFSOr2q1BLXKMcuHWiVB1XrjEMrzUmRRXFNTA5vNhpCQkDbbg4ODcerU\nqQ4dS+3iycsvxm4XePqNfcgvbbh44w4K8PVAWKAOA/v4YVAffwzu64++Id6yFMGtee3q/LbSaFTO\nX3QlU6skNJnqO3V1tkqlgrlFg5YWK+x2+8V36KQmUwPUag8Y62vc9hyu4I44XZ3j3pzLc7nU/HaH\nfModY3tzLHec7dVkqodG0xcajTI6d873WhcapENokA5J0W3rFKvNjqq6ZpTXNKG6vhnV9Y5Peqvq\nW1BV33zOqfNa96trNJ/3U2BX8vbU4L4bhyNtWJjbn6s95KojzkWRRfH5CCE6PE2Kv7/OTdGc38rH\nruzy55SLHPkFgKCgWCR1i2suh8kdQDuMljuAduoOcXaHGAHG6UrdIUag+8SpTB15rQsN8UOsG2Mh\n91FOef4LQUFBUKvVMBjaDmavrq5GcHCwTFERERERUU+lyKJYq9UiPj4eWVlZzm1CCGRlZSElJUXG\nyIiIiIioJ1Ls8Im7774bc+fOxYgRI5xTsjU3N+Pmm2+WOzQiIiIi6mEUWxRff/31qKmpwSuvvAKD\nwYC4uDi89tprnKOYiIiIiFxOEr9eAJ2IiIiIqJdR5JhiIiIiIqKuxKKYiIiIiHo9FsVERERE1Oux\nKCYiIiKiXo9FMRERERH1eiyKiYiIiKjXU0xRvHbtWlx55ZVITEzElClTkJOTc8H2W7ZswXXXXYfE\nxETceOON+Prrr89qs2LFCowdOxZJSUmYNm0aCgoK2jxeV1eH2bNnIy0tDenp6XjyySdhMpnO+XwF\nBQVISUlBRkZG509SRkrO75o1azBhwgQkJCRg/PjxWL169aWdrEyUmuNvvvkGf/jDH5CamorRo0dj\n1qxZKC4uvvQT7mJy5Pdf//oXbrvtNiQnJ5/3d7+0tBTTp09HcnIyxowZg2XLlsFut3f+RGWkxBwf\nP34cs2fPxm9+8xskJSVh4sSJePvtty/tRGWixPz+Um1tLS6//HLExcXBaDR2/AQVQMk5Xr9+PW68\n8UYkJiZizJgxWLRoUedOUmZKzXFOTg7uvvtupKenIyMjA/feey+OHz/esZMTCrB582YxYsQIsWHD\nBpGXlycWLFgg0tPTRVVV1TnbHzhwQAwfPly8/vrr4scffxQrVqwQ8fHx4uTJk842q1evFunp6eLL\nL78UJ06cEA888IC46qqrREtLi7PNvffeKyZPnixycnLE/v37xbXXXitmz5591vNZLBZxyy23iOnT\np4v09HTXJ8DNlJzfRYsWieuuu05s375dnD59WuTm5ordu3e7JxFupNQcFxUViYSEBPH3v/9d1Cej\nfgAAEqRJREFUFBYWiqNHj4o//elP4qabbnJfMtxArvyuXLlSvPnmm2LJkiXn/N232Wxi0qRJ4p57\n7hHHjx8XO3fuFKNGjRIvvfSS65PgZkrN8UcffSSeffZZsW/fPlFUVCQ+/fRTkZSUJN555x3XJ8GN\nlJrfX5oxY4aYPn26iI2NFQ0NDa458S6k5By//vrr4vLLLxebN28WhYWF4sSJE+Krr75ybQK6gFJz\n3NjYKDIyMsS8efPEqVOnRF5enpg5c6YYM2aMsFqt7T4/RRTFt956q1i0aJHzvt1uF+PGjROvvvrq\nOds//PDD4v7772+zbcqUKWLhwoXO+2PGjBFvvPGG835DQ4NISEgQmzdvFkIIkZeXJ4YNGyZyc3Od\nbXbu3Cni4uJERUVFm2MvW7ZMPP7442L9+vXdsihWan7z8vJEfHy8yM/Pv9RTlJ1Sc7x161YRHx/f\n5nm++uorERcX16E/FHKTI7+/dL7f/R07dojhw4e3eUF47733xGWXXSYsFkt7T08RlJrjc3nmmWfE\nXXfd1a62SqH0/K5du1ZMnTpVZGVldduiWKk5rqurE0lJSeK7777r4Bkpj1JzfPjwYREbGyvKysqc\n206cOCFiY2NFYWFhe09PyD58wmKxIDc3F6NHj3ZukyQJmZmZyM7OPuc+2dnZyMzMbLNt7NixzvZF\nRUUwGAwYNWqU83FfX18kJSU522RnZyMgIADDhw93tsnMzIQkSTh06JBzW1ZWFrZt24annnrq0k9W\nBkrO7/bt2xEZGYmvvvoKV111Fa688krMnz8fdXV1rjn5LqLkHMfHx0OlUuHjjz+G3W5HQ0MDNm7c\niMzMTKjVatckwM3kym97HDp0CDExMW2Wnx87diwaGhqQl5fX7uPITck5PpeGhgYEBARc0jG6ktLz\nm5eXh3/+859Yvnw5VCrZy4JOUXKOd+3aBSEESktLcf3112P8+PF4+OGHUVZW1pFTlJ2Sczx48GAE\nBgbiww8/hMViQXNzMz788ENER0ejX79+7T6O7D/9NTU1sNlsCAkJabM9ODgYBoPhnPtUVlZesL3B\nYIAkSRdt88sXMgBQq9UICAhwtqmpqcG8efOwZMkS+Pj4dP4kZaTk/BYVFaG4uBiff/45li9fjqVL\nlyI3Nxd//etfO3/CMlByjvv37481a9bgpZdeQkJCAtLT01FWVoaXX3658yfcxeTKb3sYDAYEBwe3\n2dZ6zMrKynYfR25KzvGvHThwAFu2bMFtt93W6WN0NSXn12w2Y/bs2ZgzZw7Cw8PbvZ/SKDnHRUVF\nsNlsePXVVzF//nysXLkSdXV1mDZtGqxWa7uPIzcl59jHxwdvv/02Pv30UyQlJSE1NRW7du3Cq6++\n2qE3erIXxecjhIAkSR1q74pj/rLNggULcMMNNyAtLa3dz9FdKCG/QghYLBYsW7YMqampSE9Px+LF\ni/Hdd98hPz+/3bEplRJybDAYMH/+fNx88834+OOP8c4778DDwwMzZ85sd1xKJVd+28tVx5GT0nL8\nww8/4MEHH8TMmTPb9FZ1V0rI74svvojo6GhMmjSpzXP0lNc7JeRYCAGbzYYFCxYgMzMTiYmJePHF\nF1FQUIA9e/a0+zhKpYQct7S04Mknn0RaWho+/PBDrFu3DkOHDsX06dNhNpvbfRzZi+KgoCCo1eqz\n3hFUV1ef1QPTKjQ09JztW99phISEQAhxwWOGhISgurq6zeM2mw319fXO4+zZswevv/464uPjER8f\nj/nz56O+vh4jRozA+vXrO3/SXUiJ+W1tExoaCrVajQEDBjjbREVFAXBc0d9dKDnHa9euhZ+fH2bP\nno3Y2FhcdtllWL58ObKysi56xbBSyJXf9ggJCUFVVVWbba3H/HXPh5IpOcet8vLyMG3aNNx22224\n//77O7y/nJSc3z179mDr1q3O17lp06ZBCIHRo0dj1apV7T6O3JSc49DQUADAkCFDnNv0ej2CgoJQ\nUlLS7uPITck5/vTTT1FSUoLnn38e8fHxSExMxAsvvIDTp0/jiy++aPdxZC+KtVot4uPjkZWV5dwm\nhEBWVhZSUlLOuU9ycnKb9oBjzE5ycjIAIDIyEiEhIfjuu++cjxuNRhw6dMh5zOTkZNTX1+Po0aPO\nNllZWRBCIDExEQDw/vvv45NPPsHGjRuxceNGzJo1C76+vti4cSOuueYa1yTAzZSY36SkJABAamoq\nbDYbioqKnG1OnToFSZLQt2/fSzzzrqPkHDc3N581drj13Xd3mTZMrvy2R3JyMn744Yc2b0527doF\nPz8/5xu87kDJOQaAkydP4q677sLNN9/c7YZXAcrO78qVK52vcRs3bsSzzz4LSZLw7rvv4o477ujI\nacpKyTlOTU0F4Hh9a1VbW4uampoOjXeVm5Jz3NLSclbP8i8/lW4v9dNPP/10u1u7iY+PD1asWIGI\niAhotVq8/PLLOHHiBBYvXgydTofHH38chw8fdn5cFh4ejpdffhk6nQ4BAQF45513sHXrVjz33HPO\nMZat43eioqJgNpvx7LPPwmw2Y/78+VCr1dDr9Th06BA2b96MuLg4nD59GgsXLsS4ceMwefJkAI53\nRXq93nkrKirCrl27MGfOHHh6esqWr45San4jIyOxfft27Ny5E3FxcSgvL8czzzyD6Oho3HnnnbLl\nqzOUmmONRoN///vfzucsLi7Gs88+CyEEHn744W5zsZ0c+QUcn1gUFxfj0KFDOHDgAMaPHw+DwQBv\nb29otVpERkZi27Zt2L17N2JiYnDs2DE8++yzuP322zFmzBjZ8tUZSs3xyZMnceedd2Ls2LF48MEH\nYTKZYDKZ0NzcDJ1OJ1u+Okqp+Q0ICGjzOtfQ0IANGzZgzpw53epiRkC5OQ4MDMSxY8ewadMmxMXF\noaGhAYsWLYJGo8Fjjz3WrS5uVGqOfX198fbbb6OiogKRkZGoqqrCsmXLUFRUhDlz5sDb27t9J9ju\neSrc7J133hFXXHGFSEhIEFOmTBE5OTnOx6ZOnSrmzp3bpv3WrVvFhAkTREJCgpg0aZLYuXPnWcd8\n5ZVXxJgxY0RiYqK45557zpr6q66uTsyePVukpqaKyy67TDz55JPCZDKdN8buOiWbEMrNb0VFhZg5\nc6ZITU0VY8aMEfPmzRN1dXUuPPOuo9Qcb968Wdx0000iJSVFZGZmihkzZoiffvrJhWfeNeTI79y5\nc0VsbOxZt7179zrblJSUiOnTp4vk5GQxevRosWzZMmGz2Vx89l1DiTleuXLlOR+/8sor3ZAB91Ji\nfn9tz5493XZKNiGUm2Oj0SiefPJJkZGRIUaOHClmzpzZZvqw7kSpOd69e7e44447RHp6usjIyBB3\n3323OHToUIfOTRKih4ymJyIiIiLqpO7TZ09ERERE5CYsiomIiIio12NRTERERES9HotiIiIiIur1\nWBQTERERUa/HopiIiIiIej0WxURERETU67EoJiIiIlKY3Nxc3HPPPUhPT8eoUaPw1FNPwWQyXXCf\nqqoqzJ07F+PGjUNycjLuu+8+FBQUtGlTVFSEhx56CKNHj0ZaWhoeeeQRVFVVufNU8MEHH2Dq1KlI\nS0tDbGwsjEajW5+vs1gUExEREclg6tSp+OSTT87aXlFRgXvuuQeDBg3Chx9+iNdeew0nT57E3Llz\nL3i8GTNmoLi4GP/617/wySefICIiAtOmTUNzczMAoKmpCffccw9UKhX+85//YN26dTCbzfjLX/7i\nlvNr1dzcjMsvvxx/+ctfIEmSW5/rUrAoJiLqQqtWrUJsbKzzNnLkSNxxxx34+uuv27SLjY3FG2+8\n4bLnzM7OdsmxiMj9duzYAa1Wi6eeegqDBg3CiBEj8Mwzz2Dbtm0oKio65z75+fk4dOgQnn76acTH\nx2PQoEF45pln0NzcjE2bNgEA9u/fj5KSEixZsgTR0dEYOnQoli5diiNHjiArK8t5rLKyMjz88MNI\nT0/HyJEjncV2Z91555247777kJSU1OljdAUWxUREXUyn0+GDDz7ABx98gMWLF6OlpQUPPPCA2wrX\nVatW4eDBg245NhG5ntlshlarbbPN09MTgKOwPd8+kiTBw8PDua31fus+FosFkiS1ObaHhwdUKpWz\njdVqxb333gs/Pz+89957eO+99+Dj44M///nPsFqtLj1PpWFRTETUxSRJQmJiIhITE3H11Vfjf//3\nfyGEwIYNG+QOjYgUYNSoUaisrMSaNWtgsVhQV1eHF198EZIkoaKi4pz7DBkyBBEREXjppZdQX18P\ns9mMV199FWVlZaisrAQAJCUlQafTYfny5WhubobJZMLSpUtht9udbTZv3gwhBBYtWoTo6GgMGTIE\nixcvRmlpKfbu3dtlOZADi2IiIpmFh4dDr9ejtLS0zXa73Y5Vq1ZhzJgxGDVqFJ544gnn2EAAqKys\nxLx583D11VcjKSkJEyZMwN///neYzWZnm9jYWEiShKVLlyI2NhZxcXHYt29fl50bEf1s9erVSElJ\ncd7279+Pp556ynk/NTUVZWVliI6OxtKlS/HGG28gOTkZ48aNQ2RkJIKDg6FWq895bI1Gg1WrViE/\nPx8ZGRlITU3Fvn37MH78eOc+er0eK1aswI4dO5CSkoKMjAwYjUbExcU525w4cQIFBQVt4hw5ciTM\nZjMKCwsBAOvWrWszDOzXt7i4OHz77bddk1QX0sgdABFRb9fY2Ii6ujpERka22b527VqkpaVh6dKl\nyM/Px9KlSxEaGopHH30UAFBTU4PAwEDMmzcP/v7+OHXqFFatWgWDwYDFixcDcFz1PWXKFEydOhU3\n3HADACAqKqprT5CIAAC33347rr/+euf92bNnY8KECbj22mud28LCwgAAEydOxMSJE1FdXQ2dTgcA\neOONN9C/f//zHn/48OHYsGEDjEYjLBYLgoKCMGXKFCQkJDjbZGZmYtu2baitrYVGo4Gvry/Gjh3r\n/PtjMpkwYsQIvPDCC2cdPygoCAAwadIkjBw58oLnGhERcbF0KA6LYiIiGdhsNgBAeXk5li9fDh8f\nH0ydOrVNm9DQUCxfvhwAMHbsWOTm5uLzzz93FsUxMTF4/PHHne1TUlKg0+kwd+5cPPXUU/D09ERi\nYiIAoG/fvs7viUge/v7+8Pf3d9739PREcHDwWW+If0mv1wMAPvroI3h6emLMmDEXfR5fX18Ajovv\njhw5gkceeeSsNoGBgQCArKwsVFdX48orrwQAxMfHY8uWLdDr9fDx8Tnv8VufoydhUUxE1MVMJhPi\n4+Od9zUaDf7xj39g0KBBbdplZma2uR8VFYXPPvuszbY333wTH374IU6fPo2WlhYAjjHLRUVFiI6O\nds8JEJHbrV27FikpKfD29sauXbuwfPly/M///E+bYvS3v/0tHnvsMVx99dUAgK1bt0Kv1yMiIgIn\nTpzAc889h2uuuQajR4927rN+/XpERUVBr9fjwIEDeO6553D33Xdj4MCBAIAbbrgBa9aswYwZMzBz\n5kz06dMHxcXF+O9//4v77rsP4eHhHT4Xg8EAg8GAgoICCCFw/Phx+Pr6IiIiAgEBAZeYKddhUUxE\n1MV0Oh3Wrl0Lm82GgoICvPjii5gzZw42bdqEkJAQZ7tf9igBgFarbTNe+M0338SyZctw3333YeTI\nkfD390dOTg4WLVrkLJCJSLkuNGdvTk4OVq5cCZPJhCFDhmDRokXOIVCtCgoK2iyEUVlZiSVLlqCq\nqgqhoaG46aab8MADD7TZ59SpU3jppZdQV1eHfv36YcaMGbjrrrucj3t5eWHt2rV44YUXMGvWLDQ2\nNiI8PByjRo3qdO/wunXrsGrVKkiSBEmSnJ+KPf/885g8eXKnjukOLIqJiLqYJEkYPnw4ACAhIQGD\nBg3ClClT8I9//AMLFy5s93G2bt2Kq666qs1Ho3l5eS6Pl4jc4+233z7vY0uXLr3o/seOHWtzf+rU\nqWcNw/q12bNnY/bs2RdsExwcjOeff/6iz99eDz30EB566CGXHc9dOPsEEZHMRowYgYkTJ2L9+vUd\nWm61paXlrLlMP/3007PaaTQa9hwTEV0Ei2IiIgWYMWMGLBYL3nrrrXbvk5mZiS+++AJr167Frl27\nMGfOHOeUSb8UFRWFL7/8Evv27cORI0fQ2NjoytCJiHoEFsVERF3sXOMIBw8ejIkTJ2LdunUwGo3O\nsXcX8uCDD2LSpEl45ZVX8Oijj8LLywsLFiw4q93ChQtht9sxffp03HrrrTh69KjLzoWIqKeQhBBC\n7iCIiIiIiOTEnmIiIiIi6vVYFBMRERFRr8eimIiIiIh6PRbFRERERNTrsSgmIiIiol6PRTERERER\n9XosiomIiIio12NRTERERES9HotiIiIiIur1WBQTERERUa/HopiIiIiIer3/B9GgRwtfoO/xAAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8XOV97/HPb2a077tkybK84RVsg8MOYQ2G0EAa2mxNIE0uty1N0tvmtvTV3ube2y1tkqbpK10uLWmgTaANhUAWtpgtJGBsY2O8y6ssW6u179tz/5gjI4z2mdGMjr7v10svzZw5c+Y3x+OvnnnOc55jzjlERMS/AvEuQEREYktBLyLicwp6ERGfU9CLiPicgl5ExOcU9CIiPqegFxHxOQW9iIjPKehFRHwuFO8CAAoLC11VVVW8yxARmVd27tzZ7Jwrmmq9hAj6qqoqduzYEe8yRETmFTM7OZ311HUjIuJzCnoREZ9T0IuI+JyCXkTE5xT0IiI+p6AXEfE5Bb2IiM8p6EVEfE5BLyLicwlxZux88L1tNTNa/xOXVcaoEhGRmVGLXkTE5xT0IiI+p6AXEfE5Bb2IiM8p6EVEfG7KoDezb5tZo5ntHbPsq2Z20Mz2mNkTZpY75rE/NLMjZnbIzG6JVeEiIjI902nRfwfYct6y54H1zrmLgMPAHwKY2VrgY8A67zn/YGbBqFUrIiIzNmXQO+deAVrOW/acc27Iu/s6UOHdvgN41DnX75w7DhwBLo1ivSIiMkPR6KP/deBp73Y5cGrMY7XeMhERiZOIgt7M/ggYAr47i+fea2Y7zGxHU1NTJGWIiMgkZh30ZnYPcDvwSeec8xafBhaPWa3CW/YezrkHnHObnXObi4qmvIi5iIjM0qyC3sy2AL8PfMg51zPmoaeAj5lZipktBVYCb0RepoiIzNaUk5qZ2SPAdUChmdUCXyY8yiYFeN7MAF53zv2Gc26fmf0nsJ9wl859zrnhWBUvIiJTmzLonXMfH2fxg5Os/+fAn0dSlIiIRI/OjBUR8TkFvYiIzynoRUR8TkEvIuJzCnoREZ9T0IuI+JyCXkTE5xT0IiI+p6AXEfE5Bb2IiM8p6EVEfE5BLyLicwp6ERGfU9CLiPicgl5ExOcU9CIiPqegFxHxOQW9iIjPKehFRHxOQS8i4nMKehERn1PQi4j4nIJeRMTnFPQiIj43ZdCb2bfNrNHM9o5Zlm9mz5tZtfc7z1tuZvZ3ZnbEzPaY2cWxLF5ERKY2nRb9d4At5y27H9jqnFsJbPXuA9wKrPR+7gX+MTpliojIbE0Z9M65V4CW8xbfATzk3X4IuHPM8odd2OtArpmVRatYERGZudn20Zc45+q82/VAiXe7HDg1Zr1ab5mIiMRJxAdjnXMOcDN9npnda2Y7zGxHU1NTpGWIiMgEZhv0DaNdMt7vRm/5aWDxmPUqvGXv4Zx7wDm32Tm3uaioaJZliIjIVGYb9E8Bd3u37waeHLP8097om8uB9jFdPCIiEgehqVYws0eA64BCM6sFvgx8BfhPM/sscBL4VW/1nwC3AUeAHuAzMahZRERmYMqgd859fIKHbhxnXQfcF2lRIiISPTozVkTE5xT0IiI+p6AXEfE5Bb2IiM8p6EVEfE5BLyLicwp6ERGfU9CLiPicgl5ExOcU9CIiPqegFxHxOQW9iIjPKehFRHxOQS8i4nMKehERn1PQi4j4nIJeRMTnFPQiIj6noBcR8TkFvYiIzynoRUR8TkEvIuJzCnoREZ9T0IuI+FxEQW9m/8PM9pnZXjN7xMxSzWypmW0zsyNm9h9mlhytYkVEZOZmHfRmVg58AdjsnFsPBIGPAX8FfMM5twJoBT4bjUJFRGR2Iu26CQFpZhYC0oE64AbgMe/xh4A7I3wNERGJwKyD3jl3GvgaUEM44NuBnUCbc27IW60WKI+0SBERmb1Ium7ygDuApcAiIAPYMoPn32tmO8xsR1NT02zLEBGRKUTSdXMTcNw51+ScGwQeB64Ccr2uHIAK4PR4T3bOPeCc2+yc21xUVBRBGSIiMplIgr4GuNzM0s3MgBuB/cCLwF3eOncDT0ZWooiIRCKSPvpthA+6vgm87W3rAeAPgN81syNAAfBgFOoUEZFZCk29ysScc18Gvnze4mPApZFsV0REokdnxoqI+JyCXkTE5xT0EXDOxbsEEZEpKehn6UxbL3/24wM8ses0PQNDUz9BRCROFPSzMOIcP9h9mmHn2Hmyhb95/jAH6zviXZaIyLgU9LPwxvEWalt7uXPjIu67fgVZqSEef/M0Q8Mj8S5NROQ9FPQz1Nk3yHP761lelMGGilzKctK4bX0ZXf1D7DndHu/yRETeQ0E/Q68cbmJwyHHHhnLCJwTDiuJMirNS+PmRZh2gFZGEo6CfoSNNXSwryqAwK+XcMjPjqhWF1LX3cby5O47ViYi8l4J+Brr6h2jo6GdpYcZ7Htu4OJf05CA/P9Ich8pERCamoJ+BE15rfdk4QZ8UDHDZ0nwO1nfS1jMw16WJiExIQT8Dx5q7SQoa5Xnp4z6+qTIPB+w7o6GWIpI4FPQzcLy5i6qCDIIBG/fxwswUSrNTFfQiklAU9NPUPUn//FhrF2Vz8mw3TZ39c1SZiMjkFPTTdHyS/vmx1i3KxgE/PdAwB1WJiExNQT9Nx6fonx9Vmp1KfkYyz+ytn6PKREQmp6CfpuPN3ZP2z48yM9YtyuYXR5tp7x2co+pERCamoJ+GnoEhGjr6qCyYvDU/at2iHAaHHS8cVPeNiMSfgn4ajjZ244CSrNRprV+Rl0ZJdoq6b0QkISjop+FwQycAxdkpU6wZFjDjlnWlvHy4SXPVi0jcKeinobqxi6AZBRnTC3qALetK6Rsc4ZXDTTGsTERkagr6aahu6KQwK3nKA7FjXbo0n7z0JHXfiEjcKeinobqxi+Jp9s+PCgUD3Ly2hK0HGhkY0gVJRCR+FPRT6B0Y5lRrz7T758fasr6Uzv4hfnFUM1qKSPxEFPRmlmtmj5nZQTM7YGZXmFm+mT1vZtXe77xoFRsPR5u6cI4Zt+gBrlxeSGZKiGf3qftGROIn0hb9N4FnnHOrgQ3AAeB+YKtzbiWw1bs/b42OuCnJmnmLPjUpyPWri3luXwPDI7rylIjEx6yD3sxygGuBBwGccwPOuTbgDuAhb7WHgDsjLTKeqhu7SAoaBZkzD3oIj7452z3A9hMtUa5MRGR6ImnRLwWagH81s11m9i9mlgGUOOfqvHXqgZLxnmxm95rZDjPb0dSUuEMQqxs6WVo49dQHE7luVRHJoYBG34hI3EQS9CHgYuAfnXObgG7O66Zx4Stlj9tn4Zx7wDm32Tm3uaioKIIyYqu6sYuVxVmzfn5GSohrVxbx7L56XThcROIikqCvBWqdc9u8+48RDv4GMysD8H43RlZi/PQODFPT0sPKksyItrNlfSl17X3sqW2PUmUiItM366B3ztUDp8xslbfoRmA/8BRwt7fsbuDJiCqMo9ERN5G06AFuWlNMKGA8o9E3IhIHkY66+TzwXTPbA2wE/gL4CnCzmVUDN3n356UjjV0AEbfoc9OTuWJ5Ac/sVfeNiMy9iILeObfb62e/yDl3p3Ou1Tl31jl3o3NupXPuJufcvB1ucvJsDwCV+dObnngyt6wr5XhzN4cbuiLelojITOjM2EmcbOmmNDuV1KRgxNvasr6UpKDx6PaaKFQmIjJ9CvpJnGrpmfbFRqZSmJnCbReW8diOWrr7NXWxiMwdBf0kalp6otJtM+rTV1TR2T/EE7tOR22bIiJTUdBPoG9wmIaOfpZEMegvrsxlfXk2D792QgdlRWTOhOJdQKI61eIdiI1S1w2ELxz+6Suq+P3H9vD6sRauWF5w7rHvbZtZ3/0nLquMWl0i4m9q0U+gxgv6xVFs0QN8aMMi8tKTePDV41HdrojIRBT0ExgdWhnNrhsIz2j5mauW8tMDDbx1qi2q2xYRGY+CfgI1LT1kJAfJz0iO+rY/c1UVeelJfO25Q1HftojI+RT0E6hp6aGyIAOz2c1aOZms1CR+87rl/Ky6mW3HzkZ9+yIiYynoJxAeWpkWs+1/6vIqirNS+NpzhzQCR0RiSkE/jpERFz5ZKsr982OlJQf5/A0r2H6ila0H5u0EnyIyDyjox9HY2U//0AiVBRkxfZ2PXVrJssIM/uLpA7rUoIjEjIJ+HKNDK2PZogdICga4/9bVHGvq5g1dalBEYkRBP47RoI/20Mrx3Ly2hMuW5rP1QAN9g8Mxfz0RWXgU9OOoOdtNwGBRbuwOxo4yM/74g2vpGRjm5cOJe+1cEZm/FPTjqGnpoSwnjeTQ3OyeCytyuLA8h9eOndXMliISdQr6cZxs6WFJFOe4mY4bVhczODTCz6qb5/R1RcT/FPTjiPXQyvGUZKdyYUUOrx87S5da9SISRQr683T3D9HcNRDVWSun64bVxQwOj/CzavXVi0j0KOjPM1dDK8dTnJXKRRU5bDvWohE4IhI1CvrzxDPoAa5aUcjA8Ai7alrj8voi4j8K+vOcOjeGPrZnxU6kIi+dirw0Xj/eojlwRCQqFPTnOXm2h+zUEDnpSXGr4fKlBTR19nOsuTtuNYiIfyjoz1PT0sOSGM9xM5ULK3JISwryuqYwFpEoiDjozSxoZrvM7Efe/aVmts3MjpjZf5hZ9K/cEUM1cRhaeb6kYIDNVXkcqOugvXcwrrWIyPwXjRb9F4EDY+7/FfAN59wKoBX4bBReY04MjzhqW3uifp3Y2bi0Kp8Rhy43KCIRiyjozawC+CDwL959A24AHvNWeQi4M5LXmEv1HX0MDrs5Pyt2PAWZKSzOS+OtWgW9iEQm0hb93wK/D4x49wuANufc6KmdtUD5eE80s3vNbIeZ7WhqSowThE6eDR/8jHfXzaiLKnKpa++jsbMv3qWIyDwWmu0Tzex2oNE5t9PMrpvp851zDwAPAGzevDkhxhGeiuIY+u9tq4l4GxeW5/CTt+vYU9vOTWtSI96eiCxMkbTorwI+ZGYngEcJd9l8E8g1s9E/IBXA6YgqnEM1LT2EAkZZTmKEanZaEksLM9hT26Yx9SIya7MOeufcHzrnKpxzVcDHgBecc58EXgTu8la7G3gy4irnyMmzPZTnpREKJs6o04sqcmnuGuBMu7pvRGR2YpFofwD8rpkdIdxn/2AMXiMm4jFr5VTWL8omYLBHo29EZJaiEvTOuZecc7d7t4855y51zq1wzv2Kc64/Gq8xF04mYNCnp4RYUZzJvroOdd+IyKwkTh9FnLX3DtLWM5hwQQ+wpiyblu4BGjvnzd9MEUkgCnrPucnMEmAM/fnWlGYDcKCuI86ViMh8pKD3nPDG0Md7npvxZKclUZGXpqAXkVlR0HtONI8GfeK16AFWl2ZzqrWXjj7NfSMiM6Og95w420NJdgrpybM+hyym1paFu28O1XXGuRIRmW8U9J4Tzd1UJWC3zaiS7BTy0pPYr+4bEZkhBb3nxNmehA56M2NNWTZHm7oYGBqZ+gkiIh4FPdDZN0hzVz9VhYkb9BDupx8acRxt6op3KSIyjyjoCU99AFCVoAdiR1UVppMSCnCwXt03IjJ9CnreGVqZ6C36UCDAiuJMDtV36ixZEZk2BT3vtOgTdWjlWKtLs+noG2LfGbXqRWR6FPTA8ebuhB5aOdYFJZkAvHiwMc6ViMh8oaAnfGWpRDwjdjxZqeGzZLcq6EVkmhT0wPHmHpbOk6AHWFWaxVu1bTR3aZIzEZnagg/6rv4hmrv6WVKY+P3zo1aXZuMcvHQoMa61KyKJbcEH/egFwRP5ZKnzLcpJpTgrRf30IjItCz7oTzSPjqGfP0FvZtywuphXDjcxOKyzZEVkcgr6s4k9a+VErl9dTGf/ENtPtMS7FBFJcAs+6I82dVGSnUJGSuIPrRzr6hWFJAcD6r4RkSkt+KA/3NDJBSVZ8S5jxjJSQly2LF/DLEVkSgs66IdHHNUNXayah0EPcMPqYo41dZ+7aIqIyHgWdNDXtPTQPzTCBaXzN+gBXlCrXkQmsaCD/nBD+GpN87VFv6Qgg+VFGQp6EZnUrIPezBab2Ytmtt/M9pnZF73l+Wb2vJlVe7/zoldudB2uDwf9Sm/+mPnopjUlbDt+lvZeXUtWRMYXSYt+CPg959xa4HLgPjNbC9wPbHXOrQS2evcT0qGGThbnp82Lycwmcsv6UgaHnUbfiMiEZh30zrk659yb3u1O4ABQDtwBPOSt9hBwZ6RFxsrhhs55220zamNFLiXZKTyztz7epYhIgopKH72ZVQGbgG1AiXOuznuoHiiJxmtE28DQCMeauufl0MqxAgHjlnWlvHS4kd6B4XiXIyIJKOKgN7NM4L+A33HOvetqGC58GaRxL4VkZvea2Q4z29HUNPeTcx1v7mZoxLFqno64GWvLulL6Bkd4+bAmOROR94oo6M0siXDIf9c597i3uMHMyrzHy4BxO4+dcw845zY75zYXFRVFUsasjI64WVk8/4P+0qX55KUn8ew+dd+IyHtFMurGgAeBA865vxnz0FPA3d7tu4EnZ19e7Bxu6CQYMJYVzZ/JzCYSCga4eW0JPz3QwMCQJjkTkXeLpEV/FfAp4AYz2+393AZ8BbjZzKqBm7z7CedQfSdVBemkJgXjXUpUbFlfSmffED8/0hzvUkQkwcx6XKFz7lXAJnj4xtlud64cbuhk7aLseJcRNVevKCI3PYkndp3meu+MWRERWKBnxrb3DnLibA9rSv0T9MmhALdfVMZz++vp6h+KdzkikkAWZNDvqmkF4JIlCXvS7qx8eFMFfYMjPP123dQri8iCsSCD/s2TrQQMNizOjXcpUXVxZS5LCtJ5YtfpeJciIglkQQb9zppW1pRlz7uLjUzFzLhzYzmvHTtLXXtvvMsRkQSx4IJ+aHiEXTVtvuu2GfXhTeU4Bz/YdSbepYhIglhwQX+wvpOegWHfBn1VYQabl+TxH9trGBkZ96RkEVlgFlzQv+nTA7FjffrKKk6c7dGUCCICLMCg33mylZLsFMpz0+JdSszcur6U4qwUvvOLE/EuRUQSwIIM+kuW5BGewcGfkoIBPnnZEl4+3MTRpq54lyMicbaggr6ho4/a1l4urvRvt82oT1xWSVLQ+LfXTsa7FBGJM3+NL5zCG8dbAH/0z39vW82U66xblMMjb9SwOC+dz16zNO71jPWJyypjVImInG9Bteif3VdPQUYyF5bnxLuUOXHNykIGhkZ4pVoHZUUWsgUT9H2Dw7xwsJFb1pcSCi6Mt12Wk8aFFTn84mgzjZ198S5HROJkwXTdvHSoiZ6BYW5bXxbvUubUzWtK2Hu6nb9/4Qj/5471ca2lf2iYrr4hhkYc+890MDg8wuDwCGaQEgqSmhQgJRQkJRQgKzWJ1KSArw+ai8yVBRP0T++tIy89icuX5ce7lDlVkJnCJUvy+d4bNXzummUszk+fk9ftGRiiurGLmpYealt6aO4aoHfwnWvafnNr9ZTbSA4FKMxIprIgnaqCDDYuzuWK5QVU5qfrD4DIDCyIoO8bHGbrgUZuv6hswXTbjHXD6mLePt3G/3pyL/96z/tiFpJDwyO8fbqd3afaONrUxYiDpKBRnpvORRU55KYnk5USIhQ0rltVRFIwQCgYwDnHwNAI/d5P3+AwXf1DtPUM0tjZR83ZHp7dV8+j208BsKwwg4++bzEfuaSCwsyUmLwXET9ZEEH/s+pmuvqHuPXChdVtMyonLYn7t6zmf/9wP4+8cSrqI146+gbZeqCB14+30N0/RH5GMlevKGLdomwW5aYRDLz3D0tL9+CE2wuYkZ2aRHZqEpX56Wxeko9zjqaufo41dfNWbRt/+fRB/vrZQ1y2NJ/rVxWPO0GdRvaIhC2IoP/RnjPkpCVx5fKCeJcSN5++oornDzTwZz/ez9UrCqksiLwLp39omH9/vYZvvVBNa88gq0qyuHJFASuKMqP+rcHMKM5KpTgrlcuXFdDQ0cerR5p57ehZdp5s5aY1JVyxvICAunRE3sP3/Rgnmrv50Z46PrypnKQF2G0zKhAwvnrXBoJmfP7RXXRHcBWqkRHHk7tPc+PXX+ZPf7SfdYtyuO/6Fdx9ZRUri7PmpP+8JDuVj1xcwRduXMmSgnR+/HYdD756nNbugZi/tsh84/vk+8ZPD5McDPBb1y+Pdylxtyg3ja/+ygberm3jsw9tp3dgeOonnefV6mY+9Pev8sVHd5OVmsTDv34p//65y+I2d1BJdip3X1HFL28q50xbL3/3QjU7TrTgnGbuFBnl66A/UNfBU2+d4TNXVVGclRrvchLClvWlfOOjG3njeAufe3g77b0T95WP9WZNK596cBu/9uA2WrsH+cZHN/Djz1/NtRcUxbjiqZkZm6vy+cKNKynPTePxXad5+LWTNHbo3AER8Hkf/defO0xmSoj/fq1a82PdsbGc4RHHl77/Fjd+/SXuv3UNH7m4/D1dLn2Dw/ysupl//flxfnH0LLnpSfzxB9fwa5cvITUpGKfqJ5aXnsyvX72U14+d5Zm99dzyt6/w5x++kNsW6EF4kVG+DfrHdtby0wMNfOkDF5CTnhTvchLOL19cwQUlWfzJk3v50vff4mvPHuKSJXksL86ko3eQN463cKSpi4GhEbJSQty6vpRLl+aTEgry+JuJe03agBlXLi9kRXEmLx5s5Le++yYf2rCIP759zbz7Vpdo8wclWj0zNd/rj4Qvg/7Fg438wX/t4aoVBfy3a5fFu5yEtb48h8d+40p+uOcMPz3QyJsnW/nx23VkpYZICQXZUJHDukU5LCvKIBSYX718xVmpPPabV/IPLx7l7188wouHGvnSB1Z5s3om/ntxztHTP0R73yADQyM4BwGDzNQkMlNCJIcS6z30Dw3T3jNI7+Awo4dHjjR2UZSVQnZqaF6c4DbiHD0D4bO3eweHeeN4C8GAUZCRTGlOakJ+i52umAW9mW0BvgkEgX9xzn0lVq811kuHwq24tWXZ/L9PbSYlNH//ceZCIGDcsbGcOzaWAzA4PEJSMDDj1k8iSgoG+OJNK/mlDWX8yZP7+PJT+3jglWPcd/0KPnJJecJ8NpxznGnvY3dNG7tPtbL7VBv7znTQM8nB8tz0JMpz08I/eWlzejC8o2+Q2pZeatt6ON3ay+m23nFrfeBnx87VekFJFmvLstlUmcvFlXlU5KXFNfxHnKO5q5+asz3UtPRQ39FHY0c/A8Mj59b5Z6/+UWU5qVxYnsOGxblsqMjlwoocctLmR2+BxWJ0gpkFgcPAzUAtsB34uHNu/3jrb9682e3YsSOi1zx5tpu//MlBntlXz4riTB699/KonjU534Nvpl9D5/v7hXe/Z+ccLx1q4ptbq9l9qo3s1BAfvGgRv3RRGRcvyZuz1ppzjvqOPg7WdbK/roNdNW3sPtVGc1c/EJ72Yd2ibDZU5NLU2U92WhKpofCcP8Mjjq7+ITr6Bqlv7+N0Wy8tY4aTVhWks6kyj42Lc9m4OJc1ZdkRt/y7+od4uzZ8tvOP9pyhtrX33AH8gIVHPZXnplGYmUJ2WhLpyUECZjjn2FiZS2NHP8eauzlU38GBus5z02AUZiazqTKPTZW5bFqcx4bFOaQnx6bdObrP//HFo5xp7+VUSy81LT3naklLCrIoN5WS7FTyM5LJSk0iLSnIDauLGRwZoaVrgDNtvRxt6mJPbTvHmrvPbXtZUQYbK3LZWBkO/2js85kws53Ouc1TrRerFv2lwBHn3DGvmEeBO4Bxg362jjR28f2dp3j5UBMH6ztJSwryP29ZxWevXjqvv2ZJ9JkZ168u5rpVRbx29Czf31nLD3ad5pE3akgOBtiwOIdVpVksK8xkUW4q2WnhM3Nz0pLITksiORjAjPAPRsDC2wwYDI28M4XDgDeFQ2vPAM1dAzR39dPc2U9jZz+HGzo5WN/5rpFOywozuHZlIRsrw+G8uvSdoJjOH9vegWFOt/VyurUHB7x6pJkndoWPoSQFjaqCDJYXZVKel0ZpdiqFWclkJIfISAkRMMMMBoZG6BkYprNvkKaufho7+jl5tpvjzd2cbOk51xWTn5HMkoJ0FuelU5GXRllO2qShNvotcdTQ8AiHGjrZVdPGmzWt7K5p4/n9DUD4j8bi/HRWFmdSkZdOUVbKOz+ZKaQlB0kOBkgOBbypM4zBoREGhkcYHHIMDA/T3T9MY2c/TZ39NHb20dTZz/HmbvbXddDW884+L8pKYd2ibJYUpFOZn0FhZvK43y6uXlk47vtq7xlkz+k2dte08VZtO69UN/O4t8+TQwGWFYb3+eL8dAoyksnPSCY/M5mCjGQyUkIkBcKfpYHh8GclPyOZspzYfiOLVdCXA6fG3K8FLov2i5xo7ubbrx5n85J87r91NXduLKc0Z34dcJO5ZWZcuaKQK1cU8md3DvHa0bO8caKF7SdaeHL3GTr7Zn8i2WSyU0OsKM7kgxeVsbo0i9Wl2awqzYr4q39acpAVxZmsKM7kE5dVvqsb6O3T7Rxt6uJwYycvH25616Ryk8lKCbE4P5115TncuamcjV5XxdN76yOqNRQMsG5R+LjPr12+BIDW7gF2nwp/qznS2MWRxi62HW+Jyr9DfkYyi/PSuHV9KWvLsqlt7aU0O5WUCBuBOelJXLOyiGtWhocWj+7zt0618dapNqobu9hf18Fz++sZHJ66x+Q33r+c+29dHVFNU4lV181dwBbn3Oe8+58CLnPO/faYde4F7vXurgIORb2Q6CsEmuNdRJxpH2gfjNJ+iP8+WOKcm/Jklli16E8Di8fcr/CWneOcewB4IEavHxNmtmM6/WF+pn2gfTBK+2H+7INYHTXYDqw0s6Vmlgx8DHgqRq8lIiKTiEmL3jk3ZGa/DTxLeHjlt51z+2LxWiIiMrmYjaN3zv0E+Emsth8n86qrKUa0D7QPRmk/zJN9EJODsSIikjgS6zxqERGJOgU9YGbfNrNGM9s7weNmZn9nZkfMbI+ZXTzmsbvNrNr7uXvuqo6u2e4DM9toZq+Z2T5v+UfntvLoieRz4D2ebWa1Zvatuak4NiL8/1BpZs+Z2QEz229mVXNVdzRFuA/+2vv/cMBbJ/4T/TjnFvwPcC1wMbDThp7oAAAEGElEQVR3gsdvA54GDLgc2OYtzweOeb/zvNt58X4/c7wPLgBWercXAXVAbrzfz1zugzGPfxP4HvCteL+XeO0H4CXgZu92JpAe7/czl/sAuBL4OeFBKEHgNeC6eL8ftegB59wrQMskq9wBPOzCXgdyzawMuAV43jnX4pxrBZ4HtsS+4uib7T5wzh12zlV72zgDNALxvxrJLETwOcDMLgFKgOdiX2lszXY/mNlaIOSce97bTpdzrmcOSo66CD4LDkgFkoEUIAloiHW9U1HQT894UzqUT7Lcj6Z8r2Z2KeEP+NE5rGsujbsPzCwAfB34UlyqmnsTfRYuANrM7HEz22VmX/UmOPSjcfeBc+414EXC32zrgGedcwfiUN+7KOglKrzWzL8Bn3HOjUy1vs/8FvAT51xtvAuJsxBwDeE/eO8DlgH3xLOguWZmK4A1hGcDKAduMLNr4luVgn66JprSYcqpHnxkwvdqZtnAj4E/8r7G+tVE++AK4LfN7ATwNeDTZjYn11+Ik4n2Qy2w2zl3zDk3BPyAcD+3H020Dz4MvO51W3UR7se/Ig71vYuCfnqeIvyf18zscqDdOVdH+MzfD5hZnpnlAR/wlvnRuPvAm+LiCcL9lY/Ft8SYG3cfOOc+6ZyrdM5VEW7NPuycuz+ulcbWRP8fthPuqx49RnMDUZ6aPIFMtA9qgPebWcjMkoD3A3HvuvHlpQRnysweAa4DCs2sFvgy4YMoOOf+ifAZvrcBR4Ae4DPeYy1m9qeEP+AA/9c5N9kBnIQ1230A/CrhEQoFZnaPt+we59zuOSs+SiLYB74Swf+HYTP7ErDVG1K4E/jnOX8DURDBZ+Exwn/g3iZ8YPYZ59wP57T4cejMWBERn1PXjYiIzynoRUR8TkEvIuJzCnoREZ9T0IuI+JyCXhYkMxs2s91mttfMfmhmud7y68zsRzPc1j1mtig2lYpETkEvC1Wvc26jc2494cmr7otgW/cQnrlTJCEp6EXCU8mOnaAt08weM7ODZvbd0fnEzexPzGy79y3gAe+syLuAzcB3vW8IafF4AyKTUdDLgubNrngj4VPaR20CfgdYS3hirqu85d9yzr3P+xaQBtzuTfuwA/ik9w2hd+6qF5keBb0sVGlmthuoJzyP/PNjHnvDOVfrzcK5G6jyll9vZtvM7G3Cp7mvm8uCRWZLQS8LVa9zbiOwhPBVgsb20fePuT0MhMwsFfgH4C7n3IWE53BJnatiRSKhoJcFzbsC0heA3zOzySb5Gw31ZjPLBO4a81gnkBWjEkUipqCXBc85twvYA3x8knXaCLfi9xKeinr7mIe/A/yTDsZKotLslSIiPqcWvYiIzynoRUR8TkEvIuJzCnoREZ9T0IuI+JyCXkTE5xT0IiI+p6AXEfG5/w8IlLEF57ZwkwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1882,12 +1343,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvcAAAH0CAYAAAC5AwKIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXt4VNW9///euclNMeRCFEHlZoBIIl6KMZQKHJFgIhcN\nHjWRIDke4VtsKQew335Rqb+KtJQGKrSAIAGsFDABBKzVtrRCrLTcCnjDKvUWJjHRCoITkvn9kZM9\ns2fP7LVm9p7Zeybv1/PkeTJrX2btPevyWZ/1uSgej8cDQgghhBBCSMyTYHcFCCGEEEIIIdZA4Z4Q\nQgghhJA4gcI9IYQQQgghcQKFe0IIIYQQQuIECveEEEIIIYTECRTuCSGEEEIIiRMo3BNCCCGEEBIn\nULgnhBBCCCEkTqBwTwghhBBCSJxA4Z4QQgghhJA4wXHC/aZNmzBq1CgMHToUJSUlOHr0qOH5e/bs\nwbhx4zB06FAUFxdj7969unMqKytRUFCA3NxclJeX49SpU5rjx48fx7Rp03DjjTdi+PDhWLBgAb7+\n+mtLn4sQQgghhJBI4yjhfvfu3Vi0aBFmzZqF6upqZGdnY/r06WhsbAx4/qFDhzBnzhyUlJSgpqYG\nY8aMwcyZM3Hy5En1nFWrVmHTpk1YuHAhtmzZgs6dO+PBBx+E2+0GALhcLkybNg1XXXUVtmzZgjVr\n1uC9997D/Pnzo/LMhBBCCCGEWIXi8Xg8dleinZKSEgwdOhQ/+tGPAAAejwcjR45EaWkpKioqdOd/\n//vfx7lz5/CrX/1KLZsyZQoGDRqExx9/HABQUFCA6dOnY+rUqQCAM2fOID8/H4sWLUJhYSF++9vf\nYtmyZXj99dfVe7z77rsoLi7G73//e/Tu3TtyD0wIIYQQQoiFOEZz39zcjOPHj+Pmm29WyxRFQX5+\nPg4fPhzwmsOHDyM/P19TVlBQoJ7/0UcfoaGhAcOHD1ePd+vWDbm5ueo5brcbycnJmntcdNFFAIC/\n//3v5h+MEEIIIYSQKOEY4b6pqQktLS1IT0/XlKelpaGhoSHgNfX19YbnNzQ0QFEUw3OGDx+O+vp6\nPPvss2hubsaXX36JJUuWQFEUuFwuqx6PEEIIIYSQiOMY4T4YHo8HiqKEdH4o9+zfvz+efvpprFu3\nDnl5eRgxYgR69+6NtLQ0JCYmhl1vQgghhBBCok2S3RVoJzU1FYmJiTotfWNjI9LS0gJek5GREfD8\ndk19eno6PB4PGhoaNNr7xsZGDBo0SP08fvx4jB8/Ho2NjejcuTMAYN26dbjiiiuk6x/qIoQQQggh\nhBCrcYxwn5ycjCFDhqC2thajR48G0CYw19bWorS0NOA1eXl5qK2tRVlZmVq2b98+5OXlAQB69+6N\n9PR0vPHGG8jOzgbQ5lB75MgR3Hvvvbr79ejRAwCwdetWXHTRRbjllluk69/YeBYJCRTuCSGEEEKc\nSmpqV7urEHEcI9wDwNSpUzF//nzk5OTg2muvxfr163H+/HlMmjQJADB37lxkZWVh9uzZAICysjKU\nlpZi3bp1GDlyJHbt2oXjx4/jySefVO/5wAMPYOXKlejTpw969eqFyspKZGVlqQsIoC22/nXXXYcu\nXbpg3759+OlPf4r/+Z//Qbdu3aTr3trqQWurYwIPEUIIIYSQDoijhPvCwkI0NTVh2bJlaGhowKBB\ng7BmzRpVo15XV6exg7/uuuuwZMkSLF26FEuXLsWVV16JFStWoH///uo5FRUVOH/+PBYsWICvvvoK\nN9xwA1avXo2UlBT1nKNHj2L58uX4+uuv0bdvX/z4xz9GUVFR9B6cEEIIIYQQC3BUnPtYpr7+K7ur\nQAghhBBCDMjIuNjuKkQcx0fLIYQQQgghhMhB4Z4QQgghhJA4gcI9IYQQQgghcQKFe0IIIYQQQuIE\nCveEEEIIIYTECRTuCSGEEEIIiRMo3BNCCCGEEBInULgnhBBCCCEkTqBwTwghhBBCSJxA4Z4QQggh\nhJA4gcI9IYQQQgghcQKFe0IIIYQQQuIECveEEEIIIYTECRTuCSGEEEIIiRMo3BNCCCGEEBInULgn\nhBBCCCEkTqBwTwghhBBCSJxA4Z4QQgghhJA4gcK9Azl48AAOHvyb3dUghBBCCCExRpLdFSBa3G43\nqqrWQlEU5OQMRUpKit1VIoQQQgghMQI19w5j585q1Ne74HKdxs6dNXZXhxBCCCGExBAU7h2Ey1Wn\nEeh37qyGy3XaxhoRQgghhJBYgsK9g6iqWovmZrf6ubnZjaqqZ22sESGEEEIIiSUo3BNCCCGEEBIn\nULh3EGVl05Cc7HWgTU5OQVnZgzbWiBBCCCGExBIU7h1EZmYWioomqJ+LiiYiM7OnjTUihBBCCCGx\nBIV7h1FUNBEZGZnIzOypEfQJIYQQQggRwTj3DiMlJQVlZdMAKIxxTwghhBBCQkLxeDweuysRD9TX\nf2V3FQghhBBCiAEZGRfbXYWIQ7McQgghhBBC4gQK94QQQgghhMQJFO4JIYQQQgiJEyjcE0IIIYQQ\nEidQuCeEEEIIISROoHBPCCGEEEJInEDhnhBCCCGEkDjBccL9pk2bMGrUKAwdOhQlJSU4evSo4fl7\n9uzBuHHjMHToUBQXF2Pv3r26cyorK1FQUIDc3FyUl5fj1KlTmuMffvghZsyYgeHDh+P666/Hvffe\nizfffNPS5yKEEEIIISTSOEq43717NxYtWoRZs2ahuroa2dnZmD59OhobGwOef+jQIcyZMwclJSWo\nqanBmDFjMHPmTJw8eVI9Z9WqVdi0aRMWLlyILVu2oHPnznjwwQfhdrvVcx566CG0trZiw4YN6vc+\n9NBD+PzzzyP+zIQQQgghhFiFo4T75557DlOmTMGECRPQr18/PPHEE+jUqRO2bdsW8PyqqiqMGDEC\n5eXl6Nu3L2bNmoUhQ4Zg48aNmnNmzJiBUaNGYeDAgVi8eDFcLhdeffVVAEBTUxNOnTqFiooKDBgw\nAH369MEPfvADnDt3Du+++25UnpsQQgghhBArcIxw39zcjOPHj+Pmm29WyxRFQX5+Pg4fPhzwmsOH\nDyM/P19TVlBQoJ7/0UcfoaGhAcOHD1ePd+vWDbm5ueo5qamp6Nu3L7Zv345z587hwoULeOGFF5Ce\nno6cnByrH5MQQgghhJCIkWR3BdppampCS0sL0tPTNeVpaWn44IMPAl5TX18f8PyGhgYAQENDAxRF\nMTwHANatW4cZM2Zg2LBhSEhIQFpaGtasWYOLL744rGc5ePAAAAXDht0Q1vWEEEIIIYSEg2OE+2B4\nPB4oihLS+aHe8/HHH0d6ejp+85vf4KKLLsKWLVvw0EMPYdu2bbqFQTASEhQkJChwu93YsGEdFAXI\ny8tDSkqKdN0JIYQQQggxg2OE+9TUVCQmJmo06gDQ2NiItLS0gNdkZGQEPL9dIE9PT4fH40FDQ4NG\nSG9sbMSgQYMAALW1tfjzn/+MAwcOoEuXLgCABQsWYN++faiurkZFRYVU/Xv06ApFUVBVtQ0u12kA\nwCuvvITS0lKp6wkhhBBCCDGLY4T75ORkDBkyBLW1tRg9ejSANg17bW1tUAE5Ly8PtbW1KCsrU8v2\n7duHvLw8AEDv3r2Rnp6ON954A9nZ2QCAM2fO4MiRI7j33nsBAOfPnwcA3e6AoihSuwDtNDaeRX39\naWze/Fu17IUXNuOmm25BZmZP6fsQQgghhJDIkJra1e4qRBzHCPcAMHXqVMyfPx85OTm49tprsX79\nepw/fx6TJk0CAMydOxdZWVmYPXs2AKCsrAylpaVYt24dRo4ciV27duH48eN48skn1Xs+8MADWLly\nJfr06YNevXqhsrISWVlZ6gIiLy8Pl1xyCebNm4cZM2agU6dO2Lx5Mz755BOMHDlSuu6trR6sW7cG\nzc3eEJvNzW6sXbsac+b80IrXQwghhBBCiCGOEu4LCwvR1NSEZcuWoaGhAYMGDcKaNWvQo0cPAEBd\nXR0SExPV86+77josWbIES5cuxdKlS3HllVdixYoV6N+/v3pORUUFzp8/jwULFuCrr77CDTfcgNWr\nV6u28KmpqVizZg2WLl2KqVOn4sKFC+jfvz9WrlyJa665JrovgBBCCCGEEBMonlBsT0hQ6uu/gstV\nh7lzv69q75OTU7B48S9olkMIIYQQ4gAyMsKLhBhLOCbOfTyQmZmFoqIJ6ueiookU7AkhhBBCSNSg\ncG8xRUUTkZGRiczMnhpBnxBCCCGEkEjjKJv7eCAlJQVlZdMAKIxxTwghhBBCogpt7i2ivv4ru6tA\nCCGEEEIMoM09IYQQQgghJGagcE8IIYQQQkicQOGeEEIIIYSQOIHCPSGEEEIIIXEChXtCCCGEEELi\nBAr3hBBCCCEk6hw8eAAHD/7N7mrEHYxzTwghhBBCoorb7UZV1VooioKcnKHMDWQh1NwTQgghhJCo\nsnNnNerrXXC5TmPnzhq7qxNXULiPANxmIoQQQuyH87EzcbnqNAL9zp3VcLlO21ij+ILCvcW0bzNt\n2LAWbrfb7uoQQgghHRLOx86lqmotmpu9v0lzsxtVVc/aWKP4gsK9xXCbiRBCCLEfzseko0Lh3kK4\nzUQIIYTYD+djZ1NWNg3JyV4H2uTkFJSVPWhjjeILCvcWwm0mQgghxH44HzubzMwsFBVNUD8XFU1E\nZmZPG2sUX1C4J4QQQgghUaWoaCIyMjKRmdlTI+gT8zDOvYWUlU3DsWP/ULUF3GYihBBCog/nY+eT\nkpKCsrJpABTGuLcYau4thNtMhBBCiP1wPo4Nhg27EcOG3WB3NeIOCvcWw20mQgghxH44H5OOCs1y\nLIbbTIQQQoj9cD4mHRXF4/F47K5EPFBf/5XdVSCEEEIIIQZkZFxsdxUiDs1yCCGEEEIIiRMo3BNC\nCCGEEBInULgnhBBCCCEkTqBwTwghhBBCSJxA4Z4QQgghhJA4gcI9IYQQQgghcQKFe0IIIYQQQuIE\nCveEEEIIIYTECRTuCSGEEEIIiRMo3BNCCCGEEBInULgnhBBCCCEkTqBwTwghhBBCSJxA4Z4QQggh\nhJA4gcI9IQ7k4MEDOHjwb3ZXgxBCCCExhuOE+02bNmHUqFEYOnQoSkpKcPToUcPz9+zZg3HjxmHo\n0KEoLi7G3r17dedUVlaioKAAubm5KC8vx6lTp9Rjb775JrKzszFo0CBkZ2dr/o4dO2b58xEiwu12\no6pqLTZsWAu32213dQghhBASQzhKuN+9ezcWLVqEWbNmobq6GtnZ2Zg+fToaGxsDnn/o0CHMmTMH\nJSUlqKmpwZgxYzBz5kycPHlSPWfVqlXYtGkTFi5ciC1btqBz58548MEHVaFp2LBh2LdvH15//XXs\n27cP+/btw913340rrrgCOTk5UXluQnzZubMa9fUuuFynsXNnjd3VIYQQQkgM4Sjh/rnnnsOUKVMw\nYcIE9OvXD0888QQ6deqEbdu2BTy/qqoKI0aMQHl5Ofr27YtZs2ZhyJAh2Lhxo+acGTNmYNSoURg4\ncCAWL14Ml8uFV199FQCQlJSEtLQ09a979+74wx/+gLvuuisqz0yILy5XnUag37mzGi7XaRtrRAgh\nhJBYwjHCfXNzM44fP46bb75ZLVMUBfn5+Th8+HDAaw4fPoz8/HxNWUFBgXr+Rx99hIaGBgwfPlw9\n3q1bN+Tm5ga952uvvYYvvvgCEydONPtIQaE9NQlGVdVaNDd7TXGam92oqnrWxhoRQgghJJZIsrsC\n7TQ1NaGlpQXp6ema8rS0NHzwwQcBr6mvrw94fkNDAwCgoaEBiqIYnuPPtm3bUFBQgJ49e4b7KIa0\n21MrioKcnKFISUmJyPcQQgghhJCOh2OE+2B4PB4oihLS+eHe8/Tp03j99dexbNmykOoIAAkJChIS\nxPWsrq5Bfb0LALBr13bcffeUkL+LxC/l5dNx7Ng/VO19cnIKpk2rQFKSYzbZCCGEEOJgHCPcp6am\nIjExUadRb2xsRFpaWsBrMjIyAp7frqlPT0+Hx+NBQ0ODRnvf2NiIQYMG6e63detWpKam4tZbbw25\n/j16dBUuQj777DPs2FGtft6x40UUFY3DZZddFvL3kfgkNbUfpkwpUf1G7rlnCq65pq/NteqY1NbW\nQlEUjVkfISS+YD8n8YhjhPvk5GQMGTIEtbW1GD16NIA2DXttbS1KS0sDXpOXl4fa2lqUlZWpZfv2\n7UNeXh4AoHfv3khPT8cbb7yB7OxsAMCZM2dw5MgR3Hvvvbr7VVdXY8KECUhMTAy5/o2NZ4Wa+8rK\n5ZrQhm63G5WVyzFv3v8N+ftI/DJ2bBFeeeX3UBTgttvuQFPTWbur1OFwu9145pkVUBTg6quvofkc\nIXEI+3nHJDW1q91ViDiOEe4BYOrUqZg/fz5ycnJw7bXXYv369Th//jwmTZoEAJg7dy6ysrIwe/Zs\nAEBZWRlKS0uxbt06jBw5Ert27cLx48fx5JNPqvd84IEHsHLlSvTp0we9evVCZWUlsrKy1AVEO7W1\ntfjkk08wefLksOre2upBa6uxSVAgkyGPx4MLF1rD+k4SnyQkJKG0tByAgoSEJLYPG6iu3qZGKaqu\nfhGTJ5fYXCNCiNWwn5N4xVHCfWFhIZqamrBs2TI0NDRg0KBBWLNmDXr06AEAqKur02jVr7vuOixZ\nsgRLly7F0qVLceWVV2LFihXo37+/ek5FRQXOnz+PBQsW4KuvvsINN9yA1atX61boW7duxbBhw9C3\nb+RMIMrKpunsqcvKHozY95HYZdiwG+2uQoclUDjSESNGIjMzMk72hJDow35O4hnFI+OBSoTU138l\ndd62bZvx4ou/BQBMmjSFmgJCHMbPfvYTHDr0d03ZddddjzlzfmhTjQghVsN+3nHJyLjY7ipEHIbg\niDJFRRORkZGJzMyeKCqaYHd1CCGEEEJIHOEos5yOQEpKCsrKpgFQ6LxDiAOh+Rwh8Q/7OYlnqLm3\ngWHDbsSwYTfYXQ1CSAAyM7M0u2pFRRNph0tInMF+Hh8cPHgABw/+ze5qOA5q7h3IwYMHAChcAJCw\nYRsyR1HRRPzlL3+Coig0nyMkTmE/j23cbjeqqtZCURTk5AylNYQPFO4dBhsrMQvbkHloPkdI/MN+\nHtvs3FmN+nrX//5fwwAlPtAsx2G0N1aX67QmTBchsrANWQPN5wiJf9jPY5NAoUzbcxYQCveOgo2V\nmIVtiBBCSLxTVbVWdYYGgOZmN6qqnrWxRs6Cwr2DYGMlZmEbIoQQQjo2FO4JIYQQQkjMUFY2DcnJ\nXj8JhjLVQuHeQUSzsTJ8VHzCAY8QQki8w1CmxlC4dxDRaqzt0VQ2bFgLt9stvoDEDBzwCCGEdASK\niiYiIyMTmZk9GcrUDwr3DiMajZXRVOIbmTbEnRtCCCGxTHso09LSaQxl6gfj3DuMSMfdDRRNZcSI\nkdTuxhGiNsQ4+IQQQuKBYcNutLsKjoSaewdiRdzdYJpZRlPpGBi1Ie7cEEIIIfELhfs4hDb1JBiM\ng08IIYTENxTu4xAjzSyjqXRsuHNDCCGExDcU7uMMkWaW0VQIIYQQQuIXCvdxhoxmluGjOi7cuSGE\nEELiG0bL6YBEOiIPcS7tOzcvvvhbANy5IYQQQuINau7jDFnNrBUReUjkiGQceu7cEEIIIfELNfdx\nBjWzsU+k49Bz54YQQgiJX6i5j0OomY1tohGHnjs3hBBCSHxCzX0cQs1s5Dl48AAAxXIBmRmECSGE\nEGIGau7jFGpmI0ckk4QxDj0hhBBCzEDhnpAQiYbZDCGEEEJIOFC4JyQEREnCzMI49IQQQggxA4V7\nQkIg0mYzzCBMCCGEEDNQuCfEYVgR7SiScfIJIYQQ4lwYLYeQECgrm4Zjx/6hau8jYTZjNtpRpOPk\nE0IIIcS5UHNPSAhEy2zGTLQjOvwSQgghHRcK94SEiJOThFnp8EvTHkIIIST2oFkOISHi5CRhwRx+\n58z5YUj3scK0J1KJvgghhBASHAr3hITBsGE32l2FiNJu2tP2fw0mTy4J6Xra/RNCCCH2QLMcQuII\nK+LkW2HaQ7t/QgiheSOxBwr3hMQRVjj8mo3lH+lEX4QQEgu072Bu2LAWbrdbfAEhFkHhnpA4w26H\n30gn+iKExAYdXWvNHUxiF44T7jdt2oRRo0Zh6NChKCkpwdGjRw3P37NnD8aNG4ehQ4eiuLgYe/fu\n1Z1TWVmJgoIC5Obmory8HKdOndKd86c//QklJSXIzc3FTTfdhP/zf/6PZc9ESDRpd/gtLZ0Wlq27\nFaY9hJCOTUfXWnMHk9iJo4T73bt3Y9GiRZg1axaqq6uRnZ2N6dOno7GxMeD5hw4dwpw5c1BSUoKa\nmhqMGTMGM2fOxMmTJ9VzVq1ahU2bNmHhwoXYsmULOnfujAcffFAz2Pzud7/DvHnzcNddd2Hnzp34\nzW9+gzvuuCPiz0tIpDATJ9+saQ8XB4SQjq615g4msRNHCffPPfccpkyZggkTJqBfv3544okn0KlT\nJ2zbti3g+VVVVRgxYgTKy8vRt29fzJo1C0OGDMHGjRs158yYMQOjRo3CwIEDsXjxYrhcLrz66qsA\ngJaWFvzkJz/BvHnzUFJSgj59+qBfv364/fbbo/LMhDgRM6Y90Ur0RQhxJtRaE2IvjhHum5ubcfz4\ncdx8881qmaIoyM/Px+HDhwNec/jwYeTn52vKCgoK1PM/+ugjNDQ0YPjw4erxbt26ITc3Vz3n+PHj\ncLnaQv5NnDgRBQUFqKio0Gj/CelomDXtsdvunxBiH9RacweT2ItjhPumpia0tLQgPT1dU56WloaG\nhoaA19TX1xue39DQAEVRDM/5+OOP4fF48Mtf/hIzZ87EqlWrcMkll+D+++/Hv//9b6sej5CoYoUj\nmxnTHrOLA0IIiWW4g0nsxPFJrDweDxRFCen8UO7Z2toKAHj44YcxZswYAMBTTz2FkSNH4uWXX0ZJ\niVzynoQEBQkJ8vUkJFK43W5s2LAOigLk5eXZJlzfdNO3bPleQoi9lJdPx7Fj/1C198nJKZg2rQJJ\nSY7RJ0aFiRMn4/XX90JRgIkTJ3W45yf24RjhPjU1FYmJiTotfWNjI9LS0gJek5GREfD8dk19eno6\nPB4PGhoaNNr7xsZGDBo0SL0HAPTr1089npKSgt69e+PTTz+Vrn+PHl1DWoQYUVtbC0VRNOZEhMhS\nVbVNtW995ZWXUFpaanONCCEdidTUfpgypUT1f7vnnim45pq+NtfKDrpi5swZUBQFPXum2l0Z0oFw\njHCfnJyMIUOGoLa2FqNHjwbQpmGvra0NKpzk5eWhtrYWZWVlatm+ffuQl5cHAOjduzfS09Pxxhtv\nIDs7GwBw5swZHDlyBPfeey8AYMiQIUhJScEHH3yAYcOGAWiz///kk0/Qq1cv6fo3Np61RHPvdrvx\nzDMroCjA1VdfQ5MGEhKnT9dh8+bfqp9feGEzbrrpFm4HE0KiytixRXjlld9DUYDbbrsDTU1n7a6S\nLWRnDwWADvv8TiQ1tavdVYg4jhHuAWDq1KmYP38+cnJycO2112L9+vU4f/48Jk2aBACYO3cusrKy\nMHv2bABAWVkZSktLsW7dOowcORK7du3C8ePH8eSTT6r3fOCBB7By5Ur06dMHvXr1QmVlJbKystQF\nRLdu3XDPPfdg+fLlyMrKwuWXX441a9ZAUZSQIua0tnrQ2io2CRJRXe3VulZXv4jJk+XMgvw5ePAA\nACVsm2kSm6xbt0bnyLZ27WrMmfNDG2tFCOloJCQkobS0HICChIQkXLjQaneVCOkwOEq4LywsRFNT\nE5YtW4aGhgYMGjQIa9asQY8ePQAAdXV1SExMVM+/7rrrsGTJEixduhRLly7FlVdeiRUrVqB///7q\nORUVFTh//jwWLFiAr776CjfccANWr16t0YjPmzcPSUlJmDdvHs6fP4/c3FysX78eF198cfQeHoHD\nh40YMTJkrWt78hBFUZCTM5Taf0IIIYSQDoLikfFAJULq678yfY+f/ewnOHTo75qy6667PmSt67Zt\nm/Hii22mGZMmTQlb+09iD5erDnPnfl/jyLZ48S9olkMIiSputxtz5z4CRVHw9NO/oJKJOIaMjOgq\nbu2ArttxBpOHdGwYfo0Q4gQ6eoZaQuyEwr2DsCLpBZOHECaQIoTYCZVMhNgLhXsHEUtaVyuSJJHI\nwARShBA7oZKJEHtxlEMtaRPo//KXP0FRlLC0rmVl03TJQ6xOeU2H3chjNtrRsGE3WlshQgghhMQE\n1Nw7DLNa12ho/2lLGVnaF08bNqyF2+0WX0BIB4U7iM7EChNTQkj4ULh3IMOG3WgqPn0kba5pSxl5\nuHgiRAwXwc4llkxMCYlHKNw7ELPaqEjaXFtlS0mNW2C4eCJEDi6CnQ0d+wmxD9rcOwyr7NmdbHPt\ndruxZs1KAAp+8YuVtNn3IdjiiRlmCfFiVcK/eMfOTOXtSiZA4RhPSJSh5t5hREsbFa7m3Apbypqa\nrfjyyy/x5ZdfoKZma8h1IIR0bKIVjSWWdxidYLZk1sS0IxDLbYw4Fwr3DiJaJhntmvM1a1aGPOib\ntaXUP2MNzU58oCMaIc7ACcKxGWi25HxivY3JwMWLPVC4dxBWaqOMOpRZzbkZW8rVq1eitbVF/dza\n2oLVq1eEXId4hY5ohIiJxiI4loVj+u7EBrHcxmToCIsXp0LhPg4x6lBtg361+jmcQd+Mw+7HH38k\nVdaRoSMaIcZkZmahsLBI/VxYWGzpIjjWhWMmkXI+sd7GZIj3xYuToXDvIKzSRhl1qDbNeav6ubW1\nNSzNebi2lFdc0VuqrCPDDLOEhIrH0rvFinBMk4fYJVbaWLh0hMWLk6Fw7yCsMMkQdah//euU7ppA\nZZGiouJhJCR4m11CQiIqKmZY/j2xPunREY2Q4Lhcddi9e6f6effunR1OcDDaoaXvDrGbeF+8OB0K\n9w7DrEmG0ztU2wJmovo5EjbltPMjJL6J9DgXC8Kx0Q4tfXecTyy0MRK7ULh3GJE2yejT50qpskgy\nYcJduOSS7uje/VJMmDDZ8vvTzo8QAoS/g+d04VjG5IG+O84mWm3Mrl1sLl7shcK9AzFjkiHqUBUV\nD0NRFPXi5hmkAAAgAElEQVSzoiRE3SwmJSUFFRUPY/r0hy1fwNDOj0SLWDf9imXKyqYhKSlZ/ZyU\nlKwTHMzu4DlZOJbZuaDvjvOJdBuzcxfb6QvkeIfCfQSwc9IXdajMzCwUF09SPxcXT7LFLCZSNuVO\nN0si8QFNv+wlMzML/fsPUD8PGDBQN46Z3cGLB+GYvjvOJtJtzO5dbCcvkOMdCvcW44RJX9ShaBZD\niBijRTrbuL24XHV4//331M8nT76r2aGzagfPqcIxTR7ih0i1MSfsYsfDAjlWoXBvMU6Y9EUdKp7N\nYgoLi3Vl48ffGbXvJ/GBOFcETb/spG2Hrln93NzcrNmhi/cdvI5i8kDTt/BxSh9w6gI53qFwbyH6\nBFEv2jbpizpUvJrF7N69Q1e2a9f2qH0/iQ+MFul2t3FCgPg3eXDCLjghsQqFewsRaZMIiRbUeIUP\nNfPOR2SWEi2zFTv7mYzJQyyPA07YBY9laLrVsaFwbyHffPONVFk8Y/eAYvf3OwFqvMwh0sw7pY3F\nsuBmFpnAAZE2W3FCPzPagXVC/cLFSQvsWO1nHcV0iwSGwr0DidXBBLB/QLH7+50ANV6RxQltLJYF\nN6sQmaVE2mzF6f3M6fUzwimmb7Hez+LddIsEh8K9hVx00UVSZUbE+mAC2D+gWPH9sbrAcpLGy27C\n/Q1lNPN2t/FYFtysQiZwQKQidTi9nzm9flYR6XE61vsZo9V0XCjcW0hZ2TQoiveVKkpCyNv1sTKY\nbNnyPLZs+U3AY3YPKGa/3wkLrHAnLadovOzGzG8oo5m3s413FMFNho4aOECE0+snQmaBHelxmv2M\nxDIU7i3GJ/mrJhOsDLEymJw9ewY7dlRjx45qnD17JuA5doe/MvP9di+wnLC4iHXM/oYymnm72nis\nC25OIlZ36OKdzMwsFBYWqZ8LC4ssT1ImIh76GeeSjguFewupqlqL1tZW9XNra0tIg4GVg0kkJ62f\n//xptLa2orW1BUuXLo7Id5gl3Od3wgLLzKTlFGdPwD7ByYrf0O7dJ2INRm3QjODjpH4WCNn6xc7i\nRqsoc8I4HQvYragi9hGScP/pp5+G9EfsIZKr9RMnjuHtt0+on9966zjeeuu4pd9hFjPPb7e2RnbS\nCjYpO8HZE7BXY2TVb2j37lMwnC5YWokZ4VPUBs0IPk7pZ8GQqZ+TtbouVx12796pft69e4dmHIzG\nOB3r/YwLoDZiZwFrLSEJ96NGjcLo0aOl/zoaZgeDsrJpSEjw/iQJCYlhDSaRXK0vX/5zXdmyZUss\n/Q6zxLK2QmbSEk3Kdjt7ArH9GzgdpwuWVuF2u7FmzUqsWbMyLOHTqA1aIfg4oZ8ZIaqfk/uo3UoW\nIPb7mRPeod04eQEbaUIS7n/5y19i+fLlWL58OZ5++mlkZmbihhtuwA9/+EMsWbIEjz76KK6//npk\nZmZi8WJnmmtEEmsGg9Ds9P3p6Kt1s88fC9oa0aRst0mJ3W2wIyQwcrpgaQU1NVvx5Zdf4ssvv0BN\nzdaQrhW1QSsEH7v7mQij+rlcddixw5tNfccO+7Kph0O0+nhH6GfxjJMXsJEmJOF+zJgx6t+bb76J\n/Px8bNiwAaWlpSgsLERZWRk2btyI/Px87N+/P1J1djS33z4eCQkJSEhIxO23F4Z0bZvNfov6OVSb\n/fZ7RHK1fv/9U3VlpaXTLLu/Wcw+v93aGtGkJSs422lSYrfGqCMkMHK6YGkWfTuvCUn4jFYbdKrp\nVjvB6ldVtRYXLnizqV+44Kxs6qJxMFrjdCz3s1hQVEUSu5VMdhO2Q+3LL7+MO+64I+Cx8ePH49VX\nXw27UrHMyy/vUp1NX355t93VsZza2td1Zfv3/znk+5jVekZSa2pmgWYW0aRlt+AcK3SEBEZOFyzN\nsHr1Sp2iY/XqFZbdv6MLPtHKph7uOC0TLYdadWPsVlS1Y9cOZ0efK8MW7hMTE3HixImAx06cOKGx\nHe8oOMEkJBYmLbNaT6PrrXh+uxdodi4urMAJbbAjJzCKBz7++COpsmA4RfPbkbF2d0tvrirbxyPp\nlO107F4Axfr7i2XClsCLi4uxbNky/PKXv8Tbb78Nl8uFt99+W7XJLy4utrKeMYETTEIiPWlZIbiZ\n1XoaXW/2+Z0guBktLmIhxJ3sbxDpOnbUBEbxwBVX9JYqC4ZMG7Rb8LETK7KpizAzzoui5bQj6uNm\nhUsrdujsHIvtNiuKxg5nsPfrBCWTnYQt3M+bNw/3338/1qxZg4kTJ2LkyJGYOHEinn32Wdx3332Y\nO3eulfXsMFgx4URy0jIruJl15JIRvs08v92Cm+j5ZEPcrVixDCtXLrNNWyL6DajRIUZUVDysixxW\nUTEjpHuI2qDdgo+dtAk+yern5ORkSwUfs0oS2XFYJDibXWCYVfQ4YZyzy3wvGooyo/fb0Xfnwhbu\nk5KSMG/ePOzduxdVVVVYsmQJqqqqsHfvXsyfP18zcITCpk2bMGrUKAwdOhQlJSU4evSo4fl79uzB\nuHHjMHToUBQXF2Pv3r26cyorK1FQUIDc3FyUl5fj1KlTmuOjRo1Cdna2+jdo0CCsXr065LoXFup3\nK8aPvzOke1gx4UR60jIjuJl15JIZ9GN50pZ5PtH737ZtM86d+xpff30W27b9NuJ1DoToN3CCzXq4\nWNHPiTFtE/NE9XM4E7PMOBDrfgvmbNq97biw8E5LBZ9oKElEgnO0FhhGxMI4F6mdBavagFH9RO+3\nI+/OhSXcf/PNN/jv//5vHDhwAN27d8eNN96IwsJC3HjjjejevXvYldm9ezcWLVqEWbNmobq6GtnZ\n2Zg+fToaGxsDnn/o0CHMmTMHJSUlqKmpwZgxYzBz5kycPHlSPWfVqlXYtGkTFi5ciC1btqBz5854\n8MEHdYPB9773Pezfvx/79u3D66+/jtLS0jDqv0NXtmvX9pDvY8WEE8lJy4zgFi1HrnCfPxbMXkQh\n7l56yfvOd+0KLcqIlQT7DZxg+mQGq/o5MWbChLtwySXd0b37pZgwYXJY94h14d0Ia7XCHkvqZBUy\n47BIsHP6LqwskZxrnLCzYIRR/WTebywr+swSlnB/0UUX4cCBA2hpaRGfHALPPfccpkyZggkTJqBf\nv3544okn0KlTJ2zbti3g+VVVVRgxYgTKy8vRt29fzJo1C0OGDMHGjRs158yYMQOjRo3CwIEDsXjx\nYrhcLl00ny5duqBHjx5IS0tDWloaOnXqZOmzRRu77JkjLbhF2o7O7syOss8X7P0/80yl5rPH48Ez\nz/zC0jqaxe5Jl8QGKSkpqKh4GNOnPxz2xBzP2SmttWnf6ahxWjQOR0NBYPYZrDAtirTwHcmdhUj7\n58m+33he4BsRtlnOLbfcgn379llWkebmZhw/fhw333yzWqYoCvLz83H48OGA1xw+fBj5+fmasoKC\nAvX8jz76CA0NDRg+fLh6vFu3bsjNzdXdc9WqVfjWt76l+g2Es3BxigOHnatxUYcz68gVDTs6OzM7\nmn2+Dz/8p1QZCR+n9POOgJmJ2elaSTPICrfBBMdIL7CtGKeNxmGZ+kd6gdFOJKPxRHKuifQCKR6C\nW8QyYQv3kydPxs6dO7Fw4ULs3bsXx44dw/HjxzV/odDU1ISWlhakp6drytPS0tDQ0BDwmvr6esPz\nGxoaoCiK8J5lZWVYunQpNmzYgHvuuQe//vWv8bOf/Syk+gPOiRLiZDu/srJpfo5yCSELRpG2oxOZ\nvUR6wDHzfJ06dZYqs5NYF46j5agVz1rnaODkcdAsMsKt3Ysbs+O0WZOKSC8wAPNhmY3aqNkFnIho\n7KBGMrhFrM8jkSYp3AsfeughAMDzzz+P559/HorijUPr8XigKAreeust0xVsv1co54d6z6lTp6r/\nDxw4EElJSXjssccwe/ZsacfghAQFCQkKJk6cjNdf3wtFASZOnISkJO36ye12Y8OGdVAUIC8vL+zt\n5r///QAA4Prrb9SUnz6tHxBuvfVW3aAW7HqzlJdPx7Fj/1A7ZXJyCqZNq1DfQ2Ki/3pSQVJSgu49\nGZGU1Anl5dMBAF26RMZ86qabvhWwfMOGdboBZ8OGtZg37/9a9t1mnm/27P/BwoULNGU/+MG8kN5v\npLn88stx550TsXXrZgDAnXdOwuWXXxbyfSLVhmUQ9XOzWDVOdFRkx8FYJdCcqCiKph1WV9egvt4F\noM0n5O67p6jHROO0FVgxTgcbh2Xrb7afip7B6B2LxjlRG5WZa8yMEzJtyCwybSDYOC6qn1XzSLwS\ntnBfVVVlZT2QmpqKxMREnZa+sbERaWlpAa/JyMgIeH67pj49PR0ejwcNDQ0a7X1jYyMGDRoUtC65\nubloaWnBJ598gquuukqq/j16dP3fxtgVM2fOgKIo6NkzVXdeVdU2dfX9yisvheW463a7sWrVCiiK\ngm9/O1/ToX/+8+d0A8LGjevw4x//WHN9VdXagNebJTW1H6ZMKVH9Hu65Zwquuaavpn6tra3q59bW\nFl39AKC2thaKomhMqnwZM+Y7ltU5FJKTEwOWpaZ2tfR7wn2+goLhGDx4sJpgbsiQIbjllpssrJk1\nTJ1a+r+TroKpU+8PuQ0a9YHoYNzPzWLFOBELiPp5uMiMg7HMI498FxUVFaq2OCUlBY888l11HPrs\ns890IYeLisbhssvahB/ROG0VkRqn5etvvp8GewbROwaMxzlRG5WZa8yME6I2ZBVGbcBIFpGpn9l5\nJJ4JW7i/6SZrBYbk5GQMGTIEtbW1GD16NIA2DXttbW3QBpuXl4fa2lqUlZWpZfv27UNeXh4AoHfv\n3khPT8cbb7yB7OxsAMCZM2dw5MgR3HvvvUHr0p5hN9iiIhCNjWeRkNC20szOHgoAaGo6qznn9Ok6\nbN7sDU34wgubcdNNt4SsVX/hhU344osvAADPPrse99zjfZbmZr2vQHNzi6YuW7a8gLq6OgDAc89t\n1GgbrGDs2CK88srvoSjAbbfdoflumfq53W4888wKKApw9dXXRKTDhqv1ve++qTh48JBGY3T//eW6\n39pOrr66vyrcX3VVf9vqJnrHZWXTAABnzzbj7NnmgOcEw6gPRItg/dwssuOE3ZjdOYlkP5cZZ2KZ\nTp0uQXGxV2tZXDwJnTpdoj5fZeVyjZmI2+1GZeVyjdbXaJyOBWTrH6l+KvOOgeDjnKiNjh07Hn/9\n6181x2+/vUg9bnacELWhaGAki8jWL5x5xOoFjBMJW7iPBFOnTsX8+fORk5ODa6+9FuvXr8f58+cx\nadIkAMDcuXORlZWF2bNnA2izlS8tLcW6deswcuRI7Nq1C8ePH8eTTz6p3vOBBx7AypUr0adPH/Tq\n1QuVlZXIyspSFxCHDx/GkSNH8K1vfQtdu3bFoUOHsGjRIhQXF+Piiy+WrntrqwetrcYmQevWrdGt\n1NeuXY05c36olrndbvzqV89AURT84hcrA9p8b9/+ovp5+/YX8e1ve7fySkvL8Y9/HNUIn6Wl03Dh\nQqvP9dWa62+55dshCw4HDx4AoAR0dktISEJpaTkABQkJSep3t9fv6NEjaqz7pKRkTf0AoLraq42o\nrn4RkyeXhFQ3EW63G+vWrYGiKBg06NqQhIq0tEwUFU3Aiy+2DapFRRPRo0eGpv5WYPR+jXC56rBn\nz0vq5z17XsKYMWN1v++WLc8DUHD33f9pQW31yLzj3NzrASDkdyfqA04h3N9QZpywGzN9qJ1I9nPR\nOBgPjB8/AXv3/hGKomD8+Ds1zxbIPNXj8WjOMRqnYwG76y/zjoHg45yoje7cqQ+vu2NHNQYObLM6\nsGKcMGpDkUZGFpGpX7jzSLxjyrhq+/bt+M///E/cfPPNGDZsmO4vVAoLCzFv3jwsW7YMEydOxDvv\nvIM1a9agR48eAIC6ujrU19er51933XVYsmQJNm/ejAkTJuCVV17BihUr0L9/f/WciooK3H///Viw\nYAFKSkrwzTffYPXq1epklJKSgt27d6OsrAxFRUVYtWoVysvLsXDhQjOvJmxqarbi3//+El9++QVq\navQhQFevXqkza1m9eoX6WeREZIUTjYyjVrAoF5mZWejXz/v79Os3IOohzsw62kXaodeMI5yofQDA\n2bNnsGNHNXbsqMbZs2csqbM/kXRmlHlGu7HbmTHSmP19nR6pIxYwcjg1G1LXKuwKyRwN9MEhEkOO\nxlNYWKR+LiwsjnobtTMOfLwnpLSbsIX77du340c/+hEGDBiApqYmjBs3DmPHjkVycjLS0tIwbdq0\nsO5733334Q9/+AOOHj2KzZs349prr1WPVVVV4amnntKcP3bsWLz88ss4evQodu7ciREjRuju+d3v\nfhevv/46jhw5gmeffRZXXnmlemzw4MHYvHkz3nzzTRw+fBgvvfQSKioqws6wa4RowG2b8Lwr2UAT\n3scff6S7r3/Z7bePR0JCAhISEnH77YVWVV9TL9HEHmxQd7nq8N5776if33vvbc0zRtqD3wqhwooB\nx0zWPSNk2sfPf/40Wltb0dragqVLF4d0fxlcrjqdLaqVgpvMMwL2Rpsx8xs6JQqEUR8224ecHqkj\nVjBSolixuIlkmMdIf390kA/2IUa7EyAaB6waJzpqHPh4J2zhft26dZgxYwYee+wxAMC9996Lp556\nCq+99hp69OiBrl3j36YpVPQr9SLNgCujkbziit66+/qXvfzyLlV4e/nl3ZpjZgcEmYndaFDXP2Nr\nRLSuy5b9DMuXL9GVWyVURCr+tn6BF5pgLGofJ04cw9tvn1A/v/XWcbz1Vmhha0VUVa1Vza4A4MKF\nZotjaOuFlJ49o5doTIRZ4dcJWmej9xcrScg6utbP7OLGbB8yu7vj9N2vqqq1aG312s23traE1A9E\nicRE44ATxgkzyMgiTm8DTiZs4f7UqVMYNmwYEhMTkZiYiDNn2rb3u3XrhoqKCmzYsMGySsYaRtoG\n3+RYLS1aGzEZjWRFxcNISPB60SckJKKiYob6WSRYmB0QZCZ2o0Fd9IxWaCO++KIRf/1rLd54Yz++\n+KIxpGujgTjrnq/TVWiCsah9LF/+c901y5bpF0Fm+Oabb6TKwiWQoObbZgBrzILsjB9tt9Y50jHi\nZfu5Wc1tR9ZKml3cmM2Aa3Z3J57zFABy40RR0UR0794d3btfGnAcsHucMIOMLBLvbSCShC3cd+vW\nTV1J9ezZEydPnlSPtbS0oKmpyXztYhC3240VK5Zh5cplAbWyu3btUD/v3r1dM+DJaOX1HWJCyDb1\nkRwQRIO66Bmt0EYsWPCo+v9jj2mdi+w2eRC9H7OCsah9xAOiLMdWCBZ2a4zs1DqL3p8VgrloFxOw\n/zeIB0SLm0iZXpld4EYzO2m4C8jCwmJd2fjxd1pRJQ1GqXtifXfKSBZhhlpzhC3c5+Tk4J132myn\nR40ahWeeeQYbN27ECy+8gKeffhq5ubmWVTKW2LZtM86d+xpff30W27b9VnNs9eqV8HiCm6SItK7t\nTJhwl7qanzDhrpDraGZAEE3sokG97Rm1Tkj+z2hm8bFv35/x+efe3AcNDfXYv/919bPdW5nRMGkY\nP74YiqIgISEB48drJ6Dvfne27vxZs35g6feLhG+ztDmyaftJKG1QBifYzNuldRa9P5k+FLpgrrdd\nptYusjjZ9Cpa3y/TToMJ/7t379CV7dqlj3AT7PqysmlISvL69iUlJQfMYNseYCPaO5DRwEgWkW0D\nTn4+OwlbuH/ooYdw+eWXAwBmzZqF3NxcPPXUU3j88ceRlpZmW7QZO3G56vDSS94OuGtXjWal+a9/\nndJd41smq3VNSUnBrbeOwa23jol6lASzwnGbxs4rcAaKEGBm8bFq1TO6sl//ernms4zDsV0DhhWC\n8csv74LH40Fra6vO52Lw4BxkZw9WPw8aNASDBg0Jr7JBaGuD3kkrOVk/aZkhMzMLqanehDQ9evSw\ndIEWDzbzkUbUh0SCud7eeIfmHceK1i6WBYtILp7s3iGVRfQOzO4eGV2fmZmF/v0HqJ8HDBgYcuQ4\nt9uNlSsDWwpYUX/A2RGPuLsXnLCF+7y8PBQWtg3ql1xyCVauXIlDhw7hb3/7G7Zs2YI+ffpYVslY\n4ZlnKjWfPR4PnnnmFyHdQ0Yr73a7sW/fX7B//18CDhiRjpJgpFmXGdQTExN9/g/cBMPt8MFiD/ti\n5HAMRHbAkImAINLmGCEzIcyePU8VzL7//bnhPAaA4G2krQ1OVD8XFU2yVLg9ceKYbnfG1ynYrGAR\nLZt5pwqGMu/PqA/JOIWL3rHdmmMZYlmwsMr0Khhm56FoLA5kxkoj4V+mjkbXu1x1eP/999TPJ0++\nG3LkuG3bNuPrr9stBTbrnjGWnZrNvt+OTtjCfU1NDQ4ePKgpS0lJQbdu3dDY2Iiamo73oj/88J+G\nZVlZl+mO+5elpKRg+vSHMX36w0G11qIGXVQ0EV26dEGXLl0jEiXBSLMuGtRFEQLM0rNnVoAy7zs2\nO6CbRWRrnJmZheJir2BcXByaYCwzIXTt2g3FxRNRXDwRXbt2C+cxhG0kkn4dIqdgJ2jORbtPThYM\nZfqwUR8y6xQeTcwssGJZsLDC9Aowfn9mQjJHow+L3oHZ4BSR7id6SwGtD1+sODUbK4nCf78dnbCF\n+/nz56O0tBSrVq3SHfvoo4/w6KOPBrgqvunUqbNUmQgjrbVMg25uduPcuXM4f/6cZvCSRaZDv//+\nexqtgy9Gg7pVGrlgA0J71CZt2VfS32/VgCEvNOhtjUUREqzg7rvvNZWdVtRGUlJScMstI5CfPyLo\nIlX0jswIXmY059GwmXe6YGj0/kR9SMYpPFoxvI0wY2/dEQQLUR8SvT/RDqnZ7480ZoNTmJ3rRH1A\nZClg1mY9Gm3cjJKINvnGmMpQe/fdd2P58uX43ve+h3PnzllVp5jlkUfm6Mq+973/Uf+vq/tMdzxQ\nmVFjlGnQP//506rNdahJimQSEIkynJod1EUYDQgyEYeMiHQG37adi+ARk9oxipBghJVCkZlB3+12\n449/fBV//OOrYdmCGh2XcQo2ozm3QmtpRCwIhpGOwiETwzvS2TvN2Fs7RbAI9/4yfjGiNiAyOYlG\nskAz79eKsdJ8cIrgv4Goj3zwwfu6ewYqM8Jup2oZJZGZccjJO6SRxpRwP2nSJKxfvx5/+9vfcM89\n9+Djjz+2ql4xyeDBOejff6D6uX//gSE7K5ptjGaTFMkkIDLKcCoa1K0IH2Y0IEyceLfu/EmTStT/\nzaYMbyfcDLMyW7EyERLC3cqUqT9gftCvqdmKL79se4aamq26+4sGdaPjsk7BZjTnIpMCt9uN1atX\nYs2alSH3U6cIhiKCvT+RUCTrFB6aZjbM1W4QomGeZ6aNyN4/3LkiMzML/fp5nTn79x8YcJwI1gbk\nTE4imyzQ7FwpGitl54pw+4nMb2Bm98IpNuvGSiJxwsZw32/bPZ29QxpJTAn3ADBs2DBs3boViYmJ\nmDx5Mmpra62oV8yiKErA/wGgT58rdef7l4kao6hBm01SJNpSFy0eRIN6dfUW3f1ffPG3ujKjAWH7\n9hfVz9u3b9MMCLLhybyElvIbkMkwG34ce7MZgAE5wVQ0KVqbwEYbNUr0jJF2Cpa5v2j3qaZmq7oA\nq6nZFtL3y+BkjZOMUCTjFG6klbPKNyfYOGLWPE9mnIh0GzHbR0+e9JpVvvfeuyG9Xyc4PFshuIn9\nAvRmk7LI2IyLfgOjPnL11f103+lbZtZm3YqdDbGSSOxzQJv88DAt3ANAVlYWfvOb36CgoAAVFRXY\nuHGjFbeNOU6cOIb33ntH/fzee+9oBN+Kiof9rlBCyi4L2O8saHbxIJOFVzQgtLRcUD+3tFwIyd63\nLWW4NtdAqI5kYs188EmvoaFeV7+GBm/kF7MZgAGxYCoTptBIoyIa9FevXqlLy+6bz8GKSClmnILN\nCnayGqdgWKVxstPkw0goyszM0uRXGD/+zqBjVDCtnBW7G2YWSGYdTvVtJLBgYc60K/w2KLNDa6Z+\nkU7wZJXgZjRWts0V2nHMyqhZsr9BsD4yc+YjfiUKZs78XkjfL2rjokRzIozGMRnfHBmb/GD+aU5Y\ngNqJJcI90LbtumTJEsyaNQu7du2y6rYxhYzga6TZl22Mo0f/h8//YzTHZJMUBRu0zcZZFwkuMjbx\nRgPCV199BX8ClQVDZkAxElzMTiqBznW56kK43nhSt0IrLtKoiAQbmQWcFZh1Cg6GqB+2LV6CJ6MT\nYYXGKdKafWudJYOb1JhZoIjqKApjmJiYpH5OTEwKWStpNE7o20iLro2YX3xENiKR2+3GmjWBzYpE\nwrvZBE8irBDcZPzLZDB6hkj6rmRmZuGOO7zjyB136BfR1n5/aLsY0YrW43Y3a/oCaSNs4f61115D\ndna2rvy//uu/sGHDBvzkJz8xVbF4pKpqrSbmusfTGtaAXFnpXTAsW6ZdUKSnp8O3EyqKgrS0dM05\nRpOKyMnHN355O3feOVn9XyS4tO1eaOsXyu6FyClZtDgJ5rzpi0ibYzSpmLXpl8u+GnxSt0IrLrMA\nMtKYiBZwdkdKMXt/UTI6GcxGgYi0LakZZ0lZkxrxOGQuhrgojOGll16qfr700ktDNi0yGidkFrhm\ndmdk+qgRMpp1I78ZkfAuq5U1SsAUaUSac1kTTZFfhZHNuC+KogQch4wWD5MnT0FKSgouuugiTJ48\nJaTvv/nmAl1Zfv631f9FieZEiMYx0VwtszioqdmKc+fa4vz7m75FevfI6YQt3Pfq1SvoSvD666/H\nxIl6ITDekdWaB0NmMDlx4hjeffdt9fM777yls3n31ZR5PJ6QBANRAiJfrXE727drO5XICSghIfzd\nC19tWKAy0aQcWHNudWbM4BqO++6bqisrLZ3mVxJc02l2UreSYBF9Kioe1i1wfBdwMpFSIml6JmMz\nHukwjGY0apG2JW3TaHr9Wnbs0Pq1WJWASjwOmY0hHrwO/onQPv+8QTOOms0eKlrg2r07IxLORX4z\nVmDlecIAACAASURBVCBKwARENlytaCyVGYfM+FX4mmMCbXO1b5sE5NpAp06dwwq5vXHjc7qyDRvW\nqv9H2qxFNFfLmU8GN30L3f8uvjBllvPvf/8bW7ZsweLFi/Hkk0/q/joagwfnaLTk6ekZmigeMt7z\nIhu3ysqf6b73F7/4qXQdZSYVI+FcJFwDxoKLyObdLKIkUKJJV0Yzb/Qbiuw0CwuL0LmzdyDu3LkL\nbr99vN/1rUGvFyGqn4w2Q8Y0yyiij36BqJ8URQvASMe4Nrq/aFKXcYyXIdwoEJHOFdGm0fT6tVy4\ncMHSPgrImUREMoa4aBw1mz20bYGr3YHzXeCa3Z0xaz4pEmxFfjNmIya1JWDyClr+CZgAa8LVApHL\nlyHrVxEMGTNemahioshqkSbY+xXNNWYTNsqYvnVkwhbuP/zwQ9x222146qmnsG7dOuzZswcvvPAC\nNm7ciJ07d+KPf/yjlfWMCVyuOjQ1NamfGxsbdVvBocVu1muAz5/X5xPwLROZ1chMKkbCeffu3XXf\n3737pboyoxBmRogmjaSkJN01/mVGPgmiSVeEFfG3n3pqic//eiHDCNGkKZr0ZLQZZWXToCjeoUFR\nEvx2P8QLxAkT7sIll7SZ7UyYMBn+iDTXkY6zLkqyZTSp6x3jEVIbEhENp3kjwUnk12KFWZWMM6H5\nGOLB6yAaR83atOt/wwkh/YYykUxkIhKFi8isSG73K/g81JaASbvD7JuACZDLxC5SABi187Nnz+rO\n//prbZlRG4y0cGmF/5QRIksDs5HjZCLjGf2Gou8XtVGZXA7xTNjC/aJFi5Cbm4v9+/fD4/Fg1apV\nOHLkCH7605+ia9euqKysFN8kzpDxrm9p8T1+QXPM5arDrl1e4SuQNuOqq/rqvvfqq71lmZlZ6Nu3\nv/q5b98BlgoGp0/rnT9Pn9bbwQdDJDiKJg0Z0ydfPwR/nwTRpBu6nZ7WNkXm+oyMnhg48Bpcc002\nMjK0v43oeplJ3WhxI4uvtVQ4jt8pKSmoqHgY06c/HFQwC3cBaAWiJFtGk7r/djoA3XY6INYYbtny\nPLZs+U3AY2YmPRmMBCeRX4sVZlVmzctkdkGN6hBoHA1UFu73A20L3C5duqBLl66YMOGukK6XiWRi\nRuspUhLIBD4QRUwyMu/88MN/6u7vWyYjuKakpKBv337o27df0DHGqJ1//PG/dOd/9JG+LBhmAwfc\nf/9UXZmviaZV5m/BSE9P1wX48LU8MBs5Tub9GI2zou8XtVHZXA7xStjC/dGjR3HPPfeoP0hzczMS\nExNRVFSEqVOndkizHJkY5r4OKrt27dRt9Yq0WVOm3Kf7jilT7td8xzvvvKV+fuedt0KOXWu0Gg9k\n2xeozEiw8XhaA/7fjpFgI0pgdOLEMd3z+yfxuu222wP+D8jZomozzGqdjGTt/B577CdYsOD/05WL\nrpeZ1JcvX6r+/8tfarVhslpVM6ZB7YiE90iFMZS5vyjJFhC8/jLb6SJHO1GWZzOTnggrbPZFWlNx\n/HAxIrOMsWO99x07dnxA06/23SP/OvqHEVQUbRhBGZMCmR285ORkjfbQ93qzuzNmExwZKQn0fjMJ\nut0pUcQko/qJ5hEZwfXs2TM4cOCvePPNvwbsQ1a080hmQ6+tfV1Xtn//n0Oqnxn0AT70/nlGfcis\n34kMt98+HoqiQFESdONIRcXDOkWhf3AOM7kcYp2whXu3241u3bohISEB3bt3h8vlUo8NGDAAb7/9\ntsHVHRORHaOMNksk/K1evdLvqEfzHWZX4/4e/gDwwAPTNZ+NBkR9/aDbyhRtx8+ePU/t8P4JjGR8\nEoyEX5k4+Ubb9bIaSTN2oEaCkyjJmBVCRaSTmwDWZAeVTzRmvbOgyNHOKMtzO0aLIzOCnUhwysq6\nTHeNf5moj4YWKjMwojagzSkSeL65cCFwmDz/MILjx2t38Mwmw2uvf/sCMlSzEpkdQDNmSyIlQZtD\nsTfb+oAB14QcrtWofo88MkdXp+99739CegZRHxK18549s3TX9OypbedmsqGbxaqoYmbzYShB4kPI\n+Z0ED6wAiJUgu3btgMfjgcfTil27dmqOZWZmYeDAa9TPAwdq26hsHoF4JWzh/qqrrsInn3wCABg8\neDCef/55nDlzBufPn8fmzZuRmZlpWSXjBSvif4uER5kwfe2r4YQE/WpYNGjLaBuMBkTZMIJGgk1y\ncgo6d+6Mzp07awY3QGxLKxJ+RVgRrcYofrTMgG0kOMlolUVaVRmtpdkFgjiMoThBj5FZi9H9RYvs\ndoJNiiLTMFH9Zdug0fNF0ifh4osvlioL1ket0JiKHG5lduhqaraq0VgC7c5MnjwFnTu3mc1Mnhya\nUCbawZMVfoP5fcguLsyYtomcRf/5z/fVz++/fzIkh2JR/QYPzsE11wxSP19zzeCQgk+YHceBtoAg\n+rIv1f9Fv6HZWP5mA2zIjMNutxsrVgQONyoKu9z+zEYLVCNkAisYKUH0Ubv0OV3++c+T6ud//vOk\n5UqaWCZs4X78+PGqdv6RRx7BP/7xD9x00024/vrr8corr2DmzJmWVTJeEG1TmY2AIEv7ari1tVVj\n4w+Yt+OLRsrnnTur1Unbf8AR2dKazbAripMv8xsamYREI6W2SKsq4wglY3YRbFITCb8yzoxGZi2i\nd2Q2S7IIUZIrmTZ49uwZbN/+InbseDGgyQEAvP/+e5qILv4YCRVGuRjMxoe2IpqPSOsmeocyuzMp\nKSmYMWMWHn54lk649vcNSkhICGATH36+CaCtje3b9xfs3/8XW+K8i6KaRVrrOWvWbJ//v685JhoH\nZfqQ2R1GK9qxyLQstAywehW6kaIOaAs32h4Hftu23+qOG4VdlnHqlvE7CRZYQRRtaPXqlbq8QPpM\n58H7YDRCGjuZsIX78vJyzJ8/HwCQl5eHl156CY899hjmzZuHmpoa3Hlnx0kW0I5IsPOPsuGfwMmK\npAuiMH1mTRJEiS9EA6LZMIKiAUefkhu6lNxmEMXJF/2GMu/fyM5Q9H7ltMrGiwMZ4Ve0QDDabrXC\ntMloS170jsxmSRYJFh9++IHu+KlT3jKZcLJLlixSF+BLlizSnS+y2TfaHdKjneBlNZJGOwtmMbtD\nJrs7Y6z51tojW1k/QGz+GA3BxExUM6PACO0YmYS89trvff5/VXfcKFGeDKIFgoz5mREy83Vo5oVa\n4V0miZSRoq4t3GiNz7k1OiWKkW+VjFO3aOfAKLCCKNqQ2WSB0Yg65mRMxbn35bLLLsOUKVNQVlaG\ngQMHii+IQ2Q6u++A6N+ZrUi60OZkEjwDrNn4xWvXrtJ957PP/sqy+rVjFINbpE3xv78vIuHXbBQJ\nGZ8IkdBhZGcoQuRwLPP+rEjAY7TdKhKMAgmrvmHrzG7Ji2xBzaal/+ab87qy8+e9ZSKhQsbkRGRv\nbLQ7ZEWuCaPFhYxgGk4mad92K+rHZk0g9VpDre+SaAcv9EW+PoOunYKJzG+oDYag1wCL/F62b/ea\nXGzfvi1gHwuWKE82YWSovim+04XoHcgEXzAaR0TCu1wSp+CKorZwo14ChRs1i5HDbTvBFpBm+6hM\nG410vhQnY0q4b2lpwcGDB7F7927U1NTo/joamzdv0pW98MJG9f8273RtpJhwnDHFBBduzcYvlomz\nL7LjM6ofYM4kQhQBQCbRmDiKRPhx8kXvX2RnKBO7t93hOCFB73Asw3e+M1pXduut3vCaMpOO0TOI\n+OSTjwOUed+RSHMu5zMQ3BZUZJIgEiw6d+6iO+5bFiyufzsip3DR4kY06YvGGZlwq0aLCxnBVG8a\npNX8fvrpJ7o6tvt4AW1h/LRow/jJRuoIpkQQ91PjHTyR4CezyLYi4lC4iH5D/8AI/osfwFhrXVW1\nFi0t3lDQLS36RGlGCZoGD87BgAG+zpTZmnG8HSO/hkAhXz/7TD7kq0zwBaNxxKzZj0hRJAo3KppL\nZC0JgjmtixD1UdEuv+zOgVE+k3gmbOH++PHj+I//+A/cd999mD17NubPn6/5e/TRR62sZ0zwwQfv\nS5WZQaQx8l9A+GvlZOMXA22Ct/+kot15CFYW3I5PVD8gstvVLledxmnqyy+/0GnMfDPG3n67NsSe\nfwi+228vDJC8JXj9RO9fZGcoE7s3OTlFDcHn73AsM2CL0pKLED2DSGubkqI/HqgsGDI7YOPHF6um\nT+PHF2mOiSZtvTPgIN0C0R/fiFIirfS5c1/rjvuWiRY3siYpwWiLlOJtYwMGaNuYzM5J6LkWtIv8\nQLsfvmVVVf7tUbuIlwnlaGQ6JuqnVoT5E2FFxCEzGGllZZQURjsTokRpMruDvrtPvvljfBHlsxBh\nRvMb6VwOot8g0Jjpn/DQ1x/tqqv6afq5jO+VyGkdCL6AFkUbktnlFy2A7fZrsZOwhfvHH38c3bp1\nw/r167F//34cOHBA8/fmm29aWc+4YPDga3VlOTm56v8yzpgijZEImfBd7VuJHo9Hs60IBF5NX3ml\nt8xsjHSZ7WojJyS55DDGzpraEHvv6uro66H//vvaxZtImyAasER2hjKxe2tqtsLtduObb77RDbgy\nA7YI0QJB9AwizfDll/fSXe9bJrslb8TLL+9STZ/8BSeR8A1AozUcMCBbc0wUUSpQfz192lt20UWd\ndMcDlQVDNOmLxpm2NuZt9++9946mzjLOjEbhZgHxOCHa/RAJTv6L4H799ItgI9Mx0e6Vvh9rFw9m\nwxhGIzCBDMHCIAYyEerZU7v7ZaSVFiVKE11/4sQxjTP5+++/F9A0z8g8Tcb/y8jp2KxpmdlEbKIF\nZkZGhu54ero3iqHLVec312n7eegLOL3/mNEuvJwZsvEuv2gBbDakciwTtnB/8uRJ/OAHP8BNN92E\nHj164OKLL9b9dTQCd7Y+6v8vvLBBd/z559er/8uYXIg6dJvWUNshfO8hMh3SO+Fos+R27dpVd32X\nLvqyYLQ5YgWvX+hbldoOH3oEAi16e+cTmklDdBww1vZkZmbh0ktT1c+pqT1Cqp9oq1c04MrYOYqE\nZ9ECIZDDqO9ujSjGtigUY5tJRvDMimbtnUXCt8tVh9/9zjuR/O53u0ISvMKZlH1DC4syW4ruL3o/\nbW3MazJx4YLeZMIIK8IUyuTTMMJ/gXLy5Lvwt3c2itQh2r1qi7HtXdQNHJgdUphC0XErIrWYxSgM\nYiATB/9dwkgik89Eb/Ou/Y1l49QHsxkXmaCKxhEZsxKjuURU/6amJt3xpqZG9X9/m3xAa5Mvs8ss\n2iE0Eq5FuzeiXX7xOO6MBbJdmIpz7+vkRoCuXbsFKPMKvqIoGTImF6Lt5oaGBvhHefj88wb1s8h0\nyKwTjozZh79NfCjo40tvF3RYrfAv0paItJIyWksjbc+JE8c0A2xj4+cawcdsNCHRgCtjTiDySwgn\nioH/z2y0nRpIsPNfAPq3cd9B36y9s+gdia4XtTF/ra9/H/78889139/Wr9sQ7QyIHIZFizPRpCta\n/FkRptBs9k6RaZgoUocIfYzt93TjkMjZ0ApnP7MJioJFPBKFqxVprUXzgMipXNQ+RL5fQHsb0Pq4\n+f7GZgNYZGZmITXVq6jp0aNHSJp1QBzK0mguEfVj0e6KyCZftMts1jQrkF/NZ5/py4IhGoedsEC2\nk7CF+0cffRS//vWvdWYJHRnRgHfZZcbmBqLtcEC8ADAbx10k/IsimYgGTL22AJrFg4xW0cisRhSB\nQJ+2XmszLxOmUIZg2h6RxkmkjRG9H9GAK6Otcrnq8OWXX6ifv/iiKSSNh69gGaxMbE9svB0bSWQy\nKxqh3z0q1mltfXdvLr00NaTdGxmTlLFjvX4jY8dq/UZEbSTQpOtbNnhwDjp37qx+7tKli2bxJ9OH\nRO/ILKJnFB0XLWBkzPuA4GYtgLHgJrOLG1q4Uz1GEY9kYogb7cCK5gHR7pxIqx0on8nVV2vLzIZS\nbCfYAurEiWMaxVlDQ71GUSMz1hqFsmwn2FxiVsnSqVNn3XF9WfBxuFs3vTKzWzfvbygSrt1usWN/\nR45Tb5aQhPuioiL178c//jFOnz6NoqIifOc739EcKyoqQnGxXgiJd0Qx4Lt0MbYjldkOb7OT8y4A\n3n1XuwAQTayBtAm9e3tNhwJp0n3LAk+K/1L/D6T1O3PGWyZaPIi0ETIRCkSrdSOb+kAapcsu85bJ\n2nsHmxBEGifRpBiOtsa3TEZbJWqHot2F0HMt6JOX+GvmQwnXKtoul8sM6R2//AVPmUnH18HPNyoI\nIN69SUtLgz/66DDG+GuVfRG1kUCTrm/ZiRPHcO6ct81+/fXXmvqL+lA7vu+otVX7jkTv2GzIWpFW\nU7R7JYNMds9ggpvMLq6RPXk7Rpp9o4hHMs6gZnZgRbtzgPHORqB8JjNmhJbPRKYfGy2gRIo0mVCZ\nZnLOiBD554lM30RmMXV1dbrrA/lSBEOUcFJkYitSdHX0xUFIwv2QIUOQk5Oj/t1666248847cfPN\nN2vKc3JyMGRIaANhPCCy0xR1NpkB1V/wAbSCj2hiDWQ65GszL1rNB9Ki+paJQtiJsErbEgwZm3l/\nfOctmUnfyImoV68rdPf3FTpEbcBsbGCRyYXMOTJRDvzx1XyLFmBmw7W2EVzYCDWGuKJo7yWTRVhr\nOrZT089Fuzf19fW64y6XS/1fJNiK4uSLQnGK2qhIqAmklfXV6AH6HbZdu3bqdthEjvOJiUnq58TE\nJEPTp2D5NHzx7eei3Ss5h9jgZi0iREocmXCzRuOQWb+IQDuwK1Z4d2CtEKyMdjZ8zdTa8dWiA9aE\nUpRZQIWLbFSrYAs00fOJFrh/+tNruuN//OPvdWXB8K17oDKR8O2/QFMURZBwMrS8QGb972KdkIT7\nRYsW4amnnpL+8+XTTz/VaAM7Iv4THKCdCEVhLgGx8CtydBIJBhkZmbrjvs58//VfM3XHH3rouz71\nNdb6XX11P91x37JAbcS3TPSORJFYRIKJKIqDjMmKkRNRIKcz3/qKEA3YovqLTC5k7iGj/TdKJCZC\npFUFjLNXykRsMrKHFgmegLHPgMieW7R746sVD1QmEmxFbVw0BogUACJEMeyBcMJ16h3nBwzwJksc\nOPAaXbsx0iyLFC2i3Ss5h1ix2U4wRHHgRUm2AHNZlkUEstf+4ANvWahx8tvK5DMIy9RfJhyqUTZw\nkWZdtIsrMq2SUdQYhWsVPZ9Zm3mRcC4KtSkjfN9xh7eNjB8/IYCSxDhDb2hE17zTbizLUGtES0sL\nRo8ejXfeeUd8cgzjmxinnTvvnKz+/9lnn+qOf/qpt0yms/tv8fuX+Qqe3jJvXHfRxFtf74I/vlrD\nW275tk5znZ/vNUcSbbV961v5uuO+5kz+IQf9y0TCaWZmFvr29S4W+vXrb+lqXTTpizR2IsFZhEhr\nLopUI1p8BbtHKH4HIsFDPGnIReI4d+5cQEFZlmBrDhnB08hnQNSPRfbC2syf+jKRYCv6/URjgEj4\nF0Xr0aN/0TLOeL42yP5Ru1yuOk0oRP9oOCLfHivi1BuZjZiNcS66/sMPP9Ad9y0Tmb6Z7eMy9tre\nfCH6fCmyO7TBHH5FSiBAnKwOMM4GbkW+iL59+6uf+/YdELLDrVG4Vr354J2CBa5//cyZcFoRMWny\n5Cno3LkLunTpismTtf4Ioh1emahoRmNIvBMV4R4I3SYvFvEV6trZvt3bIUWTtkwEANGgH1j41Wb8\n9E89b/R9gcr+3/9bqP7/ox89oTk2Zcp9uuvvued+9X9RONBAg4PvICJKbiNyShZpWwLZO/suZkSY\n1diJEA24gSbolhZvmcjkItg9/IVD38Rl/sKhSHAT+Q3IxJnftm2zGst/27bNmmMyGVaN7KHNRoEQ\nTdozZz6i06j52guLHJJFgq0oEokefUQpo/cnimQjs3MiE5FInN0zeD8T+fa0mY4F12rKmJVYkf1y\n2bKfYflyeY15OzJJvowEI1EbES3wfJVW7fgrHrxhKD3YsSP0GONGDr+iubSd9mR1CQkJGD9eKwyK\nwqGKxgHR7oHLVaczAfW9vyhXgqh+AJCYmOjzv3bc0O+O6Hd3/Allk1VkAizjFJ6SkoKxY8fhttvG\nhdyHRPOIaAyJd6Im3HcERNoEkb26rxNgsLJAayTfMpFgIN4ODdS7tWV//vOffP7fqzkmEj4DZRL0\nLRMNLoFMWHzL9CYR2vBngwfnIDW1h/q5R480jc28KDawSOspWnyJ7CRFk6rIHl5ktiRjciHaPWkj\nuMmDSHALJ1qLr99GWy4Gb5vy18iIMqyKdlfMhsIU+RxkZmZpNEx33KHVuIm0oiLBVmRTLxK+RXkI\nrEBkMmBW8y2DdqzRm/2I7LHNZr/84otG/PWvtXjjjf344otG8QU+mE10JopWI9KKihRZ+nwpWpMW\nmZC/Rg6/vu3fqKw9WV1rqz5Znch8TqTZFiGaa9vGKe8OnP84Jaqf/zj40kvbQ1qciOLwiwITBMJ3\nKvDPgHv11f1C6kOiBbZo9ycaY4iToXBvIYEEV99tPVEkmkDJa/xt4EULhPHjA8VTnqT+/89/6jVa\nvmWBIvr4lpl1FBMtPkSDtkh4ldG6+kcq0QqG4gHdd8ANdUdKJNT4h5gLVSseaHHkWyaTBTmQkNCp\nk7dMZHYjMh0SCc8irWSbyYX2+31NLkSabZFwLBLORcg4+02ePAVdurRtR0+aNEVz7KqrrtZdH6gs\nkojyEBgtcPVhEvU29/pwoKElcxMJnyLfnrZIINo4+P5avW9/+zs+/4/U3c9s9ssFCx5V/3/ssR9q\njol2r0RzhUgw6t37Kt31V17pFcREShqRIkuUL0U0RogcfkXmn4B4hy2c4AS+Y6nIPE3GdMpol1lU\nP5FfRjgRo/RmPcHnOpHfin8G3HfffTsk/7RQAx8QLY4T7jdt2oRRo0Zh6NChKCkpwdGjRw3P37Nn\nD8aNG4ehQ4eiuLgYe/fu1Z1TWVmJgoIC5Obmory8HKdOBY6+4na7ceeddyI7Oxtvv/12yHUXxW0V\nEbizaMNN+QpZgcr+9KdXdcf/8IdX1P9FZjcy4bGMBCNROFDRzoBo0BZtx4oGNP8shgBQWektC7S4\n8N3a89fGBHJkExHKgsD/XNHvJ8qSLCN4+eZeaMc3R4NZsxvRxC5aXIiSr4jaqEij4x8eFQBOnvQu\nFkTvUCZ7ZkpKCm67LfB2tOj9mI1EItMGRHkIWluNwyBqy/TH/cOBNjVpw4GKFqGiNhYoVKJxJA49\nP/7xgoD/A2LBUaSE2Lfvz7oY6fv3e82dAvnhfPaZt0y0wygSjHbufBH+bN9uXTQYUR8VLR5EJi9t\nv69WSeL/+5pNVifSbL/y/7N35uFRFPn/f08uQu5MTshAECLLfXkhyw3CyoriBQoiImRVWHCXVdQ9\nXHXV9aeyCiogBDnjLuuy4gEoHhyKeK2Ain5VFCHhCsnkmCQEcszvj5nurp6q7uqkEzIMn9fzzPN0\n17u7p7q7uupTn7q2buH0t9/epG7X1Jg7KWROEln8ZK24svU6rLTwmVWAZfGTjXux4ijUxm2AczLY\nbQUPdYLKuN+8eTOeeOIJzJ07F6+++iq6deuGmTNnwu0WN1nu2bMH99xzDyZOnIiNGzdi9OjRmD17\nNg4c0OZ4XrZsGfLz8/HII4/glVdeQdu2bTFjxgxh5vvUU08hMzOzyYvmyD4WkdHUvr3WB1peSBpd\ngw9rKrIMSzaP/apVeZy+cuUydTsyMoLT2bAxY67kdHZBHlnLhcwwEjXlHTr0s7rNztmvUFCghdmd\nqlNWOZBl+Gxfd1GYeMxCYFcme7MGyDw+smckK9hllQvRLA2iMCNkhteyZS9w+osvPqfbNzNerYxb\nMWuOPhtTvOmzlUCPnL11CKxUgAO7WQC+bhgKdhdrkyG7fqDxXVJSrDO+ZYajbOC8lTRmhtXVT41a\nX2TInk9EBJ+Ps2GymVRkFWwrq7lfdZUWn1//mh9MKkNWVogdaVr3ONm4DhHsdyfLJ2Xxk6UxKwOK\nzZC9o8AWzsBWaLtOGAC66UcDpyK14gSRzdoVygSVcb9q1SpMmjQJEyZMQJcuXfDwww8jOjoaGzZs\nEB6/Zs0aDBkyBNOnT0fnzp0xd+5c9OzZE+vWrdMdM2vWLIwcORJdu3bFk08+iaKiIrz7rt7DvWPH\nDnz00UeYP39+kwf/yvrDWzO8zJH1lbS6yJIRsgxLVqhWV1dxOhsma85ds+YlTl+9WqswsIt+icJk\nhpGsW5CsUJHNVsSu1qvA3r/dlTNlyDx+gQuTiLoj2J3Rp6WRdUmQtR7ZvT+Z8Wpl9Uyz5mgrfUXZ\nCkFg5UDmsZIZ53bXIRB1Rzh0SB8myydknvmmtNCxYbLrv/ji85y+dOkiLqylkA14tTLNo1nry+TJ\n07jr33LLdHVblo/KyhlZBV220rmVQeFs17brr5/EHS8b0ClfZErekm6GrJVdVtbYLcsAYMKEG9Rn\nNGECPwjaDCtTc7P/F+h4k40dkuVz/FSY+imJZd8wD02F2ew4HA5ccskliI01niu5trYW+/fvx+WX\nX647b9CgQdi7d6/wnL1792LQIP3UioMHD1aPLygoQHFxMQYOHKjqcXFx6Nu3r+6axcXFePDBB/HU\nU08JP0iryKYZZD3ECj//rIXJvNKA3HDp0aMX12ebHTAqG7Qraz0QeSXZObhl9yAzzmWFvmwefllT\n5R13/JbT77xzrjCuojDZHOQyz7/M6y0zWsLC+PixYbICw4rhKLuGrK+lrLlU5lGRGd+yLgmyxeRk\nyNZykBmvstUzfQsQac3RgQsQyfpbFxUdx5YtWqG3ZYu+0OvRozd3fq9efdVtuxVIWRoVdUc4dYoP\nM0MWR5lxK8pr2Xck85rKvgGZZ1u2yvCkSbdw+s0336puiwa1s90DfdOh/kLdv/BC/XSosi4P48aN\n1820EhERoesCYXcwoswJJVvpXHY+YN61DbC2yq8ZsrJANq5DNnbGinFuhmzqbYWIiEhdJUdBD81w\nEgAAIABJREFU5gSwshZE4OQVrBNAPO31EHVbVnl49lm+eyPbhVb2DVuZtSuUOSvGfVhYGNauXYtO\nnToZHlNaWor6+npumfWUlBThADXAt5Kj2fHFxcVwOBzSaz7wwAOYPHkyevTo0ZjbagKiFgEtTOZN\nAeSe7c2b39AZ475ZArRuNcnJSdz5ycnJzPF8HNkwWYbEFhhamNZce/fd93D67353LxdmxIkToiWv\njzPb5oYhOz+4Ajuzil1krTci2DJk+PBRnD5ixBXqtqxPvYzGemNEYaIKcNu2mkdG1lwKBE7H2riW\nMplxKTPMZJUPWRqxYrwG9mlnkU3RJmt9kfVlXb9+Haf/859r1G3Z85MZrvL3a57PWUE+GDDQuO3W\nKMNNlkZEToS0NO3669fnc/q//qU9d1EFlO1e+s03X3H611/vU7dFxi/rJPANGte6n/7444FGDRov\nKjqumwCirq5Od77Msy7rEy9LQzJEY78Cu1ScOXMG77//LrZte1eYr8lW+eXHnjh0/yErj2VdSGUD\n8604QcxaHmQzFinHKPPkB7YQyp6xfOID8wrge++9zenvvKO1IMnK6sDWPkDsWCHENNm479atG7p3\n7y789ejRA5dddhmmTZuG999/31YEvV5vo/rAW+lSw15zzZo1qKqqQm5uruXzRYg8qgoREWGIiDB+\n1Iq+axc/GPjDD7epekREmGF/XkVn54xXWLdupaqXlJRweklJMRNHccGs6Ea1fUUXd7upVfU+ffqg\na1etUO7atRt69+6t6kbeEqv3L8Lh0J7x2rUrOX3t2pdU3cg4t/oOA+caBnzzDyu6keGm6KLK25o1\neaou7m8excRfPOBY0UXTTB47dkSXxtq1a88d065de1UXDzQ7ruqiZdo3bnxF1fPylgbGECtWLFH1\n7OxO3PnZ2Z1UfdSo0Zw+evQYVQ+szANAWlqqqt9ww0ROv/HGmyynEaMZidjzAweisecbVbCspjGj\nGa+0NCBufbP6/NhWAYXNm19X9X//+2VOX78+X9XZip5C27ZtdWlMdo933jmbW0vhrrt+y+RjRQHG\n7Q9wu0+qulGXAKvfidi49ai6UX9iRRd5nhMS4i3nc7Lns3btSq6CKEtjtbVaGmM9oAqLFj2l6kae\ndavxk6URo243Whr/gdMPHjygS0Ovv75BNVxff/2/Ok15RoGzybDPqLS0hBvfVFbmVvWrr75G16oc\nExOLq64ab5pXr16t5dWBZQH7fq3kQ+3bt+emkmzfvp3ld1BSUsSNnWG/kdJS3hZg79/3DeorP+w3\naDcNy75B2fnsnPoK7dtr5dT06TO5POT223NNrx1KNPku58+fj8zMTHTs2BG33XYb5s2bh2nTpqFj\nx45IT0/H5MmTUVdXh9mzZ2PTpk3S6yUnJyM8PJzz0rvdbmETJ+Dreys6XincU1NT4fV6Ta/5ySef\nYN++fejduzd69uyJsWPHAgBuuOEGPPDAA7CK0xlr4LUOR3JyLJKTYw0/BkUX1UoPHjyo6snJsbjw\nQt7LfOGFF6q6UcGu6EYoutFUmIpu5PGyev3k5Fj066d1Eejfv69OM6o8KLqRV1nRMzLE3XYU/dQp\nvtvPqVNVzDvi4+5waPGfPHkyp0+ZMkXVjaby1HRxoavoRt2eFP34cX6V4+PHj6q6keGo6WJvC/sO\nRJlfRIT2jI1QdNG4jZ9++lHVDx/+mdMPHfpZ1W+77VZOnz59mqqvXbuK09eseUnVy8pE3XZKVV1s\neKxT9chI/juOjNS+Y1ELZKdOnSyfX1NTzek1NdWq3qUL32e/S5fOzDconnLXavxWrFjG6Xl5S5nr\n8xX0hoY60/d78KD2fmV5lJU01K1bF/To0V0N79GjB37xC+0Z5Oev4ozbdetWMuf/grt2t26/sPyd\nGHklFd1o8gTtOxVX4hX95pv5PuKTJ9+k6l278q1HXbt2tZzG6uvFs34pumjGuJ9/1r5BWT4/efLN\nnD5lymTLacTjqeB0j6dC1Rcv5gcXv/DCQuYbqtCt2PraaxtQU6Odb/QM6uu1Z7BoEd/6sHDh07pr\nvPii5ohYunSJTjNyNGnfmd6J4fV6kZenXeP118UzFrH3GDiVJHuPf/nLn7nzH3zwL7pvJHDsDPuN\n/OMf/KD2BQueUPXExBiu8pOQ0FbV4+J4WyEuTrMVZGW1TO/YkW+R7tixI/N+xY5ENv6BY4uU+J8P\nNNm4Ly8vR69evfDWW2/hvvvuQ25uLu6//3689dZb6NWrF2pqapCfn49f/epXWL58ufR6kZGR6Nmz\nJ3bv3q2Geb1e7N69G/379xee069fP93xALBr1y7069cPANChQwekpqbi448/VvXKykrs27dPveZf\n/vIXvPbaa+pv+fLlcDgcePbZZ/G731mfOs3trkLnznwfvC5dclBaWoXSUt6oVLCql5ZWYfTosZx+\nxRVXWr6G2HiOVvWsLHFTnKIbFXqK3rs339+3T5++qv5///cj/vtfLVPbsGEDvvvuJ1UXddHwer2M\nLi50FP3IEd74PXr0qKr/9BPvcfvpp58sP7/PPvsfp3366eeWz5c9P6MKotX7N6rcmb//Nro0VlBQ\nyB1TWFio6qL+m5GRkapeXc0br9XV1UwcORler/aMVq1aw+krV65WdaMKlKKz3ScU0tMzVP2HH3iv\n4A8//KDqbNO6wq9+NV7VReNWwsMjVH3KlNu4qSpvuWW6qosMq0OHDqn6jBl3cvrMmXdJ/l9LI4mJ\nyZyemJhs+f1UVfFGS1XVKctp6Pbb7+A8fjNm3KlLY0aDDdl84vvvtS4V3333nS6fqK3lKzi1tfW6\nOATCxsEIRTdaLE/RjRw1im60WJ/VNH7jjbzxPHHiFF0aY72SDkeYLo0VFvItdIWFRyznEzL95Zf/\nyen5+S9bziOMun9azeeefPJprvvpk08+rUtjdXXi1bo1nX9HdXX1umtUV2t5TXV1rU7LyODzmczM\nTFU/ePBnTj948GdV//5783zo0Ucf5/RHH31c1T0e/jv1eGosfyOVlXzrVGVlpen/P/aY9v+XXno5\np1922S9V3WhWM0Xv2LETp2dndzLN58LCtHzu8GF+fNvhw4cN04jX68VTTz1t+v2HEk027v/zn//g\nxhtv5DI5h8OhTk0JAFdddZXQoBJx22234d///jc2btyIH3/8EX/9619RU1OD667zLcI0f/58/OMf\nWm371ltvxQcffICVK1fip59+wnPPPYf9+/fjllu0wUrTpk3DkiVL8P777+O7775TWxxGjfL1bc7M\nzEROTo76y87OhtfrhcvlEn68RjQ0eDFrFj+Q7q677kZdXQPq6hoMCwRFN6rJKnpdXQNWruQHhLz0\n0nJVN0KLg2gqRS0Ooky9ocFr+fpffcX3Jf3yy31M/PN0XXfq6up08TfyLFv9fyPPt6IbGdfa9cXz\n8Cs6uziSwo8//mD5fFn8a2t5b0RtbR3zfvhzvV7tfKMp6BSdnbFCoV27LF0aExWs9fUNzDHiGY+s\n3mNiYiKnJSYmqXpBgXhQsqLX15vHT2RYREREWn6Gb7zxGqe//vqrqs7Oda1w/PhxVU9JSQ+YqvJq\nOJ1pqm7UZUS7fhGnnzhRpOqi2YJSU9NVferU6Zw+dertlt+PaFzLiRPa/aWmmv9/Sko6unbtpmpd\nu3bT3X9dXYNwnIjL1VGXTwT2GWfzCdk9yp6huFtIe8t5sdGUtIpu1DVJ0cUDfn9W9Zdf5sdN5Oev\n0X0D+m4NXt3zNZrcQdHT0zM5PSMj03Iakemyb0zUGp+SkqrqRtNGK/rBg7xNcfDgT7pnICvLEhIS\nOD0hIVF3jT/+cb6q/elP9+m0khJ+iu7i4hJVZ8eyKTidTqYs4sfu1NTUMGXNAU7/8ccDqv7ssws4\n/ZlnntJ9I2wlNSIiUveNyOwR0f8fOKD9/+rVfPfFVatWmJYjXq/2/CZMuIHTJ0y40XI5ICvrROcf\nPnzYNP2GEk027k+dOqUb5MVy9OhR1YiKiYkRFrYixo0bh/vuuw+LFi3Ctddei++++w55eXlwOp0A\nfAXoyZMn1eP79++PBQsWYP369ZgwYQK2bt2KxYsXIycnRz0mNzcXt9xyCx588EFMnDgRp0+fxvLl\ny4XNqgpNnef+zTf5qas2b35T3TbyyirIBnEBRgOd+DAjZDP6iPpks2FGhZZVRIYR24fbyoxBZtid\ngcDu9GWy8+WYD0aULeIlmn+aHdBsZRaKpgyoZcNk54vTmNZaYFQoKhh1bVKQzQIhW49CNlDMyhzj\nevTvVLZQnGywYnHxSU4vLi5its1XyJV9Y6Lnn5ysPX/ZbEVFRcfx00+aYfDTTweE4zTsILtH2TOU\n3YMI9rHJZsMxMp4VZFMCy1YSl03HKhs4L5qVjB0wK/uGhw/nx22MHDlG3ZZ9o7LnL55VjZ1G0XyB\nKADC7nnl5WXqtrgSq9k0u3bthNut9UsPXOtAtp4Fa6soFBVp36ls5jij7nfatnwtAHb8UqdOF+gG\nncvLOvP/l6VhURpg06BsULps5r6kJH5yELbVsvH5dGjRZON+5MiRWLBgAd544w21eaeyshKvvfYa\nFixYgNGjfR//d999h+xsflS4EVOmTMH777+PL7/8EuvXr9d181izZg3+/ve/644fO3Ys3nrrLXz5\n5Zd44403MGTIkMBLYs6cOfjwww+xb98+rFixwjQ+WVlZ+Pbbb9GtWzfDY4yQjQ436k6gELhEvS9M\nn0HIErx4qkWtUJFPlWieacqun5LCD2ZkCz3WiFM4ckQLi42N4/S4ON4gNUI8GFTzAom8pmyhIfov\n1vgVG0b6QTuB6A1j87l/xWshsIYnn2GyYbIZGOQrCMvnmI6P5z1e8fGaN15mXMvSsKxQlM3IJLtH\n2QI8sqkoZYu3FBUd181HvWnTazrjdvv297jrb9v2jrot+0ZlxrlsgSjRCsBsmNGgewVZoWllcZoj\nR/gBm2yY7B3K7lGGLJ8zar1SkM2GI5vVS2b8ygwru9OZypB9w5s3861bb76pzd4iy8fETgYtX5HN\npCK6fmCYyInAljUy7K51IEtjdmeOM2r9UPDNqKS1NB848H2zVrJla77IKg+yCqwsH5RVzqzM2hbK\nNNm4f+ihh3DppZfi3nvvxSWXXILevXvjkksuwX333YeBAwfiwQd9y3W3b98e8+bxC14QPDLDzwri\nfnTaPO8y41PU15RteZEV/BUV/ECp8nI+zIiKinLB+WWCI8WwnhYtTIufaFwEOzexaJESNhMRG6Za\nhiPzZsgMI1kFUObZz829i+vvzBqedueAB4CTJ/kuDydPaoWGbDpQWaYv84iJvZKaZ112j7LKi9go\n4MMUAtOEb6pLfdezxiwCZXeO9FOn+D71bJisciNDNsWfbBVrX3zM14uQvUPZPcoWWZIZh7LWG1nr\nkiwNyypYMtiWFNH/G3WdUoiJ4QcVsuvQiLq+yaavZcNkja2y1jtZy4N4VrvGzXQnm6feaNyEQtNW\nC9fCRLN6sca5bCVuWVksWsiNnSVJlsZla+LIzpc5gWQVWLut8LJFwEKdJhv3cXFxeP7557Fp0yY8\n/vjjmDNnDv7+979j06ZNeO655xAX5/PAjhkzBoMH814YgkfWXG8FmbdAlOmz3YGM+gEqyGrrMo9U\nSyMzGnJy+Fk0unbtzoU1FVm3J9niNDKPoSzDB8ANImossq5ZskJN9gycTnOPk11kHh9ZtxyZYSaa\nZ37xYm2eedlCarKFzEQtF2yFSjZHuqzyJKrcsNPKyTyC7NzhCgcOaB5CK5UjuwW3rEuDzHCS/b+s\n+5vIsDJaj0VEUpKo65MWJjOsRBVstnVL1CWlrEzfdSoQ1okh61IhqgxGRpq3fsmMczZMlocYjc1q\nDKLF5mbP1ibRkOUTsgUVZV0kn3qKH7DKhsmesSyfEy3yxI71kLUAXnXVBE6/+urruDAjZCv8ylrR\nZa3wonE7HTpYX/Ml1LE94WeXLl1w7bXX4je/+Q0mTJiALl342vD5gt3+4lu3buHC3n5bP42ozLMu\n69cv6q8rKiiMEC3gIwozojlaJ+zw+usbuLCNG/llrI2wa5TIMlyZZ172/4F9cX1hWl9cmUcTkL9j\n2UJoMsRdFthmePGgZAWZ11XWNUzW5UD2HYvmOGcH+MkqR6LWGbaCJ1skS1Z5SEjgBywnJGjvTGy4\naf8v6w+9dCnfXWHJEq27gpX+0J0753DHsGG33HIbp0+dqjk/fv/7+Zw+b9596rZsoS+Zk0Lk2WbD\n7OYDsoXKOnTgW/jYqQFlTgy78ZO1LIinIawTHisKk32DMmTlICB/BrJKqqwVlh3nosCWpU1pIWRb\nL0TxFzlW9Dq7bZ6PiVqRWeP4/fe3cvq7775l+foy2JYmheRkzbEgzue0XgBGEycoWFkILZSxZdxX\nV1cjPz8f8+bNw4wZMzBv3jzk5+cLp1o7P7CX2GV90ABxUxbbVCjzmMhq+zJkHheZZ1n0QYs8ua2F\n3T7zMmTPzy6itRJEK/2ZY17BkDUHy+5RnobMPWayCqxoYCTbH1q2emZGhnmhLEsDsspRYaF4FggN\n8+cvqzzI+qKK+h2z/d1FLQvszGGy5nSRYRfYmjBp0hTumJtu0rob7d79Iad/9NFOdVvmmWcH9IrC\nZF0KRP11r79em5t+/PhrOf2aa65Xt2UTD8ieoQj2s5G1LFhZidoMoxmtFGQtCzKvtrj1qD1zrCgN\namO7ZJULQG58iiqpbJ96WVkp08Wt2HzF3gjRmjNs1ymZ8S/rfid2kmjGsWjQNRtmtyyTefZlLZwi\nRxkbJht0H+o02bg/duwYrr76ajz66KM4ePAgHA4HDh48iMceewzXXHON4Uw6oY29xG4lw7drnNvF\naP5iBZlH7Ngxfh76Y8eM+zOfbWSGm9LdjKUxA37tIuoHyqYRUcW6qkoLW7jwaU4X9c20gyzTl3nt\nmjLglQ2TFQrr1olWoNXCxOM+tDB2VhCF0aN/pW7L7l/Wl9dojnUFK55xM2SDwsUzqVh32HTqdAEX\nlp2tDxPNlLF+vTZThqzfvnglZ21cg9188pVXxAudKbz6Kt/at2HDenXbaL0QBZnhWVDAj8tgK4Cy\nCq4Mo6kmFWQVRPlsOOYVbFm3JnE+pqVLK+9X5pmWOcrseqaNVvlVkL0Do5XAFWSTJ8jySdGg9uYc\nlC1rgZU50sSVCy1dyLpu2R10f67TZONembVm06ZNePXVV5GXl4dXX30Vb775JhwOB5544olmi+S5\ngt2arN2myrOBbMCnvC+rvWckay63iyjDzcrSwmTeBtH0XI3psiIrUGRjImReX5k3BpB75VoaWaEl\nu0eZ5188x7j11o1NmzZyYW+8oS3MZrTKsVVk3QFk3ZLE96/lI+JvWCv0Zd0FZGMurMxSIfKss/Nq\ny/rts4aiAmtQyiowMmSGkWxArwi95908H5Q5en79a74/9Pjx1vtDi/r8i/KupiKrYBvNgW6ms2FW\nuh2JZl5rTFkhGtfBetNFTp3GOHrYlggtzPraOnZng5F17ZIVy+w0m1qYVokX3Qt7z7JvTJYPyWjK\nNxpKNNm4/+ijjzBv3jx07qxfKr1z5864++67sWvXLtuRO99oba98cyCf7cUesr62dhF7ba3P9lNW\nxs/sI+rD3FLY7WsL6Pt/m4UZY+6xkWXq/ftfzOkXXXSput3S34moOZw1CmSed7teVVmXCxmilTdF\nLWpNRRY/K7NU2J2S9/DhnzmdrbTJZrWyi+wdi50AzTcN4fbt73JhbB9pu9O92kU2rkREM/ZOBGA0\ntTTfYmCEaLrOuDhtBpjAGaACw8TGu9YdSdY9UObokX1nsq5h8nzKvALKxlWBHYQrmxigpbG/5sy5\nTZON+/r6ekOvcps2bYQFIGFOcxjGdpsSz3XsTvMn88y3NHZbNmQLEMkM7+YgLIy/HhvGzhghCnv5\n5TWcLpoasanIvhFZGpCdL/uOZYW+fCYRc8OstT93WX92K4jSCPsdN+07sT4oW4asdUVkRLCGlagl\nrDEVQBmy5yMe2K+FyWYykSHr8iFzQsh0KxV8WdciGXbPF1Uk2GmZRd0D2TD7ZQE/lo0d33bTTVM5\nffLkaZb/X9Q1bvXqPHW7KeNKWOz2ZJCN2wh1mmzcDxgwAEuWLOHmNfd4PFi6dCkGDBhgO3JE47Fr\n3NpFPMUbP4i2qcj6jMsG9LJ9GhWysviwpiIbTCjrMmIX2WBXWZcWQD4VooymDTRjp8kz9wzbzfTt\nFpp2z5d5zJoyTSP7fMVrKZy9KeLsDuYExMZzba3d1gd23IP52CC7yPpLi6bsa8w0fpdcMpALu+yy\nX6rbstlqZP2Vb7/9N5x+++13qttNWS+FDZOt5SBrPWuOFkpRWdGYfEQWB1kXSvnMaebIFnoTVUTY\nWZo++eQjThcNZDdCNC6iOSdT6dCB754pCjNCthhiqNNk4/6+++7D4cOHMXz4cMyaNQsPPvggZs+e\njWHDhqGgoAD33dd8XSUI67R0txgZ7MBDBVFXlaYiy1BkfTnFTY3NEjUA4lkm2GkI5QujtGzLixWP\nl9jjY72CJis07RvH5p5/8RzfzZcGZcgqmLK+pKKZRtLSNC+U7PmJFn1jw2R98u0iW33WGvYXKTLH\n/Dtr6e9QNo2fDNlq6Glp/Hom7Gw1MmSrKMucSGKvrfV1AmStZ7JvxArs2g4KmZn83Oothd00JvOc\ny7AyO5859r5RduYfBXbCCpkjTPb8rIwvC2WabNx37doVr732Gm688UYUFRXh448/RlFRESZOnIjX\nXnsNXbt2bc54Es2EyEstmtmhqdjtLyxD1tQn85bYHaQjQ1Yo2R2sKputqDlo7Aqtgdi1gWTGp8xj\n1tLvWIZomkbR4nFGiNaiEM2pbYSoIsNWeGQr/NpFNlAPkFfQ7C5EJqNNm5ZtQZMhm87Urmfa7iJb\noil12TBZ64wsjdm9P5EHtrFjGmTrOcgq6XbH/sgqSLKB61VV/Gr0bJisBU9Wlsr67NudFpqd/Uih\nspK/JyNaelrpcx1b/TXatWuHBx54oLniQpwFhg8fjfz8VbqwkSOvaI2otAjB/sHLu6SYx/9stMzY\nnWrRbp9rmUemTZs23GC2YBooJVqg6PhxfgpYIxoa+DSgD3Mg0EN2ro2rsdstRtYCJkP2HcnzEf4d\nNGbsiuwbs2s4ir63QOM68HqscS1bpdkuw4eP5hYUFE0xa0RzOJHi4uK5CRTYQbTt2rXnZtFq317z\n7DscDi6dNOY7lFWQnE4nNyiY7c5kLY3q0UfPPA3HxydwlXJ2gby4uHjOEy4ahNxUWrsF9lynUcb9\n+PHjLR/rcDjw+uv8aG6idXn55dVc2Lp1K/GrX/26FWJDNDd2CxzA1zc3MNMW9eFtKcSVA83wEc2C\nIfJ2txb2Z/Mxb+6Ojo7mDK2z+X5kREZGcsZzYwarAj4PYaBhwXoNIyIiOWO+MS1YsgGxYWHhnGdT\n38Jmr0uC3fjLEK9CbH0xQ7tpOCMjkxuQyg4af/31/waego0b/4Mbb7zJ8n/YRbS+imwxuOPH9QPr\n7ea1ZtjN5woKzBd5kiEbNyKaaEL0zJqK3RbYlJRU7hk2pgX1XKdRxn3Pnj3POQ8RoSfYPduEPTp2\nzOYGZYnmIzajbdu2nHEfE2O9uVVmmJ3r2C/UzT1msuvbnYWipRF71Rs3WFXkNYyP17yGMuPVLp07\nd8GBA9/rwrp06WL5fNk7bOn4tzaidQjcbrarUEuPqZAjKwtlrRcREZFcd7bGjJtoaeQVtNZ/By2J\nyEkkWj08VGmUcX8+LkxFEOcSzTHLiNhjZL2/rrgvafAUeg5HGNeE35j+vvYXYosRVJ602UFkhXJz\nzEbTkjTHOgSysSt2/0NmfI8ZcyVn3I8ZY711syldJpp7StrWRNb9MBRo7ckr7BIVFcXlG2dz3ElL\n09IzYgU7TR5QSxBE8HHkCN9s2fiZSuzh8fCLu3g81hcCa3la1/Cyu4ox0fLk5S3lwpYvX2z5fNlg\nyNaesrg5ppI832npySNaGpmT4FxfM8fKwP5Qhr5mgiDOK+Re1ZZtrmb77SocO2Z9cRwZ53qhfDaQ\nLxRmPiBVRng4X7SyYfZXgbaHbLYiGeI0RuZEKEFdeM9t6GskCOKcorW9jnZXF23pPvNUKLc+sgG7\nzdF1yQ52u82I09i547UmiFCHjHuCIM4pWtswEhnijZmGkZDT2q0PIi/22ew2QxAEYQcy7gmCIAjL\n2O3SYYXWbn0QDbwTeeMJgiCCETLuCYIgCMuc77NQEERzIOrK15jufQRhBhn3BEEQzYh4TAAV2gRB\naNhdZZkgzCDjniAIohkRjwmgQpsgCII4O5BxTxAEQRAEQRAhAhn3BEEQBEEQBBEikHFPEARBEARB\nECECGfcEQRAEQRAEESKQcU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBxTxAEQRAEQRAhAhn3BEEQBEEQ\nBBEikHF/FqiurrKlN/Y4giAIgiAI4vyEjPtzgOYy/ltbl2F2fnNUbFry+lTxIgiCIAgiGCDjvhkZ\nNGgIFzZw4GDExMQCAAYMuJjT+/W7WNVlxMTEonPnC7nwX/yiWyNj2jq0tPHf0pWDlqSlK07nCufL\nfZ6P0LslCII4O5Bx34zMnv07LmzOnN+r23/4wwOcfu+9WpiscgAAf/vbE9wxDz74GACf8X/ZZYM4\nffDg4ao+btzVnD5hwo2qHhbGJ4mwsHBVnzhxMqdPnXq7qvftO4DTL774Mi5MRExMLNq2bcuFt20b\nY7kCJLu+05nChaekpEqvrxgmPXv25rTu3XtbPj8xMclqdBvF2aoctHbrTmsTzBXIUH/2zUVrPwe7\nTopgToPBQks/h5Zu6aX3SNiFjPtmZubMu4TbCrfdlivcBuSVA4Wbb54q3AaAuXP/wB1/111z1O0p\nU6Zx+o033qRur137CqevXftvdfuaa64H4FD3HY4w/OpXv1b358//E3f+738/H4DPuB6Z7VXNAAAg\nAElEQVQ+fBSnX3HFOHU7L28dp+flrVXPF7VcdOnyC8TExBpWXn796wmq8f3cc8s4fdGiF7kwI/74\nx4e4sD//mQ8zYvHiFVzY8uVr1PiNGjWW00eMuELVRZWv5kApTJpaqMTGxtn6/7ZtYwD43nFaWgan\nZ2a2s3QdO4Xm2TCc7Fzf6v+npaU3Kk7N9f+K/qc/Pcxp99zzRzUNt2b3vrNBMP9/a3fNbG09IiLS\n0nF2CfY0EMwVzPPdgdRcBJ1xn5+fj5EjR6JPnz6YOHEivvzyS9Pjt2zZgiuvvBJ9+vTB1VdfjR07\ndnDHLFy4EIMHD0bfvn0xffp0HDp0SKffddddGDFiBPr06YPBgwdj/vz5KCoqalL8O3ToKNxWuOCC\nzsJtBVnlAAC6desh3LZ6jd/+9vfCbQXW0y7yuv/ud/eo23ffzVcmzCowubmzBMfP0O2PGHGFcBsQ\nt1w88sjj6rao8jJ5sr4CNH78tcJtAJg1627u/JkzZ+k887fcMl24DWhGamAYez5bARk37mqddvvt\nvxH8/53q9oIFz3H6448vsNz1S2Q4N4aYmFgsX76GC1+2bLWqd+jQidOVtG50vlKBA4Bnn13M6QsW\nPA+g9TNuo9arSZNuQUxM7Fnxql544S+4MKWCCwB//ONfOZ1NI6L4K0aPFUQVbJYePXrpKhhpaeno\n3/8iy9eXYfc5ypwMLW08WHFS3HMP38qrVJBiYmLRrVtPTrfSgmiVlnIiWMVuC2dMTCwef/xpLvyp\npxZaOl/2jmWt4FbiJ2tlN2sFb+180A5W496mTZsWjkloE1TG/ebNm/HEE09g7ty5ePXVV9GtWzfM\nnDkTbrdbePyePXtwzz33YOLEidi4cSNGjx6N2bNn48CBA+oxy5YtQ35+Ph555BG88soraNu2LWbM\nmIEzZ86oxwwcOBALFy7E22+/jeeffx6HDx/G3XfzRt7ZQFY5aI5rBBa8gYwfP0G4rZCc7BRuK8gq\nMHfeOUe4rTB8+EjhtoJZywVgpfJyqXAbAH75y6FwOLTPIiwsHCNG6A2BCy/sKtwG9EaqUdhll10u\n3FYwez7p6ZnIzr5A3e/UqTOyszup+7KuXyLDmW05kHW9Uo4ZPfpX6j67DQBPPLGAO//RR5/SnW9W\ngQOACRNuEG4bkZSUrF6brQwpzJ79e1UXVS6UZ2Bk+LGtJ9dccz0iI6NULSoqCldffS13jggrrUsy\nz/dDDz3O6WwFNz09E5dcMlDdv/TSgbo0cs011+vSuMPhwJIlK9TrZ2W5uOu3b+9SdVEFm01DADBj\nxh3CbcBa90BZGjRDZjgB1pwMTcVK/GVOiv79L9blzenpGboK0l/+8gh3vtKCaGTYshW8Tp0u4PSO\nHS9Q9Qce4CuIbBqMjOQrg5GRkaqekpLK6Wz3R1n3xoceesw0/lbGr2VnX4AuXbT8OSenK9LTfc4N\nWT5hBbNWcJmTA5C3spu1ghuhGMRG96c4qoy+EaUbsMyJYSWNyZwAsnzupZde5nQ2n7HiiBNxLleM\nGkNQGferVq3CpEmTMGHCBHTp0gUPP/wwoqOjsWHDBuHxa9aswZAhQzB9+nR07twZc+fORc+ePbFu\n3TrdMbNmzcLIkSPRtWtXPPnkkygqKsK7776rHjNt2jT06dMH7dq1Q79+/fCb3/wG+/btQ319fYvf\n8/lIu3bthdtWkbVcyCovMv7wh/vU7XnzzDNTETLDVYbs+UydyrYc3MbpZi0nAG84B2aGPuNP63oV\nFqbvegUAQ4YME24rsAWDqJCQVeBYQ4bdNjLOX3ghT90eMeIK3diNmJgYDBo0WHeNwAoi+wxEhl9g\nQTl7tlawsIWMrFAE5K1LPXr00o0NSUlJ5Tzfsgru2LFaV7cxY8ZxOtvidvfd9+ju/8knee9moMfT\n7PkB+hYsUWvWlCnTuDTGdg+85prrdd7j8PBwNQ1aMcxkhhNgXIk28oz37t1X1UWe9T//WTO4zeKv\nIHuHbKVI1KJn1oKYnX0BfvELfT7JVvAee4w3zP7+dy0ssPUlsHKxatW/uPPZMFFXRzZM1r0xPT0T\n/ftrBvyAARc3yomhcPPNt6jbN910i04bMeIK3TsKCwtX8wmrk1eYOZJkTg6g6d14jYzrJ554Rt0e\nMeIKXXfJuLh4naNK9I2w3YB9aThc3Q8Pj9A5MbKzL0DPnn3U/V69+ujekcwJ0KNHLy6fCMznhg4d\nqdtm85lf/nIo52Rh7+989/wHjXFfW1uL/fv34/LLNU+mw+HAoEGDsHfvXuE5e/fuxaBB+trn4MGD\n1eMLCgpQXFyMgQM1L1ZcXBz69u1reM2ysjK88cYbGDBgAMLDw4XHEKFNfHyCcNsqMsPVLqzXTORB\nk7WcGBnOLHffrXW9EhUCMljPnMhLZ4dAz6/IC8yOXxF5eGQVRFnrklnrlW9cip5Az76sdek3v9Eq\nGLm5fKEvi78sjcha366/fpJw2+r/W0H2jth0N2fOPJ3ma0nRDIPY2FhdBQ6QG05mlWiRZ/z++x9U\nt/v3v1iXNyQkJKJ7d32FwCz+gPwZyipIZi2IgH4s1Q033MTpsgq4rHLBTgAhmgzCrPsjYF45AYBf\n/9r8G5c5MQD5dzBvnrEjx2zyCgWZI0n2jO10483OvkCX5rp376m2TCiwFdo77/wtd33ZNzJ3rpZu\nReP/rr3WvIVV5gTQOxn4cmbUqCuE26JzAsspmec/1Aka4760tBT19fVITdU356WkpKC4uFh4zsmT\nJ02PLy4uhsPhsHTNp59+Gv3798fAgQNx7NgxvPDCC3ZviSDOWWTGX2sj69pkt4Jmt3Xpd7+7V7it\nIDMKZIZdS9OnTz/hdnMiewayNMhWCO66ay6n2+3iKDM+9a03/P+39jckM2xlFXBZGmRbh9htBbPu\nj4C8cmLXiWEFWT4ha12R0ZJODkBeCZfdn+wbkaVh2TuyW4GVIbs/M89/qBPR2hGQ4fV6dc23Vo5v\nyjVnzpyJG2+8EUePHsXzzz+P+fPn48UXrc+iEhbmQFiYA+HhbFNsGCIi9PUnu3pzXIN00s30YIjD\nua6zDoXU1NSgi19r681xjaSkJN12c8exW7duuu1APS4uTrcdbM/4fNeb4xo9e/bSbQfbPUZHt9Ft\nB1v8WlsfM2Ysdu58X90WpZFQJWiM++TkZISHh3MedbfbjZQUfm5yAEhLSxMerxSsqamp8Hq9KC4u\n1hW2brcb3bt3152XlJSEpKQkZGdno3Pnzhg2bBj27duHvn37Woq/0xkLh8OB+PhoNSw+PhrJyfqa\nol29Oa5BOulmejDEgfTQ1oMhDqSHth4McSA9uPVQJmiM+8jISPTs2RO7d+/GqFG+QRFerxe7d+/G\n1Kni5rB+/fph9+7duPXWW9WwXbt2oV8/XzNyhw4dkJqaio8//lj1wlRWVmLfvn2YPJnv/6agDKRl\nZ9SR4XZXISzMAY+nRg3zeGpQWqofmW1Xb45rkE66mR4McSA9tPVgiAPpoa0HQxxID079fDDyg8a4\nB4DbbrsN999/P3r16oXevXtj9erVqKmpwXXXXQcAmD9/PjIzMzFvnm+Qx6233oqpU6di5cqVGDZs\nGDZt2oT9+/fj0UcfVa85bdo0LFmyBB07dkRWVhYWLlyIzMxMtQLx5Zdf4quvvsJFF12EhIQEHDp0\nCIsWLUJ2drZaSbBCQ4MXDQ1e1Nc3qGH19Q2oq2vQHWdXb45rkE66mR4McSA9tPVgiAPpoa0HQxxI\nD249lAkq437cuHEoLS3FokWLUFxcjO7duyMvLw9Op28gx/Hjx8HOYNO/f38sWLAAzzzzDJ555hlk\nZ2dj8eLFyMnJUY/Jzc1FTU0NHnzwQXg8Hlx88cVYvnw5oqJ8UyhFR0dj69ateO6553Dq1CmkpaVh\n6NChuPPOO4UDRAiCIAiCIAgiWAkq4x4ApkyZgilTpgi1NWvWcGFjx47F2LFjTa85Z84czJnDT2cH\nAF27dsXq1asbH1GCIAiCIAiCCDLOn6HDBEEQBEEQBBHikHFPEARBEARBECECGfcEQRAEQRAEESKQ\ncU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBxTxAEQRAEQRAhAhn3BEEQBEEQBBEikHFPEARBEARBECEC\nGfcEQRAEQRAEESKQcU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBxTxAEQRAEQRAhAhn3BEEQBEEQBBEi\nkHFPEARBEARBECECGfcEQRAEQRAEESKQcU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBxTxAEQRAEQRAh\nAhn3BEEQBEEQBBEikHFPEARBEARBECECGfcEQRAEQRAEESJEtHYEQoUDB74HABQWHlbDlO3Tp0/j\n5MkTSE/PQFHRCU5XcLk6nIWYEgRBEARBEKEKGffNxF//+gAXtnz5EtNzAvXc3Lt0+6LKQVRUG64C\n0dK6EgeHA03WAV/lJTq6rfBZ1NScQmFhAXdOc51vN34EQRAEQRDnAmTcBxGBxr6scmDlmGDSc3Pv\ngsvVUWhcFxYeFl6rOc+3Ez+7lZvm0M1af5pTD9YKJNC6FTC7FdCW/v/Wfn5Wnk9LxyHYCfZ32No0\nJg3Jzje7RlOfYXNcv7XzEeL8gIz7Zia3/+VIjYkFAERHRKKwogzL9+zW9AGX8PoXn7VKXM82TTG+\nm/P8lrh+qOvBEIdgqYDZrYCejf8X0Zj42akgWo2fURyCoQIZDGlIRLB8Ay3tpGhMGmKRnR94jaam\nQbvXt3qP5/o7bk1d4Xzv5uzwer3e1o5EKDBmzBgAwMPDrkSOM00NP+A+ib/u2KLuPzz8CuQ4Uxi9\nBH/d/o66nzugP1JjYgAA0RERKKyowPIv9qj6zAE94UqIQ01dHQCguLoGeV/sV/UZ/XPgSohFTV29\nqq/Yc0DVp/dzwRUfremnarFyb6Gq39Y3EVnxkaipawAAlJyqx6p95bp7vaVvJFLaOvy6F+v21er0\nm/pFIDnGp5dWe/GvvXVmj45jwoBwJPnqPyirAjZ+Ud+o86+8OByJsb5kXV7lwJbP9eePuSQMCf7r\nV1QBWz9raNT1CYIgCIIIXpQKoFJpUipMAHD55Re1WrzOFuS5DzJcCQnIcTpN9DjkOJPU/QPusgA9\nFl2c8er+j26PXo+PRhdnDKNX6/Ss+Eh0To5S938qPcPFoX18GC5IDgMAHCzlDePMhDB0cvr0n928\nfv2ACCT7o1BaDWz4Qm/8pyc60MF/foHg/KsuDkeS//yyauDNAOM9LRFonxIOADhawp+fmuhAuxRf\n5eNYCV+3HXWJA/F+499TBbz3mf6YYZc6EB/jC/NUO7DjU70++FIH4vx6ZbUDHwbol18GxPrjX1UN\n7P5E//+XXgb4G3cQGQmUlwGfMsdcNFDTIyKBijLgfx9rer/LgbaM7ikD9mqNR+g1CGgbx+ilwNcf\naXr3wUBsElDnr7OdrgK+/VDTc4YAMclAvaJXAgc+0PSOQx1o6wTqa333fcbjwOGd2jPIGOZAlBNo\n8Ot1HgdO7NA/o7jhDoQl+MIaKhyo3B5cPoiw4V2B+GjfjqcGDdu/P6v/Hz5sALxxvpfsqKxC/Y4v\nAvRLAvSz2zoYPnQIEO9LZI7ISHjdpajf+YHkrPOLtsMmwhHny+u9lW6c2vFvnR4zbArC4n2OoAZP\nCap35J/1OLYmYwbnIiHW5yiLioxGcVkBtn643PL54wfmIj3JhTO1NQCAsqpivPGx9fNl3NxvBtol\nuHC6znd9d3Ux/rl3RaOuMb3H7UiJTgUAlNQUY+U3LzVb/M53zLo5b9269WxH56xDxj1x1slMcKCj\n33g/LDDeZaQnOJCV4jv/iMB4t0tKkgOZfuP/eIkXgN6wdCYCGam+/z9RzBudyYlAul8vEuhJiUBa\nqu/6JwV6YhKQmmocv4QkICXNwYTorxGfBDjN9GQgyUSPTQIS0zW9vEivxyQD8YzuCdDbOoHYdAcA\n3zFVAXqUE2iboemnTvDPIDwFiMzwPcNage4YEQ3E++Pg8cK7rSZATwXi/dmbpw7ebcU6PWy4C0iI\n9O1U1KJhe2GA3hmI91dyPWfQsP0n/fWdsXBkJAAAvCcq+PgP7wGv3/h3eGpQv/0bvT6sN7zxbf36\nKdTv+CpA7xeg79X/QXIiwjN8hmHDCTf3/z7dbxieKOHjN+wyIM5Xw3RERsJbWo76HVoNMnzo5VBq\nuD7jvAz1O3cz+i8Fxvsu5vkkIyw9Xd0P/Eojhg6Dw+mEt9ZfQ/R4ULdzB6OPQBijez0e1O3cxuij\nEOZMhbf2jF+vQN3O91Q9cugYTq/dqS/Qo4ZeCcQn+v+/HGd2btHrw66CI87nSPFWluHMjjd1epth\n1+j00zte0+nRw67T6TU7/qvTw5LbISIjGwBQd+IQAgl3tkdExgV+/SCnpwybhgi/8V/nKUHJjtU6\nvdPw6Yjy62c8Jfh5+0qd3n347YiO92U0NZ5ifLtdb1j2Gz4DMX692lOMvdv1hutlw3IR69erPMX4\nZIfecB4yLBdxcT7jPDIyGqWlBfiAOWbkkFzEx2u6212A9z/Q9NSkDmiXnsPdt8K4QblIiPX9v8/4\nL8Tmj7Tz05NccKVq5xcWH9Cdf+0lM5GR5MJpxvh/9bM8Vb/x4pnIZIz30upivPK5prdLcKGTU7v+\nz2799af2noGseBdq/OeXnCrG2q/0zzArzoUuiV0AAD+W/8jd44wetyI12vcOi2tKsOKbNXq95xSk\nRjv9uhsr9usrgDN6TdLrX68P0K9Hattkn36qFCu+3qDXe09Aatskv16GFV9t1Ot9xuv1L98I0Mch\ntW2iXy/Hii836/SZfccitW2CX69A3r63A/TRSI3xOSuLqz3I2/euXu83XD0/OiIShZ4S5O3dDoKM\ne4IgzkEczjA4Mn3Zl/d4HQLNf4czCo7MaL9ew+sp0XBk+Ixb74lqBOJwtoUjI96vezhdijMO4Rm+\nQq3hRLlAj0d4RpJfLzPQTYx3mziSExGWodUgA41vhzMJYelpJnqyqS79f6cTYekZ2vlM/2sACHM6\nEZaeyejHA/RUC3o7Rj8miEMawtPbAwDqi45yelhyOsIzsnz6iSMGege/XiDQMxCR4esGUHfiMKfb\nJcqZhTYZnQEAp0/8xOltnVmIy/AZjpUneMMxzulCol8vF+gJThecGT7j1X3iAKcnOV1I9evFAj05\nuQPSM4yNc6ezAzJNjHcZqUkuZKU1/fyMJBc6pGjnF5To7yEzwYVsRj9Uwt+jGVnxLlyQ3EXdP1jK\nP2MZrrgsdEn0veMfy/l37Iprhy5Jvgrgj2V8BdCnZ/t1vgLpis9ETpIvjR4o49OoKz4DOUkd/Dqf\nxl3x6chJdvn00kKBnoac5Cy/zn9DrvhU5CS39+v8N+hKSEFOcju/zn/DrvgU5DgzuHCFmf2GqJUD\n3xhHN/L2nh8tiGTcEwRBEARBECGFK8GJHGe6/MAQJKy1I0AQBEEQBEEQRPNAxj1BEARBEARBhAhk\n3BMEQRAEQRBEiEDGPUEQBEEQBEGECGTcEwRBEARBEESIQLPlNDOFFWWS/XLJfoVkv1KyX2W6f6Si\nxnSfIAiCIAiCOHch476ZWb5nt7n+xacSfY+pnvfFflN9xR7zuXhf2sfPRctyxFNrug8ARz0Nwm2F\nYxUNwm2F40zYcYFeVO6FMnO2b7tx+klGPynQi5mwYoFewoSVCHQ3E+YW6KVMWKlALysDlIWjygRT\nnJeXWdn3GuoVAXqF4D/MqCzVn+/b16gO0KsD9FNur+n+acn++YDX7VHnhve6mzCPPkEQxHlOYYXb\ndP98JuiM+/z8fKxYsQLFxcXo1q0b/vznP6NPnz6Gx2/ZsgWLFi3CkSNH0KlTJ/zhD3/AsGHDdMcs\nXLgQr7zyCjweDwYMGICHHnoI2dm+hR2OHDmCxYsX4+OPP0ZxcTEyMjIwfvx43HnnnYiMjGzRew1G\nVu0TLLgTwLp9vMHPsn5vnam+4Yt6APWG+sYvjDUAePN/5vqWz82X1Nn6mbn+3qf8qrQsOz6Fqf6h\nRN9tXr/Dp5+Y6198bK7vM69fwhNgnHsCjPP/2wVTDkjWADm8U3/9QIp2mOsAUMcY/HUC49/rrhdu\na2FnhNtaWI1wWwurFm5rYVXCbS2skjHeKzm9IWBFWv78CuZ8fgVcr7uc0flvVq6X6Rae8rrLGqmX\nBuiljdIb3G6b+yWS/WLTfV/YSeG2FlYk3Laq17tPCLe1sOPCbS3sqHBb4Yz7iHBb4RQTdkqgV7oL\nhdsKFUxYhUAvY8LKBHqpu8B0v0SyX1xqvn+yrNB0v0iyf6LcfP+4ZP9Yhfn+UY/5PgAcqSwUbisU\nVh4Rbmthx4TbapjnmHBbCzsu3NbCTgi3tbAi4bYWdlK4rYUVC7fVsIoS4bZC3r5tXBjhw+H1eoPG\nbbZ582bcd999+Nvf/obevXtj9erVeOutt/DWW2/B6XRyx+/Zswe33HIL7rnnHgwbNgxvvvkmli1b\nho0bNyInx7ey3LJly5CXl4cnnngCLpcLzz77LL7//nts3rwZUVFR+OCDD7BlyxaMHz8eHTp0wA8/\n/IA///nPuOaaazB//nzLcR8zZgwAILf/5XAlJKnhhRVlOm9+7oBL4UpIZPRynTc/d0B/uBISGL1C\n582fOaAnXAlxjF6p8+bP6J8DV0Iso1fpvPm393UhKyFa3T9SUSP15hMEQRAEQZxLzOw3BK4EzXZU\nVqjdunVrK8bq7BBUnvtVq1Zh0qRJmDBhAgDg4Ycfxvbt27Fhwwbk5uZyx69ZswZDhgzB9OnTAQBz\n587Frl27sG7dOjz00EPqMbNmzcLIkSMBAE8++SQGDRqEd999F+PGjcOQIUMwZMgQ9Zoulwu33347\n/vWvfzXKuFfPT0hCjjPNRE9EjjPFRE9AjqAio+lxyHEmmeix6OKMN9SzEqLRxRljqN/WNxFZ8VqL\nxRFPLefNv6VvJNrH+8ZiH/U0cJ78Sf0i0C7Bpx+raOA8+dcPCEemXz9e0eD35GtMGBCO9EQHAF+3\nm0BP/lUX6fVAT/6VF4chza+fLPdynvwxl4Qh1a8Xl3s5T/6oSx1I8esl5V6/J19j2KWA06+7y71+\nT77G4EuBZL9eWu71e/I1Lr8USPK/wrIy3pN/6WVAIvOKy8v03vwBA3md9eb3vRxg6peoKJN781m6\n/RKIS9b2K0v13vycIUAMo1eX6r35HYcCbZ0Odf+U2+v35vtIHwa0YfTTbq/fm3/+EDasNxz+79Tr\n9kg9+QRBEISemX1H8MY7483P2ytpZg5hgsa4r62txf79+3HHHXeoYQ6HA4MGDcLevXuF5+zdu1c1\n7BUGDx6M9957DwBQUFCA4uJiDBw4UNXj4uLQt29f7N27F+PGjRNet6KiAomJiUIt1MmKj0Tn5CjT\nY9rHh+GCZOOJltolhKGT01jPTAhDR52uN87TEx3ooOp8F5r0RAeyUoz1tEQH2pvoqYkOtEtxcOEK\nKYkOZOp0vXHvTHQgI9VYT050IN1ET0oC0lSdbzhLTAJSUw2jh8QkICXN+PoJSYDTRO81CIhnjHNP\nKfD1R9p+XDKQmG58fkwyEG+it3U6EJse+Hy1Y9o4HWibYawDQOwIIMJfAahze1EV0PrqGNEGDme4\n70x3PbzbTgfoqXA4o/z6GXi36Zt8w0a44HBG+/UaNGzTt16FDb8ADn8l2OuuRsP2gwF6VzicsX69\nCg3bvw/Qe8DhjPPrlWjY/o0+fs54hGX4amCiTmJhw/rC4Uzwn1+Bhh379PrQAXA4E/16ORp2fhGg\nXxKgf6bTw4deCgfjJPC6y1C/81NGv1yg72b0X8LhTGb0UtTv3MXoQwT6B4w+DGGME6PB7Ub9Tq2G\nFzF0BKfX7dzG6KMRxjhJGtwlqNv5rrofOXQMwpypjF6M2p16b13k0CsR5nfENLhPonbnFp0eNfQq\nhPmXrm9wF+HMzjd1epuh1+j00ztfC9CvQ7gzA4CvW87pnf/V6dFDJyHcmenXj6Nm53qdHjNsCsKd\n7f36UVTvyNfpKcOmIcqZBcDXLadkx2qd3mn4dLT166fcR/Dz9pU6vfvw2xHndAHwdcv5dvtLOr3f\n8BlI8OsV7kLs3b5Cp182LBdJfr3MXYhPdizX6UOG5iLZ2UHdL3UX4IOd2jEjhuQihdFL3AXY9oGm\nj/llLlKTNb24tABbd2n6lYNykZbkUvdPlhViy0eaPn5gLtIZvaisEG98rOnXXjoTGYmafqK8EK9+\nmqfu33jRTGQy+vHyQrzyP02/ud8MtEvQ9GMVhfjnXu0Z3dp7BtrHa/pRTyHWfKV/htN73I6sON8x\nRyoLsfIb/TuY0eNWuOJ877Cw8ghWfLNGr/ecAldcO79+DCv25wfok+CK9+ueY1ixX5/GZvS6Hq74\nTL9+HCu+3qDXe0+AKz7Dr5/Aiq826vU+4+GKT/frRVjx5RsB+ji44tP8+kms+HKzTp/Zdyxc8al+\nvRh5+94O0EfDleD7zgsrSpC3712d7kpwIsf/jRF6gsa4Ly0tRX19PVIDrJqUlBQcPHhQeM7JkyeF\nxxcX+wry4uJiOBwO02MCOXToEPLz83H//fc39VYIIqiJTwaSTIz/YCDC6UBkhnEcHc5wODIjDFTA\n4YyCIzPaRI+GI8O4BcvhjIEjw7gFzOGMhSMjwUSPQ1iGz7g2H+FhdH4CwjKchuc7nIkW9BQTPQlh\nGYzxK9LT00z0ZAt6uqEe5nQiLF1fKNdzeqYg5oqeItFTEZbezlD3HZOG8PT2Jno6wjOyJHoHQz3c\nmYGIjI4meiYiMrJN9PaIyLjAUI9yZqFNRmdDva0zC3EZXQz1OKcLiSZ6gtMFZ0aOoZ7kdCHVRE92\ndkC6iZ7i7IDMdGM9NbkD2pnoaUkuZKUZ6+lJLrhSjfWMRBc6pBjrmYkuZJvo7RJc6OQ01tvHu3BB\nsvHzBYCsOBe6JBof44rLQpdE43fsimuHLknGacQV3w5dkozTmCs+EzlJxmnUFS74OeMAACAASURB\nVJ+BnCTjNO6KT0dOsstET0NOsvE35IpPRU6y8TfoSkhBTrL5d2yGUbec84GgMe6N8Hq9cDiMvayi\n45t6zRMnTiA3Nxfjxo3DDTfc0Kh4EgRBEARBEMGBz7OfLj8wBAmaRaySk5MRHh7OedTdbjdSUsR9\n1NPS0oTHK5761NRUeL1eS9c8ceIEbr31Vlx00UV45JFH7N4OQRAEQRAEQZx1gsa4j4yMRM+ePbF7\nt9av0+v1Yvfu3ejfv7/wnH79+umOB4Bdu3ahX79+AIAOHTogNTUVH3+sjTasrKzEvn37dNdUDPve\nvXvj8ccfb87bIgiCIAiCIIizRlB1y7nttttw//33o1evXupUmDU1NbjuuusAAPPnz0dmZibmzZsH\nALj11lsxdepUrFy5EsOGDcOmTZuwf/9+PProo+o1p02bhiVLlqBjx47IysrCwoULkZmZiVGjRgEA\nioqKMHXqVGRlZeHee+9FSYk2l2pgX32CIAiCIAiCCGaCyrgfN24cSktLsWjRIhQXF6N79+7Iy8tT\n57g/fvw4wsPD1eP79++PBQsW4JlnnsEzzzyD7OxsLF68WJ3jHgByc3NRU1ODBx98EB6PBxdffDGW\nL1+OqCjfTBq7du1CQUEBCgoKMHz4cABan/xvv/327N08QRAEQRAEQdgkqIx7AJgyZQqmTJki1Nas\nWcOFjR07FmPHjjW95pw5czBnzhyhdu211+Laa69tfEQNKKwoQ02db9736IhIFFaUNVKvQE1dnV+P\nQGFFRYDuW+1SOaa4uiZAr/Lr9WLdU6PXT+nnqD/iqfXrvvktSk7xq38e9TTgdJ3Xr/MDmI9XaHpp\ntUj34rT//0v5xT9RVO7FGb9exi/+KeVkOdTzy6usD8ZWKCnz4kytL96eJvw/QRAEQRBEaxF0xv25\nDrsarVD/4jOJvsdUZ1ejFcGuRiti5V7z1WgDF6wSEbhoVSD/Cli0KpANX5jrgYtWBVJUwRj/gsrB\nls/Nzy8u9+KMv/JRITDe3/vMfMYldzlQW+ur/Hiq+cpDKaNXCvSycqDWX3moEsS/vAyo9T/iyEjf\nPktFGVDnPz8i0rfP4gnQPYF6aYBeqterygDAC38dFKcDnlF1qU+vV/RKvX7Krei+/zjj0T+DM369\nwa/XefhnVF8CeP3PsKGC173uBniVh+Th35fXfUY9Hx4+vXlLauCt9aeTCj49e92nNN1zRqBXMXoN\np8Ndifpa3/86hLqH0U81Xi8t1/TKxtdAvaXlqPc/P0dkJLyl+u/e6y7T6+6yAL00QA9IRLL/d7vR\nADDv0KPTG9xu33F+3cvpxX79jF+vaJRuhYbSIu38yrJG6/LrH0Nt7Wn/+W5Or3cfhdevN3hKOF3G\nKfcR1Nf60t4ZwfmV7kLU+fUaDz81dAWjVwv0Mnchav16lUCX4XYXqOdHRkbD7S7Q6cVlBTjj16Mi\no1FcFqgXBuj6sq3Iv68cU1alj+MJv37aQD9e4dfrfHpptV4/FqC7A/QjHp9e49dLTvHP6EhloabX\n8Hph5RFVL67h32Fh5THU1J3263wakuqe45p+iv+GCz0nGJ1P44WeItTUnTHRTzI6b1sUeooZnf9G\nCytKNL3aw+ueEr2ztAnfSaji8FqZO5KQMmbMmNaOAkEQBAAgfNgl8Mb5FtlyVFahfoe5U6HZ/3/o\nECDet4iXYvyzi1gFA1FDrwTi/YsVespxJmARK7tED7sOjjjfQmDeyjLU7Piv5IzGkTJsGiLifbO+\n1XlKuEWsWpshw3IRF+dbCyEyMhqlpQX4IGChK4JoSR4aeo1uKswD7iI8tPM1bN261eSs0ICM+2Zi\n9+7/AQAKCw9j+fIlAIDc3LvgcnXE6dOncfLkCaSnZ6Co6IQtPSqqDfcfaWkZLaorcXA40Go6G2aE\n6NizeT5BEARBEMHBzH5DkBrjW4zQ1w3at4jV+WDcU7ecZiInpysX5nJ1ZMJ7A/AZr3Z04/9oaV3M\n2dJdrg5wuXwr6YmMb9+xHRAd3bZVzj8blZ/mqiBSBTI0dbsVWLtpyGoF2CgOZyONNcczaul30JrX\nPxtpUDkeQMjlY5TPtb7Ohp0vq9GKIOOeOCeIjm5roQIVfOc3r948FUSqQIambrcC66PpacjK/8vj\n0LJprHmeUehe367emDRQWFjAne/jXM/HKJ8LRv18g4x7giCIEMBuBfZc/38rtHQcz/Xr2yXY40eE\nPi5XBzz88N8BmFcwQx0y7gmCIAiCIIhzHqpg+ghr7QgQBEEQBEEQBNE8kHFPEARBEARBECECGfcE\nQRAEQRAEESKQcU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBxTxAEQRAEQRAhAhn3BEEQBEEQBBEikHFP\nEARBEARBECECGfcEQRAEQRAEESKQcU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBxTxAEQRAEQRAhAhn3\nBEEQBEEQBBEikHFPEARBEARBECECGfcEQRAEQRAEESKQcU8QBEEQBEEQIQIZ9wRBEARBEAQRIpBx\nTxAEQRAEQRAhAhn3BEEQBEEQBBEikHFPEARBEARBECECGfcEQRAEQRAEESKQcU8QBEEQBEEQIQIZ\n9wRBEARBEAQRIpBxTxAEQRAEQRAhAhn3BEEQBEEQBBEikHFPEARBEARBECECGfcEQRAEQRAEESKQ\ncR9knDpVLdw+m9TW1gq3CYIgzhcoHyQ8ngrhNkEEO2TcNzMy41ym5+evVrdffnlNi8TBjOrqKrz+\n+n/V/XfffZs7xm6hZ7cCI/t/u9e3m6G3dAVNdv8nTxYJtxVKS93CbRbZM5Ddo5X/aCrV1VUoLDys\n7tfU1DTr9ZsD2Tuw+3xbGln8g4Fjx44KtxXspsEtW95Ut996601Ob2nDL9grF7I0Kot/MHwDsjgu\nX75E3c7LW8LprY3dfNjudy57h7JvNNjT+LlM0Bn3+fn5GDlyJPr06YOJEyfiyy+/ND1+y5YtuPLK\nK9GnTx9cffXV2LFjB3fMwoULMXjwYPTt2xfTp0/HoUOHdPrSpUtx0003oV+/frj00kttxn+1cNuK\n/s03X6OgQDNaDh8+hD17/sddw+yDrq6uwooVL6r7a9eu5M43+qCqq6swZ84d+PLLvWrYxx/vwqFD\nP+uOefPNjer++++/w13f7IOvrq7CypXL1X3RM5KxY8f7wm2Ff/5znbr9r3+t43QZS5c+r24vXrwI\n1dVVOl2Woa5bp93TqlV53PmyDE2mv/POFuG2wgsvLNTFn9efZfSFnF5dXaU7b9myF7hj1q1bpW4H\nvsPq6io899wzpv/R1IK7uroKd999l67Qffrpxxv9jsyecXV1Fb777ht1/7vvvuGuL0vjgc848PwX\nX9TSmOj5yvKRlq6Asu9syRI+DRUWFqrbX321l7s/K8gMD9kzXrr0OXWffZ6K/txz/1D32fdh5fqH\nDh3E//73qbr/+eefoqjohO767HcW+P+y61vRt23T8tbt299t9Pl2DTvZ9Vnn0z//uZbT3357k3Bb\ngU33y5Yt5nQ2j2G3RXFuagWUjdfWrZt12rZt76C8vEzdLysrw0cffag7xk4atnK+TGfLd1FZb/Yd\nV1dX4fnntXz6+eefaVQ+B+jLStE3wH6jS5c+x13/nXfeUrffffctBCLLp84FJ0RrEVTG/ebNm/HE\nE09g7ty5ePXVV9GtWzfMnDkTbrfY67Jnzx7cc889mDhxIjZu3IjRo0dj9uzZOHDggHrMsmXLkJ+f\nj0ceeQSvvPIK2rZtixkzZuDMmTPqMXV1dbjyyitx880324p/oHFeUHBYZ5zL9Gee+X/cNQMNFzPj\nvbq6CrNn5+oS+ZEjhbr/kBnnp0/zXlDFY6EY/3v3fqFqH330AWf8GxmGSvxOnDiuhgU+g+rqKvz8\n80/q/s8//6S7/0OHDuKDD7ar+x98sF33/3v2fI5Dhw4y5x/kKkhmGca2be+gstKji8+sWTN1cWAL\ntZdf1hdqe/Z8rvMqHz9+DLNn5+rOf+strUD573//zWV427e/p25v3vy6Ti8qOo5PPtmt7n/yyW7d\n/a9f/zK83gZ1v6GhXhfHzZvf0BmzZ86cweuvv2p6vxUVFdi2TYuT7x4L1P2CgsP49tv96vl33TUD\n9fV1hv8B6NPtunXWK6AiRMa5WQWyuroKr7zysrr/yiv/VO9XqTywz+zll9fi7rvv0j0TI+O8uroK\nd955O7xerxrW0NCAO++8XT1/27Z34PFoaSzw+cryCUBfqC5ZwldAZYXy2rWr1O2VK5frzl+//mU0\nNGhpqL5en4aqq6uwfLl2z//5z3ru+cgK5UDDIrACWF1dhSVLNMNg+fLFOu2OO6brjvd6vcjLW6rq\nvjRYr+q1tbVcGjR7h3/84z1cnP/2t7+o+qxZM3X35fF4dO8QgC7+rJFjRT906CB27fpA3f/ww526\n75w/n6/csM/3hRee5dII+8wbWwH95puvcfiw5iQ7dOhnXRotKjqOzz77RN3/7LNPdPHftWsnKiq0\ndFlRUc59A2weU1hYwH0Dzz+vVdhE9wfIK3BsHD/99GO1AlddXaWmJ5bA98SWdSLj2cxJEugEEJ1v\nVkHds+dzHDmiVbKPHClU82EAeO21DTo75/Tp0+o3oORTgbD5lMxJEVhWBn4D7DercMcd09Vr+Mqy\nj1Tt448/4tL4mjVa2fDSS8u4d8zGT5QGDh78Sbh9PhBUxv2qVaswadIkTJgwAV26dMHDDz+M6Oho\nbNiwQXj8mjVrMGTIEEyfPh2dO3fG3Llz0bNnT6xbt053zKxZszBy5Eh07doVTz75JIqKivDuu5on\n5Le//S2mTZuGrl272or/P/5hbpzL9OrqU6bXt2K8nzlzmjtPySBkxnlMTCwcDgd3Pmtsi66/Zs0K\n9foyw1B0vpKpKYYVa5itXLlcNRyqq6vwpz/N587/05/uVfWnn/47p+ufsd7wC/SssxUnhdpaLYMM\nLNQOH9YXamyBK7rnQ4cO4vPPtQLlm2++xpw5d6hxOHToID78UGt9+uKLz3X6//t/j3HX/+Mf/6Dq\nr7/OfyubNm1U9fz8VZy+fv063TNg71fhpZd8z8X4GWthdXW8Mb5+vfZNBhZKhYX6Qqm6ugobN/5H\n3d+6VWudiImJxeTJU7nr7927Rz3XrAKpfAPfffd/qv7dd9/qnrGsNUVmnLMVm8AwI6MhL2+x5Xwi\nsFCtquK/OzPj3/f8NcPpxInjugqoLA29+up/OP30af13bVYoK8Z3XZ24AqjkI1VVlapeXq43/hoa\nNMNdgfV0y9Kg6B0GemUDcbtL1G3xN6K9123b3tHFv7KyUnd9ka7cny+fu5e7/p/+dI8uDejP9+jO\nD3y+tbW1uOuuGUw+sFpXgQusgO7atdM0jT/77FNc/Ng0+thjD3M6m0+JKjvsNyDLx30Vdq0C7fV6\ndfFXnoNR64pRBe7xxx/iwljYdOcznrV0f/r0adVxIysLlXfE5iuBxrdZBdUoH37yyUdV/d//fpnT\n2bxelk/5KrCaTVJdXa3ek5V8jHVSKbDP78knzcuyPXs+x9GjWjlRVHRCl0/l56/WOVFEaWDVquW6\n7aa0MJ6rBI1xX1tbi/379+Pyyy9XwxwOBwYNGoS9e/cKz9m7dy8GDRqkCxs8eLB6fEFBAYqLizFw\n4EBVj4uLQ9++fQ2vaQdZ9wL2QxERFRUlDIuJiVX3zYx39jgW1hsfWAgDwJo1eeo2m+EHhsXExCI2\nNo7Tjx49om6bFXoxMbEIC+OTHPtczP4fgM4rbRYmQmT4BXrW2cyCRXm2skKNLXBF57OeGIWaGu3+\nRd2IWO/L8eN8v8XmxCgNiYwpFuUejM5XsFIozZlzB77+WuuO9+mn+taJl15aHni6zutlVoFk42oU\nf1Earq09g5iYWGmhZnb/smejIMtHXnppmTB+CjLjX9RNSvTMjNi8+XUurL6+Tr0/WaEMyI1v0TtY\nudJ337LnaCUNit7h4sXP2rq+kk8ZXf+FF54x1VnDSJQPKWFWzhc9XzbM6B0qyIzv6mrzNFpcbN5F\nQpTPs4hakFlk8bfauhKI4jgzesfsOxAZz2vXvqRuyyqAsm9ApotgywozrORTRvmgXZTri/rgs7At\nTwpsPiVLA6LKQ27utPPGwA8a4760tBT19fVITU3VhaekpKC4uFh4zsmTJ02PLy4uhsPhaNQ1WwIl\nMUdHR3NamzbRqi7O0PnrBCLLCNnzY2JiuHC2/6yMDh06cmEuVwfT+MkycsUDExMTi7S0dE5NS0v3\nxz1W+Ayjo6NV3QhFExkxjTFs7A7eNMrQlPiVlPDpMjMz07ZBY1dv7HGNhS2URMY3a5yLKhpKWExM\nLMLDwzndSuWjpe7N6n9YfUdG35Oiy4x/I8OsudIIO95Cgf3GrPyPyAlgtRLfVIwq9mcbu2m0JdOY\ngtG7aO18itVFhuiKFUu541oCWVnYms+pOdJQS+ajyvlGZa3Ve9+37wuBGhzf+NkgorUjIMPr9Qq7\nipgd39zXtEJYmPH1IiJ8BVWHDh3www/f67Ts7GxVN6opK7rvf8K4jDcsLEw9JjIykutWEBkZqeqi\n+3Y4tDhmZbl0XSaUMEW/4YaJeOSRr3X6jTfepIujCKt6QcEhTisoOKTqIs/EmTNnLF0/ISHe8Pkl\nJMRbil9qagpOnDih09LT0y2fL9MDnz3gaxlprufbVJ09Jjo6mst4o6OjLb+DpuhsGpDFLyoqimsl\ni4qKapZnZBb/5koDdnUjw+xsxc/I2SD7f/YaERER3LceERHR4u/Q6vUjIiJ03V7Y+DU1jQPW3lFr\npsFgSeMy3SieXm9Ds6Uhh8PB2RsOh+MsPgMHeGNV+3+ZrdDy8QtO3Uo+FAoEjXGfnJyM8PBwzqPu\ndruRkpIiPCctLU14vOKpT01NhdfrRXFxsc5773a70b1792aNv9NpXJtMTvZpERG8RzE8PEzVZecD\nPiMq0PMWHR2tHmPUX1jRu3TpjH379un0zp07q3paWipnYKalpaq6UT++RYsW+e8nXNdPUAlTzpfF\n3whFN+q2o+hGGZrV80eNGoX33tM33Y4ePVrVAw17ACgqKrIcf6MCwer5UVFRnNETFRXVqDTUFJ09\nxul04uhRfQuE0+ls8Tg05hkH0phnbPcdGVWwm/P+7MRP9o229P9bOUaWjzX1P5rrHmX5iJHx31zf\ncWvlA8Hy/Jt6/eaMY1hYGPcdsWWN3evLv1ORI9MbNO/wXNVDhaAx7iMjI9GzZ0/s3r0bo0aNAuDz\nsO/evRtTp/ID6ACgX79+2P3/2zvz8KiK7O9/b6e7kyYh+0ICgUCAJOyLqMQFxQUFgbA6IgZRdlBw\nl5EfKiqijgqIiiCOMDozLjOgjoiOgugouLGHTRJAtpgEQhISsnX3+0e/Vbl73dDZiOfzPHmeTlXd\ne+vWcurUqVN1t2xBZmYmD/vuu+/Qq1cvAD5LeXR0NLZu3YrU1FQAvo1LO3fuxLhx4+o0/2fOGPtx\nFRayzZK/aeJ+++03Hi9JNs1yp81m4/E+9BUXlsZmC9C4LdhsATz+7runYc6cmXxwstlsmDRpOo8/\ne7ZIc/+zZ4t5/MGDBzXxBw8e5PEdOnTEr78eUMR36NBR9o7m+Xe5XBqrq8vlUpWBFhYfERGB06dP\nK+IiIyMtX79ly1ZN3Pffb7F8fVCQS+NWIs+/0YAgj9ebnLD4hITWOHLksCI+IaG15fwFBgZq9l0E\nBgYKr5ff49SpU5q4U6dOWc6D0aBl9XpRvN5ybnl5ueXr77jjTsWGUADIzLzL8vVG/tJ19X4+OWHc\nhkR1nJjYVtOGEhPbWn5+ixYtUFqqTNuiRQu/30+eJjAwUFOPVtqp1X5ktPpktQ5F8er2zcJY/KOP\nzsOCBfMV8XPnzrecf9H9jbDexrTKtfz5rVrFIzdXKQdatYrn8UYrwHWVvwuNl6cxmkDUnRzTt6xb\nvb+ojkVtRDTWip4vun99y3FR/fijK/wRFPwm43MPAHfeeSfef/99rFu3DtnZ2Xj88cdRXl6OkSNH\nAgAefvhhvPRSzYbEzMxMfPvtt/jrX/+KnJwcvPLKK8jKysL48eN5mgkTJuD111/Hxo0bceDAATz8\n8MNo1aoVn0AAPsVk//79OHHiBNxuN/bv34/9+/cLNw3J8XiM3YGqqz2orvbo+nZXVFTw+Pj4eE18\nfHwCj6+u1l9u93prnpGYmKiJT0xsy+OjomIxePAwHjd48HBERsbwePkRfIxjx47yeCOLFYu/4Yab\nNPE33jiYx+t5TcnzP3LkrZr40aNv4/F6/nYtWgTzeLViD/j2XpiVH1DzfL3NNmVlpZavZ/sP5LRp\nkyiIbyurP+2ehsTEdjxeb69Ibd4vKipaExcdXVP/Vu6hN8EEJB4vSVqxIkk2Hv+nP2kn6+PGTbD8\nfKczUBPndAZabqMOh3bjusPh5PE///yTJv6nn36wnL+kpA6auKSkDpbzL7q/3r4Zl6sFjzeyelvt\nQ6LnR0fHaOKio2MtX18XbczhcGhi5XUoagM2m3YV1WYLsJw//b1BcTI5p6/8s/iICO1qdHh4pCx/\n2j5ks9X0ISPFz3r5msfr5V9efo88Mk8T/8gj/8fjXS7zNnohz5eXn+h6K2n025DD8vVGLqI11+tb\n1uuqjhIT22ni2ratGSsCA/X3p9XIIf0DPKzKCX/luChe1IYiI7V9KDIy2tL9/wg0KeV+8ODBeOSR\nR7B06VKMGDECBw4cwJtvvonIyEgAQG5uLvLz83n63r1748UXX8R7772HjIwMfPHFF3jttdfQsWNH\nnmby5MkYP3485s+fj7Fjx6KiogIrV65UNGz2vFdffRVlZWUYMWIERowYgaysmuP5rBASovXlkocZ\nDfoM+bm/jKIipSXdSOgz9Bt8pEGOAbUAMprtW0XvYyPyEwT0kN/+o4+0x/CtXfsB/z1ixBhN/KhR\n2gmBEfoCrUbZEpWviJYtzduA3mlDwcHBluP9JTc3VxOmZ4k3IzBQq5zKw0RtSH62MWPLFvNjCOW0\nbas/qFlFzz1OHiY/X9sszIjLLkvXhPXvfyX/rdedarMFKDNTez71hAmT+G/RiVMiRH1ALoNrwmpO\nR/FXhgDikzr0JzD+n+TBaNcuSROWlNSe/z53TnsqVmlpiSbMiDVrtDKRHSkM+L69okYvzIiEhNY6\nYW0sX+8vaqu+OsxIsWQYTb4YRoqnMr15OzZSzpsKRkYAht7kxG6vCQsJ0RtLasYiURsTyZnt23/W\nxMs//OYvem24deuaMP02Vr+nyV1MNCnlHgBuv/12bNy4Ebt27cJ7772H7t2787g1a9bg2WeVx+gN\nGjQIGzZswK5du/DJJ5/gqquu0tzznnvuwf/+9z/s3LkTq1atQrt2SkXg2Wefxb59+zR//fr1q1Xe\nZ8/Wnps7Z07NecUzZ85WxEmShJkz59TqGa1aaa378rDMzLsUAsxmsyEz827+f15eLj79tOYIqfXr\nP1Z8eXHKlJma+0+deg//ffvtd2ri77ijRgiIBIaewJVbeo0s54xPPlmriZdPCIKCXJp4eVh8fIIm\nXh4mul406MuVOEZ6+tX8t0gxFsX7q9j6c5QoQzQwG51oxDh8OFsTLw/TK+N27WrKWG8CJQ/Tq0OX\nqyasokI7gMvDjFZfrKJ3XN0//lHz4TO942jlYfK86oXpTYS+//4b/lukXIuUGqPVo5q8at2e5GF1\noViKlDvx9f5N0sePn2gaZrQKy4iI0BpU5NZ6URsQER4eoXP/CNP48PBw/ltUPqJ40eRENMGMj9dr\nIzVh06bN0sRPn34v/33ffdrvndx//yOK/40s2wxRGxONdSJZHRsbp4mPjW2lCTNCb6xKSKgJk4/b\nemH68VrjjhEiOeOvEUQ01uqNM/JVV5Gc01+l1oY1V5qccn8xo244kiQpGlhsbCuF0I+IiFQIACuK\nm0ixiY1thc6dU/n/KSlpimesXPm66gumHsWX5K644mpFnqOjY5CeXqOwDh48VCHAgoKCcNNNQzR5\nMkL0jkZuO1a5664pmrC7757Gf+u57ciPn5Qr6npheisj8joVrVxkZt6lsLg4HA7F5Es0OZg8ebpm\nEJ48eQb/XyTw9MpfT5k2Y+jQEZqw4cNH8d8xMVq3Dbkbg6iOhwwZrom/5ZYM/jsz8y7Y7TXbhex2\nu6IMQ0NDNdeHhobx3yLLuaiMRcq3v+gpBXFx1pUCveV4eZhIKdBDXj6i+8s/flQTpl2VNKO+zti2\nit4Z2p9++hH/LVqF1XvfkhLtfqYLRc+IUlVVEyZSPEVWYSO3KIZ+HdeE6Sn38nFH78hfucuh/uSo\nZsLSpUs3dOhQs0KfnNwJaWldFelFlm0jF1aG3lggl5VG7n0MkZwwci1jiMrIXyOEqI7lH22rCTtT\nZ8/3dwI+YMB1mrBrr72R/9aTmbWZXF3skHJfh6itGV6vV2HN2Lt3DwoLazrHmTOnFV/mnDx5ukIR\nkySlUgGIFZu8vFxkZ//K/z906KBi4JZ/XdUobMGCmtWRJ59cqEn/3HM151gvWqT8KJOow+q51Ywc\nOZb/FlmWRYql3lfx5F+uFKGtA0lRByLlW0RsbCvFOwwdOlKhzIkmB6LrRYO2fCWJMXu2MkxkURGt\nnojcNgIDtYOiPEzPKrh6dc2H1mJjW6Fjx5qvSXfqlKIoA/mzGPI+0L59siZeHqadhEcp7t+6tXYA\nk4fdeut4Tfxtt9Vs+heVr9G+EUZm5l2K1S716pxcPuiFiQZlveNY5RY50QRY32KpDDPal8HQ+1aB\nXpgRojIWySmRZV20CivqhyLlW7R6JUK+r4ohnzSL2oho9U3+4UK9ML2JmHx1SGTZ1/vY39KlLyr+\n79Klm+x3V3Vy4SRW5AIpyoPeKX5yw5heP5J/GVq/DMw/FihHa4QIUIxVohVMvb078jB9y3zNnjzR\nWD5s2ChNfEZGzTX+Kvdff/2lJmzjxs/576budlXfkHLfgIiERWxsKwwbzePpQwAAIABJREFUNpL/\nP2zYSM2gGBvbSiGkhwwZrkizZs1bCn/UqqqqWi2XAr6NXZdd1h+XX56O8HCtBSUmJg4JCa3RunUb\nxMQo8ydyGxJZxES+lCLFUrRUKMqfqA5Eyvc999yvib/33gcU/w8dOgIxMbGIjY3D0KEZmvQiMjJG\nIzQ0DGFh4cjIUApQ0ZcprfDAA49qwh58cC7/LWpDog+FBQRoFQt5mNkXZAHfBFb+vYiDBw8oBm3R\noHHrrbdr4v/0pxqFfO/ePQqr2enT+YpJuMgtae/e3Zr4PXtqjp/t0EE7udALM0f52XU5ojYumsCK\nFOPJk6dr4uXXi8oHEFs1jTbryfOsRh4m8tcVlZGI2NhWitWkIUMyFHJCb/UqNrZm9Uq0gidSPEUr\noCI5K3p/0QRO1MdFqzv+kpeXi88/X8//37BhvUaZF01iRRMskZwTrQKL+pHRhlGGqI5jY1upDscY\npmiDejJFbsQQuRGL+piojR06dEATf/DgPv7bXxdTUf2I9n00d0i5r0N8ArtmEHM4nAqBbQUzxU0f\nZQcUWZyszpbvvfdB3HPPA5pwwDf7raqqQlVVlWYmLHIbEmHFl9IMkUC3onhkZIxGWBirg9GKOJFA\n6dKlm8atSb1c7HQ6kZl5F+644y7Ns8ePv1Nzf7mfJ7t+8uTpmDRpuo7SZD5grFz5uiZe7pbF3iE5\nuRP/v2PHzop3EPky6rkstG9fEyYS6qLr16x5S/GZcbe7WjGBnTpV6687bVqNv65oUBJNwkVKgagP\nipRjkeLlc61TKvfyOrTSxuVyQz2Iy1fCGHIrXWxsK6Sk1HwnJCWli0KpEJUPIFYeRRMk/TaUxH+L\n/HVFZWTF6jdq1K1wOp0IDAzEqFFjFXGFhYWa6+UuDSLFTFSGItcxPbeZc+dqwkTvL2qjoj6qd5qQ\nfHIjGodERhKfEUu+wbpSIQMAsWVZtLqhZ5mXyznRO4iUZ1G8KP+AcjUrIECZH1EddunSTePCK5fz\nov13IkReAqI27O+eBn9XBi52/jhv2gD4XCZqrDlDh45QNEArVl0zxQ3wWSzWr/+E/6/eECvC39ky\n4LOe5+fnIS/vd3zyyTpFnM9lQKk4yCc4vg2/NQLJZgtQxOtteJErk6IyFC1VWlE8nE4nJk3SrwM9\nxUt+hGleXi6Ki2t8a4uKzurWT58+/dCnzyWacKtuRUbXiwYMq5ug5EfdPfzwY4o4uWsZQ664qF0W\nAGDGjBqXBZ/luKaO1O5nM2fO1rQh+fUi5fmKK65W7I2IiopW7BsRIZrAiayueoqhXBHRKsdpKtcq\nc8XL341sa9a8pdl3I1eM5KdTMf71r/f477y8XOTkHOL/5+T8qmjjPtfBmvKx2x0aI4cVxcUM0b4M\nESI5YNXq53K5dC20tfdHVk6wRG1M5Jqml1f5qVhW5KDaRVSO3uqX3B1N5C8ukqNdunRDamoX/n9a\nWleNkUSEXjv+97/f579Fk3zRBE00FnXp0k3Tz+XvIFKuRfnT6gKfaMYaeR3qKbYPPjgXkiRBkmya\nFVvx/jvzyZHcAKMXJnIxFd1f/a0NX1jNKVZW9K3mDCn3dYyZy4VVgWWkuAFii4W/Fh8ReXm5CoX+\nk0/W6ggUm+5vhlyxUPvYi05hEJWhVmAoJ1iiQZNhVAcii6DILUqEv4qbaMCwqnQEB4cgI2MUMjJG\na1wErNzDTDHwuT7V1NGwYco6Urue3XLLcF0rjRlPPbWI/5bvIQHEK2xWXLcGDarZRH7TTUMU+dOb\nzMm/bKxVjg8prhH1YVH5++trKjqxStTGtfWrdS8UKS6igf1CjtyVI5IDVqx+n3yyFkVFRSgqOqsx\ncqitpmrXJ5GRRqT4+NpQzQlT2dmHauWaJnp/3wRQvjqknACK6k+ESI4CvhVbSZJgs9k0K7qi9gFA\n86E2ozAjRP3MyirtAw88yt/ByN3RSLkWrb6IdAF1Haon8YBPzg8fPhLDh4/UdQX7v/9bwH/Pm/ek\nIk7UBqzIITNPBdH9RW28LiaIFzOk3NcxZi4XgE9g2Ww22GwBui4o/iKymomUXxFWBIp8U5DH4zYV\nOOpNx1aOiLvnnvv471mztEeJmgkM0aDZ2Ph/AoL5gOGb3ClXTowmd8nJnRTuOcp7GK+OiBQDwNz1\nCfC5PLRo0QItWgRrPmxmxepotm9EtMJmxbXs4MH9st9K31LRhlKRciw6zlZU/qKNhNr7B9TafVCE\nv/tK/FUexUv65nJAZPWrrZFDbZm34lZiVoZr1ryl2EtTXa1sQ6L817ccFK0QW+nDDocTDofj//8p\nx1Ir7UN0ZKtogiDam2JllZYpz8OG6SvPZsq1aPVFhNXjVseMGYcxY27Tvcc333wt+73Z8rMBa/su\nRJ4KZlixzNe3vtWUIeW+HjCzvAcHh2DYsBEYNmyEbmcXIbI6WrGaiRSr+kR0hJoVvvhig+z355p4\nkcDwR/EQDUr+7rsQKW5WMBswtIpthu6gXllZiTVr3sLf/vaWxtri7wQRMHd9YvHTp9+L6dPv1cRb\nsdoB5vtGzNqA2rVMrVzv3btHodwfOLBPseG27lEqhqLytzZBNP6olGhTu5U2LjJy+NtPRAO7lRU6\nf1ZZrVlNlSuUtVnBA8RlaIYVq+XQoSP4OKDXB8wmgKL6E538ZsV1a926D1FZWYmKigqsW6f9uKEI\n0f4jaxNI470pVldpzZRns3hrqy/+7fEzQzSBFT1f/3sX2jAjfUl0fytt3F9962KGlPtGQNTZzRBZ\nHVmYmfIqUqzMEClWonjREWoi5dkncGpOzNGzmAHmEyx/Bk1rKyPm9WNGXSjOgHkbszK5M9tXwe5h\ntDpiddAxqyOzeH+tuoC4DZhZXUUbbq1Yzs3Kx7f6JfeJd+uufBiVv2h1RrS6JvoKtNU2bla/onv4\nO7BbsUw35iqr1QlqdvaviqONGVb6mJX8m31DRB6nPpFJVH+iU8dERiiRnLfy/qL9RyJEe1PqG2ur\nL8Z1YGV1xAzRBLYuVkDNsCJnrLRxoxXo5g4p9xchVpR3kfIqUqyMEClWYj888yPURBa3lStf1yg+\n6tNerHCh729lZaQ+j7qsC0STOysuB2arI/5OcBoKozYgUn5FiCzndVE+tSt//dUZI0THzbI8+9PG\nRfeoi4HdSh5Fq6z9+l2GSy+9TGP1EymXongrE9TS0nP4+OO1+PjjtYqNgoC18hFZLT/5ZC2Ki/X3\nDFhZeRCVr0iOmV0vkvNW3l+7obWLYgLor+W7vi3nVldfzFYgrewv8wfR882+yePv/QFxGzdbgW7u\nkHLfBNm27Sds2/azYbw/lufGRnSEmsji5u+G07qgLiZXZvjjh2gVfzZtW7lHXSh/Rli1etYX1k5s\nMt/XIB6U/Vv5MFudqYvyqwsZJLqHvwO7v3msrKxETk42cnKyDVzTzC3X/k7gXnrpOXg8Hng8brz8\n8vOaeCt9zGgFTzSBt+KvLSpfkRwzu96KnLfy/soNrcojlf1dPWoII4ZoAmtWhv7uq/DX/U67ejPq\ngowYV1xxFdLTrzLsw2ar1KIV6OaM9msyRKPCZpqSJKFbtx6mlnd/73EhZGbehT17dnPlT89iZRY/\nc+Zs3H//LL7Mqz7mEPAJyW+//RqSJGmEdps2idi7t0gT1pAwgQZIF1Q/VvD3+sbGShldKEZWz7o6\nCUHUhplFbf/+vQCMXEIyuLVbz3JuVj7senZsnz97GvTuLyq/e+65H88887giXu8Iubpoo2b3sNKG\nxowZd8H3F8EUA9/vdZqz7M3klChe1Mb27t3D2xcA7NuXhX37shTtzJ8+ZjSBf/DBP9fqPqLyvdB4\nK3Leyvuz/UeApDsBNKsjK/1Q1Ab8hU1gjfIPmJexP/mzKofq6/mAT5f57rtvIUkShg8fVat2rjeB\nveqqAU1yFbk+CHjiiSeeaOxMNAfKyupmyWfdug/xyy8/orS0FAEBdt3PajfEPYwIDg6B2+3mGwgz\nMkajX7/LahVfVlaGQ4d8XxgdPHgo+vdXnkEeEBCA2Ng49OzZRyPQU1PT8N//fs4nBzZbAObOfbzB\nN8vEx7dGfHxCgz6zoejYsRM2bvySu6Y4HE48+OCfa13G9VVG33//reYkifj4BKSnX1Un9xe1YQC4\n5JJL8Z//fASbzYZnnnlBM+h06pSCr7/+EkFBLsyZ87DiYzM1eTYun44dO+P7779FSEgIZs6co3u9\nCKP7i8ovJiYWe/fuQUFBPgDf5EXuc9+QNFY/y8vLxauvLuF94NChX5GefpWiD5jJKVG8qI3Nn/+o\nxlK+Y8c23HKLcoXlQstH1AZ+/HGLJr5Nm8Q662MirMp5K+/ftWt3dO3aXTdOVIeifii6HvCtxJ86\ndeqC27FZ/kVYyZ8Z/sohf5/vjy7z+utLceLEcf6/x+NGXl7u/+/H1vceXKyQW04Twoqvc0PcQ4Ro\nOdSK2wpDfcQZw8jlwF9/YkJMU/eZr29fV0Dchh0OJ4KCfB8w0mvD/mxaZ9fXl+tdXW3GbM7UhWua\nKL4+XddEWNszUL/+2mY0pJz39/AFs+ubgs/3he4vA+pGDl3o8xtCl2nOkOW+jqgLy73ZTLMh7yHC\nH4tVXl4uXnttKbeI5eRkayxiIqxYRQn/qAvLcX1hxbLuL6I2vm7dh9i9eweqqqoMLUr+Wp3ry2pt\npfycTifc7mqkpKShV6++dZ6Hpk59rw4BvjZWUlKMxMR26NGjlyKuQ4dkfPvt14qwhx56DDExsXXy\n7NqvwI6p8z4moqnIeX/6YX2uojcUjbV65q8uY7YCTZZ7gjDgQi1WVi1iZvhrFSXENPVN2w1h9TRq\nw83BouTPZsw/Ag2xOsT8ib///luNVbchvq7p7wpsfeN0OnHttdfj2muvb5IySERzkBMXM019Bbq+\nIeW+CVEXA0pDDEpNAX+WGglrNOUybszJR11MUBubpj55a2waQjEQneRR365RVk67acw2Yjb5uRho\nDnKiMakLXaaxJ6iNCSn3TYi6GFCa+mz1jzL5IOqfpjz5uBig8jOnPhUDK1bdhvi6pj97BuqbP/Ix\nhkTdfQ/kj2rEIOW+iVHfH4dpbJr65IMgRNAE9Y9BfSoGVq26f1TXqObg0kJywn/qQpf5oxox6Jz7\nJkZdnA9en2eM1wX1fTYwQdQndXEOPXFxcLF/b+Jipa7O4W9MSE74T1PXZZoypNw3Qer74zCNDXVY\n4mKHJqiEP4g+YkU0D0hO+E9T1mWaMqTcE40CdVjiYoYmqIQ/kFXXnOYy+SE5QTQW5HNPEARxAfxR\nfTmJuqEp741qbJrT3iySE0RjQJZ7giAIgmhgyKprDrm0EMSFI3m9Xm9jZ6I5kJ9f0thZIAiCIIhm\nw7ZtPwGQyPJN1CkxMS0bOwv1Din3dQQp9wRBEARBEE2bP4JyTz73BEEQBEEQBNFMIOWeIAiCIAiC\nIJoJpNwTBEEQBEEQRDOBlHuCIAiCIAiCaCaQck8QBEEQBEEQzQRS7gmCIAiCIAiimUDKPUEQBEEQ\nBEE0E0i5JwiCIAiCIIhmAin3BEEQBEEQBNFMIOWeIAiCIAiCIJoJTU65f/fddzFw4ED06NEDY8eO\nxa5du0zTf/bZZ7j55pvRo0cPDBs2DJs3b9akWbJkCa688kr07NkTEydOxNGjRxXxRUVFeOCBB9C3\nb1/069cPjz32GMrKyur0vQiCIAiCIAiivmlSyv369euxaNEi3HvvvVi7di1SU1MxadIknDlzRjf9\n9u3b8eCDD2Ls2LFYt24drr/+esycOROHDh3iaVasWIF3330XCxYswAcffACXy4W7774blZWVPM0D\nDzyAnJwcvP3223jjjTfw888/Y/78+fX+vgRBEARBEARRl0her9fb2JlgjB07Fj169MC8efMAAF6v\nFwMGDMAdd9yByZMna9Lfd999OH/+PJYvX87Dbr31VqSlpeGJJ54AAFx55ZWYNGkS7rzzTgDAuXPn\nkJ6ejkWLFmHw4MHIzs7GkCFD8O9//xtdunQBAHz77beYOnUqNm/ejJiYGEt5z88v8ePNCYIgCIIg\niPomJqZlY2eh3mkylvuqqipkZWWhf//+PEySJKSnp2PHjh261+zYsQPp6emKsCuvvJKnP3bsGAoK\nCnD55Zfz+JCQEPTs2ZOn2bFjB8LCwrhiDwDp6emQJAk7d+6ss/cjCIIgCIIgiPqmySj3hYWFcLvd\niI6OVoRHRUWhoKBA95r8/HzT9AUFBZAkSZgmMjJSER8QEICwsDDD5xIEQRAEQRBEU8Te2BkQ4fV6\nIUlSrdLXxT1r+1ybTYLNZj09QRAEQRAEQdQ1TUa5j4iIQEBAgMZafubMGURFReleExMTo5ueWeqj\no6Ph9XpRUFCgsN6fOXMGaWlpPI16w67b7UZxcbHhc/WIigqxnJYgCIIgCIIg6oMm45bjcDjQtWtX\nbNmyhYd5vV5s2bIFvXv31r2mV69eivQA8N1336FXr14AgMTERERHR2Pr1q08/ty5c9i5cye/Z69e\nvVBcXIy9e/fyNFu2bIHX60XPnj3r7P0IgiAIgiAIor4JeIIdK9MECA4OxpIlSxAfHw+Hw4HFixfj\nwIEDeOaZZ+ByufDwww9j9+7dfNNtXFwcFi9eDJfLhbCwMLzzzjvYsGEDFi5cyP3o3W43VqxYgeTk\nZFRWVuLpp59GZWUl5s2bh4CAAERGRmLnzp349NNPkZaWhuPHj+Pxxx/HVVddhYyMjMYsDoIgCIIg\nCIKoFU3GLQcABg8ejMLCQixduhQFBQVIS0vDm2++yRX13NxcBAQE8PS9e/fGiy++iJdffhkvv/wy\n2rVrh9deew0dO3bkaSZPnozy8nLMnz8fJSUluOSSS7By5Uo4nU6e5sUXX8SCBQswceJE2Gw2DBo0\nCI899ljDvThBEARBEARB1AFN6px7giAIgiAIgiAunCbjc08QBEEQBEEQhH+Qck8QBEEQBEEQzQRS\n7gmCIAiCIAiimUDKPUEQBEEQBEE0E0i5JwiCIAiCIIhmAin3BEEQBEEQBNFMaLRz7t99912sWrUK\nBQUFSE1Nxbx589CjRw/dtIcOHcKDDz6IgwcPwu12IyEhATfffDM2bNjArx81ahQ2bdqErKws5OXl\noU2bNjh16hTcbjfCw8MRHx+PEydOoLy8HIDv67ctWrSAJEkoLy9HSkoKSkpKkJOTo3h2UFAQ7HY7\nzp8/D7fbDQCQJAnsBFFJkvj91LB0NpsNXq+Xp7Hb7aiurq6bgjRAnkc9HA4HqqurTdMQBEE0FCEh\nITh37lxjZ4MgCD+IiorC6dOndeNsNhs8Ho/htUFBQUhJScGZM2dw7Ngx3TSDBg1CTk4Ojh49isrK\nSsN7hYaGIiQkBCdPntTERUdH46WXXsJzzz2H/fv3c92OkZycjHXr1mHJkiX4z3/+g99//12jK9nt\ndkyZMgVt27bF3LlzAWj1wODgYEyYMAEHDhzArl27UFxcDACoqqqCx+OB3W5H3759sWrVKjgcDgDA\n6dOn8cILL+C7775DSUkJ+vXrh3nz5qFdu3aG76pHo1ju169fj0WLFuHee+/F2rVrkZqaikmTJuHM\nmTO66b/88kscPHgQt956KyIjI+F0OrFq1Srcdddd/PpFixYhKSkJjz/+OADg5MmTPL0kSTh8+DD6\n9OmDmJgY9O/fH16vF3a7HSUlJXj00UeRnZ2NnJwcdOjQAU6nE23btoXT6URAQAA6duyI6667Dl26\ndAEAOJ1OBAYGAvBVZteuXXHJJZfAZvMVZ1BQEACfAh0fH4+QkBB4vV4EBwcDADweD0JCQgAAbdu2\nxeWXX6773k6nk99TjiRJsNt987K4uDhNvM1mU3ykS54nhhXFvm3btqbxcljDlBMdHY1rrrlGeG2L\nFi0M41iZ1QWSJPEPojHkH0ULDQ3l6WpzT4fDUatrzJDnB/CVYW3QqwcAuu3IX4yexVC3OTV1kSfW\nDxiSJOnWRcuWLU3vk5qaqil7RmJiouJ5wcHBirzLr5M/m8kINQkJCaZ5qS0dOnTw63qn06mRF0bU\nts5sNpvlvmFFsY+IiADgUyD8RZIky/LFTEZZfZYRQUFBwjK68sorDeMuueQSxTOslLfV+raC3W4X\n9i+zaxlM/jqdTh6u7t9GYQyj9ilJkmH/Ft3f6XTC5XJZTq+Wi/I2Fh4erskj0wWMsNrn1PVe274q\nfw+73X5B8rl///4axV5e7kyxV4+1rHzLy8uxc+dOJCYmKspR/vvzzz/HiRMnkJaWxsNatGihkclt\n2rRBWFiYIi/seQUFBZg3bx727t3L4wIDA3m/yM7Oxv33348ffvgBeXl5iI6O5uOZzWZD586d0bdv\nX6xevRqlpaVo2bIlhg8fzu8/Y8YMvPXWW0hNTcV7772H1NRULFu2DAMGDIDb7YbX68VDDz2Eu+++\nGz/++CMmT57M8zFjxgycOHECy5cvx7p16xAfH4+JEydyw7RVGkW5f/vtt3HrrbciIyMDycnJePLJ\nJxEUFIR//etfuuk3btyIcePG4fHHH4fL5UJlZSVcLhfOnz/Pr2/ZsiWioqJw/fXXAwCuvvpqnn76\n9OkICwvDnj17MGbMGCxZsgTV1dXIyMhAamoqNm7ciLKyMjidTpSWlmLKlCn44osvYLPZkJSUhPfe\new+vvPIK3nnnHQDAtGnT4PF4+ECzevVqvPvuu7jhhhsAgFdCYmIiWrduDQCYMGECDx8+fDgqKysh\nSRJSUlIwd+5cReOVC+nExETYbDYEBARAkiSEhYVh5MiR3PJfUlKCWbNmcQERGBgIj8eDiooKPjkI\nDAyE3W7HmDFjAPg6gp5iz/LKOHHiBB/U/vKXv5jW6bBhwwAAV1xxBQ9zOBxwOp38PRjy3wBw8803\na+7HykBvEJcLIbVAk/8v/83qqrS0VJHe7XZzhb+qqgqSJOHmm282HAjU4bNnz8bQoUNx9dVX66Zn\n+Rg7dqxunFqAMsXPZrMhPT0do0ePNryvHFYmaoXaZrMhNDRUM5iPGDFCMwjpKeN6yk98fDwAaFba\nAgICFM9h7UmvLIODg+HxeNCqVStFWkCpFMuVww4dOmjaKBss2HOHDx+OoUOHKtIEBgbi73//uyYP\nANCpUycAvq9dqy1KbMBZtmwZ+vXrB8A3ONvtdnTt2hU9e/aEy+WC2+3mEzy2UterVy/dPhYUFIST\nJ08iJiZGEW6krOrVCZMFjPT0dE0auTIi/22kGE2dOtV0Mmaz2eByufj7sXzoIUkSJk2axK10ffr0\n0aQRKdXJycma/LhcLhQWFqJPnz6GgzZgrvwxAgMDMWHCBGzZsoWHqSf+jLi4OIVlT0/pYWXMykRt\n6GHtXI+KigqN3FIrKjt37uRxgFLZSUxMVKzUhoeHK+7fpk0b/puVDRs/2P8ixVddF+3bt+e/3W43\nlixZosivCNbe5QpaSUkJJEnCuHHjuLy+6qqrACjbiyRJSE1NVdzP4XAgODiYG1vUyrjD4eB1KMqf\nvPxsNhvi4uL42K03WXW73Yo2FxwcrGifcXFxfMwrLi6GzWZTvM+5c+cU9elyueB0OnlYbGys4nl6\n+Q8ICFC03xtuuEF3QsrK3W63cznbv39/AFB4E/Tt21eo3OsZNZhlWg6zasspKSlBeHg4fvnlF0iS\nhNtvv10RHxQUhKqqKgC+8rzmmmsU9VJVVYXjx48D8PWtNWvWKOSt2+3GI488gn379sHpdCI4OBgO\nh4PXS0JCAnJzc9GlSxd+3VNPPYVHHnmEt6GNGzfipptuQnh4OCRJQlVVFW644QZ4vV6cPXsWq1ev\nRkhICH7++WdUV1dj06ZN/F6DBg3CFVdcgRUrVqCwsBD9+vVDr169UFVVhREjRmDAgAE4fPgw7r//\nfnTq1In37yNHjmDnzp144okn0LVrVyQlJeHJJ59EeXk5/vOf/5jWh5oGV+6rqqqQlZXFGxTgaxjp\n6enYsWOHML3X60Vubi569uzJ08uvZw1C3vlZfGBgIDZu3Mhdb4qLi3H06FEUFRXxgf3333/Hq6++\niu7du6O8vBzZ2dkYM2YM0tPTcd111wEAUlJS4PV6+TWsk6gtdXa7HUeOHEFiYiIyMzO5cGEuPpIk\nwe12Y9asWfB6vVygMTweD3Jzc+HxePhsz+l0orCwkKcpKyvDqlWruNWrsrISoaGhkCQJlZWVXNE/\nd+4cPvzwQ55GjxMnTij+d7vdXKg99dRTPFzPYssmZvLBsrKyEjk5ObDb7Th79iwPz83N5b/Zqooa\n1klYWrmgkQ+06oFc3sHl9VFUVASv14uKigrNs9iK0fnz5+H1enHgwAHDVQ21wHvjjTewdetW5OXl\n6aZnefrggw9086tWKNlSpMfjwe7du3HkyBHD+8rvJZ/sqe/fo0cPzax/7dq1vK8w1P8HBARoJkMA\ncOrUKQDQ9NeAgADFAJGdnQ0AmiVPwDfJSkxM5CsT6rYnzz+ri5ycHJSVlemmY0J73bp1+PjjjxVx\n1dXVWL58ue51v/76KwBorgF87QEARo4ciV9++QWAr/4rKiqwe/du7Ny5k6epqqri+fR6vaiqquL9\nTK4MsDTqVUojy6eexVDtcseMDnp5V6PnDsieoSe/GPKJGGuzevUK+N7xzTff5On0LE5G9cjIzs7W\nXMf6bnZ2Nn777TfNMxlWXB4rKirw9ttvKyaorO+oLam///67Qm7ouRWw8mZlwtIwBcvI8s+URfU9\n5f+73W6eN/ae8r766aefcsUnLCxMMT4AyrbGJqLs/uq6NJrgqfMnl0terxdTp06t1eoly9Pu3bsV\n9/F6vXj77beRn58PANi0aRMApVGmqqoK+/fvV9yvqqoKpaWlcLvdqKqq0kyW5WMeKwMjCgoKFP9X\nVFTwcvd4PJpr1e999uxZhZKbk5PD5XpYWBiCgoJ05Srj/PnzfBwHlOMly78at9utsJhv3rxZdyWM\npXG73bxN642JYWFhhv2Ivb+8TbDy+f333zXpn3nmGU0YU5D79u2G15OLAAAXyUlEQVQLSZKwbds2\nHme32xV5r6qqQkFBgaJMq6qq+LuUlpZyecDqIj4+Hh9//DECAgIQERGB0tJSVFdX83I/deoUwsPD\nUVxczOVcSEgIAgMDufx2u92IiIjg/cntdnMF/uzZs3j++edx2WWXITs7G2VlZYo6HT9+PIYOHYo1\na9ZAkiQ+fvTu3RtbtmxBfn4+wsLCsH//fhw/fpy3V2b0lRvJ2P/sHlZpcOW+sLAQbrdb424QFRWl\n6VR66T0eDzweD2JjYxXp2fWsItSDZVRUFKKiopCcnIyRI0cCAD744APMmTOH34cJAPkgV15ejqys\nLIwYMYI3gkOHDqFly5a8sT3//PPYtGkTvvjiC8Uzi4uLUVpair59+yred/PmzXxysHHjRhw/fhwe\nj4evOrCOIu+ArLLz8/OxceNGADWDr3wg93q9KC4u1rUUsftWV1cLlwIZrAMXFRXxMLUSqJfeZrPh\nzJkzyMnJQVVVlULplF/vcDiQlZVleD9WJ3qCRJQXuXJg5uenJjs72zC9WrC73W7k5+dj3759pveU\nl70ZcheLkpISbNiwwTAtu5fICmpVKKgHDSPlzSieTSatcurUKcWyKENvsGGoFRf2PKYMGOXz008/\nNXSTAXwDhNfr1bVGud1uxXNEy6OhoaGKNi1vr+zd1GV35MgRXeVI/b6Asg05nU60aNHC1G3ASNFn\nlJaWYufOnZqJp7qtnj171vQ5Ruj1b73Js8iiyq5RTyL9QT5ZZ7JEbnW16nJnVC5MiTWa/LPxTG8C\naEZSUhL/XVlZyRULuZxmqCdScldOdX81Kle1QUht5JBbr0VyQ46eK4k67EJcophVl91Tjdm4Icfj\n8Wis0eqy8Hg8mnIzqsPCwkKuuMrbO8uPw+HgFngjv3Urbn1mvujy/HXv3l2hWDPkuoy6/Mz2GRYU\nFGjkiLpfy8dQpgfJ8zBkyBD89ttv/LrKykps375d01aZC2ZISAjuv/9+xb7G9u3bY8OGDYiPj4ck\nSYiOjuZKO+DT8e655x6cPHmS61Y7duzAX//6V8UzgoKCEBMTw/sv053sdjs+/PBDrpzfdNNNihWW\nyspKjB49GsuXL4fH4+Hj05QpU5CSkoKsrCysXr0aI0aMQHV1NaZNmwbAN/7Hx8fjpZdeQnFxMSor\nK7FixQrk5uaajnF6NJnTcrxeb61m/ur0ouu9Xi8KCgqwefNmBAcH44knnkC7du3w9NNPc6shs35M\nnDgRU6dOBeAbPNu1a8c3AAPA119/jYqKCt6I16xZg2nTpvEOxawfeXl56Nixo6ZzsNkqS3vttdfC\n6/UqBESfPn2QnJzM/5d3VpfLhYULF/IJDMuHfIBh1tVOnTohICBAs4wdEBCgWBI1Ijw83FS4JiQk\nIDk5WdOBPR4PkpKS+ERMjrzzt2nTxlSZY4j8t0WKgSRJuvsTgBrhZcXHUG4RstlsiI+P1wwUrB4u\nxGeR1RvDbDmfYWYFAvT99oODgy2VmR5M4dFTlmvTh6urq00nA2Z+t2pYG0tJSdHNU2pqqm47U7sr\nyZ/FBK4c+QRA3acYc+bMEeZXD73BUr2aZ7PZFC4RlZWVKCsrQ0VFhaI+9fYiGNG3b19s375dsboG\n1LRjNhgXFhYKLe6Ar72p880wkyUipZC9g9HeLLa/yug6PfSUcvkGvMmTJ2vS6PUbowkfe7Z6RU0O\nO3BBb0+QEeqVrsrKSkvyxuVy6W4wZHVspNzHxsby/i5JksJFIjExsVaTeqDGVUjd5j0eD9544w1F\nmDrNzJkzNfcze3d2vVGbFKGuW6OJnNE+BubGqEavHXXp0oVP0Jh8Ub9bbfdhsWfplZF85cQIdd3K\ndRG9iUZ1dbVC/oSEhCieLV/VuvzyyzWy6qOPPsLw4cMt7avxer3Iy8tDu3bt0K1bNx7OvD1KSkr4\nBl+Xy8Vlc3l5Ob766ivEx8fz8XPFihUaL4K8vDycPn2a11VcXBzi4+PRqVMnSJKEgwcPAgBefvll\nOJ1O3sYqKiqwaNEirn+x65csWYKNGzdi/PjxWLVqFU8vH+uWLVuGI0eO4NJLL0WfPn3w008/YcCA\nAZb3jDAaXLmPiIhAQECAxkp/5swZ3cpUp7fZbLDZbMjPz1ekZ9ezwlIL0/z8fJw8eRLl5eV45513\ncNttt+GLL77AyJEjuRWbdc7k5GTeUCRJQkREBM6fP49Ro0YBALZt24aysjIuCL/55hv88MMPuOOO\nOwDUCEi32409e/Zg9erVCr/TLVu2oGXLlpAkCRUVFdi4cSO8Xi/Wrl3L02zbtg2HDh3i7yxnxowZ\nGDVqFFc+2POqq6v5YNKzZ09IkoSgoCB4PB6EhYUp7lNeXq5pLHrKr9o3WM3Jkydx7tw53U7Olm7V\nSoN8AGEuUqINXiJrqUgx8Hq9ukuGQI3CYWWAku/g93g8OHr0qCYNs5TWdsCTXwv4LMByix9zTWPL\ntVZRTxgkScI111yjyJ96w5ndbje0PjEXFLWyzJY06wp5uxbByunAgQOaOKfTyV3S1KgtXPJ3MnLl\nYUqO0ekFzNWnLtBbqdBzY2OuewyrlkTAN8CXlJRo+tCLL76Itm3bKu4VGBgoXCkqKCjQWJCZbFHv\nt6kNagu3msLCQt33NHt3vYmxPP1rr72mmdDoySr1M1g+zVaLGKwfer1ew4mLGj3Ls1m9MOXd5XLp\nyiWRJbugoICn8Xq9inbJxlqr1nCgxjeb7XmRI1eGnU6nRvaXlJRoFGybzWaoDLK60VsFuxD0VsLk\nvuxqCgoKdFeD9OTazp07eT9kfYjt92Hs2rWrVvm12+189VE+uWYGM6P9WlbQmygCSvlz9uxZjZsZ\n4NNRli5dqpA7rN+88cYbXKbL96DorXA5HA588MEHfLVGkiQUFRVh06ZNKCoqQlZWFrxeL86fP4/F\nixfz67/++mv07duXr4ItWbIEzz33nOI9tm7ditDQUD42PvTQQ3jyySexa9cuXj9lZWXo3r07jhw5\ngrNnz/I8tmrVCrNnz0Z1dTUSEhLw448/Yvny5Rg6dCimTJmCxx9/HAMGDMCMGTOwYsUK/swuXbpg\n7dq1+Pnnn/Htt99i5cqVKCwsVOydsUKDK/cOhwNdu3ZV+GZ7vV5s2bIFvXv3FqaXJAmtWrXCrl27\neHr59UyIyX3yvF4vd2W57777+Kk37P5sw0RBQQFCQ0Nx+PBhrrQx/7ixY8fyTXnBwcHo1q0bevfu\njZCQEMTFxSE4OBhff/01gJqGnZiYiG7duuHGG29ESEgIr/THHnuMn0STlpYGSZIUexAAn9UwKCgI\nM2bMUFjwgRqBKJ/Bsw0obKLSrl07REVFYc+ePbDZbNx3n+F2uxVLl4B2GbBly5a49NJLDa11bLPs\n77//rivU5ANebGwsHA4HAgICFJMIViYvvPCC4WZYQGktYRMOtokX8FkmXC6X4eDPJlN6WFVIAwMD\nNZZ0Pfem8ePHW1rOV0/a1JOtkpISRZ399NNPcDgcimVi1naNFE02iKjLNi4uTvHebP8HgykwegoD\na49qi5RaUWaKjXwywtyOBgwYoJtfl8vFJ+iSJJlab+TvxPKpp3glJSXp1gVrM4C+5c9owlleXg5J\nkgwHWbbE3Lp1a9xyyy26aaysRshPrJAriWzFzmaz4aGHHsJll12mseaxDd5mbVC+7G2EfKkb8FkT\nmXVZkiTNpN5utys2rqmfJVcA9SxRdrsdcXFxuvURHR2NkJAQhYIit3gNGTIEaWlphgo1Kwu2OVhv\nVSwiIkKxwZ+dRCNHT4lVr0iw/Ms3YhrB8mW329G2bVuNkpWQkKCox/bt2+uesDZu3DgAxpuwAa2h\nhZ2UZGYNttlseOKJJwyNFaw89Np0586dkZycrHFnZJNo+SoUQ+5+IN9zA/jK6quvvtLIO3Yanfyk\nOjVdu3bVzb8kSVyWsRUJ9i7q/tOyZUtdmVhdXY3KykpUV1cLV1Cqq6sRFhamW55sY7A8D7169TK9\nH6DsS9HR0Yo+IH8HuYxndcD0Fbb6GRAQgPDwcMyfPx8RERGGewzUG7cBX9uzOkn47bff+AZV+Uk0\nQI1RF/AdGHD55ZcjNjaWt4WWLVvyfMXFxWH//v28bXu9XqSkpODpp5/m9+zWrRsSExMxYsQIRR56\n9uzJJxEVFRX43//+x1c5mL5SWVkJt9sNm82GX375heeRyeEJEybgo48+wtixYxEdHc111Kuvvprv\nGYmJieGHFnTq1AmZmZno3r07Fi5caHg8aEhICCIiInDkyBHs2bOHu21bRfI2wkHn69evx6OPPooF\nCxage/fuWL16NT7//HN89tlniIyMxMMPP4xWrVrh/vvvBwB88skn+POf/4zp06fjb3/7Gz9xYtas\nWRg8eDCmT5+O3NxcrFy5EqGhocjIyIAkSbjtttuwfv16OBwO5Ofno02bNlyQ2e12dOjQAe+//z6G\nDh3KN4SmpKTg8OHD3GWAWTTT0tJw6NAhnD9/HjfddBPf3czO2c/JyYEkSdyKffLkSb6DvaCgAF6v\nF2FhYSgqKkLXrl35Zl2n06nwBWMkJSXh6NGjGD16NN+MCfga/U033YSDBw9i//79GssT22yXlpZm\n6gdut9v5DnAj2Ek9etZp9fPMngOYW1/lm8rY8rSVZqn3vQCza9kqjFXrmOhMXsAnCNWWh9atW2sm\nTnJatWql2SR1oVzoNxPYaVP1jVF96OXbSlsBtGUueubgwYPx5ZdfciXW4XCYtnun0yn0WTVCXq5h\nYWE4d+6cJq+i/KvTtWjRwnCCfdttt+Hs2bP47LPPeJgk+Y7KFVlS5fnQqyf1c9X/W+kf8rTqCaTV\nvMkJDQ3VPZEjLCwM58+fR2hoqO7eLSt5ttlssNvtuj7U/hIcHKy7SiDPT2xsLEpKSjT9MiwsTDPR\nV8PGEbV7pxXsdjt69+6Nn376qVbXqTHq623bttVsgGYEBgZacstkmMk7M9kfGRmJiooKoQuj0X0B\nn9Jo1P7MkNex+ps3DDOZIJJX9QE7WlJ0PK26zJnuI0f9buxEP713Yu/atWtXHDt2jJe1up3Ex8ej\nqKiIy6Po6Gje7yVJQmZmJjZt2oTCwkLen1q0aAG3283bQPv27TFw4ED885//RGlpKYKCghSbpwcP\nHowDBw4gOzub60vV1dW8DbDJRWZmJtLT0+FyuZCZmYmqqio4HA7ccsstWLduHTp37oxjx44hMzMT\nBw8exObNm9G+fXs89thjOHXqFJ5//nkMHToU8+bNAwBs2LABkZGRiI+Px4EDB7Bw4UJ0795dcSKV\nFRpFuQeUH7FKS0vDvHnz0L17dwC+wmrdujWeffZZAD7/woEDB2ruwSzHDocDnTp1wo4dO3RPHjCC\nufhERkaiT58+2Lp1q8KyYbfb0bp1a5SUlFhWCIkarCoxBOEPtVUQmgOhoaH8dJDmQnh4uMayLIct\nzzend2ZYNWgQRFMnMDAQNputQYxHeqhXW/T6Vd++fXHHHXeY7o9ifdKob8bExGDp0qX4/PPP8d//\n/pcbcZlhyG6346qrrkJ4eDg++ugjAMauupIkcW+Tv/3tb1i1ahVOnz6NmJgYjBgxAtOnT7e02qu4\nZ2Mp9wRBEARBEARB1C1N5rQcgiAIgiAIgiD8g5R7giAIgiAIgmgmkHJPEARBEARBEM0EUu4JgiAI\ngiAIoplAyj1BEARBEARBNBNIuScIgiAIgiCIZgIp9wRBEARBEATRTCDlniAIgiAIgiCaCaTcEwRB\nEARBEEQzgZR7giCIZkK/fv2wbNkyS2lLSkqwbNkyZGdnK8JPnDiB1NRUfPHFF/WRxQti4MCBePrp\np03TlJSUIDU1FevWrWugXBEEQTRN7I2dAYIgCKLhKS4uxrJly9C5c2ckJyfz8JiYGLz//vtISkpq\nvMypeO211xAaGtrY2SAIgrgoIOWeIAjiD4jX69UNdzqd6NGjRwPnxpzU1NTGzgJBEMRFA7nlEARB\nNCDbt2/HhAkT0Lt3b1xyySV44IEHcObMGQA1LjEff/wxnnrqKVx66aW48sor8dxzz8Hj8Sju8+WX\nX+Lmm29Gjx49MHbsWOzevdtyHk6cOIHrr78ekiTh3nvvRWpqKtLS0nDy5Eldt5yBAwfiqaeewurV\nq3HNNdegT58+mDt3LiorK7Fv3z7cdttt6N27N8aMGYODBw9qnrdq1SoMGjQI3bt3x/XXX4+33367\nVmWm55bz/vvvY+DAgejVqxcmTpyIo0eP1uqeBEEQzRWy3BMEQTQQ27dvR2ZmJq699losXrwYZWVl\nWLx4MWbMmIF//vOfPN3ixYtx3XXXYcmSJdi2bRteeeUVJCUl4dZbbwUA7Nu3D7Nnz8aAAQMwd+5c\nHD9+HHPmzEFVVZWlfMTGxmLZsmWYNWsWHnjgAVx22WUAfC45eXl5utd89dVX6Ny5MxYsWIBjx45h\n0aJFcDgc2LFjB+666y5ERkbihRdewJw5c7B+/Xp+3dNPP41//etfmD59Orp3747t27fjL3/5C1wu\nF3+f2rJp0ybMnz8fo0aNwuDBg5GVlYXZs2dDkqQLuh9BEERzgpR7giCIBuLFF19Ejx49sHTpUh7W\nuXNn3HLLLfjmm2+473uvXr3w2GOPAQD69++PrVu34vPPP+fK8IoVK5CQkIBXX32VK7SBgYH8GhEO\nhwNpaWkAgHbt2llyw5EkCa+99hrsdt+w8cMPP+CDDz7Am2++iSuuuAIA4PF4MH36dBw4cAApKSk4\nduwY3n33XSxYsABjxozh73P+/HksW7bsgpX75cuXo1+/fnjmmWcAAFdccQXKy8vx+uuvX9D9CIIg\nmhPklkMQBNEAlJeXY/v27Rg0aBDcbjf/a9euHeLj4xVuNenp6YprO3bsiNzcXP7/rl27cO211yos\n1YMGDarX/Pfr148r9gDQvn172Gw2bvUHgKSkJHi9Xp7X7777DpIk4cYbb1S8c//+/VFQUIBTp07V\nOh8ejwdZWVm4/vrrFeGDBg0y3EdAEATxR4Is9wRBEA1AUVER3G43nn32WSxcuFARJ0mSQnlXnwzj\ncDhQUVHB/8/Pz0dUVJQiTUhICAIDA+sh58Z5CgwMVCj8DocDAHhez549C4/Ho5gAMCRJwqlTpxAf\nH1+rfJw5cwbV1dWa94+Ojq7VfQiCIJorpNwTBEE0AKGhoZAkCdOmTdNYnQEgIiLCsuU5JiYGp0+f\nVoSdO3dOMQFoCoSFhcFms+Ef//iHYhLAaN++fa3vGRkZCbvdrnn/goKCC84nQRBEc4KUe4IgiAbA\n5XKhV69eyM7OxuzZs3XTnDhxwtK9evTogU2bNmHu3LncNWfDhg21yo/ayl4f9O/fHwBQWFiIa665\npk7uabPZ0KVLF3z55ZeYMGECD9+wYQNtqCUIggAp9wRBEA3Gww8/jDvvvBP33XcfhgwZgtDQUJw6\ndQpbtmzBqFGjkJCQYOk+U6ZMwejRozF9+nSMGzcOx44dw1tvvYWgoCDLeYmJiUFoaCg+/fRTtG7d\nGk6ns87Pk09KSsK4cePw0EMP4e6770bPnj1RVVWFw4cP48cff8Srr756QfedNm0aZsyYgblz52LI\nkCHIysrCxx9/XKd5JwiCuFihDbUEQRANRO/evfH3v/8d58+fx5///GdMnToVr7/+OlwuF9q2bQsA\nhtZneXhaWhqWLFmCo0eP4p577sHatWvx8ssvw+l0Ws6LJElYuHAhjh8/jokTJ2LMmDH8GEx1Hqzk\nyShs3rx5/HjMqVOn4qGHHsJnn32GSy+9tFZ5lTNw4EAsWLAAP/zwA2bNmoXvv/8eixcvtnw/giCI\n5ozkpeMFCIIgCIIgCKJZQJZ7giAIgiAIgmgmkM89QRBEM8TtdhvG2Wy2JrP51CyfkiTBZiMbFEEQ\nRG0gtxyCIIhmxo8//ojMzEzdOEmSkJGRgWeffbaBc6VPamoqJEnSPQa0devW+OqrrxohVwRBEBcv\npNwTBEE0M8rKynD48GHD+IiICMsn89Q3WVlZhnFOpxOdOnVqwNwQBEFc/JByTxAEQRAEQRDNBHJm\nJAiCIAiCIIhmAin3BEEQBEEQBNFMIOWeIAiCIAiCIJoJpNwTBEEQBEEQRDOBlHuCIAiCIAiCaCaQ\nck8QBEEQBEEQzQRS7gmCIAiCIAiimUDKPUEQBEEQBEE0E/4fF9hPZpk2n60AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAELCAYAAAC79N20AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt4HMWV9/+tuekytiV7bHyPActGMqAfYHNJAAM2scHhzmYDaPOSxC8sZpM3/AJZLnYSYzCXrHnjwGKyJM4mZAVsWAiYxdgG21xCIMEOG5s7skH4IsvWSJYljTTXev/o6aG7pkZTavVMT0vn8zx67Oqprq6u7q5TVefUOYxzDoIgCIIg8uNxugIEQRAE4RZIaBIEQRCEIiQ0CYIgCEIREpoEQRAEoQgJTYIgCIJQhIQmQRAEQShCQpMgCIIgFCGhSRAEQRCKkNAkCIIgCEV8TleglBg7diw/+uijna4GQRCEa9i+fXsb53yc0/UoFiQ0DRx99NHYtm2b09UgCIJwDYyxZqfrUExoeZYgCIIgFCGhSRAEQRCKkNAkCIIgCEVIaBIEQRCEIiQ0CdcTDodx8803o7293emqEAQxxCGhSbiexsZGvPvuu2hsbHS6KgRBDHFIaBKuJhwOY9OmTeCcY+PGjTTbJAiioJDQJFxNY2MjUqkUACCVStFskyCIguJKockY+zVj7CBj7N0cvzPG2IOMsSbG2A7G2CnFriNRHLZs2YJEIgEASCQS2Lx5s8M1IghiKONKoQngNwAu6Of3CwHMSP9dD+CRItSJcIB58+bB59McW/l8PsyfP9/hGhEEMZRxpdDknL8GoD/l1aUAHuMabwGoZoxNLE7tiGLS0NAAj0d7jT0eDxoaGhyuEUEQQxlXCk0FJgPYY0jvTR8jhhihUAgLFiwAYwwLFy7EmDFjnK4SQRBDmGHvsJ0xdj20JVx86Utfcrg2hBUaGhrQ3NxMs0yCIArOUJ1p7gMw1ZCekj6WBef8Uc75HM75nHHjhk10myFFKBTCAw88QLNMgiAKzlAVmusA/K+0Fe0ZADo55y1OV4ogCIJwN65cnmWMPQHgXABjGWN7AfwEgB8AOOe/ALAewCIATQAiAL7tTE0JgiCIoYQrhSbn/Oo8v3MA/1Sk6hAWCIfDuOeee7B06VJaViUIwjUM1eVZosQhf7EEQbgREppE0SF/sQRBuBUSmkTRIX+xBEG4FRKaRNEhf7EEQbgVEppE0SF/sQRBuBUSmkTRIX+xBEG4FRKaRNEhf7EEQbgVV+7TJNwP+YslCMKNkNAkHEH3F0sQBOEmaHmWIAiCIBQhoUkQBEEQipDQJAiCIAhFSGgSBEEQhCIkNAmCIAhCERKaBEEQBKEICU2CIAiCUISEJkEQBEEoQkKTIAiCIBQhoUkQBEEQipDQJAiCIAhFSGgSBEEQhCIkNAmCIAhCERKaBEEQBKEICU2CIAiCUISEJkEQBEEoQkKTIAiCIBQhoUkQBEEQipDQJAiCIAhFSGgSBEEQhCIkNAmCIAhCEdcKTcbYBYyxjxhjTYyx2yS/f4kxtpUx9g5jbAdjbJET9SQIgiCGDq4UmowxL4CHAVwIYBaAqxljs4RsywD8nnN+MoCrAKwpbi0JgiCIoYYrhSaA0wA0cc53c85jAJ4EcKmQhwMYlf5/FYD9RawfQRAEMQTxOV0Bi0wGsMeQ3gvgdCHPcgCbGGPfAxAEcH5xqkYQBEEMVdw601ThagC/4ZxPAbAIwO8YY1n3yxi7njG2jTG27dChQ0WvJEEQBOEe3Co09wGYakhPSR8zshjA7wGAc/4mgHIAY8WCOOePcs7ncM7njBs3rkDVJQiCAMLhMG6++Wa0t7c7XRXCIm4Vmm8DmMEYO4YxFoBm6LNOyPM5gPkAwBirgyY0aSpJEIRjrF27Fjt37sTatWudrgphEVcKTc55AsB3AWwE8AE0K9n3GGMrGGOXpLPdDOA6xtjfADwB4Fucc+5MjQmCGO6Ew2Fs2bIFALB582aabboUVwpNAOCcr+ecz+ScT+ecr0wf+zHnfF36/+9zzs/knP9/nPOTOOebnK0xUShoyYtwA2vXrkUqlQIApFIpmm26FNcKTYLQaWxsxLvvvovGxkanq0IQOXnllVdM6a1btzpTEWJQkNAkXE04HMamTZvAOcfGjRtptkmULKJ2iLRF7oSEJuFqGhsbkUwmAQDJZJJmm0TJct5555nS8+bNc6gmxGAgoUm4mi1btpiE5ubNmx2uEUHIWbx4MTwercv1eDxYvHixwzUirEBCk3A1X/nKV0zpM88806GaEET/hEKhzOxy/vz5GDNmjMM1IqzgVjd6BEEQrmPx4sVobW2lWaaLoZmmC6EtFl/wpz/9yZR+4403HKoJQeQnFArhgQceoFmmiyGh6UJoi8UXzJs3Dz6ftmDi8/kwf/58h2tEEMRQhoSmy6AtFmYaGhpMxhUNDQ0O14ggiKEMCU2X0djYaPIqMtxnm6FQCAsWLABjDAsXLqRlL4IgCgoJTZexZcsWJBIJAEAikaAtFtBmmyeccALNMgmCKDgkNF0G6fCyIeMKgiCKBQlNl0E6PIJwL2T57n5IaLoM0uERhHshy3f3Q0LThZAOjyDcB1m+Dw1IaLoQ0uERhPsgy/ehAQlNgiCUIH3c4CDL96EBCU3C9VBnXhxIHzc4yPJ9aEBCk3A91JkXHtLHDR6yfB8akNAscWgW1T/UmRcH0scNHrJ8HxqQ0CxxaBbVP9SZFwfSx9kDWb67HxKaJQzNovJDnXlxIH2cPZDlu/shoVnC0CwqP9SZFwfSxxGEBgnNEoZmUflpaGgAYwwAwBijzrxAkD6OIDRIaJYwNIvKTygUwqRJkwAAkyZNos68gJA+jiBIaJY0tCSWn3A4jP379wMAWlpaSO9bQEgfRxAkNEsaWhLLT2NjIzjnAEjvSxBE4fE5dWHG2EMAeK7fOef/p4jVKVkaGhrQ3NxMs8wcyPS+3/ve9xyuFUEQQxUnZ5rbAGwHUA7gFACfpP9OAhBwsF4lBS2J9Q/pfQmCKCaOCU3O+W85578FUA/gXM75Q5zzhwDMhyY4CSIvpPclCHshL2T9Uwo6zdEARhnSI9LHcsIYu4Ax9hFjrIkxdluOPH/PGHufMfYeY+xxG+tLlBCk9yXchBsEEnkh659SEJr3AXiHMfYbxthvAfwVwD25MjPGvAAeBnAhgFkArmaMzRLyzABwO4AzOefHA7ipUJUnsil2x+DGrRBNTU247LLLsHv3bqerQhQRpwVSvm+TvJDlx1GhybRd6S8DOB3AHwA8A+DL6WXbXJwGoIlzvptzHgPwJIBLhTzXAXiYc94BAJzzg7ZXnshJsTsGN+p977//fkQiEdx7771OV4UoEqUgkPJ9m7m8kLlhhlwsHBWaXNsrsJ5zfoBz/lz670Ce0yYD2GNI700fMzITwEzG2BuMsbcYYxfYWG2iH0qhYyh1mpqa0NzcDABobm6m2eYwwWm3mCrfZi4vZE7PkEuJUlie/Stj7FSby/QBmAHgXABXA/glY6xalpExdj1jbBtjbNuhQ4dsrsbww4mOwW2j4Pvvv9+Uptnm8MBpt5gq36bMGp0GwmZKQWieDuBNxtguxtgOxthOxtiOfvLvAzDVkJ6SPmZkL4B1nPM45/xTAB9DE6JZcM4f5ZzP4ZzPGTdu3CBugwCc6RjWrl2LnTt3Yu3atQW/lh3os8xc6ULjtkHGUMHp7VEq36bMGt3pGXKpUQpCcyGA6QDmAbgYwEXpf3PxNoAZjLFjGGMBAFcBWCfkeRbaLBOMsbHQlmuHzBpYKXd6xe4YwuEwtmzZAgDYvHlzSbaJyLRp0/pNFxpaanMGp7dHqXybMmt0p2fIpYbjQpNz3sw5bwbQC81DkP6XK38CwHcBbATwAYDfc87fY4ytYIxdks62EUCYMfY+gK0Afsg5DxfyPopJKXd6qh2DXYJ/7dq1plGwG2abt956qyl9++23F+3ag1lqK+XBmhtwenuU6rcpWqPPmzfPFElouDsQcVxoMsYuYYx9AuBTAK8C+AzAi/2dwzlfzzmfyTmfzjlfmT72Y875uvT/Oef8B5zzWZzzEznnTxb4NopGqesXQqEQ5s6dCwA455xzcnYMdgn+V155xZTeunXroMorBjU1NZnZ5bRp03DssccW7dqDWWor5cGaW3Bye5Sq0Bat0RctWpTx78w5x9e+9rWi1bkUcVxoArgLwBkAPuacHwPNI9BbzlapdBkK+gU7Bb/+MedKlyo33HADPB4PbrzxxqJe1+pSW6kP1tyC09ujrAjt9evXm2aaL7zwQqGq5wpKQWjG00unHsaYh3O+FcAcpys1WAq1lFXq+oVwOIxXX30VAPDqq69K799Owf+Vr3zFlD7zzDMtl1VM3njjDXDO8cc//rGo17Wqcx4KgzXCmtDesmWLaaZZan1OsSkFoXmYMTYCwGsAGhljPwfQ43CdBk2hlrKctsDLR2NjY0aox+Nx6f3bKfjLysr6TZci4XAYGzZsAOccGzZsKOqszaoxSqkP1tyCG/XCpd7nFJtSEJqXAogA+P8BbACwC/1bz5Y8hVzKctoCLx+bN282jUpffvnlrDx2foR/+tOfTOk33njDclnFQmVgUSisGqNQx2kPbtQLl3qfU2xKQWj+AMBkznkiHfnkQQBXOl2pwVDIpSynLfDycdRRR/WbBuz9COfNm2dKu6EzFwcSL730UlGvb0WvRR3n4HGrXljVuG+4UApC83sANjDGzjMcu8GpythBoZeyStlB+cGDB/tNA/Z+hIsWLTKlS9GyT1yS02dsOmK60FjRa1HHOXhKQS9sdXk4Go0CAGKxWCGq5SpKQWjugxax5D7G2A/Tx5iD9Rk0hV7KsssCrxD6lfnz55ss7c4//3zbypaxfv16U7oULfvEJbnu7m7T72K6VNE7Tv1fYmCUgl7YyvJwOBzOqD1ef/1118yQC0UpCE1wzj8HcA6AWYyxpwBUOFylQeGWpSzxA7JDiDY0NJgGDLJ7D4fDeO211wDktrBVxemlznzIluSc9ghkhXA4nLH0/eMf/zjsO04rOO0kwOrysBsdiBSSUhCa2wCAc97HOf82gFcABByt0SApdb0jIP+A7DBSCIVCWLhwIRhjuOCCC6T3bucyldNLnfmQ3auTHoGssnbt2oyBF3Wc1nDaSYDV786NDkQKieNCk3N+nZB+mHNePBcpBaKU9Y5A9ge0du1abNy40RYjhUWLFqGioiJnp2DnMlWpL3XK7tVJj0BWETtK3d9voXDj1ox8OO0kwOp351YHIoXCcaHJGJvBGPsvxtj7jLHd6b9dTtdrsDjt+SMf4gdkTA92G8T69evR29ubs1OwU+db6kudue711ltvRWVlpStmmQAyA6xcabtx49aMfDjtJMDqd3feeeeZ0qLF+nDDcaEJ4N8BPAIgAeA8AI8BGDpfSokifkAA8u6vVEFFb9LQ0JAZcQ9W53vDDWZD62K7pctHLv326NGjMX36dFRXS8O8lhz6PeRK24lbt2bkw+m9rlZtLRYvXmw6b/HixQWroxsoBaFZwTnfDIClI54sB1B6+waGGOIHNHHiRNPvsv2VKqjoTUKhECZNmgQAmDhx4qBm4+Jo3aqwLxS59Ntum0kVc7aR6x1y+5Kt0waCVm0tQqFQ5nnPnz+/ZFfPikUpCM0oY8wD4BPG2HcZY5cDGOF0pYY64gfU1tZm+r21tdVSuSp6k3A4jP379wMA9u/fP6hOsNi6NiuI+m03zqQWL15s0scVcraR6x1y20BDpBT2ulq1tVi8eDFOPPHEYT/LBEpDaH4fQCWA/wNgNoBvArjW0RoNE4wf0Pjx402/iWlVVJagGhsbTUvBbu0EVRH1205vcrcyYzOuDkyePLmgHb7sHXLjQKMUsWprUeo2GsXEcaHJOX+bc97NOd/LOf825/wKzjmFBisy4szS6kxTZQnKTuvZCRMmmNLiMnMp4vQmd6sb3HXvTq2trQUVWrJ3yOmBhh3YuT+ZcA7HhSZjbCZj7JeMsU2MsS36n9P1KgYqI/5C6nGMnaddM00VvYmd4bzEZeVDhw5ZLqtYzJs3D16vFwDg9XqLahBidcZWTKEle4ecHmjYQSkIfrfrhUsBx4UmgKcA/BXAMgA/NPwNeVRG/IXS44idpzizlPmMVSWf3kR0wzYYt2y68MmVLkUaGhpMy9PFNAix2nFv2bIFyWQSAJBMJgsutMR3yGnLUzsoBcFvtT8hYfsFpSA0E5zzRzjnf+Gcb9f/nK5UoVEZ8RdSjyN2nuLMspA+Y+0M5xWJRPpNlypGoVlMrHbcTgf7dtry1A6cFvyD6U/cboRlJ44JTcbYGMbYGADPM8ZuZIxN1I+ljw9pVEb8hVzOETtPcaY5GBdf+T4w3QozV3qoI7ZLMTsip4WfKuI75AbXlPloaGgwfc/FFvyq/Yk4qyQjLDNOzjS3Q/M7ey205dg/pY/px4c0KiP+Qi7niKPesWPHmn5/+umnLZWr8oGde+65prS4B3CooxKou1BYXRovZrDvXO9QqbumlFFKy5qq/cnatWuxc+fOjH/hUtDFlhKOCU3O+TGc82PT/4p/GWecjLGvOlXHQqIy4i/krEBc7mppaTH9btUps8oHdsUVV5jSV17p6pjjA0YlULcMOzrgN99805QWhWEuirm0mOsdcuO2B+OMubGx0bTXtdjCRyXKSjgczux13rx5M9rb20tCF1tKlIJOMx/3O10BkVIaPVpFXO4Ssapry/WBGdvsmWeeMZ1jdVbrVlQCdcuwQ69k1fl2MXWKQ6WTFmfMmzdvLqoxlYhKlBVZGDCndbGlhhuEZskpvOzovMTlLT1WoZFcS2J2CW3jcpdd+x1zfWDGNhvuoYbEFYOzzjor7zl26ZWsusMrpk5xqHTS4oxZXFEo9n2pRFmRfZtDwQjLTtwgNEsqDo1dnZfKEl2u/Xx2WbIZl7vE+wiHw5bKlH1gYptRqKGBY5deaTBL48XSKQ6VTrqQxnZW65Mvyors2xwKRlh24gahWVLY1XmpLNE1NDSYhKZMANm1RCyOeq1uOZF9YGKbibPa4RZqyIpRjV1LluvXrzelBxLTsaOjA7t27cLhw4ctXVuVodJJizPmUChk+t1utUS+FSgVnWYuO4ozzzwTjDGlVZGhjhuE5mdOV8CIaueV7wWeP3++6QWWCalcAsioF7HLmGDRokWm9GBGwWIQarHNxDYZbk6grRh42bVkKTq0H4jwveuuuxCJRHDnnXdauvZAyBfI3A2IIfAOHDhg+t3u4AL5VqBUdJplZWXS9M9//nOkUimsXr3a1jq7EceFJmPsCsnffMbYUQDAOb8iXxnFRJwV5eq88r3ADQ0NmU7Q7/fnXIISl8QK5ZllMDMQkWeeeQaRSCQzkhY7/LPOOss0YBgMxYzzaBeq2z6amppw2WWXYffu3bYtWVq1yG5qaspYWLe0tGD37t2Wrq9KvkDmbkAMgVfI/ckqK1Aq37hsFaSpqSkj8Ivx7EudUuhhFgP4FYCG9N8vAdwK4A3G2DedrJgMlRmZygscCoWwcOHCvEtQopl9obah2BWXMhwOZ8p6+eWX0d7entXhA7DN9F51EFNKqG77uP/++xGJRHDvvfc6vmR51113mdKFnG0Olc30Ygi82bNnm363cwuZitpI5RuXLeGuWLHClKcYKw2lTCkITR+AOs75lZzzKwHMgmb8czo04VlSPPHEE/2mAXW9Zylt1q6uru43rcratWtNS0Br167N6vDfeOMNU/sMZrbsxj2fKoZQTU1NaG5uBgA0NzdnZpuDfV+sOikQ9/GKaTsZKpvpxRB4n3/+uel3Ow3gVNRGuYwPjaok2RKuuKxcyGfvBkpBaE7lnBvNyg6mj7UDiOc6iTF2AWPsI8ZYE2Pstn7yXckY44yxOXZUVtwaoof6MaKq97SyWbtQnlns6hRzBYU2dvh2zpbduOdTZdvH/febtyfrs83Bbu53w3aOobJPU7wP8Zsa7LdrFHYqzzVX+D+jKkllW8pwpxSE5iuMsf9mjF3LGLsWwLr0sSAAqZkeY8wL4GEAF0KbmV7NGJslyTcSWpDrP9tVWZVZQiE7JnGJZ84ctbGAzDCpEE4adH1rrjRgb5STXEK6lFGZHeuzzFxpq1jVjebax1uId8gNgl0F8T5EZN/GQDAKO5XnKgv/J3PAIG5LGe6+okVKQWj+E4B/B3BS+u+3AP6Jc97DOc/llPQ0AE2c892c8xiAJwFcKsl3FzSPQn12VVbFCYDxhWWM2br8KirhVZXyMsMko4/JYDBoyi+mVckVqst4fTtny/oyXq50KaJikCF2srJO1wqqulFRGH7/+983/X7TTTcBANasWYOdO3dizZo1ttQPGDr7NGW6fLsQhR1jLO9zlc00VRwwnHTSSaZjp5xyiq334jYcF5pcG9b8EcAWAJsBvMbzL/ZPBrDHkN6bPpaBMXYKtGVeW9cXZsyY0W8a0Dqm8vJyAJrJtmrHpMK+fftM6b179+Y9R2ZYIfqYjMfNK+FiWhXZoCKfc4PB4AZHCUYrWEBt24e+rJcrPRhUtnOIgyyZB6twOIzXX38dgKamsGu26bTRk12EQiHMnTsXAHDOOefYOmOT6X3z6bzFfaJjx47NWkIW9ZdnnXVW1rKybtw0XHFcaDLG/h7AXwD8HYC/B/BnxtjfDbJMD4D/C+BmhbzXM8a2Mca2HTp0KG/Z27aZA7C8/fbbWXmamprQ3d0NAOju7s45G7Ti2WfyZNPYAFOmTMl7juwDE31MiktFfr9fuU5GRE9CbW1tWXtLKyoqTHmsuuxzC0YrWEBt+VFsEzvbKN92DtkgSyboxdml3bPNUjGSsws7B3gyvW8+nbco7Pbt25f1Lorf/Zo1a8gQSMBxoQlgKYBTOefXcs7/F7Sl1x/lOWcfgKmG9JT0MZ2RAE6Aphv9DMAZANbJjIE4549yzudwzueMGzcub2VV3N/JjDhErJrVH3vssf2mZcg+MFEXKArNnp4epfqI5BrNGoWmWLZVl31uIJcVbL7lx0LNmFXeO9kgS7YVQTSK02eddlBqEU2srAqFw+GMoeCrr75qa32s6H1lQlt8F/XBvo5duvShRCkITQ/n3OhDLoz89XobwAzG2DGMsQCAq6AZEAEAOOednPOxnPOjOedHA3gLwCWc80HH6VRxf6dixGHVrH779u2mtDjzlWHlAxvI0pGxQ5GNSkVrWXHWNBjXXLl0qKVCLivY008/HQBwxhlnSAVDoUb3Kh6lZIMs2VaEQi6Ni0vaTmNlVUj8xisrK02/q6wS5cIuva+4FC7WsbKy0rZgDkOFUhCaGxhjGxlj32KMfQvACwDW93cC5zwB4LsANgL4AMDvOefvMcZWMMYuKWRlVXy0Tps2rd80YN2s3sp2DdkHJs6qRfdZui5GBWOHomI9ayfFvt5AyTWAampqAgB88skn0vPsMswSUfEoJRtkyYyXCtmZLl++HJFIBD/5yU9sK9MqVleFxG9cNFJbtmyZ5TpZ0fvmGmAal8Jllu2dnZ2mY4X2PVzqOC40Oec/BPAogPr036Oc87xODTjn6znnMznn0znnK9PHfsw5XyfJe64ds0xAzSPQNddcY0p/85vZjo2KaVYv+8DEGbL4sYj3mYtwOJwx7tmwYYM0j2gta+d+tUIJF7uQ6aBVXNL19fX1m7aKyqBLNsiSeZMRjeBmzpxpSx2bmpoy72dra6vjs02rq0LiN/7Vr341M9CYOHGikmqlPwaq9821PzjfUriVUHZDGceFJgBwzp/mnP8g/fcHp+vTHyrbBR5//HFT+ne/+11WHtXlFVGXYnW7hviB5dua8dBDDymV29jYaBpNyxA7D1GQDMa5QSQS6TftNOIS3JQpU7By5UrTsbvvvrto9REHR7FYLCuPbJAl0+WLqgKZUZwVli9fbko7Pdu0uiok+8b1gYbM6t6Iig51oHpflf3ButW/Md3V1WU6JqaHG44JTcZYF2PsiOSvizF2xKl65UPFf6OKTlN1eUXUpVj1piN+YPl0lipbWQBkbYYWqaioyOo8REEi67hVKfUtJzJra5VtQ1aDRedDxaMVkD3Iku3xyxXvdbCIqyDitYuN1VUh8RvnnOOtt94CoPkf7k8g2hUz14jKgF800uvp6cGf/2z2DaPfw3DFMaHJOR/JOR8l+RvJOR/lVL3yoWI9q6LTBPIvr8h0KXZ508m32VrVEEh2/0Z6e3uz9quJgkTsyAdCqUc5sbo3b/HixaawUnaFT1MdZIiDLJk3GVm816HIYIxujHtiGxsbM/uf4/F4ToFYKIf1KvuDZYZAhJnS6mFcgIr17K23mlWyt99+u7SsfMsrMl2KXd50xBmrWAfdujMfsvuXoQv3aDRqq/GO6Fh+9OjRBXHtZpVzzz3XlBZnkLkIhUIZQTV+/HjHt17IZpriYMiuOpaa27bBOFt44oknEIlE8PjjjytHErKqQ1UJQm1ENmMulC59KEFCc4CoKMVHjx5tSueKGJLvJZfpUuzqUERrWdFNWyAQUKqjylJVOBzOzCbt3MsHIKte4XC4IEtbVjHOGBljWLx4sdJoPhwOm2IY2jUAsDqTkO2/LRSlJjQBa84WRI9JYj8gtqmOVR2qShBqI7oRo/Ebl7mllL0zpTQwLTYkNAeIilK8sbHRtJyT6yXO95LLdClf/vKXTXmsGtGIM1Zxxqj/LtZR/FhEP7syxHBhhaZUYzHq7aOyxL527dp+01YRLTZramqUzpPtGxU379vV1qW45G7F2YLoIUk1kpAVHarKkm6uiED5+iGZsV0pDUyLjfNvo8v4y1/+YkqLSnJAGynmixep8pLLdCniDFGfEQ4U0YhDJJVKSevY38eSSyAWO/JIKcVibGxsNA0mVPeyFip6y7vvvmtK79ixQ+k82QxEtJy2q63tGhg6TT5dfS61hBUdqsqSrkynGQ6HsWHDBnDO8eKLL+a9jo7gLN6eaAIugYTmAFENDWZENlJUecllOiOZ42wriEYc4sb0SZMmZdVx7dq1WUJUnAGJs4KKioqiW7SWUixGlQGUDJlgLeaSmHgt2ezP6r3lw66BodNYfe+t6FBVlnRVBj6qGJ/zAJurAAAgAElEQVR7WVnZJOUThwAkNAuAigMEVb2Fvvyr/yt+QLn0IvkQBbLorP7AgQNZdRQ7ycbGxqwZkfhh3nzzzXmX1wq5/JZrllIsASTGPz311FMtl1XMJTFj2DgAqK+vN/1+0kknWY7tmo9cA8NSc62Xj3yW5f0xUB2q1W0xuYyRdHJ9m8Z+we/3l4aD4CJBQrMA5NIdGFF5ycPhcGb596233kJ7e7s0UoFVjAJZFopKrCNjbMCGSX/729/yzhQGY3UpbsZWFcCiUCgUopu8jz/+2LLOrli62nA4nBnEvfzyy2hvb8eHH35oyvP+++9nXAHqfPLJJ7YMRnJt6xKjxQxlBqpDtbotxmqcVmO/EI/HS8dwoAiQ0BwgKpZ9KvoolUDVstBLdm3mFwWyDPFDPO+887IEvbilQmTTpk3o7e3tN09bW9sAa/8Fokm8ONOVbckRY4kWUgDJDGjE8EuqYdiKpasVDbfWrl2b9Qx7e3ulhi12zIbFNjtw4IA0Wkypo7ody+pAw3ie1W0xYlQTkVyew4z9QjQaHVYBNkloDhCVWYKKYA2FQhndTSAQkL7k4vaMXN5brKAS+1D8EL/zne9kjWYXL15sOia2RyKRKPqWgXxeasRYovpss1jLf1YdVBRLV6tqhCR7rnbMhsXZj8/nk0aLGSrbHqwONMTzrGyLEV1aypD1eYKnI/sipLsAEpoDRMW9mYoeq6mpKeOyqqenp+gjZ9X9ksYPUTaaDYVCGSOiSZMmSQ1YxGgYhSafl5pcQmHFihWIRCK48847C19JC4jxLAuFqvOJ0047zZQeP3583rBjKshcuclcU5b6tgeV996q9x/ZeR0dHdi1a9eAopCohCcbOXKkKT1q1KghGSRcFRKaA6Surs6UPv7447PyiB/4Z599lpVHxWl3KWzyFnUrRrdggPbxGiNSyLA6E7A6k8gXq1LWrk1NTSZnAqW4/CfGs7SCzIOSiGqMUlFX3dbWljfsmFXEGdHEiRMz0XVKbT+uTkdHR948Vr3/yOKiWtH5qjjZl4UGK7Ug4cWEhOYAefjhh03pBx98MCuPSgBhFafddsYrtGsp65lnnkEkEjFtjDZ+9DKsWsdaNdbRBV4uwSdzbbdixQrTMdXZZr52lYUGs4Pf/OY3ynmNdTxyxBwLQewQAXVn8aK+WJyRWrWmPfvss03puXPnSsNo6cvV+fy4OrWEq6Krtur9R4yL+tJLL1nS+ZZagAM3QEJzgMj2OhUKcaTa3t6OE044wXTsxBNPVCpr9erV2LlzJ1avXm25PjKrSvHjlZHPECjXtawa6+gDkr1790o7D5lrO5WBjox8S4RLly41pQcTeNjIQCJNGOuo8v6KeupczuLzvftWZ+uyLVtiGLKWlhbTzLs/P66FWsLNJ5DzGdkAanu6ZYi+o8XVANXZZil4W3Ib1GIljCyyxK5du0zHRLN/GbKtK1aQWVWK+lu7yGWsM1BknUcoFMKkSdp+7MmTJ1teYlLRR4lu6gYbeHigiHVUIRQKZfa3nn322ZbbRzW8nMi//uu/mtIPPfRQlnARg43L9ivbGS1EJiDzCeSKioq85ars6ZYhGo+JemBZOEIZxbY3GAqQ0HSIXHoj48cpi6giM/3Phzi7XL16taWlXpkBjYrQtoJdbuRknYdRD3vw4EG0t7dntYdK+6joo8QZ0jvvvKNcdztQWT6XYbTstorVpWiZ6kI0OBHfe3H/MmBdXyhD5oM5n0BW+TZV9nTLEH1Hi+QKRygSDoeV8ols374dF1xwQdHf51KAhGYBEN2AiWkgt77S+HGqRFRRQRZE1soIU7a0p7qMOVDsMoKSdR6NjY2ZGbPemX7rW98y5VGJX6mij7rrrrtM6WJb5op1VCEcDuOVV14BoA1erM7QxJUSY/kD1TOKxnTi+yBbZsz1fAZ6/Vw+mO0QyHo76+iDxXx1zBdOL1c4QhGrHsXuvvtupFKpLFuA4QAJzQKgsg9PFtIqHA5nLAI3bNiQNQpU0ZGoYmWEaNWxgpVAtlbjUIrIOg9ZZ/rYY4+Z8qgY2qh4dZJFiLCDXAJJRNR9qaDqiD2fPuyvf/2r9Hg+Ay/ZgEkcfIjI3o9cz2egek6ZpapVAx6RXN+UFV2sPkCcNm2ashpA1OWrYtwu5/P5RubJPqQgoekQtbW1pvSsWbOyIruLgu3NN98sWv108o14VWasVgSFqjGKjHydhyhIzjzzTCVrZpGGhgaTQZG+hFgMi029c813LVXHCUZEo5qXXnpJmi/fcq9sUKVi4CUTJOI7JM60ZO+HzLWcFT2naOy2efNmzJs3z5Z9s7IVJ3HwrPoeXXPNNQCAb37zm8rXt8OQsaKiYvqgC3ERJDQd4m9/+5sp/c477zgekUOGcVYgmwEUSjCEQqGM8cf8+fMHZIxyww03wOPx4MYbb8wcMwoXqx55xHKMBkWTJk3K1LEYm+51nWy+a1kZaMk88lhBptO0y8BLBZkzDivLqrJB1qJFi2zZN5sriHq+mb7MS4++WjKQ7Ug27f2Wb+QdopDQdAiZfrBQG4WtGLkA2bMC2QygkFtudE9KurMCVZ599lmkUin84Q9/yBwzChfRiELmnxbIbzEZDoczBigtLS1ob2+3ZK1qFZVZk5V9eKIawKpa4MILL8w6ZtXAS3TCIBoo5RK+oucau5ZV169fb5ppvvDCC5bKkdktGL+1XNtpRC9jxx9/fN6tVjJk9hZE/5DQLCGs6hfyIe73VPFUAmTPCmQMJAbfQNEdR/zsZz8b0Hni9hpRuKi6iRN1b+Ky2a9//essgyKr1qpWUJk1WdEF2+WQ4de//rWl82SIM6tYLGZK5xK+oucaKyG0ZIOsLVu2mASbHtB5oMvyslWPXFFejIhW4e+//74pLfMwJsPKHurhDgnNYYBsv6cKomVfMdm+fbvJ2MCqafvq1auzDDlUEXVvos5569atWbMWK9aqVlGZNV1xxRUDLlcUklaFpqytRQGg+i7m2xqh+lyNemjVEFoy/aXsmJVleZlAFt1RytxTigNs8f6t7pEl8kNCs4QYN25cQcpV+QhlqMyUqqqqLNUpH+JI2app+1tvvaXktUiGqHsThRLnPGvWIs5kColM1ybyxBNPDLjcbdu2mdIq/klVEfceq76LVhFnf0Y99MSJE5VUIjL9pXjsrLPOsuRIQabysDrIdRD1j2oIQEKzhFCNvzdQZFEKVFDxaCLzXWoHskgXVsnnckxlS8zWrVuz2rG6ujrLOlO02HSaP/7xjwM+R3X5Oh9jx461dJ4VcjmVlzkl2LNnDwBgz549meX7/pZV169fb0q/8MILWTrNNWvWWIrwIvqnDQQC0niiA2Xu3LkDPmcQOP+iF5FhdbOlTqF0YIcOHTKlVYXzYARVKSMKAZUtMZzzrHYLh8PSUGnGY4VENGCSCUgnHXKLzuEBdWfwA0XmuUjVKUG+ZVXZFhxRp9nc3Gwpwouo0+zr68sabOUaEPSHVWteixQ//JKDkNAkhjz5XI6pkKtzF0Ol5TpWCFQMRpxENggUdaxXXnmlLdeSGbTIBKS453Tjxo15l1Vl3ofEZXjReEq2VG71Xqzsc37ooYcAOBvlZahCQnMYIC4/WvHQ42ZEow0r5OrcxVBpgLac19vba3kbgioy38Sl1EnKDKGs+lq1gsxQSlxliMfjeZdVZUKsoaEhI5A551nGUlacStiJbghU6oG63YgrhSZj7ALG2EeMsSbG2G2S33/AGHufMbaDMbaZMabmvXgQlFJnJSKGD6uvr3eoJoPHSjuLRhtWyCUARQvbYu7TFLdLnH/++VmdZKkNkOxyxK+CbHuJKMg555aWVUOhUEZoJpPJLOOpXHt/VSgvL+83rYpxi1Sh38XhhOuEJmPMC+BhABcCmAXgasbYLCHbOwDmcM7rAfwXgJ8Wul5r1qzBzp07sWbNmkJfasD8z//8jynt5sgEVtpZNOSwQq7OVLSwFb25FBJxu8SiRYuwYcMGk/u1QjnMsIpdjvhVkLnRy4fqsqoo/K0aT4nPJxQKDcpjlRHju6hvlSIGj+uEJoDTADRxzndzzmMAngRwqTED53wr51xXBLwFwNpGM0XC4TBef/11AMBrr71WyEtZQvxgCt2ZFwqxnVVnm1a9vgx0E/yWLVuwZcuWojk3EJ1UPPHEE6ZOsrGxseT269nliD8XoptD3Yr0nHPOwZgxY/J6FlLlpz+1Zxwuc6NnNTCCiOhZiLAHNwrNyQD2GNJ708dysRjAi4WsUCnOLo2InbfVLQROI7azarsPdrZldMaej0IF5ZZx//33m9LigC2Xo3UnWbx4sUm/PBBH/CqIy9P6LE3/VxxoiJ6FVJdV3fANlZph2FDBjUJTGcbYPwCYA+Bf+slzPWNsG2Nsm7g1QxV99lNKlLKO1SrilgrVdrca89PoIk9F8E6cOFHZ56cdyAJsGym0cwWrFGr2Ew6HM8vTL774Inbt2pV5Z15//fWc34K+pcPr9VqOVlKKFGrf93DHjUJzH4CphvSU9DETjLHzASwFcAnnPKdSgHP+KOd8Dud8TqE88jjBULSas7psZdXJgNFAREUPHA6Hs0KMqWJlkBMMBvv93c74q4PBeG/i+2h0OjDYQZ6oT7777rtNAjqXU3fjc1ZdUXAD8+fPH7TVOJGNG4Xm2wBmMMaOYYwFAFwFYJ0xA2PsZAD/Bk1gFny4ZTX6eaGwy4Kz1D40MSKDaoQGMXapFe68807pcWOndP7551vaiA5YG+Tk279n1erSboyO73PF6swXmFoFsWxxAKOi2843e3cTQ2kAUEq4TmhyzhMAvgtgI4APAPyec/4eY2wFY+ySdLZ/ATACwFOMsf9hjK3LUZwtWNl8XEjsirRRasYDVq0KP/jgg0FfO9czFq0zreq6rPgtzTeD7uvrs1QXOxHDy4l4PJ68eexC5VvINTgiCB3XCU0A4Jyv55zP5JxP55yvTB/7Med8Xfr/53POx3POT0r/XdJ/iV/Q1NSEyy67bEC6qVILr1PMSBtuoFhGG4MxOBpoYGQAmDBhguXrFQsxvJwoyCORiFIIOhXsGCSU2gB4MDQ2NpL1bAFwpdAsJCtWrEAkEinIiNOKQLbCvHnzTMYNROEYqN4zF1YCI1s1XCsm4n5Gq3mIgVPIWftwhoSmgWg0moko0NLSgt27d9tqhbps2TJEIhEsXbp00GX1h9HFV6H3CtpJsQYVhWL58uWWzx3onlDAHasI+WY4jLGS050PFWjLSWEgoWlg//79pvSdd95pi4ECoAkEXfDmC6hrB25cllm5ciUikYhy1PlSw65lelUDDjcMiPLpXTnn+PKXv1yk2gwvrG61IvqHhKYB0XNOS0tLZonj5ZdfHtRsc9myZYOqW3+IM7RSd7Ygo6mpKWPtWGpebIqBcZBTaq7vBoPKbFh0MEDYgxtWItwICc08qOzzUqGQTgZEPayVwMNOs3LlSqer4Ch26UbdyJ///Genq5CF21UFgDtWItwICc0BUMiIDINB1MO6aUlWx6pTgKEIbXtwnvvvvx+RSAT33nuv01UhSgwSmgNgMFsXrHqlGSh33nlnyWxqJ6wxlLY9uJGmpqaMk4NScXYwFGa+QwUSmgNgMNs3iiXIWlpaSmJTO0G4FdERfilAM9/SgYTmABjMsifNHgjCHZTK7NKIceZLs01nIaE5AEixThBDn8mT+4s06Dw023QWEpoEQWDr1q1YsGBBSQZRLzYjRoxwugr9Uooz4eEECU2CIDJ6vHvuucfhmjjPRx995HQV+oUM/ZyFhCZBDHO2bt3qSreLwxUy9HMWEpqEFN0X6mBRiXnp9/stl79p0ybL5xIaKtaiYjtTuxPDFRKaA+SJJ54wpZ988sm854wePdqWa2/atMm2zkp05iyGmVq/fr0t13n++efz5nnhhRdsuZZbUHmGxRJK999/f8nPLoeqQ3enBx6q76HT9Sw1SGgOkFAoZEqr+An9z//8z7x5iv1i/sd//Icp/dhjj2X+b/css79ZymBmmTr19fWor68fVBuKz7VQlFoHdPLJJyvnFdu5WPeycePGolzHbtwwO883eCayIaFpgbq6OgSDwaLMMmUCYbBCQj9P91Kkfyh6uaqzzFAoJO0Y9HL6m2XqeeyeZVrtqMQVhEKj8gyNeaze1+23325KL1u2DEcffTQA9U38qtcqhJDQZ5n5yla9lh3hskaOHGn53HwDD7vaOlc54vVlg2cLfU5pL1XYDAlNC/j9fkyfPr3fWab+kvU3y7TrA7LKCSecgPr6etMss7/ri+mBCBq7BL0Vzj33XFNajFepl6130OPGjZPeu0odRB1ueXm5LTNhGfmWLf1+P8477zzTsblz52LUqFGor68f0CwzF4O9t1yWoHq5ds4yQ6FQlpCwwtNPP53XLaa+19NK+xR7RioOnvMh1q+rq2tYRRiwZx1uiKDiH/aWW27Brl27Mv+fPn06Nm3ahAULFmTy1NfXZ+Wxgnitnp4eBIPBzLFHHnlEel4wGERPT08mPXLkSBxzzDEAgFWrVuGRRx7Brl27MuVcc801AL6IB6nXecmSJTnrZlzOrK+vzyq7v3Jkefx+vyk0WyAQyAoZJbbz5ZdfbmqjRx55BEuWLDHVBwDuuOMOvPLKK5nzbr31VmlU+xNPPNF0Xj7E+uidifHYzJkz+32Gt9xyi7Rs2Xsm3tfGjRuzrm9M67P4KVOmYO/evVi2bJm07WXInmm+5yqeB2irMh988EHm9+OPPx7vvfdeJr1u3TpTnXVk1xLLFtOy52FM64M8j8eDVCqFCRMm4LHHHuv3HBF9lrlhw4Z+zzvttNOk368eXKG/+1IlX3vU1NSgqakpk7+srEzarieccAIAYPr06Xn7nMH0Z0MF5saIGIVizpw53Dh7lAnDpg/eR5lXG2tEkwnU1M3CqlWrTPkq/V6Upf3URpNJ1NQdn5XHKFinT5+eeYGNnejH7+9AWXpYE00A3rIgkrEeBLxATww4/oT6rHJlHbd4rf379+NIZxv86bIjfYDfh0w6ngBGVY3FpEmTTOcZP3o9bfyg9LLb29tQVgYkEkCVpJz9+/cj3N6GQDmQjAOz6rLv4/LLL8/ci7F9xPt698MdYD4g2QeMHZN9Lf28K6+8El1dXZg8eTJCoVDWfRnvY8GCBaZnYezMxGP52h4BH6DriBMJBP1l6InHAF/aj3EiifraOuzYscN0Xzs+/MB03thRVZlBjaw9PB6PqSP3+/246KKLTMJOb/u29nagvAJIxFFfW4tjjjkGzz33XOb6xx57LFpbW83nHOkCfIF0fWIYO2qkqa0nTJiQ9S7InpnxmyovL8e6deuy2swbqIDHr81AU/E+jB4VNF2roqICAPptD/FaoVAIc+fOzWqP6dOn4w9/+IPpnKuvvtoUKL6srCyj55ddy+v14sUXX8SFF16IZDKZecc+eb8JZT5t5SGaiMJTxtAXiWJkYCSiySiC1ZXSb0x8F7ds2YLOzs5Mffx+P+rq6gbc9pW+MpR5tWcYTcZQWT0yq10jh4+gzOdP1zkOVuYHj8ZNx2pm1WbKXLVqFRhj2znnczBMIKFpwCg0Kyoq8Nxzz2V10vH9+7Bs7tkAgLtfex2HwLJevLGI4Y6ztdHbPa+/i8Cko7OEQoWPmQRisDqUVU4VD+OfztY+uodfj+JAXyWOqojg+rkBPPpaDCMnnagkNMv8ZoHoCwRRXdmDr8/TDq55JoGx1cDl87WO/A+bk+iMBBGP9Rj7bfgDQfT29qC8TCsnEAgiJuQJBIKoDPbg3AUMr2ziiPQEEY31IP3NIREHygJBlI3owRkXMrz1IseU8WahGQgEUFtbi53v7oC/HEgmgNGj5MK3x9+GqZd6sOe5FDxHgojEewDdtigOhITzKioq0HakHfCnlzbjHEF/BXrivYDfA/QmpMJX7MxkHZWYBwAio8rhu1R7XxLPvY7KI32IjKqA75JztWPrXsGJ4yZlCc2dhw7Af4nWHvF1m1B5pAc9vb1AeTmQiGPsqKq8gxpN2B2BsfGDfj8io6pRdvGViD7/NE4cF5IO6Ha8+15GsAb9PvSOCqHikv8FAOhd9xgqjoTRE09qZfdFEKwoR088CZYWrDwRQ33tTKxatQoXX3wxotEoRo8ejalTp+bt3EdOOg61l94GAPjwufuQ6tyLaJzD608LoEgn/P5yeNMCKZmIompUZV7Bun//fhw5EoE/fV48EcWoUZV5hW99fT3ee/d9VJaNRDwRxYgqubAT2340H4ubzlwKAFj9xkrs79uDyYGp+OfT78BP/3wP9sX2gEdTKPNoA4Roqg+szKMd85ahK9aFWSfKB9xN73+MMm8AXbEelFWWg0eTJoFYM0tr+4suugixWAxlZWU4JjgeS7/yTQDAyj/9DnuiYfBoAmU+P7qivSirLMfU8mosO/PrAIC733gKe/oOY2p5FZaddTkA4Hsbf4OYIW7F9OnT8cADD5DQHK5MmDCBf/nLXwYg/xA+/vhjeBIJTKuuAgA0H+5EDECAAWVeL7piMcDjhR8c06qD6Tw94D6/aZkumUyCJfowtUqTNns6E4jDBz8SKPMBXVGAeX3wIYHJVVrnvq+TI5pkKPNyTKxmaDnMAV+5qdxcHfeYyh5cdZ52rSe3JtDS4YOHJTCuWvt93yHA4wEmpFdc2w4DKe7DuDEJXDRfW7L+780pHOkJYkSwBxeez/DiyxzdPUEEgz04/3ztvJdfBtrbfWAsgerRwOEOgHMfqkIJnL1Qu4/XN3J0hn0AS2DUGOBIO+DzZt/H/v37EfO1of5rDDte4Eh2BdEX74EnLaBTCYClfEh5EigLAdEw4En5gKMSqL5Mq/PhZ1Mo6wyiJ96jCclejmBFED1VSXgv13ROyT/sQ7DTi54qwHfZDCSe/QTBTqAn3gf4071DPImgv/yLY71xBCsq0ROPmmaM2izScCwSBQI+sJD2vvBwJ1g8Ce73goW0xuetYfg83owuVH/P+lJJsNDo9Hkd8KU4kuNC8F98AeLPb0DlkW70xOPCLNZvEKyJtICsQuDiywAAseefhffQQSQ8HrDQOPDwIYwdNQqPP/44vvGNb6CjowNXXHEFmpqa8O6hDpRffA36nn8cnkMtSHi88ITGa20fboUvlURq3BRUXvJtRNb9OyqOHELfqKMQvOR6AEDPukcxOt6VJcjCR3qAtNBCIoqQMItMJpOIpxgqx35Ja8K2z8FScYw8qgZzLr0DALB17T+iOjQNZ1+qCaTXn1uJ3iN7EItz+NJl9/VqglVPJxJR+P0M1SO/hCsv+hEA4On/vguHuz5HX28UFeWaQDyutgarVq3CwoULwTnHuHHjMHHiRBw5EMe3v7oM//7S3TjU8zmSMY5AuuxYIgpvgKGvN4oR6Vlkgsfghx9TqqYBAPZ2NqMv2YdybzmmjpyGPV3NiCOOmhHTcfscbYBw77b7sCe+F1MDk3DHqT/APW//XwSmVpiEpj7wiO3txtLTl2Dlnx/BnmgrppYdhaVn/G8AwMq3foU2T1dWu7IEx7RR2jNsPtKKOJKoqZqIZV+5Cnf/6Uk0dbbADw+mVY3T8nQeQl8yjnKvH9OqxgIAPg63wMMYRpalBX0igedefIGE5nCluqqKLzxHM5yIJuNggQCivb0YGShDNJlAjHMEAJPQ7E0mUe71Ylr1SDQf7kJfMolyr8ckNONg8COFcp8HR6IJMK8mII1Csy/JUO7lmFLlwd7OFPrSArI/oZmADz6WMPbt8AaCSMR6EEj3pV292kzzqLSAPHgYiCUY/D7er9CMp/Ok+22EO7RjPh/HmNFAeweQSKd1A+EOwzFdaCYSDF4fR1V61buzHUimj+lCE9wHeBImgYiUD5wlEAwBPWGAcR/KxyUw8yJNIH783yn0HTILTR5n4H4On/Z9I9EGsPQxjPUCbcl0GsDYdMfdFgWLA9zPgLEVQFsvWJyD+z3A2GA6Tw9YPJU+NgJo64YvxZAcNxK+S0/VrvXc2/Ae6kLCA7DQKAAAb2kHPAxsvHbzUqF5oA1gHqBcFyQJ+FIcCQ8zCU0WT4D7fWChMeDhdkM6lM4TTh/zg4VC6XQ8nR6bztNmOKYJzXKPJ2vAogltDk/oKKTCB8HiMXB/wCQ0vzg2EalwSzpdBm9oIgAgGW6BL5VAwuMD85WB93XD52FIePzwhaZotxreC18qjqTHD4+vDMm+Lvg8DNzjNwnNVLwPXn85Ro7VBFDH/g/BPD6ExtcAAA6Hm5GM98Hnr8DokJbnYMsH8Hh8GD9+hvb+hpsRj/fC76vAuHSeQ+FmpHgME8bOwFUX/ghPvngX+hKHsmaRH3/8MXjSg4mjp6GloxmxRC/KfOWYWK2V03K4GdFEH8q85ZhcPQ37DjcjmhaQ/QnNvmQfyj3lmDZSu9fmrs/Rl9LyTBs5Bc1de8F9XPp8WAKYNmoSmo/sR18yinJvGaaN0tq++UgL4kggAG96NhoBvAx+eE1Csy8ZQ7k3gGlVR6G582A67e9XaH4Y3g8f86BmTLqczjDWDTOhSYZAAhNGaIr+5sPtiEQiqPD6MGHECDQfPqxlYMCB7p7M/8UYm16vF4xxtHZrrq4YA5AelxwVDKAvkUIcwNQqH/75K5rw/emfOrG7EwASpnKABNp6vhjUVFZWIhnrQbibI57S+lrOgdAITbC2HOaIRCII+IDR6WNdvRxxIXa2XvbhbmTq6PMCnd3ZeQaK1+tFMplAd1fucvQ8PV1fHOMcqNRkDbrCQCqZzAhRQBspR8KasASASPgL0+9YpyZofV4vEhbqbIVkMgke7kLiube1+oe7tCDlHsP7kF4B5p1fGGVVVlaiJx4D1xubA/B7wapGpMs5nMnLO79oIK/Xa8udeb1eJBIJ8M7DmfSODz/KLOHu+PAj+FLm+9CvnersGFB9tPbwwVM1FslEFMl4FPD4JXn88FUdhVQiCqQ0Y7C+zoOmawNyaJYAAB9DSURBVBWKZDKJg+FmPPniXTiYFqJdnREE0kvBH33QhCRPwMsCAypXqzPDoZ7W9BGGyspK9EWiOBhpBcC0PHnmLIlEAk3vf5JZem16/xMkkIA/T9edTCbBvV6MD45BXzKGOJJgAFp7OtK1ydF3AWjtOZzJU1lZCR6No7XHoFP1Dm+xQVtOBoDP50NN3SzEvF7EvF7U1M1CdXU1GANauyOIp5Korq5GTd3xiHn9iHn9qKk7XuosYE9nEre81I5bXmrHns5kZnnuUE8KsSRQXV2NmbPqkfAGkfAGMXNWPSZMmICZdfVIeoMorwgqOSFgTHv5O7q1P0Aru7auHvAEAU8QodBYjKoam0nX1tWjulqbCXV2aX9AWmgngS5DGtDS+rHq6mpUVATh8QRRZyinpwsZIVldXY3KiiB8LIhZdfXS+/B6vUglgb4jkA5O9OdxQm09ylkQwYqg9iwAJDu1P/2j124kBST0NAM649pfujPT8kSBRMqQ7tP+TOX0AomUVp94Arz1MHjrYSCeyNSRd/ZogpIxBCsqEWReBJkX9bWzMGHCBNTX1mWOye7d5/Ol83gQZB7U19Zp7ZhIZgSpfh+88wh455Ev7iORAE8bjeh15p2dmWPV1dUIVlQgyID62lpUVFTAExqHin+4HhX/cD08oXHau5hIZIRkdXU16muPQ5ClEGQp1Ncel36uDKnOMJBIZK6V6gxrx5C7U052HkKy85C04/b5fDi+dgYCiCGAGI6vnZG5VqSzFZHOVoB54PMF0N3Ziu7OVjDDM+zqPICuzgNg6TydnQfQ2Xngi/ZgwOEjB3D4yIHMexWLR7D/4CeIJ/o0IQ5g9MgJGD3yiy0YiWQM4a4DhneKIdzdinB3a6bt46k42rpbAcZQXV2NGbNqEPfGEPfGMGNWDSZMmIDyyjLEfVo603dEDqI1chCMaWUzAK2RQ4gnNetxDo7xleMwvnIceFrKasKtDfFk/ItzesJo7QnnbNeaWcch5ksh5kuhZtZxme+ltacD8WRC67tm1SLmBWJeoGZWLSZMmGA6FgwG0+d0orWnUx8XDiu8y5cvd7oOJcN99923fMKkSeiOxZDkKQTKyxGLxxBPppDkKcyorcWqVauwbds2jBkzBqtWrcLBgwfBvD60He6Ez+/HvHnzsHTpUlOe7du3o/3QQUSTKUTiSYweMwZHH1uDtsPdSHn8qDmuFmVlZZgweSraDnfD5w9Iy7nooouwYMGCzLFQKIT2tlZEE0BvDEhxoKw8iFQyjngC6IsBiSRQXhEEWABgAcyYWYeTTjrJVPa//du/4corr8y6L683gI7D3WAsgJkz61BWVoZoNGZKT5o0FYcNeU466SQAMJXj8wZwuKMbHhbAcZI827dvR1u4FYk4EI8C4EB11RgwMHjT58TjcfRFI0jFgWQUQAqoO26W6XmcdNJJ8HsD6O7ohh8B1KbrOHXSVHR3dCPgD2DChAmYOmkKuju6EIAPdTNr03mmoLvjiCHPZHR3dCIAL+pmHpfOkz7m92PKlCmYOmUquru6EfD7UVdbh8rKyi/yMA/qamtx6qmnmu5VfIbjxo1Da1ubZlkVjQGpFGYdJ3/P9nz+OQKMoW7mzHR9JqG7o8N0LBaN5sgD1M2cmdX2Tz/9NHoOtyO15zMkP34PqfBBeAGUBQLpc2ZkvS96fQJeD7o72hHw+9JtNhHdHWH4GUfdzBmIx+OIRGNAPAbE+jBm9GjUHHM0ujva4Gcp1M6sQTweR280Dh6PIhXrxay6Oum9+7wMnR1t8CCJqlGjUF7mRzIRhYclMXNmTfpdnIDDHW1gLIlRo0ahrMyPRCIKJuTp6GgD0scqKysRi8Xg9/tQW1urWalyhhEV6cFebye8PoZAwA/OkpiRLmfipAkIH24zHeuL9iHl0dKyNrvooouy+w4fQ1tnG5LeJGqOq0n3AxPQ1tkGn98HxhhYCqgu05ZhOmNH4PF5MKN2Jto6w/Cl237C5Ilo6wwj6eGoOU5r+0RfDH2JGHoTUdTOkrcr83nQdrgdPr9Pqc859dRTwXxetB3uQNLDUHPcTLz55psty5cvf7SYfbWTDO95tkB5RQViXm3sVDOzLmMIFEunZfuT9L1q+lYE2d41/bxdu3ahvLIMZ599dt4tDf3tkZSVCwAzZ2YbAh1/gmYRqKdV94KJ96Wfp7INw7htJl85svuYXptdZ3GvoJ5Hpc6DvQ+78sjIvvfc75nsGdpdH0CLJzlp0qSscsT65Lu+6ZlVlEvfezGPyjdWyGd4yy234KMPmtDRdSCTf+bMmZn/D/Ra/aHyvgLakmxr5BAAgIFhxswZmbrmur6xXct8au2q0ufI6vzAAw8o3e9QgYSmgSlTpmReLqsfggwrL6eVcgfTUTpJrvv4zne+g7179+K1117r915LjSNHjuCzzz7DO++8k9frjtP3NWnSJLQd6UKqU9elsozAHCwq732hvg2riIOY4+pqTAO4/ojH4/j888/R3t6u5JNapay5c+ea6lNz3Awl5wKl1q5DCdJpCkQiEbz77rvYvXv3gM5rb2/Hjh078NprrymXLbuWSjkqdY7H49i1axfa29sBaB35jh078M47A/N4dejQIezYsSPjj1ZWzoEDB7Bjxw489dRTOcuxcv29e/cCAO69997MsT179mDHjh34xS9+kfM8WX3ENpK1s9hmsjzifcjq89lnnwEAfvzjH+eso1gflTaU1Ud8Pvv27cOOHTvw29/+NmedjUyfPj2tr+QIMo762uMwffp05ecltpkM8d7EOsuOycoV70323ot5ZO0hHmtubsaOHTuwevVqLFmyBKtWrcrs2Vy1ahWWLFkirbN4X59++il6enowUJWX7D4+++wz9PT0YN++fdL6yNpI9g7J6m0HVvuToQAJTYHPP/8cqVQKd999NwB1Iap38Pfdd1/OPM3NzUilUrjzzjul1zKWYxQUA60zoHXmPT09+PnPf57JAwB33XWXcrkA0NLSAgBYvXp1znIOHtQsHX/5y1/mLKe5uRkAMvcuw9jWW7duzRxPJpMZQdHRoRmnPPPMMznLkdVnz549SKVSmXaVPa/W1lb09PSgsbExZx79/lesWCGtz/bt2zN5o9Fozk5FrI9KG8reDfH56J5s9Hsw1ln27HMJCdX3RWwzGeK96XXW303ZfcjKFe9N9t6LeWTtIR7Tve30J1hkdTbeVzgczgSH/vDDD/sdRIiI70I4HM44XNixY0fOssQ2kr1DsnrbgfgdDCdcuzzLGLsAwM8BeAH8inN+n/B7GYDHAMwGEAbwDc75Z/2VGY1GM/5O9+7di927d5te6F/+8pcm3526r1NjB59IJKSzxKampoxv1ZaWFrz66qtZ1/rVr36VyW8UFP3R1NSUVU5VVRW6uzVT2TfffBN33HFHJmZid3e30rIhkB0L8xe/+EVWOb/5zW9MeWQzpe3bt0PfDxyJRJQEiS4gdO69917s3Lkzqz433HCD6ZgYeeapp55CU1MTotEoAE1433TTTZnf9ed1/PHHZwTgxo0bM0LemCcYDGbuv6enBz/5yU+y6vPss8+ajv34xz/GcccdZzom1mfNmjVZdf76179uOiYbROgu6HTuuOMOU/q3v/0tPv3006xnlo/t27crvS/hcNjUZolEIuvbEJ+HcRbGOcf69eszFqvG+zeW29DQgGXLlpnyXHfddVnvvbi0/f3vfz+rPcRrXX/99ab06tWrTe8HYP4O9DqLjuS/973vZd3ngw8+iHyI78Lu3buznuM999yTdd7PfvazjDDduHEjRowYYfr9qaeeMjnD1+ttBbHPO+2000zfgc/nsx72xYW40rkBY8wL4GMAXwWwF8DbAK7mnL9vyHMjgHrO+Q2MsasAXM45/0Z/5Y4ePZrr1o6AFkZIH70BWqe4ceNGvP766wCQMWzQvYcYrp0xgdf9mF522WWIRCI5r6071RbuM6ucRx55xOQqb9OmTSbn7FOmTEE8Hs/4DpUxYsQIfPWrX81yuWdMi67EcpWjC2cjwWDQVM6iRYuQSHyxq6+yshKVlZr7Mj3PvffeaxIMqug+aisqKvD4449L6zxy5Eh0dXVJztbw+XyYOnUqPv30UwBfOPQW8wAw3YcqYnvofnD7w+h7d8GCBXj22WdN75i21zWZ6/QMoiP8ESNGoLy83NT2gFmnesUVV5ieq+x9WbJkCf7xH/8x02Z6G+r3pX8b+d4hxhj664M8Hg++9rWv5Q1mLvt+rCK2vdE3LZC/zrnKWbJkCa655hpT24vvwrRp00wDNh3RGbvY9qrvpfguiv0JkN0PPPLII6Y+7/nnnzdd76233koeOXLEtROwgeLWGz0NQBPnfDcAMMaeBHApgPcNeS4FsDz9//8C8K+MMcb7edvFTsgoMAFkZpuiUl0sknOe8X2p05/ABCD94GXlADAdMwrMXOWI6B2iWLbsWirl9Fc/IFvQRCIRTJw40XRs27ZtA7q2eL2qqqqcv+cTUIlEAnv27MmkRYGp5xlM/QZSH9l54jumIjABmAQmoD2z8ePHm46JMwnxueZ6X4xtlkgk0NramjXTzkc+4ZNKpaQRaUTsEpg6/X0LA5loiOWI76n4LsgEJoCsGbxxUDyQdzNffyJLL1myxNTniYMIaKt9wwa3zjT/DsAFnPP/nU5/E8DpnPPvGvK8m86zN53elc7Tlqvcqqoqfvrpp/d7bVmsO9loWsxndcSdL7ZevnJljBgxol+doGrZuWaaKvc+0PYJhUKmyBMDKSfX6F3H5/PhggsuwIYNG5BIJODz+TSPKobnoTqaF2epevQRI9ddd12/9QEG3j65EJ+R7NmLM4mXXnop7zkA8OCDD5ra7MILL8xaprT63uvtrZebb6apOvtTwa62V4mLKb4Lud7VsWM1N3b6DF5se9m7KbYJY8yW+KRie7z11ls4cuTIsPFzMOwNgRhj1zPGtjHGtvn9ZhdfGS8waaZNmyYtQ9T3nHLKKVl5xACvYrDiuXPnZpUze/bs/isP7SMSy9GXYHJd60c/+lHecgFk4uzpHH300VnlfOc73zEdu+6667LKEQciZ5xxRlYesW3F9lq5cmVWHj1GqBFZfW699VbTscWLF5vSt912GxoaGjLxVD0eT1bnf9ttt2XdhxhA+Zhjjsm6lqifApCVR2zXurq6rHNk75j4fIwxTgGgoaEBS5cuNR2TPfslS5bg8ccfx+OPP44lS5YonaOXb2yzhoaGrDyiPveoo44ypb///e8jEDC7qAsEAlnlXnXVVaY8U6dONaXnzp2blUdsR1k5oi5QLBfI/g5OPPHErPdMF2o6tbW1UEF8F26//fasd++mm24yPR8gu+2vvvpq0znXXXcdvvvd75qOiTpeq4jfQTKZPJwj65DErUJzHwDj2z0lfUyahzHmA1AFzSDIBOf8Uc75HM75nClTpoAxbcDEGMvaMnD77bdLK/PP//zP/aaB7O0HK1asMF1ryZIlWef98Ic/lF7PyI033piVFo0mVqxYkekcRowYoWQEBCCr87zvvvuyyhE7IdGABUCWYYWYBrI7j+XLl2f2uoVCIRx77LFZlskyC2NZfWpqajICd9q0afjGN76R0VH6fD7MnTsXoVAICxYsAGMMCxcuxEUXXZSVR6z3z372s6z6nHfeeabOTN9nZ0Ssj3gfooERIH/HxOfz8MMPm9LXXnstZs+ePeBnr3qO2GayvYni9osHH3zQ9N4vWrQoy6L6rrvuyipXFFI//elPs74fMY9oMXrttddm5RGtlf/lX/4l6x7Edl66dGnWe/bQQw+Z0qrbTsR34dhjj8XFF19syrNo0aKs88S2//a3v236/etf/zouvvjirLa2A/E76O3t7X/ZZIjhVqH5NoAZjLFjGGMBAFcBWCfkWQfg2vT//w7Alv70mYDWOZ511lkAtJHrKaeckvVCywiFQpmO5ZRTTpF2HjU1NZnZ08SJE3HyySebrqW7xdPLmT17ttIG6VAolJlt6uXMnj07M9sMBoM4+eSTsXTpUng8HuVZpl62Psqur6/HmDFjpOXoHZFslqmXo49OzzjjjJztI7b13XffjcrKSqxcuTJTjp7nmGOOydk+svrceuutqKyszAx89AHJbbfdlsnT0NCAE044ITNjEvOI9zF9+nRpffQBgGyWKatPKBTKzMjq6uqk9yV7x2TPR+/MjbM+K89e9RyxzWT1Fu9NnwHpM5/Zs2dnZptlZWU4+eSTpeUa7y0UCmV9P2IeWVpWzuTJWpi4qVOn5mx7vZ1PPPHETB7je2a8z9ra2gE5NxDfTeALa1zZAFNHbCPZey+2tR2I3wHnvDhREkoFzrkr/wAsgmZBuwvA0vSxFQAuSf+/HMBTAJoA/AXAsfnKnD17Nm9ra+M/+MEPeDgc5pxz/sknn/BLL72U79q1i/eHeJ4MsSzZOSrlqFx727ZtfOHChfyvf/2rcjmqZReqHJW2tqs+VhGvX8z2set9KTYqdbTyvjrd9oWqjxsw3iuAbbwEZEKx/lxpCFQo5syZwwdjxUkQBDHcYIwNq3iabl2eJQiCIIiiQ0KTIAiCIBQhoUkQBEEQipDQJAiCIAhFyBDIAGPsEIBmAGMBGD0HiWnVY5SnOHmcvv5wzuP09YdqHqevP5A80zjn4zBccNp8txT/IJhQi2nVY5SnOHmcvv5wzuP09YdqHqevbzXPcPij5VmCIAiCUISEJkEQBEEoQkJTzqN50qrHKE9x8jh9/eGcx+nrD9U8Tl/fap4hDxkCEQRBEIQiNNMkCIIgCEV8KpkYYxcA+Dm0CN2/4pzfJ/xeBuAxALMBJAD4AXAAvwIwE8A/pLP+DlqEkluhhfPyAogCaE+fNx6AOfijVk4cQAxAEIAs2GkU2gDAGBAziWEWUZwgCKJESEF9UqYvdx4GMAq5+22OL/p/Dq2P1491AmiBtg1mAoAItKAdTQDOAPADANcAOBpAD4DPAfweQC8APQSOD0AdgP/X3rnG2lFVAfhb97bY8ipg8MFDi7xBUhJQAoSIgomPAAYbBR/RPxoV1JBolEeIoiTAH0VBMUahgkqCJEIggoCgiEWhhVKEllrepVIehfbS+zrnLH+stTP7TmfOmXNub611fclk5uxZe+3XzF77dfbsqaqv1se2x/JaT8Bq4F3ADsAy4LCSzFeAq1z2ReAWl12BGbtDMOM5DhwLPAesxD7ptQFYDBwAfBW4FTOsbfd7JfbfyTXA37DCeMZ1tTFjuxR4CvvKifrxKHAbsA4zum2Pe9v9doAx4HbPOPVzMtCT7vacu3cyOfUwU6Ftygrx+Uym4+eXMzcFHir9TrKdCnf1+KinNXcfr9EzWaOn11EX/nT0TEfnoOnIw233kKm6X+enm65WQ7myvqq8yt2blmce5lhNXuRxbBrfyRo/g5R1u0Y21ztS46/8rI/2CKsDvNSwHJo8S03LND/qwu+WT73Kuup+r7Ish/dypif5HQfudvequuiVkv4Nrqed6fo7ZpDG3P96199x/x0Pp+XHiMso1nHaBCwHHnO9a93f/sBdnp+T7u8VrBN2IWY0bwQucB0vAFcA/wYuAS7FjPGJmG36GnBVha07BfuE5LT/cvJe4F+q+qSqTgDXA6eVZE4DFrnsMsyyT2Ithw2qukJVn8CM3Tc9wX/1xK4FNgKnA2cCPwTmeqYOA/dgBvMJ4EAP72nP5Lbr2AMz0vt4AYAV3BBmcMjOSmHkAHbEDGvyM+L+Umvn4Uw++QHYLdP5RhbGTqW8UayBkPMi1SQ9nZJ7288vlNw3VoQ1QbMRBK1wq+rFd5OvI9fTy1+3+91anL1IlWxVmpL/Fs3yYaxBeGuz66EavTC1bKUUlri/3P8Y1eWppev8m4bl9zrJ5mHl8pM1cYXi2YPq8sjfi17PTx6vVNHmessymp3LebCO7gibv4tlvf2QyqYpbaxOqtNVRUpnu+YemLHqpm+IzeuPFJ/EvJI8WHkcSvEslOP4vJ+T7nXA7i6X4jwfG+1LsrtSGNVdKerLFMfXsbpesbJ6Gdg78/Ooy74KHOO6x7EG03qsozXu4e8AfBizLbthNmM1NkL6MVXN820nqsvyTOC3Fe5TadDTXIgNyabfnwWuKMk8ihmshdiQ7Gqsm7wMeD6TuwfroS31DFwDnItVONf4eRjL9FShrQdOAp5kao/uMoqKcZOHmbeOXqdoFdW17Krc61r2Zdm8NTadHlEc2/6xpXrg2+MRebPtHb164VVHCzOEdWXca8SmHH4un66frZDP69EW1iiYyNxGgfuw0bkO8HiWvgnM0G7COjsT2EhmC7gJOBsz6q+5/bnW4zIK3AkcntmmHTHjvMe2urnBUuDLmNH7FpbwA4DfAUdjrYbUDX8Jy4BV7j4BLMGGdtOwzQpsHLsNnOdhrMKM71UUrabUikqFIhTDqXlBzmLqAwDWu81bcEsyvakVnIZRE+WHCo9vHVo6bw8MkpaqlvJ/k249qMRMldl09c5EXqaKEDYfVZhufHP//cS9/N71ku03noOkq8m73oR+y3BOH7rS72GsowPVccvrpmSw0siYZHo2YetSUo9wkmJUI/Uin3b5JUztcEwCf8JGVwT4LtZZOgZ4h+vb2e/9GjOgv8JG4EaxYdjveVjvA25Qs4gp7mdhveyLsNG+32fpOwW4r+tcptPEaK4B9s1+7+NuVTJrPHHzsG7yKFMLcC8sw/ZV1V9ghnIOvn8h1jU+A8uU2cAaVT0IawEdRjE3uQHLzGE/9vLzLGzCF2AB1vt8FjO8bYp50rxVlFpBaUgsVQKCPRSpxzuPqcNY5Y+ujmNGPn9R1N1amd43Uf/CSOk8SIW3rRncJganzNZszG2p/BoknWWq4tJtWLBJ3Cd6i1SS3ouqil+oHqotDzcPQnmosQllI9grDoPEc5B01U3D1Omre9+nm6dVeZPchkr3lM2fuVaFzEaK+L6auc/F6v25WL0+XAqrg9XtExT1diqPOcAJwC4u/0HXPYTVv3PdfRZm5BZja2Vm+72vY8ZyyH/vKyJvx4fyVXWDqo5gBncBMFtEUkPhDJoMzdLsoXwAOFBE9hORHVz5zSWZm4HPuewCbEJ4Nja2vKuIHCwiB2GG8WrXdzQ2F6qY8VTgfuATFBPMKiKHYq2L3TGjPAt4M/AeLMPTJHMbmzM9x+P0OLZ4aZnHY4ipPUgojPMQVjm8RvEgtLCx71GX2xkzvrj/fOPiFtYL3oViBW8KZ2eK1cSJpi9BKp+6HmhVpdli8zmRJNevEe7UXE8w9UXqxqaKeJR11qVrSxm0qjmipL/bnGeZN7ARjCq5bnGtq4C6kftZWyNT9xzl6c2NZl6Guf5RNidVZFXzcuU0lMuxKl9S7ySRz8fnc8atBtdg72oeRlVdNsjz08tP1bNU93z1Wr2fh7Wxwi3xTHav7p2vikuqr/LnZAxr/Kc8X5/dS4sj8/ciXef5O0QxR6lYR0A87Dcwg/U68CWKNRbpGUnGdpbfT/pbfm+EYk70bMyetD1eDwHvxxojL2H1alrXcivwE8xAjgL3quqDmF26SUQOFJG3iYhgdudFT8crIjIPM7Y30YQmG9QCH8EW4qwGzne3i4BT/XoOcAO2vHcltpJ1NXA+tkAorXK9BpuYTcYprXBbhC0MOo/MYGbHa+6/bu6wkx1V9/s9Yp4mjjjiiGPwo24OtG4dSYdizUp5znMlZidWuUxad9LCjPK4318MnOz3lrj8ndhC0RuxYdwxzKAvAY5z+/V54PqmG7bHjkBBEARB0JDYESgIgiAIGhJGMwiCIAgaEkYzCIIgCBoSRjMIgiAIGhJGMwiCIAgaEkYzCIIgCBoSRjMItiIiMtLl3nwR+VT2+2gR+dEMxuUiETm5wv1EEbllpsINgv9lGn1PMwiCrcJ87Jt/vwHwHU0enKnAVPXCmdIdBNsr0dMMgj4Rkc+IyD9E5GER+ZmIDIvIiIhcLCLLROR+EXmry+4nIotFZLmIfL+H6kuAE1zvOXmPT0S+IyKLROReEXlGRE4Xkctc720iMtvljhKRP4vIEhG53fferEvHNSKy0K8/JCIrRGQp9pm+IAgqCKMZBH3geyF/EjheVY/Etgv7NLZP8f2qugD4C/AF93I58FNVPYL6PWQT38b2zDxSVX9QcX9/4APAqcB1wN2udxT4qBvOHwMLVfUo4JfAxQ3SNAf4ObYJ9lHYF4OCIKgghmeDoD9OwgzLA7b3M3OxTaInsK/Cg+1r+UG/Ph74uF9fi32+aFD+oKqTIrIc2wz8Nndfjg3tHgy8G7jD4zZMb0MNcAjwlKquAhCR64AvTiOeQbDdEkYzCPpDgEWqeu4UR5FvaLGRc5up79aW2uB5HEBVOyIymYWXvhohwD9V9dgtFF4QBCVieDYI+uMuYKGIvAVARPYQkXd2kb8P+5we2DBuNzZSfEtwEFYCe4rIsR632SJyeAN/K4D5IrK//z5zGnEIgu2aMJpB0Aeq+hhwAfBHEXkEuAOoXWyDfRj3LB9S3buH+keAti8mOqeHbFXcJoCFwKUisgx4GDiugb8xbDj2Vl8ItK7fsIPg/4X4NFgQBEEQNCR6mkEQBEHQkFgIFARbGRE5AltJmzOuqsfMUHhXYqt4cy5X1atnIrwg2J6J4dkgCIIgaEgMzwZBEARBQ8JoBkEQBEFDwmgGQRAEQUPCaAZBEARBQ8JoBkEQBEFD/gO4e4+vMkMlYQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1911,12 +1374,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAAHrCAYAAACEiNEsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XlcVXX+x/H3gQsIooSAuzUuKbhraW60UEZhpm3W6C9L\n1NG0KEezMUnctVGz0co1M81y+eVWYPtvmjRzydEcU1NLRdwAyRQ0tvv7w+HGl0W5ClzA1/Px8PG4\n95zv+Z7PodP93vc9m2W32+0CAAAAgP9yc3UBAAAAAMoWQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAA\nAABgICQAAAAAMBASAAAAABgICQAAAAAMNlcXgLLPbrfrzJlUZWfz3D2UHDc3S9WqVWZfQ4ljX0Np\nYV9DaXFzsxQQ4Fu8fRZrb6iQLMuSm5vl6jJQwbm5WexrKBXsaygt7GsoLSWxjxESAAAAABgICQAA\nAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAA\nDIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGGyuLgAAgMJc\nvHhRCQnHirVPm81SlSreOnfugjIz7cXat3SpZkmqVKlSsfddWurUqVuu6wdw7QgJAIAyKyHhmCZN\nGuPqMq47o0ePV8OGjVxdBgAX4nQjAAAAAAaOJAAAygWvWu3k7nWDq8u4rKzfz+r3E1slSV612svd\ny8/FFRVd1u+/6vcT21xdBoAygpAAACgX3L1ukLt3gKvLKDJ3L79yVS8A5MbpRgAAAAAMhAQAAAAA\nBkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZC\nAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIA\nAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAA\nAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAAD\nIQEAAACAgZAAAAAAwEBIAAAAAGAgJABwqbS0NKWlpbm6DABAEfG5fX0gJABwmbS0NI0cGaWRI6MY\ncACgHOBz+/pBSADgMidOHHf8InXiRIKrywEAXIH5uX3c1eWgBBESAAAAABgICQAAAAAMhAQAAAAA\nBkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZC\nAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIA\nAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAA\nAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAAD\nIaEAYWFhCg4OVkhIiM6fP+/qcvJZtWqVOnTo4NQyd9xxh2ObLly4UEKVAQAAoCKwubqAsuqFF15Q\nr1695Ovrq1GjRmnNmjWyLEt2uz1f2zp16ujLL78s1fosy3Kq/dq1a7VlyxYNGzashCrCtdi583tJ\nliS7JEutW7c15r399jx5enpqxow3jLa//HJI9es3Mtrntnr1Sp06dVIdO3ZxtFm9eqUsy9JDDz2m\nnTu/1+bNGyVZjjY5/bdu3dZom3fZHM899xdduHBBDRs20v33d9fmzd/o2LFjunjxgtLS0lStWoBu\nuaW9LMuukydP6Ndff9X58+fl6+urGjVqlsSfEwBQSlavXqnTp0+qevVaatCgoTF21K/fQLnHK7vd\ncrTZufN7/fzzz7Isu+rXb6TCxrSCxh3p0thYUPvcY1heVxprc+b9/PPPjjoLWr6g6Xm3ryjLXY3i\n7OtKCAmF8PHxUbVq1SRJo0eP1ogRIxzzOnfurKlTpyo0NFSS5OZW9g/I+Pv7y8/Pz9VloAAZGel6\n//0lkiS73S43Nzc1a9ZcHh6eyshI15Ili5Sael6pqdKhQweMtikpZ1StWoCjfW5paecVG7tOdrtd\nv/xyUM2aNVdGRrri4tZLksLC7tGyZe8qOTlJkvTzzwfVuHFjvf/+kv9+uNd3tA0Pv1+SjPc+Pr46\ndOiAUlMvHW07cGC/kpISlZJyxqjjxIkExcWtkyRlZ2cb8w4e/Kl4/ogAgFJ38eIFxcWtV3Z2tizL\nUkBAoDF23HCDv9zc3GS323XmTLIsy1K1agFq3Lixli171zFe+Ptf+r6Vd0xLSzufb9yR/hg3z5xJ\nNtrnTLcsK9+4eKWx9kpja2F950xPTk5ybF9RlrsaxdlXUZT9b7eF+OSTT9S9e3e1atVKt912myIj\nI3Xx4kVJl07HiYiIUMuWLRUREaH333/fsdzatWvVpk0bHT161DEtJiZGERERSk9PL3Bdvr6+CggI\ncPyTpCpVqjje+/v7F7jc66+/rkceeUSrVq3SnXfeqbZt22rixInKzs7W/Pnz1aVLF3Xu3FkLFiww\nlnv77bfVvXt3tW7dWnfeeacmTJhwxVOEPvvsMz300ENq2bKl7r33Xr311lv5vpChbIqNXa+kpEQl\nJSUqOTlJiYmnFRf3kWPer7+mONpOnjzWaJudna2kpERH+9xmzXrNceQrKSlJcXEfadas15Sdna3s\n7GxNnBjjCAiSlJycpNmzZyopKVGJiac1cWKMo+3s2TONZWfPnilJmjQpxlhn3oCQI2e5vAo6MgcA\nKB9WrXrf8dlut9uVlJRojB1nziQ7xiu73e4Ys2bPnukYw7Kzs5WcnFTgmFbQuCP9MW7mbZ8zPfc4\nmneZwsbaK42thfWdMz339hVluatRnH0VRbk8kpCYmKgRI0Zo5MiRuueee5Samqrt27fLbrdr/fr1\nmj17tsaMGaOQkBDt3btX0dHR8vHxUc+ePdWzZ099/fXXGj58uFasWKF//etfWrNmjVasWCFPz+JP\nZL/88ou+++47vf322zpy5IiioqJ0+PBhNWrUSO+99562bdumV155RZ07d1bTpk0lSTabTTExMapd\nu7aOHj2qsWPHys3NTaNHjy5wHVu2bFF0dLSio6N1yy236MiRI4qOjpa7u7sGDRpU7NuE4nP69Clt\n2JD/f/S4uPVq0iREH3+81phe2Jfq2Nh16tQpVEFB1SVJe/fu0U8/7TPafPzxWmVlZTne5w4IOfbv\n31vg/NzTc95PmzapsM26Knv37lGVKt46d+6CMjMJD7gkISHe1SVcl/i7Fw+bzapwn2u5942jR4/k\nm1/Q2JJX3jElr9jYdapRo6Yxju3fv1f79++Vv3+1AgLAOjVpEmKMp3Fx6x3j4pXG2oLmXer3Uh92\nu73Avu12e4Ff1q+0XM5Y7Yy823AtfRVVuQ0JWVlZ6tq1q2rVqiVJuvnmmyVJb7zxhv72t7/pnnvu\nkXTpeoEDBw5o+fLl6tmzpyRp3Lhx6tGjhyZMmKDPP/9czz77rEJCQkqkVsuyNHnyZHl5ealhw4Zq\n166d4uPjtXDhQknSn/70Jy1YsEBbtmxxhISnnnrKsXzt2rUVFRWlyZMnFxoS3njjDQ0ePFgPPvig\nY5ufe+45zZo1i5BQxn3wwRJlZGTkm56RkaG5c2cV+WhQZmam3n//XT3//IuSpHnzZudrkzsgFIe9\ne/cUa38rVy7XypXLi7VPVCz27Pz/r6D45P77Ll684DItgZKVmZmpRYvm5Zs+Z84/VL9+Q2VmZuRr\nP3fuLGM8zcjIcIyLVxprC5p3qd9LfeS0zdt3Thtnl8sZq52Rdxuupa+iKpchITg4WB07dtQDDzyg\nLl26qEuXLgoPD5eHh4eOHj2q0aNHG1+os7OzVaVKFcf7qlWrauLEierfv7/atm2rv/zlLyVWa716\n9eTl5eV4HxAQIB8fH6NNQECAkpOTHe83btyoBQsW6JdfftG5c+eUnZ2t9PR0ZWRkyMPDI986fvrp\nJ+3evVuzZ//xxTA7O1uZmZmFLgMAAAAUplyGBDc3Ny1atEj//ve/tWnTJi1dulSvv/665syZI0ma\nOHGiWrZsmW+Z3LZu3SqbzabTp08rNTVVlStXLpFabTbzT2xZVoHTcn4xjo+P1zPPPKMnn3xSw4cP\nl5+fn7Zu3aoxY8YoMzOzwC/8qampGjFihO6+++588wgIZduf/9xXP/74n3y/Ynh4eGjw4ChNnz65\nSEcTbDabevf+4wjUoEHP5TsdyN3dvViPJoSENCvWowm9ej2h9u1vrVCH5XHtEhLiHb9qW258npWk\n3H/fp58eqDp16rmwmoqhop5uVNJHmmw2myIjB2n+/DeN6c8887z8/atpz57/GL/g22w2DR4cpZkz\nX3WMpx4eHo5x8Upjbe7lzDou9WG3243lc/q22+35ainKclcj7zZcS19FVS5DQo42bdqoTZs2GjJk\niO666y7t2LFDNWvW1NGjR9WtW7dCl9uxY4cWLVqkOXPmaPr06ZowYYKmTp1aipUXbvfu3XJzc9PI\nkSMd09avX3/ZZZo2bapffvlF9erxgV7eVK9eQ/ff313r1682pkdEPKjg4KZ64IGexrzCbsPbrVsP\n47zEkJBmatw42Dif84EHehrXKgQEBOY7d7RJkxDHuaK55zdpEiK73e5YtkmTEL344mhFRva+ls03\nhIQ0U5MmTZSSkqrMTC66B1ypTp16atiwkavLKPdsNjf5+1eusJ9rN954U77rEgoaW/LKPdYUpFu3\nHurQobP++c8vjXGnSZNLp4ZHRJjjZrduPRQc3NQYTyMiHnSMi1caawuad6nfP/oorO+8tRR1OWfl\n3YZr6auoyuXdjX744QfNmzdP//nPf3TixAl9+umnSklJUcOGDTV06FDNnz9fS5cu1eHDh/XTTz9p\n9erVWrx4sSTp/Pnzeumll/Tkk08qNDRU06ZN04YNG/TJJ59cc13Tpk3Tyy+/fE193HTTTUpPT9ey\nZcsUHx+vNWvWaOXKlZddZujQofrwww/11ltv6dChQzp06JBiY2M1a9asa6oFpaNbtwcVGBikwMAg\nBQQEKiiouiIiujvm3XDDH3fPevnlsUZbNzc3BQYGOdrnFhX1V8fzNAIDAxUR0V1RUX+Vm5ub3Nzc\nFB09TgEBgY72AQGBeu65YQoMDFJQUHVFR49ztH3uuWHGss89d+l5G6NHjzPWmXMbu7xylsvL2ed9\nAADKjsce6+34bLcsS4GBQcbYUa1agGO8sizLMWY999wwxxjm5uamgIDAAse0gsYd6Y9xM2/7nOm5\nx9G8yxQ21l5pbC2s75zpubevKMtdjeLsqyjK5ZGEypUra9u2bVqyZInOnz+v2rVr629/+5vjuQU+\nPj5auHChpk2bJm9vbzVu3NhxMfDkyZNVuXJlx0PFGjdurGHDhmns2LFq27atqle/cior7IvN6dOn\njWsLiip3f82aNdPIkSM1d+5cTZ8+Xe3bt9fw4cM1atSoQpe/4447NGfOHL355puaP3++PDw81KBB\nAz3++ONO14LS5+Hhqd69+yr3A15y7n3s4eGpvn0jHQ9Ta9jwZqNtzoNkCrpXso+Pr7p16+F4mJqH\nh6c8PDwVEfGgLMuSn5+/+vR5yniYmo+Pr6N/Pz9/R9uce1Pnfd+w4c2qXNn3mh6mtnHj16XwVwYA\nFLdKlbwVEfGg8TC13GNHYQ9T8/HxVZ8+TxX6MLWcMc3HxzffuCP9MW7mbZ97PM07Ll5prM09L+dh\narn7KKzv3LXkbF9RlrsaxdlXUVh2blSeT1hYmJ5++mn17dvX1aUUq2+//Vb9+/fXjh075O3t7dSy\nFfVQKVzr0KGDmjRpjCQpJmaCbr21NfsaDLn3EZ8/dZW7d4CLK7q8rAvJSjv8uaTyUW9uuWsfPXo8\npxsVg4p4ulHu/yfZT8qOnH2tOJXL041Kw/Tp09W2bVudP3/e1aUUi/vuu0/PPPMMp3cAAADgisrl\n6UYlbdmyZcrMzJR06WnLFcGiRYscd7Zx9igCAAAAri+EhALkPKCtIqldu7arSwAAAEA5welGAAAA\nAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAM\nhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQE\nAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAA\nAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMNlcXAOD6\nVatWbfn4+Pz3dR0XVwMAuBLzc7u2i6tBSSIkAHAZHx8f/f3vsxyvAQBlG5/b1w9CAgCXYpABgPKF\nz+3rA9ckAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAA\nAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABg\nICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAk\nAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAA\nAAAwEBIAAAAAGK4qJBw4cEDDhg3TPffco+bNm2vPnj2SpJkzZ+rrr78u1gIBAAAAlC6nQ8KmTZv0\n0EMP6fjx4+revbsyMzMd82w2mz744INiLRAAAABA6XI6JMyYMUMRERFasWKFhg4daswLCQnRjz/+\nWGzFAQAAACh9ToeEAwcOqEePHpIky7KMeVWrVlVKSkrxVAYAAADAJWzOLuDn56fTp08XOO/w4cMK\nCgq65qIAAMgr6/dfXV3CFWX9frbA1+VBefj7Aig9ToeEe+65R7Nnz1arVq100003Sbp0RCExMVFv\nv/22wsPDi71IAAB+P7HN1SU45fcTW11dAgBcNadDwvDhw7V79249+OCDaty4sSTp5ZdfVnx8vOrX\nr69nn3222IsEAAAAUHosu91ud3ahjIwMrV+/Xt9++61SUlLk5+enTp06qUePHvL09CyJOuFiKSmp\nyszMdnUZqMBsNjf5+1dmX4Ph4sWLSkg4Vqx92myWqlTx1rlzF5SZ6fQQeEUXL16UJFWqVKnY+y4t\nderULdf1lxV8rqG05OxrxemqQgKuP3zAoaQxmKK0sK+htLCvobSUREjgicsAAAAADEW6JqFNmzb5\nbndaGMuy9P33319TUQAAAABcp0ghITIyssghAQAAAED5VqSQ8Nxzz5V0HQAAAADKCKdvgZrbyZMn\ndfr0aVWvXl01a9YsrpoAAAAAuNBVhYQVK1Zo7ty5OnnypGNa9erV9cwzz+iJJ54otuIAAAAAlD6n\nQ8K8efM0c+ZM9ejRQ+Hh4QoMDFRSUpI++eQTjRs3TmfPntWgQYNKolYAAAAApcDpkLB06VL1799f\nL774ojE9LCxMAQEBWrp0KSEBAAAAKMecfk5CamqqOnXqVOC8Ll26KDU19ZqLAgAAAOA6ToeELl26\n6Ntvvy1w3qZNm9ShQ4drLgoAAACA6xTpdKM9e/Y4Xj/66KOKiYnRmTNndPfddysgIEDJycn64osv\n9N1332ncuHElViwAAACAkmfZ7Xb7lRoFBwcbD1PLvYhlWfne7927t5jLhKulpKQqMzPb1WWgArPZ\n3OTvX5l9DSWOfQ2lhX0NpSVnXyvWPovSaMmSJcW6UgAAAABlV5FCQvv27Uu6DgAAAABlhNMXLgMA\nAACo2K7qicvr1q3T8uXLdfjwYf3+++/55u/YseOaCwMAAADgGk4fSVi3bp2io6N18803KyUlRfff\nf7/Cw8Pl4eGhgIAARUZGlkSdAAAAAEqJ0yHhnXfe0ZAhQxQTEyNJ6t27t6ZMmaIvv/xS1apVU+XK\nxXtlNQAAAIDS5XRIOHLkiNq2bSt3d3e5u7vr/PnzkiRfX18NHDhQS5cuLfYiAQAAAJQep0OCr6+v\n0tPTJUk1atTQwYMHHfOysrKUkpJSfNUBAAAAKHVOX7jcvHlz7d+/X6GhoQoLC9Obb74pu90um82m\n+fPnq1WrViVRJwAAAIBS4nRIGDRokI4fPy5JioqKUkJCgqZMmaKsrCy1aNFCEyZMKPYiAQAAAJQe\ny26326+1k/T0dKWnp8vX17c4akIZxCPlUdJyHinPvoaSxr6G0sK+htKSs68Va5/F0Ymnp6c8PT2L\noysAAAAALlakkDBx4kRFRkaqdu3amjhx4hXbR0dHX3NhAAAAAFyjSCHhq6++0qOPPqratWvrq6++\numxby7IICQAAAEA5VuSQUNBrAAAAABWPU89J+P333zV48GBt27atpOoBAAAA4GJOhQQvLy9t27ZN\nWVlZJVUPAAAAABdz+onLnTt31qZNm0qiFgAAAABlgNO3QH3kkUcUExOj1NRU3XHHHQoICJBlWUab\nZs2aFVuBAAAAAEqX0w9TCw4ONjvIFRDsdrssy9LevXuLpzqUGTwIBiWNhw6htLCvobSwr6G0lImH\nqS1ZsqRYCwAAAABQtjgdEtq3b18SdQAAAAAoI5y+cBkAAABAxeb0kQRJWrdunZYvX67Dhw/r999/\nzzd/x44d11wYAAAAANdw+kjCunXrFB0drZtvvlkpKSm6//77FR4eLg8PDwUEBCgyMrIk6gQAAABQ\nSpwOCe+8846GDBmimJgYSVLv3r01ZcoUffnll6pWrZoqVy7eK6sBAAAAlC6nTzc6cuSI2rZtK3d3\nd7m7u+v8+fOSJF9fXw0cOFCTJ09Wv379ir1QABXTxYsXlZBwTDabpSpVvJWYmKLMTLsqVapktKtT\np26+aQAAoGQ4HRJ8fX2Vnp4uSapRo4YOHjyo2267TZKUlZWllJSU4q0QQIWWkHBMkyaNuWK70aPH\nq2HDRqVQEQAAcDokNG/eXPv371doaKjCwsL05ptvym63y2azaf78+WrVqlVJ1AkAAACglDgdEgYN\nGqTjx49LkqKiopSQkKApU6YoKytLLVq00IQJE4q9SADXh0pN/HRx/1lJkk/bQFmSUnckubYoAACu\nQ06HhAMHDujee++VJFWtWlVz5sxRenq60tPT5evrW+wFArh+uFX2cLy2VfV0YSUAAFzfnL670bhx\n49SlSxcNHjxYcXFxunDhgjw9PQkIAAAAQAXh9JGETZs26dNPP1VsbKxGjBghLy8vhYWFqXv37urS\npYtstqt6PhsAAACAMsLpb/R+fn7q1auXevXqpaSkJMXGxmrDhg0aPHiw/Pz8FB4ervHjx5dErQAA\nAABKgdOnG+UWGBiop556SsuXL9fChQvl5eWlVatWFVdtAAAAAFzgms4NOnnypGJjYxUbG6u9e/c6\njjIAAAAAKL+cDglnzpzRhg0bFBsbq507d8rb21t33323nn/+eXXu3JlrEgAAAIByzulv9KGhoXJ3\nd9cdd9yh1157TXfddZe8vLxKojYAAAAALuB0SJg4caK6du3KLU8BAACACsrpkPDQQw+VRB0AAAAA\nyohrursRAAAAgIqHkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAA\nAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAA\nAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMh\nAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgCUiLS0NKWlpVX4dQIAUBEREgAUu7S0NI0cGaWR\nI6NK7Uu7K9YJAEBFRUgAUOxOnDju+FX/xInjFXadAABUVIQEAAAAAAZCAgAAAAADIQEAAACAgZAA\nAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAA\nAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADA\nQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBI\nAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASLjO\njBo1Ss8++6yrywAAAEAZZnN1AdeTsLAwPf300+rbt6+rSwFKxJw5/9CxY8d04kSCS+uYNGnMf19Z\nat/+NtWoUVP16zdS69ZtXVoXAADlBSGhHMrIyJCHh4erywAMZ8+maNu2Lfmmf/PNP9WwYaMSX/+X\nX35awFS7tm79TpIUGBikZs2ay8PDs8RrAQCgvCszpxt988036t27t9q1a6fbbrtNgwcPVnx8vGP+\njh071LNnT7Vs2VKPPvqovvjiCwUHB2vfvn2ONj/99JMGDhyoNm3aqHPnzho5cqRSUlKKtH673a4F\nCxbo3nvvVYsWLRQWFqZ58+Y55p88eVIvvPCCo74hQ4YoIeGPX0tHjRqloUOHatGiRerSpYtuu+02\njR8/XllZWZKkJ598UsePH9eUKVMUHByskJAQx7Lbt29Xnz591KpVK911112aOHGiLly44JgfFham\nt956Sy+99JJuvfVWjRkzpkg1ZWdna8qUKWrXrp06dOigadOmyW63F/U/CeCUCRPGFDj9X//6qlTW\n/913my47PykpUXFxH5VKLQAAlHdlJiRcuHBBkZGRWr16td599125ublp6NChkqTU1FQ988wzCg4O\n1po1a/QwSnH0AAAVsUlEQVT8889r+vTpsizLsfy5c+f09NNPq1mzZlqzZo3efvttJScna9iwYUVa\n//Tp07Vw4UINHTpUcXFxmj59ugICAiRJmZmZ6t+/v6pUqaIPPvhAH3zwgSpXrqwBAwYoMzPT0ceW\nLVsUHx+vpUuX6u9//7vWrFmj1atXS5LeeOMN1axZU88//7w2bdqkjRs3SpKOHj2qgQMH6r777tPH\nH3+smTNnaseOHZowYYJR3zvvvKOQkBCtWbNGQ4YMKVJNb7/9ttauXaspU6bo/fff19mzZ/X5559f\n5X8hoHCbN2/UmTPJhc4fPLifDh06WOC/hIT4QpfLLSEhvtA+Bg58skh9xMauU2Li6SK1BQDgembZ\ny+hPy2fOnFGnTp308ccfa9u2bZo1a5a+/vpreXpeOlVg1apVGjNmjNasWaPg4GDNmTNH33//vRYu\nXOjo4+TJk7rzzjv16aef6qabbip0XampqerYsaNiYmL0yCOP5Ju/fv16zZ07V3FxcY5p6enpat++\nvd566y116tRJo0aN0tatW/XFF184wssLL7wgd3d3zZgxQ1LB1yRER0fL3d1d48aNc0zbvn27+vbt\nq507d8rT01NhYWFq3ry5Zs2a5VRNoaGhioyMVL9+/SRJWVlZuvvuu9W8eXO98cYbRfsP8V8pKanK\nzMx2ahlcP/7yl75GYL5aPq2qKW3XGUlS1Ttry56ZrXMbT15zv7m1atVGzz//YrH2ifLFZnOTv39l\nPtdQ4tjXUFpy9rVi7bNYe7sGR44c0axZs7Rr1y6lpKQoOztblmXp+PHjOnz4sJo0aeIICJLUsmVL\n49SZffv26bvvvlObNm2Mfi3L0tGjRy8bEg4dOqSMjAx16NChwPn79u3TkSNH8vWdnp6uo0ePqlOn\nTpKkm2++2Ti6ERQUpAMHDlx2u/ft26effvpJ69evzzfv2LFjatCggSSpWbNmTtXUsmVLJSYmqkWL\nFo557u7uat68+WXrAQAAAMpMSBg0aJDq1q2riRMnqnr16srOztYDDzygjIwM2e1248u3pHzn1qel\npSksLEwvvpj/F8KgoKDLrrtSpUqXnZ+WlqbmzZtr+vTp+eb5+/s7Xtts5p/TsixlZ1/+l4O0tDQ9\n/vjjBd7xqFatWo7X3t7eV1VT3r8bUBL69fuLFix4q9D5np5eevHF0QXOS0iI1+LFCy69cTfPgLRs\nf7x/+umBqlOnXoF9TJ06znH9z+XYbDb17v3UFdsBAHC9KxMh4ddff9Xhw4c1adIk3XLLLZIunXKT\n8wW3QYMG+vjjj427+uzevdv4Aty0aVN9/vnnqlOnjtzcnLvU4k9/+pO8vLy0efNmPfroo/nmN2vW\nTBs2bFC1atVUufLVH8rx8PDIFxqaNm2qgwcPql69gr/8FKYoNQUFBWnXrl2Ov2lWVpb27NmT76gE\ncK06duyiDz9cUeh1CXPnvnPN66hTp16hd0lasGCpIiN7X7GPbt16KCio+jXXAgBARVcmLlz28/PT\nDTfcoJUrV+ro0aPavHmzXn31Vcf8Bx54QFlZWXrllVd06NAhffPNN3rnnUtfOnKCQp8+fXT27FkN\nGzZMu3fvVnx8vL755huNGjXqinf08fT01IABAzRt2jStXbtW8fHx2rVrl/73f/9XktS9e3f5+/tr\nyJAh2r59u44dO6YtW7Zo4sSJOnXqVJG3s27dutq2bZtOnTrluOvSwIEDtXPnTk2YMMFxCtEXX3yR\n78LlvIpSU9++fTV//nx98cUX+vnnnzVu3Dj99ttvRa4XcMYrr4wvcPrtt4eVyvo7dOh82fmBgUGK\niOheKrUAAFDelYkjCZZlaebMmZo0aZK6d++u+vXrKzo6Wk8+eemOJb6+vpo3b57Gjh2rhx56SI0b\nN9azzz6r4cOHy8vLS5JUvXp1ffDBB5o+fboGDBig9PR01a5dW6GhoUU65ebZZ5+Vh4eHZs+erdOn\nTysoKEhPPPGEpEunIy1btkzTp09XVFSUUlNTVaNGDXXo0EG+vr5F3s6oqCjFxMSoa9euysjI0N69\ne9WkSRMtXbpUM2fOVJ8+fWS323XjjTcqIiLC+PvkVZSaIiMjlZSUpFGjRsnNzU0PP/yw7r33Xp07\nd67INQNF5efnr3btbsv3MLXQ0DtLZf133x1ewG1QzYep8YwEAACKpsze3ehK1q9fr9GjR+v77783\nLmhGyeDODHDGoUMHHU89Hj16/GUfppa7rU/bQKXtSJJ06e5GkvTbP4873c+V2uL6xh1nUFrY11Ba\nKvTdja5k7dq1qlevnmrUqKF9+/ZpxowZioiIICAAAAAAxazchISkpCTNmjVLycnJCgoKUkREhF54\n4YUiLXvixAlFRETIsqx81ydYlqW4uDjVrFmzJMoGAAAAyp1yExIGDBigAQMGXNWy1atXL/A5BLnn\nAwAAALik3ISEa+Hu7u70LUYBAACA61WZuAUqAAAAgLKDkAAAAADAQEgAAAAAYCAkAAAAADAQEgAA\nAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAA\nGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgI\nCQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkA\nAAAADIQEAAAAAAZCAgAAAACDzdUFAKh4atWqLR8fH8frirpOAAAqKkICgGLn4+Ojv/99luN1RV0n\nAAAVFSEBQIlwxRd1wgEAAMWDaxIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAA\nAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADA\nQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBI\nAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAA\nAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAYHN1AQCQ\nIzs1w/E687d0WS6sBQCA6xkhAUCZcXH/WcfrtB1JLqwEAIDrG6cbAQAAADBwJAGAS9WpU1ejR4+X\nzWapShVvJSamKDPTrkqVKuVrBwAASgchAYBLVapUSQ0bNpLN5iZ//8qqXj1VmZnZri4LAIDrGqcb\nAQAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAA\nAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAA\nMBASAAAAABgsu91ud3URAAAAAMoOjiQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMh\nAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEGM6ePavhw4frlltuUbt2\n7TR69GilpaVddpknn3xSwcHBjn8hISEaO3Zs6RSMcmXZsmUKCwtTy5Yt1atXL/3www+Xbb9hwwbd\nf//9atmypR588EF9/fXXpVQpyjtn9rU1a9Y4PrtyPsdatWpVitWiPNq+fbsGDx6s0NBQBQcH68sv\nv7ziMlu2bNHDDz+sFi1aKDw8XGvWrCmFSlHeObuvbd261fhelvP5lpyc7NR6CQkwDB8+XD///LMW\nL16sefPmafv27RozZswVl+vVq5e+/fZbbdq0SRs3btSLL75YCtWiPImLi9PUqVMVFRXl+FI2YMAA\nnTlzpsD2//73vzVixAj16tVLa9eu1T333KOhQ4fq4MGDpVw5yhtn9zVJqlKlijZt2uT493//93+l\nWDHKo7S0NIWEhCgmJkaWZV2x/bFjxzR48GB16NBB69atU9++fRUdHa1NmzaVQrUoz5zd1yTJsix9\n9tlnjs+0jRs3KiAgwKn12q6mWFRMhw4d0saNG7V69Wo1bdpUkhQdHa1BgwbppZdeUlBQUKHLent7\nq1q1aqVVKsqhxYsX6/HHH1fPnj0lSePGjdM///lPffjhhxo4cGC+9kuWLFFoaKj69esnSYqKitKm\nTZv03nvvcaQKl+XsviZdGlD5DIMzbr/9dt1+++2SJLvdfsX2H3zwgerWrauRI0dKkho0aKDvv/9e\nixcvVufOnUu0VpRvzu5rOapVqyZfX9+rXi9HEuCwc+dO+fn5OQKCJHXq1EmWZWnXrl2XXfajjz5S\nhw4d1L17d7322mu6ePFiSZeLciQjI0N79uxRx44dHdMsy1KnTp20c+fOApfZuXOnOnXqZEzr0qVL\noe0B6er2NenSL3VhYWG68847NWTIEI5Yodjt2rWLzzSUGrvdrh49eqhLly6KjIzUjh07nO6DIwlw\nSEpKyvdLmru7u/z8/JSUlFTocg8++KBq166t6tWra//+/Zo2bZoOHz6sWbNmlXTJKCdSUlKUlZWl\nwMBAY3pAQIB++eWXApdJTEwssP3l9kXgava1+vXra9KkSWrSpInOnz+vhQsX6oknnlBsbKxq1KhR\nGmXjOpCYmJjvdI+AgACdP39e6enp8vT0dFFlqGiCgoI0fvx4NW/eXOnp6Vq5cqX69u2rVatWKSQk\npMj9EBKuAzNmzNCCBQsKnW9ZluLi4gqdb7fbL3sO3GOPPeZ4ffPNNyswMFD9+vVTfHy86tWrd3VF\n47pwpX2roPbA1bjcvta6dWu1bt3aeB8REaEVK1YoKiqqtEoEgGJRv3591a9f3/G+devWio+P1+LF\ni/Xqq68WuR9CwnUgMjJSDz/88GXb1KtXT4GBgfku7MvKytJvv/3m1MUurVq1kt1u19GjRwkJkCT5\n+/vL3d0931GAM2fOFLpvBQUFFdg+7y/EQG5Xs6/lZbPZFBISoiNHjpREibhOBQUF5bu7THJysnx9\nfTmKgBLXokULp0854pqE64C/v78jVRb2z2azqXXr1vrtt9/0448/OpbdvHmz7Ha7U7cD/PHHH2VZ\n1mUvdMb1xcPDQ82aNdPmzZsd0+x2uzZv3qw2bdoUuEzr1q2N9pK0adMm4xdfIK+r2dfyys7O1oED\nB1S9evWSKhPXIT7T4Er79u1z+jPNfSy3CcF/VatWTbt27VJsbKxCQkJ07NgxxcTEKDQ01HGXkFOn\nTumxxx5Tq1atVKNGDcXHx2vZsmXy8fFRRkaGtm3bprFjx6pJkyYaMGCAi7cIZUnlypX1j3/8Q7Vq\n1ZKHh4def/117d+/X5MmTZK3t7dGjhyp3bt3Oy44rVGjhl5//XV5e3vLz89P7733nj755BNNnjyZ\nu9Dgspzd1958801lZGTIsiwlJCRo6tSp+uGHHzRu3Dj2NRQqLS1Nhw4dUmJiolasWKGWLVuqUqVK\nysjIUJUqVTRjxgytW7dOXbt2lSTdeOONmjt3rs6dO6datWopLi5Oixcv1pgxYzjqjstydl979913\nlZycLJvNptOnT2vu3Ln65JNP9Morr6hu3bpFXi+nG8EwY8YMjR8/Xv369ZObm5vCw8M1evRox/zM\nzEwdPnzYcfciDw8Pbd68WUuWLNGFCxdUs2ZN3XfffRo8eLCrNgFlVEREhFJSUjRr1iwlJSUpJCRE\nCxcudHwJO3nypNzd3R3t27RpoxkzZmjmzJmaOXOmbrrpJr311ltq1KiRqzYB5YSz+9pvv/2mV155\nRUlJSapataqaN2+u5cuXq2HDhq7aBJQD//nPf9S3b19ZliXLshznevfs2VNTpkxRUlKSTpw44Whf\nt25dzZs3T1OnTtXSpUtVs2ZNTZw4Md8dj4C8nN3XMjIy9Oqrr+r06dOqVKmSmjRposWLF6tdu3ZO\nrdeycyUgAAAAgFy4JgEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAA\nAAAGQgIAAAAAAyEBAAAAgIGQAAC4LmzdulXBwcHas2ePq0sBgDKPkAAAuG5YluXqEgCgXCAkAAAA\nADAQEgAAZdqaNWvUrFkznTlzxph+9uxZNW/eXKtWrdLOnTv1zDPPKDQ0VG3atFHPnj21bt26y/ab\nkJCg4OBgffbZZ8b0SZMmKSwszJh26tQpjRgxQh06dFCrVq30P//zP5y2BKBCIyQAAMq0rl27yt3d\nXRs2bDCmf/rpp7IsS/fee6+OHz+uW265RZMnT9bcuXMVHh6u6OjoKwaFgliWZZyW9Ntvv+nPf/6z\n9u/frzFjxmj27Nny9vbW008/nS+4AEBFYXN1AQAAXI6vr6/uuOMOxcbGqk+fPo7psbGx6ty5s/z8\n/BQREWEsc+utt+rEiRNavny5evTocU3rX7x4sc6fP68PP/xQ/v7+kqSOHTsqPDxcixYt0ogRI66p\nfwAoiwgJAIAyr1u3bvrrX/+qkydPqmbNmkpKStK2bds0ffp0SZd+7Z81a5a++uornTp1SllZWZLk\n+FJ/Lb799lvddtttqlq1qqNfy7LUrl077d69+5r7B4CyiJAAACjz7rrrLnl7eys2Nlb9+/dXbGys\nvLy8dNddd0mSXnrpJe3atUtDhw5Vo0aN5Ovrq/fffz/fKUpXIyUlRbt27VKzZs2M6ZZl6cYbb7zm\n/gGgLCIkAADKPC8vL919992OkLBhwwaFhYXJ29tb6enp+te//qVRo0YZpyNlZ2dfsU9JysjIMKaf\nPXvWeO/n56fQ0FC98MILstvtxjxPT89r2SwAKLMICQCAcqFbt24aPHiwNm7cqJ07d2rw4MGSpPT0\ndGVlZclm+2NIO3/+vL766qvL9hcQECAPDw8dOnTIMS09PV3btm0zLlzu2LGjPvroIzVo0ECVKlUq\n5q0CgLKJkAAAKBdyLlJ++eWX5efnpy5duki6dGFzixYtNH/+fPn7+8vd3V0LFixQ1apVlZycbPSR\n+0iAZVnq2rWrli1bphtvvFH+/v5677338q23X79++vjjj9WnTx/17dtXtWvX1pkzZ7Rr1y7VqFFD\nTz31VMluOAC4ALdABQCUCzabTeHh4UpMTFR4eLhx5OC1117TjTfeqL/97W+aPHmy7rvvvgLvapT3\nicvR0dFq3769Jk2apJiYGN1+++3q2rWr0eaGG27QypUr1bRpU82YMUP9+/fX1KlTdfz4cbVq1apk\nNhYAXMyy5z3BEgAAAMB1jSMJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABg\nICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAMP/AwdQxFSKweH2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEKCAYAAACPCivzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGUZJREFUeJzt3X2UXHWd5/HPJ+mASDBAAix02AS2QQ4Ig9DMAM5gJwZIeMqgKMyBNQiSMWAnKJ6zsmHcADKD40FJmjk7B1klKqso60MYkkBiIsxRGaaDaQIjhBKSGSKa0DwZkZBOvvtH3e6p7lR1V3fqofvX79c5dfrW7z5963bd+6n7ULccEQIAIEVj6l0AAADVQsgBAJJFyAEAkkXIAQCSRcgBAJJFyAEAkkXIAQCSRcgBAJJFyAEAktVQ7wJGu0mTJsXUqVPrXQYAjCjr1q17JSIOGWg4Qq7Opk6dqvb29nqXAQAjiu3N5QzH4UoAQLIIOQBAsgg5AECyCDkAQLIIOQBAsgg5AECyCDkAQLIIOQBAsvgyODCMtLW1KZfL1XSeW7ZskSQ1NjbWZH5NTU1qbW2tybwAQg4YRnK5nNY//SvtevfBNZvn2LfekCT9dkf1Nwdj33q16vMAChFywDCz690H64/HnVez+e337HJJqsk8u+cF1Arn5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLksFfa2trU1tZW7zKAUYn1b2AN9S4AI1sul6t3CcCoxfo3MPbkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5Eawzs5OzZ8/X52dnUMap2/3tddeq3nz5imXy/VqnzdvnubOndvT74orrlBLS4umTZumjo4Obdy4cVA1AKiMN998Ux0dHWppaVFLS4vOOeccrV27Vueee65aWlq0du1a5XI5zZw5U7NmzdKyZcs0ffp0rVu3TrlcTuecc07PuFddddUe24I1a9Zo2rRpuuKKKzRr1qyeXyIvth3J5XK9thUDbROGsv0aCkdEVWeA/jU3N0d7e/uQxv3KV76iBx98UBdddJE+85nPDHqciOjVvWzZMknS1KlTtXnz5j3au/tt2rRpj+nOnj277BpQ2oIFC7Tuhd/pj8edV7N57vfsckmqyTz3e3a5Tj36MC1evLjq8xoNpk+frt27d/dqa2hoUFdXV0/35MmTe9ZZ24oIjR8/XpMmTdpjXZ49e3avdb5wWlJ+/b/33nuLbkemTJnSa3oDbROGsv0qZHtdRDQPNBx7cmWwvb/th2x32H7a9qW2T7X9qO11th+2fbjtBtv/arslG+/vbN9WjZo6Ozu1cuVKRYRWrlxZ1qehwnFWrFihFStW9OrutmnTpqLt3f2KWb58OXtzQA21t7fvEXCSeoVSV1dXr3W2e6dm+/btRdflhx56qNc6XzgtKb/+t7e399qOdHf3nd6KFStKbhOGsv0aqoaqTTktMyX9JiLOlyTbEyStkDQ7IrbZvlTSbRFxle0rJT1guzUb78+qUdDSpUt73uC7du3SN7/5zQE/DRWOs3Pnzp72nTt3qtgefan2Ynbu3Km5c+dq8uTJ5b4EFJHL5TTmnXSProx5+03lcr/XggUL6l3KiLdhw4aKT7NvqBWzaNGiotuRvnbu3FlyuzSU7ddQsSdXng2Szrb9Jdt/IelISe+TtMr2ekk3SZosSRHxjKRvSfonSVdFxDt9J2Z7ru122+3btm0bUkGrV6/ueUN2dXVp1apVgxonInoCrFSQDfZQ9muvvTao4QEMXbG9uFrYvn170e1IXxFRcrs0lO3XULEnV4aI2Gj7FEnnSfqipDWSnomIM0qMcqKk1yUdWmJ6d0u6W8qfkxtKTTNmzNDy5cvV1dWlhoYGnX322YMax3Z3LT3H6fsq1V7KhRdeyHm5vdR9Ti5Vu9/1HjVxTq4iLrjgAm3fvr3m8x0/frzefvvtPbYjfdkuuV0ayvZrqNiTK4PtIyS9FRHflvRl5Q9BHmL7jKz/ONsnZN0flnSwpLMktdk+sBo1zZkzR2PG5P99Y8eO1cc//vFBjTNu3Dg1NDT0dI8bN26P4Uu1FzNu3LiyagBQGYsWLar4NBsaGgZc5xctWtRrO1Jq+P62CUPZfg0VIVeeEyU9kR2a/F+SviDpEklfst0hab2kM21PknS7pE9GxEZJd0mqykfWiRMnaubMmbKtmTNnauLEiYMaZ9asWZo1a1av7m5Tp04t2t7dr5jzzjuvrBoAVEZzc3NPUBTq/vDa3V24znbveY0fP77ounz++ef3WucLpyXl1//m5uZe25Hu7r7TmzVrVsltwlC2X0PF4coyRMTDkh4u0uusIm3HFoy3pGpFKf9paNOmTYP6FNR3nMLuXC6niNANN9ygJUuW9LQ///zz2rVrl8aOHasbbrhBixYt0ksvvdRzOHO//fZjLw6ogylTpujFF1/seb7PPvvoxhtv1O23364dO3Zo4cKFOvLII/XpT39atjVv3jzdeeeduvnmmzVhwgRde+21eued/GUDRx999B7bgo9+9KO69dZb1djYqM7OTt10002Sim9H5s+frzvuuKNnWzHQNmEo26+h4HtydbY335MbDrqvkuMcS2XwPTkMxmhe//ieHABg1CPkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMniR1OxV5qamupdAjBqsf4NjJDDXmltba13CcCoxfo3MA5XAgCSRcgBAJJFyAEAkkXIAQCSRcgBAJJFyAEAkkXIAQCSRcgBAJJFyAEAkkXIAQCSRcgBAJJFyAEAkkXIAQCSRcgBAJI1YMjZPsz2/7G9Int+vO2rq18aAAB7p5w9uXslPSzpiOz5RknXV6sgAAAqpZyQmxQR35O0W5IiokvSrqpWBQBABZQTcn+wPVFSSJLt0yW9UdWqAACogIYyhvmspGWS/pvtn0k6RNIlVa0KAIAKGDDkIuJJ2x+U9F5JlvRcROysemXAKDX2rVe137PLazi/TkmqyTzHvvWqpMOqPh+gW8mQs/3hEr2Ota2I+EGVagJGraampprPc8uWLklSY2MtwuewurxGjF797cld2E+/kETIARXW2tpa7xKApJQMuYj4RC0LAQCg0sr5MvhE20tsP2l7ne3F2dWWAAAMa+V8heC7krZJ+ojyV1Vuk3R/NYsCAKASyvkKweERcWvB8y/avrRaBQEAUCnl7Mk9Yvsy22Oyx8eUv80XAADDWn9fIfi98ldRWvl7VX476zVG0nZJn6t6dQAA7IX+rq48oJaFAABQaeWck5PtgyQdI+ld3W0R8Vi1igIAoBIGDDnbn5S0QNJkSeslnS7pF5KmV7c0AAD2TjkXniyQdJqkzRExTdL7Jb1e1aoAAKiAckLu7Yh4W5Js7xsRzyp/s2YAAIa1cs7JvWT7QEk/krTK9muSNle3LAAA9l45P7Vzcda5yPZaSRMkraxqVQAAVEB/35N7T0S8afvgguYN2d/xkl6tamUAAOyl/vbk/q+kCySt039+Kbzw79FVrw4AgL3Q35fBL7BtSR+MiH+vYU0AAFREv1dXRkRIeqhGtQAAUFHlfIXgSdunVb0SAAAqrJyvEPyZpMttb5b0B2Xn5CLipKpWBgDAXion5M6tehVAH21tbXr00UclSY2NjWpqalJra2udqwIw0pTzPbnNkmT7UBXcoBmoplwup1df2aZ9x4aef31rvcsBMEKVc4PmiyTdIekISVslTZH0K0knVLc0jHb7jg1NOWBXvcsAMIKVc+HJrcr/8sDGiDhK0ockPV7VqgAAqIByQm5nRHRKGmN7TESsldRc5boAANhr5Vx48rrt8ZL+WdJ9trcqf5UlAADDWjl7ct03ZV6g/I2Zfy3pwmoWBQBAJZQTcg2SHpH0U0kHSLo/O3wJAMCwNmDIRcTNEXGCpOskHS7pUdurq14ZAAB7qZw9uW5bJf1WUqekQ6tTDgAAlTNgyNm+1vZPJf1E0kRJ13BLLwDASFDO1ZVHSro+ItZXuxgAACqpnNt63ViLQgAAqLTBnJMDAGBEIeQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkUHdtbW1qa2ur+jgARp9y7l0JVFUul6vJOABGH/bkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuQAAMki5AAAySLkAADJIuRQc52dnZo/f75+/OMfq6WlRR0dHero6NBtt91W9jS2bNmijo4OtbS06Atf+EIVqwUwkhFyqLmlS5dqw4YNuvPOO3u1r1q1quxpvPLKKz3djz32WMVqA5CWUR1ytltsn1nF6d9r+5JqTX8k6uzs1MqVKxURiog9+pezN/e1r31tjzb25gAU01DvAuqsRdJ2ST8vdwTbDRHRVbWKErd06VLt3r27ZP9Vq1Zp69atyuVy2rnbkqTfvTVG7+RyWrBggSSpo6Njj/HYmwNQTFX35Gz/yPY628/Ynpu1XW17o+0nbH/N9l1Z+yG2/5/tf80eH+hnuuNtf8P2BttP2f5I1n6O7V/YftL2922Pz9o32b45a99g+zjbUyV9StJnbK+3/RelarC9yPa3bP9M0rdsj7X95WyYp2z/dTacbd9l+znbqyUdWqL+ubbbbbdv27atUot7RFi9erW6uviMAKA2qn248qqIOFVSs6T5thsl/Y2k0yV9QNJxBcMulvTViDhN0kck3dPPdP9G0hsRcWJEnCRpje1Jkm6SNCMiTpHULumzBeO8krX/b0mfi4hNkv4xm+fJEfHPA9RwfDbtv5J0dTb/0ySdJuka20dJuljSe7NhPy6p6KHQiLg7IpojovmQQw7p52WmZ8aMGWpo6P8AwuLFi9XU1KRxY/KHMw979241NTVp8eLFWrx4cS3KBJCIah+unG/74qz7SEn/XdKjEfGqJNn+vqRjs/4zJB1vu3vc99geHxHbi0x3hqTLup9ExGu2L1A+XH6WTWMfSb8oGOcH2d91kj5cot6iNWTdyyLij1n3OZJOKjjfNkHSMZLOkvSdiNgl6Te215SYz6g1Z84crVy5smT/s88+e8BpXH755brvvvt6tZ111ll7XRuA9FRtT852i/KhcUZE/ImkX0p6doBaTs/2qk6OiMYSAVdylpJWFYx/fERcXdB/R/Z3l0qHe381/KHPvFoLhjsqIh4ZRK2j1sSJEzVz5kzZVsGHiR4LFy4ccBrXXHPNHm233HJLReoDkJZqHq6cIOm1iHjL9nHKH6LcX9IHbR9ku0H5Q4LdHpHU2v3E9sn9THuVpOsKhj1I0uOSPmC7KWvb3/axJcbv9ntJBwyhhoclzbM9LhvuWNv7S3pM0qXZObvDJU0bYP6j0pw5c3TiiSfq+uuv79Vezl5ct0mTJvV0sxcHoJRqHq5cKelTtn8l6TnlQ2iLpL+V9ISkV5Xfs3sjG36+pH+w/VRW12PKXxhSzBezYZ9Wfs/s5oj4ge0rJX3H9r7ZcDdJ2thPjQ9KesD2bOXDrdwa7pE0VdKTzu+ObJP0l5J+KGm6pH+T9O/qfbgUmYkTJ2rJkiWSpNmzZ/dcNVnOXly3xsZGNTY2co4OQL+qFnIRsUPSrL7tttsj4u5sT+6Hkn6UDf+KpEvLnPZ2SXOKtK9R/kKQvu1TC7rblf/qgCJio6ST+gy+Rw0RsajP892S/mf26OvTA5QPAKiRenwZfJHt9ZKelvSispADAKDSav5l8Ij4XLnD2v6EpAV9mn8WEdcVGx4AgELD+o4nEfENSd+odx0AgJFpVN+7EgCQNkIOAJAsQg4AkCxCDgCQLEIOAJAsQg4AkCxCDgCQLEIOAJAsQg4AkCxCDgCQLEIOAJAsQg4AkKxhfYNmjA5NTU01GQfA6EPIoe5aW1trMg6A0YfDlQCAZBFyAIBkEXIAgGQRcgCAZBFyAIBkEXIAgGQRcgCAZBFyAIBkEXIAgGQRcgCAZBFyAIBkEXIAgGQRcgCAZBFyAIBkEXIAgGQRcgCAZBFyAIBkEXIAgGQRcgCAZDXUuwCglB27rM2/HytbOqbexQAYkQg5DEtNTU3asmWLJKmxsVFNTU11rgjASOSIqHcNo1pzc3O0t7fXuwwAGFFsr4uI5oGG45wcACBZhBwAIFmEHAAgWYQcACBZhBwAIFmEHAAgWYQcACBZhBwAIFmEHAAgWdzxpM5sb5O0uYaznCTplRrOrxKoufpGWr0SNdfKcK15SkQcMtBAhNwoY7u9nFvhDCfUXH0jrV6JmmtlJNZciMOVAIBkEXIAgGQRcqPP3fUuYAioufpGWr0SNdfKSKy5B+fkAADJYk8OAJAsQi5Btg+2vcr289nfg4oMc7LtX9h+xvZTti8t6Hev7Rdtr88eJ1epzpm2n7Ods/35Iv33tX1/1v9fbE8t6Hdj1v6c7XOrUd8Qa/6s7X/LlulPbE8p6LerYJkuG0Y1X2l7W0FtnyzoNyd7Hz1ve84wqvmrBfVutP16Qb+aL2fbX7e91fbTJfrb9pLs9Txl+5SCfvVaxgPVfHlW6wbbP7f9JwX9NmXt620P7199jggeiT0k/b2kz2fdn5f0pSLDHCvpmKz7CEkvSzowe36vpEuqXONYSb+WdLSkfSR1SDq+zzDXSvrHrPsySfdn3cdnw+8r6ahsOmNrsFzLqXmapHdn3fO6a86eb6/De6Gcmq+UdFeRcQ+W9EL296Cs+6DhUHOf4Vslfb3Oy/ksSadIerpE//MkrZBkSadL+pd6LuMyaz6zuxZJs7przp5vkjSp1st5KA/25NI0W9LSrHuppL/sO0BEbIyI57Pu30jaKmnAL1ZW0J9KykXECxHxjqTvKl93ocLX8YCkD9l21v7diNgRES9KymXTq3vNEbE2It7Knj4uaXIN6upPOcu5lHMlrYqIVyPiNUmrJM2sUp2FBlvzX0n6Tg3qKikiHpP0aj+DzJb0zch7XNKBtg9X/ZbxgDVHxM+zmqTh8V4eEkIuTYdFxMtZ928lHdbfwLb/VPlPzL8uaL4tO1TxVdv7VqHGRkn/UfD8payt6DAR0SXpDUkTyxy3GgY736uV//Te7V22220/bnuPDx5VUm7NH8n+3w/YPnKQ41Za2fPNDgcfJWlNQXM9lvNASr2mei3jwer7Xg5Jj9heZ3tunWoqS0O9C8DQ2F4t6b8U6bWw8ElEhO2Sl9Bmnya/JWlOROzOmm9UPhz3Uf7y4f8h6ZZK1D1a2L5CUrOkDxY0T4mILbaPlrTG9oaI+HXxKdTUg5K+ExE7bP+18nvP0+tcU7kuk/RAROwqaBuuy3lEsj1N+ZD784LmP8+W8aGSVtl+NtszHHbYkxuhImJGRLyvyOPHkn6XhVd3iG0tNg3b75H0kKSF2SGU7mm/nB1W2SHpG6rOocAtko4seD45ays6jO0GSRMkdZY5bjWUNV/bM5T/sHFRtgwlSRGxJfv7gqSfSnp/NYvNDFhzRHQW1HmPpFPLHbdKBjPfy9TnUGWdlvNASr2mei3jstg+Sfn3xOyI6OxuL1jGWyX9ULU5XTA09T4pyKPyD0lfVu8LT/6+yDD7SPqJpOuL9Ds8+2tJd0q6vQo1Nih/kv0o/efFBSf0GeY69b7w5HtZ9wnqfeHJC6rNhSfl1Px+5Q/7HtOn/SBJ+2bdkyQ9r34upqhxzYcXdF8s6fGs+2BJL2a1H5R1Hzwcas6GO075CyBc7+WczW+qSl/Ecb56X3jyRD2XcZk1/1flz3ef2ad9f0kHFHT/XNLMWtU86NdY7wJ4VOGfmj9v9ZNsBV/dvdIof/jsnqz7Ckk7Ja0veJyc9VsjaYOkpyV9W9L4KtV5nqSNWSgszNpuUX4PSJLeJen72Yr2hKSjC8ZdmI33nKRZNVy2A9W8WtLvCpbpsqz9zGyZdmR/rx5GNf+dpGey2tZKOq5g3Kuy5Z+T9InhUnP2fJH6fACr13JWfm/y5Wydekn5w3ufkvSprL8l/UP2ejZIah4Gy3igmu+R9FrBe7k9az86W74d2ftmYa1qHsqDO54AAJLFOTkAQLIIOQBAsgg5AECyCDkAQLIIOQBAsgg5AHuwvb3eNQCVQMgBAJJFyAGjgO3bbV9X8HyR7Zuy37x7MvttsD3u9G+7xfY/FTy/y/aVWfepth/NbtL7cPet5IDhhJADRof7JX2s4PnHlL8R88URcYryv4N3R/ZTRgOyPU5Sm/K/O3iqpK9Luq2yJQN7j18hAEaBiPil7UNtH6H87wa+pvwvTXzV9lmSdiv/Ey+HZe0Dea+k9yl/B3op/0OnL/c7BlAHhBwwenxf0iXK/0TT/ZIuVz7wTo2InbY3KX+/0EJd6n3Ep7u/JT0TEWdUtWJgL3G4Ehg97lf+1xwuUT7wJkjamgXcNElTioyzWdLxtve1faCkD2Xtz0k6xPYZUv7wpe0Tqv4KgEFiTw4YJSLiGdsHSNoSES/bvk/Sg7Y3SGqX9GyRcf7D9veU/0WKFyX9Mmt/x/YlkpbYnqD8tuRO5e9KDwwb/AoBACBZHK4EACSLkAMAJIuQAwAki5ADACSLkAMAJIuQAwAki5ADACSLkAMAJOv/A2mNjzXU6fbTAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1949,7 +1414,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 14, @@ -1958,12 +1423,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPW5+PHPmX0myWQjZAPZIUDYZBUV1+tWerXu1mo3\n7VXrVttqa3v1p7ZVr62t1KX22pa6tPVWrVbr0moVUFAE2cK+BZKQhGyzL2eZ8/tjMkMmC5shCfC8\nX6+8iGfOnPmeJDhPvjyLYpqmiRBCCCGEECLN0t8LEEIIIYQQYqCRIFkIIYQQQohOJEgWQgghhBCi\nEwmShRBCCCGE6ESCZCGEEEIIITqRIFkIIYQQQohOJEgWQgghhBCiEwmShRBCCCGE6ESCZCGEEEII\nITqRIFkIIYQQQohOBkyQvGLFCm644QZOPfVUKioqeO+99w74nE8++YSLL76YSZMmce655/K3v/2t\nD1YqhBBCCCGOdQMmSI5EIowfP557770XRVEOeH5tbS033HADc+bM4bXXXuPaa6/lxz/+MR999FEf\nrFYIIYQQQhzLbP29gJR58+Yxb948AEzTPOD5f/7znxkyZAh33nknACNHjmTlypUsXLiQk08++Yiu\nVQghhBBCHNsGzE7yoVqzZg1z587NOHbKKaewevXqflqREEIIIYQ4Vhy1QXJTUxOFhYUZxwoLCwmF\nQqiq2k+rEkIIIYQQx4KjNkgWQgghhBDiSBkwOcmHqqioiJaWloxjLS0tZGdn43A4Dvo6pml2WyjY\n1hJg6VPPQXt6dFQ3idTVo6JgxMMsHPwv6h1NAOiKQZ0zuZbL9p7KuW0zSAC6xYodEwsmKhbsionS\nnm9tdTpQFIXcsmIsVivRuI7FaiVS30D6RQEVC0o8hmKa6ed0FldsbHMUo2Mh4Cnock5u+WBstn3f\naiNhEo3ruJ02rJbkuWNPyMfpsAIw/5SReLP2/zWMxDS21/oZNSQXj8ve5bENO1owgYkjC7s8LoQQ\nQggx0B21QfLUqVNZvHhxxrGPPvqIqVOnHtJ1WlvDWCzddNOwWBl50ReIhmL7zm32E4+pBANhvq2d\njappxCIqZiLBo+q97DC38PrgFZw49GpciVwaowojB7ux2y14HMkvtabq2B02crxZOFwOCgflEopq\n7NzWzKjyPGp3tWBJ6OnXjOsmja0RSrMtZHmchGIq2S4HVuu+fwSI6SZKS4Rip0JRtpdJ5R4UBcIx\ng+q9YSaMzSfLte9bHYrprN3lZ/IwLxYFNtUFGF2Wg6LAmm3N7K5to3xwdpcvidVqwet1EwhEafFF\nWV61h2yHhbwcZ8Z5vmCcT6r2AAqDsh1dHgeIxnWq6wMML/Xidg7cH8OO92wYif5eTp+Qe5Z7PlbJ\nPcs9H4uOt/vtLfn5WQc8Z8BEJ5FIhN27d6c7W9TU1LBp0yZyc3MpLS3lF7/4BXv37uXhhx8G4Mor\nr+SFF17gkUce4ZJLLmHZsmW88847/Pa3vz2k100kTBKJ7rtpDCouhOJ9/z10VHn6c5vNQn5+Fm1t\nYXQ9wZjGEs59+QxiRKkauZR7Z/6CD1bVcfq0cvKyuwaJHflCcTa3JRg7vpwxFUPpuBEcCKssrWpg\nbmUJAEurGphZWZKx0+tvC7Hz5VcpyPFSFdTw1DWwNmhHN0yCoTibAj5s1n0X1RMQ1y1sbq4H08QX\nirPa6QKrleqGAIkEzJ87nGy3nVBUQ2//S2ezWtBR8PuitAZiRGI6rYFY+vGOa47GDCwWBd1IoOtd\n/9KGoxrrd7ZSlOfGbh34WT9GD/dxLJN7Pj7IPR8f5J6Pfcfb/faFARMkV1VVce2116IoCoqipIPh\niy66iAcffJDm5mbq6+vT5w8ZMoSnn36ahx56iOeee46SkhJ+8pOfdOl40VemFU/nyoqr+cumF/jT\nxue4esy3gK67sQeS382uq8thTQfFqc87B96ByjkMG5aHZ0sjrvIsHLURKoucbKtpZcroIrLd3X+r\nQ1GdVTtamT4iBwAtHAZANxKEohrvrqhJn2uxKLjdDqJRFVU1CEVVlm9oxGbLDHJjqk5NUxCAcEw/\n4C8JQgghhBADzYAJkmfNmsWmTZt6fPzBBx/s9jmvvPLKkVzWIbl79j38betLxI04T1ct4AtZd/fa\ntf0hFUVJBqCBcGb3jkBYJaI4iJgW8rauItTqJRLxYLZFKPYFcZoNWNvzjTtzqgalDQHsRh0AxfUR\nWitmAaR3iKePG0yOx47NaiE3z4PfF8EfimP0sAMfjKi0+GM0+2P4grGMVI+UcGxfSkkgovLpxr3M\nHD8Yr+fg88mFEEIIIY6UARMkHwtKskr58vhr+EPVM7yx82Vmjb0WKD/g8/YnNVdl1dYmYqpBdUMQ\nUHC1B726nmCvL4IvpOIPx/HljGWw00FzJMwmWzbO0hKGji3CdHT/rTZiGgF7K86KZF5JyLIXq5EZ\nhOd47ORlO5MpJl4XoWCUTzft7XHNup5AMxIEIiorNjWxtdbf5ZyYqmOxJHegEwmTYETtMe1FCCGE\nEKKvSZDcy26edjvPbViIntD5KPxHvmybc8DnOO1WKk7Ix2nvutubn+PktKnlKArtO8gmczvkJAfC\nKv/+rJYstwNM0OxuDJuNUXtXkhuyY7UobN65EZfD2n2BIuAFNKOBRMKksM6HqVgwZ49AcTiwxKMY\nfj+67sC0WVBNlVibj0QsRkV5Dq5u1gxQnqXg90eoGJZHaWFmcnwoqrFi014c9n3riWsGH66tZ97U\nMtlNFkIIIUS/kyC5lw3NOYFLx17BXza9wJu1f+XU//uYi8dcxiVjL2d84YRun+N22qgYlt/jNVN5\nyk67lamjiyjKc2d0hMjLdjJ1zCAsisLSqgaGl+SwzTaXccNzAVizrYUpowvJdnffis1iteB02ghH\nNZrcjZhWG4rDgamqFGxcTrQtB7M9yI65HfgDGoFmO5/sUHBau9/9jekmtqDB1l151LdEMh9TDXbv\nDTKsOCd9zDRNQlFNdpOFEEIIMSBIkHwEfG/GD1hSu4i6UC21oRoWrHqUBaseZUJhJZeOvYKLx1xK\nWfahp2HsL5jOy3ZimsnCvuqGALVBA1uTBijsjipYmnRsFgNfOE5elrNLsV2K7s5Op0EoDget42cx\nfnwRuVkOrDYLebkeYnt8OFbWAwpzxxWQ3U0f5GBE5dOtLUyeUIqnU05yQ2uETbtbialGOr86riYg\nvVueZLNaegzshRBCCCGOJAmSj4ATvMP46KoV/LP6LV7e+n+8t/tf6AmdDS1V3L+sigeW3cPcslO4\ndOwVzB/1n+Q683rldVOpGcGICihUjihAUSCu6kwaWQDAik1NjB+eT04PKQ3RuMHGXa3p/0443Vhz\nc7G15yQ78rOwh0xs7MEAsl128rK6BrIKJlbTYNX62i5pJIGIRigUJ5LtYvmGRvREIt0NY2lVPa4O\n+dNnzxhKttsuxX1CCCGE6FMSJB8hHruHi8ZcwkVjLqEl2sLft/+Nl7a8yKcNn2Bi8tGeJXy0Zwk/\nWPJdzh52LpeOvYJzhp2H3fr5dk5TqRkuh5VtdX5iqkF9a4R1O5KBb31rmFVbFWKqvt8dZZvV0qX/\ncUpCjZO3dTUNrkICke1g75oiEVMNvHvC1LsGUZmnk9UhLaMlmqAlrnDWlLEMKcsnEFbTO8lzK0vx\nZjkIRjRWbt6bXoMU9wkhhBCiL0mQ3AcK3YV8vfI6vl55HbsC1byy5a+8tOVFtvq2EDfi/GPH3/nH\njr9TllXOdZNv4JoJX/1cu8s9FfslmUwaWci6Ha3MmlDc7fjpVJqDLxQHku3nUsdNq5WgptA4YjKm\nCcqEIhRP18A+EdXwufdit9gonVKCzaqgG8kAN9QSIbZiD4q9518ITNPMaHeXahkXimqs3NwkO8pC\nCCGEOKIkSO5jw7zD+c6M73P79O+xrnkNf93yIn/b+hJ7I43sCddx/7L/5uefPsTV46/hW1NuYph3\n+H6v11NnjI5DSVwOW4dhJDZyPI4eh5J01LH9HOwbJtLmj7CzVcWMRnCZBlk9DCoBsCgK4bjOyu1t\n6WPBiEogrLJic7I9nK4nCMdUfCE1nW7Rud1dqmWc7CgLIYQQh27VqpXceusNvP32+2RlHfqws4Gm\nL+5HguR+oigKk4umMrloKv/vpJ/wTvVb/GbN43xcv5SIHuZ/1/2G31X9lgtGfJEbp97MzJLZ3V7n\nQJ0xPo+OO9JAepjI7jofAV+Y/F2fMsGTT47W/Y5uOGFhZdCFz7+dWMjOaI+G0wKhmAZ+P+NKR1JW\nktwxD0aSQfOkkYXkeBwEI2o6l1pRlC4t44QQQghxaBTl2HofPdL3I0HyAGC1WLlg5HwuGDmfzxpX\n8PSaJ/j79lcxTIM3drzGGzteY3rxTG6ccjMXjPwiNsvBf9s67jTHNeOQ19ZxRzo1TMTvc2B3udhU\nNomKaUNxd+qDnKJFNGzr90CJG7U2wnpTwWlTCJs6O7PzoLqFPXuTBXu6kSAe0Vi/uR6b1UJcM2ho\nirCuvYivc8u4gyUFf0IIIUT/0HUdm+3oDTWP3pUfo04snsHT5/yBHwfv45m1T/P8xj8SVAOsbPyU\n6/75VaYXz2Th+X+i2FN8UNfruNN8OEFydxLteRhtmpUVdXFy/ZmpD7qewBeO41FMPFWfsmenm1Yj\nuWM8xh4iP6HjDauMD7SRrXXKSw6RXmuhP8y4s75AWFfYVufjcDIsJD1DCCHE8ULTNJ544le8996/\nCIfDVFSM59Zb76CiYt+chrVrV/Ob3zxBTc1uxowZy113/ZiRI0cB0NDQwC9/+TBr165B1zVKS8u4\n6abbmDNnLgA7dmzjyScXsGbNatxuNzNnzubWW+8gNzf5Hn/LLf/FyJGjsFqt/POfbzFq1Bjy8wsw\nTZP77vtZeg26rnPRRedx663f5Zxzzsc0TZ5/fiF///urtLY2c8IJw/jqV7/J6aeflX7OsmUfsmDB\no+zd20hl5WTOO+8LR/zrKUHyADU05wTuO/mnfG/mXbyw8Vn+d+1vqAnuZmXjp5z30hk8d8GLVA6a\ndEjXtFgUcjwOlB4m7x2sAq+LE8cNoqYpyIyKIsqLMnOBAmGVpVUNTBpZwAbLKYwu99K40wcoVE4Y\nhAWTlVubKJ9STm6HwsFQTE8X9wUjKr6tLSh2B6amohsJVM0gGFEz+iunSE9lIYQQR0og7merb0uf\nvuaYvLF4nbmH9JwnnniMxYs/4L//+36Ki0t44YU/8t3v3sJf/vIqkCyKf/LJBdx++/fJzy/g6acf\n56677uAvf3kFq9XKo48+hK4bPPnkM7hcLqqrd+B2ewAIhULcdttN/Od/fonbbvsesViMp576Nffc\n80Mee+yp9BrefvsfXHTRpTz11O8BqKnZzb33/pBYLIbL5QLgk0+WEY/HOe20MwB49tnf869/vcOd\nd97NkCFDWb36Mx544B7y8wuYMmUajY0N/OhHd3HppZfzxS9+iU2bNvD447/83F/jA5EgeYDLcXi5\nYcrNXDfpBv5n+c/41Wc/py5Uy/xXzuE3//E7zhtxwUFfy+txcNb0IemuFZ9HbpYTm9VCjqf74j+X\nw0qOx4E9OxtvcSGe2gAG7UE6Jg5rZuu5UEzn3+v2pv87rhnU7A1jrKwmriXSfZVXbWmmtjkEmBn9\nlGFfT+UDkRQMIYQQBysQ9zP9+Un4474+fd1cZx4rv7LuoAPlWCzKa6+9zI9/fB+zZs0B4M47f8Rl\nl33CG2+8RkXFeAC+8Y1vMX36TAB+9KP7uPjiC1i8+H3OOONsGhsbOeOMsxgxYiQApaVl6eu//PKL\njB1bwfXX35g+9oMf/JhLLplPbW0NQ4YMBaC8fCg33nhL+pzS0jKcTheLF7/POeecD8C7777DKaec\nhtPpQtM0nn9+Ib/61VNMnFiZfs7atat57bVXmDJlGq+++jJDhgzhpptuA2Do0BPYvn0bf/rTs4f+\nhT0EEiQfJWwWG3fPuYfR+WO44/1biOhhvvrWVfz4pPu4eepth5S8ntpRtnzOHWVI7hp3DroDYZWY\nqqd3fYP+ENmbP6PRWUiTfwtOUye/JUw04MV0JLtyBDSFmM/BpByNLKuJL5Ygyxem1JpF2FBoiCnM\nHjuCHK8HwzTTBX6QbAu3dnszrYEYupE44K6ypGAIIYQ41tTW1mIYBpWVk9PHbDYb48dPZNeunVRU\njEdRFCZO3Pev0F6vlxNOGMauXdUAXHbZFfz85w/xySfLmDFjFqeffhajRo0GYNu2rXz22af8x3/M\ny3hdRVGoq6tNB8mpYLzjGs4442z++c+3OOec84nFYnz44SLuv/+h9nXXEIvF+M53vo1p7ntfNgyd\nsWMrANi1q5oJEyozrltZeWj/mn44JEg+ylw+7iqGeUfwtbeuoiXWwgPL7mFxzfvcPv17zC075aCC\n5dSO8ueRykuu2tnKtjp/xmMx1WDHngANrREiMZ24qlPvHU0ChaocD267BQqhckoZWamR1mEN14Ym\nSicUYbMqfPJZPTV6iHBhNnEtQUsowOb6MFmtcTTdYGN1W3oQSud2cXDwu8pCCCHE/niduaz8yroB\nn26RCjA7xwGmaR70Rtr8+Rcxe/Zcli79kE8//Zjnn1/IzTd/h0suuZxoNMLJJ8/jpptuzQhmAQYN\nGpT+3O12d7nuOeecxy23/Bc+n4/ly5fhdLrSu93RaASARx55LOM6AA6H45DvoTdJkHwUml06h7cv\nfZ9r3ryCTa0bWVT7Potq32fa4BO5edp3uGDEfKwW64Ev9DkUeF1MHF7A1LFF5HQKRpMT9HTieoL8\nHBczxhWxAgWrFmPWuEFkexzYrMq+ALmTVF5yeZ6DOWMKCEc1GpqDzBjXNf859XqpgSmKomRM6jsY\nkn4hhBBif7zOXKYXz+zvZezX0KFDsdlsrF27mrPPPhdIFsht3ryRyy+/CkgGm+vXr2Pw4GTxfyAQ\noKZmN8OGDU9fp6hoMBdeeDEXXngxTz/9BK+//iqXXHI5Y8dWsHjx+5SUlGKxdD+ttyeTJk1h8OBi\n3nvvHT7+eClnnnk2VmsyThk+fCR2u4PGxnqmTJna7fOHDx/B0qVLMo5VVa07pDUcDgmSj1LDvMN5\n8+J3eXz1Y/x+3W/xxX2s2vsZ33znGkbmjuKmqbdy+bircNlcR+T1vR4HXzx5RI+POx1WQMFpt2Ka\nYNE1SretQA/lEG0ffBLscH5QVwgFXDQ1bwQg1uZgiNaKXduJWzOoqG8l2za+2/zncFRLf955Ul8y\n9SOz0K/jMZu1/weUROM6uxqCDCvJwe2Uv5JCCCEOncvl5qKLLuHJJxeQk+Nl8OBi/vSnZ4nHY8yf\nfxFbt24GYOHCZ/B6c8nPz+e3v32SvLx8Tj31dAAWLPgFc+aczNChJxAIBPjssxUMH558r7/44st5\n443XuPfeu7n66mvJyfFSW1vDe+/9kx/+8J4D7vSeffa5vPrqy9TW1vDrXz+dPu7xeLjqqq+wYMGj\nGIbB5MlTCYdDrFu3hqysbM477wtcdNElvPjin3jyyceYP/8iNm3ayFtvvXFkvpAdyDvyUSzbkcMP\nZv2Ym6fdzp82PMtv1jxBbaiGHf7tfG/RbTy8/Kd8a/KNfK3ym59rzPXhMkmlZLSwqy3GntxxtHmz\ncNmt6EaCQETF63Fgs1qIagka4jGqcpJBfVM8RvagIeTMGIIRjLNd3cWJjq67vKGoxpK19el0CyAj\n9ULXE4SiKss3NHZIz9Dbz0kW/80cf3Dt9I4UzUhQ1xymrCiLrv9IJYQQQhycG264BdOEn/zkXiKR\nMBUVE3j00SfIzk7+K6yiKNxww8089tjPqa2tZezYcTz88KPpXsaJRIJHH/0fmpoaycrKZs6cudx8\n83eAZErFU0/9jqeeWsAdd9yCpqkUF5cye/ZJ6QB5f4HyOeecz/PPL6SkpDQjbxrg+utvpKCggBde\n+COPPPIzsrNzGDt2HNdc8w0AiotL+OlPH2bBgkd5+eX/Y/z4idxww808+OD9vf417EgxOyeWHGea\nmoIHPqkbNpuF/Pws2trC6PrB/9P+kaQZGq9ue5nHVz3Gxtb16ePZ9hweP+tpLhg5/3Nd/2DvORBR\nWbx6D+GYxuwJxVgUhfc/qwMFzphWjjfLkW4TN7eyJP3fn3y2k1mjC0ig8PHWVk6uKKSswENdU4i/\nLdnBl04d2SXdwhfW+NeaBnTd4LTZyT6PS6vqmVtZmh7F3WV97a89eVQhW2p8nDi2iM+2NHH6tPIu\nO9UD8ft8pMk9yz0fq+Se5Z6PRcfb/faWoqIDDyiTneRjiN1q57JxV3Lp2Cv49+5/8etVv2Lpng8J\naUFuf/8m5pSdRIGr8Iivw+txcMrkUj5YVZcOOp0OC3G181/efb+fmapK0eZP0duyURUbWsBF2L+F\nBptJNKIyYo8P/dN6fJ0C34CmoLXYKYm3kHPKKBSHA5fDhvUgOnekUjM6917uqTuG5C4LIYQQxw8J\nko9BiqJw1rBzOGvYOfyz+i2+8uYV+OI+Hl7+Ux6e92ifryf1bxX1rWGWVtXjctgyOlLYLAp7fRHC\n3nE0ez2YKOnUC7fdQsxtUGuEOHHOaPIKPJkXD2vY1zTgYyhKezqGqhksWVuf7nTRWSoFY9XWZmqb\nQsTVBPWtYTr2Xu6uO0Z/5y4LIYQQou9IkHyMO2f4+Vw85lJe2foSf1z/e66Z8PVDntT3eeXnODlp\nYimgZKRXpDpSALz/WR1ZZYOYNa08+aT21Itsj4NQRMViUfDsp6hNSRgY/vZWdLEoON1MHzeYHE/P\nbeCSaRf1TBpZyLod1sPujtEbpHhPCCGEGFjk3fg4cM9JD/D2zjeJ6BF+/OFd/O3CfxzxfoOdB5bk\nZjtwOax4s/ZN6HM5bOm8YafDAih4sxyYqkrptpVYQzmYDitW1aC4IUA0vD09fCQllW4xKNZMNLod\ngLz6CK0Vs8jx2DNyjENR7YDBb+fuGDarBdNqJRRR9/u8g7G/dA0p3hNCCCEGFgmSjwNl2eXcduJ3\neXD5Ayzd8yGfNixnVunsI/qaPQ0s8Yc6tmbbF4zGVQMUJf3f9aOnM3R0AYrHQSKq0ba9mYrKUnI7\nF+Ol0i0SZbjbd6F9axrAmhlMh6Ia766oyTiWSvnQjWRgvHxDI3rCzOiOYbEouN0OolGV6eMGf66v\nyf7SNXpjwIsQQggheo8EyceJ66fcyIJVvySshXh+48IjHiR3lspLXrW1CcickgewqzFIXEtgVRRs\nNoXqVg1jdwSXo30H15ODsyAfW6c8YZstjk2pR+lQBKgkDMx4DN0fQNeT58fCGolYjBNH5pHdPsQk\nGFGxxKPMmVKW3tHumAbizUq2p8Nm5d/Ld2FICoYQQghx3JB33uNEtj2bi8dcynMbFvLatld44OQH\n+7R3cn6Ok9OmlpPK8ghGNbLddqaMGYSZMAmE49S3RJg2dhA5Hgcd85eh544Tqa4YCibR6A4A8vaE\nqXcNIhDZDvZk8BzQFGI+Bwm/mj5mVw3KGoPkzBmRkZaRSgPJy3ZisyXTLfpDXDPYtLuNkkKPBMlC\nCCFEH5N33uPIV8Z/lec2LCSqR7l/2b1cPf4aJg2agt3ac3Fbb8rP2ReI5mU7Gdre89gXiuO0W7Fa\nLfTUtVs3EvhC8S7HgxrUjZyO05KgcloyXcG3qg67xYZ3Sgl5We33FtZwbWjCO6EofcwfVmnd2JTu\nigHJ6X3d5SR31yqus54C+QPpKVe5c163EEIIIfqOBMnHkamDT2Ri4STWt6zjuQ1/4LkNf8Btc3Pi\n4BnMLp3DrNKTmFE8E68zt8/XloqNq3a2AmbGRDxItm3zhePkZTnTk/MgOT2vJmgwvCSZjqEbCQy3\nDwUFW64XW/sOsc0Wx+IKZhyz2uIknKH0tTpP70vlJGOxsLM+iKol0rnLHdfQUXet4w6kp1zlVJ5y\nNK6zaVebpF0IIYQQfUjecY8jiqLw4KmP8MMl32dDSxUmJlE9ykd7lvDRniXJc1CYUFjJrNLZzC49\nidklJ1Gec2QLyiwWhUG5bhSFdEu4zukWqSl5syYUZ0zSS+7qKpw6pYxstz2922xVoxh+P7qePFdv\nz0numKdshFVskWD6vFhYw4zHKM+xZuQkm1YrsZjKnAklPU7xC0a0I9Y6TtIuhBBCiL4n77jHmTll\nc3n/io/wxdpY0bic5fWf8EnDMlY1riRmxDAxWd+yjvUt6/hD1TMAlGcPYXbpHOaUncQ5FWdRbh9B\nquCuN3Sc0JcKQju3i+vpWOp4lmvfj7KiaxRt/pRoKDfdMi6Vkxzwb0nnJMdUg/yGANGAF9Nh7TK9\nr2NOcsc85f0JR7UeH0t29OiarpE6Ho7pB7y+EEIIIfqGBMnHqTxXPmcPO5ezh50LgGqorG1azSf1\nH7O84WOW1y+jJdYCQF2olle2vsQrW1/izkWQ4/Ayo3gmJ5fP42sTv3HE0jNS7eKga8u4zOP7As9g\nRMO02WkaN5NJk0v2tYzrISe5rap+X2u5bqb3HYqDnfTXOV0jpurp9JL5c0d0SdeQ3GQhhBCi70mQ\nLABwWB3MKJnFjJJZfJtbMU2T7b5tLG/4mE/ql7G84WO2+7YBEFQDvF/zHu/XvMf/rn2Kn5zyEP85\n6ku9NqCkc7s46NrTOJWb3DHATOUvA5guD9bc3IycZJuyN6NVXE9S0/t03YFps2BaLVji0QM+L2Ga\ngHLASX+dBcIqoajG7sYQvlC8S5B8oB7K0ipOCCGE6H3yjiq6pSgKo/PHMDp/DF8efw0AbWoz6wOr\neW/rB3xUu4TVTatojDRw/T+/xp+GPsdD837BiNyRh/V6HXdLvR5HRrs42Ne/ODlCujWdm5zKSe6Y\nvxyO6Xy6sTHj+qaqUrBxOdG2nHQKRk/pFqnpfWaHwr386lbMqUOBA6dDdJ70dzDsViuqbnQ7aORA\nJGdZCCGE6H3yjioOWpFnMF8q/xKnl5yDrif4V/Xb/HDJ99kd3MX7Ne8x7y+zuX3697h52u04rYcW\nJHbeLe3YLi7F5bCR4+luvLU1o3WcYSS65P4GtcwpfkDXSX6dpvflZjmwtu8kty3bfVgpGCn7G4kd\nCKvEdQPc5anpAAAgAElEQVTDSHa56K7V3eG2lxNCCCHE4ZEgWRy2/xh+HieXz+OXKx/hydULiBtx\nHl7+U17e8n88evqvmVM294ivofvUjH0pGDaLBV84jstuo7bzFD/ImORns8VRnD4MzHSqRqpwL+Fs\n4nB1NxK7I11PEIlpBCIqKzY1sbXW3+15PbWXk5xlIYQQovdJkCw+F4/dw4/m3MulY6/gzsXfYdme\nj9jm28qX/3EZn1y9miJPUa+8TioQVDoFgp0n+QEZKRgAS6samDSyAJvNkpGWAV13aK1qFMXQu+Qk\nWzu0iuuOEVaxxGMknO4uj6V2kPeXq1zXFOJvS3Ywo6KI8vYhK6GoxuqtzYwuz2XT7rYed6IPlLPc\nFyQvWgghxLFG3s1ErxhXUMGrF77JwvW/467FdxDSgixv+JgvjPxir1w/FQh2l4rQfWqGNaOdXHdp\nGp11HnGdkZO8s4Wob18+c2cx1SCvPkJrxawe72F/ucqBsIrNaiHHk7k+3UjgcQ38v6aSFy2EEOJY\nI+9motcoisK1E77OfUt/TESPsK5pda8FyX1BcThoGjcTxdCpnDYkMyf5wx2Mm9ChpVwn/rCKb00D\nWLsPooUQQghxdJEgWfQqq8XKxEGT+LThE9Y0re7XtfhDKoqSzFEORrof5NFRIKwSVRw43K4uOcmG\nJyejpVxnyRHXvv2uZ3+DRoIRFd1IZBTupXpAJ9euE45qA37YSEzV2bQrImkXQgghjnryLiZ63ZSi\nqXza8AlLahfx3x/+gJum3kppdlmvXPtgitQ6FvOl+ivH1QT1rWE6FvOlei2nxFSdPS1hhpfkYLNa\nur/4YTrQoJFQVEPVEqza2pwu3EsVIAYjKtvr/KhagotPGzUgu1ykvi+aYUrahRBCiGOCvIuJXnfu\n8Av43brfoiZUnl77JH+oeoYrK77CLSfezjDv8M917YMpUutYzJfZX9maUcyX6rWckir4O3VK2WEH\nolY12qXATw9r6LEYoDB1eAHZrq7XDkZUHHqcOVPK0mtKrWdEaQ57msOYJj0W7/W3/eWMCyGEEEcj\nCZJFrztt6Bm8e/kSHlv5C17f/ipqQuXZDb/nhY1/5OIxl3Hbid9lbMG4I7qGjsV8nfsrJ491X8Tn\ncljJOsxCOUXXKNr8KdFQbkaBX0BTiLc6wFRIRLaBvevAELtqUNYYJGfOiIw1uRxWst12rFZp7yaE\nEEL0JQmSxRExadBknjn3j2xt28KCzx7lpS0vYpgGf93yF17a8iLzR13I7Sd+l0lFU47oOjq3juuY\np9w5PzmVA9zxuM1qAdvBFeOZNjtN42YyaXKnAr+whnNNA6DgnVJMXta+neRQTEc3TLSIyp6tLZyg\ngdIpJzkU1TAMk7jWdW0DMfVCCCGEOBZIkCyOqDH5Y/n1Wb/hezN/wOOrHuPPG59DTai8vv1VXt/+\nKo+f9TSXj7vqiL1+Kg2gLZgMPDvmKYOCy2FF1xP7Bo40hwATlyP5V8NiUXC7kwHvweQpGw53lwI/\nmy2OxdkGKNhyvenHQlGND9Ylh4zEVIPqNo1EVUM6b1nXE4SiKlU7W/GHVUySaSId85rPnjGUhGny\n6ca9zBw/GK/n8KcCHknSR1kIIcTRRt6tRJ8Y5h3OI6f9ku/OuJMnV/+aZ9f/noge4e4ld3LakDMo\nzirZ7/NVzaDJF6Uoz43Dfuht1rrLU04NFgmE1R4HjtisFnLzPISCUdyOw//rYonHMFDQ/QF0Pbn7\nGwtrJGIxThyZh5kwsUZDzDjBQ06nQHdPS4Taeh+lhVnptQUjGis3703nKAcjKolE1zSOvtZTYaX0\nURZCCHG0kXcr0adKskq5/+Sf8cVRFzL/lXMIqH7u/vBOfnfus/t9nsNuTU+iO1yd85Q75iT3NHDE\nZrOQ73WhGAa6fnhFc6aqkrd1NQ2uQgKR7emc5ICmEPM5SPhVHKZOWUMAe9QLnTpg2CMJsn1WnKW5\n+x2GMhAMhOl/QgghRG+QIFn0i5kls/l65XX8vup/eX37q7y9803OG3FBfy8LSOYtp9isyT7J/mB8\nv50lgpGeeyArDge+MVOxo+CdUrIvJzms4drQhHdCEZG4xp4NjZSNG4yr006y1hIhFK4jxyCdk5zM\nV07mVVt7uV2dEEIIISRIFv3oR3Pu5a2d/6A+vIcfLP4uZ5xwFk7rkd8l7SklINHeYHnV1qaMc91u\nB9Goiqoa3fZX7nzt7iScLpROOck2WxyLK0jc4WbpJh/V/gTG7gguR2YbtVBUQzUVGloj6ZzkjnnV\nYGKxSKAshBBC9CYJkkW/yXF4+X9zf8J//esb7AnXUdW8lunFM/f7nEBE/dxFaj2lBORl78tbTknl\nJPt9EVoDsW77K6eEYzqfbmw85PUY7bnEHXOOOwqEVQwjASgZedRgMnlUIWu3N/d7PnJvfF+EEEKI\ngUSCZNGvZpeelP682r/zgEGy3WqhfFAW9iOUYtAxbxk65SQbiR77Kx+MzoNG9PbCPT0QxIzH8CR0\nsvQo2bqR8TxDV8kyopjWznnUtgHTAi6RMPdbPGixKLgcNrbv8TNhWIEU7wkhhBjw5J1K9KuSrFJc\nVhcxI0Z1YOcBz3c7bVQMy++DlR2+jjnNkNwJ1iJxirYux9eWQ7S9O0dQVwgFXLQ0xIkF7QzRWolG\nt2cMIoFke7iiOh9RbPgnlaevGVN1ghGVuGqAonTp+9xRf/dU9noczJlYzAer6hhVlitBshBCiAFP\n3qlEv7IoFoZ5h7O5bRNLahfx1YnfZJB7UK9d/2DSAHrKUT5U7SnNGTnNkBxcsqstRq13HDsVK4Oy\n3NisFqJagoZ4DCXbQZOhkj1oCDkzhpDVaWy1P6xS9+luqts0fJtbcTn86ZzkuJagrjlMXraT5Rsa\ne8yVhmRP5YGy8yyEEEIMdBIki35XUTCBzW2bWLrnQ2Y8V8nXKq/j21Nvo8hT9LmvfaA0AOi9tmUd\nezF3FAirxNUEqu7BbrNy4onl6bxio70/87odrcydUkbuoKwu17Xa4mjOLBLWMJNHFVI2KCudkzxp\nZCFOu4W5laXd5kkDXXoqCyGEEOLAJEgW/e7euQ+gJlTe2vkGET3Ck6sXsLDqGb468Zt8e9ptDPYM\n7u8lHrTOOc0pTocFFHDaLT32Z85yHfivY7bbnpGTnHyubcD0Tw5FNVZubjroAj6ZxCeEEGKgkr5R\not8NyRnKH8//E+9d/iEXjPgiABE9wlNrfs3M5ydxz0d30xg59K4RAE67lYoT8nEexpS+vmCJRzEC\ngWQBnz+A7vN1+TD8fqyxMBYtjhEIpI9Z4tH+Xn4XB7Nz31FqEl9cMw58shBCCNGHZOtGDBiTBk1m\n4fkvUNW8jkdX/A9v7HiNqB7lN2seZ2HVM3x/1t3cMu32Q7pmbxb69VbucoqpqhRsXE6syUss7Cbg\n35KextdRTDUorA3SonuJrWjA57EQUw0KGoOYFfsf592bQlGtx5SNZCGhQTCS/LO7IsJoXO/Vr58Q\nQghxJEmQLAacykGT+P15z7G+uYpHV/4Pr29/lZgR44Fl93Di4OmcXH7q57r+4fb0/by5y3HVANNM\nB5BBDepHTyev3ItSG0QZU4Di6VpYl4hqtNjqCbfGcc0YTl5RFv6wSuvGJk6w901P4lBU490VNT0+\nrusJQlGVVVuaqW0OASYuR9f/vUjxoBBCiKOFBMliwJo4qJLfnfssG1rWc/FrX6A11srdS77Pe5d/\niM1y+D+6h5oS8Hmlul7s9UUBs8PUPJ3qVo2AEWFXYwTD6iC7myAZwHBlYTrA6vViy8vBaouTcIb6\nZP1Aegd5+rjB5PSwRkjuKC+taugyFEWKB4UQQhxtJEgWA96EwoncPftevrfoNja2buAPVf/L9ZNv\n7O9lHbT8HCcnTSwlriXANDtNzVMYUZpDc2Mr00odlBR27W4B0Oiz0djoS+YkOw2MsIotEsQMOPo0\nNznHYz9ggWB3A1dCUY2d9QFmVAzu8nxdT7Ct1s/EETJkRAghxMAh70jiqHD1+Gt5bsNC1jSt4qHl\nP2VsfgWnlM/Dajn0grz+KObLzU51sLCTl+NMp3m4HFaybSbj6tfiqqrD7KGNmxJJ4G5RiK3Yk85J\nzm8IoLdkUdAawTzxBKD/u1v0JJEwiWtGt7v3eiLBtjo/o4fIkBEhhBADh7wjiaOC1WLlwVMf4YJX\nziaoBrjs9QspzSrj4jGXcenYK5g4qPKgr9W5mO9wc5QPldNu5ZTJpV1fw+5g+5ApTJs5jLyi7G6f\nG2wKE/1oN64ZJ6Rzktuq6hkyspDWXX4UR9/kJqf0VMSXKuDrXLgXjKjoRoJgRCUU1dJ5yRaLQrbb\nQTim9cm6hRBCiIMlQbI4aswomcVPT3mYh5f/jIDqpz68hydWP8YTqx9jQmEll469govHXEpZdvkh\nXbcvc5Q7jqxOBZShqEbU4iBkcxOyubt9XtSeIGF3ZOQk654QijeXhLPncdRHwv6K+FIFfJ2n//lD\nKr6QyopNTWyt9acL+LweB6dMLuWDVXV9tXwhhBDioEiQLI4q10++kWsmfJ1/7XqHl7a8yLu73kFL\naGxoqeL+ZVU8sOweTimfx6Vjr2D+qP8kx+Ht7yUD3Y+sjqk61Q1BAmGVtmCcf62oYcig7G5HS8dU\nHQCrtf9bmx9sEV9HdU0hapqCjB+ez57msBTwCSGEGPAkSBZHHZfNxRdHXcgXR11IW6yV17b9jZe2\nvMjyho8xMVlSt4gldYu4a/EdnDfiAm6aeitTB5/Y4/X6Ike5u5HVHQv36lvCeFx2Zk0o7na8dCCs\nYtfiuOJhdJ+WUbhniwQx/H50vfuUCyOsHpHivoMp4ksJhFVsVst+pwrGVJ1NuyIyfU8IIcSAIO9E\n4qiW7yrga5Xf5GuV36Tav5NXtv6Vv275C9t924gZMV7d9gr/2PE6D837BddM+Fq31zjYgSOfN3e5\nu5HVLoeVbLcdq1XBaevaFSLFVFWKt64gGszBdFgzCvfyW8JEA15MR/dBfnrwSD8X9+lGglVbm7F3\ns1MOoGoJNu1uo6TQI0GyEEKIfifvROKYMTx3BHfMuJPvTP8+q/d+xktbXuRPm54nrIX47ge3sr55\nHQ+c/BB26+ENszhSucuKRcFhs2bsMnc5x+Ggdfwsxo8vIjfLkVG417ajhYrKUnJ76IyRGjxypIv7\n9jeRL1W45w/FyXbbMwr7AmEVVZf0CyGEEAOLBMnimKMoCtOKpzOteDrXTPw61755JdWBnfy+6n/Z\n1LqRZ859lkHuQf29zLSEYVJc4MHsMI2vs0BYJaI4CNvcWG0OInYbuicHxZuL7lGx5uZi6yH1oS8G\njxxoIl8oqqFpCfb6orSF4umBKgBxzWBPc5ioWnhE1yiEEEIcCgmSxTGtomA871z6Pt/659dZVPs+\nS/d8yLkvnc7C8//EpEGT+3VtqWK+qp0t1OxNjnLuGDzqegJfOE5elhM9kaC6IUjncc8DoZAPDlzM\nFwirGEYCVU/gsFkyJvKlpvG5uxljLYQQQvQXeVcSx7x8VwF/nv8y9y+7h9+seZya4G6++Mq5PHPu\nQs4edm6fraNzTnOqmC8YUbtM44N9I55nTShuv4KS8bjNaunTLhGWeBTD78dEIRGLofsD6HoyINbD\nGolYDLcWJVvXuzzX0FXcpgZ2B067pcfc686icZ1dDUEp5hNCCNHn5F1HHBdsFhv3n/wzKgdN4o73\nbyGih7nmzSt5eN6jXDvx6wd1jc/bBaO7nOb8HCeKQvs1zS7BY2rEc8fPOz7uC8UPay2HylRVCjYu\nJ9qWg6rYiPkcBPxbwJ68l4CmdDnWUUw1yKuPEB01Hez7dr8DEZUP19YT14xuXzeuGVLMJ4QQol/I\nu444rlw+7ipOyBnGtW9diS/u43uLbqM2WMMPZ/83yv4q5zj4LhiHQ1Egy+XAYtn/GvpLx8JBFwqu\nDU14JxSRl9WeWhHWuh7rwB9W8a1pgE5jxBMJk1BUA478IBchhBDiUAyMhMZ2L7zwAmeeeSaTJ0/m\n8ssvZ+3atfs9f+HChZx33nlMmTKF008/nQcffBBV7dvpY+LoM6dsLv+4+F1OyBkGwK8++zk3vnsd\nMT3Wb2ty2q1MGllIImHiC8XxheLtE/l0AmE1Y9xz6nFfKE4w0nfjnBNOd7JAMNeLxeXCluvFlpeX\n/Gg/Fne405MDO36EbW6iih1VM4h3uI9AWCXefiwc03DYrQP2FwUhhBDHlwGzk/zmm2/y0EMP8cAD\nDzBp0iT++Mc/ct111/H2229TUFDQ5fzXX3+dRx99lIceeoipU6dSXV3NXXfdhcVi4a677uqHOxBH\nkzH5Y3nzkvf4yj8uY3XTKl7Z+leW7vmQ6ybdwFcnfp1cZ16fraW7aXyQTFGobgiiGyaBcBxfSKVz\n4V6KbQAU8KmawZK19enCw45iqkFdc5gsl52mmJYuUIyperpo0bnNhsthxXKAHX0hhBCiLwyYIHnh\nwoVcccUVXHTRRQDcd999fPDBB7z88stcf/31Xc5fvXo106dP54ILLgCgrKyM+fPnH3D3WYiUwZ7B\n/O2iN7nhX9/gneq3aAjX85OP7+WXKx/hK+Ov5VtTbmJE/vBee72ecpq7m8YHqYl8JpNGFrJiUxNZ\nbgdzK0u7TOSzWS1kuw+v93NvSpgmoHTb4aLjvazb0ZIuQEzuJCeLFiePKmRLje+AxYhSzCeEEKIv\n9P/2E6BpGuvXr+ekk05KH1MUhblz57J69epunzNt2jTWr1+fDoprampYtGgRp512Wp+sWRwbsuxZ\n/PH8P/P8BS9yUtnJAIS1EE+vfZJZz0/h+re/zso9K3vltVI5zZ0Du0BE5bMtTVgsCnnZzvSHN8uB\ny2Ejx+PA6bDgtO8r3Ov40R8BcqrThe7zJT/8ARLxOIl4vL3DReZHVofPPaaWvg9vlgOn3YqzffLg\nwUgV8/VU7CeEEEL0hgGxDdPW1oZhGAwalDngobCwkJ07d3b7nPnz59PW1saXv/xlAAzD4Morr+Rb\n3/rWEV+vOLZYFAvnDD+fc4afz2eNK3hq9eO8vuNVDNPg5S1/5eUtf+XUIfO4ccotnDH0bKyWw+tu\n0ZOeJvlZLAo5HgfKAMvR7djpIjUKO6ApxFsdYCoEItu6dLjoOEa7oDWSMSJb1QwaWiNMGd13+dVC\nCCHEgQyIILknpmn22HHgk08+4emnn+a+++5j8uTJ7Nq1i5/+9KcUFRVx0003HfRrWCzKYRUKpYY4\nDJRhDn3heLjnWeWzmFX+LLv81Ty1+gle2PAsYS3MktrFLKldTJ4zn1OGnMq8Iadx6tDTGJs/7oBd\nMQ7EZrVgsSjYrBZstn1f2wKvi3Nnn4AvGG//Ge16zue5fk+6+z53vAZuF76Js8mZUIS3vR2dNazi\n/qwBFMifVkJeh5SQUFQnEoxRv2kv+cMKqK/xMyJhwR7VCMd0VD1BVNXbPzcIx/R0jrWqG+TlOHHY\nrem1H+r9HIzj4We7M7nn44Pc87HveLvfvjQgguT8/HysVivNzc0Zx1tbWyks7H5U7YIFC7jwwgu5\n5JJLABgzZgyRSIR77733kILkgoKszxXkeL3uw37u0ep4uOf8/Ik8PfxJHjz3Jzy94mkWLF9AQ6gB\nX7yNN7b/nTe2/x2A0uxSzhxxZvpjeN7wQ34t02rF7XaQm+ch3+vq9nGXKxl0GhYLpvUQd7Jt+79+\nTzp+nzuuEcCZl0vBsDIK2q9nC8Tw7AgDMOiE0vTxQFjl3Q93EI3r7A4pJJo0agMJVm5txu20oekJ\ntIRJOKqzYVcbzb5Y+rGU+aeMzMjDPtDX6/M4Hn62O5N7Pj7IPR/7jrf77QsDIki22+1MnDiRZcuW\ncdZZZwHJXeRly5ZxzTXXdPucaDSKxZL5W5PFYsE0zf3uQHfW2ho+7J1kr9dNIBDF6MOpZ/3peLxn\nm9XND0/9IddNvJG3d7zF4poPWFyziC1tmwGoD9XzwroXeGHdCwAM947g1KGnMW/IPE4ZchrFWcX7\nuzwA/mCcaFTF74ugGF3zbFOPK4rCohW7uzyu6Ql8oTh52U7s+9lZDQWj3V6/s+6+zx3XCHRZrz8Y\nJxZTASXjuK/9eeOG5hOLqUweWQBmguljBpHbHvjWlmTT6o8yYVg+O+z+9GOBiMqKTXtpaQlhqPsG\nqBzo63U4jsefbblnuedj1fF2z8fb/faW/PysA54zIIJkgK997Wv84Ac/oLKyMt0CLhaLcfHFFwNw\n5513UlJSwh133AHAmWeeycKFCxk/fnw63WLBggWcddZZh7QznEiYXXJBD4VhJND14+uH8ni8Z5ti\n57xh8zlv2HwAGsMNfFi3mCW1i1hSt4iaYDJ4rQ7spHr9Tp5bvxCAioLxnFI+j1PKT2Nu2cnkuboO\nI9GNBNG4zger6pg3tQyvx9HlcafdytQxg7od5ZwaXz2zYnCXzhfp9VstuB22Q/q+dfw+60aCRMJM\nd55Ifd7xcaJRDBRirT5i8WQRXiysoUeiOOIOPGoEdzyMR43giodx2ZI5yM54BFvCwO2w4rBZyXLZ\nyHbbM16z47p1I4GqGmza1cbEEQW92uHiePzZlns+Psg9H/uOt/vtCwMmSL7gggtoa2tjwYIFNDc3\nM378eJ555pl0j+SGhgasHf6Z+aabbkJRFB577DEaGxspKCjgzDPP5Pbbb++vWxDHkeKsEi4ZezmX\njL0cgF2Baj6sXcySukV8WLeYvZFGADa1bmRT60aeWfc0FsXCVRVf4Z6T7iffta/3t9NuZVRZLtUN\ngW5/YUsV8BV4XV0C6JTuRlb3JVNVydu6mgZXIYHI9i7jqmPNUfKb/egtWeS3hIkGvOmiv1gkgbtZ\nIRwqZ2d9gBkVgw94H3oiwbY6P6OH5EobOCGEEEfEgHp3ufrqq7n66qu7fezZZ5/N+G+LxcK3v/1t\nvv3tb/fF0oTYr2He4QybMJyrJ1yLaZpsadvMh3WLWFK7mI/2LMEf95EwE7yw8VneqX6T+09+kEvG\nXI6iKLidNkYPyaW2KdTttb0eB2dNH9LHd3RoFIcD35ip2FHwTinpMq7aNTyXth3NDBlZSNuOFioq\nS9PpFsGmMNGltZhWG3HNOOC/7FgsCtluB+GYdMMQQghx5EgppBC9TFEUxhVU8M1J/8XC819g09d3\n8u5li7ls7JUANEebuend67nijS+x07+jn1d7aPyh7kdkB8IqUcWBarETsbnS46gjNheqxU7U7iZi\n92SMqe54jqZYCMc0dCNBMKJ2Gcsdiu4LiL0eB6dMLu0ylEUIIYToTQNqJ1mIY5HVYmVy0VSeOPu3\nXD7uKr6/6HaqAzv5oObfnPaXOXxv5g+4avTA7u/dcXR2TNWpbgjScUR2KKKxpaYNp8PG0qr69PHU\nuaqus6c5QlxLUNccApT0+OpQVEPVEmze7cMXUlmxqYmttf70WO7UuWfPGDogJgsKIYQ4PkiQLEQf\nOm3oGSy68mN+ueIRHl/9K2JGjJ98/P94betr3FDym4xzAxGVTzfuZeb4wT3mIveVjqOzkyOmlfRo\naYC6phDb9vgpLfRkjM5OnTtpZAEuRxuVIwqw2zKfGwir2KwKI0q9tARizKgoorwoOz3Ken/jqmOq\nzqZdERlRLYQQotdJuoUQfcxtc3P3nHt477IPmVkyG4B1Lav4LPBexnk9TeLrL/k5HcdlZ47IzvE4\nsFkV3KaWOYJaj+FIaLj1ODZdTY+szupmZHWWHsNuJsjx7BtZrSgKG6pbexxBrWoJGVEthBDiiJCt\nFyH6yfjCCbz+pXcY//sRtMXbCNq2H1aebar7xeH0++5NVkOjdNsaovG8jHHVMZ+DYItGLGRPd7nI\n6G6RGlm9Nwd3sxVTG52+pmmahGMGTrv8Pi+EEKJvSZAsRD+yKBamDJ7GBzX/Zldsw2GlDAyU7heG\n1U796BlMnV6W7lyR6m6RMzwPV7UP1/BcGrbspWzsYFztKSRaRGXP5r0MHZxDUGsipJEu3IurBqqe\nANNsT8uwkO22p38xUPr5FwMhhBDHLgmShehn0wafyAc1/2Zd0xriRhyntX96HR8qf0hNfx6MqMmh\nKIqdsM2N1ZYMgCM2a7K7hc2JarHTmrCz1ZdA2x3B5YgDyZ3kan+CgKISNy2s2tqcLtyraQphGCZW\nq8LSqoZ0AV/qFwNfKN4v9y6EEOLYJ0GyEP1sevFMACJ6hC+/cSl/OO95vM7c9OOhqMbKzU0DooAP\nMjtdpCRbw2mYZog3lu5kcJ4Hm82S7m4RV3XqWyPEVR2AaWOKKC5wA6QL9CaNLCTLZUsX/iV3knVU\nPYHDZum2gC+m6jT7o8RUHTg6frkQQghxdJAgWYh+dtYJ53De8At4u/pNltQt4j9fPZ+/zH8ZF8mp\nfAOxgC/V6SKlrinEzgY/RbluslwOZk0oTge6qe4W63a0MmlkAeur2ygucGdM1XM5bOR4HLgctozJ\ngU6HFRQFp92Sbv/W8ZcGVUvQ7I+hajKKVQghRO+Sahgh+pnVYuX35z3PV8Z/FYANLVV84ZX/YLt/\naz+vrGepThepD2+2E4/TjsNhxemwpANdb5YDj6l26XKh+wPoPh+6z4fh92OLBDEDyT8Nvz993BKP\ndXntgfZLgxBCiGOT7CQLMQDYLDZ+cfoCSrJK+fmKh6gJ7uaqt7/AQzMW4rAV9/fyDijHbeeE4mzi\nnXZ0TVWlYONyYk1eYmF3ustFwL8F7MkgtzWawNkYom2vB2drhL2t2/DbrcQ1A+feKL5hk8G0E4wk\nJ/Al/0xO/AvHNKwWixTwCSGE6HUSJAsxQCiKwp2z7qY0u4zvL7odX7yNB9fdxj+Gf9jfSztsisNB\n6/hZlA/Lw1XtT3e58E4oIi/LTiims/KzempiIYq9bhqNKM252Tjbg+TqWBiPZtIcDMPmJupbwsTV\nBPWtYSAZZBuJBBZFgmQhhBC9S4JkIQaYayZ8DZti47b3b2JXoJrnNj3DKC7q72UdlLhqpNu1QbIo\nL9L332QAACAASURBVKI4iNhcqJZIustFxObCZnMQUFQ0i53iknxmjCti3Y6WjMI9paqeSSMLWbej\npf1PS/ufVuZWlhCKauzYE2BbrY+CHKdM3RNCCNFr5B1FiAHoyoqreW7DQlY0LueJtb/gvtHzgPJu\nzx0I46tTHS/2+qKAmW7XlupuEY5q7GpM/tnkT57jctiIqTp7WsIML8khL8fVpXCvY0Ff5p/W9Fjr\nhGlS3RBkyuhBEiQLIYToNfKOIsQApCgKD5zyIOe/fBYhLcgrDQu4IPGbbs8dCIVs+TlOTppYmsxJ\nNk3mVpZkdLcYUZpDfWuEypEF7KwPdnn81CllZLkO/n9H8f/P3p3HR1Xf+x9/nTmzZZKZJCQhC/sq\nm4CAoIiIqHWpWK1Wq9Zqba3W3q63drXtVan22nu9V7v+rHaxaq1aa28FtRV3EUVEBNmXQCD7Mvty\n5iy/PyYzZJlA9gT4PB8PHm1mPSdmDt98+bw/n6TBmx/WMGmUb8DOSQghxIlNulsIMUzNLz2VT075\nFABvtTzLiueW8vTOv6Cb+hAfWXb5eakd3qL8HApau1/4clO35eU4yDET5LZ2ufDocfL0WKbrhSsR\nzXS5SHe3CNY3kQwECNY1oYXC7YN7CYOmYJxwNIlNUUjqqSCfP5zAH04QjiWH+tshhBDiGCc7yUIM\nY/+xeCWbGzaxy7+T3f6d3PrSTfzX+p/y9fnf4oqpV2G3Da+PsMuhsmR2eeeyj6TGpIOb0NVq4onc\nTHeLYFIh7ncSDOzEaekU1gaJBX2EbXZea3QQCCcIHzhIKJYkZqnU+OPohkUkruEPa2Clyi1qm2Os\n3VKD23n4+3HugjGZ3spCCCFETw2vv2GFEO2U5Zbz6lVv89ddT/K/G/6LvYE97A3s4asvf4n/fu8/\n+cb82zhv1GVDfZhH53CyZ/QcJs8ZhbsumuluQSSJe2sDvhklKFi0bKlh2qxyLBQcm2oZoWnMmVjE\n1oNBZk4vywT7ANZuqeXkiSMACxSFxbPKcTps7KwKUN8cbTeZTwghhOgpWSQLMcw5VAefnnYtV0y9\nimd3/5X/ee9n7PLvZH+wkq+/8mVG5f6UJb6rya1bwkymUOopQ7Wpg3qMwajGmx/WkEgaBMLa4dsj\nqZ7G4ViSmM1JxO5GsyUz3S2idjXT7UJRFHSPFzU/NZJbcflRXS58pUU4A2a7iXwAbqeK1+NMTeVD\nydxe3Xi4PZwQQgjRW7JIFuIYYbfZuWLqVVw2+Qr+sedZ7ttwL9ubt3EoUsVfIvfyl5p7AXDYHIzK\nG80Y3zjGeccxxjuWMb6xjPGOY5xvHCM9pdiU/o0jpMODiqKwcVdD5vZ0d4tgRKMllOD1TdUkdZO2\n3S0qa0OZrwHsqq3bu8CReJIDdWHKijz9ej5CCCGELJKFOMaoNpVLp1zOJZMvY9Xef/Czd3/K9paP\nMvcnzSSVwX1UBvfxRpbnO21ORnvHMMY7lrG+8YxtXUSP9Y5jjG8cFd6yXh1XjsvO3CnFmfZtQPvu\nFk0Rclx2ynNNTh/rIc/jJBhNYiUSLBqbi8/jwK4quBMR/JEkViKO3dQz46qtoBNbItbuPU3TQtMN\nPC47Npsio6qFEEL0G1kkC3GMsik2Vkz6BOeMuogPDuyDnGbq44c4EDrAgeB+qkL7qQodoCp0gISR\nyDxPM7VMbXM2btXNuIJxjM4by+i8sanFtHcsY33jGOMdR3FOMUoXE+4K8lztFsnQWhaR6yTHZSdH\nMRm9dwNqIh/LqWIlFSy/Eyu6B8thkQT8QDCpEG1wUJJopqXFjas5Sku9B3dLjMC0MhSHM1PGATB9\nXCGmmRpikkimBppEYslOxyKEEEJ0lyyShTjGedwOFk+d2uX9pmXSEK3nQHrRHDzAgdD+1oX0AQ6G\nqtDMw3XEcSPOjqYd7GjakfX1cuw5rQvncZkyjiJHOVGtgq4GnuS5HYwt9ZLQdBpOOpWTZ5eRn+ts\nF9wryD3ciSLSHKPm1f3UOQtp8XmoM2KU+nKoNRM072jGblMIxzS27GvGH9Z4b3sDuw4GiGs6VfVh\nwOKND2s4d8FoGv1xxpV5ZdCIEEKIHpG/NYQ4ztkUG6W5ZZTmlnFq2aJO95uWSV2klgOhA1SF9nMw\nfIC6RDW7G/ewP7Cfg+Gqdr2ZY3qMnS072NnSfhHtUNycMu0V5uXNPOLxGM4c1Px87Hku7PYENncI\ne74Pe5tdXyWhgt1OSaGbBbPK24ylbsoMIgE41BCmpinCgmkljCrJa91JNlO7yUA0rrP9QAtlRR5Z\nJAshhOgR+VtDiBOcTbFRnldBeV4Fi8pPw263UViYS0tLBF03MUyD2kgNVaH2O9Cprw9wKFSFYRkk\nrTgr37mdL4/7eb+NyHba1U5jqduOra5piqQGitiUzG0uh3p4TrYQQgjRS7JIFkIckWpTGeUdzSjv\naE5jcaf7dVPnx2/8mN9+9HPerF3DKa41zD/p0+0ek64VTiQNUJTWQN/hFnHpr9NCUQ2jGx0uTNNC\nN61MYM9mU8jLcaAlh+dUQiGEEMcOWSQLIfrEbrPzjfm38czuv9CUqOfJ2v/mFvNywJXZ0N2yr4mq\n+jC6YWBX1cx0vHA0SWVlHUooSG7O4ctRS1QnHI5ji6vEmv2t46ltJAMBWmpc6K271MGGIJaeCvD5\nw6lw4uxJRbzy/kESmkE0LuOphRBC9I4skoUQfVacV8B/nHEnX3n5FuoSlfx43W38zzn/S6HXxVlz\nRxGKami6iYKChcXiWeX4cp0cqm7G8+4aprsL8CYPl2fUxG3sNXKZGGrmnddrM+Opw7Ekbxyqxq6m\numsENQtiKlt2N1DTFAUgrhlUNYQBBbZCjrtvl7lYQmd/bUjCf0IIcYKRK74Qol986qRP87vND7Ox\nYT1P736MPcFtPHT+I4zxjkVRwOdxMm9qCe/vbMjUFQfz89g3Zg7zF4+jrCQv81paQxTn2iry5k7H\ncTCQGU+97UALC04aibd1J7m6KUrTe9WcdnIFo1qfH4xoJDQdTU+Va/S1d3IiaXQZ/pMFtBBCHL/6\nd+yWEOKEZVNs/L/ljzEr7wwANta/z7lPnsma/f884vOSDjeKLx97QcHhPz4vit2O3ZuL4nKjer34\nSotw5OdTWF5M8agSikeVUFA6AstuZ9v+lkx4z5ebGlXttA/8aG6H3UZFcS4Ou1xKhRDieCNXdiFE\nvylwFfJv43/O1+d+FwWFlkQL16z6FPeu/wl7qluoaY5mgnr+cIJQVEM3TELR1NfpP6nbLcKxJFpr\nO7cjicT1rDvGigJ5OQ5stuzDT/rKrtrw5Tqxq3IpFUKI4438+6AQol/ZFBu3zv53zhhzOrf860aa\n4k08tO1/meHYSnHlSmqaI4CF22knENZoCSX413tVjC7Ow966IxsIJwgFImz56AD1IZ3RhS7Cje5O\nwT1/UxQzrhEPx2iuaUL3OFL1z+EoCcWBy6FyypTifmlHJ4QQ4sQii2QhRL9xOVSmjS3E5VA5a8zZ\nrLnyTT7/4mfZULeercl/MnHCSlxOX2YgyKGGMJW1QTxuBwtnlGaGhBysbqFly1bGh+BgMA9N8/Ne\nfSrA1za4F9ctCJpUR8K81lyDywa6YdEQShIeUY5qV3njwxouXjyevBzHkQ79iHTdZPfBADMnjJDa\nYyGEOEHI1V4I0W9yXHamjSvMfF2RN4r/PfuXnPnEQgA2B9dS4Vx2OLgX0VBVBZddbTckJJifS2Lk\naDzTi3Fua2Th/HLyXCrv7ahvF9wLRTXe3FKLYbOzdEYJvtad5De2NuBVHCitVRZ6N3ouH4lumuw+\nFGDy6HxZJAshxAlCCumEEANqauFJVOSOBmBt7Svt7lNsCk67mlnMtmXZ7djyclHsdvJLCiksL+4U\n3CssL8bh8+LO8zCivAhnYT4fNSTB5cLlGJzwXnfFEjrb97cQS8igEyGEOBbIIlkIMaAURWHpqHMA\neKf+NSJ6IHOfN8fB2FIvTkf/XIpMMxX268+p1Kkpfs6sC/mekE4YQghxbJGrtRBiwC0ffT4AAc3P\n3buvY19wT4+eH43rrSOs9UxnDH840doTOTXuOhjR2o2/Tv/R9KN3xzgSn8fJktnluBx925WWThhC\nCHFskeI6IcSAO2vUuSwtuIrX/X+hIXmAT626gF+c/XtmeBeSSBpgWQQjWubxoaiGEo8RafKTiGm8\ntr4St8NGXUsUK5HILFgTSYPq2hC+PBfrNu5HNy2qaiOYug42G5ZqR1VtRGLJTL1zf5JhIkIIcfyS\nq7oQYsC5nXa+O+8nFH84lmcb7yOY9HPDPz/FlaXfZWRkOWDx+qZq4ppOQa6LWDjKmMr3aWrOJ2qW\n4G/RmOEMUYHJ2Bwvjtbd2ETSoDgUZnROHq6wSkhXiCbsjIg1YSkKtWNOpiWqY/Rx6l5XjjSNTwgh\nxLFNrupCiAGX47IzeXQ+FzRcy1knzeEH736JcDLEE3UrObewhsvKvszMiSP4cHcTC2eUEopqPFc/\nj1OnFpOzvYWCQjez5oxkhNdJrvtwK7dARGPPlhpGzionP9eJP5Jk66ZaoolSLNUOukogEiUSTw7h\n2fee7FQLIcTQkeI4IcSgunDS+Tx/+RrG+sYD8FLLw0w9KUlFUS5uZ6oVnNfjxHLnkFtUgN1lx52X\nQ2F5MfllJe3GV6v5+egeL2p+61jrfB+Ky43hzsV0uLEsC8Mws07j6wmbTcHrcQ7Y5L6uSNhPCCGG\njlx5hRCD7qQR03j2E6tQlVRt8ZO7Hu3R88OxZCa41zbM1zG4l9RNTMvKPN4fThCO9XxX2edxcs78\n0YM+uU/CfkIIMXTk3++EEENitHcMy0Z/jDVVz/P07se5ceo3MwveUFRDNywi8SSmliQRjtJS04jh\ncRBJ6Ly1vQkALWm2C/Pphkk4mKAlEMOyIG5CQjPYtKeJmqZo5r3PXTCmTxP4hBBCHP9kkSyEGDKX\njL2GNVXP05Jo4sF3/kJhZBGgkNB0/OEEH+2sg9pDBJpVdh/ajMdmEDVVGnUv4+0R3JhUQPswn2FQ\nGQ5iGBb1Sg4RxyjmTCripLGFhKJJNuyo7/MEvt6Q+mIhhDi2yJVaCDEoXA6VaWML2/Ub/tiE8yh8\np4wWvZZN2rPcUHYui2eVEYpqVDVEmDCuiMq6EEWlXibPL8fncRCMJmnc1cysKSPweRzYVaVTmO+j\njQfRNJN4EmwNcfJyHL1uAReMaqzfVs+p00f2qdyiL50wZIEthBCDT662QohBkeOyM21cYbvbVJvK\n2cVX8Uzt/bzfuI4LC3bhyx0HgF1V8LjsWKoDZ24quFeQ50INJ8ipTWS+7ki1J9Bz/CRVE9PSgHif\njts0LUJRLWv4b7ACfRLgE0KIwSdXXCHEkDpzxOXk2D0AvNbyeI8XnG1DeR2n8HUM7mWb2tebIF/a\nYAX6JMAnhBCDT3aShRBDKlf18clJn+axHb9jXcvzRMxGwNut54ZjSV56r6rdbXHNoKohjGFYaEkT\nw7DYsq+ZmqYocc2gsjYEKLidh8s+zl80lsLC3H48KyGEEMc6WSQLIYZUImkwy3YZCr9HN3U+s/oq\n7l34OwCicR01mUCLHO5uEYwmiYUitNQ0AhALRZg1Np88l5p5jh5USCYtNB3qbHZOm1HKqJK81tHX\nFotnleHLdWaCfIYxMBP5+qptLTIgdclCCDGI5EorhBhSlmWRa1Vw3bQv8Mj237K5cRM3vLKC89WV\nHDgIUxq2EUqUsbtuKx6bQdiwUZPIY+fOMDZFoVH3UrsrhMdmZF5zjGFimBA1bcQoIM9xUqZ+2e20\n48t19ijIl0gavPlhDUvnVgxqr+S2YT9ARmALIcQgkiutEGJY+MGpP6EkbwT//d5/Uher5knbV/jW\nmAfYVzKd8eU+Js+vwOdxUNMUZcP6Q4w6dRS5OQ4adzUzubXTRVo0ofPO1lpCUZ1oxEBx9G1ha7XW\nNfd1cl9f5OU4WD5vNB63XLaFEGIwyNVWCDFkXA6VyaMKqKwNoigK31n4A8Z6x/Hvr36VuBnhp9tv\n4TTXV5mad0Wmm0XEHsLmbsJXWoQv15m104UaTqDvC5M0k5jx2FGPIxJL0hyMEwglOvVQTgUBTVBo\nLddoz67aujWYpK+dMNLhPSGEEINDFslCiCGT47IzeXQ+BxvCmduunv4ZfGoJX3r5BuJmhDf5b5RA\nNZea/w30rtfxkWhJg9c2VVNY2UIs1rnVm66bROIa/rDG2i01uJ2dL5vdmeCX7oQhhBDi2CCLZCHE\nsHNGxTK+PekP/Kbqa9THq3kj8GdueH4PDy39NUbYgy2pYQSD6LoTMx5HDwTR9cOLVCOiYY+FccaT\nOJJHbvFmWhY2ReH0k8tBN7JO4wtGNNZuqc0E/tIGa4JfXNPZvj8qoT0hhBhEcrUVQgxLo91T+K9T\n/sr3193CQWsT65ve5by/n8sP3F/C1TCFwLqDxO02wkE3DY3biNsP7wBrSYOS+hA+zcSX0LG06Ud9\nv/w8F4phoOvZF7xup9op8BeOJdlXE2TBtJG9nujXHVrSPGJoTybyCSFE/5OrqRBiWAjHkmzY0cCp\n00dita5362ptLDVWssP+ezaYz1BvtvDN6L0sdN+E3bqEIo+b2oTGFq+bHEf7QRtxn0EkrlMb0Fjg\nHJhaXtO0SCSNIQ30Qd9GXgshhMhOrqZCiCHlcqhMG1uI3aZkxj8Xel2cNXcU1Y1h9tWG+GTxbXyq\n4mPcueGbRPUob6u/ZpJ7Astmfwr2NrOoQxkEQCSu89L6AySjkW4dRziqYWh6l+UWcc3oFNwLRTV0\nwyQa7/3UviNJh/2Uo4T9pPOFEEL0P7miCiGGVI7LzrRxhfjDiXa3F3pdhKIadlXB6VD5xEmXs3jC\nKax45gICWgt7Euvweq7NWgbRU1rS4F/vHgDTzLorrOsm4ZjGu1vrsNsP71gHwqlA3ztb6xk90tut\nLhc9kQ77dfzedCSdL4QQov/JIlkIccyYNmI6c0rm8fqhNTRoezCCwazBPUiF9xyxMO5EFCsYQHcZ\nGBENW6JzS7j0unjBtJF4elCucKghTGVtEGDAw3u6brL7YICZE0YctaRCapSFEKLv5OophBj2Em1K\nHca4JgBQG9+F/+23CMdyOwX3ILU7XFoTJCeioa+vxZ/rJK4ZjKgLYc0bS7Z2cj6Ps0e7wcGIhqr2\nru9xT+mmye5DASaPzj/qwldqlIUQou/k6imEGLZCMY1AWMMwrEyPYitaAUBYifKWy0dTLBenp4y8\nLPW4QbdGTXOUeadOoqAkj0BEo3lbA8oABfmOJBjVWL+tnlOnjxzU0dZCCCF6RxbJQohhy5vjJNdt\np6I4l8WzyvHlOsmvWcbjtXcCUFP4ITmJ5Zw8ezyjSvI6Pb+2Ocqzb+xF8eVjL/Ci2hOYrnCnxx1J\nOJbsspQiFE0t4BPJzqE+aD+NzzStTDCxp2w2hbwcJ5FuBgQlyCeEEH0nV1AhxLBmt9twOg6H804p\nP5mx7pkciH/EP2v/widty/F6sgf3si1ceyIcS/LSe1VHvF/TDWqbo6zdUovbqXZ6THem8R2Nz+Nk\nyexyXt14qFuPP1qQL5bQOXgwzNwc2dEWQoiuyCJZCDEspFvBuRydF5odnVFwGQdqP2J/eBf1rvex\ngmXoLqPT46xgGHci0i64Z4+GMAIBdN3ZGuSLg5q9M0Z6B3n+SSPxejovdIMRDcMwAWXIpvH1RiJp\nsG1/C9MmlTA4FdVCCHHskUWyEGJYSLeC647TR1zE/zX9L5FkmL3Bx9HX5+PPsnOqRzQmVDehr6/J\nBPcKa4PEgj4sp0pcMyioiVI7ef4R38/rcXTZYs7lVAGlz23o+kK6WQghRP+Tq6kQYthr290iGNHA\ncLGs/AJWHXia7e5a4rMWUlCU2/l5zVH2xQ8w99SJmeBey5Yaps0qJz/XSSCi4d9UC+rwvBS2Dfsd\niXSzEEKI/idXUyHEsGW2zqeu98cy3S2CEY2tlc1ovgIAwmaAdVUxigKdA3FxTSfuysVeWIi9IBfV\nnkD3hFHz87HnuVqDfH7Qh3asdFfahv3S0/dsR5m+1x15OQ7OXTAGX66TULBz32ghhBCySBZCDGMF\neS5GF+eh2JRMd4tDDWEO1IeYXjGGf/khqUQ4aVwes8aXdnp+MKJhs9nIHaQuD207YaRGWevtdsCz\njbZOa9sJI5v09L3+YFdtuF127Kqt3e1StiGEEIfJVVAIMWy5HCqzJhZRWRvM1PwGIxp21cZI7+FF\nsW4PUZA3NutrOO22rLf3t0gsyfrt9Zmv45pBZW0IUHA71S5HW7fVH50w+kLKNoQQ4jC5Cgohhq0c\nl53Jo/M52NC5t3Gx+/AiOWjUATN7/T6qFsOIWySDAfTE4cuiHkl2OfYayHTHMF05GK39j9OdMFI7\nxlanrhfZ9HcnDNkRFkKIvpOrpxDimBAIp8oUQlEN3TAZ6ZiQuW9Lw2aWhs/o9JxQ9OjDNxQ9yYg9\nm/D7Sgm07MBQDy9Ug0mFuN9JMLATHNlqnlPdMZqnLczc1rYThttp75euF+FYkg07Gro9ra+3O8Iy\nhEQIIQ6TK6EQYlhrze6xcVcDkFos+8MaO/ZoFKil+I06Xtv7HlOtqi7LGDrW3rZ7fbuD5klz8OS5\nyZ9RjLftojKSxL21Ad+MEgpyO+8kH+6OcfTezn3Rl2l9PXG0ISQgu9RCiBPHsLrCPfbYYzz88MM0\nNjYybdo0br/9dmbPnt3l40OhEPfddx//+te/CAaDVFRU8P3vf5+lS5cO4lELIQZSodfFWXNHobQ2\ndTjUEKayNojNpjClYAbrm+poNPewcEZp1gXe0QJxAIYzB9XtxuHLx97msXZ7Aps7hD3fhz3LbnCm\nO0YfhGPJTiG/tHTYLxTNHvpLn1t/dr44GqlbFkKcKIbNFW716tX89Kc/5a677uLkk0/mj3/8I1/4\nwhd44YUXGDFiRKfHJ5NJbrjhBkpKSvjFL37ByJEjqa6uxuv1DsHRCyEGUqH38AI1GNFQVQXTtJhR\nOJv1Ta9QpW3hpZq/cuPcG4buIHshPfa6Y8gvLR3227izkYONYcDC7Wx/2T53wZh+7XwhhBAiZdgs\nkv/whz9w1VVXcemllwJwxx138Oqrr/LXv/6Vm266qdPjn376aUKhEE8++SRq6z91VlRUDOoxCyEG\nn9NuY4TXjaoqXDr+Mzyz58+ErHpuf/ubjB8xmuVjz+3V69oSMYyAHz1xeCe5O8E9eyyM1cthJOmg\n3uxJRRwp5BeMaKzdUtvu/r6E/WIJnYMHw8zNOXp9sxBCnKiGxSI5mUzy0UcfcfPNN2duUxSFxYsX\n88EHH2R9ziuvvMLcuXO54447WLNmDSNGjODiiy/mpptuwmYbnJZPQojB53bZGeFzAxZj8sv58rif\nc/+BzxMzw3z+xc/yf5c+z8klc3r0mjY9SeHu94g0eUm2qWvuTnCv5JAfS7FhnTyq1+eUl+M4ashP\nUeDDPU0snVvRrfDekSSSBtv2tzBtUgk9LdCQcJ8Q4kQxLK5yLS0tGIZBcXFxu9uLiorYt29f1udU\nVVWxbt06LrnkEn77299SWVnJHXfcgWEY3HrrrYNx2EKIIZSu1S2yTeD6kffycP3XiSTDfPq5y3ny\nwhcYlTem03O66nZh2h20zDyNWdOKyHW32THuRnCvYeNBLNXORMfA7spalkU4lhzw8N7RdCfcJ4QQ\nx4NhsUjuimVZKEr2fQ7TNCkuLuauu+5CURRmzJhBfX09Dz/8cI8WyTab0quwi9qallePkJo/3sg5\nnxiG+zmnP7N1LTHWba1jxwE/eTlTubbsP/hD9fdpiNVzzaor+N6UP+JRfVmf73Kq2O027KoNm01B\nUSxMVw6OESNwew4vht2uBHZPGPeIAtzezju8cVcCMzcAKKitr2VXbe1eO/11NunHpJ+b0AzCsc4L\n+UhcR9MtFCwicR27amu9zch8raqp8B6A06FS4HXhdKhZ3zv9vjBw/51jCZ3KmiDjy33DJuA33H+2\nB4Kc8/HvRDvfwTQsrlyFhYWoqkpjY2O725ubmykqKsr6nJEjR+JwONotoidOnEhjYyO6rmO3d+/U\nRozI7XIh3h0+X06vn3usknM+MQzXcy4szOV8VeW19w8yZUwBtc0xxpTmcdmyWxm5Kcm9639MTWIv\nTwZu56nL/g+n2n7Xs+1OqKWquN1OUHQAvF43hT535rGWqpKT4yS/wNPu9rb3u92p1/L5cto99mjP\nbfv6Pl8ONlXlnR0NWReUSd0kaVg0B+Ns2NVIjsueqituiGa+Brh4yUR8uU4KC3MZN7qwy++hpaq4\nXI7McadF40n2HAwwaXQ+HnffJv9ZwTiV9RGmTSrp8vyHynD92R5Ics7HvxPtfAfDsFgkOxwOZs6c\nydtvv80555wDpHaR3377ba677rqsz5k3bx7PPfdcu9v27dtHSUlJtxfIAM3NkV7vJPt8OQSDMYx+\nmpI13Mk5yzkPF6ppgmmimCYKFrkuO6plcvPML/PO3i281vQUb1a9xtf/eQu/Ou/Bdr8IG4ZBi5ba\nrQ2EEsTjGomkidtlJxSKoxhG5rGBUIJYTCPgj7a7ve398bgGKASDsXaPPdpz275+MBgjGksACgum\nFmetOQ5ENN7aXMP8KcXk5zoJRDTicY35U4pRFHhvez1NTWEM7eiDSwKhBIlE6nvQ9r+zP5Tg3S3V\n5DltFGTZOe+J7pz/YDsWfrb7m5zz8X/OJ9r59pfCwtyjPqbPi2Rd16msrMSyLCZMmNCjBWpbN9xw\nA9/97neZNWtWpgVcPB7nk5/8JADf/va3KSsr45vf/CYAV199NY8++igrV67kM5/5DJWVlTz44INc\nf/31PXpf07T6VONnGCa6fmL9UMo5nxiG8zmrNoWpowuwKanyiVOnjcTjsuMPJ/h0+XdQ3H5ePfQv\n/rL9z+Q5vNww8wtMLTyp078a6YaJaVqZgSVmh3PWDRNiURLNLcQTnReuiYiGLRICQGvJQY/GldL9\nlgAAIABJREFUiDf7iSccJCIaxKLoR/g+pt/faP1fAI/LnrWvs26YOO02ct2p+1Nfq+S2BuhM0zri\ne2V7X2j/3zl9e3dfpzvv0R+v1d+G88/2QJFzPv6daOc7GPq0SN6yZQtf/epXqa6uBqC8vJz777//\niANAunLRRRfR0tLCAw88QGNjI9OnT+ehhx7K9Eiura3NtHoDKCsr43e/+x333HMPn/jEJygtLeX6\n66/P2i5OCHF8yXHZmTaukAN1qQVqMKLhDycIRjSSSbhzwS/5UuwKPmr+kIc3P8jDmx9khLuYU0ee\nxsKyM1hYupgpBdOIxI68w2lpGiO2vUusxYvl7DxVL93dAhTioQLikZxMJ4y4ZjCiLoQ1byzQt13Z\nownHkuyrCbJg2sg+j8DuL9IFQwhxrOvT1euOO+7g6quv5tprryUajXLPPffwox/9iGeffbZXr3ft\ntddy7bXXZr3vkUce6XTbnDlzeOKJJ3r1XkKIY5/ZugW8ZV8zuw8F2g3luH7kf/Ob2LfYG9sEQHO8\nkRcPPMeLB1JlWrlqPlNy5zHBdQoT3PPwWbM6vb7idNI8fSHTp5eQn6WjQ7q7BcDYk0pxVwYynTAC\nEY3mbQ0ozu53gtD0zlP10tLT99L3t53SF4pqRON6t/9VzGZT8OU6UW0K5gBVQvRHFwwZgS2EGErd\nuurcc889fOUrXyEvL6/d7QcOHOC6667D7Xbj8Xi47LLL+NrXvjYgByqEEB3ZVRs2RWHO5CLKi3Jb\nF5DpoRxjWT5zNc9/sBm1aC9b/Ot5p+4t9gR2AhAxAnwQfIUPeAUAT7WX05vO4MwxZ7K44gxmFaf+\nRcx05aDm53c5llrPSe0kqz4fNnciM8I6NbI63O1z0XSDA3UR1m6pbTd1Ly09fe/drXXY7bZ2vxAk\nNIOWcIJoPHuLu458HifnLhhDfp6Llha928cIg7twlRHYQoih1K2rTiAQ4IILLuAb3/gGl19+eeb2\nU045hW9/+9tcfvnlxGIxHnzwQRYsWDBgByuEEG2ZpoVpWeS6HZkyg45DOUo9ZSybNp8v5H0GgIZo\nA+tq3mJt9ZusPfQW25o/AiBqhFhT9QJrql4AIM/hZd7IhRQbs5gZu4mCvLEDei5Waynh7ElFVBQf\nPVDS9heC2uYom/c1YQxCD2VZuAohThTdusL99Kc/5cMPP2TlypX8+c9/5kc/+hGzZ89m5cqV3HXX\nXXz7298GYNGiRdx+++0DesBCCJHmtNsozs/B2doL2GZL9Qo+UseaEk8JKyZdyopJlwKwt7Gah9/6\nB/u0TVQbm9jWvAULi3AyxOuH1gBr2PXy66y56rWjHk9qtHUAXXemRlZHQ5mvs0mPvTaCQRQtAaRq\nebtbV5z+hSAUzV6icayTumYhxFDq9pVn9uzZPPnkkzz99NPceuutLFmyhNtuu437779/II9PCCG6\n5HbZKc53427d0fR5nJwzf3SPXmOEu4g5vuXMVs5lyawydCXMe/XreLduLa9WvcS+0C42N21kZ/1+\nRnrK2j237QS/jiG/uGZQWBskFvRlDf3B4bHX8cYY+fUxyJ/aw+9AdsGoxvpt9Zw6fWSPRlh355eM\nwSTT/YQQQ6nHv55fccUVXHDBBfz85z/n4x//OF/84hf57Gc/2+vWb0IIMZTS7d8O1Yd5a3M1TruK\nysmcrp5MedFy7g59CoDfrn2WM4pWZH0Nm03pFPILRDRattQwbVZ51tAfkBl77R6fT2BrAwR6Vh/c\nFdO0CEW1Hre37M0vGUNBAn1CiMHQ7avLvn37WLduHZqmMXv2bL73ve9x5ZVXcvfdd/Pkk0/ygx/8\ngDPPPHMgj1UIITpJJA3e/LCGpXMrerRrmlbodXH6rHI27m5i/pTiTN9hgEC4mF9UlRA0Gmh2bGbZ\nKbd0en4krrN+Wx3QPuSn2hPonnCXoT8Auz2BzR1C9fmwnEHgyIvkcCyZ6t1M++4W4VgS07QIx5KZ\nVnhtO2FAalc2W//lY5HURQshBkO3ri5/+9vfuP322xk3bhxut5t7772Xq6++mttvv52HH36Yl156\niTvvvJNJkybxgx/8gDFjxgz0cQshBJCazpleJPZWYZ6LHJed/Fxnp4XkSbkLWR9cxSvVz/NO48uc\nP/7Cvh5yr4RjSV56ryrzddvuFpF4EsO02LKvmZqmKHFNb73Pwu08fJk/d8GYQVsoy26vEOJYZ+vO\ngx544AG+9rWvsXr1ap555hkeeughHnvsMZqbmwE499xzWbVqFbNnz+aKK64Y0AMWQoju6o8a20W+\niwEIJ0Nct/oq/v3VrxFJRvrrELElYljBALZ4FHQdPRhC9/s7/Yk3+zHjceZWuFky0cuisR4mFjpY\nPKuM02aUUlLg5rQZpSw7ZRSLZ5UzvszH4lnlLDtlFPNPGgmQ2YUeDOnd3kSy/xsxpwN9x8vOuBBi\neOrWr/eapjFu3LjM12PGjMGyLDTt8D/lOZ1Obr311nYt4oQQYiC5HCqTRxVQWRvMen9/1NhOzV3I\nl0b/gr823UV9rI4/bf09bx16nV+d+1vmlfat5WU67KfXe8iv1zAYSWjDevw5nRez6ZCfGdDAYeHQ\nDCrqQnhPmwAeJ3bVhtfjbNMKT23XCq/da0U13t/ZwMdOn9DjYx4O4b6uAn2yey2E6E/duopcc801\n/PCHP+Tdd9/F5XLxz3/+k2XLllFWVtbpsaWlpf1+kEIIkU2Oy87k0fkcbOj+0I4j8YcT7XZbgxGN\nRNJgouNUHj/nJX724fd48cBz7A3s4ePPnMets/+dz0z6t16/XzrsN2ZcPoEtdagtSbzzT6agxNP5\nwa0hv6wT/ZI9awFnmhbBiIZhWvR0qTucw31SqyyE6E/duop8+ctfZs6cOaxduxZN0/jKV77CxRdf\nPNDHJoQQgyI93vr9nQ3tapvjmk5VfRjTNInEdS7Jv4Py0Qt5ovo/iZsRfr7pXh7d+ginF1zMyNGf\nA44+BKTTe7tyUHz5mO4Q2CPYfV7sBd5Oj0uH/NpO9IvbApmx1LphEopqWYN7bUN+6a+1ASiD6G+y\nMyyEGErdvuosWbKEJUuWDOSxCCFEn/S2P/AIn5vzTxtHMBDLspNsktB0XE47i2aWcV7ul7gudBG3\nvXkr7ze8S0uyltUND7H6+YeY5JlLfd5nuXrmlUD3BoL0ViSWZG9NENNK7aD6wxrv7Whg18HAEUdY\nu50qcU1nf12YUFTD58rew3k4kJ1hIcRQkquOEOK40dv+wABF+TnYTBNdb18P7HaqeFx2TMvK1PgW\n5E1l1eUvsmrv//HE9sd4ueolTMtkT/QDbn/7A36y/gecN/ZiJlnnstS6tNvHYDOSGMEguqvzLm96\nOp8eCKLrDjR/BFtSY2apC8u0OFhtY8FJJYwqyev03LYjrH25TqobI+yvC2MY7b9Pvf0lY7iQCX1C\niP4kVxIhxDHN5VCZNrYQl0MdkE4KLofKvKklvL+zod3tqk3lksmXccnky6iL1PKnzY/xp4/+RE1i\nLzE9xv/tfQp4iifq7uTq6ddw5bRrmJg/qcv3UYwknsZq4u9V4/d0bjyUDu4FAzvBYRGPmuQ0Kdg3\nVwPgbVHIc0ztcqR1eoR1QZ6rXf/ktvryS8ZwIBP6hBD9SRbJQohjWo7LzrRxhQADskiGzjW9Hbko\n5MoJX2RUeAUFo+p4sfpp/rH3GULJADXRQ9y34Wfct+FnzC05hYsmruDjEy9hSmH7EdSW6iBaXIF7\nwVgKSrLUNncI7oUaIsTeOoB7wVgAYmsPojiGzwJxOHTBOBqpeRZCHIlcFYQQogvpkdVb9jW3q+lN\n03UTfyRBQa4L3TTZXxdCUUpZ5vwaZ0y9hU2h19hp/ovXD63BtEw+aNjIBw0bufudO5lSMJXloy+k\nKHYqp1jLADBVB6rP173gXkLFdDhRfb7Usdo7X87TE/o6LvLTQb9AOIFiGB2m+KUCf32d0DeQXTD6\na3ErNc9CiCORq4IQ4rjV1xrbQq+Ls+aOIhRtX9Obef2IxtottSyckW59qbR7zIXqZPJybqE2UsPf\ndv2V1fv+wbs167Cw2OXfyS7/TgAerq5gsmMJI/VF6GbXJRk90XZCX8fgXjiWREsavPNRLQ4bmfKK\njpP6BnNCX0/I4lYIMRi6dXX56KOPevSiM2fO7NXBCCFEf+qPGttCrwtFaV/T21Z6aEfb/9/xMWW5\n5Xxp7r/xpbn/Rn20nhcrV7N67z94/eCrJM0kdbFq6mJPAk/y8nN3cf6Y87ho9AUsLT8Tt+oGOgf3\njGAquGcEg9iwcCTj7d4zvTs8/6SRWJZF20V+MKLhdNj42KJxnXaSQWH2pCJ2VvmzTug71sN9bUnQ\nTwhxJN26Mlx++eUoytHryizLQlEUtm3b1ucDE0KI4aI/62tHekZy3YwbuG7GDVQ1N/Drt56k0nyL\n16vXoFkxAkk/T+59iif3PkWO4uLffVdyTd65XQb34u9V47R0Jh1sxtKmdXo/rye1E9xxke922inw\nulKL5DYdPdxO9Yi7x4MZ7hvoumYJ+gkhjqRbi+RHHnlkoI9DCCH6rG2ni/40UPW1XqePhQUXcsvU\nz/LP9/bw7qE1mCM382bTqzQnmolZCX4SeJRTF17GFM+cLoN7Niz2aPuZ5zz6gi8cS2ZqlP2h7DXJ\noWj2oKJd7dx1YyAN9HQ/Ce4JIY6kW1eFhQsXDvRxCCFEn7XtdDFUAuHuj4hOL0rDsSQOm4ux7rP4\n7OlfpKIkh7XVb3LjC9cR1AJ8/d1v8beLXsbmdncZ3Es63Ed9v0gsyfrt9cQ1g/11IV7ZUAWmmdkV\nTg8h2birsXXUd/ugIsCp00uzvPLw0NNFr9Q2CyGORK4KQohjmm6YROM6Hrd9QHY6u1uDm+6EsXFX\nQ9b723bCsNtTx9k2KAeQrmqz2+wsHb2Mnyz5T77y8i3sC+zlv96/i6XOr/TpXIzWxfDsSUXYbHD2\n/DHtdpLTUoHEmnYhxFA0yYYd9RhZ6pSHC1n0CiH6U6+uIn//+9954oknqKysJJFIdLr//fff7/OB\nCSFEdyR1k+rGCOPKvAOySO5uDW66E0ZX8Y22nTDSC890UG7xrDKiCZ2aN/a2e86VJ13Nqn3/4IV9\nq3h0x8OMnHAayxjV53PKy3F0WZOc1lVQ8XgiwT0hxJH0+G+Uv//979x+++1MmTKFlpYWLrzwQs4/\n/3wcDgdFRUXceOONA3GcQgiRVbrEYih2DjsGywq9rtax1Z3/+HKd7bpfdLzNk+X4FUXhv866n0JX\nqoRkbeNfMQIBdL8/1dWitbuFFQzgTkSwgqn7dL8fPRDMdMMwAgFsidigfm+CUY01Gw4SjHa//KS7\n+ivQl/4FK5nllwQhhOjx3yq///3vufXWW/niF7/Ik08+yTXXXMPMmTMJh8N8/vOfJzc3y6QoIYQY\nAgMV5Esb6GAZpLphzB05j1eq1pAI7ie29nUsp9qpu8WE6ib09TX407vUbbphOC2dEXUhrGll3XrP\nSCzZKbiXDvulQn1Gl9MH00NIBrILRn9936U8QwhxJD2+Kuzfv5958+ahqiqqqhIOhwHIy8vjpptu\n4u677+Zzn/tcvx+oEEL01HAI8nVHIKwRjmnoRmph6Q+3L2PLUVMT+PxuG8bc01A8TszmGLFEdaa7\nxb74XuaeOpGCkrzUk9qMsVawaN7WwNhujK0Ox5K88WFNpwmD6YEkumER13Te3VqXqa3u6NwFY3r/\nzRhE8YROYyBOPKHDcVxWIoTonR4vkvPy8tC01A5CaWkpu3fvZtGiRQAYhkFLS0v/HqEQQhyn2ob9\nAuEE/nCC97bXs+tgADgc9gsGUwvV5mQLb+0P43E5iWs6psOJs7AAwzCJu3JRfPmZkdZtx1gDmK5w\nt44pHeIrL8ptF9xL7RxbLJ5V3mVv4XS4L9sQkuFI000aAzE0KbcQQmTR40XyrFmz2LFjB2eeeSbL\nly/nl7/8JZZlYbfbefDBB5kzZ85AHKcQQgyZRNLgzQ9rWDq3ol+nzLUN+x1qCFPVEGHBtJGMat0N\nTof9pnpG8aYfAmY1v66/ke+degfzfKdhs9nIddu7LH3oC5fD1im4N9hhvuNpup8Q4tjT40XyzTff\nTHV1NQBf/epXOXToEPfccw+GYXDyySdz11139ftBCiHEULIsi3AsOSD1tYXe1IIzGNGwq6lAWvuF\nqcrVk67llepV7AvuYYd/Czf863KWjjqHc+yfwwj4sKLa4eCeywDaj7FWsLBHQxhBF2Y8ngr9DXKQ\nrzd6Wtfc00BfrtvOhDIfudLdQgiRRY+vDHPnzmXu3LkA+Hw+fv3rX6NpGpqmkZeX1+8HKIQQQ8nl\nUJk8qoDK2mCfXqcvHRnG+Sby3CVv8JOXf84Lzb+lOd7I64fW8Kb1MhvrlvA55womVJtHDO4V1gaJ\nN+cTj+QQb4xR2BzCXD4N1X78LBB7GuhTVRsup4rag9aBMqVPiBNHjz/hTz31FOeffz6+1ilPAE6n\nE2c3xqEKIcSxJsdlZ/Lo/NYJdL3X144MDpuDZUVX8a2lN/GnXb/i1x/8krgR49n4GzyvrWdByaX8\nbP53KSgdkXpCh+Bey5YaKiYW464M4B6fT0tVAJvLBYbR62MKx5Lt6o/THTDS5R/d6YIxlOKaTmMg\nRlzTge6VkEhHDCFOHD3+hN9xxx3ceeednHHGGVxyySWcffbZ5OTkDMSxCSHECScYOdzdItui00y6\n+NLM73DuyKu4a+1K3gn8Hwkzzls8wXc+auSxSY/jtrs7Bfd0TxjV58PmTqD6fJiuvtUxh2NJXnqv\nqt1t6Q4YoGC3KYRj2lG7YAzlQllLmjQG4mhJCe4JITrr8SL5rbfe4sUXX2TVqlV861vfwuVysXz5\nclasWMGSJUuwH0f/dCeEEEfSn8GydKeLLfua2H0o1d2ibdu1YCSBP5zqMOF22olrCov5OsvGX81T\ndfeyJ/Y+b9S+xGdWX8UfL3ycXg5U7bb0DvL8k0bi9aQWuoc7YJR12QED+t4FYygDfTKlT4gTR48/\n5fn5+Vx55ZVceeWVNDY2smrVKp5//nluueUW8vPzOf/887nzzjsH4liFEGJY6c+BGfl5TsaX+bK2\nXTt5YhHvbW8gN8eZacF2eKT1VD5hLuKWl25kU+gVXj/4Clc/dzm/OutRbIkYRiC14O4Y3FOjIZL+\nFhTDxGjTAk2PJLEScVS6d05ej2PQO2D01/ddsSm4HCpKD+rE7artiL8ACCGOH336Vbi4uJjrr7+e\n66+/njfffJPvf//7PPXUU7JIFkKIXmg7thpSYb+SAg++PBcupw1Q2t2ffjw4uXncvawO38Nzlc+w\nrmYtN/zzcr7ZcAWxlnKAzsG9piB+rRJMs91iM5hUSDY5KEo0YZ02ge7W6vZFx9rmzLFEsk/3a3t7\nX2qbvTkOJpT78PZjyYcE+4Q4fvTpE1xbW8uqVatYtWoV27Zty+wyCyHE8WSgx1t3JR326ziBLxu7\n4uBnS36F1+3hz9sf5cPmjdzq2M0txTfzmYnX07Ld3z64V9lEwZKJnXaSiSRxbKrFzxiUQQhkZ6tt\nTtN1M2tdc1zTW2ufU6UnQ13b3JYE+4Q4fvT4E9zc3Mzzzz/PqlWr+OCDD8jJyeGcc87ha1/7Gmec\ncYbUJAshjjuDOd46EO4cqAtGNBKaAYqS2VVtu5uqKKlyAdWm8j9n/4I8Rx6/3fwbomaI+7b9F49W\nPsrHRnyBGXk3ZYJ7hkfDUVCIYhgobRbJdnsCxeXH7Ga5RV9lq20+mnSpyexJReys8ve6trk33S2E\nECeOHq9ozzzzTFRV5ayzzuK+++7j7LPPxuWSi4sQ4vikGybRuI7Hbcfeg366PdV2RHVHcc1gf12I\nRNJEVRTyPI5Ou6mQqpe1KTZ+cua9LB91MT98/Yfsjm6kPlbLo4dW8vq/HufCEV/iFOvqATuP3upY\n23w0bqfaafe4p4G+gehuIcE+IY4fPf4Ur1y5kvPOO08GhwghTghJ3aS6McK4Mm+fFslHW8C1HVHd\n6bkRjWAkQU1TlFOmFjOqJK9NcC8V9OtYmzt/5CJum/g7GLmV+97/CTv8WzkQ3sv/C9/GG/5HuNh7\nE0l/SZfBPbupYwQC6HrqWI2INuyn9PU00Neb4N7RSLBPiONHjxfJl1122UAchxBCDEv9VWrRnQVc\nekR1Ni5HajJc27HVHYN+HSmKwrLRH2NpxTnc++pDvND0a2pih9ga3MzW4Fepefo5bsv/NHbrcK11\nOrhXHG8kFtuD5UzdF9cMRtSFsOaNZSjDfHC41CQUbd9HOn17JK53a1d6IIJ7g0HCgUIMjm59ulau\nXMmNN95IRUUFK1euPOrjb7/99j4fmBBCDHeDFeiz2RQ8bge93e9UbSqnF17MTQuu4YG3fs4L/j/g\nT7bwp9A/2eZu4jdn/IoKT6oLRia4Z1aQc8oo8lt3RQMRjeZtDUMe5oPDgb6NuxpbJyEquJ1quxKU\nixdPGJAw33BYoEo4UIjB0a1P18svv8wVV1xBRUUFL7/88hEfqyiKLJKFECeEwQr0+TxOFs0oZU91\nIDORr6v2aGnZgn1O1cXysuv5wqIb+eqrN7E1vI73GjZwwYsf5zfn/Y6lo5dlgnsGFmp+PvbWHVnV\nnsB09W00d3d1N8wXjGis3VKTKTkJRrRMfXFvw3xHIwtUIU4c3V4kZ/v/QgghBofZmuzbsq+Z3YcC\n7XZN7TYb/kiCglxXplVatmCf2lpTXeAawdcn/opdOU/zs3fupjHWyJX/uJTvLfwh1029dShOL6vu\nhPk6Di9xOlToZmeOUCzJvpog86eNHNDhJ/1NwoFCDI4ef8IqKysZP378AByKEEIMT4PV4aKjtmG/\ngjwX40q97XZN08E9gLVbalk4o7TDtL72wb62u6s2ReW7i3/IgtL53Pzi5/En/PzknTv4686nWahe\nyoKcZRiBgnbBPXs0lAnz6ZEkZjyOHgii647MY4Z7uK8ty7RIJA2sfpiYOJgkHCjE4OjxIvmCCy5g\n5syZrFixggsvvJDS0tKBOC4hhBg2wrEkr248xLJTRg3qjmPHsF+Oy97FxL3sIb6Ot2UbSnLe+PN5\n6VNv8PkXP8umho1sb/mI7XzEP6yfs7P5PK7xLafAlkdcMyisDRIL+rCcKsGkQtzvJBjYCY7U8Q1G\nuK9toC9VUtI+uJdIGmBZWctQ7KoN1Xm4fMPW2t3C1o/dLYbCcKiTFuJ41ONP069+9StWr17NAw88\nwL333sv8+fNZsWIF559/Pvn5+QNxjEIIMaSGauJeWzabgtfjHJAF3VjfOJ775D95Yvtj/Grjz9kX\n3EOLEuQXkb/ycHw1V028kk9Pu44Wn4tps8pTYb5IEvfWBnwzSijITS08Bzrc1zHQF9eM1pKSVHBP\n100isST+cIK1W2pxO9v/97LZFHJynCyZVUqO005ea3eL/gz4DcWCVeqkhRgYPf40LV++nOXLl5NI\nJFizZg2rV69m5cqV3HnnnSxZsoSLL76Yiy++eCCOVQghhkR/BPT6utBOj6juKBDWUBTa7agCWYN9\n6dvCsWTn41NdXD/zRlaMvZr7Xn6cl5sfZXdsAzEjxh92/ZE/7nqEOb5luOPf5JyKpdjtGjZ3CHu+\nb9DCfR0DfalzszIlJelzbBvmayua0Plovx/DGLjyiqFYsEqNshADo9efKJfLxUUXXcRFF11EOBzm\nxRdf5P777+e1116TRbIQQnTQ350w2k7oy7ajWu+P4g+nFpHp4F7bMJ/H7cCu2jAMo93r2hQbs/KW\nMivvTMZM9vPozgf5+55n0E2dD4KvcM2LrzCn5BQ+PeUGvOaifjufnmgb6OsY3OvqNqBTPXm4Nbi3\n4BgL7nUkNcpCDIw+/9q5efNmVq9ezerVq6mvr2fChAn9cVxCCDHsDVWgD9pP6Ou4oxqMaLzy/iFy\nc5wsnlWeNcxXUpiDL9dJi9Z5VzltZtEcfn3eQ/zw9Dv45YZf8ei23xMzw2xq2Mimho14bF42xK/k\nCzOuZ4J3fKdwX1eGS8DPbA3udXdCHwxs2ctQkZpmIbLr1adh9+7dPPfcczz//PPs37+fioqKTJnF\n9OnT+/sYhRBiWBqsQF84lmTDjoZOI63bTujruHvqctoApcswnzfLaOyuVOSN4rb5P+Jk62oa8l7j\nL7v+wM6WHUTNEL/f8zC/3/MwS1wnc7nrbMa0jCcWLMhM6sumbcBvoIeTtA36ReI6sYROIKKhGyah\nqIZupMKR2UKNQKdx312VvRzLpKZZiOx6/GlYsWIFu3fvprCwkAsuuIC7776b+fPnD8SxCSHEsDZY\ngb6jjbQerN1Nt+rhumlf4N/m38qLe17m/rUP8EHkdQzL4M3EZt5MbKbYVc5nSz7D56ZdQ5G7KOvr\nDNb0vo5BP003OdgQIR5P4rTbCEeTaEmDjTsb2XUw0OXrnLtgzIBM7+st2fkVYnD0+NM1a9YsvvOd\n73D66aejqkOX9BZCiKE20BP30otwp/3IpRyDvbupKAqnlS0hPmEC06Yq/H3/4/xp6x+oj9bRqNdw\n39af8Yvt97N41BIWlZ/OwrLTmFe6gFxHLjB40/s6Bv0icZ0NuxqZP6WYXLedYETDbrdlDfkBhKJJ\nNuyoH7Dpfb3V3zu/EvwTIrsefSISiQQtLS24XC5ZIAshxABLL8K7KgXojkA4e8cLu2rDUlUCoUS7\nRWBqtLOB09G9Guuy3Aq+s/AHfGP+bTy97W/8csNv2BXZgGZqvFr1Mq9Wpaa0qorKycWzWVh+GjML\n5pNIjgVG9fq8eiId9LOrNnJcdvJznZmd4Wz9pU80EvwTIrseLZJdLhfr16/nhhtuGKDDEUII0R8s\nCxQl1f0iLd3dQtdNErpBeYkXPam3K+OIazrVTRHGl3l7FEZ0qk4uGn8pnpZTKR8f4IWqZ3in5m02\nNWwkaSYxLIMPGjbyQcPGzHMeODiOeSMXkh+eQGnVMuaXzcCm2LJO8wM63d7XAOBAdLdrus1GAAAg\nAElEQVQ4HoJ9Us4hREqPf/rPOOMM3nrrLU477bSBOB4hhDgu9bUTRiJp8OaHNSydW9EuvNeVHJed\nuVOK2y3+0t0tTp44go8qWzhz7igUw+i0kwwKZ86p6HUd7kmFM1g05hQAYnqMTfUbeafmbd6tXcf6\n2nfwJ/wAHAzv52B4PwB/qr8Xn+JhrnMKM+xTsCdmMM0/FtpMyOs45a+7E/4irX2hOwb3AuEEkbhO\nIJzIeq7pXfWeGIpgX38vaiXIJ0RKj3/6L7/8cn784x8TiUQ466yzKCoqQlHa/8Y8c+bMfjtAIYQ4\nHvS1E4ZlWYRjyW61K0vvZo7wuTstqN1OFa/HidupUuB1pRbJutnpMbn9VJ+aY8/htIrFnFaxGADT\nMtlwaDN/3vAiIddO3q9/l6pwJQBBK8rriU28ntgEwG8aHcwpms23Tv4GZ5Uv7TTlrzsBQC1p8MaH\nNbidao+De6n+00EiseSwLseQRa0QA6PHn6abb74ZgMcff5zHH3+83QLZsiwURWHbtm39d4RCCHEc\nGMzR1kfbzUzVJuv4Q4msO8kdJ/VBKsTWH2yKjSkF01g6wsuyU1I1yc+++wHu0gN81LKBd2vX8WHD\nJgzLQLeSbGjcwLWvfpbvL/ox1035Urspf90JAJqWBSjMP2kkNpvSo+BedWOEytogRg/6KB8PJMgn\nREqPPwGPPPLIQByHEEIc1/rSCcPlUJk8qoDK2mCfjiE9pW/Lvmb214V4ZUMVmGZmd7qrSX1tDcTQ\nlAJHCcvGzeXTMz8FQHVLM4+s+xe6bzd/2v4gLYkWVq77Me/VvMdFud/r1Xt4PY4eB/c6/qIAEIxq\nrN9W36ln9fFEgnxCpPR4kbxw4cKBOA4hhBBdyHHZmTw6n4MNfWublp7SF4pq2Gxw9vwx7XaSu5rU\nl9ZxsMZA8ThymeGYxRnjz+aacSu48fUvstW/lRf2/4MPnR8xpfy3zCmdknXC30BP8ztaz+rBMFTh\nQAn0iRON/JQLIcQw1TbsdyQ92d0s9LpQlNSEvmw1yV1N6htMlqYxYtu7xFq8+Jwqf8r5Oj9K/I5V\nsXVUa3u58uUV/KTwCyxR51JYGyQW9GUm/A3mNL+h0t/hwO4ufqX2WZxoevxTPm3atE5BvY6kJlkI\nIfqubdjvSIbD7mZ/UpxOmqcvZPr0EvJznRQAD1rn88DmB/nZlp/y/9m79/im6vt/4K+Te9P0fqfI\n/dJyqQUEFe/gNu8im+JEFCa6ORU2p6ib3zl1m7vq5m2bN5DBvDCFqVzmQEARfgJyk3u5Q+m9TXO/\nnOT8/kgTkjRp0zbX9vV8PHhoT06az0lCefeT98UoWTCv+UVc0+86fGfID1FWORpZbbveoYr5HKIn\nx1oulwV0twiXf+1ltDjgSrJBIrEQafDLXGXqa7r8Tn/88cfbBcmtra3YvHkz6uvrcdddd0VtcURE\nfZl/sZ+9i63IOiKTeXaK5TIB7uh926hyq9Mgz8qCwm83+57xP4HTPBBL655CnaUGa86uwufyTbCX\n/hpz+t0NQRDaFfM5RBdO1ZmxeW8tZDIhoLuFKLphsjqwdX8dFCGmGraaHWgxOWCxiXG55mTHXGXq\na7ocJIcbJDJv3jwsWLAAra3t2+gQEVHXBRf7Ras7RqZWhasvOA9ZOjVaWkIHgP6T+kIJtQsbrQ4Y\nHSnTTcKqCzfhpW9+i0X73oTFZcDjm+dh5akP8ecr/opseb+A86W2jeCKoXnI0qkDult05vBpPb45\n1gSXO/Ld5EQU9vWGASaJwjxr6khU3xE33XQTFixYgPnz50fz2xIR9Xk96Y7RFaEm9fkTRTf0Zjs0\nSgXONJoQqgtGLDpgeMnsVmitOvz2/KcwNedqPPrVY6h1nsIXZzbg8ncvxI9G/BgDLZfD1aqDBAFu\nhx2SKELjtEEnupAuOQO6W3SkO72iE5H6kogBJr0F86ypI1F9R5w4cQLuLvzGTURE0deT3cxQk/oC\nvrfZgc17azF2SG7IHsOx7IDhX9AnqeQY7XDhr7aH8GnGRrxtWQ2by4a/HHgeMukF/OtsGaZqLoJg\nmgyXPQfGr7dBoxSR0WiBe3Qx0MEaTVYnRJfbN7zFZHVCb7L7rr+jPGZzL0jN4O4qkUeX3/0LFy5s\nd8zpdOLo0aNYs2YNbrjhhqgsjIiIPLo60rq7u5kdTerz5z+1L55dMIIL+lrNDpj31uCRMbfg+46H\n8PPtT2Jrwza4BQnbnAewzXkAMizGeZoJKCj5Lm4e8h0YT7shU4Vfr8nqxNrtpwEADXorbA4X9hxt\nQk2TBQA6zWO2OUTIZLHbSY+HvrS7ymJE6kiX3xW///3v2x1TqVQoLi7GXXfdhR//+MdRWRgREXn0\ndKR1pFLhY3v/gj65wg5Ra4I8KwsVuovxyeB12FG9D69uWYy99rU41loFN1w46d6Kp/dtxXMHf4nz\nsy7H3Tl34IZh10Kr1Lb7/t6e0RNGFuJsowkHTragYmgeRg7oPNXFaHHiy2/O9pouI30BixGpI10O\nkg8ePBiLdRARURidjbSO58jrZDckaxhuKPoh/lj5NA7p9+Mvny/EdsOnMEg1cLjs2Nb8P2xb/z88\ntkmHawZdh1mjZmNy6aXtvk+GVgldmhIymQBdmjJhPaNDiXZxIAv/iELj5wtEREmus6K9eBX1hdJZ\nF4xQ4tEFQxAElOWMxnW6ezDadgcqz2/FpuY1WHHiY7SIDTA7Tfig6n18UPU+Nl6/DsOzhgMARLMT\nbpsNYqsBLqMFQhLW2US7ODDSTxB6a65yb70u6rmI3g3Nzc2or69HWVlZwPGDBw/i1VdfxdGjR5Gf\nn4+7774bU6ZMiclCiYgoebglT4DWWReM7HR1yNxdwPNRtxjDYR2Sw4Gs43vhRgEGHLFjvvIy3OKq\nREPOWay0b8aHls8BALu2rEBB2gUAAINTgE2vgqH1MOxWNxQWDSRnYFDvLewLZjA7YHe4AEEIW9gX\nr9HesdBbc5V763VRz0X0bnj++eexb98+LF++3HesuroaM2fOhM1mw8iRI1FVVYUHH3wQb7/9NiZO\nnBizBRMR9UVdLd7riMHiwI7DDfj2xYO7/T2ydWpcUVmKcANYvV0wJo0qCpnz6Q0WvV0jYkFQqdA6\neAzkTTZkTBiL9AwlLFWNuHx4Pq5QzMGH748EAFiHFiN7+FWeO5md0OxvQOaoApiaLBBbT0FQngtq\n/Qv7gtkcLlQ3mpGtU4ct7AOAqy84L2UD5d6IxXsUTkTviB07duB73/tewLFFixbBYrHg9ddfx6WX\nXgqbzYY5c+bg9ddf73aQvHTpUrz55ptobGxEWVkZnnzySVRUVHR6v5UrV+JnP/sZrr76arz88svd\nemwiomTmFN0422jGwOKMHgfJbrcEg9kBl1tCV7NQ/fNXO8uHjXf3i1AklRpQiFBkZkCeqYEr3QF5\nVjZ0aUpoFemwiGa0CBYosrMBAAqFHTKNEYqsTMgdMkhBnSr8C/sytIGBrmf3WMLkMSUhfzEwWpz4\n+lB91HfPEzHApDeJZvEeUzd6l4h+0tbV1WH48OEBx9avX4/y8nJceqmn4EGj0eDOO+/EoUOHurWQ\nVatW4Xe/+x3mzZuH5cuXo6ysDHPnzkVzc3OH96uursYf/vAH7l4TUa/mzTuO5B/eWBbyefNXox2M\ntZoc0Jvs0JvsAb2IvcdCHe9pbnN+Wj4AoMna2OX7Zmg9xXz+fzLTVdCoFL5fDIL/BAfV0RLtHGUW\n8nWfN3UjmmPkKXEi+jVHEAQIfp+pNTY24syZM7j77rsDzisqKkJLS0u3FrJo0SLMmDED06ZNAwA8\n/fTT2LBhAz744APce++9Ie/jdrvx6KOPYt68edi+fTuMRmO3HpuIqDdJZCFfV7WlNgfkNtscIk7U\nGiGKbticoi+v2Xs8eMpfZzvrMpcTLoMBLskGudkAV6sKol0JrUwDADBbWiHq9QACC/ckoxlyV+oP\nB+mqVGgFGC3c+aWORPSOGDx4MDZv3uzbNV6/fj0EQcAll1wScF5DQwNyc3O7vAin04l9+/bhhz/8\noe+YIAiYPHkydu3aFfZ+L7/8MvLy8vDd734X27dv7/LjEhHROYn42D4no31usydtQcDYIbn45liz\nL6/Ze9x/yl9nhXCCywlt41nYtp+FWQXoGsww16fDqZDBbTYDAOw1Z6HfuN7z2H6Fe6LViRyjBMk5\nMlaXH1a44kCg/dS/4K9TuTgw3li0Rx2J6B0xa9YsPPbYYzAYDMjPz8c777yDAQMGYPLkyQHnbdq0\nCSNGjOjyIlpaWuByuZCfnx9wPC8vD8ePHw95n6+//hoffvgh/vOf/3T58YiIepNoFfVF+2P7SOVk\ntM9ZDjfVr6t5zpJcCUt+P2guGID0DBVMVY1IH56PdI0SilWZgB5QFBch+6L2hXuWJjNa9CcDCvfi\noaPiQKD91L9QO+wsDkwMFgH2LhG9ijfddBPq6uqwZMkSGAwGjB49Gk899RQUinN3b2pqwvr16/HQ\nQw9FbXGSJAWkeXiZzWYsWLAAzz77LLKysnr0GDKZ0K28K3nbP0TyHhbQpBJec9/Aa049JqsTG3ZV\nY8r4/sjO6PzHukIu8/3c879m73GFXBa2M0OkevK9vPeVB32PSL6n/zkAIMgESAolVDnZULYV7ilz\nc6HRKiFv+zdsY+3n+MuRv2Ha8Okozh0ChdYETW42FC4F3HIF5H6P19EaOltfV54TmUzABWWR7ei3\nmh2QyWpwydgSCAKw/WC95/EUsoje2wazA1sP1GFSeehOJF4qpRzZGWqolPIevz9iqSt/n6P5ngc8\nz7kmijvSVruIEzUGDCrJDLvTneo/v5JZxK/kvffeGzY3GPDs+m7evLlbi8jJyYFcLkdjY2DxRHNz\nM/Ly8tqdf/r0aZw9exb3338/pLaENndbw/cxY8Zg9erVOO+88yJ67Nzc9JCBeKQyM9O6fd9UxWvu\nG3jNqUOdpsKkMf1QVJgBrabz3UNJLoda7TnP/5oluRxpaSpkZWuRk6np0ZpkSgWK83XIzU1HVhe7\nW3jX4ZbJAJkMklzu++P/dUiKc9cAABq1EgqFHJmZacho27HOyNAgJ1ODsSVj8E3jHtRZ6vCHrc/h\nD1ufQ3neaIxOm4Kx0r3Q6Yogk8mg02mQk5MesLZQz1Fnz1+kz6/3vPP6ZSM3gteh2WDD/lN6DCj1\ndOjYd1Lf7jE6em9LcjmcbiAjM63DdeXkpGNg/9TIdQci+/sczfd8LEgGG07Um1E2tKDT9aXqz69k\nlhSfByiVSowePRpbtmzB1KlTAXh2kbds2YJZs2a1O3/IkCH4+OOPA4698MILsFgsePLJJ1FSUhLx\nYzc3m7u9k5yZmQaDwQpXDJvhJxNeM6+5t+oN19w/Lw12qwN2a+cT8Gx2EUNKMqBRyQOuudVoh9Xq\nQKveAsHV8+r8yaOL4HaKaGnpWvFbi8EGq9WBLburcbzGAJvNCY1KDptDxPEaI4wmG2wOF7J1aijD\n7P6ZjFa4XBJsdicEqxn6M7VAhhpyswH6M7UQ05R4ruIZjE8/Hx+d/ASbar+EW3LjQNM+HMA+/HvR\nSxiWPhLZzgtwsE6DQYXpnT5HnT1/kT6/4c4zWhxwudqnwrSaHWhpteJUtaf4sKXVglPVerTqVZDJ\nZcjI0MBqsUMbZicy2q97onXl73Or0Q6D0Ybte89izJC8pMtLjuS16Q0/vxLB+4tvR5Lm3TB79mw8\n/vjjGDNmDMaOHYu3334bNpsN06dPBwAsWLAAxcXFePjhh6FSqTBs2LCA+2dmZkIQBAwdOrRLj+t2\nSz3Kv3O53BDFvvWm5DX3Dbzm3kspl2HkednQapRosTp81yy63HC7JYgJfh4ytSpcVtGvLT/ajYv8\nCvfcbvgK+iaWFYYdVJKmUkBvskNwODCseg8c/68aRrUCugYzjPXpsLcF19ehGNfJ5qKp6DastX2N\nT8xfYYfzICRIOGI+BMgP4Y71S1GxtxI3Db0FV5VcD7dbEfI56uz5i/T5DXVeR3nKouiGwWzHlm9q\nILolnKg1wO325G/LZALS0lSwWh2YMr5/yDzlZHndoy2Sv8+iyw2n6MKhU3oMLsmEMslSFjQqOa6s\nLIVGJe/0WvrKz694Spog+brrrkNLSwtefPFFNDY2ory8HG+88YavW0ZtbS3k4T5eIyIin2hO5wsW\nrw4YORlqCAIC+g4D4Qv6wnErlKjqV4EJEwchPUMdULjnLxvAUNyMGWYnPt5zEKaM7fjoxMfY3fo1\nIEjY07ALexp24dd4CuW6i5BZ+n+YorssVpffTkdDTPydG2ji6QCikMsAhRyfbT0Z0xHgFBvRHHRC\nXZc0QTIAzJw5EzNnzgx52+LFizu873PPPReLJRERpRyT1YkNO6tx5bjSqE+7i2cHjGgNtXAqNRAy\nswIm7inCdH5QKOzI0ZXilspJmFJ6F15Z/SVKyquwVf8pvqrZAgA4YPp/uH3N9bjqvKlYMOnnmFAU\nv2FW3iEmHfH/xUKhkIXP3w6jL03wk8kE6NJUMNt6NpgmVbAvdNck1+cKRETUY92duBfLSX3dEW66\nn6cvsNhuIl/wH4PZAbvTDZfLDaPFAYOl83ztYFrkYfqg2fj4lv9i110HMO/8x6CVZQAA1p9eh2s/\nmIrvf/Jd7KjrPb36E9UKMBEytSpcWlGSNO/5WONEwK7hrxFERL1MdyfuJfukPu90vr3Hm9v6AgvQ\nqM4FN6Loht5sD5jQd7bJBIPZie0H65GTqUFamgpyecc70zK7Fa7WVsBoRprTAhgNEPVyFCIdPxp0\nHwYZr8ZR5SdYfOwtGJ1GrDv1P6w79T9cUXQVLlPPAlAauyehmxzOc8NGgnU2nATggJJIcae2d+Er\nSEREKcE7nc9oCcy79TKYHdi8tzZgQp/B7IQAMy4oK8TA4kzk5engcjjDFjhJDgdyD2yFtSUDMosD\noxoaIdvZAP1xT3stg1OATK/CrOwJuDN/JBab/ovFpv/CLNmwsW49NmI9ln88FqMLx2BkbjlG5ozE\niJwyDMgcGI+nKCSTxYGjZw0QXVLALxVekQwnATigJBLJPsGPw066hs8SERGljHAFfV7BBX1qpWeg\nRoZWhewMNTLTVWhxhM8/FVQqNJdPQnl5AVqbzNivP4KKccOQPaBth91vIl92uhL/hxvwoF2P1w6+\njtcPvgWLy4x9Ld9gX8s3Ad83TZGGIZnDoXOfh4OKSpxfPAYjc8swMGMQ5LLYftQvtrWNqxiah375\nnbe9Ch7/bbQ48fWheuhNdny1v65P5Cr3VvEqBOwtO+qpu3IiIuoW0eWGxS4iI4bDB2JZ/BWtgr5w\n3Oo0yLOyAIccVqUWyMiEItszqEOhsEOmMUKRlQlFWyBegGz8oug3uGP0g/jdxldgUR/DcWMVjrUe\nhej29Ii2ilbsa94DYA++2rnS91hquRrDskdgZO5IjMwpx4jcMpSoh8AlRX/HVpfWedGfV6juIb01\nVznW76e+KNl31COVuisnIqJuMVmd+Hz3WdwyJQ2xCgtiGVB5C/oi5S3c0xvtkORytBrtYduh+efj\nmm1dG4KSo8nFtYU/8HUVcbgcONZ6FIebD+JQy0Hsrd+P3bV70eA8Bafbs5ttd9mxr+kb7GsK3HlW\nCEoMPTMc5fllGJFThv7aoWix5cDpLgQQ3Y4lfV1X30/x1Ft2ZFMVn3EiIopYsnXA6Ii30M9o9RTu\nHT1r8A3WcLuldoV+AALyce0OTwcAeVCvaW9hnygG7pC7zA4oLEbfbTIAw2QlGJZfguvyr0JrPwe+\nPNCAiycNhN51FoeaD+JQy4G2IPoQjrQchsPtKZYTJScO6ffjkH5/wGM8e0SBodnDcPOw6fjphEd7\nlKphsjpD/rIQupBPhNFy7jgL+eIjVXdke0vuc2qvnoiIukytlKN8YA40Kjns1q61gkr2Dhj+cjLU\nmDCyEKcbzhXuZWVr0aq3QHS52xX6AYH5uEaLA2cazQHjnP0L+6SgIjibw4WcWgOshsx2t3lvz60z\nQjF+AIbnjsDwnBG4ATf5bhfdIk4ajmPH2b3434FtcGtrccx4GEdaDsPmsnnOkUQcajmIP2z7LfY3\n7cOrV78OjULT5eemswl+gYV8LpyoNcLucKOm2QxvQR8L+Sic3jIEhUEyEVEfk6ZWoHxQLrQaJezW\nc22+YjmprzuikdfsmTon+Ar3cjI1EFwuX3eLULm33mMAIA/KU/Uv7MsKCgJazQ607K1B2ZiSdrd5\nb28+0ABBFfpaFDIFhmYPR55iAJRN5/vSNlxuF/bVVWH5ji1Iy2vEujMrsbN+Bz459h80f9KEt6/9\nF7LU2V16XiKd4Aecm+I3dkgevjkmR8XQPBw+re8VE/z60uCUZJIqaSTJuzIiIoqrWE7q646u5jXH\nqwDLW9inCHqO5Ao7RK0p5G3e291qU5cfTy6TY0DGYJyfqcKVY0rx0AUP4kf/uwerj3+CzWc34abl\n1+LdGz5Aia5fl793JBP8AE83Ee848N60exzt3HkWAUYmVdJIkndlREQUV6mUbxxKRwVYBnP7wj3/\nyX3+53nzbk3WxI0qDs57Fs1OuG02iK0G6EQlXrvwJfxcnoV/HlmKA837cN2/p+InY+ZhXNaFkNm7\n/wtOqDzl4Jxkz3/FdsNJmKec3EWAQOrs4CYLPkNERAQgtfKNI3VuSl8TjtUEFu6ZrM62tAHJF9z5\nF+55BRfuxXzNIfKeDU4BNr0KhtbDgNKztselbyErw4KXjctRbanGo1sfAwAUS/m4wnUNvjX0W7hy\n4JUQkBXR44bLU/bmJIsuCTaHiJ1VjTjTYELwxEOAA0eSXbLs4KZKYV9yr46IiFJSsuxKZ+lUGFSc\nicljipGbqQko3KtuMOFErQHjhuejtEAHILBwDwBkMhnS4/wPeci856AhJl4/xxQMP3YZXtj7V5ww\nnQQA1AqNeO/oErx3dAkECBiVVwGtdRQG192I/Nwp0Cq1IR83XJ6yNyd58pgS3yTDzXtrAiYeegeO\n9IY8ZYq9VCnsY5BMRERRF8td6a4WW/mK84IK97ytzDK04Qv3VIrEFDAG5z2HGmLi9f3xc/H98XNx\n0nAC/z26Fv/Z/ymO2rej2dYICRL2Ne0GsBvbNr2DhzerMKnkIkwsvBRqSzkudRchuO9yqDzl4AmH\n4SYepiK704VNe2pweWW/pCve66s5zsmSFsIgmYiIIpYMHTCiVWwlyASolXIIvSQAGZg5CLcNn4VC\n0xRcXlmCs/Yj+PLs51h74jN8eeYLiLDB4XZgU/Xn2FT9OQDglVOZuLT/5bh52C24qvjGBF9BYkiS\nJ/UmGScJJnuOczg9DXKTJS2EQTIREUUs2TpgRKrV5Nk19i/ck9wSSvK0kNwS9CY7gMDCPUFIruA5\n3BATf96BJpJBh7L08zB6yCzc2u/7+MfK/SifYMUhy1Z8fmYDdtRth0tyweg0YPXxT7D6+Ce4Z9QD\nmCSbG8crio9wQ1MAz+ttd7gBAe0KEb1YkNh1PQ1ykyVnmUEyERFFLJ65xtF4LG/h3s6qBshkQpcK\n9zQqzz+RydAzuqMhJv6CB5rIZAIMLjl0TSLGZV+OaWO+hccm/QJnmhvx5paPYdLuw9rTq1BtOoM3\n97+Co7mNuGLci3G8stjqaGgK4BmcYrY5oDd58qy9r3kwFiTGV7LkLDNIJiKiiMWzA0Y0HisnQ40r\nKkshCJ5/eLtSuOcZRJIcu4gdDTHxFzzQRK6QATYRVkMVBOW5++lUGTg/8wpcOe4OPH7RE7j145ux\nt3EPNjS/hye3KPDS1S/3aOR1sohkaIp38qJ/IaIXCxL7NgbJRETUK4Qr6MvJ8Ba/ybpUuJds6STh\nhpj4Cx5oolDIoLSIkBThA/28tDx8eNPHuPWj6djd+DX+fWQp3IIDL035O5TyxP+CEA2dDU2J1mue\n7BP8UrkQMBHFfIn/DImIiCgKulrQ19sK9zqidNogGVoh6vWeP60G33ASUa+Hzibg9UlvYpimEgDw\nYdUyTPvwOzh19gBcra2Q2a0JvoLUEO0JftHmLQRMdABvtYs4eLIFVrsY8X2UChn65adDGceOM9xJ\nJiKiPikjTYnBJZnICJFO0WoKXcTlX9gXzGhJ3IS+jkgOO4ae2Q1x22no29IJQg0ncTsF3Ov6CT5U\n/QlfOfZiW8N2XP3RVDyrm4tS/WBI4wcguF1cKglXwNfRa+qdNmi2OpPuk4VU1p3CvkTkKTNIJiKi\nlBLL4kH/Qr9QTBYnDp/RQxTd0IXJcU2GQj9/gkqNo/3PR+XEAchuy70OOZzE7ETW/ga8XvYB3jr+\nKv6690Xo3SY8ZPgLrsmbhT8rbk3cRfSQ2erEtoP1IW8TRTdMVge27q+DImiX0jttEKjBDZMHJUV+\nOsUPg2QiIkopsSwe9C/0C6W6wYQTdUaMG3Gu2M9fshT6BXMqNRAys6DIzgAQejiJ95gmJxc/P+9Z\nTB58FX68di4arY1Y0/JP1P/3EJ659DdIQw6sLhskKTlTCkJxtaU/dFTAF4rB7IDd6QKAhBTvJXuO\nczipnPvsj0EyERH1SUarE8drDJhQVhjwUbq30C8UT7Gf0K7Yrze68rwp+Oy2LzF3zRxsrduMHQ1b\nccPyb/luVx5UIleTh1xNHrJUOXBa07DB3h/FGfme42me2/L8/l+r0Ca0/3RnBXyhqJWJ+2Qg2XOc\nw+npEBRO3CMiIupArKf7CUH/7QqD2eEbQBKpZMtZDh5OIpqd54r5RM9uaz7S8Oakt/DzTc9hZcs/\n4ca53VSn24k6Sy3qLLW+Y1+3dvyYGrkGOZpcXxCd5/1/TR7y0vJ8t+W1HctNy0OaIi36F09JjRP3\niIiIOhDr6X66tsK9rqRHuNtSDPYeb8aR6vYRoSi6oTfbkZ2ubpff6pUMOcuhhpOEKuYDAKfDhR80\njsNDhZWoFxpR7zDgiL4BaeOGwCqY0GxrQp2pASeba+GWm6B3NENv14d8XJvLhoxKxQwAACAASURB\nVBrzWdSYz0a8Vq1Ci1yNN4DORV7brvS5QDswuC7UFQBI79Hz05HOJviFKwL0StaUHGqPQTIRESWl\nrhboxWMaYLZOjYFFGSEHTwDnBlNMGlUU8vZkCZBCDicJVcyHwAElY9JVaDU78OWBBlx+/jDfLy96\nkz3gFxrRLaLF1oJmW1Pbn2bPf61NaPIeszahxd6MJqvndoMj9Da0RbTAYrLgjCn85LxgOpUOuZo8\nZCpzINm1GKAvhsOiwX75APTLLPIF2jmaXAzJGgqNQhPR941kgl+4IkB/nOCXGhgkExFRUupqgV68\npgGmqRUdDp5I1mEkwYKHk4Qq5gPaDyiRK+xwq00dfm+FTIECbQEKtAURr8fhcqDF3oJma/vAutl2\nLrhusTWjydaMZmsTTE5jyO9lcphgcpgAnAQA7Gtb7rqm9ueW6vpj44wtyFRndbrGSCb4dSTRE/yS\npRCwO4V9ichTZpBMRER9kqmtcO+CoMK9viw4TxkAXGYHFBaj73jw195zejpwRCVXoUhbhCJtUcT3\nsbvsnqDZei6A1juaYYERZ1pqUGOox9GGs5AUZtSbG2CVWmERLQHfo9p0BquPr8SMsjsiftzuFAAm\ng2QpBOxOYV8i8pQZJBMRUUqJVkGf2y3B7nR1KWCIZ2sr/4EmkeS6Aj0rDgyVpwx4egXn1BpgNWRC\nUsnbfe09J7fOGPeBI2q5GsXpJShOL/EdUyhkyMlJR0uLGY16KzbsrMb4EQXYcbgBV44rhVrjbtuN\nbsKc1TNxyngSq45/0qUgOZp6muOsVsmRkxO7HOy+jEEyERGlFKfoxtlGMwYWZ8S9CK6nra0iEWqg\nic0htg21kKCQyWJSHBgyTxmBOclZbTnJ/l97z2k+0ABBlfy9fNMUaUjTlaKfrhTXDrkB/9j9Cjac\nXgeL0wKtUhvXtUQjx1kmE3BrNoPkWGCQTEREKSVauccqhQz5WWlQdVBglQihBpp4dhIFTB5TDAAx\nKw4MzlMGQuck+3/tPaezPOVkdP3gG/GP3a/AKloxbcW1uLjfpbigeBIuKJqIEl2/mD9+NHKcd1Y1\nQHS5u9XKMFZ6mvucLMNIGCQTEVGfpFErkJ+lgSaBfVjDCTXQxFsQ6P//qZgXm0wmFl+IUl1/VJvO\nYFfDTuxq2Ans9txWquuPirzx0FiGYlBaBRyuIqjksXm+UzXHOZye5j7H4xObSCTfTwYiIqI4iEXh\nXqx3wFpNDgiCJ/2is/xkwLOrbLCJMVlLqpDZrXAZDO0GpXi9d+VSfHDiQ+xo3IkdTTthbOuYUW06\ng2rTGd95L7+jwqjcsciXymDOvgJXDLoEpbr+CZ0gSLHFIJmIiHqFrhb0dadwrzOx2gHzz1O2OVxt\n+ckCNCp5hwNMZDIBkHmOyZNgiEm8eYsRbQ2ZsJnT2g1KAYBcAPdiPCAfD3eBG0fFs9jjOIpdjiPY\nZT+KY+JZSIIEp9uB3Y1fA/ga675YCnwBFGmLcUHxJEwomogLiifh/ILKhE8I7EkhYLL08e5MvNrB\nMUgmIqJeIZEFfbHmn6fsCXAk30CTjgaYKOQySHI5HHYn0jV97598bzFi6cBsaE60thuUEkougIlt\n/99qduCTnUdw3H0UirxT2NW4Hdtrt8HiMgAA6iy1WHnsI6w89hEAT3/oUXljUFkwHuMKx6OycDxG\n5pZBIYvPcx+NQsBkHXTi/ylNvNrB9b2/MURE1Ct1taAvWQv3wvHPU9aoAgeahMtRVig8QbIqhlMI\nk51bnQZ5ZiZkGnu7QSmdkSvsUKflowwFuOb82wAAn+04jUFD7Ths3IXttduwvW4rDjbvh1tyQ3SL\n2NOwC3sadmHx/rcAeLppjMmvwLjC8RiRWQGrvR/cUklHD9ttPSkEjOegk+4U9vl/SqM32WO5PB8G\nyURE1Cclc+FeLHTWdzncR/E96b2cTEINSumMy+yAwmqCJD/3HpEJMgzJGobxpaNxe9lMAIDJYcTO\n+h3YXrsVOxt2YFf9DtSaawAAVtGKbbVfYVvtV77v8YfjmagsHIey7ArIjAMx3DQFWelDo5bfnOyF\ngMky1KQzfeMnAxERURQkw1jfrhYHSm0JzZ31XdYoFTjTaAIgQaNqHx6kcgpLuEEpnbE5XCio1kMS\nZJAuHBy2D7ROlYHL+l+By/pf4TtWa67Brvqd2FX/NXbW78Duhp1otjUDAIxOA76o3ogvqjcCAP5x\nCshPy0dlgSdFo7JwHCoLJ6BQW9iDq469cPnPneU+G8wOOMTEjObuCgbJRETUJ4kuN+xOV5c+Xk6G\nHbCuFgfmZaXhynGlAWsO1Xd57JBcKBQyX66zv1Qp6Aon3KCUzrSaHWjYeQaSXNHlQSnF6SW4ZnAJ\nrhl8HQDPLyt7a6vw3vZ1cGeexoGW3djVsBNmp6e/dKO1EWtPfYq1pz71fY9SXX9UFo7HuMIJGF80\nAecXVCJDldmldcRKR/nPneU+e39JM9tKknrHm0EyERH1SaLohtHihJgCO1o9lZupaXedwX2XM7Sq\nXt1/OdSglM7IFXaIaXogCqM6BEHAeRkDcUH2d3DluFJk69RoNlrx3v/7EmmFNThs2IOd9Tuwr/Eb\n2Fw2AOfa0HkLAwUIGJEzEuOKJmBc4QQMz6iA6M7u8dq6oyf5z2cbzThRa4QrXBeOJPjEBmCQTERE\nfVSWTo1Lx5YgqxcGhJQaZIIMJZohuHLoZcjWzQIAOF1OHGw5gF31ntzmnfU7cKBpH1ySCxIkHGo5\niEMtB/HuwaUAAIWgwhuNlRhfOB7DMypgs5fGrDAwlO7kP3fW4zsZPrEBGCQTEVEfFa3x1v4SsQOW\nLCN8+4ruFAB6ucwOyOzWDs9RypUYm1+BsfkVmDVqNgDA4rTgm8Y92Fm/HTvrvsaO+q9x0nACACBK\nDmyv2YrtNVt93+OPJ7IwrnA8xhdNwLjCCzCuaAKKtEVdXm+yitd7nkEyERFRlCRiB6wnA0z8J/gZ\nLR0XW3n1lm4X3dHdAkAvm8OF3DojpPEDAES++6pVanFhyUW4sOQi37EmaxO+PPUVPt67EVbtCeyo\n3YZGayMAwOBoxcYz67HxzHrf+d785rLccgzPGYFh2cMxJHsYdEpdl68jEh0NNTFaHBBdbhgtjpDt\n3MydTImM19hqBslERNQndXVCX28SaoKf3eFGTbMZouiGzSmGnODnr689Z0D3CwC9Ws0ONB9o6HIR\nYCh5aXm4vHQq0FiOW6aMAEQRu6sP491tayFmnMT+Fk+/ZotoAdA+v9mrVNcfQ7OHY0D6ELiMBVCe\nvQDj+o1GSXq/brek62yoicnqhMPpxs6qRlSdaW13u80hQiYLfH8l4lMaBslERNQnmaxObNhZ7Sui\n6ktCTfAbOyQP3xyTY+yQXHxzrDnkBD+vVO920RPdKQD0kivscKtNMViVpzCwv25AQGGg6BZxqPkg\ndtXvwI76r7G7YSeOtBz2Bc7AueAZ8Ow6v3PWczxdqcPQ7GEYlj3ct/M8LHsEhmQP7XT0dmdFfQaz\nAwq5gMljStq9x4wWJ7785my7T2MS8SkNg2QiIuqT1Eo5ygbkQN2FaXTduU+y8k7wk8kEFGRrkalT\nQ6OSt+0ydxyIiC53wMfkfTkFI5kpZAqMzh+D0fljMHPUXQA8rehqzGdR1XIYR/SHcURfhaqWKhxu\nPoRay1nffc1Ok296oD8BAs7LGICBGUOhspegRluJiuJRGJYzAoVphQG7zx0V9QVPjUxGDJKJiKhP\n6k7hXiyK/boq2h87e/M7W4yeoHfv8ea2QSMCNH55t6Loht5s7zANoy+mYPRUrAsBgwmCgH66UvTT\nleKK867yHdeb7FizvQrnDbag1n4CR/RVONJShSr9YRzTH/G1pZMg4ZTxJE4ZTwIA1jUt9X2PDFUm\nhmcPxwDdUKitA3GB88fI7iD32mxt/8uVweyA3eECBKHDiZDx+DSDQTIREVEKidXHzt4UDKPFk34R\nPFTEYHZg897asGkYfTkFo7uiUQiYU2+Ce0oZ5Iqeh3QauRaj84bjEt2kgONuyY0zxtOeneeWKlTp\nq3Cw8SAONh1Gq3hukqPRYcCOek/3DQBYt3wRHr/wSdxRPgsKWeD6HE4XvthTE/CLmPeaqhvNyNap\nA4aR+E+J9E6EvPqC82L6nmOQTEREfVJfLtwLJydDDUEI/1F4bx42kgjRKARsOdQImVoNuFwxWKGH\nTJBhQOZADMgciCkDvgXAs/O8YWc1JozOQIPzZMDO84GmAzjWWoVGWwMe2Tgfr+/5G56a/CymDvi2\nLx3DLUkAhHZ5y94c+eB8Zf8pkYIg4OtD9V2altkdDJKJiKhPcopunG00Y2BxRtSC5N6Us0zx0fNC\nQHMMVhW5DFUmzsu9AOOLLvAd05vseOXzZVijfxmH9PtxqOUg7lh5Ky7vfxV+NfnX6K8Zce7+IfKW\nO/slLV4YJBMRUZ8Ui/ziROQsJ8sI32QWnM8aKRYkdt/ojMn40aXT8d/qD/DcV8+izlKLz8+sx9T3\nL8X0obejQpqJHGXgZECT1dn2WontXiv/19Bsc+LwaT1GDggcyR3tlB8GyURERCks2jnKvWmCn7cf\n9N7jTe3yWYHIihEBpNRz0d1CwO4UAXZGLpPjjvJZuGnYLfjbrpfwys6/wiJa8MHRd7ACyzAp6waM\nMv4c2boyX29lb9/uUIWjJqsDW/fXwWwTUa+3Yuv+emTpAq8zmnnKDJKJiIjIJ17TzOIhsBhR6HIx\nIuCZ/rbtQF2cVtwzPSkE7O40wEjolDo8OvEJ3DVqDn6/9Tf418F/wiWJ2NK6At9e8RGmD78VPyh7\nCIAOFUPzEKpw1F91gwmnG4y4oKwApQWeiYFGizPqecoMkomIiCLEYr/Uc64YMXTRYW8qRuxJIWA0\npwGGU5RejOevegl3jbwfv1z/W2xtXQm35MK/D7+HDw6/j3GZU/Fw4aPQqIo6fE08w0hkyNDG9nVj\nkExERBShZJjSF+3iwEhzmntDGkarKVSea/v8V3+plpfc3ULAWE4DDDYocyjuKP4lrsm7D1XKD/Hv\nI0thd9mxw7AWd65bi7EZlyGn/y9whW5yXNYTDoNkIiKiCCVD94poFwdGmtOcymkY3tzknVUNAcdt\nDheOnTWg2WBHYXZah3nJCrks5i3HUk24/GfR7ITbZoPYaoAots8P9uQ/25CrLsFTF/4ej1/0OF7Y\n9hcsPbgQdrcV3xi/wK2rr8Fjk36BhycsCJjiF08MkomIiCKUDBP3qOu8ucnBsZZnupsICEKHecne\nrgn+o7j7uo7ynw1OATa9CobWw4Cy/S9fNocL2TUWNJd5hpYUpRfj8QuexmjpVuyXVmDp4Tdhc5vw\n+62/wZGWKrxw1cvQKDRxuS5/DJKJiIio18vJCJ1+oFbJAQi9Ji85XjrMfzY7odnfgMxRBchOb7+T\n3Gp2QL+7FpAHBtcZihzcP2IBRuA6LKr7GQ607MUHVe/juP44XrnybeSlFQAAjBYHRJcbRovD94tL\ncOpMNNrBMUgmIiJKYcmQAkJ9U7j8Z4XCDpnGCEVWZsjcaE/+sz7s981RFuGNK5fjx+vuxW7DBuxo\n2IYbVlyNBwe9iFLNMJisTjicbuysakTVmVYACNk6rqft4BgkExERpTCmgHSfTCZAl6aC2da14rzg\nAsBIpVoRYE901K/ZZXZAbjVDlCl8ecvePGaXwQCZ3Qq1rAD3D3geWxxv4O3Dr6LJeRZ/PjEH71zz\nCUpUw6CQCwGjq8+Ns47e2GoGyUREROTTlyb4ZWpVuLSiBBt2Vkd0frgCQK9Ih5P09vaBnfVrtjlc\nyD5rRo0mHwbLUUAp+fKYbY1W5DYZIJUVQybI8IuLnsa40tF4ZON8mJxGPLDhLrx/7X9Djq72HosW\nBslERETkE+0Jfr1JuAJAr0iGk0R7dHIy6qxfc6vZAf3OaihlCmSeX+zJW27LY9YMykLzST0GKM/d\n747yWRAgYP76H+OU8STmbfwBZuf/NebXwSCZiIioD2NOc9eEKwD06k3DSXqio37NcoUdrjQ9BAi+\nvGVvHrM8MxNudfsuIt8vvxP7m/fhH7tfwda6zdA4f4+p0qsxvQYGyURERH1YpDnNvTUNIxmGpPTV\nHGe541zesn9OssJihMugbtdr+RflP8Oh+r3YULMRnzf/G6tPfgd3jJkRs/UxSCYiIqJO9dY0jEQO\nSYlGjrNMJkAhl8HlcsVqmTEhiE4UHNoGqykLkkoekJOc09gKW3MWbOa0dr2Wf4cZuF1+CCdctTjS\ndCCma2SQTERERJQA0chxVreld7Q4UmtXWVIo0TByIsZWFHvylv1ykluONaLfkHxoTrS267WcDeA9\n/UVYtPO/mFvx/ZiukUEyERFRChNdblhsIrQaRa/vmtAb9TTHuaMuGsnOpTqXt+yfkyxq7ZBnZkKm\nsYfstZyjSMO4/GuhVabHdH0MkomIiFKYU3TjbKMZA4szGCQTgO7lOCdDfrPMboVkaA2bk+zlMjs8\n5/j1YXaZHZDZrVFdD4NkIiKiFBbtYSJ9qdtFtIsRE10EGI0c50T9ouXtrSzWa5HTZA6bkwx4+izn\n1BpgNWT6+jDbHC7k1hkhjR8AQRWdwlIGyUREROTTlyb4RbsYMZFFgEDPc5wT2cPZ21v5vIFZaDnW\nFDYnGfD0WW7ZW4OyMSW+PsytZgeaDzRELUAGGCQTERER9Rqp3MfZrU6DkJkFUevoMCdZrrBD1JoC\n+jDLFXa41aaoriepguSlS5fizTffRGNjI8rKyvDkk0+ioqIi5LnLli3DihUrUFVVBQAYPXo0fvrT\nn4Y9n4iIiLqvL6VhUORC5T8bzA7YHC4YzKFzo5Mh/zkSSRMkr1q1Cr/73e/w7LPPYuzYsXj77bcx\nd+5crFmzBrm5ue3O37p1K2644QaMGzcOarUar732Gu655x6sXLkShYWFCbgCIiKi3qu3pmHYnS5s\n2lODyyv7Jd2QlETnOHeko/xnk8WJw2f0EEU3dNrw6RvJeF3+kiZIXrRoEWbMmIFp06YBAJ5++mls\n2LABH3zwAe6999525//xj38M+Po3v/kNPv30U2zZsgU333xzXNZMREREqU2SJJiszqQckpLoHOeO\ndJT/XN1gwok6I8aNyEdpgS7k/c02EdsO1HX4GDK7NaCDhVe47hbeY9779lRSBMlOpxP79u3DD3/4\nQ98xQRAwefJk7Nq1K6LvYbFYIIoisrOzY7VMIiIiImoTLv/ZYHZAIffsgnc399nb7cLakuHrYOEV\nrruF9xgAX6cLoPu510kRJLe0tMDlciE/Pz/geF5eHo4fPx7R9/jTn/6EoqIiXHzxxbFYIhERERHF\nibfbRXl5ga+DhVe47hbeYwCi0ukiKYLkcCRJghCuj4mf1157DatXr8aSJUug6uITIpMJ3cqJkbf1\nEZT3ocbtvOa+gdfcN/Ca+wZec8fS05QYeV4OjtcaoJDLUnJ6XVeuV6WUIztDDZVSHtNrlctlEAQB\nZpsIkzV0kZ7ZJsIhumG2iVDIZb6vrQ4RMpnguZ40LdS5OdAE7Vjb1Ha4deaA2/yPAQDSzD1+TZMi\nSM7JyYFcLkdjY2PA8ebmZuTl5XV43zfffBNvvPEGFi1ahOHDh3f5sXNz0yMKxMPJzEzr9n1TFa+5\nb+A19w285r6B1xxaDgCNVo1GkwNZ2VrkZGp69JitJjs27arGpZWlyIpzi7WIrjcnHQP7x774ssns\nhFIhR9VZA840Wdrd7hTdqGk0o9lgg0bTiDS1Ala7iDMNZmg0SqSlqZCTo0Vamirk6yLJ5e1u8z8G\nIOx9uyIpgmSlUonRo0djy5YtmDp1KgDPLvKWLVswa9assPd744038I9//ANvvvkmRo0a1a3Hbm42\nd3snOTMzDQaDFS6Xu1uPnWp4zbzm3orXzGvurXjNnV9zq9EOq9WBVr0FgsvVo8fWG+2obTShudkM\nt1Ps0feKVDK+xnK3G6X5WkwYnt8uVQLwpEY0tlhQnJPmO6fV7IDN5sSE4fnIzVTD5RDDvi6hXjP/\nYwA6fU1zctI7vY6kCJIBYPbs2Xj88ccxZswYXws4m82G6dOnAwAWLFiA4uJiPPzwwwCA119/HS++\n+CKef/559OvXz7cLrdVqodVqI35ct1vqUUWry+WGKCbHmzJeeM19A6+5b+A19w285vBElxtutwQx\nCs9RNL9XVyXTayy63FAr5UjXKEJO8BNdbqgUAgABouiG6HLD1fbcuVxu2Nt6LFtsIpoNNohBwb/R\n4mz3PPs/9wCi8jokTZB83XXXoaWlBS+++CIaGxtRXl6ON954w9cjuba2FnL5uerGd955B6IoYt68\neQHf54EHHsCDDz4Y17UTERFRauKQlOiLpL+zJAGCcK7Pss0h4kStEYAEhUyGer0FepMDgASNKnS4\nqohxrn3SBMkAMHPmTMycOTPkbYsXLw74+rPPPovHkoiIiKgXS+YhKQaLA9sO1GNieWHSDTrpSCT9\nndPUClQOz/e1iPNM5xMweUwxAGD9jmqkp6kweUwJMkOkbCjkspC71NGUVEEyEREREXm43RKMFkdS\nDjqJhmydOqCPskYl9wXEapUMgIDM9O73Wu4pBslERERElBRaTQ4IAmB3uABBaNth7pzRErrVXE8w\nSCYiIiKihJLaNst3VjXA5nDhdIMJgIDNe2ugUSkgim7ozXZkp6s77H2skMvaFfp1F4NkIiIioihI\n9iLAZMlxDlXYl5OhxhWVpRAET36y3SECguDLSTaYHdi8txaTRhWFzFEGzuUp6032qKyTQTIRERFR\nFCRzESCQPDnO4Qr7cvwm66lVcgTnJHtzluOVo5x68xeJiIiIiGKMQTIRERERJQ2ZTIAuTQWh6wOR\no7uOxD48EREREYWS7DnO4RgsDqz7+gwMlsg6UwTL1KpwaUVJwq+bOclERERESSjZc5zDiWbuc6vJ\nE2gbzA7YHGJELeGi1Q6OQTIRERERJRX/lnAAYHO42sZWC1DIhIjbwfUEg2QiIiIiSir+LeEAwGh1\nQpemxPnD8yG5pYjbwfUEg2QiIiKiPiDVcpz9W8Jl69Q4r0AHANCb7HFpB8fCPSIiIqI+wJvjnKZO\n7B5pTwv74oVBMhERERHFTbIMNekMg2QiIiIioiAMkomIiIgoanqa+5ws6Rgs3CMiIiKiqOlpf+dk\nScfgTjIRERERpQyZTECGVgWZLLZzq7mTTEREREQpI1OrwtQJ/WP+ONxJJiIiIqKklog8ZQbJRERE\nRBQ33SnsS0SeMtMtiIiIiChuelrYFy/cSSYiIiIiCsIgmYiIiIiSRk/7LEcL0y2IiIiIKGkkSzoG\nd5KJiIiIiIIwSCYiIiKilBGvdnAMkomIiIgoqfnnKcerHRxzkomIiIgoqfnnKdudrrg8JneSiYiI\niIiCMEgmIiIiIgrCIJmIiIiIKAiDZCIiIiKiIAySiYiIiIiCMEgmIiIiopQRr7HVbAFHRERERCkj\nXmOruZNMRERERBSEQTIRERERURAGyUREREREQRgkExEREREFYZBMRERERBSEQTIRERERURAGyURE\nREREQRgkExEREREFYZBMRERERBSEQTIRERERURAGyUREREREQRgkExEREREFYZBMRERERBSEQTIR\nERERURAGyUREREREQRgkExEREREFYZBMRERERBSEQTIRERERURAGyUREREREQRgkExEREREFYZBM\nRERERBSEQTIRERERURAGyUREREREQRgkExEREREFYZBMRERERBSEQTIRERERURAGyUREREREQRgk\nExEREREFYZBMRERERBSEQTIRERERURAGyUREREREQRgkExEREREFYZBMRERERBSEQTIRERERURAG\nyUREREREQZIqSF66dCmmTJmCiooK3HbbbdizZ0+H569evRrXXnstKioqcNNNN2Hjxo1xWikRERER\n9WZJEySvWrUKv/vd7zBv3jwsX74cZWVlmDt3Lpqbm0Oev3PnTjzyyCO47bbbsGLFClx99dV44IEH\ncOTIkTivnIiIiIh6m6QJkhctWoQZM2Zg2rRpGDp0KJ5++mloNBp88MEHIc9fvHgxLrvsMsyZMwdD\nhgzBvHnzMHr0aCxZsiTOKyciIiKi3iYpgmSn04l9+/bh4osv9h0TBAGTJ0/Grl27Qt5n165dmDx5\ncsCxSy+9NOz5RERERESRSooguaWlBS6XC/n5+QHH8/Ly0NjYGPI+DQ0NXTqfiIiIiChSikQvoCOS\nJEEQhC6d31UymQCZLPLH8JLLZQH/7Qt4zX0Dr7lv4DX3Dbzm3q+vXW88JUWQnJOTA7lc3m4XuLm5\nGXl5eSHvU1BQEPL84N3lzuTl6bq22CCZmWk9un8q4jX3DbzmvoHX3Dfwmnu/vna98ZAUv3YolUqM\nHj0aW7Zs8R2TJAlbtmzBuHHjQt6nsrIy4HwA+PLLL1FZWRnTtRIRERFR75cUQTIAzJ49G++//z5W\nrFiBo0eP4qmnnoLNZsP06dMBAAsWLMDzzz/vO/+uu+7CF198gYULF+LYsWN46aWXsG/fPtx5552J\nugQiIiIi6iWSIt0CAK677jq0tLTgxRdfRGNjI8rLy/HGG28gNzcXAFBbWwu5XO47f9y4cfjzn/+M\nF154AS+88AIGDhyIV199FcOGDUvUJRARERFRLyFI3al2IyIiIiLqxZIm3YKIiIiIKFkwSCYiIiIi\nCsIgmYiIiIgoCINkIiIiIqIgDJKJiIiIiIIwSCYiIiIiCsIgmYiIiIgoCINkok60trbiueeeQ1VV\nVaKXQkRERHGSNBP3kl1dXR0OHDiA+vp62Gw2aDQaFBYWory8HEVFRYleHsWQyWTC4sWLceGFF2L4\n8OGJXk5MnTp1Cjt37oTBYEBubi4mTZqEgoKCRC8rqoxGI5RKJTQaje9Ya2sr9u/fD5fLhZEjR/a6\naw7mdDpht9uhVquhVCoTvRyKMafTiaNHj6J///7Q6XSJXk7MSZIEs9nckuLJAgAAEWtJREFUJ66V\nYosT9zqxY8cO/PGPf8SuXbsAeP7y+RMEAeeffz4effRRTJgwIRFLjLojR47gtddew9GjR5GTk4Pr\nr78e06ZNgyAIAed99NFHeOyxx3DgwIEErTQ6brzxxg5vF0URx48fR79+/ZCeng5BEPDRRx/FaXWx\nsWTJEtTW1uKRRx4BADgcDjzxxBNYtWpVwHtcoVBg7ty5+MlPfpKopUaNzWbDz372M3z22WeQyWS4\n66678Nhjj2Hp0qX405/+BJvNBgCQyWT47ne/i1/96leQyXrHh22iKGL58uVYvXo19u/fj9bWVt9t\nWVlZKC8vx7XXXotbbrml1wTNW7ZswbFjx5CTk4PLL788ZMC0a9cuvPfee3juuecSsML4qa6uxtVX\nX41XXnkFU6ZMSfRyouLw4cNoamrCxRdf7Du2adMm/O1vf8OePXsgiiLUajUuuugiPPzwwxgxYkQC\nVxs9a9euxfLly6HRaHD33XejoqICp0+fxgsvvIAdO3ZAFEWMHj0a9913X6+JSRKJO8kd2Lx5M+67\n7z7069cPP/3pTzF27FgUFhZCpVLB4XCgvr4eu3fvxvLly3H33Xfjtddew+TJkxO97B45ceIEbr31\nVoiiiOHDh6OqqgpPPPEEli1bhr/+9a+9coetqqoKWq0Wo0ePDnm7w+EAAKSnpyM7OzueS4uZ9957\nD1dddZXv69/+9rdYuXIlZsyYgRtvvBG5ubmor6/HsmXL8I9//AN5eXmYNWtWAlfcc2+++SbWrVuH\nadOmIT8/H++++y40Gg3+/ve/Y9q0aZg6dSqcTic++eQTLFu2DP3798d9992X6GX3WHNzM+655x4c\nOHAAgwYNwuWXX46CggKo1WrY7XY0NDRgz549+OUvf4l//etfeOutt5Cbm5voZXebw+HAvffei61b\nt/p+4cvIyMAjjzyCGTNmBJx76tQprFixIuWD5IULF3Z4e2trKyRJwtq1a3Hy5EkAwJw5c+KxtJj5\n7W9/i5KSEl+QvHr1ajz88MPIzs7GjTfeiLy8PNTV1eGzzz7DjBkzsGTJkrA/41PFxo0b8eCDD0Kr\n1UKr1eKzzz7DokWL8MADD8DpdGLChAkQRRHbtm3Dl19+iYULF2LixImJXnZqkyisW2+9Vbr99tsl\nu93e4Xl2u12aMWOGdOutt8ZpZbEzf/586ZJLLpFOnDjhO7ZixQppwoQJ0lVXXSUdPXrUd/w///mP\nVFZWlohlRtUrr7wiVVZWSrNnz5YOHTrU7vbTp09LI0eOlNauXZuA1cVGZWWl9P7770uSJElut1uq\nrKyUfv3rX4c8d968edK3v/3teC4vJq655hrpiSee8H29cuVKqaysTPrFL37R7ty5c+dK11xzTTyX\nFzOPPvqoNGnSJGnz5s0dnrd582Zp0qRJ0oIFC+K0sth49dVXpfLycunll1+WDh06JG3atEmaPXu2\nVFZWJv3f//2f5HK5fOf2lp9hI0eOlMrKyqSRI0eG/eN/e2+45gsvvFBavHix7+urr75auu222ySz\n2RxwXlNTk/Sd73xHmjNnTryXGHV33nmnNG3aNMloNEqSJEm/+tWvpIsvvli66aabJL1e7zuvpqZG\nuuKKK6TZs2cnaqm9Ru/4LDFGDh06hOnTp0OlUnV4nkqlwvTp03Ho0KE4rSx2du/ejTvvvBMDBw70\nHbv55pvx3nvvQSaT4Y477sCePXsSuMLo+/GPf4w1a9YgOzsb06dPx9NPPw29Xu+7PTjNpDdQqVSw\nWCwAPGkIVqsVF154YchzL7zwQpw9ezaey4uJmpoajBs3zvf1+PHjIUkSrrzyynbnXnXVVThz5kwc\nVxc7GzduxD333BPwsXQoF198MX7wgx9gw4YN8VlYjKxatQq33HILHnjgAYwYMQKXXHIJFi5ciPnz\n52PZsmV48MEHfZ8O9RZDhgyBRqPB/PnzsXbtWqxbty7gz5IlSyBJEp599lmsW7cOa9euTfSSe8xq\ntSItLc33/6dPn8Zdd90FrVYbcF5ubi5uv/127Ny5MxHLjKrDhw/jlltu8aUOzZo1C83NzZg9ezay\nsrJ85xUXF+P73/9+r/u3OhEYJHcgKyvL99FUZ06ePInMzMwYryj29Ho98vPz2x0fOnQo3nvvPRQX\nF+Puu+/GF198kYDVxU5RURFeeOEFLFy4EDt27MC3v/1tLFq0CKIoJnppMTFu3DisXr0aAJCWloZB\ngwZh69atIc/dtm0bCgsL47m8mMjKygr45cf7//7H/G/rLak1DocD6enpEZ2bnp6e8gHkmTNnUFlZ\n2e74j370I/z5z3/GF198gTlz5sBoNCZgdbHx8ccfY968eXjrrbfwyCOPoKmpCaWlpb4/JSUlADwB\no/dYqhs8eLCvVkij0UCr1cJkMoU812QyQaFI/exSt9sNtVrt+9r7/6H+frNoMToYJHfgxhtvxKJF\ni7Bo0SKYzeaQ55jNZixcuBBvv/02brrppjivMPpKS0vD7ojn5eX58rruv/9+rFmzJs6ri72JEydi\n+fLlmD9/Pv72t7/h+uuvx4YNG3rdbvJDDz2Effv2Yd68eTh+/DieeuopLFu2DM888wy2b9+OEydO\n4KuvvsKjjz6KNWvWYPr06Yleco+NHz8e7777Lo4ePQq9Xo8XX3wRGo0G//3vf1FfX+877+TJk1i6\ndClGjRqVwNVGz/jx47F48WLU1dV1eF5dXR0WL16c8sU+WVlZaG5uDnnbddddh7///e/Yv38/Zs6c\nGfC6pzK5XI45c+ZgzZo1GDx4MG6//XY8+uijnb7mqey2227DihUrsG7dOgiCgFmzZuGll17CN998\nE3Deli1bsGjRok4/SUkFQ4YMCfikZ/369QH/9ffpp58GfCJM3cPuFh1wOBx47LHHsHr1aigUCgwa\nNAgFBQW+wr2GhgacOHECoijimmuuwR/+8IdOUzOS3TPPPIP//e9/WL9+fdjfvB0OB+bPn4/169dD\nEISU724Rjl6vxwsvvIBly5ZBkiS8/PLLmDp1aqKXFTWbNm3C448/jqamJuh0Ooii6Ovw4CVJEr77\n3e/imWeegVwuT9BKo+PkyZP43ve+59ttkiQJ8+fPR2lpKX75y19i1KhRcLvd2L9/P9xuN9555x2M\nHTs2wavuuaNHj2LmzJmw2+248sorMWbMmHY/x/bu3YsNGzZAo9FgyZIlGDp0aKKX3W33338/Wlpa\n8O6774Y9Z8+ePbjvvvtgNBrhdrt73c+wPXv24Nlnn8WRI0dwzz334Nprr8X111+PV155pdf8DJMk\nCU888QRWrFiB888/H2PHjsUnn3yC1tZW9O/fH3l5eaivr0dNTQ3y8/PxzjvvoH///oledo+sWrUK\nDz/8MCoqKpCbm4tNmzZh4sSJGDx4MGpqajBlyhS43W6sWrUKW7duxZNPPomZM2cmetkpjUFyBPbs\n2YM1a9bg4MGDaGho8PVJLigoQFlZGa655hpUVFQkeplR8c033+D111/HD37wg5AfWXq53W4899xz\nOHjwIP75z3/GcYXxd/LkSdTV1WH48OHIyclJ9HKiymQy4eOPP8aW/9/e3YREtT5wHP9JN22K8tJI\nqb1ZLhybyVDCUHEVSWovVBph2CLDAiERkuhFSMswCJIYcBEuxMqy0axs5SKKINqEWVAWhuXbTIwY\n6phpNHcRzP031vX+I2euM9/Pzpkzx+e3GX7nzHOe5/FjvXv3TmNjY541wM1mszIzMxUfH+/vYf42\ndrtdLS0tcrlcSk5OVnp6uiTp3r17amhokNPpVExMjA4ePKgNGzb4ebS/j8PhUE1Njdra2jQ4ODjl\n/cWLFysjI0OHDx9WZGSkH0b4+zQ3N+vEiRO6fv36P36HdXV1qaCgwLMGfiBqamrSxYsXNTk5qeHh\n4YC70Je+Fce6ujp1dHRMWaI1IiJCWVlZOnTokIxGo59G+HvV19frypUrnu+wU6dOad68eTpy5Ige\nPXok6e9lLMvLywNmGUt/oSQDQBBxOBxTLvYDaUMkt9utT58+ae7cudOu+exyufTx48eAmKP7M6Oj\no6qtrZXdbtf+/fsD6qL3f42Ojqqnp0cul8tzoR8Iz1L8P3p6ejQ4OKiVK1fO6mUc/0soyQAASd+K\nxvDwsKKjo/09FJ8ItrwSmYNFMGaeCdyHBwBI+vZTbqD9HP9Pgi2vROZgEYyZZwIlGQAAAPAy+xcO\nBAD8VEtLy78+NhAeYAu2vBKZp0Nm/CrmJANAADOZTAoJCZny5P/PzPZlHYMtr0Tmf4PM+BXcSQaA\nABYeHi6TyaTS0tJpj7XZbLpx44YPRjVzgi2vRObpkBm/ipIMAAFs3bp1evv2rSwWy7THBsJ288GW\nVyLzdMiMX8WDewAQwBISEtTf3//DTUS8LVq0SFFRUT4Y1cwJtrwSmadDZvwq5iQDQAAbGxvT0NCQ\nlixZMu3mGoEg2PJKZCYzZgolGQAAAPDCdAsAAADACyUZAAAA8EJJBgAAALxQkgEAAAAvlGQAAADA\nC5uJAMAsY7VaZbVaJX3benbBggWKiopScnKy8vLyFBsb6+cRAsDsR0kGgFnIYDCorq5OkuRyudTZ\n2anGxkY1Njbq3Llz2rZtm59HCACzGyUZAGahkJAQJSQkeP5OSUlRXl6eCgsLdfLkSSUmJmr58uV+\nHCEAzG7MSQaAABEaGqqysjJNTEzo5s2bkqSWlhbl5eVp48aNSk5OVn5+vjo6Ojyf6ezslMlk0uPH\nj78719evX5Wenq4LFy5IkhwOh4qLi5WWlqaEhARt2rRJVVVVvgsHAD7GnWQACCCxsbFaunSp2tvb\nJUl9fX3auXOnVqxYocnJSbW2tio/P1937tzRqlWrFBcXp/Xr18tmsyklJcVznocPH8rpdConJ0eS\nVFpaKqfTqbKyMhmNRvX39+vFixd+yQgAvkBJBoAAExUVJafTKUkqKiryvO52u5WamqqOjg41Nzer\npKREkpSbm6uzZ89qZGRECxculCQ1NzcrMTFRMTExkqTnz5/r6NGj2rJli+d8O3bs8FEiAPA9plsA\nQIBxu90KCQmRJHV1damoqEhpaWmKj4+X2WxWd3e3uru7PcdnZ2drzpw5unv3riRpaGhI9+/fV25u\nrucYs9ms2tpaNTQ06P379z7NAwD+QEkGgABjt9sVEREhl8ulAwcOaGBgQMePH9e1a9fU1NSkuLg4\nff782XO8wWBQdna2bDabJOn27dsKDQ397q5xdXW1UlJSVF1drYyMDGVmZqqtrc3n2QDAVyjJABBA\n3rx5I4fDoaSkJLW3t+vDhw+qqqrS1q1blZSUJLPZrJGRkSmf27Nnj16+fKlXr17p1q1bysrKksFg\n8LwfERGhyspKPXnyRDabTWvWrFFJSYl6e3t9GQ8AfIaSDAABYmJiQmfOnFFYWJhycnI0Pj4uSfrj\nj78fP3n69Kn6+vqmfNZischkMqmyslKvX7/Wrl27fvp/LBaLiouL9eXLF6ZeAAhYPLgHALOQ2+3W\ns2fPJEljY2OezUR6e3tVVVWl6OhohYWFyWAwqLy8XIWFhbLb7bJarYqMjPzhOXNzc1VRUaHY2Fgl\nJiZ6Xh8dHVVBQYG2b9+uNWvWaGJiQvX19QoPD9fatWt9khcAfI2SDACz0Pj4uPbu3StJmj9/vpYt\nW6bU1FTt27dPq1evliQZjUZdunRJ58+fV1FRkWJiYlRRUaHLly//8JybN29WRUWFdu/e/d3roaGh\niouL09WrVzUwMKCwsDBZLBbV1tbqzz//nNmgAOAnIW632+3vQQAA/M9ms+n06dN68OCBjEajv4cD\nAH7FnWQACHJ9fX3q7u5WTU2NsrOzKcgAIEoyAAQ9q9Wq1tZWJSUl6dixY/4eDgD8JzDdAgAAAPDC\nEnAAAACAF0oyAAAA4IWSDAAAAHihJAMAAABeKMkAAACAF0oyAAAA4IWSDAAAAHihJAMAAABeKMkA\nAACAl78A1qaKzswgfwAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXlYVOX+wD/vwLCJqCCKirh0xQA1tc3tdt3Nst3yAt4yzdAu5FVLS26LFZpUlmIudfVqJWTLr/LeNFGBytTK1OuGYinp5IKsss/AvL8/xnOcYXOAYVHP53nmmTnnvOc975k5c77n/a5CSomGhoaGhkZt0TX1ADQ0NDQ0rk40AaKhoaGhUSc0AaKhoaGhUSc0AaKhoaGhUSc0AaKhoaGhUSc0AaKhoaGhUScaTIAIIdYIITKEEIeq2S6EEEuFEL8KIQ4IIfo31Fg0NDQ0NBxPQ85A1gJ31rB9LNDj0utJYEUDjkVDQ0NDw8E0mACRUn4HZNfQ5D7gA2lhN9BaCNGhocajoaGhoeFYmtIG0gk4bbVsuLROQ0NDQ+MqwLmpB2APQognsai5cHd3v7lz587qttOl59XPUpZjxgRIhBAIdIDAXFqGucRs02eLVj4U5mVRlltGuy49yPj9uEPG2rp1a3Jzc6tc365dO/Lz88nKysJoNOLi4oKPjw8tW7Z0yLGtMZvN6HRN6yOhjUEbgzaG5jmGK5GWlpYppfS9YkMpZYO9gK7AoWq2rQJCrZaPAR2u1OfNN98sayIpKUnuOr1LRn4dKX1jfSUvI5mLZByS7kh0SLB9LU48Vmnd2rVrK62r7ys+Pl62bNlS6vV6CUgnJyep0+mkEEKGhITI+Pj4Gs+tNiQnJzusL20M2hi0MVxbY7gSwB5pxz2+KWcgG4FIIcTHwO1AnpTybH07FUIwwH8AA/wHsHjMYlyCXKA30Ae4BSgGfXYA+gtdKPr6ezDBrNE9K/UzadKk+g6lEpGRkeTn5+PsbPnay8vLAWjTpg1xcXFMmTIFgNDQUIcfW0NDQ8PRNJgAEUIkAEOBtkIIA/ASoAeQUq4ENgF3Ab8CRcDjjh6D3kkPx7G89EB3IAjKQs5h6nQKQi4d/QCQ6uijVyY72+JTUFZWZrM+JyeHc+fOsXr1aqKiojQBoqGhcVXQkF5YoVLKDlJKvZTSX0q5Wkq58pLw4NJM6e9SyhuklL2llHsaaiwAmLAoyb6Elt8+COvg74P+Dv7ABKBFgx79ioSFhTF8+HAOHz6MEAI3Nzd0Oh29evUiISGhUvuEhAR69eqFk5NTtW00NDQ0GpKrwojuaFr1y8CtbTuCOwYz866ZrD+4nlvfe5CfP/0/tU3GlxmNOiYnJydVpQWg0+nw8fHh/vvvJzo6Gris2kpISCA6OprVq1czZMgQduzYUUn9tX37diIjI0lNTSUoKIjo6GhtZqNxTWEymTAYDJSUlNi9T6tWrUhNbQR1QzMfg4Kbmxv+/v7o9fq6dWCPoaQ5va5kRK9ooKIKY3arwWGSS5Og9Jx0KV4WsvMbveT/zv3P4Ybz+rxcXFykv7+/TEpKkiEhIeo5hYSEyKSkJJvztG4THx8vO3ToIJOSkqTRaJRJSUmyW7duDjXS20NzMBZqY7h2x3DixAl54cIFaTab7d7n4sWLDh1DXWgOY5BSSrPZLC9cuCBPnDhRaRtXgRG9SfG6/SHe3poGwKA2r/Bjzlv0XdmfoDceQ+Q/iLeHJw/29wfATe/EU8P+1OhjNBqNGAwGPv30U5snltTUVIYMGWLTdsiQIWqbmJgYnn32WYYNGwbAsGHDNPuKxjVHSUkJXbt2RQjR1EO5KhFC4OPjw4ULF+rcR/N2Rm5A3Lvfon6WRQN56dZvuNn3HlIL1+HWfiUdW7szc1QgM0cFUmIqr6GnhmfFihW4u7ury0FBQQwaNAidTmeJdxECFxcX9Ho9CQkJpKam0rt3b5s+rAWMhsa1giY86kd9v79rXoBUFbCT90M8pacPqQLCv40HPh5tCeuxiMF+4RzI3M7v2Vm8vTWNt7emsftEFsuTf22C0V+msLBQNZTrdDr27NmjxM+odOzYkejoaDp27MjBgwdttu3YsYOgoCB1WTPCa2g4nvT0dHr16tXUw6jE0KFD2bPH8X5K17wA+eijjypJWSEEt4W3Yfn+5Szfv5wM543szIrH1XcbAwL98G7VmgLvV/Dz+wUpigBIOZbB4sRjPLJyZ1OcBmBRTQGVhIPCyZMnCQsLA+CVV16hW7du6HQ6unXrxoQJE1RjvGKEj4uLo6SkhLi4OKKjozUhoqHRDKno9t+cuOYFSGhoKOvXryckJASdTkdISAjr16/nzhuieKrvUzzV9ymb9l1bd2Wg/0DyjBf4R9I/iD08lkM8jdljK6EDvdgQMbCJzgSOHDlyxTbr16/HYDCoy1VNUWNiYli9ejXDhg1Dr9erNhJFQGloaNjH4sWL6dWrF7169eKdd94BLDf88PBwgoKCGD9+PEVFlofQ5557juDgYAYOHMgzzzwDwIULF3jooYe49dZbufXWW/nhhx8AePnll/nb3/7G4MGD+dvf/saAAQM4fPiwelxlRlFYWMjkyZO57bbb6NevH1999RUAxcXF/PWvfyUoKIgHHniA4uLihvkC7LG0N6dXbb2wqsM6fUmrwWE2nllSSvnmliNyx+875ND3JkufhZ0lLyPFy0IOXzdcvrbppyq9phSq21bV+tq8nJycrtiPn5+fFELIwYMHS2dnZ3V9y5Ytpb+/v5RSSp1OJ41Go833YTQapU6nq/E7i4+PlyEhIVKn09mVeuVa9PzRxtB8xnDkyJFa7+NID6g9e/bIXr16yYKCApmfny+Dg4Pl3r17JSB37NghpZTy8ccfl2+88YbMzMyUgYGB0mw2y4sXL8qcnBwppZShoaHy+++/l1JK+fvvv8sbb7xRSinlSy+9JPv37y+LioqklFIuXrxYvvjii1JKKc+cOSMDAwOllFI+//zz8sMPP5RSSpmTkyN79OghCwoK5FtvvSUff/xxKaWU//vf/6STk5P8+eefqzyPqr5HNC+smpk/f77Nslf/c7j6tqP9A+156aWX2J+fhXu2D/7eXfH3foJ8Uxa923nx2vev4Wn+XLU/DH59O+Nv7szMUYFqX8nJyQwdOpS3t6bZrK8v1nEi1XHu3DkAdu7cqdp/2rVrx4ULF8jPzycqKgq9Xo+rqyvBwcFqfEhFG0lF7Ik90dBoKv7xzT/Yf27/FduVl5fj5ORkV599/fryzp3vVLt9x44dPPDAA7RoYYlCfvDBB/n+++/p3LkzgwcPBmDixIksXbqUf/zjH7i5uTFlyhRGjBjBww8/DMC2bdtsNAsXL16koKAAgHvvvVd1nnnkkUcYPXo08+fP55NPPmH8+PEAJCYmsnHjRt58803A4pl26tQpvvvuO55++mkA+vTpQ58+few659py3QoQgFaDLfYCt4DemE0jKL2wHYDSCyMZ5OPE9L43sOu3VzmTV4JZepCe40KPdr3Zl/8FEz9zQwgnLrrl8N/TbsxkQVOeioper8dkMiGlVAVORsbloMhly5apnw8fPkxYWBhPP/00QgiWLFlSbb/Wai/QXIM1NKqjKpurs7MzP/30E9u3bychIYHVq1eTlJSE2Wxm9+7duLm5VepHEUwAnTp1wsfHhwMHDrBhwwZWrlwJWDRIn3/+OT17Vs7n1xhctwIk74d4q6UwPHuPUJd2n8hiQHcf3t6ahjFzJH46wS1dvXHTOyGMnnyYNosD7ORvgYvZn2OgpESvxpS46Z2o7jne2dm5wQ1iJpNJ/SyEwMnJqdIx3dzcbKJ3MzMzr5hSvqrYE4PBwOHDh3FyctKi3TWalJpmCtbk5+c7rHzCn//8ZyZNmsRzzz2HlJIvvviCDz/8kBkzZrBr1y4GDhxIfHw8Q4YMoaCggKKiIu666y769OnDTTfdBMDo0aOJi4vj2WefBWD//v307du3yuNNmDCB2NhY8vLy1BnFmDFjiIuLIy4uDiEE+/bto1+/ftxxxx3Ex8czfPhwDh06xIEDBxxyzhW55o3o9pD3QzxleRnk/RBP3g/xDOjuo7r4Dujuwy1dvQEoMZXzQehM3hnzDgezt5KSNZeeHTzwb+NhV8yIyWRSM/E2BlLKKgWWImSsp/L5+fk8+uij1XpiBQUFsWPHDnU5ISGBuXPn0rVrV82TS+O6pH///kyaNInbbruN22+/nSeeeII2bdrQs2dP3n33XYKCgsjJyWH69Onk5+czbtw4+vTpw5gxY1i8eDEAS5cuZc+ePfTp04fg4GB1ZlEV48eP5+OPP+aRRx5R173wwguYTCb69OlDSEgIL7zwAgDTp0+noKCAoKAgXnzxRW6++eYG+Q6u2xlIXXlszU+UmG6jX8uZbDr+Np3N/WnFYCas2gXAmdxizviWMXRo1fubTKYmD35SVFvWNpV27dqRkZFRKe+WQnR0NFOmTFFtIPPmzUNKyYIFC2w8uTSVlsb1xKxZs5g1a5bNuqNHj1Zq5+HhwU8//QTYzoLatm3Lhg0bKrV/+eWXK61r3759pQdCd3d3Vq1aVamtu7s7H3/8sd3nUVe0GYgVrQaH0WpwGLtPZDFh1S41iHD3iSzc9Jan9RJTORsiBrJ7xuu4O7vz4MB8gju2YkPEQIb2bIdZSg5cKFf3VYIR396axoqU35r4DKtnxAiLCs9gMBAWFoZer8fHx0cNNASLHSQqKgo3NzfS09OJjY21ERZatLuGxvWFNgO5RMmpg6pdZMBLLwEwc1SgKghKTOXsPpHFkTN5qr2jk0cfPj+0jTta/dXSh6kc/zYe+OnKq/S+UvaTUjb5LKQiiupp/PjxJCQk4OXlRW5uLhERETz88MNMmTKFmJgYDh06BECvXr3w9/e36eNKnlwaGhrXFtoM5BK2RvXLzBwViEvbbbj6biOr5TvoOq3kQPlCDpQvpKOfKy4tiznX4i2W71/O3osbyHDeaNfx9G7uV27UBCiCJDc3Fzc3N1asWEFUVBRhYWE2gYaKSis5ORmTyURycjJTpkxRVWAaGhrXPtoMpApmje5Jq8FhzBodj5SS/l4TeKpvIKUXRvLZqdP8+0mLuufrtK8ZlzCOoovODOkQTHunmyk1tQWngiseY9HG/bzwQH8KCwsb+nTqhNlsViNo09LSWLp0qeqfDpdtJFFRUWrNkZiYGM3+odGoNMfZ/NWEEs9WVzQBcgWEECxOPKYul3huZvl+y7KUkkm3TGLX6f2sPGDxntCLlrQz9uWHUy0Y2HkgOmGZ5K1I+U21iYDFVfjVL/ay+0QWhpwixt/cucra7M0Bk8mkGv979eplU6RKUWlpaDQ2bm5uZGVl4ePjowmROiClJCsrq8oYFHvRBEg9EEJwa6dbKSvpTp/Obmw6+gunLh7njP4Hhvz7c9q3aM+4wHHc2/NeLpZ0Ud2DrbHYWCyqsuVDH+LXlM+b6Gyqx9PTk4KCAqSUxMXFaZHoGs0Cf39/DAZDrepZlJSU1OuG6QiawxgUlIqEdUUTILXErWAsT/UdYbOu9EIaM28L5MDpV8HUDXcK6HJjGUezjpJ4KpH/nPwPOuGEj2tnPH95gnGB4+jQskOlvvv/dXaNAiQyMtLh52MP1qqrsWPHUlpaiqurK2PHjtXUVhpNhl6vp1u3brXaJyUlhX79+jXQiK6eMTiK61aAtGjRokb7Q0WjuuKNdbHYxIRVuxjQ3Ufdprj49veagDEzCz9dPkvGjAbAWG7ku9+/Y/7WDzick8ST/30SgD8H/JlPH/600nGr0+lGRkYSFxdXY5uGwt3dXc3mWVpaqr5/+eWXwOXUDd7e3ixbtkwTKBoa1wnXrQBp06aN3Qbs1/46kNzcXFoO/CuevUfw7fH9JH50iBdffNEm7cnuE1k462xv7C5OLozsPpKD3QN4QEYz6iYjXx37ipjvY5j4xUTubL+00vEWJx5T+wWqdAluTCFypVTQQgg1EHHatGmAptbS0LgeuG7deM+cOWN32+zsbMxms5rypOTUQXJ3rOeZO4OqTXtSFUIIdqR60KL0Ee7t8k+2ndjG2oNLMOQU8fbWNAw5Rc062LA6pJScP38enU5HQUFBpboiWvVDDY1rk+t2BhIUFGRToKU2uAX0BiyZfD/75bS6fveJLIb2bFflPnsvWtIVnMkrpmMrd1zcJSF+t5Jn3IKLqyd7L7aixDOPlGMPVZrFXC0oqVGso9ETEhKYMWMGLVq0QEpJYWEhM2bMALRZiobG1c51K0A6depUJwFScurgJQFi4WKxyWZ7yrEM8vMupzJR1FDGzJEM7dmOlMwMBvm0o8RUznFDKYdzF+CtvxGjPgTjhTwM7kXkl5TR0s2ZPemixhlN7969qy1v25R07NhR/TxnzhwKCgrIzc1FSskff/yBs7Mzc+bM0QSIhsZVznWrwvr222/rtF/eD/Fq2pO8H+LxcterKqwNEQPZEDGQObe5qyota/XW9KE3AJaUJzNHBTK8218A6NPdImiCO7bCv42HGtyTnlXI7hNZ1aq1Dhw4gF9XW/tI7969q2zbmFi7VRoMBoqLi9UMwCaTieLiYpuyu1dCU4FpaDRPrlsBongTubu7o9frm2QMLfVtAcgryVGFjLUg8W/jwYDuPjWmiJ/z3n+QUrI48RhSSg4cOFDv6NL6ony3jkCphBgXF6eljdfQaGZctwLE1dUVsAT1vP76600zBqcWtHZrzS+ZG3lr2z41868hp0h9KeuuRuP6ldDpdIwZM6bGNtaVEK3Txlc01GtoaDQ+160AmTp1KmDxIIqNja3VvtUlXrSHDOeN7L24geX7l7Mv/xMm3TKJMn0Ocal/47jpY341fa7aVS4Wm1RBEv/j77USIr6+vnUeY2Mxbdo0EhMTqxQiitrq8OHDREZG2sw4HJk2XlOPaWjUnetWgChBeUIIzp8/X+d+fjvwM0KIOsdk9PDpwU0+d1JsziSXFG7086RtwLf88NwIJg/pzvibOzP+5s50bO1eoyqrIp988gmdO3eu05gai+XLlzN9+nQSExNtbuJRUVFERESQlmbJG3bs2DEiIiLUm7uj0sZr6jENjfpx3XphgSWXTnl5OevXr2f48OH17k8IUaP94e2taRgvjMTANj79xZLpdtdvYCz1w1s3iOzyH9hzfiuecqDqxaVgUWdZKiL27dxaXa8kaFTe3fROqrH+1KlTatS8EozYnJLO6XQ6brzxRgCbHFtKcat27dpx/vx5zGYz+fn5hIWFMW/ePAoLC1myZEm9j2+tHgO0qooaGrXkuhYgsbGxzJgxg8mTJzf4sZQb+O4TWQwIeBywxIYMvMGHXb8B9MSptJALpv24uvjg6rsNl4tZfPjQC2rCxQHdfdh9IqvaYlVKAayaaE7pr4UQqipqxIgR6tiUd3d3d7Ud1D/1dEVSU1MZMmSIzTqtqqKGhv1ctyossASyLVmyhBYtWjTJ8S11Rp5Sl31d+uPr1oUM4y/kFOcAqIWqrkXMZrP6WREO1u9r1qwhODiYN954Ay8vLwBOnjzJhg0bHGJEDwoKYv78+Tbqs/nz52tVFTU07OS6FiBgESL1qWlRcqr+gXz9vSbQruxe2pXfy4Od3iArL5c9p/aoAqa/14R6H8OapnbztZcxY8Zw5MgRnn32WfLy8gBLKV2DweCQWcKwYcNYuHAhmZmZmM1mMjMzWbhwoarS0tDQqJkGFSBCiDuFEMeEEL8KIZ6rYnuAECJZCLFPCHFACHFXQ46nJuqaE78qj6xhw4YhhGDW6J52G9gznDeS4byRk6Xf0d2nLwezD6reWrUplWsvStwIzUSdVRVK8KH1TCUtLY1p06bZRLvXlS+//BJXV1eys7MBS84zV1dXNcuwhoZGzTSYDUQI4QS8C4wCDMDPQoiNUsojVs3+CXwipVwhhAgGNgFdG2pMNREbG0t4eLjN0/mVjOJVUZ2wsO7L2jg+YdUuAC6aTJS5/Ire5IazSxnlEs6WHuLncx6cLS2iUGe6pMoaCVgqHFp7ZVU0pp85bWTo0CuPd/GWo6rtpDka2iuiVEdU8m7VB4PBQKtWrWjfvj2///47nTp1Iicnp1ZR8hoa1zMNOQO5DfhVSnlCSmkEPgbuq9BGAl6XPrcC7E+R62BCQ0Np06YNOt3lr8THx4fWrVvXsFftUaLNrTHkFOFWMBZn459orw/B1dyZ/OJ8XGQrbvW7lQ6uvWhhtpS7PenyBsv3L2dnVjyuvtvU119u34er7zYy9f8B4MCFcjXDryJU3t6aZlcsiXvLVg4954agtLTUIe62ZWVlgEVoZmVlqaoyNzc3oqKi6t2/hsa1TEN6YXUCTlstG4DbK7R5GUgUQkQBLVAer5uI3Nxc1q5dy6JFi0hNTaV9+/bMnTuXRx99tEGPe7HYhJe7HreCsfT36sytbR5i4b4R/HbhME/1fY/SC2kYM7Po7+WDMXMkT/UdSOmFNJ7qW9kb69sfdzFzVCDp6ek23lrK5yt5aQHEfP4Tr/11oKraaU64urqqqVIckZCxsLBQrQuTn5+vrl+wYAFz584FLscMaWho2NLUbryhwFop5VtCiIHAh0KIXlJKs3UjIcSTwJMA7du3JyUlpdoOCwoKatxeEwEBAWRmZrJs2TJ13b59++rUV1WkpKTQ71LarXSdEYCj2eWUlZkpKSmnyATp6ekAdGY4P+fF8832b0hP15GbW056ej65ueWkpKSQnm4kJaXyhC03t5iUlBSMRqPaznJsS1tlv+relTaff24prfvFcSMP9HABqJVxOSUlxaYUrqOwzrNlMBiu+FvX9XqIi4ujvLycZcuW0bp1azU2pSq2b9/ORx99xKlTpwgICGDixIk27etzTToKbQzaGBoEKWWDvICBwBar5eeB5yu0OQx0tlo+AbSrqd+bb75Z1kRycnKN22siMjJS6vV6KYSQwcHBMjo6Wnbr1k1iUbXV+2XN4sRj6vughdvkoIXbZK8XN8vFicfkIyt3yvD1b0heRkZ+tl4uT/5VPrJyp7rNev+KKNuffm+L2s66rfVxq3qv6bP1OnvONTk52WHfnT3faVXUdD3U1G9SUpLMzc2VgOzWrZuMj4+vso/4+HjZrVs3mZSUJI1Go0xKSqrUvj7XpKPQxqCNoTYAe6Qd9/mGtIH8DPQQQnQTQrgAfwUquhKdAkYACCGCADfgAk1AQkICX3/9NXPmzCEoKIijR48SGxvL3XffbdOuvjYRvV5v46H16quvqpl3ldTwA7r7MHuY5Ql22aFwFu0fwU+5r/HT+c8pKDtzRcP+ipTfOJp9uSaJtQ1E+bwnvfmpp5oTUVFR/P3vf8fV1bXG5I1askeN65kGU2FJKcuEEJHAFsAJWCOlPCyEeAWLdNsIzAbeF0LMxPLkN0le6e7YQFjfCF577TUAkpOTiYqKIiQkRC0+lZubW+dj6PV61WirYDab+e6777jjjju4WGyyuunDnL5fczxvF7/l/cwx404+/m0TAF3e6Ux71/54+dzDmD+Nwd/rsgvymdxiUo5l2BzDWSdUz68zuZb65ulZhfUSKLIZRbQ3BGfOnOHw4cOMHj26xuh0LZpd43qmQeNApJSbpJSBUsobpJQxl9a9eEl4IKU8IqUcLKW8SUrZV0qZ2JDjqYmabgTR0dHquoCAgDofo6LwUJBSMqC7D17utnVJ0s+14c8d/sakG5dyr+9/+ectm+jXcjYD/Adwrnw/876fx+3rbueZ5GdYvn85y/cvp6jFJlzabsPFd5ta5OqWrt5qsauOrS3Frsbf3Nmm6FWZufZyu7riVc2hqFV9ycnJQQhBUlISbm5u6PX6Kr2+HBXNrmUF1rgaue4j0RWCgoLYsWOHzTol62toaKj6tH3q1KlGGY8hp8hmediNfrx691h6tHiITx7+hJk9t5AUmoSPsw/Ldy4nqFUQT/V96pIn1wS6l9dcZ8MRHDhwoJKw6N27NwcOHGjwYzc0Sg33srIyzGYzZWVlNhmBFYYNG8aCBQs4evQoZrOZo0ePsmDBglo5HCh14xVvMKVuvHIsTbhoNFea2gur2RAdHc2UKVNYvXq1mhV2ypQpqi5bUdk0lIZt5qhAmwBDBaWueonJYtNw1gne3prGjyezEcKHbrzOBf0/GPXhGPq3HUeJpxd7L3Yn1ymP5ft/BWDvxSyW77fEnvxWdpK3t/pUCjw05BSp2Xxrw4EDB9R+NkQMrP8X0UxQbuYKbdu25cKFC0RGRtq4DsfHx6vbz58/T9u2bcnIyCA+Pt5u9985c+bg7OzMmjVr1GsvPDycOXPmAJZrs+J1CWgZgzWaHE2AXEL5M0ZFRZGamkpQUBAxMTGEhoaSkJCAXq/ntttuY8+ePQ4t2WqNok6yzr4L1Jh9F+Bfg37gxeQX+ejgRxQYC8guCaan8ygeDX4UTxdPm5iR9d9srxR5DqhZfu2JE7keOX/+PE5OTpViY7Kzsxk4cCB79+4FLDayAQMGsGvXLrv7NhgMJCYm2qSVX7duHaNHjyYmJoawsDCb6zIsLEy9NsEyQ4mJiVG3R0dHa8JFo1HQVFhWKIkVy8vLOXTokPonjImJ4e6772bXrl0Oj0x3BL4tfFkxbgV/zPqD/l7PYJZlJOUtodPiTuw6XflGtiLlNxvPLOsZyLVcQrc+KLVjqmL37t20bt0aIQStW7dm9+7dte4/KSnJRk2VlJQEwJEjR9TZjFL0Kj4+niNHLBmBrNVfUspK6i8NjYZEEyB2kJqays8//0zLli3VGhWOQknG6AiPJi9XL7y8nBnRPZw/d/grbu5uvHfgPTUp4/L9yynx3EyJqVyd7cwcFYib3gn/Nh42faUcy1AFSn2EyejRo+t7Wk1OixYtMBgM6PX6KrdLKTl//rzNe23w9vYmNjaWyZMnk5+fz+TJk4mNjcXb2xsXFxciIyNt3IQjIyNxcbEEd86ZMwcnJyfWrFlDaWkpa9aswcnJSVV/RUVF4ebmxrBhw7T0LBoORxMgdhAUFMQff/zBp59+ysmTJx3ev5ISfv78+fXuq13ZvYDAQ+cNQLms/NS89+IGmxoj1gJlQHcfNkQMtFmuTSndimzZsoXRo0df1S6/ij1EyQ5sL4rxe8SIETVnqyFeAAAgAElEQVQavz08PPDy8iIuLg5PT0/i4uLw8vLCw8MDo9FIXFwcycnJmEwmkpOTiYuLw2i0ZBgwGAx88MEHNgLmgw8+wGAwEBUVxcqVK1mwYAGbN29mwYIFrFy5UhMiGg5DEyB2oLjx7t+/v9Y3EXtQZiF5P8QjhKi3IOnvNYEe5nF46bzYemwrJeVVpxRRZiXWAmVPeraNcb1iIGJdZiNbtmzBbDbzyMqdREZG4urqCqC+X6vU5FllzZkzZ1i6dKla2Ozs2bPk5eVhMBjo1KkTffv2ZezYsbi4uDB27Fj69u1LcHDwFY///vvvs2jRImbNmoWbmxuzZs1i0aJFvP/++449UY3rFk2A2EFoaCje3t7Mmzev0W5633777RXbWN/oJ6zaZZN9183ZiS8nfEmBsYAfT23inm732Lj5KsWqlIJVStGqMrO0iQ+xno3MHBVYr9kIoOryFyceo6Sk5KopbqVQ3e+vzLCsZ1oVHzZMJpOqWrImKCgIf39/oqOj6dq1K5s3b2bLli107dqVvLw8Nm7cyIIFCygsLGTBggX897//VQ3u/v7+PPbYYzYzlMceewx/f39KS0uZNm2azbGmTZvWYE4gGtcfmgCxk2XLltGmTRu6dOkCWG4USur3rl27OrQsrjIjqWkmotzQrVVNM0cF4t/GgwHdfbi7uwsh7UJY/+B6zhQdo0dcD2ZtmYVJ1j6SXpmVVDUjcURaFCWvjlrkqhlT3c1XGbf1+IuKikhPT8dsNpOenk5RUVGVtUYUF/J58+axatUqACIiIliwYAE+Pj54e3uzZs0aWrZsyZo1a5g7dy7JycmApY5NWVkZkydPxs3NjcmTJ1NWVkZsbCyurq6sXLnS5lgrV6685md+Go2H5sZrJ9YeWXD5pgeXM+gqVIwX0el0NlX1asP8+fOZOWp9rfbZfSKLdJ2RfaY0dp/w5c62H3NBrOed3Uto13oDnxj60q3lLSzf3x6wxIkALN/vQ4bzaSx5MC+jzEqASu6/cLkolqO4VtKkGI1G2rRpQ15eHq1atSInJ6fKdqGhoaxdu5bExETVXtSrVy9iYmLUa2vp0qXqNWgymVi4cKG6L1y+Llu0aMGCBQsIDQ1l586dakr64OBgFi9ezNy5cyvNSjQ06oomQGpBaGgooaGh6HQ6SybKS4JBeRdCqFXtfH191fTeubm5eHp61qrSXV1rrQ/o7mMTkGjIKcK/TQdGdF/IsI5PkHD0LXbnbuKCVyar7tlGS9eWlF6wxH481TeQb390rDCoK4oAvtoFiSI0qhMeYPGU2rp1q826gwcPcv/991NQUEBJSYlqhwsNDVUzJCgo12VFlEDGefPmUVpaiqurK9OmTdPqm2g4DE2FVQeUm5uvry9CCHx9fdX1sbGxmEwmG9VFaWkpsbGxtTpG3g/xdXLxVdRZD/RwsVFpzRwVyOv3jeUf/Zczons4BbrfuWP9Hbz585uqEX35/uVkOG9UDevVsSLlt0oxJEocSV0N7dczK1asACA8PJyuXbuqsUYbN26kqKgIs9lMZGQkr732GsnJyUyZMsUmP1tNKDan5ORkSkpKAEu1RSGE5tarUW80AVJHJkyYQNu2bRFC0LZtWyZMsBihd+7ciclkws/PD51Oh5+fH6WlpezcubNex/Px8blyIzu52+9Fxvm9TOqZVL44+AXmKlx94bKXVoazbRb+ElO5aoNREjP6t/FwmKHdmsWJx6rd5u3t7bDjNCXl5eXcfvvtfPbZZ6Snp6uzFbPZzJIlS5gwYQLz5s3jyJEjjB07lrvvvrtOkebWbr2KQb6iW6+Wd0ujNmgCpI4kJibaRAcnJloSCb///vtMmzaNs2fPUl5eztmzZ3njjTfq7TpZMYWGEMKmrkhFg/sXx43q7OCzX05XMoLf3H4UHzzwATtP7+T3rF9Vr6x2ZfeqnlmKl5YltqTpkFJWEhbe3t5kZVXOHXa18uOPP1aZ5WDnzp18/fXXLFiwgODgYDZv3szXX39tc2O396Zv7dbr4eFRya03ISGB6Ohom+s6OjpaEyIa1aLZQOqAt7c3OTk5hIaGkpGRQbt27cjNzcXb25vs7Gzuvdf2hjtt2jRmz55dp2MpaixrqlNpKcb7maMCSUk5w9ChVSdoBEuk+QBTX4Z2nEzKmTXohGSqcdUlFdY+mwSMGc6nWb7fUtp378Us+ntN4LE1P6kzDUNOEReLTaox3ZBTxP7TubTDYshXUNRcgBrhPn3oDXZ9D1lZWeq+VeUGqwvNyVivRLFXZNmyZbi7uzNnzhzMZjNRUVE2ubCUVCaKF6ASbwKVky1W59arXJv25N2qD9u3bycyMlLL2XUNoQmQOrBs2TIiIiLIzs5GSkl2djaenp4sW7aMxx9/nI0bN3LnnXeq7RXXyfr63wcEBNQpnbxiAwFskiXOHBVIlHkVI/8l+e7sWnqv2ElXMZun+j5lk4Dx2x938VRfi2eWYnAvMZWr2XcremYpMx2jrvLN3nocjlR11ZWrwVhfXFyMu7s7q1atwt/fn8mTJ/P7778DllQmSryJci5KvIkiYJREi0IInnzyST766CO1b2u33iNHjlBUVFQp829FL8O6kJCQwOrVq1m/fr2WVfgaQlNh1YHQ0FBWrVpFYGAgOp2OwMBAVq1aRWhoKFOnTuW9995j8eLFFBUVqa6TU6dOrfdxT58+7YDR2+Ksc+a+bs/x3ePf4axzJiUnin988w9M5svCTjGsW0etV1yn0bCYTCYeffRRoqKiGDx4sJoLy2AwUFpayh9//IGUkj/++IPS0lIMBoONSmrLli3cd999rF+/nokTJ1Z5bV4p71Z9iImJ4dlnn9VK/15jaDOQOlKT6+Tu3bt55plnmD17NkIIRo0aRVxcHMuWLWuCkVZGUWspMwUL7Xiix2esORTDkh+X0MFjM3f1+5xe7XpdsovYzkCMmVmV1mk0HEo1y8OHD6vllRWKi4txdrb8laWUFBdbyhZbl2lOSUnhiy++4IEHHiA+Pp7169dXcutV8m7169dPnSVY592qD6mpqVy4cIFevXqpKqy5c+dqpX+vcrQZiINJSEjgjz/+YPv27RiNRrZv387x48dVQ+SgQYOadHyKm691BLvyee6dNzHtptfYFLaJfFMWt7x3C/O2z6OoPOPKHWs0Cp6enlWuVwJVrQNWU1NTMRgMNgkdH3zwQdVWphjKFYKDgwkPD1cz+EZFRREeHm5X3q0r0bFjR1atWmVjoJ87dy4dO3asd98aTYc2A3Ew1lN1QJ2qK66SFZ8emwrrZIlgiSa/HIR4Ay/csolfLr7F6zteB3Q8/OkDRN4aiZR+dtsLjueUqzaXPenZpGcVqsdTSvbuSc/mlq7eta6EeL3h7OyMlJKNGzdy1113qTEdClUJkI4dOxIREaGW5U1LSyMiIqLam3Z0dHSV1Q8bSs10pbQ1WqGs5o8mQBxMampqpTrhQ4YMITU1VfXSagisgw6v9Me0rkho7RWloJTRHdDqVQL7R/D5sTVsP7GJz458RgePQILa30K5U2cbzyzFY0tZhpGUS1uj+fqpA2zGYe1VpVVCrBlFhRUVFUVERARLliyx2V5VypScnByKi4vVnG3l5eWYTKYaU6rs3LmTsWPHqpHrU6dOdchN+8yZM4wbN86m78mTJ6u5vyqi2G+0Ur7NG02AOJigoCAOHjzIyJEj1XVK6omzZ8/WKy+WvQgh1GR79lCVQLnsPRWIt5s/EUPf4+NDH/PCtjdIOhmPl3M3Zrm/wz2B91B64bjqsQUWm8juzCvHaOxJz6bMLG1mQtaCRJuVVCYtLY2jR49WWu/i4oLZbLYxeCup5CvOTirWe1dISEjg66+/ZvPmzTY37UGDBtX7pt2xY0d27Nhh03dYWFi1syFr+w3YzuQ1AdJ80ASIg4mOjmb27Nn07du3khogLCyM559/Xk2E15Aof7xWg8PYAswaHV+vTLceeg8m95tM7oXB/C/rG5IuLGPqN1Px3+lPZ/fBuO6/UW2792IWGc5FuHBHjX2WmaVNHfiKLr+NOSsROh2ygQW7I1BcdisGVioxJFXFkkyfPp277rqLTZs2qWlTnJycKqmFGjoOpCI1qUJTU1MZMmSIzTplJq/RfNAESB2pTj8bGhrKkSNHbP6Eyh8wLCyMYcOG8cYbb6gqicbEHvUWXLaPKJ/h8s3c3cWZvm3H8nvhGW7omElyejLZRd8wSvasdEO46JnI8v2WCo4V1VzApcy/j9usW5HymxofUvHYu09k4axrmHiNQeNC2fmfeHQ6XbW1z5sT9qpCnZyc2Lx5MytXrrRJh2NtEwHU67ah4kDOnDnD3Llzbf4XixYtYtKkSVW2DwoKYseOHeqDEFApiaRGM0BJS361vG6++WZZE8nJyTVudwTx8fGyW7duMikpSRqNRpmUlCS7desm4+PjpZRS/vOf/5QhISFSp9PJkJAQdb2/v7/08/OTt9xyiwTq9JJS1nqfVoPDbPaXUsrFiceqfK/qs/Wysu6RlTullFJ+fPBjycvIjUc3Vto++vVNVfap8MjKnXaPo+Jx7cXe62Fx4jEZGRkpXV1da/wue/fubbNfXX/D+vZRm2tBp9NVuc7Pz08KIaS3t7eUUkpXV1cZGBgohRASkEIIGRgYKF1dXWv1nVdFSEiIHDx4sPr9urq6yvvvv1+GhIRU2f5K/7H4+Pgq/2NXojHuD1fDGK4EsEfacT/WZiB1oCb9LFBtxG1sbCwzZszgf//7X5ONva5Yq5M+++W0uq5c9qaVS3vW/W8d9/S8p6mG5xDi4uKIi4tjwqpdbIgYSIduPTmXfvm8e/fuzYEDB2z2cXZ2bpLZZG2oyuZmNpvJysrCxcVFnc2UlpaSlpZGy5YtKSwspEWLFqSlOUaN2KlTJxITE2nTpg0mkwkPDw++/PJLRo8eXWV7RWVW1UxeM7A3HzQBUgdq0s/W5MZ76NAhdu7c2WwCCu2lom1CUS0p63/Ku4Nfzv7i8OMqlRCtj2udT8tN72R3Lq26MOe9/1Rrn1EwmUzo9XobIXI1CBWoXHIXLGrO/Px8APLz8+1We16JpKQk9Ho9BQUFmM1mCgoKcHV1JSkpqdp9qgvW1QzszQctkLAOKPpZaxT9bE1uvIqXS9euXenSpQvh4eGNMt6qEjI6kn5+/TiRc4Jey3vx96//zv7MzZSU199d+VR2kc3ygO62NpSUYxnNovaIyWSyKclb1Y35aqGisHCE8ACLG7Jer6dTp07odDo6deqEq6trnQStdYCkkoHYYDCo/7GKmYmt1z3++ONadmEHos1A6oBSw7qqgKuYmJhq3XiVJ6dz584xY8YMkpKSHPaEZy8Ncbzpt05HCEFKegrr/reOQpPFTbRT6x7c/ckyurbuypELZznwTSub/U665JF1QY/r/r9cih15wWa7Wcoqn/ybW0LGa42KlTYdRcWkj0pyUev0JvYEC3bs2JE5c+YQHx9v4xLcunXrSqotpU7Phg0bGDJkCMuWLbOp7qhRPzQBUgdq0s8C1brxTpw4kSFDhqDX6wFLJtXGFB4KirfULCxuvrWtuQ6VU7MP6P4gY9o/yEhfExmlR/nm+HbOXPyJ74q+Y5NxEwCRbSKJu+ty6owJq3YxwN+Hp/oGNno+LWtvL+UclPMx5BTVe2YTGRlZpaoyMjKyXv02BlVFtTsCpVInYOPZFRcXV6Uto6ZIdCGEmh7+6NGjapnpzz77zEa1paS5V9b169dPU3c5Enss7c3p1Ry8sK5EdV5YISEhMikpyaZtdHS01Ov1dnnTKN4y9rS196V4aNXkhVWRit5Q1XlYjX59kzSVm+SPhh9lj7cHyLaxbaXZbFbbDP3Xc3LiZ6/Id/e9W+n93X3vyv5xs6s8tvXnqo5tTXXXQ037Kd5hVXmG1UTFdtZeXa6urjIyMrLK/er629Vn39r2VV/s7TspKUn9z1TnhaXT6eT06dOlXq+XQggZHBwsn3vuOQnI6dOn2/z3hBBSCKH2n5ycLI1Go9TpdPU+p9pg7TXWtWtXu73Gmgo0L6ymY8SIEbz66quV1lel+oqPjyciIsLmabU6NVNYWFiDjru2WM9AlFxaCkq8hrPOmds63Ua/tuP45Ld/ssuwi0GdLQkl25XdS3+vyzMQ63eA9d9sb+QzciyKV9eM9xNZMrVqbyMNW6ydUaozlAcFBbF582a2bNmibk9OTlYrfyYmJqr/r9GjR+Ps7IybmxulpaXo9XruvvvuRo0nsS76JaUlW3J1Rb+uNjQB0ojUpPpKTk7G3d2dPXv2VBIeQgg8PT1rlZ7EXhQD+8KFC5g5aq3d+1U0aFuSI15eN6SHL1/+mKMKmZKLfXHX+TLyg7t4MuhfdGnZp8qgwL0XN6gBhyWeJ1i+/1iF7ZVtJVc7UjafyohNjbUzSnWejh999BFhYWGUlZVhMplU1ZeXl1elPF9CCEpKSpg+fToLFy7k0UcfrdF9uCGYM2cOTk5OrFmzRrXDxMbGqkW/rmrsmaY0p9fVoMKyZwzWU1p/f3/p7e0tAenm5mYzvXd3d1en7Mq0W2nr2Jdlqh8fH2+XCqviclUBfk+/t8WmTfTGbbL7ku7Sc4GnXLN3jYz95mCNgYSDFm6r8djNXYWlYP091ERtf7O67FPXvupLTX1XpaaqSt2rqLektATldu3a1UZNrNPpZKdOnWxUWM7OzhKwUR+Fh4c7JDiyNueemJioLicnJ8vExESHfK8NBXaqsDQ33ibAulLc2rVrKS8vx8XFhenTp6tpNHQ6HUIIunfvzvPPP8/mzZvVabeHh0cDjMpyQYSFhXHo0KEG6B983Drz3aTv6OnTk8kbJ/PKL0P55lQc5wrONcjxNK4OrOuPKDNyRd2bnJyMyWQiOTmZKVOmqB5UsbGxCCHYtm0b+/btw8/PDycnJyZNmsShQ4coLy/n0KFDlJWVVUrYOHLkyHqXl9awUCsBIoQYIYS4Rwiht7P9nUKIY0KIX4UQz1XT5hEhxBEhxGEhRMMGLDQTrPW7ixYtYv369cTHx/Pdd99RXl7O888/j5OTE9u3b2ffvn385S9/IT09Xf3zGAwG2rdv32DjWzPrIXQ6HWPGjHF43528OvHz1J/Z+retBHj2JtGwjC7vdCH++Fx++uOnJvFK02h+hIaGcvfddzN27FhcXFwYO3Ysd999t6ryWbt2LSdPnmT48OG4uLhwzz33EBERQXx8vI3QAbh48aJayOrpp59m9uzZagXHxsDf35/HHntMHde+fft47LHH8Pf3b7QxNBR2f4tCiLeAPMAMTAfuukJ7J+BdYBRgAH4WQmyUUh6xatMDeB4YLKXMEUK0q/0pXH1Y63crfg4KCmLYsGG8/vrrqq0kICAAf39/G33p7NmzmTNnToONUUpJYmIimX4fMXPUKw7tWwjByO4jeSIogAvF6RTo/8t7e1Zz+7++pFOLIDy8nya8dzglnpurtIEoNpK9F7Po7zXBoWNrSqpz/b3WSUtLq5TcEWDdunU2LsXr1q1j0KBBrF27lsTERNWu8fzzz7NixQrS0tKIiYmxsTG2aNGCoqIi9u3bx+23387x48fJzc2ldevWjXZ+sbGxREREMGbMGEwmE05OTnh4eFRbC+VqoloBcklgvCqlzL20KgB45NLng3b0fRvwq5TyxKX+PgbuA45YtZkKvCulzAGQUl4XtVOtM41aR7Urvu6PPfYYXbp0Yd++faqBMDY21qaPxYsXN8pYf/utfvEQ1p5aR87kVapI2NXHi1u6RrJg4GTcW+3itZSlTP96Os8kPkM7z5vIKPSkXYvqnyv2XtxAfYzqFeNBlLHtPnF5/HvSG6YIWEXi4uLYdyqHPVs+u65ULEqAoclkwmQyqbEyBQUFtGvXjoyMDLy9vcnIyCAyMpKcnBymT5/O8uXLAdT3lStXsmXLFpsHLScnJyIiIpg3bx6zZ89Gr9cTERHR6DdvNzc3fHx8OHXqFL6+vldFxmd7qGkG8n/Ax0KITVhmEh8AyYAb8L4dfXcCTlstG4DbK7QJBBBC/AA4AS9LKb+p2JEQ4kngSYD27duTkpJS7UELCgpq3N4YXGkMDzzwAOHh4Tz77LPce++9jB8/HoCIiAjOnTtHcXExZWVluLm5ERAQwMSJE+nQoYPaZ9u2bdV8RQ1N3g/xKJpFRSWQnm4kJeWM2iY93Uhubnmlcx7VwYin3tKuX09YmCuZ3tNyY/ziuOUP9ECPEuBSX4VBPNTqHW7s+Rv/OfsftpxNJmb7T0R0j+ChTg8hhOBYtpFgH0vRpGPZRoA6XQ9Jp//D2S+dSM0uJ8jbibSccsovac/MLc2cKgOvgtGkp+dz9A8TM95PxMUJ7u7uUqkv6+/B+ntRMBqNdl+TN497lNdmPsEXx4080MPFJp15RRx5nV+pr8b8TynJHd3c3GzWu7q6qts2bdpk47nWpUsXpJS88MILfPTRR5w6dYqAgAB8fHzo0aMH33xjua0UFBRw/PhxAgICGu2c5s2bx5gxY9QHRRcXF+644w7mzZtHhw4dGmUMDcaVrOzARGAbcK89Vnmr/cYD/7Ja/huwrEKb/wJfAHqgGxaB07qmfq9VLyx/f38phJCurq5SCKGuqypddXx8vPT19W0ATyz7vHXs9cKq+D1UDD6s+Hpk5U4bD6jbF/6fvCf+HsnLyAc3PChzinMc7oW1OPGYXJ78q81xh7y+XQ5auE0dT++XvlHHp7Svqc+K2OuFVXFcynt1v4OU14YXlpJuvmLaeSWtfHXLnp6elfbz9fW18ery9fW1Wbd48WKbtPCNgRDCJihSGYN1gGNzg/p6YQkhnIUQdwMZwP3ATUKIjUKIm6rbpwJ/AJ2tlv0vrbPGAGyUUpqklCeBNKCHnf1f1YSGhqreIqdPnyY2NpauXbvyzDPP0LFjRwwGA2fPniUiIoK4uDiio6PVJHChoaE2NbGdnJwQQuDn59fg4xZCMGu0pXiUk1P9Ss7OHBVo8xrQ3UetUDhzVCBd2vjx1V+/4s1Rb/LV0a94YuMTDjoLW0pM5TbHfbC/P+Nv7syGiIFsiBhIUAcvdXwzRwU2ev4t5c+qJGuUVo4G1p8r7nO1UF3qlIrnUHG5pKSk0n5Go5FHH31U9ep68sknKS8vV43xc+fOtTHGNwYuLi5ERkYybNgw9Ho9/fr1Y9AgSzCtddLH+lBVEsnGoCYvrC+BvsBfsNgpXgWmAVFCCHtUWD8DPYQQ3YQQLsBfgY1VHGMogBCiLRaV1olancE1glJOND4+Hr1eT2JiIrGxsfzrX//i3LlzrF69mpiYmCr3vfHGG1m/fj1nz57liSca5iZbFWazud5C5EoIIZg9aDZP3vwk3/z6DWVmY4MerzasSPmNt7emqS8ln5byaqxMwTUJmGuZqjL5Go1Gzp8/j5SSwsJCli5dSnZ2Nps3b8ZoNLJo0SK+/vrrRs3IazQaiYuLU72wVq9ezYYNG5BSUlJSUukBsbZYhwU4or/aUJMNpIuUctylm/9uACnlGeAJIUTfK3UspSwTQkQCW7DYN9ZIKQ8LIV7BMj3aeGnbaCHEEaAceFZKmVXPc7oqSU1NRUrJ6tWrGTlyJEOHDmXo0KE888wzxMTEsG/fPrUetHLBALRu3ZrJkyczb948Dh8+zGeffdao43Z0wj3AJqmhkiKlOD+EQlMhr+0dzobfA/Dz9CMzzx0vF19cfgrBz9OPDi074Ofph5+nHx76hoiVsaXEVF5tnRDr89BoPIqLi9XPSsJGnU7XpMkUg4ODuf/++1XvMCcnJyZMmMD+/fvR6/X1rmfSlPVRahIgq4QQuy59tnH5kVLut6dzKeUmYFOFdS9afZZYksLOsmu01zDW6Rsqemalpqba1INWZisxMTHk5uYyZ84cysvLef311xvkht6YWN+QLVl+LWojY3lXbvghh5M5JzlXeI4z+Wf4LcdAvimLrYbK5+zl6oWfpx9uZW4EZQapgqWDp0XI/FFYSkZha8zSjE5cm/G08jpNkeLp6cnJkyeZMmUKGzduxGw2qynjAwICeOWVV9SHscYgOjpazYUFFm+zLVu2sHTpUrWNkqalLtSU9qWhqVaASCmXAdefU3oTobjvxsXFMXfuXMLDw5FSMmnSJIqKitSU8ABHjhyhqKiI+++/n6+++kpVWZSXlyOEwNvbW/VWaQxmje5J+9CFiGmDGkx94uLkwj/v+KfNure3pmGW5Uwc5M25gnOcKzjH2YKzlvf8s5wrPMdRw1H2nt3LuYJz5BttPdfe+h/ocMJT742/ZwgTB32CbwvfBhl/U6H8HjPeT2Tpk44PDG2OFBQU4Otr+zsqsSanT58mIiKiUnR6Q1NaWkpubq76gFdUZFssbf78+ej1epycnOyui6JgHRagYP3A2ZBoyRSbCaGhoezcuZPnnntOTb9gNBp5/fXX8ff3JzY2Vr2gFKPcrFmzGDNmDFu3blX7GTVqFFu2bGmyJ09HF6yyrtOhzEgU3PROlJigvWd72nu25yYq+3ekpKQwdOhQAAqNhaqgeX/nXm7pLvjq4GEuGjPYm/k1f1n7F7Y9uq1e47WOK1HGfjS73Ead1dCleDUqo8SalJeXU1xcXCnpYkMyZ84cG3uNEILi4mKefvppxo8fz/z581m0aBFz587lpZdeqnWN95oK3DU0mgBpRsTFxTFo0CCbIjpLliypdBEpRrns7GyOHz/Om2++ydKlS/n99985fvw4UVFReHh4UFJSgq+vL+fPn3d4dbnGQBEW1hUIK9ocamNnaOHSghu8b+AG7xv46ZgvkbcFYsqz7H+L7wN8cHw6f/73n3n8T/G00Lep05it7SLKePvpzzB06OVxN5VtpDqV1rVmdHdzc6OkpER9r4rCwsJGG4/BYABQ06cIITCbzWRmZuLi4oIQgvvuu4/XXnsNqL0NQ3n4HDt2LKWlpbi6ujJ16lSg9tUea8u1qfy9irF27z106FqFMxkAACAASURBVFCVP3hwcDDh4eG8+eabpKens2bNGiZOnEhISAirV6/m/fff57XXXmPkyJFkZFiC+xtaeJxPeL7abX369EEIwZYPlyGEoE+fPnb3a+3ZpNQdsfZ0ctPXzwts78UN7L24gYviJE/e/iQFsoBvs969lFZ+Ocv3LyfDuaLz4NVLTR5bnTt3rnKf6tY3VxShUZ3waCqUWUhV7srbtm2z8ZqqjQ0jISGBDRs20KFDB3Q6HR06dGDdunXMmDHDxjNrxowZdO7c2aGuvjWlMqnRsC2lbJxcGhqViI6OJjo6GpPJREFBAT/++KM6ZR0yZAilpaVcuHCB48ePs337doYMGUJKSgqjR49Gr9er0/mGwlqN1adPHw4etM18c/DgQVasXMHMUW/X2M/MUYE2sw7lyb0mz6fa8PbWNIyZltr1v5o+p1x6AnA2/zz+LW2PsXz/8gapRVJdaV3lvbHSqABq9Pbp05cTSHTu3JlTp0412hiuN4QQ6HQ6CgoKiIyMVB8Ya2PDmDNnTqX/dGFhIa6urqpd5Ny5czg7O+Ps7ExJSUmt1WTVUZMKq2Wde9VoUJQf/PHHH8fT05Pg4GCbwlSurq78+9//Jj4+Xr2AlOlzQwuPilQUHgoZ55s27Zm1UNp7cQNeuXqG/Kk9h/P8KCo/SYmzNz+fs6TSKNTlocTEOlqQVOcKrAjOCat2VbFXw6EIi6rUhRqORwhBmzZtyMrKIjs726ZAlr02DIPBgJ+fn1qwaseOHQwfPpzMzEy1TUxMDOvWrePOO+90iOuwQk1eWPPr3KtGg6P86EoA0ZAhQ9SaCVOnTmXZsmU88sgj6kXU0AF/VzP9vSZgzMziqb4DGdZpGP1W3YoXLfn+8e/x0HswYdUunuo70KbsroaGI1BmA+PGjaOoqAg3NzebSqX2MmzYMJssxK1atSIvL0/dnpqaSlJSko2n19y5c+vt6ntFI7oQwg2YAoRgSaQIgJRycr2OrFFvqiuRC/Duu++Sk5ODEIKAgAByc3NtLiiNqgnyDWJij7dYc3Q6Iz8YycbQ6u0f1uV3L6+zTTd/rZXfrSvXa0yKvSgPeHXN0puQkED79u2RUpKZman+15OTkxkyZAg+Pj7Exsby/PPPq55eYWFh9XZntscL60PgKDAGeAUIBxovCkejRkJDQys9qfTq1QsvLy/c3d2Jj49nyJAhxMXFMXv27CYapQWl/rryWYj4ZqljD/EexqcPf0r4/4UzaPUgbtDNBwZWatffawJP9bVV8yizFOWzxmWSk5MZOnSoqh7TBIrFJd/JyUkVHHWJA1H2z8zMVAUIWNRjysOlTqfDy8uLESNGqPs54vu3R4D8SUr5sBDiPinluktVA7+v95E1GgxlWhoXF6deQDfeeGMTj6pqTp8+TUBAQLMTIg8FP4Sfpx/3fnwvx4vD6PrO83jre6NvNYbTBR0pM3d32LGsDel70rMpM8tLNUksNVQmrNqFs05QZpasSPlNiyG5xrCedZjNZg4fPszkyRYFjz1CRAkgtqZiPFZZWRm33HKLjavv5MmT610XxR4Bolhdc4UQvYBzwHVROfBqJSgoiKysLPz9/dX65snJyQwfPpz27duj1+s5f/58oxvUq8Pa66c5MThgMPsi9nHf6sUE+p9ly/Fvidr8XwBWpXrQwb0XmbqRDOo8iAH+A/Dx8LlCj1VTVeyIgrKseKA1diZgjcZHp9NRUlLC1KlT7Z6FuLi4YDabKS8vR6fTIYSgrKxMtY927NiR5ORknnvuOVWFFR4e3igqrPeEEG2wKHM3Ap5oit1mTXR0NE899RTh4eGsW7cOgEcffRSwPK3k5eVhMpno378/+/fvbxYBhsoTlOI73lyC2wJaBRDYYgIbxg/k7a1pjL/NnehNn9Om9Um+OJzEoh8WUS4tN/WhXYcihB/suQ1XZ1fVHpKem86R/ZcLcdprG1mR8puNW6+CIky0iPZrE+W/UJtgx9LSUtXTUkqpxpyMHj3aJgr+9ddfZ+HChQQEBFBUVETLlvVztrVHgPxbSlkOfAs4bt6u4RASEhJsItcV3emRI0dYu3Yto0ePBsDf3x9/f38ee+wx1dB+4MCBSsKjMeJE7MHRKVFqYveJLAw5ReqN+bNfbGdEzrrL6oHOrTrTr+1dzBwVSFfnNCKG+rPnzB6STyYTfyietKwUdp3+kvtvvB/P8uE82edxduTuYGjfoWof9tpGrOuUWM9ElBlK+Pu7q4whUdAEzNVJ27ZtOX/+fK33U1Rh1gKjYsp7a3WZXq/njz8qlmiqHfYIkJNCiG+ADUCSbC6PhhpqWveKOXAARowYwauvvlple4CNGzfyyCOPUFZWxogRI9i+fTvQ+HEiTY1yU/7sl8vJ7S4W234HQ3pUn2DRQ+/BHV3u4I4ud/DiX15k5hefUeb2LQmHEsgu/piv3ormT25/Yrh5ODe1v4mb/G7CLB2jhiozy6s6nXxNqVWuVwO7on6qC7W5Nbdo0YLBgwfXu/yDPQLkRmAc8HdgjRDiP8DHUsod9TqyRr2pqQ7AsmWVEykr+tSwsDDuvfdeAIYOHUp0dLQqQJT08c2BimqtxYnHGuQ4M0cF2qiIFJTkjSWmcrvSpggh6NLyJmaOepjFYxYz/bN/YXTZxf+3d+bhUVXZ3n53VWUeSYAEEmJAAUlAUHCOLYOAXq+KV20EbURQQCRyQQUlXm1tooDTp0FEEGxUEnFocUAFwYQWFSdAOhAZhDBF5oQhkKGq9vfHyTlUVSoDVanKwH6fp56qM6/KcNbZe631W99u/5YZa2YYU12BphA+2H0RPeN6suXoUSICWsMvXZymvUCf6oKWPGOs3/RU4aKG3W5n//79DXa+sLAwCgsLq6kTb9q0iU2bNnl9/jodiJTyFPA+8H5VLOQVtOksVZnWyHjSB0AXXpszZw52u528vDy+/fZMUp27IW1TEWJ8+umneeqpp3xybn2qCKpPYZ2tIwFNfr57zHVMGjievLw8rki7gk0HN/Hbgd/45895mCy7eX/z+5SUlQDw+Tbo1KoTbQMvZeGQdwgwB3iVBuwYPwGqKQL7UyLFE9TopGEoLS0lLi6uxu3e/izrpcYrhLgWGApcD/wC/NWrqyoaBE/7AGRlZQFUG6UMHTqUJUuWGMutW7fm8OHDJCUlGd3dzgUSW4XWGHfwlGBLML3b96Z3+94cO5zGpIFdkFLy1LLVFJVuoWO7w/xc9DOfbFnC679cxUOXP+TV9RzjJ0A1RWB/S6R4ghqdNAy1Pfx5G5GoTyV6IbAebRTyqJTSfzrIilrxpg9AVlYWb731FqWlpURGRlJcXMwnn3xibH/uuecIDAxk2rRp7Ny5s0k89R37Lpunn4bJg7KbTJaW41O9Pg3mmCVVG0IIWgW1p1VQeyb9RXMoF75yDU/lPcUdKXf4zuhmjsVicdsPXeF/6jMCuUhKedznlijOmpqkTIYNG0ZeXl6dx58+fZrrrrvOiH+UlZUZWViPP35Gnr1jx44+sd8b/JmlVRM19SY526dlR0mUlPhLKT1UyF8W/4XU6P8iIqA1czbEei2LsmxHBesrzzg7x6wzaF4ZW5WVlU3igcZX+PpvWwhBcHCwU/94T6lNzn2KlHIWkCmEqPZtpJTejbEVDYI7KZP60q1bNy6//HL+/PNPNm/W6hTcafE0JQ0tRzmUloKjJMoPf/yDe3vdS05+Dj8d/IgeMQMBzbl4owRcYavu2FwLFpsTLTkW4usHIyllgzgPqH0Eokdif2mQKymaHP369WPmzJnMnDmTN998k759+zJ//nxCQkKQUlJeXo7NZuPkyZPGMXFxcR7lqPuC9PR0I57jKY43IT3b669zv/fqnN5wSeRQJl3ThQd6PcC17wxmw5Ev4PciYsyXGvvM2TAHgIOWPbjT6PKEXwqPVpuOc3UqTW2UIqUkuk07jh1uuKwlxdlRm5z7Z1Uf/yOlXOcnexR+JDc3l6lTp7Jw4UIKCgoQQjB16lQyMzN5++23mTFjBps3b6ZLly4UFBRgt9vJyckhLS2NwMDAxjafuXPneuVAanqCXb16NYz1/MbseuP9at1pp+mj+mRxtY9oz/3nZ7Niz2us2vomYQEbuLPHPHpF9GN8Ly1JYvWPDRcIr6umBJrmKOWp7NXG50kDuxAbG8vRo2cyzGrKIOzRo4df7Gvp1CcG8qIQIh74EFgipcz3sU0KP1FQUMD69euZPn063bt3N3RzMjMzSUxMZPbs2aSnp5Ofn48QgujoaEOMrSnQFAOp7m7ChYWFHmURBZiCuPG8ycz4r/u46d3hDFkyhFBLND8fH8z1F1xPkWk9czasd3vsuVBD4o4jR84kMug/c9eumD169GDjxo2NYl9Loz51IP2qHMhfgTeEEJFojmS6z61TeMyqVauYMGFCNYkTRxzTgDMyMhg6dKjRl2DQoEGEhYWRlZVFbm4uoAUvv/zyyyYzAjlX6NO+D5N7/osOCfm89O/3Wb1rNUs2aenWx9dexODzNYdydYerCbIEAU1LSl5XGy4s1AL57iRXfInuLF7+emtVOnNfn17vXKJedSBSyv3Aq0KIXGAK8CSgHEgTJScnhwULFrB48eJqEieOTsQxDdhqtVJZWWkM/6OjoykuLuaee+4hJSWFsLAwysrKWL9+PZdffnmjfK+WiuMN1bGIce2OI/TtqglfW0yB3Nn9Tv788xL+97rObDywkRGL5xEbUsD/W/v/eP7754kMiuSmLjdxe8rtVNg6EWgOdns9f6OrDeflOdei6DTFqbGGZMKECW6VIVoC9akD6YZWRHgbcARNE6txOxMpaiUzM5NHH33UrcSJvl0fmdx4442kp6ezadMmkpOTmTNnjuFkcnNzjSkss9nM2LFjmTZtWp2NqcLCwnz7BVsQroWKa3cccZJ2dxe0FkLQM74nF4bfzZJ7ruRkxUlyd+by6ZZP+fj3j1n8n8W0a5VA6+Dz2L6iF51jO7PDvIc5G7Yb51DdEv2HHqebP39+k5n+bShM9dhnIVAMDJZS9pVSvi6lPOhjuxReUFBQUC1ImJaWxubNm40e6mVlZWRlZbFs2TIyMjIwmUxs3brVaYTiKIvSrVs37rjjDsrKypBSEhMTU+P1y8rKfPPFFG4JDwznpq43Mf/m+ex/ZD8r/7aSjoHXsPPwFub8MIdpX01j99Ht3N75dsb3Gs/4XuO5JHJoY5t9TqH/z/lKz62xqNWBCCHMwE4p5StSyiI/2aTwkm7dujkFDUGTOAkMDDTEFwMCAoyRSWZmphEPcT1Gl0XRp7tyc3OprKzEZKr5T8ddLYkeW1H4FovJwoBOA7j9/Kf5e59vybsnjzu738l/Sj/n/FfP5+m8pzlRfqKxzVS0EGqdwpJS2oQQHYQQgVLKCn8ZpfCOjIwMHn74YXr16uUUA6moqKhRfPHdd9+tVRbFtepdT40MDg6moqKCtm3bcvDgwRp1d3S5FEeaikijK2W7/4MQgthr/8akgW/75Zp6HECvED9bWRR3mISZa5Ov5drka9lzyERlyHbm/DaHRZsXERN0Pn983ZXzos4jLDCsQWtKFOcO9eoHAnwnhPgUMHSwpJQv+cwqhVfoDaVcJU4yMzNrFF+sTRbF8bz6sslkQkpJZWUlzz//POPGjWPgwIF8/737IjxX5wFNp+ugKxWHCgE4svpdTKZ3uffFD8GHYn6OKb6usvKeKAG7I0X+lVfuGsSPe39k+rfTWbF9Fb/uXQlAaptUykq78v6m97n2vGuJC69ZvbWhcOwD7+osoekVLSrcUx8H8kfVywR41/9Q4TfcNZQC6hxl1FcWRUqJ2WzGYrHw2GOPOQXWExMTq+1vNpurTW21bdvWqGr/5ptvDJv69+8PNJ7e1emtuhOUSAkfffQR18WXeywZczY4diAEZ4eiOxN9m2OnxPpyeeLlfDbsM55fnk9ayglW71pNXmEev1X+SPpKbQqzdWhrOkR2IDo4mvDAcOO1pbiSCbbpBJgDvP6etfWB19cpmj71qQN52h+GKHxPfUYZ9SUoKIg+ffqwdu1awzGEhYVRWlrKrFmzjP0sFgtmsxm73V7NgThWDA8cOBCbzeYUK2lKI5Thw4f7xYE44pqh5Xqj9eYmazEFcmWHK7myw5U8lvYYd8z9lkdvCmJ14WryduXx464fOXK6epOtj6Y/T+vQ1sSHxxMfHk+7iHbEhzl8Do+nXbj2HhkU6ZFelWsvk5bWqjc3N9dpFqA5U5803lzAnZhif59YpPAp3ogvOnL//fczd+5c7rzzTtatW8fvv/9OaWkpgwYNcjq/1WrFZrPVGnSHMz0LmmJMRBdwrGlE5CifMRmIiYkxKqJ9jat+1RWdYo3Peg1JfTAJC5clXMZlCZfx6NWPAlBuLedA6QH+PPEn+0/u592ffyO1g539J/ez/+R+/jz5J1uObGH/yf1U2KqHSIMtwbQLb4e0RfPt0WTsx+18K77loriLsMuapwRde5nU9p2bK469Tv7v1ksoLa3eJaM5pMPXZwrrEYfPwWj1IE1PQ0LhV1xz24OCgrj//vuraVNZLBaCgoJo06ZNtaZUjs5C/4dqSqMOd7g6EVftJdBGVrGxsT53Iu6mfeqqITkbgixBJEUlkRSVBMCOPd2Y5KYQUEpJcVnxGcdS5XB0J/PrwQK2Ht/K8bLj/LBB0+8KtURTYLuGnnE9WXe8hHO5JuXkyZOEh4c7OZGwsDAnEdOmSn2msH51WfWdEOKn+pxcCHE9WgtcM/CmlHJGDfvdhqa1damUUqn/NhOysrLqFDO0Wq3ExsaycOFC+vfvT2hoKEFBQRQXF/P1118b8Y7miqvzqGt9S0QIQUxIDDEhMaS0Sam2XXdseXl5XJl2JZ9v/Zz//eIpFvy0gMTIRHrH/I2jp48SE1JzbZGOu+ktx+s01+kt3Vl40n2xMaXt6zOF5fhbNQG9gah6HGcGXgMGAnuBn4UQn0opN7vsFwFMBH48C7sVzYh7773XqIIvLy/nlltuIScnx2kfd0H0piQd3xxxnOpZs6/Sr/pTNRFkCeK2lNvYtbc7qZ0KeXbNs3xS+Bxtn59FWlIaN3W5iSOne9AmJNnt8WWVNqfkgSs6xTo5kbwtqsbZn9RnCutXtBiIQJu62gmMrsdxlwHbpZQ7AIQQ7wG3AJtd9vsHMBN4tJ42K3xETk6Ok8yJOwHGsyUxMZFFixaxePFi+vfvz7XXXssHH3wAYDiVmmipDYP8getT7Ffr/mhSfcWFEAy+YDCDLxjM5I//RWjUOj7b+hmPfK3NmLcN6UiRvI2bu97MVR2uwmw64/CsdklwgNlIA76iUyz/WreXtTuOsLf4FO+uLcTk8rfTWA7TX/To0UMrHhYC/DgNXJ8pLE/7mSYAexyW9wJOKnxCiEuADlLKZUII5UAakZycHDIyMqql+AJeOZFZs2YxceJERo0aBWgjjbCwMObNm0dxcTEPP/wwwcHBTplhOu5iCElJSezbt89ttXtTQ6+VAXh1jHbTbIpJAo1Nh/DuTOr/P0zvP53CkkImf7qQTUe/4ZUfX+GFH16gdWhrbu5yM7d2u5VK+3mAcxqwjmP6s76s0xIC77WxcePGarL1/kDUFLQUQlwK7KlS4kUIMQItgL4L+LuUstZJXiHE7cD1Usr7qpb/BlwupZxQtWwCvgFGSikLhRB5wCPuYiBCiDHAGIC4uLje7733Xo3X1QNSjUlztOHee+/loYce4uKLLwY0Ofg333yT/fv3k5yczN13382AAQM8smHVqlW8++677Nq1y22QPDw8nGeeecZ4ipo8WesN6K52xBVdar4uG9zhaSql4zU9OUdtNn+8rYJbOwdWe3fcVtex7pj+/UlS25zZ9vtRGxfGnHkq31ZsY8plIbXaXdf16zrO8XdR2/f6eJuW0TWoYyU/F//MmsNrWHtkLaW2UgJEMDGiD70ir2ZCahrhFufz6ccCBJq1Vr769wXoFG4zWhEEmuHGTv5tS/DxtgoGtqtw+3Nwt+zJ+QE+e24cO3furNcx7v4e+/Xr96uUsk+dB0sp3b6AdUBM1ee/AEVoDuQfwIc1Hedw/JXAcoflx4HHHZajgMNAYdWrrOoafWo7b+/evWVt5Obm1rrdHzRHG0wmk6yoqJBSSpmdnS07duwoV6xYIYUQ8ptvvpEdO3aU2dnZ1Y7Lzs6Wqamp0mQyydTUVKd9XG3Izs6Wbdq0kcnJyVIIIZOTk2VERIQMDg6WAQEBEjDeARkfH2981l8BAQEyNTXVWPbm5+B67vq+vD1Hbby0Yovbd9fPtR3rjofmLa9135dWbHF6/XXu99XWzcndXuv167LL8Xdx94fPyNfWvyZfW/+a02d9+e4Pn3E6R7m1XH617St55etDZfAzsZK/IwOeCZCLNy52uoarzbXZUNfP0xe8tGJLrTZ4a5Pj9+7Ro4fHf4/AL7KOe7yUstYpLLM8M8oYCsyTUn4EfCSE2FDLcTo/A52FEB2BfcCdwHB9o5TyGNBaX65tBKLwPY7NpTIzM1mwYAEAKSkphujiiBEjnGIk/fr1Y9myZXVOe+mxFV0y/tlnnzW2P/HEE8yYMYMOHTqwa9cuEhISjHRf6Wa0UllZyaZNmwBqVQRubjhOd00GotOGM2ngYr9dv7aUYF9wSeRQxvfSzl9+aKvxWV92JdAcyOALBrN5Z0cSSadd2738UvIqYz4bw6XtL622f1PBUbIFtKyxQlOF0eL4l0LfZevpjbSGvvED74+7yifXqNWBCCEsUkorMICqKaR6HAeAlNIqhJgALEdL410opdwkhHgGzbt96o3hiobFsblUQUEBVquVsWPHGjIne/fuZe/evbz99tuGsxg8eDBTpkxx23dEdxA5OTlMnDjRKIqSUjJx4kRAczIff/wxdrvdabgthCAyMpLWrVtz6NAhQkJCnHLkTSYTYWFhLaZJj6Pz0JFSW//i8t8byarGY91xrdvinA2xbrYd4VDAKa6MuJdHr1vCRa9fxN0f383QJP+IXp4t7mI1eXl5RmOtoW80XF/72nhpxRYmD+pabb27h7SzoTZHkAOsFkIcBk4D3wIIIS4AjtXn5FLKL4AvXNY9WcO+fetzToVvcJQ5sdvtjBkzxmmk8OSTT5KcnOzkLGw2Gx9//DHTp59pTunYQwRgypQpWCwWFi5cyIQJExg9ejQvvPACU6ZMYdiwYfz+++9OgXOd48ePk5WVxd69e5k6dSoApaWlmEwmzGYz99xzT4NJi8THx7N///4GOZcn1PRP7O0/d3NF71XiOCrRKT+0lYrDWnJFYmQimf0zGf/FeK5p/TtQ/QapOIP+99SQo8sa9SWklJlonQf/CaTJM3/NJqD2/EtFs2TYsGHk5+eTnZ2NEIL4+HgqKyvJzc2lsLCQZ555xmn/Cy+80MlZgHMPEdBGLosWLaJfv3488cQTzJ49m0mTJrF3715yc3Mxm8106dKF7t27Yzab6d69OxEREVqa5+DBjBgxwpCJT0xMxGazsXz58jqD5/UlISFB1Zr4gZe/3srH2yp4+eutDH3jB6MY0BuFYYDbUm7DJEys+fNdyq0tq9tfc6CufiBr3axr2flwCreii4mJidVUdm+99Va2bdtGbm6uW3VfndzcXCZNmkRBQQHt27c3xBbT09Pp168fn3/+OTNnzmTcuHHMnTuXRx7RagFiYmI4cOAAsbGxHDp0iFOnTmE2m906Lk8ICgpi3759hIeHNwvZiOaK/rSr90TXU2o9eQped3wJBy2nWHc81JjiGtBlAL8d+Dc93uxBQugl3Bj3f5hN3isGK+qmPi1tFecg+mjEZrORn5/PrFmznDoS5ubmkp2dzdixY0lPTzdqOVzVfWNiYpg1axajRo3ixIkTTJo0ieLiYmJiYsjPz2ffvn3893//N9OmTSMsLIxp06YRHh5ObGwsrVtrORZ2u52oqCgiIyMpKytj9OjRWCyWatXsZ4sel2mKzkMXcJw8qCtCiDrFKM8VLokcSlvrzVVBeK097/Khy7m1/QxiLDHk7VzCc+uvZ+2BD6iwqdbKvqY+legKhcdS8KGhodhsNrKysnjkkUc477zzCA8PJzQ0FIDNmzdTWlrKl19+6SRlcuLECeLi4hBCcPjwYSIjIyksLKRLly6UlpYyZcoUj6XodY4ePcpjjz3GZ599ZmR2NVWklEwe1JWHhWDgwIEsX768sU1qNA5aPmXZoR1s/CrUWFdQVkhkVCSXBFxBme0EP5cu4LvieawtvYQ+7fvw+3E757Jgo69QDkRRbzyRgi8qKuKf//wnM2fORAhBWFgYzzzzDCNHjgQgMDDQmMoCLTgfFRXFsWPHjCD6iBEjOH78OAD79u0jJCSErl27Nsg0Vv/+/XnuueeajWyKlJIVK1YwePBgw4k4KrlOpvkouXpKW+vNXNEmtlqluV6JLqVk+/Ef+e7PbD7b9Bmf5H9Ct1bX8sGmCzlw7ABxh+KICYnBavd/l+7X8/7g921n0nj1FsY6vkzr9QXKgSh8ih4/yc/PN9bl5uYagfaKigpmz57NxRdfbIxAHG9+jz/+OGazmZCQEKKionjnnXcYPnw4kydPdpu9dTYkJiZyzz33sHjx4kbrfugpK1asAKgmAw5attq5HNcRQtA56gpOiF0Mu6wvvxb9ytq9vzBh5QQA/lF4plPn3389SavgVrQKaeX87m6dy3uQJeisbSurtHFr50AjjdfVYRQeKW1WzbOUA1H4FMf6EneB9pSUFIYMGeI0NWa320lISCA9PZ19+/bRunVrhBAUFRWRlpbG5MmTmTJlCq+++qpXts2aNYuxY8cyePDgZuU8HHHXiKi29U2JhmqGVROXRA5l0uXajfr55flc2/0UeT/m0aFzB4rLivk8fxsp3cwUny6muEx77SrZxYayDRSfLuZExYlazx9iCanZyQS3IiYkhl8OlbFsawqtQrRlu8vfmdUu3Wp66TR1DS/lMAQmMwAAHdxJREFUQBQ+pa7YSUZGRjURx8GDBzNy5EimT5+OEILs7GxWr17NCy+8QHBwMB06dHA6tzcEBwcTGxvr1OwqKCiI8vKWkRKqqwBs3lzAqlcaRmG5IfB1MyxXLKZALkvozqmYU/Tt0ReA8pLa6yEqbZWUlJVozkV3MjW9lxWz+9hufjvwm5PzaRvdlpVfnjlnmKUVfaIvYtP6TQghOGjZg6b65BnuKt3hjOPxtQqxciAKn1Nb7MSdgxk7dizZ2dkMGDCAhIQE7rzzTgIDA5k/fz6JiYncdddd1VKKPSEzM5MlS5bQr18/LBaLoZRbUeF+btxkMjUrNd2cnByGDzfUg9i0adOZ5da9G8mq+lHb6MSxH4gvCTAH0CasDW3C2pz1sVa7lZKyEl5auY4hvaMpPl3MnuN7eGLlTD44/AHbTm7jH/3+QZvKXl7Z6K7S3dUZ+xLlQBSNjjsHc9VVV5Genk5RUREmk4mYmBhGjhxJUlISVquVF1980evrFhQUsHfvXrp3747NZiM6OpqSkhK3++rKwM2hT7WOo/NwXf/Sii1+tqb+NOYNsaGwmCy0Dm1Nm5BkLks4832OHb6ao8XvsuTAEm7KuYmYgFS+2DaLGy64odkkcjiikssVTRK9DsVut/POO+/Qtq02Jx4WFsYrr7zSINMw7du3Z+rUqWRlZREUFETv3jU/ldtsNq677jpOnz7t9XWbApMHdTVqd5oba3ccMSrZh77xAy9/vdVYbuqNo0zCzMC4gRQ8WMD8m+ZTbj/Kjdk3cun8S/l0y6cexeJez/vDqOq/a/5aPvx1D0Pf+IGhb/zAh7/uoeDP406V/w2Z6aVGIIomjyfpw/VF/4e95pprWLlyJaA5qdOnT2O32wkLC+Ohhx7iueeeY9q0afz5558+saMxKC8vNwQp6+pt31RwbBqlf3Z8h+YxSgkwB3DfJfex/Keu3HD5NjK/zeSW926hTXAya49dygUxF3BBzAX8cSyIfcfDaBfRDpNw/7zvOI318tdbSevcxoiLrN2hpQo7UniklNfz/miQOJNyIIpzFr1GJT09nU2bNhEREcGJEycoLS1FCEFoaCiBgYHMnDmTiIgItzItOnp8pLnFSQBmz55tOBDHaZTJVe9NMUNNf6Jeu+OIoWjrGDh2DCw3ZUzCwqiLRzGi5wgWb1zMjNUL2bB/Ax///jFWuxWA1zZpGV/nx5zPBTEXcH6r8w0Hc7TMRHRQO6dzllXanH4Gia1Cq11X7x3vrRNRDkRxzuJYo2I2mzly5AgJCQkcOXKEpKQkdu3axalT2tPb6dOna6x8DwjQdJfsdjtmsxmz2UxlZaVfv0tDUNMcfFOrkXFtXQvaU/baHWeWi0pO0z46xG/ZSPVl3fEl/Gk+weYNmwE4aNnDnA3rje19Eq/jndv+D6vdyu5ju5m1cjU9k8vYfnQ724u3s+3INr7a/hVl1jMyLWYRwLytHekc05nOwSNJirjIGJXoU1Z9kqv3zsnbctBwMp7WmygHojhncaxRufDCC8nKyuLQoUM88MAD/Pvf/0YIYWR/jRw5ssZptMrKSuLj4zl48CCxsbGNKg1/rlB9uqp6ZbojZZU2hr7xA/EOzZwaw6lcEjmUiwOK6NurLwCrf/yB8b3OpPHqzbQsJgudWnWia7SVBy51TiqwSztFJ4rYfnQ7r6/5jsNlu4mJOsrqwtX8ZN/Eo70+w2I60xbXXa2JjrfTfsqBKM5ZXFOIH3vsMdq0aUNUVBSlpaXY7XbatGnDli1b6qx6152Gch5NB3fZXBcHlBtV4E2Bg5ZPnUYg644fcWqkte74EVw1vEzCRGJkIomRiazf1h7QvuuX277kv7L/i1X75jEo8UG/2K8ciOKcxjFAn5OTw4QJE5gxYwZxcXEsXLiQ4uJipk6dyrhx49wer6f3xsXFcfDgQdq2bevUX6RVq1aUlJQQHR1NcXGxX75TU0XXO4OmHV/xJ22tN1cbgdTV3rcmbuh8Az1iBrJ8TxaFJ9ZzS59/NqSpblEORKGoYtiwYWRmZvLAAw+wdOlS7rvvPrp168bUqVNZunSp22NsNhtRUVGEhIQghDA0u44d05p2lpSUIKWssb7kXKG5xFd8geP00Ie/7qEw1mZMo3lbFOna/vei9lcTHRnJ9mNruebda0iO6E2ifMyra9SGciAKhQMFBQWsX7+e6dOnGzIgzz33HHa7nZycHLdxkAceeIDPPvsM0FKA77zzTmbMmAGcecJu6TdJhXtcp9HW7jjCrZ3PTKN5m3Ls2v63/NBWekcO41jrA2w+lcUHmz/g0siewNVeXacmVCGhQuFAt27dWLNmDTk5OWRkZJCVlcVXX31FcnIyGRkZ1ZpYJSYmsmjRIrKysigrKyMrK4tFixYZ281ms9O7QuEPogLjWHL7EuJDu7Dt1Ac+e4BRIxCFwgE9M0tKybx58wAYO3Yszz77LPHx8aSnpzuNQmbNmsXEiRMZNWoUu3fvNqRWzGYzwcHBtGnTht27d9OhQwcOHTpUo0jjuTCVo/AN644vMaawlh1azUmbVuPx5UcBxLeN4pT1GP/zyf8QHRwNwJ6jp2gX1N0YvXiDciAKhQO6cxg+fDiDBw8mJSXFqP+orKys1sRK318vMAwLC+PZZ5/lrrvuMrou6o4hNDTUqCtRnEGPj6jAumdo7X31KazrAM2pXHl+LGu2H2B10SL2W/YzMHkgANbSI8Y+3nZpVFNYCoULw4YNIzU1lVWrVpGfn284iTVr1tS7iVVKSgpjxowhLCzM6MQ4ZswYUlJS3O6vbppnaI6igk0NvWf8pVF30dp6E2sL13L85HHG9RzHJZFDjZe3qBGIQuGGuhph6eixEtf9brzxRrKzs1mwYAE2mw2z2VyrFEp90dOGzwWai6zK2fKxQ0vbD3/dY/TwAK2C3pGGKHZsFRlC37i+vPzry3zyxyd0CLmWILOmKq1PfbmrN6kPyoEoFG6oqxGWTmZmJgsWLHDq6b5gwQLS09PJzMys83id+jqGc9F5uK5vzk7kik6x1YoZ3fV2b0jibLfy3vCZzF83n4lfTSRfbOP+bvPoEN7dKXvLE5QDUShqoD4qwAUFBaSlpTmtS0tLo6CgwDg+Ly+Pvn371niOmJgYSkpKCAkJqbdcfExMdW2jcwlHBxN1tdb3ZNLAxY1lTpNHCMGY3mO4usPV/PW9dFoHn9cg51UxEIXCC/S0X0fOJlYCWnA9IiICq9Va4z76DTM5OZmoqCgjQH8u4jo6Ofb9exz7LhshRLPsb+Itjr0+9CmxmvqjpLZN5b5ucwmxRDTItZUDUSi8QI+V5ObmUllZSW5uLqNHjyYjI6Pe5ygqKiIrK4vKykrj5njxxRc77RMeHg5oWV5ZWVkUFRU13Jdo7sgz8vmvvfbaOeVEJg3swhWdNCHJSQO7kNgqlCs6xRrrGrq3vCtqCkuh8IL6xkpqQ5eVT01NZciQIcyYMYP169djNptp1aoVNpuNY8eOERMTQ35+Prm5uU4jnMsuu4zffvuN8vJygoKC6NmzJz/99FODf9fmgJRSa5I1e3aLCryfDXpQXq9y31x0zKnivSH7pSgHolB4ibcdE/VRTM+ePZk5cybBwcGcOnWK4OBgDh8+bDS3CgkJMUY4jtlcP//8My+88ALjxo1j7ty5PPLII07nP5cyt9zhLiDf0pyKo4PYW3zKqYlUdGigW2XihkA5EIWikdGdz7333ovVajViIVarFSEEQgjKy8vZt28fN9xwA/fff79xzKBBg1ixYgWPPvooDz/8MCaTCSmlsR4gJCSE0tJStzfN5p7V5Ckt6Xu7ZnE5NtYCKDlVUc1hNNQoRMVAFIomgF7p/vbbbxMUFIQQggsuuIBx48Zht9uZOXMmKSkpfPnllyxbtszQ5Fq+fDmDBg1yEm0cNGgQy5cvB7TRR3l5udubZXh4eIu5iTZ19AeByYO60q9fP58WS+oxEEcca03gTNtbb1EORKFoIrRv356pU6fyyCOPkJyczKhRo5g/fz6RkZHMnj2bJ554wqgzcZzCWr58OXa7HSkldrvdcB6g1Y3U1KP95MmTWCwWLBY1EeFLaqtp8RV6UH3SwC5EhgQ4bdOdSVmlzcje8tSZqL8chaIJIaVkwIABdO3alSeffBKr1UppaSlz5841pq30OpO6MJlMNToP0Hq5BwUFUVpa2mD2K5oeemaWY/vahipW9OkIRAhxvRBiixBiuxCiWlcTIcRkIcRmIcRGIcQqIUTDVLcoFM2QoqIiZs2aRXp6OiNHjiQsLIyEhATsdrtTkL6+dSbR0dEIIWjdujVCCEwm7d/dZDIhhCAhIQGz2UxCQoLTcY77KRS14bO/ECGEGXgNuAFIAYYJIVyV5NYDfaSUFwEfArN8ZY9C0dTR03nz8/Ox2Wzk5+czcuRILBaLR3UmJSUljBs3zuiKaLfbCQ0NRUpJeXk5CxcudCpI1HuWuDoQ1ctEURO+fMS4DNgupdwhpawA3gNucdxBSpkrpdT1rdcCiT60R6Fo0rgrSszOzmbs2LGkp6cTHBxsaGzVJ224W7du3HHHHZSVlZGbm4vJZGLixIkEBgYa55o5c6ZRlGi324mIiDDm5oUQRERE1DoNpji38WUMJAHY47C8F7i8lv1HA1/60B6FoknTEEWJjjgqCttsNpKSknjrrbd46623jHM6FiWmpKQwZMgQli5dSkFBAV26dDGWFb5h8qCuRsGjsa7qvTlkyDWJILoQ4m6gD3BtDdvHAGMA4uLiyMvLq/FcJ0+erHW7P1A2KBs8taFdu3ZaJbUDntrfrl077rrrLqNbYkxMDFarlf3797Ny5Ur+85//8PzzzzN69Gjy8vK49dZbWbBgAY8++ig9evSotr2l0dS/kxCC3NzcszqmsLACgLy8M1I3JSWnKSw8YawrLKxw2u4VUkqfvIArgeUOy48Dj7vZ7zqgAGhbn/P27t1b1kZubm6t2/2BskHZ0FRtyM7OlqmpqdJkMsnU1FSZnZ3ttF9d2z1FCCGBJvXyF/6w0fGYqKuHOx3717nfy5dWbDGWHT/Xcr5fZD3ux74cgfwMdBZCdAT2AXcCwx13EEJcDLwBXC+lPOhDWxQKBXXLrngry1IbAQEBVFZW+uTc5zKN2TvFZ0F0KaUVmAAsRxthvC+l3CSEeEYIcXPVbs8D4cAHQogNQohPfWWPQqFoPFJSUhg6dCipqamYTCZSU1ONbQEBAca7Kmr0nmPfZfvtWj5N9JZSfiGl7CKlPF9KmVm17kkp5adVn6+TUsZJKXtVvW6u/YwKhaI5kpGRwapVq8jKyqKsrIysrCxj23333UdJSQn33Xefof+laBiEECx/ZzZPP/00wcHBDX5+5e4VCoXPGTZsGJs3b3bKMAMIDg7m9ddf5/XXXzeWy8vLG9PUFkt5eTnBwcE899nGBjunKjVVKBR+YcCAAU5FkqmpqTz88MNO01oPP/wwKSmu9cYKbzj2XbYxrdXQzlk5EIVC0ShkZGSQnZ3tNK2VnZ1tVNkHBQWRnJyMyWQiOTmZoKCgRra4ZTB5UFdDHdhblANRKBSNwrBhw8jMzHRbZa/3QLnhhhs4evQoN9xwA+Xl5fW66Sktr/rjrRNRMRCFQtEkCQgIcIqPBAQEGM22akOXXlESLL5HORCFQtEo5OTkkJGRwYIFC0hLS2PNmjWMHj0agISEBE6ePEl0dDS7d+8mKSmJkpISwsPD2bt3r9N5LBYLJpOJigqtCluvN1F1J75HjfEUCkWjkJmZyYIFC+jXrx8BAQHVmmW5FsHpyzExMU7rrVar4TxAcz4mk8lJpv7FF1+ktLSUBx54wFdf55xEORCFQtEoFBQUkJaW5rROb5a1b98+o8BQdxwBAQHs27eP0NBQQkND3c7fCyEoKysDMN5NJhOPPfYYYWFhzJs3j8DAQF9+rXMK5UAUCkWj0K1bN9asWeO0Tm+WFRgYyOOPP87OnTux2+3s3LmTxx9/nMDAQIqKipg7d67TCCMhIQEhBA8++CDFxcXY7XaKi4sRQmC324mNjcVkMhEZGUlFRYXqcdJAKAeiUCgaBXf9T/RmWRUVFcyePdtp2+zZs6moqDAab+3Zs8cQ9XvnnXdISUkxUoKllJSVlfHggw8ihODQoUPY7XaOHTuGEEJNZTUQyoEoFIpGobY03pSUFIYPH+60bfjw4aSkpNTqeFzJysriwQcfNDS2zGYzDz74oJOUij9o1aqV2/U1pdE2mxTk+kj2NqWXknNXNigbWr4N2dnZsmPHjvKbb76RFRUV8ptvvpEdO3Y05OU9lZ1vjJ8DIOPi4ozvQi3y7SaTScbHxxvy9/U9vzevGs7Z6HLuCoVC4RF1dWc8G9n5nJwcMjMzKSgoICkpiWeffdZnkvXusFgsnDx50mjsVRt2u51Dhw4hpWwWo5Cmb6FCoTgnGTZsmJN2lic3fb3WRI+NPPTQQ2RkZJCTk+MDi90zbtw4Tp06xZ49e2otbnSczhJCMH78eI+up2ev+QPlQBQKRYvFtdbk4osvdqo18QdXXXUVERERxohCdxT6ckBAAGaz2UhXttvtDBw40OM4jT+LJ5UDUSgULZbaak38RWZmJkuXLqWiogIpJeeddx4vvvgi3bp1Q0rJokWLaNu2LcnJyVRUVLBq1Sq2bdvm11GSpygHolAoWiy11Zr4C1cntnv3bsaNG2c4sczMTBYtWsTu3bvdVuTXRWPWtCgHolAoWiyuKb/r16+vMeXXV7g6saSkJObOnWs4Md2RODq1sxkl2Ww2IiMjiYiIaECr64dyIAqFosXiWmvy6quvOmVz+QNXJ5aWlsbUqVMZMmQIlZWVJCUlMWLECCendrajpPHjx5OUlFSt37yvUQ5EoVC0aByzud566y2/Og/9+o5ObM2aNYwbN46lS5cSHByM1WrFZrMRHx9fZ2GkOxITE1m0aJHbfvORkZG++lqAciAKhULRqERFRTF06FC3Ffn1YdasWVitVkaNGkVwcDCjRo0ytiUmJvq0nkQ5EIVCofAhrrUoaWlpzJ07lyFDhhgjhmXLlpGRkeFRzcuwYcN45ZVXCAsLAyAsLIwePXoAEBwcTNeuXX3yvUA5EIVCofAprrUoa9asYebMmSxdutSjrCt3uBZdbty4kQ4dOrBu3Tq3wXhdG8xblANRKBQKH1JXGi/4pjYlMjKSjIwMp6D6XXfdRUpKCitWrDBGLN6gHIhCoVD4kLrSeME3tSkFBQU89dRT5OfnA1qsZc2aNWzevJlRo0Y1yChEORCFQqHwIXWl8Z5t1lV9cXRcFosFq9VKeXm5sd1qtXrtRJQDUSgUCh9SVxrv2WZd1RdHx3X//fdz6tQpDh48aLT9PX36NOPGjfPqGkrOXaFQKHyMo/x8Xl4effv29cs14YwkfqtWrTh+/DhWq5Xi4mLGjx/vdWMt5UAUCoWihXI2fVM8QU1hKRQKhcIjlANRKBQKhUcoB6JQKBQKj1AORKFQKBQeoRyIQqFQKDzCpw5ECHG9EGKLEGK7EOIxN9uDhBBLqrb/KIRI9qU9CoVCoWg4fOZAhBBm4DXgBiAFGCaESHHZbTRQLKW8AHgZmOkrexQKhULRsPhyBHIZsF1KuUNKWQG8B9ziss8twKKqzx8CA4QQwoc2KRQKhaKB8KUDSQD2OCzvrVrndh8ppRU4BsT60CaFQqFQNBDNohJdCDEGGFO1eFIIsaWW3VsDh31vVa0oG5QNygZlQ1O2oS7Oq89OvnQg+4AODsuJVevc7bNXCGEBooAjrieSUs4D5tXnokKIX6SUfTyyuIFQNigblA3KhqZsQ0Phyymsn4HOQoiOQohA4E7gU5d9PgXuqfp8O/CNlFL60CaFQqFQNBA+G4FIKa1CiAnAcsAMLJRSbhJCPAP8IqX8FFgAvCOE2A4cRXMyCoVCoWgG+DQGIqX8AvjCZd2TDp/LgDsa+LL1muryMcoGDWWDhrJBQ9mg0RRsaBCEmjFSKBQKhScoKROFQqFQeIRyIAqFQqHwiGZRB1IbQogL0Sra9SLFfcCnUsqCxrOq8RFCvC2lHNHYdvgTh2y/IinlSiHEcOAqoACYJ6WsbFQDFYoWRrOOgQghpgLD0GRS9latTkS7ibwnpZzhJzsuRHNgP0opTzqsv15K+ZUfru+aHi2AfsA3AFLKm/1gw+VAgZTyuBAiBHgMuATYDDwrpTzmBxsWoz0UhQIlQDjwL2AA2t/6PbUcrlAozpLm7kC2AqmuT5ZVT6KbpJSd/WDDQ8CDaE+5vYCJUspPqratk1Je4gcb1qHdqN8EJJoDyaEqLVpKudoPNmwCelalb88DTlGlb1a1/n/8YMNGKeVFVUWp+4D2Ukpblb7ab1LKi3xtg6JmhBBtpZQHG9mGWClltWJlhWc09xiIHWjvZn27qm3+4H6gt5RyCNAX+D8hxMSqbf4ShuwD/ApkAMeklHnAaSnlan84jypMVXpmAH2klP8rpVwjpXwa6OQvG6oeHiLQRiFRVeuDgAB/GCCEiBJCzBBC/C6EOCqEOCKEKKhaF+0nGyKFEM8JId6pmsZz3DbHTzbEuLxigZ+EEK2EEDF+smGGEKJ11ec+QogdwI9CiF1CiGv9ZEMfIUSuEOJdIUQHIcTXQohjQoifhRAX+8MGX9LcYyD/C6wSQmzjjHBjEnABMMFPNpj0aSspZaEQoi/woRDiPPzkQKSUduBlIcQHVe8H8P/vNl8Ica+U8i3gNyFEHynlL0KILoC/Yg8LgN/RClczgA+qbhpXoE1z+oP30aYO+0op9wMIIeLRFBfeBwb5wYa3gG3AR8AoIcRtwHApZTnaz8IfHAZ2uaxLANahjZL98VBxo5RS70P0PDBUSvlz1d9kNtqDl6+ZAzwFRAPfA5OklAOFEAOqtl3pBxt8h5SyWb/QRlFXALdVva4AzH68/jdAL5d1FuBtwNZIP5Mb0eIO/rxmFPBP4A/gRzSnsQNYjTaF5S872qNNXYH2T3s7cJkfr7/Fk20NbMMGl+UM4Ds0pet1frLhYeAroIfDup3++j1UXa8AsFR9Xuuy7T9+smG9w+fdNW1rrq9mHQNpCgghEgGrrHradNl2tZTyu0Ywq9EQQkQCHdGc6F4p5YFGNsmvCCFWACuBRfp3F0LEASOBgVLK6/xgQwFabNDusG4k8CgQLqWsl9JqA9iRiNYobg/aU/hvUkp/TWcihEgHbgJmAH8BWqElVfQHOkkp/+YHG35A++5RwAtoMdKlVVNoL8pmLqqoHIhC0YAIIVqhZaDdArStWn0ATTh0hpSy2A82zAJWSClXuqy/HsiSfkgucbnuzcA0IFlKGe/na/cFHgC6oD3U7AGWomnzWWs5tKGu3xOYhRaTnVRlyz1oSR73Sym/97UNvkQ5EIXCTzjEiM45G6pSu8+XUuafyz+HpmaDtygHolD4CSHEbillkrJB2dBUbPCW5p6FpVA0KYQQG2vaBMQpG5QN/rbBlygHolA0LHHAYMA11iHQ0jiVDcoGf9vgM5QDUSgals/RMp02uG4QQuQpG5QNjWCDz1AxEIVCoVB4RHOXMlEoFApFI6EciEKhUCg8QsVAFIqzRAhhA/6DJtBoRZOtedmx8luhOBdQDkShOHtOSyl7gSZRjibMF4kmWaFQnDOoKSyFwguk1t9iDDBBaCQLIb4VQqyrel0FWodIIcQQ/TghxGIhxC1CiFQhxE9CiA1CiI1CCL/KjCgU3qCysBSKs0QIcVJKGe6yrgToCpwA7FLKsipnkCOl7FMlnjdJSjlECBEFbAA6o4kNrpVSLq7qZWKWUp727zdSKDxDTWEpFA1LADBbCNELsKGJ+CGlXC2EmCOEaIPWduAjqXVv/AHIqFKu/ZeUclujWa5QnCVqCkuh8BIhRCc0Z3EQTXH1ANATrWFRoMOubwN3A/cCCwGklNnAzcBp4AshRH//Wa5QeIcagSgUXlA1opgLzJZSyqrpqb1SSrsQ4h607og6/wR+AvZLKTdXHd8J2CGlfFUIkQRchNakTKFo8igHolCcPSFCiA2cSeN9B3ipatsc4CMhxAi0jnyl+kFSygNVzZ6WOpzrr8DfhBCVwH7gWT/Yr1A0CCqIrlD4CSFEKFr9yCVSymONbY9C4S0qBqJQ+AEhxHVoPbqzlPNQtBTUCEShUCgUHqFGIAqFQqHwCOVAFAqFQuERyoEoFAqFwiOUA1EoFAqFRygHolAoFAqPUA5EoVAoFB7x/wGFAYavJXLnRQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1989,12 +1456,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmUZFld7/vZe58hppyzhqypq7q6q+eqBgcmRVAu8p6K\nCCKD0LyrFwR9DHKVBSwEfSKIvfAhvsu0aAWhRURUcAIUFK4INA3d1RNdPXcNnTXknBnDGfbe7499\nIjIyM2rszJp6f9YKsjKGE+dEVdHf/NX39/0Ka63F4/F4PB6Px+PxdJDn+gQ8Ho/H4/F4PJ7zDS+S\nPR6Px+PxeDyeZXiR7PF4PB6Px+PxLMOLZI/H4/F4PB6PZxleJHs8Ho/H4/F4PMvwItnj8Xg8Ho/H\n41mGF8kej8fj8Xg8Hs8yvEj2eDwej8fj8XiW4UWyx+PxeDwej8ezDC+SPR6Px+PxeDyeZZw3IvnW\nW2/lta99LT/+4z/OlVdeyVe/+tWTvuY73/kOL3zhC7nuuuv46Z/+af7u7/7uLJypx+PxeDwej+di\n57wRyY1Gg6uuuop3vetdCCFO+vyDBw/y2te+lqc+9al84Qtf4IYbbuAd73gH3/zmN8/C2Xo8Ho/H\n4/F4LmaCc30CbZ75zGfyzGc+EwBr7Umf/5nPfIYtW7bwlre8BYBLL72U733ve3ziE5/gGc94xpqe\nq8fj8Xg8Ho/n4ua8mSSfLnv37uXpT3/6kvt+7Md+jNtvv/0cnZHH4/F4PB6P52LhghXJx44dY2Rk\nZMl9IyMjLCwskKbpOTorj8fj8Xg8Hs/FwAUrkj0ej8fj8Xg8nrXivPEkny7r1q1jcnJyyX2Tk5PU\najWiKDrl41hrey4KpvPz/Ocf/78kzSYAxloWymWMgLRSwQI6iuE4O4YWQEqCVgthwWKLpwrAEjUa\nSAu1ljt+LhVSaxrlMt2ObFu8H0DUbGJUgNQ5ou3btu5/kmoVgHh+YfGx4gnVycll9y1FWOg7ehQh\nBAJIfviHefqr/wcA3/7Up2hl2dIXGIOZnsa2ErBmxfGMlCSVCmGacd33vk85aa18z1of/f/3r1P6\nyZ8EILvjTsLd1yFrteOep8fj8Xg8Hs/Z4oIVyddffz3f+MY3ltz3zW9+k+uvv/60jjM1VUfKXkpX\nctnPvYBsaqpzT3PiKFm9TjI/h0lSzPx8Ye1YKUC11ixIxXAUEUYRKo6wCEySoOKIaMs2wmqN8ug6\nkqkpDt2/j82XX4ExOVm93jlOrjWHJyaQAmQU0ao3KFUryFLJnWWzSfUH93JkdJS8VEJLgdUGYQ3C\nGCySRq2GOI5GtgKslLT6+9x5ByHVZovJ8QkAGq0UJQRKSoQQSCUxSYJptCBpgRDu1kUeBMxXqyQ1\nSWugn3hh2R+zJCFpNHn4tr1sv/QK4igi/acvIf/3fxH84i8hhodXnGeWZUxPTzE0NEwYhr0vZg1Q\nStLfX2ZuronWK38guBjx1+yv+WLFX7O/5ouRJ9r1rhZDQ9WTPue8EcmNRoP9+/d3ki0OHDjAvffe\ny8DAAGNjY7z//e/n6NGjvO997wPgpS99KTfffDM33ngjL3rRi/jWt77Fl7/8ZT72sY+d1vsaYzGm\nt4Isb91BeeuOzvf9XY8FgWRoqMr0dJ08X/mHsnnoIA997cvs+Mmfprx5ywnPoXnoIOHB/dR2XbXi\nua1Wk4m7bieOY+TMLPaeOynvuho5OgqAmp6m+sh+zPAwea1KIwxBawYeGwepAJD2BJF6AqwFWXwE\nIssY2bcP/X82oVTCYpFCEQQBQgiCQJFlORawQoBSK0Ry+z6rJGlfP60wXvp4o0neqNNSiiw3KGkx\nucZOz0CSIXp8nsmRY0x942uE1+2hccdehp79HKL160/4ua4mWpuev88XM/6anxj4a35i4K/54ueJ\ndr1ng/NGJN91113ccMMN7p/8heiI4Re84AW8973vZWJigvHx8c7zt2zZwkc/+lH+8A//kE996lNs\n3LiRd7/73SsSLy4W8lyjTIa1Fm0yTO4sEFZnTugLgQVErsEa5tetQ+YZQghUmiKO8/emPUkuJQkA\nWggmrrmGsWJSrVotAitQgXLHChRZs8V8rYoR1UIgi2XHFBggCyMevnQHUZ4vuxhNNDuDyjLs1DQ2\nDKHZdMK720JTKiH63IQ7Vortk1OkuWEibdKfndpyZpZlzMxMMTj4+CfQttXCHjyA2LIVUXw+Ho/H\n4/F4Lk7OG5H8oz/6o9x7773Hffy9731vz9f87d/+7Vqe1jlHKUUcxyRJgk4yjDGkSQaFqJWtBFOr\nogOFBidarSAvxWAjwlaLwYkJ5tevR/fwalshsUpilAQLuZRord2DrRajd9xBgEQqiQCklJTynMga\n0NrZOHoMqtNSiclLLiFqJUTLBK1WiiQIKC0skH/uZvJmAg8+AEA+N9sRoGJwCPWa13WE8pmgdc7E\nxFH6+voft0gWpRLisssf1zE8Ho/H4/FcGJw3ItnTmzCMuPLKa9Fa03rsEAfGH2PrZVdQ2rQZgNZj\nh3j04AH61q+HuMTM4ccQAlpaI4whTFNqRydYWLceG6z87bYIrBQYIQE3kTZt+0SpxMTu3cTW2Sza\ndotWK2HSaESa4Fb9VqrkPFQ0BgeJDhxaYcewQB7H2GoVDCRWMn7lLsYePUAchNgwgqSFPTyOPHQI\nRkawCwtn9PnZ6RnMXXdiB0dhrHxGx/B4PB6Px/PEw4vkC4AwjAhDsHEJKSVxXKJUcoKvfZ8MI2Sl\nghQuPcMqhVWKrFxmZusW0koZfZxJqhWCpBSDBSMEDWPQWqOUQpdK5DJAhM6TLAJFrgISq0nDQRCy\n5yTZCIFRipmN61HGgjG0FxyNlBghKB89BvvuxxpDun0bdmYGmj+AIIAshyxF3/RRKJUgihH9/QgB\nkTGnVF3u3kxDq+m+FqymBeN08HYNj8fj8XguHLxIvggRgMxdTFzUbDJ48CCtgX6yHsLSCoEVkriV\ngLVkUlIpBPKJUK2EMMsQxiJ6pHu44wpK83UkzprRVtMmCGhVKpgggLiwgJRKEBbfh6FbOhRA/4Bb\nLpydRVQqxEHIjkaCCk895m85q2nBOB28XcPj8Xg8ngsHL5LXCKEC4riMUCf/iE/1uT2fJxWUylil\nyLXBCFFkIruJsjCWME0R5jjmYQQCizQGrEUKgTxBpjK4BIzNe/dilCqO2+P5xSJhmBQReV3HNFKS\nVKs0tm4liV3yRRJF7L/qSjZOTBIByABlDRFgjYXlWc2Pg/PNgmHrdew9dyOuvgZRPXkkjcfj8Xg8\nnrXHi+Q1orRxI5f90stX9bm9nieGBhHXXEuQpaT1OiZQkBkXz4bASMHC0BBGCmSa0n/kMHMbNqLb\nE1wsQhvQOSAgWBrpZoQgNzlk7m5jDZkUHL3+eshzgjzvqZERYMCVphiz5DlGQFqtEljLoyNDGCmZ\nr1UJgoBWEDiRbi1BkrDze7cQphkYjYlieOQh7MQE5oH7Ed1JGHGMaBeRdKViCCFW2jN6WDDOKUmC\nffABxM7LwItkj8fj8XjOC7xIvghQSnHJJVegtWGfAJGmzB4eR+aaIDckg4PEuUGlTdY/8ijEZeL6\nAvUNG9BR5Fbv4pJb2AuK6XAco7WmXq0is6wzXZYC8jAkDQIGDx10PmfRu91cWcuO734XledFmYk7\nRtuKkVVrKGtISyXyMAJrGXn4YdcsKCVGKfT0NOFC3Xmab/k25o7bIc/R3/omyK73jSLErisgDJek\nYsRhdFJ7Rnr0KNP//m9nPXu5jRgeRv7cz2PvuRtiP032eDwej+d8wIvki4T2cp+KS6iKE7ZKCNTC\nPOJAitq4AYVAPvoo4cgIQ+PjpNdcC/2LFSnCGITOEH0DiFqNAOjbegmBEATKpVuUSiELU9PYffvo\nP3yEiZ07ySorLQu2sFvs+8lnE6TZksU9KxV5HDEyfpg4TZ3o7quBNixs2ECQpmgpSaoVho5NQKBI\n4jLjT3kKY4cPEyfLMpLz4vjVmvMvz0xDqwWnGB2ns/S0spfXhEYDc+stqO07OtNkb8PweDwej+fc\n4UXyBY4QgjiOEUJ02grzXDtvslLoIMTGMSYIXU21EFgpXeFHMa1tY4pkDILFZTYZx4RxTBCESCmI\nSiFBbkFKrFKklTJ5ZamAk2lKbWKCufXrSSsVpDaoZhNZ2BuMlCAlOgjQxqCDACtdTrMOFMIE5Epi\nhCQtlcFa8jAg7ati56su/aKbZsvZJyj8y61Wp5TETk5Co7GkpMROTUO7yKR/4JQ/azs1hfnKl5DP\nfV7P6uxVp4dw9ng8Hs+Fh81S7L59a3JsrSRpfwk918J01VKLK65AnMGS+/ve9wd8/etfY2Fhnj/7\ns5u57BwsnB8+PM6LX/x8/vzP//KcvH8bL5IvcOK4xKWX7gIgy1LiOKbRqGOMBiy6FJNu2UIURbAw\nz1xfjcxojDVoo9F6aRueUsFJ49VsEJAODjC9dStZrYaOltZOKymxgcJEESYMsHlO7djKnOPK0WME\nOidQipq1tPr7iebrhElCJMDKeRYG+5F9NfJAoXudl87h6BHn673te25Y3RUdZ/MMZmYxn/w4ohD/\nOs8JJej7H0SPrsP+3M+f0medJQlT9TmGk4Qzz9Y4DkohhoZdpbfH4/F4Lirsvn3kr3jJmhw7B471\nuD/49GcR1153Wsf69rf/iy9/+Z/40z/9GJs2bWJgYHBVzvFMOOWo1zXEi+SLiHbxSL1eZ9++u50w\nBmZnZxgYGERFEa3RUQaGhqlWa4yOrkMPDi05htaafHmN9DKklMTWMnToEK3hYcSyJr8wTRk89Bj1\noRGscDaO+dFRovoCUmssAgRMb9uKyt10WQcBrb4aM5vGUHmOkQIjFQMTEwhradRqhL0EpDGQ526r\nMHZZz53ouHLZ5XmMrFvykrjRYPv998G2bc6asdy+cRy00UxGIQNrsPAnhodRL+29vGkbDex3b/G2\nC4/H4/GsKYcOHWBkZJRrrrn2XJ9K51/HzyVeJF9khGFEqdTOOS7sE6fBqf6ZlECQpkhjihi4rseM\nIUxSpDUI687CKMmmu+/phNBZIYiSxCVfAFkUYyUMHTxImCQdW0h5fh4sRLUq9VqNNAw5vHEDY4Wf\nefFNpctXtrjUih7tgiswFpu2sLNd9osoXpKOsZqcsV2j2fS2C4/H4/GsKe95z+/xL//yjwgh+PEf\n/xE2btzE5z73BT71qT/ni1/8e6amJti27RJe9apf5VnP+ikAbrvte7zhDa/l/e//Uz7ykT/l0Ucf\n4dpr9/C7v/sH3HvvPfyv//UBjh07ytOf/uO89a2/Q1zEvn7nO9/ik5+8iYceehClJNdcs5s3vvF/\nsnnzluOe30MPPcCHPvRB9u69nXK5zI/8yFN4wxvevKbTbi+SL0KUUsRxTJIkaJ2jdU6aJqgkwxhD\nmqVMl0okrQSTJCteH8exa9vTJ5qYSnQYYgBrzJJHjLXkUtA3Ps705s2YMCAPQx566lNQHb+UJUgz\npDXFdwIdKOqDQwhrsQKslMSNBliXqDHcaGCFII2jIuLuOGiNvXOvmzD3whi32Dc3BzpHW4Pt7yN/\n4FPkSi1Jx1hVtMZOTxXFKqdAx4LROz2kjV/w83g8Hs/j5U1v+i02bdrMP/zD3/Pxj38KKQWf/ORN\n/Ou/fpm3vOXtbNmyldtv/z6///vvZGhomD17ntR57Z//+cd485vfShzH/M7vvJV3vvOtRFHM7/7u\ne2g06rz97b/F5z//WV7+8hsAaLWavPSlr2DnzstoNpvcdNNHePvbf5tPfvIzPc9tYWGBN77x13n+\n83+BN77xt2i1Wnz4w3/KO9/5dv7kTz60Zp+JF8kXEEnS4tCh/WzevI04Pn6tcdt2obUmSRIOHz7E\nxo2bsTPTHJieZv0lOzk6v8ClO3dR2rR5xeuVUoRhhNZuGS4vLBFCCJSCPM/RQjC9bRtZX19X5rLD\nKsnMtm2AxUQhOoxAgK5U6JaHptVCtQW2haDZQLYFpBCAQea6k9tsjXVJFlpDlha3dnJG9wm45T3i\n2LX4tdHaPVdJCGuu+toahAqI0hShAqzR2MPjyEOHYGQEGwh0WsEmZ/+ffdoWDHusl9usC7/g5/F4\nPJ7HSaVSpVKpIqViaGiILMv49Kc/wQc+8OGO/WJsbBN33HE7X/jC33ZEshCCV7/617m28D//7M8+\nn4997EP89V9/gY0bxwB41rN+iu9//9aOSP6Jn/jJJe/9lre8g+c//7k8/PBD7Nhx6Ypz+/znP8uu\nXVfy6le/rnPfW9/6Dl70op/l4MEDbNmydfU/ELxIvqCQUtHXN4CUJ1/uakfClUrlzj9FtOKYYPce\nokofslIlLlcplY7fOLd8Ii2lADRpmmCERWYp0lrssqbAIG8xdOgQwsL86ChWKowUzhJhrRO9Qjjr\nRaE9ZZYydvc9S44jrCWuN7ACkkqFbGgYPTuHGRpCz8ySN4tCEGMQ1jjB3Z3ZHAYk1RrjYxsZO3iQ\n+JFHnchuYyxoTbzvXrbnuavG1mbJ4p8Rgtk4IKv0YX/m+Sf93M+Ek9ow/FKfx+PxeM4yBw8eoNVq\n8Zu/+RtL/MFa5+zadeWS5+7ceVnn18PDI8RxqSOQAYaGhvnBDxb/G3/w4AE+/vGPcM89dzE7O4Mx\nFiEER44c7imSH3jgfr7//e/y3/7bM5fcL4Tg0KGDXiR7IAxD1q3b8LiPIwYGkNdehxg6sY+neyIN\noJRkcLDC4cOT3J44y0apVKG8zP8bakPFusY9E8UYJTvCuD0VFloT1Ruk1YqLoYtCHn7aU4tK7UWi\nuXnX3qcU1WaLR/v7qA8M0OrvI2hPhhsNgjRj58QkYbbUYtGxZ9hiCl3EzwFOEAOUy4sT52YCOseG\nEYQRVgowOWZ8HHv0yFLv8nJO4mXO8pypKGA4z5emY5zEhnGipb7zBW/58Hg8nouLZrMBwI03/gmj\no6NLHouWLewHXTpACLHk+/Z91i7+q+9b3vImxsY289a3/g6jo6MYY3nlK3+JvHuQtexcnvGMZ/Lr\nv/6GFQt9y89tNfEi2XNC2hNpgCCQVCoVSqUGSklAIKVAyqWeWREE6GoV1WgQCgFhRJpldC8Rhs0m\nY/fcw+GrryKrVl1yW/svVVFJLbVGGoMVIIWgOjuHkpKW1kRZuxJbu0SOKERrTZgVdozjTV2l7HpM\nuMl2GLqbzmF6CpIE7r0HggADpNZgmi20ALtulPxzN5PblZ7ok3mZ1zId45zjLR8ej8dzUbF9+6WE\nYcSRI+Ps2XP9qh13bm6WAwf289a3/g67d7vj7t17+wlfs2vXlXzjG//Oxo1jKzTHWuJF8gXOqfqU\nYWnxyFqS9/Vx7KlPZf1//icCgQgCRJ5ju0SysNalY2hD0EroO3KEyS2b0VGEyjJ2fPdWAFSeY3FL\nfH3zC5g4IrU7GHr4YaJWC4zFZBk6DAhmZiEv/Mpnsu26PE4uDACBsAa0QQ4MEfcPIGW40gfdap52\n05/H4/F4POcrlUqFl73sFXzwg3+M1prdu6+nXl/gzjv3Uq3WeN7zfgY4/ai2vr5+BgYG+OIX/46R\nkVEOHx7nIx/5/06oTV74wl/iH//xC7zrXW/nl3/5Bvr6+jl48ABf/epXeNvb3rlmusaL5Auc0/Ep\nt4tHWkU73ePHYozFLBeMgDEGay0W65IolFwUlm3bhVIQxyhg6LHHmN24AR3HmCjikR/+ISegsxSL\nwCrJ6LEJFILm8BDTQnYmyWZuAR0GVKMjhGnmJtjGuKW+LHWT5Tx37681SanE+M6djN13/9IYuTbt\nOLkwRAiBMBoRBJTimB3aOnvGik8CV2hSX1ma0nnO1HRPu4adnMROTaH/+q9QL/vl02/zO488yz7T\n2ePxeC4eXv3q1zE8PMzNN3+SG298D7VaH7t2XcErX/krneecrkAVQvB7v/dePvCBG7nhhpewbdsl\nvOlNv83rX/9rK57XZnR0lA9/+CY+/OEP8uY3v54sS9mwYYynPOVpazr4E/Z8SGs+hxw7Nn9GrwsC\nydBQlenpOnm+UiSez7RaTR5++AF27LjshIt7y2lf89Gj09x66y0cPvwYURSt8B5ZaxHzc2z69nfY\nv2cPaV+f8xkZA0WRSLSwwLa9d3D4Wrcxu/HOOzl43bUklYo7hpQgJMJoJ0ClpNJoII1FK4XSGoGr\nwN783VtBCuI0RRqLSlOGjx5FKUWrVmP/1Vex7a67KR0+DFLS6utj/+7r2Hb7HZQW5mHnZW5ynKWw\n/4C7iG3bOiI5MJp8oY54ytOgOL/l2HodO3EMWevDJq2ez2kKy/7+frbNzVHusmtkacrs3AwDC3VK\n/897kTt2nPLvyVpwJn+27bFj6L/5LPLZz8H8+7+hfvEliHXrTv7C84QL+e/zmeKv2V/zxcr5eM1r\nWUutlKS/v8TcXAu9CrXUTxTWrTv5v/r6SfITkMdruwjDiB07djIzM83g4BCl0lKbR57nzGtDuHGM\nuFxBlso06hojrPMAWzBhyMymTaSF+X9mbIwgSUjLZUwQLMa+CUm7gURoQ2A0QXeVthQcvuZqrIDB\nuXkEAm0tfbooVKnVnLAdGoKZGTdtLZcpoj/ctHm1/E1aY2dnYGAAevzwIZSE/j6ECheXBoE8TZis\nlKjed5/zQ3s8Ho/nokKE0WlXRJ8qKpBEQ1XUdB17nvxQcLHgRfITkLbt4vEQBBFSug3WIAhXPqFc\nZv5Zz0ZPTaCEQCrlJswCEBBow+DRoyRFTvPIwUMYqznw5B8iqQWFx0kgrXG6WkoUIJf/w4ex6Cgi\nj8JOnnMmJUlhiUiimFwFJGHoxLFSJHFMHgQkpRjVarllP2zvzOUzoVReYTWwSQL2JMfOXcpFOxfZ\nzsxgvv7vyJ94NmLjxjVpAfR4PB6Px9MbL5IvcrTOqdfrVKtVlFq9324hBFIqTnUYLYRASFFMr11G\ncpjnyKJNLswyjM4R1i4p015yeGtctnEXBmj21TBBwFQ7hiPLqQNNQCdNwqNHWdA5zaFBEIKsVKYV\nx8z195EKqDWbHNm0g7H7HyBOkqJHe/V+GrdJgv3+re6aLtuJfeBBbKvLkhFFsG0rzEyjP/NpzMCA\ne12rBY8+gtn3A+TGsbVpAVwtTtIO6CPiPB6Px3Oh4UXyRY5SAf39A6t+3DiO6evrx1qxItcwz3OM\nMcVXNz221hY3EMJipKQ5MICWEmEMWRxhtHRLeu3CEdzzrQDZajGw/yDN4SFMdz6jEM6/bCxKa7Cg\npWT6sp2ERoNwy2z1/hos1EFK8igi6e9nZssWhDFER46Rjoy4xbqZWXfc1YyYyXNotRCVMpHWiCik\nOw6POHY3FUCtbzGZI2xAXAJrMbd9D3n48Hkrkk/aDugj4jwej8dzgeFFsueMWN7G143WOXmeUa/P\no3WOEKKTduGEryCtlDlw/fUu5CJJmdqyBWsNeaUEQeC8yzibhcWVj/RNTpBuGsPUaotvZl3LnhAg\nLWBd0Jxo5yG3Ex+0Rpp5hNbYQpgrrTHHG4UXFgwn2g22WBR8PMTGsP3gIfdN9zJFGHVKTkR5qVXD\nRqF7PE2PWzbi8Xg8Ho9n9fEi2XNGLG/j66Z15DAPP/JN8s2bifpLhGHI1NQkadoqLBpF617xNUhS\n+qemEPUG9bExTBQXzTwCgVv0U0mC7GWBcNZl99XaTu21kZJcSSii8YTOGTxwECEgLZVpVCr0HTqE\nyjJIM0xzPXpujtwYJ6AnJwvrgMBYFydn8/zxCWWtgV6Rc8LZO4zBNptQr7tLazQgzVz2cp5jG/XH\n8+4ej8fj8XhOAy+Sn0CcTvHIqdDdxteN7etHDQ1DFGGsIQgCpBQIIZFSrkjV0LUax3bvZuO3voUA\nhBTOY2Ftp6ZaABiLbDToP3aMhQ0bnO3CWicyoeMjtkIwPTqK7UrJwFqma31Io7HCWS4agwNYIam0\nWjQGBmj1VYkmpoibDbYdmyQU7p2FNdBskWjNuBKMLTSIlwl222i46XOvDwScQJ6a7O11rlQwoyNM\nj46y7r57CdpWjzx3iRyTEzA/j/n855CX7zpvLRfACTObbZpi9t6GfNozvC/Z4/F4POc9XiQ/gbDW\nkiTJabfjnC6yWiW+5BIajQakLfJcY0zbatH7va216KIG2lg6hSNWCLBgg4B8cBBGRqkcm6A+MoKt\n9bnsyfl59/xCPFpAt1ooY5Bt76+1WKXQhXCWgIkitFKIPEcU6Rkj+/djpUDMzRaWj6JvPs0wDz9I\noizm0QMuraKbNIP6Anb7jt7TZmud6A2CFX5nISVKa6a3bWHo0PhixF0mIVDklQqzQwMMNOoEPRr9\n7NQU5itfQj73eadfRLLKtL3JPcky7N7bYc+TvC/Z4/F4POc9XiR7Vp04LnHJJZfywAP7AEuaJljb\nFsoGIURnkU8Il3iRC8Hk9kvIwrCwWjgsgIA8DJka20gzjjAbN9AQAqNzrDGYIlHBahC2eJW1SGMW\nI+OsdVPcYjrs7pNY4QSqtAYFTG/bRh6FDB44RFBYPqQ1mHoDcelOGF2HiMoI3WOSPDWJOFnrXdsr\n3cYY4laLrT/Yx/6rr+r9Eq2pTcwj+waxk5OLD5RKbqqsXXSc9yx7PB6Px7N6eJH8BEKpgNHR9eS5\n5qGH7ls120Uv7PQM4gf3sPNpz8DU+rnnnjtYWJgjCEKklBhjSJIWcVxy35crLFQqqGKim2UpIJDS\nCeogyxk+cpTZ0XUMHT2GuWQ7eamEyXLyVhOMQeTFBFYWJmVjkElC7dgEC6Mj5EWLXxsjJUYKN8EW\nklwpqFTIyiWSvhoYJ+K10Vhj3VJdFCIqFYRZORG383On9yEZA/Pz7mtFu8a/I0egXRteTJ9ls0Xc\naoK16Js+6kpQADE4hHrN607/N8fj8Xg8ZxVjNLOzM2tybKUkWVZnfn5p497AwCBSnmRws8a85z2/\nx8LCAu95z43n9DzOFC+Sn0CEYci6dRtotZprb7uII8TQMGGlhiiVUEoWnmSBlBKwRdby4vdSyuLX\nIIrEis6Sn7WEWYbCZSorITBSQQiiiEkTQyPuuUmCnZmGOEYJQf/kJPXNm2jWqlipFgfJCKwUzIQR\nVkry4RHDI2FkAAAgAElEQVRs/wAmUDxQqaDahSYYwoU6204hFNpmGTQaS+9rNJzVwpil016t3U10\nJUMXNpPOr6MIcg0IkAIbRi7tImlhD48jDx1y8XHnO0ohBgdh7jR/kPB4PJ6LgNnZGf7jP75yVt/z\nWc96LkPFfxc9Z4YXyZ4z4mRLgKJSQWzejKhUVuX9rJRktdqigFzyZoWwbC/N6aJqelnDnS3uE52f\nDVyxSZDnSGvc8DnPQUCYpgSFSDZKkMQxRp5EJGsN+x+FyUkX3dYmzZw4TBInltueZGPc90Istv01\nGtB0IjuPQmY3bGRg/DCB0W7qfO89ztec5ZCl6Js+Sj44yOzICMN5TtTjtM4GJ/NFi+Fh1M+/EP03\nn136Ol8y4vF4PJ7zFC+Sn4C0bRePp4HvZEuAQgjiOO74j1ecw0Kd6qGDsHkLtr+/5/GXvFelwqGn\nP51So0EWhmhrMUZ35S+DaadbWIFQElLdNcF1IlhYS5Ck9B05wtzGjeSlGKm1i5ezFozGGkVgDIFx\nnmRjhbNqnAylYNslMDyy5IcD22jA7AxJHDF+1ZWMPfQwcau1dJLcFv9KdkR0HpeYvGQb1elpgjR1\nZSNxDGHgou0EEMdk9TqTYxsYMOfQk3ymvmhfMuLxeDznBa9//a+xc+dlSCn5l3/5J8Iw5DWveR3P\nec7z+OM/fh//8R9fY3h4mDe96bd56lOfjjGGP/qjP+B737uVqakJNmzYyC/8wot58Ytfetz3sNby\n6U9/gi9+8e+Zmppg27ZLeNWrfpVnPeunzuKVnjpeJD8Badsu1pI4LnHppbsAaBUeW2tNZ3kPJTG1\nmqulNu7+xVY+l4RhjGvns8UyXpomGKOZXL+OhtGYVqs4phNmSeKqno3RhAODCBUgan2IRx5FjI7g\nLA0BKs0Yemyc+saN5GEEfbKz2GcbDUwUkgch6BwQzrcsJYmU5EKQ9JgoWyWRSrlJbqWyYipqhbN2\npOWym2ifCVK6aXkYuog8oyEuEc3PsX12gSg4Tvycx+PxeDynwJe+9E+8/OU38PGP/wVf/epXuPHG\n9/L1r/87P/ETz+ZVr/pV/uqvbubd734nn//8P6GUYv36Dbz73e9jYGCAO+/cyx/90XsYHR3l2c9+\nTs/j/8Vf/Bn/+q9f5i1veTtbtmzl9tu/z+///jsZGhpmz54nneWrPTleJHvWHKUUURS7mDedY63E\nBAHp4CBREBDNTNN3/wMkW7egizY922WJEMLZHuI4JjKW/noDHYToUqmov3YiuW37yPMMIaSbuLYj\n14LQ2TAopraCxQluIVoN0KxWMEHAlJCdZAwrQAvBI0KiA8UD1TLLZa4tRUShYtfBx1guVW2ew9zs\noq2i2XS2ii67hVCKqF5HpGnR9seiBSPP3YTWmE4TIFnuCkaaTWSrhVpYQExPH1+At5MwziUnyFD2\neDwez7nnsst2ccMNvwLAK17xf/GpT32CwcEhfvZnXwDAf//v/4O///u/4cEH7+fqq6/lV37lNZ3X\nbtw4xl133cHXvvZvPUVylmV8+tOf4AMf+DDXXHMtAGNjm7jjjtv5whf+1otkzxOTMIy47LIrSNOU\nKIoIgoA8z5mdnWFgYBAVzdCsVSmFEbbiJrCNRr1TPOKmywalAmx/P1NPfzrACqHapv18YwzaWmfP\noLMahxGCLIowQrDcCOJ8y7YTCwfC9ZoIQSwgEDm9yK0lDQO0lCtEsggCbP8ApC03BS6X3U8BXXaL\nuNlk+63fh1K86K0Ow0LgF0K/1YLx8aKhr3h9focTy/U6+Sc/jjjONLmdhLFWQjnLc6aigKHJSYKv\n/mtPb/IJM5Q9Ho/Hc87ZufOyzq+llAwMDHDppYv3DQ+7RcDp6WkAPv/5v+af//kfOHLkMEmSkOcZ\nl19+Rc9jHzx4gFarxW/+5m8ssVRqnR/3NecaL5I9q06vpb4wjFBKEQQBQRACohDMIVKGLi9ZFm17\n0MlPbqdbWNt7ac5aW3iRbcdu0a7KNiYnL+wZTQFaSgSQRhEzmzY5oQzYjh/ZgJSIdsZy2+NcJHAE\nWILjBIJYYzmhG1cpFz/Xnly3p6lCkFQqjO/ezdg9P3BNfm07h3TPz6OYyUu2MTA+TiCFE83tmJ8o\ngiBAbN/hxHcvWk2X9tGjiGS10EYzGYX0ZxnqNL3JvonP4/F4zg+CYKksFEKsuA+cffKrX/0KH/rQ\nn/D617+Za665jkqlwl/+5V/wgx/c3fPYzWIp/cYb/4TR0dElj0XRuVo7PzFeJHvOiBMt/51oqa9t\njQDo6+sHLFmgSPv7Gdl7J9NPfjJ5rdblTabncdq4GDk3U24L8nbGchgGhNrZMzKpyLRGaE3UbDJ4\n8BDNoUFsoAgaDfoOH2Z+/XqoFgt3xixWSAtVCNYz9BJ3PpguMd6eIluLFYK0Ui7aBQ2Yrppta9GB\nYnLbVqoTxwhEW2C72m7CELR2i4LHSRKx4JI1zld8E5/H4/FccNx5516uu24PL3jBizr3HTp08LjP\n3779UsIw4siRcfbsuf5snOLjxotkzxlxust/SiniOCZJErRealnQUtDq6yOKQkyWFr5lNyFuT5Lb\n1otedD9n8asTz217hjUasbCABJSFSIAqVxDlCkqFDOy7j8Zll7UP6Cau1rrQCSkRCOcDPtNsaeOq\nrXt6ktufhy28xu3L7PYkG+tucm0rxU+EnZ930+hej01NO7E7Ow2NxtJmwDbngy/a4/F4PKvCli1b\n+dKX/plbbvk2Y2Ob+PKX/5l7772HTZs293x+pVLhZS97BR/84B+jtWb37uup1xe48869VKs1nve8\nnznLV3ByvEj2nBXCMOLKK6/tWCG6abVa3J+kpENDDAwOw/AwExPHUEp1lYuI44rkU6ZjdSimwlIu\n9fx2lvsWWWy1ttgsw/Zo2gPAOKGbK0lLyY5tBFzyha1WSCTk5TLJ4KCLcjMG6nWSapU8Csnj2Anm\ndoGKUkRJgpDSWTBkV1TcWcbOz6M/9mFn2+hBLiy2vx/9D3+HefgRzOFxRGkxP9smCWJmGvWO30Nu\n27b4Ql8y4vF4POcFvf8bu/I+9zzBC17wi9x//328611vRwjBc57zXH7hF17Md77zX8d9j1e/+nUM\nDw9z882f5MYb30Ot1seuXVfwylf+yupdyCriRbLnrBGGUWcnbTlBEJAKgQokIgiKJr5FK0UwP8/I\nbbcx+aQnkZ/CNHLRq+xo5ylba9FS0hgcQEvpvm8v90mBtXJxetuxexST6fl5ykeP0hodxS73T0mJ\niSIe2jyGLlcQ4eJfLVuK4EnXY7KMrFLmwVrNJWdYC1mGDgLqQ0PkQcRV//UtwtwJ9ThJ2L73Dlrl\nCu3ik3NGq9VpMaS00vscA9uVJKj2Q1yCvv6l9o/pKezMzIo2wu6SEdtoYL97iy8W8Xg8Fx0DA4M8\n61nPXZNjKyXp6yv1rKU+HT74wY+suO9zn/vCivu+8Y1bOr9+29veydve9s4lj//ar/1G59dvf/u7\nVrz+RS96CS960UtO69zOFV4ke9aEPM959NGH2L59Z89GvtNFGEO4sIDoEr7Hw1pLlmVoLVwUHG7J\nQGtXPqLjiIPX78FasFrTtMYt9wGmnQ4xOIxQyqXESYFOM9S6DVSPTZBfuxs9uPT/fKTOEfU66cMP\nEVlbFJEU56MNtBJoNSm1WovTYGuRCwuYQNGqVjBKunSM5ddo3WKiqwRs+5kXPdN5EDBXihkUHHex\ncNUolXsKWFXcMmOZHNvAYLVKuLxQ5WQ0m75YxOPxXJRIqdasIjoIJENDVcKwTp6f/L+RnlPHi2TP\nGuHKP060dNdGCEFYrpANDZPJEJnnGGOLfGT3F749CTbGLJsQF+Kxa8oqhCAMI4Jg0a5hjEFrs8Tb\n3D5e2cLI0WPkW7eSFqkTIoo66RJCgjAWEUYQRa5ye5mIE3nW8esqszQFw1rrJtNtj3HbQpJlDD30\nMFm5TFKpMLL/AEGruZiT3Kbbk5w1IVPu19YJ5TyOmSzH1DJdVGmvPbZdsb2MLE2YHBykmrSWnkuz\n6aLqpqew8/Pem+zxeDye8x4vkj3nnDguccllu5iYnSaPAiia9cAWVgcQJmeur4adn2P97bczcf0e\nslqtEM/un5u6K7DbqRdSLhZXLI+Va9+nhCDMMtRq+J4BdLb0h4MscznNQVj4oRcj3iYu3YFRioXh\nYRaGhykvLFCbnV1yuKRURoeB8ySXyq4kRRcT5TNt73sc2CTBfv/W3kt8UQQ7tsPDj2DTdPH+Zgum\nJtHvfx/mST9E8IbfPCWhbOt17D13ewuGx+PxeM46XiR7Vh2lAoaHR5menjrl14RhxOjoerZsuQSA\nffvu7hSPANggoDU6yuDAIIMAwyPowSHyPGdi4hhBECwRyecEpRBRCPUMskUBqbVmasN6yDNqExMs\nrFuHjiLa9gkrBFoqdBSyf89uomXiUwcBSa2GVoGbIHeTZU54n03y3AlkpZxg7yaOoVxyt+76bmPc\n87VemdncaeLrcR2NhrdgeDwej+ec4EWyZ9UJw5CRkXXMzc0e9zm9CkeUUpRKi79eLB6BvFwjX78e\nWa4ipSJQYaddTkpxSqEP3dnL3d/nUtIYHCQvFvmATkGJE97O03zyCw8Ql+5EBiGyKz/a1BfQjz5M\nNDnJ0GPjJMPDIOOi7zpH5jnr7t3H1PZLWPfgg5TqS/27RkqsFMQLC25y3LZbGAMz01Auu0KUs00Y\nQLhsgTGMCvEcLRH0eQlmt25lQJsV/6fTbuKzx46t/Tl7PB6Px3OKeJHsOScsLxwRQhDH8fGnweUS\n+eg6rFArHzsB7VSMo3t2Y4qq6q69Oay1NKKI5vV7XJV1YRFIklbHeiEEaG0wYXwKbxg6z3J3PbTO\nQQqktQjr6rRl+wSMASU5uutyWgP9zI+NkS5bctMqIC3FDD42TqCCpXaLwSEoxS4m7jRa7tYEnRPV\nMy65/wHCLFuSKZ1jmdy8ieqBgwRJsjJHufT4lzs9Ho/H41lNvEj2nBfEcYlLL90FQKvVXLXjtlMx\npDHIInd5+eJeHJeQUmCM6TQCtu9zHmbIsgz5eP3Ktp1QUdw6IcygowgdRuRxTJAvFbt5GJCXSou5\nzssb9+Tp/eCwJugcHhtH5hk9f5SIS7BhPUxPwcwM+qaPLhHGYnAI+cIXn9JbdfuUAe9Z9ng8Hs+a\ncPa3fjyeUyTPNXmeFbfcJVSYDGM0ue6+3xa3pckXy+le3Ou+tRf82gJ66X0KpZSLkpMK3d+PVacp\nSlWwKGTb0+P2zVpkmtJ39AiiqKlu33KlmNm4wXmRz1GJyKmSS8nkhnWuECUIet+Ucp9FGEL/AAwM\nYuMS9sB+zJHDkOeFN/kkn2/hU6bRcGkjO3e6hUGPx+PxeFYRP0n2rAlKBYyOrkep0/8j1qvCWusc\nrXMaSvHY5buckCweX56EoVRQ3NebcGGB9XfeyZFrryXpLrw4Cbq/n7nn/vRpX4+II8TQEEzPQBS7\nhbVazYnk+XlUltF39BhT27c7ARkXs9gwQJdK2LjpltraArs7JznLEEDUbEGS9fQm20YDupMm1oBc\nKSbXb6Y6v0CQJCuf0E71UK7hUFQqnbIRq90PC2JwEPnSl5/W+4owhOG1yR71eDwezxMbL5I9a0IY\nhqxbt+EMX7uywrrVanHgwMOsXz/G0ZF1bN26g1KpRKvVWpGEobVmcvL4S2DCGKKFes9ikuMt7jkr\nxspc4DbtSbc8nvWhWL6zQmCUwrSnpcWvrXCP6TAkL647DwKMUugwxBqNyHMw6YrFvdhYLvnOdyAM\n6ZntkWaQJthWa+07+9oifjmFEEYbIHfC3Vr3Ncug7VMulU4rQ9lHxHk8Ho9nrfAi2XPO6ZV0sbzC\nWghBtVqjVCoTBCGlUolSUY+8PAnjTFmssrY9Fvc0s7MznXKS5TgRnVGt9hZ41lpaUUimJE0pXWmJ\nlFCrEoETysDMulFUkQphhCArl0jiCITkgWc8g1237yXELl3cMwZx+RVQXlkXDcUkub6AWOvlOGud\nBWJhYeVjFY3VOamSRDMzyNu+5ywYeQ5TUzDrfMpi4xjqNa9bFMqdeLjj/PDhI+I8Ho/Hs0Z4kew5\n5yxPuuhFe7FvNZf6ltP2Irffr3txL00zBgYGO9Pq5eR5TqvVPK6ItliMVKTlMiDcFLuwTwhjUHlO\nkCQoQGo34RZSkmuD0hojLa2BfnQcE+YZSxb3tF5iX+hJtrZ2iw7GuJ8qlnmoo6TF2L33Mb77Wi7Z\neyelOHYpHVmxiFjYTJZnKLfj4ZZj0xSz9zbEjzwF9ZKXQV//Wbk8j8fj8Txx8CLZc07o9iy3fceP\nh7wrESLvqrXOwpCZnTvJwwhrdCcb2WJ7ivL29Ngt7slCOIOU+qTT6uMJ5OJRslqNQ09+MgK6RLJF\nGIPMcwYPHqI1MrK4GGgtwhowlrwUYYJzu8Bn09RNiqGo2e66XqUWlw57II0hajad3UNKJ4rb/1Qg\nBNTry8rFT0KWYffejtzzJMS6dWd2QR6Px+PxnAAvkj3nhG7P8uMRycdb8msv85lAcWzbVuctTvIi\nAaMQytYJ27BeZ/S22zh2/Z7VuLTjnKh0ftvu6mtjsAsLEEVIYxgcP8zR0VF0e3FPiiINwmCDwIln\neW5Esm214OGHXJQbwMwMBGrRBhHHMDxEriSTY2MMHDlC0L0saIH4OL/P1jrriLGgzu8UD4/H4/E8\ncfAi2XNekOc5jz76ENu37+z4kk+F4y35tZf5AGZnZ6hWa8zMTDtRrQ1RGFGpVMgrVeTcHOHCgotg\nO914t9NBCHf8rmlwe2HPCgHCteuZop7ZCIGVwjXuCYFWiqRcdpNYY1CthMfnwj6NUy+VYMelUK25\nO+oLEEeL02DlBLOOS0xeuoPq/DxBJwe6mDALtZjQkWWAdV/bcXitFlbJpUUjvRb5lEIMDsLc3Jpf\nt8fj8XieuHiR7DlPsKTpiX3Jx2P5kh8sLvOBmxYHQYCUorjJjv9YrLJ9oVcKRjv5YkUttjFkSkIY\nUB8aImo0aZVKZO1oNMBKSR5LTBBQHx7mgSddjyrylKNmk8sf3U94lpr2RBQtxrYFRd5xUUstBESt\nFqJ9fe3iE9slhKPcRdE1G862IQtfdStx9o1994CQS4pGxODQ0kU+Cp/yz78Q/TefxTYamP/9dUAg\nn/xDPuHC4/F4PKuGF8meC4ru+uozRccxc5dfvmhrOEXU3Bz9t97KwlOfhulfuShmjKFeXyBJWkv8\nycYYssyVoFhrF2uxjcUoRVKtcvBJ1zMwPg5GI4rFvSBN6T98hJlNG0lUFZHnhI0mgdboICCtVNBh\nSNjqkUu81mhdTIMdcZax/b77aLUn8V1lKS4STjjVL4T7tZKgJEZKsnKFcHraxec1Gtg4RgwMQqu5\nYpFvBc0mZu/tqOf+H75QxOPxeDyrihfJnguK7vrqM8WUSsxdfvkZvFCj5uacLaMHUkqq1T5KpdKS\nFIw8z0mSFtbaor2vqxbbGoS1hEnK4MHHOHrdtW5iixPJQ489xvzYRoSUCCUJSjGBsRAoJ/KlIolj\nDvfX2KQt8RlM4k8Xm+cwM92xWABOCCcJlOJFAZ1lXct87UpuA1aDdA18abnM/it2se2WWykVy38i\nLiGqVZf53KuYZBlCKcTQkCsW8Xg8Ho9nlfAi2XPOUSpgeHiU6empVT2uS7ywHQtEO/EClpaItK0Q\nLp74tDIWVtC2dixPweiuvO6eggshEVgEoHTuJq3t5bzCp9z5inAWBmGLr4XYFoJUSazR9G4TWV1E\nEGAHhyDqSqjIMjfxlWox0i0MFz3IFLFwUjqBfJ7XbHs8Ho/Hc6LMKo/nrBCGISMj61AnWJpLkhYP\nPXQfSdI66fHaiRda56SpS73IshRjNFrn5HlGkrTI88zVXRuNsQaj807ixWp7lU9GW59ba7GmuFm7\neJ8FKyBHkAt30wISpcjDc/CzbkcIR8UtXCLcO57kIjM5j2PmR0fZfNddRM1mUa2tFy0Z1jpfsjHY\nZtM16TUa2Lk59F9+GrN//4r3F0PD2DTBPnbIFabgGvjMd2/B1utn+QPxeDwez8WGnyR7LghOpXCk\nTXfiRXed9SOPPLgk8aJdDqKimGq1xvDwKGmeEQTBmojksF5n0913c3T3brJabfHasBglSaoVciXJ\nikmyLISwyDL6jhyhWasytW4EaS1GuBSMB67cRag1kVTA2VngOxPyMGB621b6vn8bMmkVpSM4oZxm\nYHKYnnalJ3fdgS2VIMuh1cQc2I+dm0W86X92FvjaJSPm3nuxjx2CZlEy4xv4PB6Px7NKeJHsuShp\nJ15011n3SrwIghBR7SO59jpEtYqcn10TJ4CbEBtIU2xX0kVb9Cd9fTz6lB917oq23SMM0aUy0hrW\nPfQQ49dcjYpLyLZlQwjU0DC5koQIOAf7e0swzl8dNRqIYircmRJbFotG2o6WdjOfwMXDhcJNk6PI\neZulAp2DUti52RMv8LUZHPQNfB6Px+NZFbxI9pwXdDfwrSbL66yX+5QBCAOyXbt6+paFOG6J3Cnj\n0i1SbKCYGdtIKiU6zwr92F5qKxCi810WhcxsHiOtVpnZvBkQnSZAcF5kFSiMEBSG6nNH8QNAnGVs\nv+W7i7aLjkjuykzGQq6dOM6dxSUtRURphhRi0cZhBQSBu50iIgxheKTzva3Xsffcjbj6Gh8P5/F4\nPJ7TwnuSPecF7Qa+cI0SCnr5lNM0IUkSms0ms7MztFrNjm958aYXUynO8K+LlJIwjAhyzeD4YSJj\nCIKwY+tYvsjXFsJhnjM4Pk7cbDF46NDjWCc8C0jpJsDdS3vtW3tiDIsRcIHqCGAdhRzcs4c0jhdz\nlbPUfc1zZ7tIEuzkJHZ+Hjs1hf6rv8ROTYGSiFLZRcr1orBfdOq0PR6Px+M5Rfwk2fOEoJdPeevW\nHZRKpZ6+5bYtQwhBqRSSphrRSmhefTWmdOqNgG2EcBI7zDJk8X37/qheZ8OddzF+zdXo/oFFu4eU\nmOKHBpXnWNxUGmsxCIwU5Lkml5Jca1pJC6vNyjfPU5SUa/qXPYkixq/fw9gddxKnqRPNUHiP2+kc\nbexixnIUgjVumN5oOHvFsWNO9JrieUpBfQF900cRG8eQL3wxdnoKtEYMDsGuK7CPPoLdtHlNpsV+\nGu3xeDxPTLxI9lxQJEnCY48dYPPmbadVXw1Lm/mCIKRUKlEqlTvfx3Gp41tuR7hJKQjD0AUxlMu0\nrr5mVa8HQBjjfLxmqcDNqlUOPOUpRHPzAFgpaIYBgsLiKwQzUYBIUsKJSR6qVqDS4zPpqxCrgKsC\nxVrVbVghSMtlrDyFabstTMkComaLLXvvZPyqq4rc5cJeoSToopCkPZ2OY1cusjw7Ocuwe2+HPU9a\nuay3Gh5lvwzo8Xg8T0i8SPZcUJxOysXFhpUKUS4jhSxynS2qLyacm2Hz1DSzu3ejBwZXvC7Xhkw4\nkb/2J2m7spG7vrddj7e/CoFs/4BgzVLvcq9DGwtZ4qbIjQZ2ctI9kGXHbdtb7lH2eDwej+dU8SLZ\nc0GwuNh3/CzlU2U1qq3PCQKEChBSumY6Y5BRhAgjZBwR1vqR/QMrX5ZnJKfQXLcqmKJtb9nintAa\nlSRMbxpj3cMJQZaBEYuC2lpIU+dFnp93hSq2OF4YuWPedQcYg/7Mp+HwOObwuHufo0fgyqvX9LJs\nmmL23oZ82jO85cLj8XieIPjFPc8FwWou9rUTL07XrvF4yaOIicsuI4uiJRFwVgjyKMIKsfT+4qal\npDE4iDkVK8O5RvZe3IubTTbfdTfzY2PkUQRCLhaOdF4rAeGsFlI6oSyVi4MLAjctjiKo9TlbxtGj\nEEewbv3aV1K3LR1+AdDj8XieMPhJssezDBcT5xBCoBRkWXZCi0f3a3phrSULAqY2b3ZD1q4IuDwI\nmNuwnurkFHOlUmdZr01aLnHw+j0AROfaZtJqFraH3AlYW0yMlVpWid2e0ttiqrzsvLsTL9rPle3a\n7UIgGwvCFOLZOsGtNaJcxobKTaDDGFqLU/I1WbIbHET9/AswX/ny6hzP4/F4PBcEXiR7zgvaWcJh\nGHVygFeDJGlx6ND+U1r0U0oSxzFJ4iLiwC3ugSZNc/Jck6YJURT3PMcoisnaqQ3LEMJlHCulOjYP\na11ec5DnDO0/AEBr3ToXhdaFE9O6c5xzQqmEGBxyi3OtlrNFCJwdApxI1jlpKebwlVcydu8+4mZz\nmSf5xOdupCSpVAitRWKX+pvbSRdFbTVpkXHdbLp4uLZHeXIS843/QI6uQ+zYsSqXLsIQBoeXTr0L\nfPKFx+PxXLycVyL55ptv5qabbmJiYoL/n713DZIsLe87f+97bplZ96q+VU/fYZhpZqa56oblcASE\nJUxgg8A2QiNWsw5A1hBhyyiE9IGQYwIc8MkRzDrWAQYHYMkgDGvtSqHF2tDKkq1FzAAahumB0aDp\nnu6err7VvTLz5DnvZT+85+SlKqu67lXd/f4iTmTVycyT5z1VXf3kk//n/3/wwQf5+Mc/zrlz51Z9\n/Be/+EW++tWvMjU1xdjYGD//8z/Pb/zGb7Sjhz13DlprFhbmGR0d39YieT2DfqVGOY6Ttk1cSRBI\nRkdrzM01qNcbPdZxy8nzjBdeeH7N11npiywQ1hJmWZG2178Q3mv9tBgawvyzD6IbDezMLPor/wmG\nhhDFMGC2sIBpLtEaHaNx8ADp3JwrZrVxGmMBqltP3pXCFzfqnHz6O+g45uU3vZETzz1HpV53GmVj\nnEUcwI1Cu2yecw4XaQr1uuvKX7mMWph3j3v5IrbR6Imx3jG884XH4/HcteybIvmP//iP+fSnP80n\nPvEJHnnkEb70pS/xwQ9+kG9+85uMj4+vePwf/uEf8m//7b/l05/+NK9//eu5ePEiv/Vbv4WUkt/6\nrd/agxV4tkKpOd4LSo1y51w694WhpFar0WpZtDYrrOO2AxXHzB4/xujVqW075naT5xkvXLnoBgDT\nFEK//H0AACAASURBVHPmJEQxIir8pOOQ6ovTXDn7IIuTR2gODRFojchzDj3/PMKCDqRLBwRX+BaD\ne9JakkaDNAhwaXyq3TV2B+8KIDEWqlWoVmBaQShhKYWJCRgZbVvGrTvG2uPxeDyeVdg3k0Bf/OIX\ned/73se73/1uXvWqV/HEE09QqVT4xje+0ffxzzzzDG9605t4xzvewdGjR3nLW97CO9/5Tp599tld\nPnPPbrJT8dV7hbXWFcknTpDVakVz1Q3shfU6k9/9LmG93negr90dlxI9NIzdBueP1dBa02q1CIKQ\nOIqIlSbOWkRpRpRmVFotlw7YaBLkiihNiZtNojxn/uhRZo8f4+aZM5gyYroY3FOVCtMnT7phPlkW\nw2EnqY9Spyw6g37lQGDpqywE4oGzyIkJRK0GYeddjq3XMU8/ha3Xd+zaeDwej+fuZF8UyXmec/78\neX7mZ36mvU8IwVve8haeeeaZvs95wxvewPnz59tF8eXLl/nzP/9z/t7f+3u7cs6evWGn46t3E1fk\nFg4WUcT80UnyKMQYgzEGVbha6K7IZa0VSuUopTDGRWbng4PM/f2/jxneQmDGOgnDgDCpEMUxYa4I\n0yZh2iRotZBaE6RN4qUlokaTsJURtjKktVgZoJO4q/B1g3sqiZk+dapwvCiS+YTsDPZtVWayXbHU\nZSjJ6Eofao/H4/HcneyLdtzs7Cxaaw4cONCzf2JiggsXLvR9zjvf+U5mZ2f5pV/6JcB1un7xF3+R\nD3/4wzt+vp7dZ6cG+/YSURSMQkCQ54xcnaJ56DC20DtHSjE6NUXj4CFUGU8dhEgp20N/orCN29Xz\nThJ445sRSrX3yWvX4PnnkVFMlGXISsV1e42GxSUXPy0kUZatv+7t0i0XmdydAT4saO2kGeUwX72O\nbTTc/a0Wtr6EGBjcnjX7UBKPx+O559gXRfJqWGtXHVj69re/zWc/+1meeOIJzp07x8svv8y/+Tf/\nhoMHD/L444+v+zWkFIWDwcYIiu5eENwdBdt62Ms1N5stLl78MWfO3E8cr18PHAQSKQVBIAlDd96t\nVsrlyy9z/PjJdTlelLf9jtXvtYzRaN35ndJa93SNS9zvN1i7bHiv+J0XQJjlvfu6Bv+kFEXBKQr3\njP6/x+V9q533Wmtevrb261R7r5tcqBayiPYT3OZOAB2FtAYHOPyX/x9Jvd4bNlLaw7WL4iKO2hiM\nlORBQJSmyKUl97hrU+7qKAX1BqRNePavsbUBt29mBubnsP/5y4QfeAwrBWEoEGusfbO/2zYU6zo+\ngK0vYc6fRz700LYV71vB/w27N/Brvvu519a7m+yLInlsbIwgCLh161bP/pmZGSYm+ndvnnzySd71\nrnfx3ve+F4D777+fRqPBv/7X/3pDRfL4+MCWnAOGh3ch6nefsRdrHhiIgJMcODC8IfeSJBFUKhGj\nozVqtRoAjYZACMPwcLW973YMD1cJQ7viWMvPcWRkiGazCXT7JmvKAtkYjZSy+J1rZzWj4pjpUycx\nlaS3IAaiZoND589z7eGHEJUKUorCGc0Vvta681pNguJqVb3qea+15pIkEcRx2H4drTWmHKwDZCiw\ngXSaYymwMoAoxEqBiSO0kCRLS1hr0EFAoHVvXDW4LnE5uFd0qbNajUtvfhMnvvs9KoW9nghDt6gk\nxqYppCArFYLBAWyeY9ImRCFRY4mhWJBWYwZGagRjt3ef6Pe7bZaWyJ/9AdG5R5CDvcWtHTyG+ecf\nRI6M3DbQRGdL1J97hoHXP7Suc9kt/N+wewO/5rufe229u8G+KJKjKOKhhx7iW9/6Fm9729sA12X7\n1re+xQc+8IG+z2k2mys+di8/hl6rA72cmZn6pjvJw8NVFhaaaG1u/4S7gL1ec7U6Qr2eU6/39yLu\nR57nDA2Ns7SU0Wq5iqzZbJKmOXNzjfa+1ehec6PRxFrJwkJz1eedOfPAimCRNG3SbGYYM4sxhmq1\nipQSYwzW1gGBEoL5V73K/d4W3WZrLRYQ2hDX66A1xnQ60tY6xw1rLWmao1fJM8nznCxT61rv8jWX\nP+dms0mWKSAnyzQ3b95oe0kDhHNzTIyOMj82xsDMNLPHT5DXam4tIyOoIEBHIX/70z/N4MwMp596\nmijPe62Tuwf3wrBdKPfoky3YMnAEiluBEUVhngRw4CB2aYks1ywuNlDNDDXfQMSrD++t9bttb94k\n/3//nOjAEcTBPn8rgiosZUC25nW18w3ydZzLbrHX/573Ar9mv+a7kXttvdvF2DqaFfuiSAZ47LHH\n+O3f/m0efvjhtgVcmqa85z3vAeBjH/sYR44c4aMf/SgAb33rW/niF7/I2bNn23KLJ598kre97W0b\n6gwbY4vCY3NobVDq3vqlvJPWLETA+PhBgPY5a20wxm5oHVobgiDm1Kn7e4618vVCoqj3n5XWppAq\nSIQwhWRCIoSllErcLmijH+2cDlt2qfv/Hpf3bfTn1v348pq5wlyjVI4Qsv0G0wwNc+PcOaJbtxi6\nNU39yBGMilynOM+xWFSSYKOIxtgYOo6JcgUITBAwe+wYE1eucPK73yOytiPHWLFgQGkIirUaA7gE\nQJsVyXuZ60SbZkq+UMcai1IWsY6197tGVrnrt95jrMZmjrMbYSV30r/n7cKv+d7gXlvzvbbe3WDf\nFMnveMc7mJ2d5cknn+TWrVucPXuWz3/+822P5GvXrhF0WVw9/vjjCCH4zGc+w/Xr1xkfH+etb30r\nv/7rv75XS/DcoWwklW+n6Dd8ZwEVRxgpUXGMLYb0ujdTFol7gNPzF/8mQ7BBgLQWYQxSaaQqJBVa\nE2mNUIogTV3HuFPhuyL5+HHGrk1RWazDssTBdupeVnRql5Y67yl0oV+enoYyTMRYUDnkOeYb/wVx\n6NCuXI8dwYeVeDwez56xb4pkgEcffZRHH320731f/vKXe76XUvKRj3yEj3zkI7txap59wk64XKwn\nlW8n6Qz19RbLWZIwdfYseZwwd3TSOVxohTGi/dgsawG2Rx+8JwQB4tBhmJ+HOHEhHoODroBdXETk\nOZXFJSQglHZyijhCFEN5ebXa5WRh2pITYNnXtO3j2uhiiC+J3fBgWThLiV1aRJw+0xki9Hg8Ho9n\nnfhRSM8dRZa1eOmlF4vi8M7CWlM0RW3hhWyXFealDMNtNoxIx8YJrWH06hRhnhMEIWEYEYYhQRAQ\nxwm1LGf8T/8UubCwZ2sDXNJdEJAP1LBl2EcZBFLUtEIbDvzt3xKmKShFsrjI8We+T5hlrgNsDeSd\nwb0eimtlZEBrYMANCbalKta9VumqUXwt4pjgXb+A6JPauRFslmG+/9c+lMTj8XjuIXyR7PHsMGUx\nW3Z8tVbtrdT4Lu8i92AhzHNEMZDavUkpkdYSLC4gVpvc2yWMtWQDA0y98Y1ktRoG3CYlFlco6zji\n+gMP0BgbIx0ZIR0epjVQQxeuGAgJUTG4t5yie5xVK7z8unNkSdKxkCtkHe3NGNAKW/glb5k8x37/\nma2FkvhAEo/H47mj2FdyC4/ndmxHLPVuR1tHUcyrX/1A4arRZGxsnDAMUUpx69ZNrLU0m3XCMOor\nIYmicv8W0+d2EGMMzVYTk8RAlxxCCBgcIJSC6vQtpk+cLIrluG0Dp6UkHR7m+LM/gKV64VjRRz5S\nSkryzBXCWcvplI2BLAe71HbAwBRBIy/+DeZ3v4z4lx9FDA3t0tXoz1YCSWyjgX36qR0d4PN4PB5P\nL76T7Lmj2I5Y6r2Ito6imCAIiKKokEs4yUQnzEas6BKXm6lUmDtzxkU371usszlGIIxBaN21uUG+\n2swMydISYbNJ1EyJ6w3iRoOw2cQKgS6tGLs0yXGjwcmnv0Pc3cHtabh3xVxLWWxFR7r43s7PQZpu\nfmlBgBgd7eu4Yet1zNNP7bwMo9ncnnhtj8fj8awbXyR77mqMMbRa6d4PtuFkF6OjY4T9pARroJOE\n2aJI7uduYbBkYUheWLOt3BTG7IIUQwjkwAByaKizDQ4iwhARhkhtqNTrREoRCgilJDKGiZdfpjY3\nR6iNK3C7wkSkMSSNBrL759cdVd0tUSm9lEuf6lKjvNVljY8TvOs9UO1j1F+4T+xY8VpKNEaGd+b4\nHo/H41kVL7fw3NVkWYsLF37M6dOvplLZWhrRXlrFlXpl3cfdQgE3JsbJmnWMXVkMOx207gn/2G7C\npSWOffvb3Dx3DrVc1iDEyi6scN1fG4bM33cfraFBWoMDpONjjFy7Tthq9R/eg467Rdk9Noa2FKW0\nlttCiuZ+oi3RuHkTqzV2dhZGR2+b7ufxeDyereM7yZ57nvVqlPfSKq4MyOnnblEBDk3PMFYdYGxs\nfMU2MjLK0NDQjmqwhdbE9TpilY69lRJVqfSVVQshqC4uEgDTJ04Uj9tokdvxXW5/XQ7v5etPaNzX\npCnmD/8A5ub2+kw8Ho/nnsB3kj33PKVGeTfojqx2MojSBq4joeiHXeZsAXTcLRDESpEFATrs32HU\ne+x8kdeqXDv7IAMzM26HtYXlW7Fei5vVs/Tu74cuNMvauAE+rHtuq9U5NrpTKF94CVtfQhw8uFPL\n83g8Hs9diO8ke+5qdtvJYvXzCEiSBK0VrVaLVqtFlrUwRmOMKuKKFVrrwkO5d3NFcv9jmzimcfYs\nprI3aYFrIgpJRKkhhk4hbAzaWJqDA+7NgTGdwnbNqHiLBbJKBVMO+3U7apRa5fL72VnsjRtbW0cQ\nIMbGfSiJx+Px3EP4TrLnrmY3u8Rrn0fMgw8+3NPRTdOUF144j7UWpW4iBFSrtb42cMYYms16u4vc\nja5UaJ44RbhKF3k3Cet1Dp0/z/VHHiEfHHSF6sAAKIVtNEAGmDBEjQy7QrbVQliwYUB2YAJdq8LQ\noOsQ51nfjnLcaDB5/nmmHnotJ7/zXSpLS10d6UJu0Y0pvJO3gBgfJ/jFX9rSMWy9jn3+vLdx83g8\nnjsEXyR77jl2Itp6PURRzPJ5qyAIii5zjFJ5YQnX75ws+9knGXCqhzxDLiygWi2ybss6a4ikpDI/\nz9LoCDODA0gLYaNBuLRIOjTEhXM18kqV43/zIgSr/1ykscRpWlyN4ppIWQTv2Y6f8n4b3iucMIJT\np90bh40wOkrwrndj/uS/7cy5eTwej2cFXm7huee4k6Ot9xJjNEqpQktdSkE0xmi0tag4QguBjuOi\ndrXtzVqLFYKo1UIAgdIEWiG0AmuRShEojQ5DdFhIGoRAJQnTJ0/2ekR3Fb8qilbeX2KLmGtjsfNz\n2Js33ba4uH0XZZdkGCKKEKPj7s1AH2yeY2em754hRY/H49kH+E6yx7NL7KWF3FbRWrG4uEhQFINZ\nliGlQAhXtAlrYXKSrFplbnKSPIpWDCHmg4NcfvObEEoRN5pILNKCsO7duuwjiVBxzPSpkwxMTxNm\nmdtZulh0SyvKOOru11TK7RMC81+/gf3L/+HOdXSM4MO/tu4EPjszg/mTbyJ/7u2I8fGe+7ZDhrHm\na3dJNNZkbg799d8n+MfvAz+g6PF4PNuCL5I9nnWy1SHAvbSQ2ypBEDI0NEQUuY5tnmcEQdCRhlgL\nYYRUitGpKRqHD2G7BgltOXzYHt7rLnQphvkMUimE0h2Hi77XqrNPas3gzZtIla98rLUdGcbAIIyM\nQtrEzs26BL71xlRrjZ2d2bKueVN0SzQ8Ho/Hs6t4uYXnnme9qXw7FWetlC6s4MAY29fdorSK6952\nGykDwjAs4rRlsQVIGUC1ysKpkxBFhFnmwqJ74rWlGzpsJ+WZtouFkQJrDTLLGZydJa43XBd4HWvM\nq1Ve/ok3k9VqK+9sG18IqFTcsNwWA2X2lDJ9b3R0r8/E4/F47gl8key551jeEd4rjXJpC2eMwlpd\nJOOp9qZUTquVolSO1qoTQ110ZaWU+242rR/WWqJ6nRPf/R6R0dgwwAwMYoaHMYOuuA2zHFuroIcG\naZ06SXryJOnwMKq2haK2u2udpk660Ghg0xQ7Pb0zGuUdREQRYnxiXWl7XqPs8Xg8W8fLLTz3HPvN\nFq5er/P888+S5xkjIyPt4l0pxfz8HCMjrnN469bNHomDEKLoKK/dAd9LysLeqpyoXsdojUoSmkGA\nQBBmMSNpSlYbYHF4hHxggB+ffZCg1YL7X4VUiqjRWHbU3ncGJgiYPXaMgy+91NEtu1cHrZzk4m9+\nhL1yCXIFeYb+wmehkIOI0THCxz8CY3eRLZvXKHs8Hs+W8Z1kj2cPiaKYSqVCHMeMj0+QJNUidjpq\nyxo6EgfRtohzXeT910ZWcczM6VPO4aJghTTEWoS1CCy6VmN+chKEs3aT2hBlOXGWEeQ5ebWCXebo\noOKIxQMHuO/7zxI1m65IPn6sv8MFuCK5UoFKAkkCcQzDI06jnCSFRrm55rpss4n+P/8rtkwM3Aw+\nkMTj8XjuKHyR7PHsMa1Wi8XFBbRWe30q66Yj/dDF5iQgzo3iFCqOe7TTVghXxMqOG4YwRbFc6JSF\n0UhjCPOMsOWKZJErxLKBORXHzJ48QaAU0hik1oxdvrKsi1xQvpGIIohidxuGiFptYxplY2B+bkvD\ne6UTxnKHjPVgGw3M009h6/VNv77H4/F4NoaXW3g8e4wrOPV65tT2BcYYsqzVHsgDsNYUayiK4mWL\n0VHE/NFJ8jCEQiYi2g4X7jEiyxmZvoS0oihGLVYGhK0WYo2hSqk1Y1dWKZJhXaEidmkJff06dr6B\nVb3nbqenodl084bT0yufXKms205u0zSbmw8i8Xg8Hs+m8EWyx7NLbNVCbr8gpSSOk7bsA1zhrJQr\nkktHC6DdTQ7ynPGLLzNy/QZXzz2CGB5xjzEGGnUQgiAMGL1+k+zsWSwCrl4hEHD82R+QNBo4TYbo\nKXqNlKgowvQN2RDrK5DznPw/fYl5q8laCrOswLcqhxs3YX4WtTCP6La2a7UQc7MEH38CeeLExi/m\n7WhLNG7zoV/pfDE0vK7D2jzHzi9hB1eRqHg8Ho/HF8kez3qL163GWd9uYFApjVJ51/eqKD5V8foW\nIXoH9W5nW7dTCCHaFnAAQmuSep00LuQMy4pTYS1hq0WcZQhtnM64sISzQoAAK6WTZUQhVkiX4BeF\ntKoVglaLKMsK+7hOEZtXq8zfd5S8WoWFhWVnaVc8vi9aY+fnEYcOQDV0Hs3d5w7Y6gC8mLkitNtu\nbnYGOzcHK4YLt4dSomFv3lz7cVEE4xPrP/DcHPn/8TXMh/5XiAe3eJYej8dzd+KLZM89z3rdLrKs\nxYULP+b06VdT2Ua/3SCQBEGIMYpWlwtdaQWXpk3yPCs0yxZr5bLnh23Zw14h8pyBGzfJjhzChKv/\nWXGdZfdmw1XGligICJsp9doAN4/fRxbH6CTB3HcfWEv9wAGygUHGL10iWKYJjppNRl65StR0g3cq\njpmfnGRkasrJL5z5tNtut4ZqFRHECNO/qLZx1NEyl/t2qDju+/pZhvn+XyN/5u/0nIPH4/F4dgZf\nJHs8e0wUxRw4cIhjx05S6foov9Vqce3aK4yNTfDKK5cIw5hqtUq4rAgVQrbjovcKU6mwcOY0Wiv6\nCRxUHDN7/BijV6eKPcIpISzkAwPceOABKouL6ChCaE2gFCJX6Chi+tQphNYMXb9BsKwodYN+ObIo\nglfEWAvhhgU30fnfd+Q59vvPwOve4HXJHo/Hswv4Itnj2QcEQUClUunpUFcqVUZGRknTJtevhwRB\naQe3vYl/u4FOEuaOH2f4xk1cgVwUyZK27KLtcqE1QikwGpkqatPT1CcOFHrktV8nzDImLr5cDPEV\nmuR1WuXZLMOaHNunk2wbDcjylZ3jZhOUwjb2mevEBjXKJTbPYXEBhobXFVri8Xg8dzO+SPZ49gFK\nKV5++SVOnXoVSVK5/RP2IdZa0JooTVHVKjYIelwuShs42w5BgajR4OAPf8SN17wGUa3CwjziwEFs\nksDlSwRZxuDMLM2xUecvHDi9c9BqMXvffUXR3SHMMiZefrn4bv0+0jbPyb73PXS6ikOGMZCm8Owz\nvb7NzRTmZjHf+C/I+1+z8y4X62TDGuUSH0Li8Xg8be6CzyA9njubIAgZH58gz/OVwRt3CKVvssxz\nBq7fgDxveyeXlDZwOooKyziDkpLG6Cg6DNwAH8I5OhRWcWWdK/McrAEsSaPBfc+dZ/HIYVQcYYUg\nq1b7OFyUFnPruKZGY5sphKELHVm+1aowPuZuu/cnMUiBXVxwRfRa12hmBv3V/7y5QJIgQIyOrrsr\n7vF4PJ6t44tkj2ed7JSFWxRFTEwc3HNd8VYo3S4QAhsGfVMBgzxn5OqUCwkR7v5IKUanpghzBTJA\nxxF2+XUwhomXLxG2sr5DeDqKuPL615F1u06UbGBwD3BFchT3brfTM1ug1cJOT2Nv3uzdFhe7TlRj\nZ2c2FUgixscJ3vUeqG7fwOhmsXmOnZl20gyPx+O5i/FyC49nnazXBWM1tmohB84mbjeesxmEEOgk\nYf7kSac5XnZ/dye51CQLIMxyBKAGaqTJMYYGBtrBIEZIbjzwGtCKkes3CJULGdnASW1tcE8ruDoF\napWCUBvIWnDxAvoLn3Xx190vPzpG8OFf23EZhq3Xsc+fR7z2oZ13vvCSDI/Hc4/gO8kezy6RZS1e\neulFsqx1+wcvQwgX4KG1otVq9WzNZpP5+TmazeaK+1qtFlorkiTZ8061ThJmTp1CJ12R1dZisV0R\n1kXcNWCCACMgq1bIK1VagwPkSdIjn4iaTY49832Cfl1NsbHBvb4Y4wpkKV2Xud8WJ5AkMDwCI6Od\nLUmwc7O3lWGsxbolGo0G5jtPrd+veXSU6Bd/CbmJiGyPx+O5V/CdZI9nnyOEoFarcejQq1bYvwGk\nacrlyxc4fvx0j4VcN0EQEEX7J13NGNfd1lq3vZOVyrEWms0GErAjw4T1gKjRpDVW48d/9+9SXVzi\n/v/5P91BhMTEMfWJA1gZgJBuAzbUbV4PUrrBwRUUEdphiKjVeoJGLNBjfL0ZuiUa7fS9rb/ZEVGE\nmJgoHCxWGVb0eDyeexxfJHs8+5wkqXDmzGvWfEwYRiss5PYTonC9yCuVFZrjIMs49sz3eeXNb6JV\nGyAIAoQxLh7aurQ+aTSB1mS1KjqKIM9dfRpHzJ44VrwIHUMLW5gw30WU6Xsej8fj2R283MLj2ae0\nWikvvfQ3tFqb/7h+vxA3Gpx8+jvEXXIAp0sWCGuJG02ktZ19paZZSkwYIABZxHMDHdeKZZsRgla1\niim8l9tbnkOeudtNDM7dadh6HfP0U9j6PvNv9ng8njsI30n2ePYB/ZwzrLW0Wq071haumzIJT8Xx\niv2zx48z0k7iW/a8apXFQ4fasdOACx4xhrheR2jTsz+rVrn0pjdy4rvfo7K01HG3mJuF+pIbtNMK\nq/onA/Y9hyhifvIIIzOzhLdxdLCtFhTFvG00IE2x09Pu++lpaDTa36+gUtm+Ab9CoxycOr2xdL5N\nhpD0wweTeDyeOx1fJHs8e4wxBmM0ExMHN+16sV9YXtCX35dDe8vvU3HM7MkTVOfmsH2e77yO208A\nIKtWmXn1q5h8/kfYoPt6iWW3dNwtRguP40xBnjkf5m3GZhn2h+c7g3q5e63S9cKqHObmMV/6PKJP\nauJuOWGsxaZDSPrhXTA8Hs8dji+SPZ49JstaXLjwY06ffvW+1RSXqMKCzRiLEBZwnVxjnCtF+bW7\nb305HioMmT86SR6GnVASwEqJ1QaEwAiJDkJMEJBVqqRDQ2SVBBOFYC3Hvv8scbPhvJIFvc4WQkAU\nOc9jK8BsTG4R5jkTV6duPzCnlCuQgwCiEGTgzmV4BKpVV7pPrFIsps2OE0afItnOzWH+9P9B/tzb\nEd6RwuPxeHYFXyR7PJ7bEgQBSZK0LeWcO4XFWtfJdS4VZcJezwRd5yBaE7Vazsatq+AsQ0bSgQGO\nXLrMrdeeJRsYhCjGhAaJxQQDzB2/Dysll970BoRSzE9OcuvMGRrjo5x45vtIiq5xtzeyWa5JVqCU\nk0JY6263OxQjCnsK8uWuF8uxrRbW2B5pRvu+UqJx6yb2lSvYGzd6NdWlRGMbnS9uyzZKMjwej2c/\n44tkj2eXiOOEM2fu33YrNiEESZL0pNttN1EU8+CDD6O1Jk1TXnjhPHEcty3p0jSl1WohpSQIwva5\nWGvJ8wxrIW4scuK73+PSm95Ia2gIIQTWWoS1hFlGoDTVxUWEsQgBFoGwEBRFodQaayxBnqOFQGqN\nVDkYgw4CF1vdPaxn3CBfXqkQLcwjS02yUtgXX3Dd5SyH+hL2vqNrrl9FEfOHDzNy69ZtdckbwbZa\n2O99BxaXeqQZ7fsLiQZXLsErr2CuTSG67m9LNDbofGHrdfQLz2P+zk/CutXZxWtupyTD4/F49jG+\nSPZ4dgkpJUnS38d4K6zHIm47iKKYcv4qCALCMCQstLVhqIqit+Na0UG05RdrUT6l9/nO/QJAaoMN\nQEhJNjDgHiMEzbEx8mq18EnuklhIQVYb4NKb38iJm9NUpHCa5KyFuP8BqFZdJ3lmGsHasdUqipg+\nOsnA3Ny2Fsk9Eg0Rt6UZ7WsCMHHQneetade9LbvSt5ForEmjgX76KezrH4J4cNuWs9344T+Px7OX\n3NlTQh7PPUCr1bprrOD6sZrzBdDRF0PRIcZJKNyYH1EzZWBmhihtrnwuwv2F69YkR1E7+EMMDDgp\nxH4ovor0vvZ5Ld9KrfXlSyCli57e5/r1bWFuDv37X4G5ub0+E4/Hcw/iO8kezz6ltIWTUt4VVnCr\nFcOl80VlaanPs4TrsmoDceSG4QZq7lZKZCCJG00IIxcNHScQlFHRCsL1SVtsnmOVKvTJXdc5d3KO\nME2ZuHKFsNXq1QRr4yzmdgWnW17X6+2mRtnj8XjuUnyR7PHsA0pP5DhO2jZwURRx8OBh0r5d0jsH\nV9xbzDIbOGttzzCfFQIVx20rOGMs0dISx77/LNceuB8TBFgp0VGElQITBGgpsYXuOB0axEjBdQ5c\n1wAAIABJREFUkRdfRFgDUqxPbqs1vPIKdmEB6g3otpXTGtKUMMuY6FfEG+vcMnatUF4fm03ns/U6\n9vnziNc+5LrVHo/Hcw/ji2SPZx+gteLSpZe4//6z+94GrsTZwZVfq3Yx3N3xdrZwdtUueKAUQzdu\nMD856Ybjjk6SRyHGOKcMHQbIrIWRAVm1CkIwNzaKbDaZes1ryKsVpNJcOvcIsksHHTeb3P9X317f\nQoIA7rvPaaorVedOUZLnGKXIazUipZDLimElA+bHxxhRmu0Qbdgs6+ubZxsNp6cuvy5vux0xtiOM\nZLMhJP3wLhgej+cOxxfJHs8eE8cJJ06c4ZVXLu31qayL5XZwAHmeARatDdYqpJRt94q1VCKl/dvS\ngQMIIRi5OkXz0GFMkmCtJciyojC1Ll1PCsJcETZTVCUBY7GAiiNqi3WkMegoIqtW0UG4bk9kEUUu\nYCSKVmiUs1qNS+ce4cSPXqDS7O3qqyRh+vhxBq5c2XqRrDX2B99vJ/b1YAzU605ukbWwYbgirGQ/\nhJF0s5MuGH6gz+Px7Aa+SPZ49hjnerGzFm7bSbcdXMnCwgKNRgOlMoyxVCpVpJQYY2g06gghUCov\n3NlcN1YI0bZ/E9ai45j5o0fRcdy+Ft0ZeqJI35NGY6KIdGiM2q1bBEqR1WrIuQXnPFF0oDHGyYsL\np4t9jy00x0nS280uiUKYVpAUA4jdYSWCzTtdbPQ094Mkw6f5eTyeXcAXyR6PZ8N028GVDA0NMTc3\nhxAKKUWhrbZdlm7OCq67s9w9zFdqloMgoHt4Tkjp7N2iyN0ODIJdgiAgACoLC+QDA654lLII84hg\naNAVymVBeRvdsNV61cE957tseof2wA3uWetut4syjKQfQbAiPVDUaphmEy68hJ2bQ6ynaAwCl9y3\nmXju7ZRkeDwezz7GF8kezx1Oq5XyyiuXuO++Ezviw7yT6K5hvlV7vR0DZRCCME0ZfeEFrp57BKk1\nh//mReqHD3c6xm2fZEmcppz8wXmiAwfWLAit1s5mLIxWDu6VxXOzCYUeuPNEQCtYXHDuGFvF6NUT\nAPO8cy7Qmx7YaLjzW17Er4IYHyd8/6MEYwMwW9/6eXs8Hs9diC+SPZ59TmkFFwT9/7mWzhj73SKu\nHOzr/Z62w4WqVEDKnse1HS+6KmhhDFHachKNMGTq7IOYVazOpLEkWbPvMFw3IggQo6PYpLJicI/5\nede9rVZXHCeUARNT1wgrVUQYsqWfgNEwO+uKddnHwt5ap1e+ds29CTDOHcT+9Xddwby4gG3cZQXv\nBof/vFbZ4/FsJz5MxOPZpxhjaLVSgiDg4MHDRHfwf/r9nC9KSocLWXRirTXtx+koYm5yEhUnfQtQ\nlSQ0xsaw2+AHLLqlDO0tcoW7lGS1KiYMneSh2EJjmLg6Rbgdb1CKohcp2+EiPVtZqBeBKO3zSJLC\nS1pDq7X189hHiChCjE+sv+D14SMej2cb8UWyx7NPybIWL730Ill25xc+HU3ySlFF6XBRxj0LIduP\ns4ANAjfsZ23hn6yxAiwCi/NCNkKggoAsilgaHiIPAlQQrNvd4nboMOTKa15DVtkFOYsQPYX4mpss\ntNph75sEOzOD/up/xs7MbOy1fQiJx+PxtPFFssezD4jjhDNn7ieOk70+lR2jM8DX+R7ocbhYXkib\nJGHm+DF0tYqSAUoK0jBCS4nBkiUJVjiJxvzEBLfuO8rc4SMsHDzIhYcfJg+Lrms/+cJ6KQf3uof3\nujdjnDa42XRyiDyHPOtoiAuUgFtxiNoNow2tsbMz69Yol5QhJGJ8fMunYOt1zNNPYet3mQTE4/Hc\nM3hNssezD3A2cHfW0F1/XKFrjAUMxnRLLNb2TF4TIRChxFqQSUJoDJGx6EAijWFgbpZ8eBhE7Ob2\npCQbH0MfP06U55vvjBpDPD/PsWeeYerBB1cO75USiYUFuPC3xfBf0InS1gqrFAJQQjAdRwwqvT3y\njP2Od8HweDx3OL5I9ng8WyYIgnYXPAxDrDVobdrJecaYonDuHtzrPYbQmrhexwwMYGVvx9nawgrO\nOu2wzBVHn/0B1x58ECsF45evMH32QTRdLhmlFGErkdFSIqOI2OLCRpYP72njOsbDw3D6VU4TXPoY\nZy7sQ2zGZm01yq52+dqmeH2lwBrs/Bz25k2XwtdodNL4YHsS+WB/SDK2Kc3PD/p5PJ618EWyx+PZ\nMsYYkiRhaGiEarVKWBSGSilu3bqJtZZms04QREVKn2gn8pVeyUJrTv71M7zykz9JOrh251FYS9Rs\noioJjaEBDr10cecWJ2VH/1t+3TkT10kOQ0S16pLwlvkYl4TWMpHlm+8iGwOLi52i3wLWwNSUO4cs\nx/xff4D9y/+BTVN4+SLm2hSi0FFvVyJfKcnYS7Ytzc+Hkng8njXwmmSP5w7ndhZxu4G1Fq01QSAJ\nw5AwjIotLIJFugf3RNvKWIiOV7KJ+wdodDtjWGtRUcTcffdhpMTghuryKMIALsC6sC8GUimZHh5G\nGQNZDmoVD+JdILRwIFOEG6iRVRQxPTmJiqKOJrrwgHae0EXRXhbno2MwMuo6rEnF3Y6MQpJ0Evlw\ng335V34P3d1p9ng8Hk8PvpPs8exzSiu4KIqLFLteoiji4MHDe3Bmm6PbBq7n69ITedn+ElN0UNMw\nZPrUCWrTtzBF0W0CSbNaRQUhYaNBniQsDg9x8fRJkjRlYHqasOUKRCqVzSXN9cFIQV6tEglBAKuH\nfazSPbaNhpNKSNPXiUOFIdNHJxmYm+v8sS6LZGNBmE5nW0pEtdqOirZxhKjVEAMDTuTSbQ+ntXO+\nUApWCffbD+yLCGyPx3PP4otkj2efk2UZU1NXOH361VQq1b0+nS3R6QqvLIRVFDF/dJI8CtcMRrE4\nfbCQAVHWojY7S5S1EGFEYC2VhQXs2AQMVMkPHybJFXJgGFlGR4chrNK13ihZpcKlBx7gxJUrVJSC\nudmOPZsuXC9efIEVGd7tA+Ru2E8I1+XeqBTD2o7DhjHOYaNed8V3lrtbimI8TdsaZTs9DVm2laXv\nDhsd/tsmrbLH4/GAL5I9nn1LaQunN2jjtZ/plVuItoSixARh2yfZFgVg1GqRl4EZOCeQUm4ggUDl\nCNuxmAuzvEiyFiADiIQbuDObd5SI05ST558nWiOsQ4QhdnQM4qgzuJe1EPc/4F6/D7bRgPqSW0/a\n3FgIhrWusF5actpkY+C5Z7GVivs6TeHZZ7BSuq52nqG/8FmoVLBpirhxHbP4KEwMbvRy7Fs2qlW2\nSmGbjbYDicfj8XTjNckezz6ltIXrJ7G4kymL2eW+ySZJmDt+HJMk7f1Jo8Gpp54maTTaBXafI5JX\nqlgpkNYy/sorhefy9iGNIUlT5O2O25Pa5zyaS8lD361WKxL1IlfQr0Ipu1Bxd0e68G4u5RdCuA55\nJYFaFcbH3G0lcal8cQzDI06jHMfQbLoBv+4jbjaEZJVrsecuGLdjfh57/jkXPe7xeDzL8J1kj8dz\nR2MCyfXXPoiu1oiXltqTe9YarNHY3OmCre5jBZc2b3t8FUXMTx5hZGa2nQq4W4RKMXF1CiEE00eP\nMnD5CqFads5l11yIToG+nMJpQ9RqUKu1ZRgr2GQIST/2gwuGx+PxbAVfJHs8nm1Da83MzDQjIyME\nQYhSqidQpKNJLmKnN9nw1XHMzOlTqChGyoA8jhGFLtdVyQa0QdYbiKUl7Py8KxT7IIZHYHZ1lwcV\nRa5AXVjcmSK51BRr1dYWl0VqqDUTV66Q1mqd1L/S5aL8+h7ED/R5PJ7dwBfJHo9nyzgbusNkWUaz\n2aDVahEEGq0VpnBtEEKgtcYYS6my6HW6ALGGMLS70FZxzMypU1Rv3CCp12keOugGu6yFKMImCYyO\nImsDCCkJf+6dhEeO9D/u0hLm3/9v23Mh1sAAuRRExrZ1brYc9kMUcdbF8N7yYlwU9+si9lqIToG8\n1oUrC+/lThvNJlYp9PQ0Nq5hVXFtu0NIVgkfsTMzmD/5JvLn3r4t8dWbYpvS/OxADXHm1diB2jae\nnMfjuVvwRbLHc4djjCHPs1Ut4naDKIqYnLyPwcFBLl78W44fP02lUiFNU1544TxSSmZmplEqxxhD\nEATt4bwsa9HxUIbSExm6bOG6tct51h7mM9owcOsWsydPkGuN1BpdJPzlKmcpaxGlTfTIIGKPwyIy\nKXi5VuFkI6VSDBG2h/2EgGbDDeIlyUo3jGrV7QsKP2QhOh3ntQrkq1PumEV8tv3r7zoNdCuD+hL1\nL38ZFVcx5fXuCiGRRyb7h49soyRjrxH1BvalHyPqq8hPPB7PPY0vkj2eO5wsa3Hhwo/3hUVcFMWE\nYUSlUmmfSxAEBEGAlB1Xi3LrdJK7JRmdrrEubOF0V9EYKMXQjRvMT06iqlWaY6MurlqADSRZbcA5\nOiCQCA5cv0G0xlBcm7JL261gyJUrMEuJw3Jd81Yir9sLCtzQXhCukupHZzCv3KS8fevdGFcgS9mZ\nd0wSiMLi9STywAGQUcf5I2q4EJI47oSPbEeU9Wa5E4b/PB7PXcvdNTbv8dyFlFZwcZzs9alsOx1L\nOIGUsr2VXeUgzxm5OkXQJT8IlWL06hShUgQqZ/D6DWzRmVaDg1z+6Z8iHxxc4Z6xKpUKYmQEq7UL\n3GilnS1rueJZqbZkoXuLG01OPv88cWsfew53x2p3OW+IMEQud96o1ZyFXVLZ67MGOsN/65V12Hod\n8/RT2Hp9h8/M4/HcC/hOssezzymt4O5WXDFLT0Fbdpn7dZKFtYRZhrAWG0WoWg0bbr7TKIaGiP6X\nx6C5RF4dwFY6+lTbaMBzz2LimNmzD3JwZoZQdWQGEki6U/a2Srtj3StlCFstJq5cIcyylYN73drk\n9VB0zK1SmEYDK3Ns0UkuQ0icZjlvh4+0qezz38Nt0ip7PB4P+CLZ4/HsY3SSMHPq1Lofb63FmMID\nbgOIwQGn+63W3NY5IIQBJgyZHRlhrNEkXB4oYgG2oUg2xhXb5W0XITAxO+s63aXkoiyQleqc6+3k\nH1rDtZsubU9rsm8/hRZdHyiWISQLC6BVO3ykRIyOId/zT7a+1v3CyDDyoUdgZP0JfTbPYXEBhoZd\neInH47lr8XILj8ez4yilCys42il7nbQ929MUvZ2zmbXWWSEXzw+yjKGpKcJ6fcWxrTVrRlyvB2Es\nUZruvN1aKYeoVKDwMzaDg7QmxjGDg66ID4vBvSKoBCGKMJIuPfNatHXKwul9KxX3epWkN4SkWu0N\nHxkZhSRxOuU1Uge72dZgkh1ChBFUq+52vczNoX//KxtLR/R4PHckvpPs8Xi2DWcFd4ggCIvvA5Ik\nodGoY63GGFN0ew1CCIwx7c5vtzPHWoWtFQIVhgRpio4TjJRUp2dYGh/HdHVStda0tGIpCsmNZV1C\ngbTZlh6Akx8kS3WOP/8jLv3kT7gOb7asa6y20Tu5HMorBtWyapVLrz3Lied/SGVpqf/gXilTWY/+\nuv06EqRFRBFCBiuvt1rZkbbGQpo6Z4vSJq4fpXXcTrpg+IE+j8ezC/gi2ePxbJluG7qDBw+390dR\nzIMPPszs7CyLi98hihK0VoRhhJQSpRT1+mL7+xKtNXnefxhORxELR45Qm19g7ugk188+SGVxEbPi\no29LPjDIlZ/+aY4N3+bj9EoVOT4OUzeg2RXVnKadIriVQrPppAornl9x3dytslyTXIaLGIOSkvnj\nxxi5cYMwV5vXJN8OreDGdWi1OpZx4AYX8wz9ta9AmmK+9Pm+HVgxOkbw4V/bnnNZhe1K87ONBvbq\nK9hGo2/gucfjubfxRbLH49kya9nQRVFMHMcIIRgeHmFhYQ4pSzeLjrtF9+DeWn7PFhBGM3LtOgtH\nDpNXqxx+8ccsHT6MTjoOIEKsX00mhoYY/vV/ibk2jVJdneTpadT//iTMFOEaDz2M7OcyEoZOq7oG\nsbGcaqREZpVitp8muQwRaTZRxjB97BgDN2+65L/NaJLXgzHumEJ0LOPA2cYJEOMTTo7Rj7TZsY67\nE4hjGBtztx6Px7MMXyR7PHc4pUVcFN0b/9GbJGFxcpKxq1OIontaul0sx1qLUjlZv+7vMuTwMEIH\niOVSgySBMHJFYqUCq3lR36ZIlkCyWoEMHU1yHHfCRMoQkWqVME2dw0WRKtjuOIchKo6YP3iIkTje\nvj/qbcu44lysAKOdTVytf0KdhXVrlvcDIgwR1RpiOz4FKPCDfR7P3cO+Gtz7vd/7Pd761rdy7tw5\n/uk//ac8++yzaz5+cXGRJ554gp/92Z/l3LlzvP3tb+cv/uIvdulsPZ79QWkRt1dpe3uJ0JqojFoG\n4kaDkVeuun0F5QDf5l9ErNppVAJuxSFquz6r79Ykl97GxRYaw8TlK05qsSxcRMUJ0ydPoLax2NsP\nbHj4bz9olf1gn8dz17Bv/qL+8R//MZ/+9Kf5xCc+wSOPPMKXvvQlPvjBD/LNb36T8T5G8nme89hj\nj3Hw4EH+3b/7dxw6dIirV68ytJfpUB6PZ1eJmin3PfssgmLYzxiCPEOYjquFtYIsa5GmTcANE26k\n6y6SBHHyFLHKEMvn24RgOo4YVJqdLMuMELSqFaKlpf3V2dhpNjj8t11aZY/H44F9VCR/8Ytf5H3v\nex/vfve7AXjiiSf47//9v/ONb3yDD33oQyse//Wvf53FxUW+9rWvERRdg6NHj+7qOXs8no2htbOC\nE8ICHWeLjh2cY9O2bdZSnZtjaWKifVytLRcvvsT161MAJEnCgw8+vKFCOWnUOXXpEtz/GmyX7tcG\nEhsGbgCs0XDDbTJw0oRtdL3IKwlXTr6GE3/1bSrN5sowkfJ65YW9W/l1ewhQbI9eeRm21epooinC\nSNK043yxHheMPcQP7nk8nrXYF0VynuecP3+eX/3VX23vE0Lwlre8hWeeeabvc/7sz/6M17/+9Tzx\nxBP86Z/+KePj47zzne/kQx/60D35sbPHs58JAkkQhBijMUbjCliJ1gpjLEopgiJaGuixcrsdJghY\nODqJimPCLKM2N99T8AgBURSSJAlKaVqtFlpr1iUXrVQQo2PYa1PO3WJxAbpcN6ywoHPswgI0W+4+\nARjdfv62uF60F1uk+y0PE9HKFcEL8x1ttNZugE5KQIA121oo21YL+73v9A7plQ4YX/isS0Gcm7+t\nC8aeFsrNJvbqK861ZL2MjhK87/0wtP4Aku3G6549nt1hXxTJs7OzaK05cOBAz/6JiQkuXLjQ9zmX\nL1/mr/7qr/hH/+gf8R/+w3/g4sWLPPHEE2itefzxx3fjtD0ezzKMMbRaKVEU97xZjaKYAwcOcfDg\nYS5e/FviOCYMQ1qtFnk+hRBQrdbaz1FKsbg4v+rr5HHMzVedQSUxea3GzIkT6CQhyHNUHGOXeQYH\nQUhYFGpaq36H7IsYGkI99s+48sIPmfz2t6n+g3ciJiba94fXriGe/kvCn/+HhFHkEuqGR9xwG7gC\neQvOCXGacvL88+jyWsrADdIJ0TO419Yr1wYgjlBhyPzgICM//CGhMYBwj93OBoJSrkAOghUOGAyP\nIKpVmDjY/7ndLhh3mERORBGMT9z+gTvJ3Bz6679P8I/fBwdXucYej2fL7IsieTWstT22UN0YYzhw\n4ACf+MQnEELw2te+lhs3bvCFL3xhQ0Wys6La+AdtQSB7bu8F/JrvDTaz5iBwdm5a51y+fIEzZ+4n\njjsuEEkSc/TofVSrVaIoJIoioihCCEGlkpDneXEMJ51y3WbBavHSJkmYO36cIE1ZOHwIXXRrdRQx\nf3QSXXTXokaDgbk5wtFx514h3L/3IJCEYWd9a605GB5C1SrIY/cRHT2C6JqRyHWGiGPCg+NESYKt\nVmGghhgYWNd1s1KgKZbaRrR3SAtJ2iKtVt0+IfuGiYS5YuLyZcSrXw1xgk4Spo8cYeClC4Sls4e1\nxWFF52UoM0g6J2C7vhai/YD2Q6QEpOicexQh2m8EnANGMFiD2urXwEoBWUYYCkS4+u+ZDd3rLH+c\nnZlB/bf/m/Dn/0HPz+N2LP85mzjE1GqEcYhc4zw2wmrnvJ1s5DX837C7n3ttvbvJviiSx8bGCIKA\nW7du9eyfmZlhYqL/O/ZDhw61/5MtOXPmDLdu3UIpRbjOjzjHxwdWLcTXw/DwKnZQdzF+zfcGG1nz\nyEiVsbHXo7VmZuY6o6M1astswoaGEn70ox8hJVQqrkh2Jg4SrUUhySiKFyPbioK1qMwvcPI73yUd\nHKJeqRDkOSNXp1g6cACdJEhrCfKcQFiCwDVfpXTN3SRx/+7DMCQuirx+a04SQXVsmAOP/fKKNYUL\nVcIwYHi4Sq1SYT4JEVYh9ErLuVwIZqOIsTwnKhZmTE5mXafXBgIjBEK6rRspRad27k7ZKxHu/iAI\nkGGALt60lMcSuMI0CAK0LJ5fXNtwmROENQFKCmxxnwiD9n4bSpIkQlZjjM5ohRIRrv6Y1TA6wyQh\nIyM1grHVi2md1ahXYwaWPU5nS9SbSwwMxms+fzXKn3N+cITFI4cYOjhCtInjbOSct5PNvIb/G3b3\nc6+tdzfYF0VyFEU89NBDfOtb3+Jtb3sb4LrI3/rWt/jABz7Q9zlvfOMb+aM/+qOefRcuXODgwYPr\nLpABZmbqm+4kDw9XWVhoovX2D8TsR/ya/ZpvR7OZkqY5c3MNWi277L4mc3OLZJkiTXO0dvMIWrsB\nPq0N1paaZEunu7l6pSyNIW42kYXWVljb45lsjaEyO8v0zVvc0qaIwdZ8+9vfISwKuyRJePjh13Hg\nwEjfNTebzVXX1FhoopRmYaFJLhLy2hB2dhbml1ZeG2G5OjREtLhItVinTVNMM3VVexiDdfHPdpmf\nsjEWC2SVKnGaIpe/e7AWrBuM1EqTB+6alseyAMaitAZTdpTdMZTWPW9GrCoeU9yHKvTVSoMytFo5\nBBk2zdHKgNII2f8xq2HTHFqK+fkGIq5jFxchXakLttO3UNOz5C9dQsw3+u9v2XXrmpf/bpvr07Qu\nvIy9Po0cO3z7A6wDO98gb2aoYm07wUZew/8Nu/vXfK+td7sYW8cbzC0XyUopLl68iLWW06dPb6hA\n7eaxxx7jt3/7t3n44YfbFnBpmvKe97wHgI997GMcOXKEj370owC8//3v53d/93f55Cc/yS//8i9z\n8eJFPve5z/Erv/IrG3pdY2zxH/Lm0NqglocP3OX4Nd8bbGbN3QXv8ue6IrjjZGFMt6tFr8PFZt0t\nVBwzfeokqugMC6A2N08qA0wxwGatJYoiwjBEKU2zmZJl+aprXmtNxkCktZMHVwcQH/zniFXS5uS1\na/D0XyJ//h8ijxxx65yexhY6ZpvncO0arnhdvn6LDkOuPPIQZ77zXedw0Qd3KTvXtLOJ8jCARUUx\n8wcPMBEECLv8etsVx+vebQzQU8h3OZMse8xqWOOGDpWyMDuP/ty/dxrl5Y9TOczNo77QO/xn0xRe\nvoi6OoU8MrnhAcDyZ2lUGTgDcpv+fdvBEcQ/+UXU4PDKYJptwipbDLxahDLrGuTzf8Pufu619e4G\nWyqSn3vuOf7Fv/gXXL16FYDJyUk+85nPcO7cuQ0f6x3veAezs7M8+eST3Lp1i7Nnz/L5z3++7ZF8\n7dq1ttUbwJEjR/iP//E/8qlPfYp3vetdHD58mF/5lV/paxfn8XjuTvJqlbmjR8mLmGSdJMycOtXz\nGAEIWeqdDdZKwnD9g3x2dg7z3A+wowdgsvfjzCSKOd1oERR2cmJoaNVBNJG1nH53fAzRPWxVqbhk\nvc28Mei2f7PWOVvkmbOBM2alBVxhC6eCgOmjRxldWHDhJHtJmroCOUlWpBkK6D/8FzUgqUAc9wwA\n2pkZzJ98E/lzb9+QVnk72ZPBPj/I5/HsCFsqkp944gne//738+ijj9JoNPjUpz7F7/zO7/AHf/AH\nmzreo48+yqOPPtr3vi9/+csr9r3uda/jq1/96qZey+Px7B2q+AhfKVV0lEuJheuClP7Ja0ktAEwY\n0BocxIT9ozw2/xlR94toVNrk5anLnB4fI0kq23HUDRGnKcdeeIGpY8c6O8viuPQpNgbmZqG+RBhF\nTOQZ4dJiIZcQnfvT1LluaNXj+bznVKrrHngEsHHkCuUuS76Nho8QSESlCn7gyePx9GFdfxk+9alP\nsbS0UmN36dIlPvCBD1Cr1Thw4AC/8Au/wOXLl7f9JD0ez92BEJI4TtBa0Wq1yLIW1priI++cVitF\nqRyt1boaqzqKmJ88UmhuVxZ8Oo4LmcXa5HlOo9Eo9Me9W6uVYqylmTZX3N9SOWZ4eOsxyGnTefUa\n42QK2vRsUmnietNpra3tlTKEoduCAEbH4OBBwtFRJloZoQxcl7padR3r0TF3m1QgCBH3uKe8GB1D\nPPwIYnRs3c+x9Trm6aew9Z3RG3s8nv3DujrJ8/PzvP3tb+df/at/xXvf+972/je84Q187GMf473v\nfS/NZpPPfe5zvPnNb96xk/V4PHc2QRBw8uQD7bS7NE154YXzbXeJ+fk5RkZGUUrRar2CEAK1RnJd\nkOeMX3yZ8Ysvc+kn3kw2ONh7f5a1h/pWwxjDiy/+kJdeEmSZWjGjIGdnCW7cYHp8nOyF5wiC3j+b\nybmHeXBokE1FOpRhJUUHuC2PKNwrVBgyPzHOyHTRHS0LZGNcm1w6SzgjJXmlQhTHyO4kQSmLAr6w\nCokit6943n5meZpfz32NBmS5CwNReTvVz05Pu5S/paVeSct20mhgvvMUwanTsIHO97ayzYEmPpzE\n4+nPuorkT3/60zz77LN88pOf5Ctf+Qq/8zu/w7lz5/jkJz/JJz7xCT72sY8B8FM/9VN8/OMf39ET\n9ng8+5c4Tjhz5v4Vkc8uZKRVDM3FVArtaavVotGokyQxQRAipWwP/wohblvHtd0siq+Xo+OY6VOn\nsHG8auywtYZWK2NoqEYcByuGBoNKQq3VYj4MiOOkZzh5wwl+y89/aIjgw78GaYr58YuRQ4rfAAAg\nAElEQVToF//GFV6F1ZwKAqYnjzBQanWj2N0fhq5ori+BEGTVKpfOPcKJ2Xl6xCCraJLLWGurcmyW\n0yNMKR+zh/RN8+vGGHffwgJo5UJcKpX2QJ9tNBC//ht7Hnu9U2y77tlrmj2evqxbk3zu3Dm+9rWv\n8fWvf53HH3+cn/3Zn+U3f/M3+cxnPrOT5+fxeO4A8jxnbm6G0dHxvprdLGtx+fJFxsbGezqxzuVC\nb2pmDSCr1bjy+tdx9Pzzfe/XScLM6VMMVyq3/WMXRRFSsqKTHAQRQa6oXL5MNDxGMNb70fx6E/yE\nEMTGrPBlL4f9xPS06/qGEe2KWwq3lZprgdPPBpLbKq6NgVarTARZqUlWCjM97eK0i2O1KhWmTp1i\ncuoaSdrcu2K5X5rfcmpVyBRkLRgecZKSqAFBgP3/2XvzIEmu8uz3OefkVtVL9TaaRZpVEhoxEvDB\nxyrJgJANBiGMpYuvwSDARhjZQIQXgY0cBEIBNl8EDnMxDrOYJWzsC9fmw7YkcICw/SFhQAgZWYix\n1pnRaLbeqruWXM5y/ziZVVlVWd219np+ERXdXZVVeaqqu/rNN5/3eZaKHaX5qeUlqMcfh1peGl7n\n2WAwbFq6FqTdcMMN+MY3voFCoYDXvOY1+Ku/+ivwNqfEDAaDIYExhunpHbAHeDpXMYYon4catrZW\nSdAgBOl0ICwD18vhkDsC11sjw39KtWNEhibZogzTp8/ALkzozmF8UTMzCKenoHIe4LiDjbHuBdvS\n3fO2FxuwLJC8Tjkk+bw+yOgQMjYOcugQyIBkCwaDYWvRcSf5iSeewH/8x38gDEM861nPwh/8wR/g\nDW94Az7ykY/gK1/5Cj7wgQ/gqquuGuZaDQbDBsW2bezYMZgwhn4gQsD2fUSeB9XvMN2AIVNTYP/3\nG1ffkEdabwvoTqpUQCTgBAH2P3USNue6OyxiXXLaBq6ZNppkSwhMnzoFO/aUrklMbCfWK9P1L5Db\nIXi9wx1xgHOtUVZKf40iIAhqOuU0yiKQbBrA8H43VLkM9dOHQJ55pCu3DoPBsPHoqEj+2te+hltv\nvRX79++H53n42Mc+hl/91V/Frbfeis997nP41re+hdtuuw0XXnghPvCBD2Dv3r3DXrfBYNhCJJZw\nUkpwzsE5jwu31YfLFCG60CMEdrWK83/yIE4+6/LaEF+nwSRCCESRbNleWAzqwAHISgVCRpCpQcIg\nCLC0tIhyuVTTWfeM6+rkPSmBINbi2lbtZ7q4CHd5WUsltC4EUBKQNM4LiaUZWxnBgadP6QMJIHYC\nEVA//pF+XaQESmVgqVjTKaeRhGBp93lQb30HkBtSAbseg31mkM9gGAodFcmf+MQn8N73vhc33XQT\nAOB73/se3v72t+Pmm2/G1NQUrrnmGvzcz/0cPvvZz+KGG27A97///aEu2mAwbA0Yo2DMgpQcYcgh\nBEcY6kE4QNWK55UQto3int0Q8T/z9PcJqxXKUkqcPXsWUcQzt7UmxjF+8ikszM81yMs4FwjDAI8/\n/gjGxwstA4vdQEZHQZ5xCTAyqmUDiANIlAA/fCnm5s6h8NRJWK6rO8JRBJw6pTvFI/m4S8wAKSEJ\nQeQ4sClt1dRJqY89lIKKIiiiX2sA9RASJeuDfsltEe/cf3hYSKkL5MShI4ngdd26dtmyG3XKaUIf\ncn5eW+4Nq0heB8wgn8EwHDoqksMwxP79+2s/7927F0ophGHdxN1xHNx8880NFnEGg8GwErbtYGbm\nPFxwwX4QQnD69Ens2nU+fL+KpaUilFLw/ewI5gQWRSg8fQqlmRkAqH0vXLe2TfOwXDPap5mDEJqp\nMrAow/hyCRXKGmQcSukGbhRFPTtcNGDburCLi2RQAoRVCMvG3K5dGJmbg8VYPNin9O0skUbUn2Po\nODh+wR7sO30aXupzujbMB313ee6cllYkhXAuB+yYAYJQbzc3Vw/aEBIQHL6SOJV3sbtaRe+HBH2S\nJSNJXnxFACn0gUbyOtbuR4Bq3fNfLS5C/deDUNe8svPBPcZAJqf698Y2GAwbno6K5De+8Y34oz/6\nI/zgBz+A67r4l3/5F7zsZS/Drl27WrbduXP9dYkGg2HzoJTCmTNP48CBC3HJJUdq15HElSEFIaSl\n0xvlcjj57Gch8jw4lYq2hEtts1qBnIZSAkJaq2RKGQghoJTF8dYau1qC/dRTsJzhDOMRQuFKBTKo\nRLhkmI9QQCnQHTsg00Wy6+rC0nW0w8T0dL1DG3KdbmdZCCmF2grKDiGg/GpXHfKOteVDxOieDYa1\noaMi+bd+67fw7Gc/G/feey/CMMS73/1uXHvttcNem8Fg2OIwZmFqahoLC/Mda4ebUYwhbFMoECHg\n+AHIyJjWrA4YIgRoFAJygDIEv1ozd3MBHLA9VMNAF3KRAITS3dKI19L5nEoF+x/8L9gzM6s/z2Qw\nTykQ2wahrP3gXkaHdrPREEriV3VRPDcLxZWOsI4iqIV5qHPnsh/A8zae3/Kgdc8D1jQbDFuFjv9r\nXHnllbjyyiuHuRaDwbBFcRwXBw5cGPsiS9BY02DbNqand2BpqdjR46xWSKeH+ADArlZxwQP/ieJV\nPweVkl90i3BdLF18cYOEY+Ck0/cSSURtAQKwGVApxwNqQhd+cQeUKgUXUd8pehbnmJ6dhRUE2Zpk\nzqGqVahwFKpa1WuIUl3ujaBbTtEcSqI4Rygi4DOfhnJcqNIyMD8P8ZUvQ45mF8JkYhLspndtvEJ5\ngHSqaTYDfYbtxuBbKwaDwdAEpRSEEDzxxKM4ePCi/p0g2tA8xCdsG4vnn9/eIq1DpOdh6eKL+3qM\nIPBx8uRxnH/+vszAlXT6XjPW6dPAv31Ldw0vvBh0ehqqUtGuDskgX02n28HzoRSR44A1FdWWEJg+\ne04n+Sm0apI5h3r8MYAq4InHgcVFHXSS7DfWLSvOO/AlWQOaQ0kiBsIJMD4O5ebqEd/5UaAw0Xp/\nv6oPWjoIJtkWmIE+wzbDFMkGg2HLoABIxmpyBRZFmDh5EsVDF66WT9cWKSXapdsRpaCU3sbPKG4Z\nYzXHCzm/gOqP7oPMjQG7d2c/Xpy+13J9GEA6NhZ278SOfB5OPq8Lf8uKAze66+qFnofjR56JC4tF\nWFFTGBSlOkgEaNUkhwHIoQuBmR2AgC6iXae+/1i3TCwLASF4OudgTzWE2+dBSt/EoSQEBIQoIJ8H\n8fKxv7IEXDdT26uA1q7+apjBPoNhy2CKZIPBsGFRqjEWOWtwL410XSymfNqJUmB9JIJKKeGXlkHL\nZfBcriWgxPKrmJ5fQLG0jKNHHwJrut11XRw+fJkulKXQ1mO96Hopg3Q9LOzYgUlChu8qkVh8ZLlG\n5HIgjg2Sy8VFuq21zKltkm9rA37rXCOvJesx2GcG+QyG4bBBI5UMBsN2hjEau0g0Vldr35BUYMsl\n7Pv+D+BWq6CUNlwYIcgvFUEJheM4cF23dmHMQhAkns/9Qacm4R66SGuOw0AXRZWK1gCHXCf0pS9R\npKUP8WDfZhy4GyhCAFGofaGjSEtVymWgWtWvT7WqX9PmS6WidbgbnXiQD5XKYB4vGeSbyJCgGAzb\nCNNJNhgMGw7bdlAoTEBKgTNnTtcs4QghkFK2dJiHDkFt/w1XEwICAkopLMuCZTXKHoTovYudxnU9\n7N+5G4+D6CK4uKh1slGoXfJ4pH/2PIBSOGGA/Q8/DLtcjpP4aD2pr08sqTAdRrDitDuki8hUTLSi\nBMpi+nvR+H6pSgVI+zcPEyGA+TmtPZYKQgng/h8BzNJrqFaBhx+CcjL68xHXVszlUuc+yluAgYeT\nGAyblI6K5IceeqirBz1y5EhPizEYDNsPxizMzJwHzgUef/y/cf75+wDUh/10YapACGqX9Za4JgjX\nxfzBgxBZBdaAISMjIHv2wHrei2Ht2gU1N6ejl8cLAAD1yFGQiy8ByedBAbBKBcoPGgf7BtBRtpTC\nTMghowhYXNDa2/TgHudQjxyFGh0F9u+FOnZC27ClCSPdEfd9EK91iHGgKKUH+CwrThok+jWxLD2U\nmPP0JUvXLZWWyPj19av5ech/+QboL7wKZGpquGtvh9E9Dwzj2GFYiY6K5Ouvv74jQ/6k2/Pwww/3\nvTCDwbD1kVJCSoHp6R0IwwBBEPTsl5xFYgknlYKSAlKqgT6+cF0sHDqY6VYxCPzTp/HUv9+NC37u\nan0FYyBTk/WupucBuRw4IVjctRMT+TzsJGUua7BvgLILYllQE5OAYzcO7oWBLtZHR4DxMRAnB5LV\nSS6Xhl8gp4lTCYkEYNtQSdc/STDMihS3Ms4ECKH9ldfR6m7QuudtrWk2jh2GFeioSP7Sl7407HUY\nDIZtSBgGNVu4TummyA3zeRz7n/8Tlm2B+j6UUlBKxo4VXSAl7HIZ0chIy/BeGiFETQrCOYcQvOZ6\nEQQ+pJQIAh8kI2o77YSRoARHEFShBAcoA7yc/toEpwRz01MYpQT99MIkIYgcBzaloJ28Rs0FZioS\nmuTzesAvnweRGe9ZtLrcInAcnNq3D7tPnYbbjzxDxdIQEP3+RJG+LopaJSNpeKRlGludQYeTGAxb\nhI6K5Be84AXDXofBYNjiOI6LQ4cubikEu2U1h4sGKIVwKPJeDpbFIKWClKIWZtIpLIqw+0f34/jP\nXYVwPDuVTAiBxcXZmg452VfiekEXFuCePo3HH/tvyPnWdLcGJ4wMyOQE6GWXg0wOb5gqdBwcv2AP\n9j19Ct6ghsD6QBGC0K2Hw/SEFFp3nMScKwmcOlXX7XAOnD6dHcTCBSAFVKXc+/63EiaZz7DNMIN7\nBoNhTaCUDk2WsBKEkNiNggEY3tCfUgpCcBBCQWnsxwsFx3FgWRZIoQD34EGoQqEl/Y9zUXPCaCeL\nJITAdd1W6ZtfhaJUP7dqtTYkV3O/oEx3eIFalLVT1THWzq6dkGQ4JkeWigf8OjigUWHY4MygKhVd\nvCapglEYX+LObiJ1EHL1Tq9UuhimNC6M49CVtM1dO4TUl269krcoZqDPsN3oqUj++te/jr/7u7/D\nk08+iSDjw+P+++/ve2EGg8Gg5QuqYVBvowzttYNSkirIU64XYzaiy5+NdmKN1ZwwXNfDoUPPqF+R\njrEWAvAcwA8BVoXiEXD2HBD4elgt0SLHRScF4LIIlBJkKSEGgaWAmXB1dw/l+zq9z/WgnETbHOk0\nPyl08Tw3F9u1Ce3iQWk8iKh0Z7gTSQQhANEHEw1F8kr04AayLoN9ZpCvL5QQUAsLwMSEGd4zNNB1\nkfz1r38dt956K17/+tfjxz/+Ma6//npIKXH33XdjfHwcr3vd64axToPBsI1gjMF1XYRhAKBx2G6Q\ng3edEI3kceq5z8PO/3pwTfebRhWLEP/n3xsKr3SMtXX6NMgP74H1/Cvqzhdf/TuokRGQHeeBxMN8\n6Shr4nkgzNKSgnWEeB5w8BAwMtqwTpRLQGEcyOd18l8Q6E5yGNYdNUTcVR6Atd3AWIfBPjPI1ye+\nD/lP/xvsLW8zw3uGBroukj//+c/j5ptvxk033YSvfOUreOMb34gjR46gVCrh13/91zGyHf6gDAbD\nULFtB4cPX4YzZ05hbm4WhCgtWYj1yGEYQKlEn6y7iFkOPIMoqBVjiEbycRdyfQjDECeDMvb6VaQF\nK0mMNeFcW1jNzIDs2IGIc8xPTWK8tAw7l9OFJtDoeNFj11ECiCiBBd2kHgTEcXRUdOr/h7Ks2KaN\n6cHApOVNacp2bkh+gFIizhsHlIIqLkKd0zpyNTcHVCr6awaqVBr8etYaM8hnMADooUg+duwYnvvc\n54IxBsYYSvEHwujoKN7xjnfgIx/5CN72trcNfKEGg2FropRCEATwvBxmZs4DY/pjybadeIgt8UhO\nh3lozW/aM7ldQayUqlnN6WE6CR5HVXPOY6eL3so9IgScUgnE6v0UrRCixQkjoeaIEfrwAfh+Vfv2\nxiSOGM1DfUIKzOVc5Bnry+0ii5BRHMt72FepwF19894Roq0mmVOK4s7zUDh9FpaM3SqSdMaI99fF\nlRJYXo61z7pTLf/330Pd838AQEtZFouQX/xs9vvuuCBthjsNBsPmousieXR0FGFsxbNz5048+uij\neOELXwhAf9gvLCwMdoUGg2FLIwTH8eOP4+KLL8WOHTu7um+nneIwDMA5rRXMxeIiKKVxwRwhn++t\nW2aXy9jz/R/g7JVX9nR/IQRmZ88iiqIGJ4walTJgOzhx5mnwcgmPPnoUSDljJI4YbYf6AD3YF3/b\nMMwHAiWZllskG1CqC8O1TjRsQnGug0oEz9Qkc9vG3I4dGDl5Cpbv69tZ3OkXEhBcP0Yv3fKkg0wI\nQIlunY+MAgV9AEIAYLrNKXm/ClUs1mQjw2LguuftrGmemAB73S9B/ss313slhg1I10XyZZddhqNH\nj+Kqq67C1VdfjT//8z+HUvpU6Kc//Wk8+9nPHsY6DQbDFsRxXOzbdwgnTx5fcTul6gWx/qpqcot6\nhbfyfhILOCE4CoUJWJYFzrnuzg5MONAdSsnYEUM7cCROGDVcF5icgpqfhaQUjmuDxM4YaUcMz8s1\nDvUBAKVajlGp1N0ZkihrJaFKy5AjubrzBaBfBiH0C97pcNsQSIJKrHwO05UKrIkJYHS0rkn24oQ8\nz9PXTU9rCQmgA02iUD9GP1KMVMQj8byOtLkKAIrF3vfZKQPWPQ9a07yZILYNTEwN7HfdJPhtLbou\nkt/5znfi6aefBgC85z3vwcmTJ/HRj34UQghcfvnl+PCHPzzwRRoMhs1PFEVYXJzHxMQU7Pifh7aF\na9MBBcCYTklLAkASTbKufZrT87IfgxA0WcClHCfiNchVLB6ikRE89eIXgedy3T3pDqGUxnLh+rrS\nSGqDCInC938I/6Uvg4xP56/oiMEY2PVvgDVZ7zQmUdbKdkBOHodz+WWImF0zh/AAHAgCWCOjugBd\nz84iY7AIwXRxWevBE/9omrJwY7HLhZ1K/YsDTQyDZ9sN9PWCSfDbUnRdJD/nOc/Bc57zHADA+Pg4\n/uIv/gJhGCIMQ4yOjg58gQaDYWsgBMfs7FmMjY3XiuTVsCwHrutBSgHHcWsSiXK5BKUkKGWIojD2\nJm7tBOmCekDDe/1+vnEOVi5DjIzogbSuF6HAyiWQLrqHZGSkHmGd4Hngrofizl3YPTICULs2FEcB\nuErpVEHWX2ctGfCzpcIG8p4YCCoItF66+fq4a69WGOyD5+kO/2bEDPQZthldf1J/9atfxStf+UqM\npwYTHMeB4/SXomUwGLY2jFkNg3mdos9409h/mEIP8hEolQzykdqZ8Sw2iq8yW17G+Le/haVXXAMx\nOdn1/QWlODMzjZwUq4tDVoiwBgDOQ8xNFDDt+2AqhEp10jNDSAAd0dwFISU4lvewv+LDG5YZcxOc\nMRRnxlE4cwbD+o+kggDq/vu0dKWZiAOBD1Uug7cZ7CMTk2A3vWvzFsoGwzai6yL5Qx/6EG677TZc\nccUVuO666/Dyl78cuSGdgjQYDFsH27a7HsxbiXYSjV7Q7hfa5UIn5dWvX6kbLQEIa3CSBNGmSyws\nhmiiAFVcgi0iEB61OGIkThfAChHWcQAJ5mYBSqCKRUDWLULahpCk7o8uD3IGTpK4l7hPpNwtOHUx\nNzWJkbNnYFcq+n0TPBG1A5D9HzVxrgtkxuo66ATKAAKQAweBrP+LflWHv/g+MMAi2Qzy9YmJ2za0\noetPu3vuuQff/OY3cccdd+D3fu/34Lourr76arz2ta/FlVde2Th0YjAYDH1gWTpUxPfryZ5JQTuo\nzxopJSqVUk22kS6+9WCdiPXQGfdlFAt79nQwOrg6SiksLMzFxXrrbSrnwZubw/z8HATnsZ1d3REj\ncbqwbaet20USQGI9+SToffdg9JprIEcnwHlcJLcJIalhWYCzjsNIMo6Itm1dGPu+viTuFrmc1oEW\nl6AeOaon6ZZL+n6cQ1f+ajCnF2yrrpNOiPXQJJ+ve1OnbwaGE3FtBvn6YiPHbZtBwPWl6/8yhUIB\nb3jDG/CGN7wBs7OzuOOOO3DXXXfhN3/zN1EoFPDKV74St9122zDWajAYtjBSSgSBD9t2avpiy7Lh\nuh6CIGzYdpCpe5RS5POj8P0yKGUNhaWUEkJIUEozO9dWpYrJp5/G3L79fa9DKQXOBRhjoLR1X5RQ\nUACK6ME13fFWcBwHbGkZo3ffDTGzC/buPa0R1inI2BjI1CRgO2DTU1DjMyC8XpiTfB7KdXXBmVHo\nOVLhQMWHJdbBJo5SwHVhMYbpc+dgMaa724m7RbLuwjjIxZfo35P5WW2lZ1moGWsP8CzEsFDLy9mS\nDrQGmrQEnGxm3bOhkU06CLhVhjz7asXMzMzgxhtvxI033ojvfve7+MM//EN89atfNUWywWDoGMdx\ncejQxRBC4PHHH8HBgxfB89ZWwqXdL2hcDDeOmSUhJllFshgZwdPPex7oAP8JaO21Ps1NhACrVCDy\neRDKQAB9W5NTB6OAtbyspQWDIuWvnIYAcNBGu9ylbrknKIUlJabPnNUd4rS7he3EaXyW7uYqBcWs\nlJ0bhRbJbGzU8jLEp/9CSzOybm8KNFG+Dxx7EvL0KW1XZ3TPHbNVijnDcOirSD59+jTuuOMO3HHH\nHXj44YdrXWaDwWDohLQt3ErdYW0BpzWl+mtaJ6ygFMk8gz7soT3FGMLRUbhD0m5apRJ23nMPzlxx\nBVY6kc6lxNmZaYxHUUNsdVso0x3XrHVbFsh4QcsCMqQBSYGmPYrDVu2y5/Xm3pGBJASR48COItBe\n30wpWjXJiRd0FiK1vRqQNKNbfF8XyK6rBzCbaAk0sSuA62lNLSVd654HrmneTBjHjqFARkZAnv+C\n9V5G33T9STY/P4+77roLd9xxBx544AHkcjm84hWvwHvf+15cccUVRpNsMBg6Jm0LlwVjDI7jQikd\nAqIUjb/Wh+oAXUQrlXUKXa3ofJGml8G95LZByj/aIRwH0fQ0qONkuFsoRHbn4RlkcgLsssvBpqbA\ng/p9Is4xP5rH5Guug1MoZN5Xzc1B3vGPIC+5EvIfvgqMFxq1y5YFDMjtKHQcHD+wD/uOnYDXg5ZX\ncV6PmE5rkqvV9r8UybaJNEMpKMHXJ27Gy3Xc3VSOXX8fun2tOtU0b7eBvl4wQ4Bbiq4r2quuugqM\nMbz0pS/Fxz/+cbz85S+HGydAGQwGwyCxbQcXXXQJwjCspdH5vo8zZ07VJBnl8jIsy17BJ1m2SCha\nt5MIwxC6SO58cE/XUBJRFGYO3HVLEpudIKWIrxMQTh7B5ARcxwaVIh7ck+CcA1x2EjxYo3Gwr35H\nIQXmHBuFnNfqr5wmn9fFkue11S6vBxbnmD43Cyv2MCaWBTU2BpSbNMm5HEApuG2juGMGhXOzsKJY\nKiKEvlBaK5jJejt6bBC220BfL2zkIUDADAJ2S9d/+bfffjt+/ud/3gSHGAyGNcG2HTDGaml0lpXE\nOCdVa3vNMIA2HeZGCNGR0N0O7ukOt2gYNmyHGBvD0s//gg4TyVynioOZ6vZ2TqWKMApRqVQRMBbv\nr5JKHlSYnT0Ha2kJtuC6YO4A1/Vw0UWXIJfLwffLHd2nW5IBP3uNPJIBwBIC07NzjUEflLVqkuPE\nPu66mLvgAowsLcNKH+SkIqk30pDfiiEmYaS/AlqukQz1WQQizEMFCsgZOcG2Z5MOAq4XXRfJr3/9\n64exDoPBsA1JB4ysGLG8BvQyuJe+fVUsC6KNhAGod5EZq6cHUqofmykJr1oFz+V0Gl7D9ixukCqI\nWBvcs8Z0lRCSbqAA3DUskLc6K4aYSKmv/8kD2js6CiE+95eA50ESgqJrIcqPgfzGb5phvgxUGEL+\n549BX3yFGd4zNNBRkXz77bfj7W9/O/bs2YPbb7991e1vvfXWvhdmMBi2PumAkawiWdvCBQ1aW0op\nGGMIwwBWRqLZZidddBNCQEBg+z7O+9H9OPnCFyBMpZ3qjnprYd+rb27bEJKVaOOCsdp9NgLcslAZ\nHQXfDLM0K4WYAEA+HvALuZZejxdiWQkBURxqYQGkw2G+bTfIF0VQ//kA8Oz/YYb3DA109Mlw9913\n44YbbsCePXtw9913r7gtIcQUyQaDYSCEYYDjxx+HlAKc64JP64P1AF/a6SJraG0tBuo2AtJxEE5O\n1pwQgijEibyLvVHYmdtFF0ScY96xMGlZYBOT2klhJReMiULbeGZ4Xlsv4JWQlCLyPNjVKlYWuSSL\nyXa3EIyhOjoKwVj9gGIjuFusRFaISZqmQBNCCYgIgWKp830MOJzE0AdmEHBd6bhIzvreYDAY+iWx\ngRsfn8ChQxfXopUTtF7YhRC8dlFKxMl7ulDmnMeyg4wQjjZ64k7pxN0iGaDTBbzel5SDd71Ir6Vh\n37aNYHICIaPw/aq+APD9aq1rm46t7of0cJ9z07tWDLyQd/wj6GuuA5nOGGSKAy9UD0Vy6Hk4fuSZ\n2PdfD8ELV/FmlrK9u8VIXlvE+VUg0fNuJHeLAaKiqB420nzbauEkwNYNKGEMZGICWFpa75VkstEH\nAduxVQYEuz7H9OSTT+LAgQNDWIrBYNiOpG3gskJEGGPYv/+SWoHn+z5++tOfwPeryOfziKKzoJQi\nl8tnDs91rBnOIHGW6MTdYnl5CWEYxjpiWnPW6Mf1IhoZwVMvfhFoxKGgDwa0CwegO+hApVKu7efY\nsSdw5swpYH4evFzCo48eBebPAUBDbHVfpHTLZGxs5dP3+TzI9PTKThnDhlJ9yXC3sJiFXLkCi1l1\nh44t6G6hwhDqv39W0ym33L5KOAmALRtQQqamwF73yxD/3/+73kvZWmyRAcGu//Jf9apX4ciRI3jt\na1+LX/zFX8TOnTuHsS6DwWCoYdtOQwGdDLdZlg3G6kNuqzlMdIvW/LKO3C3GxsYhBI9jpWls0Sb6\nWpNiDNHoKJylJUBKWKUyaF4P72nXDgVKaS1MxXVduK4L5dqQlMJxbRDXBecCQa5xAIoAACAASURB\nVBDEa9Wa0+jb34T4lesBWi+aGq3h2rwmveiWe8QJQ+x/8jjsqM8kvzbuFkxK5MtlMCkbvX83qLtF\nryjOoYIQxHWBQuv7tmI4ST6vdeddBpRsV0yC39ai60/vT33qUzh48CA+8YlP4OUvfzne/OY34ytf\n+QqKxeIw1mcwGLY4aYeLjUja3aLdRRfsVireun1h3SssinDBAw/AqVTariOxyWPU1q4Y1I5t85rc\nKoSAmp9vsRNzXQ+HDj0DrjtoJXMH+FVdYJTLtchrGkRwS2XQIATCSA+lSaUdHKTSnd4UkhAErgPZ\n/LrX9MUpTbIQdSmGlPXrNromuR9cTyehrXbJ54E4nISMjNS07mpxEeLvvqx/dwzZxAl+NfmOYVPT\n9X+lq6++GldffTWCIMC3v/1t3Hnnnbj99ttx22234corr8S1116La6+9dhhrNRgMW5C0w0U3aB1w\nVPMxTmKrV7uPQQ/2PZVzMRIEgDMcz/tkwG+Kc6wo8PA8kOYBQN/XkddKAqVlLRGgVBf1DQWu0jKK\nuFsfOg6OX3A+9v3saP2f2wqa5DCXw+L0FHYpBW+La5IHghno2/yYQcCu6Ll147ouXv3qV+PVr341\nSqUSvvnNb+LP/uzP8G//9m+mSDYYDEMjiaoulZYRRVFteE27XRAIIdoO8en7W6sm8G12pOsi2rED\n0nUzTxcqpRBSOlT3j9qAn1y5oCJjY2BNA4Bqbg7ic38JZTvAU8dBLr4EJJ+HqlSgfvwjoFAAxseB\n3buBKFo5JnkFTbLK5yFcDyqf14UzsCU1ye3oNJxEVSo6oGRhvj7Qt5UG+bZR3PZGGQTcLIN9ff/l\nP/jgg7jzzjtx55134uzZszh48OAg1mUwGAyZMGbh4MGLsGPHTlDK8OCDPwZjDNPTMwCAYnERhcIE\nrDbet4Ron+XNRDQyglPPfR5mHnig4frE4SK5cM7BeQRuWwinpsFtC+ARONeuIH5ciAaBD6Vau+rr\n5Y+bOQDoedrqzLbr0dcq7hxbDGBU39bJ2YE2mmRLSuRKJZ22t4U1yVl0Gk6iKAUirgNK/vavgdOn\nIE+fAt21e8sM8pm47XVgkwz29VQkP/roo/jnf/5n3HXXXTh27Bj27NlTk1lceumlg16jwWDYpjiO\n22ILF4YBTp06iYMHL4Lv+7WBvaQoTr5fj6CRpKsNIB7ckytGRddt41b2dFaMIRrJQ9F6wZYUxlEU\ngggBVqli0bZBHac2UDg3dw6EkNoQ4dGjD+kDhPl5yHIZYRQ1dpo7OJ3eyXAfgIGm9w0LFkXIl0pg\n/Q4GbkY6DScB4mhvAKNjgLsAOI4Z5FsjzCDg+tJ1kfza174Wjz76KCYnJ/GqV70KH/nIR/C85z1v\nGGszGAzbiMQveWJiCnZ8+o1S2tEQme4Mx3rTdUJKiTAM4iE6WiuYi8XFtg4X+j5hXMiKHuQPCgCF\nU6nggh/eh/mXvgwyp4ubdCedEB264jgOLMsCZxaElJBCdD29nQz3rcZAXDACv/W0f8ThlCrY/8hj\nsMOocbCOUu173C9Ng3vK94Fyub4GzoEo45WL+ObT664WTgLUA0pyOSjH1s4XUbjyfQyDIR4EZAcO\nmjTAdaDrIvmyyy7D+973Prz4xS/edKcsDQbDxiXtl2x3oVGjlGJ8vKCLP75+HUFKdehJ4nAhpYIQ\nfEXpB+dcd4IJBecRpOyt8Ejiq0nsrNGKhFL1DruyNriEIBnmO31KF8rLS7ooiwf6qJJwl5fqA30J\nBHqYz3W1LGOVDrEkBNyyGt0w0u4XKnbQOH5Md04BcClRHMmjMD+vZRpphAQEh+Jm0G+zsO0iuNeK\nLTIg2FWRHAQBFhYW4LquKZANBoOhicQOTheqjYVpO7RV3GDt4lZDOh7CmRmQXGt4y2qsRVGRDPOJ\n48ex8K/fwuTLroF93nltB/oSKKMg46OgkzMdFcmR56K4Ywciz61bdhFS0yzXnC727QfZvQcAwMMA\nc6GPEcuC1dw1DrV2l7Q5KNoUCN6q8444wDlUtaqt+KpVKJ6R4LcZh/kG7dixjYYAV6LfAcGNMtjX\n1V+y67r44Q9/iLe+9a1DWo7BYDB0jo6llplDaJuFJJlPX+pDeM2E+TyOPf/54PmclgB0IM3Q+mjV\noo+OLAvB1BSqhIBVqxBCv35BaQmnXRu7SkvITxSy0/nWyAaMjI1BThQwNz6KwkShntqXNdCXQIm+\n3hG6o9zzzhsH94jn1fSghFGAh7H1XFMhFMsSNi2CA0+fAprPyMi4uy7/Sx80LC0Bgrck+G3VVL5u\nMEOAA2KDDPZ1fbh7xRVX4J577sGLXvSiYazHYDAYOoZSHeAhhNKuDvEg3ErDcmk4X9+CJtExA9q6\nTikZWwBnOE8oQOTz2mxBypoUt12xLKVEtVqJDyJ0UT07ew6UEgghIUSEn/70pwASj2noOGu/guVH\nfga3VOwrxrrjAb+V6HL4z5EKByo+7A4LZBZx5JaXwaLOfl+2PFLqAjmxzUuID6KQy2kNc8iBMADG\nC/o6wKTybRLMIGB3dF0kX3/99fjgBz+IcrmMl770pZienm75EDxy5MjAFmgwGAztYIyCMQtScgQB\n4kJTIQxDCCFqRWiiFc7CcVyEYYYN1hqQ6JgBAs5DSCnjWOvWojAZBNTNTe1YoZTKLEKJELBLy6go\nBWJZ8fbJY+vBQkoJcrlcLL3VRWUSZ82Y1RBj3QudDvitRLfDfxSA20UH2eIc+VIJVocHVTWUrAeb\npElkCZVKZlKf9h/eBANvlDbJBWJ/advWl2SQL5+vdfIVUA+DMWxczCBgV3RdJL/zne8EAHz5y1/G\nl7/85YYP6OQD++GHHx7cCg0Gw7agm3hqpRSCIIBt25iZOQ8XXLAfntfqguH7Pk6ceAJ79x7MvB0A\noijEww8/2Pf6eyVxw0h0ycml/bb1r+0UF1aphPO+ew8qz3kO+EShdt9kqFAnEyrYth1Lb/UD8dwo\n+Hnnwcl3r1XejGQO7q2C4kJ3SxcWWotCIRFYFk7xALsfewpuc0EcRkAYQPm+GezbQKhqFeLrXwP7\n5RvM8N5a0cNg33rolLsukr/0pS8NYx0Gg2GbkxVPnWUL5zguzj9/H06ePI49e/aCMQbP8+B52YWd\nZdkr3m5IkfPAZ3ZAed7GtjJrsoZrR82uTSE+omg8qsgc3FsFm1JMF5dgjY3p1L80IYdiBOGePcDE\nFIholM2oSgUol0DaHLAZ1gkpgeLixvyd36KDgD0N9q2DTrnrIvkFL3jBMNZhMBgMLWTZwmnv5D61\nrluMZKgvNzKCYf8rDaIQJ/Iu9kYhVir1huKCEVvDRWfPoFgYQ6Fcgp3y61U8AhaLwEQBxLJ1x5dz\nLY+QFKAKsGhfKXqWUpienQM8t9VfWBGA6AKA5ClIlvTD+AuvOWp5OTtZEDoCHdWqPo5qdutIWEfX\nDjMIuL5sYp8ag8Fg0F7Dx449jgMHLuwoeGQrohhDODoCbw26TUophJSu7q4xBBeMxBoOJ45j/sc/\nROF/PB/WjvPqa5ubg7zjH0Ffcx3I9DTU3Bz4n/4voFSKi1oblFFItb7BM52gwrChu71iiEmazRho\nMkTU8jLEp/+i5nPdcjuPgLPngOIC+FIxs8tvXDu6Z6sMCHZdJB8+fHjVDo7RJBsMhrVDIQyDHtLq\nGtGOEqShyZgMx7V77H73uR5IKaGiCKxUQlStQhCr9jzS7iBSCvhN3TfGGJDLgew+v+5qMESyHDLI\n2BjooUOgRIIePATSLKPJ50Gmp+uWca5bt3OjDGkxt+0HKJw7B9vfWANnyveBJx4HXE8n3AFaz7y4\nCFhs5VPvJtCkEd/XBbLraqeUJggAlRsBHgm1PjZtKQgY145e2SIDgl0Xye9///tbiuRisYh7770X\nZ8+exVve8paBLc5gMGxvVhvmo5RibKyA5eWlPvbB4LoulpYUhBAgpK4jlVLWLjr0o7Xs0Nf3vPsG\nVvJJbr6+5kjR9HXlx5fwfR9scRF7f/ADzBEgHB9veAwhBMIwhFISR48+1BAc5bouDhy4EOT88xtC\nPIbFIBwyAMTJebHXryI1D2UqBKwwAhWibnMmZF3DvE4HQcTzgIOHgJHR2uuc6JnhOuC5HIoTBRQW\ni63OHFsh0GQYeLkVO5rKsUHy+ZZtunXtMAl+A2KDJPZ1/VfULkjkPe95D2655RYUi8V+12QwGAwA\nsof50kgpsbzc32eObTt4xjMOQykBgDUUhZxznD17BkJweF4u00ZOKZnpa9wtSRGcWNe13t5YEGf5\nJK9WKOuUZQkLurOqLfRYw/0sy6pFajuOU4vU5lzEtnAbN7gl4hzzjoUpzuEAOuhidKweNU0IFK0X\nyZILcChILrSUAdBDXImGWSFO4Fv7gpM4ju6Kp4o2ZVmAbYN7Oczt3IkRP4TVXMBt9kCTzc4ahe30\nzCYZBOw3sW9QDPQv/7rrrsMtt9yC9773vYN8WIPBYOiJTgMtLCspBllL15pSAin116wiWdez/ReO\nifVbLz7JWkGQ7ZmcvS99mjnZV2txnR2pLUTnfsKdDvitRLddOSEF5hwbhbhIJGNjYNe/AeLHPwJG\nRkBG8rAYAxcCSgFRPo/inj2I5hfr+t8oAk6d0kWElPrndYzFbUAIvZ4ojL8PWwcBm7yaFSVQlWpr\n1PQ2RAVB/WAofX2l0tYtRVUqWrJRLtUlPJsYMwjYHQMtkp988smBdFQMBoOhF4LAx8mTx3H++fvg\nut7gTtevEb34JNevq2/HR0dx+sorECnVlS6VCAFWqSAagEVZxwN+KzGArhwZGdEFr2UDtgNiMYAL\n/eJZsUbZYqlCWOl4axYfEHWppbE4x3Q1gDXgTp3iHFhc0M8lCICd5wGxM0MDQgedqEeOAratvaAD\nHygtb2udsgpD4CcPZLtcSKmv/8kDUM0HwpGWr8i//hLIe3/HDO8NiM0y2Nd1kfz5z3++5booivDY\nY4/hG9/4Bq699tqBLMxgMBiyiKIIxeIi9u490NLZTUJGNuNA3SBRjCEaG4Mql7sqiqxSCTvvuQdP\nv+hFCEfyDfHenHMIwREEPjiPWob6EhhjPUdZrzV2GOrBvS5S8CSA0HVhE4IsnwmLc8z4QesAWJ8Q\ny4KamAQcGxgd1Y8/Pd2ql40jo8nFlwC5HCglsEpL4HPz21unzLkuhBnT0drNtAvQoQyQHKq4aIb3\nBkkvg33roFPu+i/mT/7kT1qucxwHu3btwlve8hbcfPPNA1mYwWAwZCEEx/z8LAqFzqKKu33sdIGt\nXR5UrOVVyJJVDPLs2bAH9zpdg+9X4TOK2dlzoFSX2VIqSCnw+OOPQAiOavWnmfIT13Vx+PBlQ3XB\naCujoUw7GGTIVcAjIAyhZNJJBihjenAvTNmmRTwe8pOZEoWQURy7+CLsO3ECXhcR2AOBxR1v24m/\ndwCpwBmrD/IpvyEymlACIiMdNW3QBXI3B3GKAOH6HVyYQcA6aZ3yWqXvdf3O/+xnPxvGOgwGg6En\nCKGYnJwCY1ZXmtk0lsWQy+VQLC4jiuqPoYtmASEEgsCHbduZUgjGrL7DTdZicK9TZPw4WrOsnxch\nOrHO87zaMF8z9eE+XaQNywWjnYyGTE6AXnY5yOREemPAcWqn1JVFAR6/vozp4jnw60Uyb/IZZgzY\n4B1YblmYm57CSKlswg+2Ght9ELAdwx4QXKP0PfP3ZDAYNhVpWzghOBhjmJ7eAdu2ey6SbdvBc5/7\nXMzOLjW4N/i+j5/+9CeoVMqgVBfjWQUiIRRK9ddRXsvBvU7XQylNdYvjYT4AbrkCMTKSWTz2+h50\nQzfdNTI6CvKMS4CRUbDRPFzXRhBEkBIQy8uouAwiPw4an0ZXlQrUj3+ki2sACEPtNLGBsDjH9Nx8\nq/2bYU1YNcGvUmmf3gesa4LfWrFVBgQ7KpLn5+dx9uxZHD58uOH6n/3sZ/jUpz6Fxx57DDMzM7jx\nxhtx9dVXD2WhBoPBADTawkVRWAvA6BfHcZDL5cB542Npja2l57ya3B7SNN+vFwY1uLca0cgITrzo\nhRgZHe16jay0jPF//TcsveIaiMnJru/fDW0dMrrtrtm2ln3kR0BzDsBCLVMQEaojOfByta4h1m+0\nPi2vyIbs4FlCYHpuvrs7SQlVrQLlMoA2CX5RpDvuzc+5jfRkO9JRgt9iEfKLn9XR6BmYBL/V2SiD\nfR0VyR//+Mfx0EMP4Wtf+1rtupMnT+JNb3oTfN/HJZdcgkceeQS//du/jS9+8Yt4/vOfP7QFGwwG\nw1rCGMP4+ERfgSUbDcUYotFRKMb6cq8TQjR00JPhvmSor98Bv24dMla0/POrUJRAihDKj6Ck0il2\nIzlt/5UuHiMep/N1tNsNj+IcKC0DTzwGdeaUvjIrwU8I3SGltFHDLFXsHW0K5U4S/DC9wul/k+DX\nGRsksa+jIvn+++/HDTfc0HDdF77wBVQqFXzmM5/BlVdeCd/38ba3vQ2f+cxnei6S/+Zv/gaf+9zn\nMDs7i8OHD+PWW2/Fs571rFXvd8cdd+B3f/d3cc011+CTn/xkT/s2GAybD0q1l2/WAJlhuAghMDt7\ntkFekQz3HT36EAghCMNg1QG/FQvlLof/MrXKngcyMakLkzCEdC0g4IBSsKMQBRHBrvp1lwjf197D\nBLqj7HkbXpO8GsSydKjKwQtr8pR0gl/N/i7Sw41gTdHXIu4um7+zOqsk+LWj2wS/QWMGAbujo7/8\nM2fO4OKLL2647jvf+Q4uvfRSXHnllQAAz/Pwa7/2a/jYxz7W00LuvPNO/PEf/zE+/OEP4/LLL8cX\nv/hF/MZv/Aa+8Y1vYGqFN/LkyZP42Mc+ZrrXBoOhJca62Te5VzjXw3R8BQ1o4oShB9wGk8K3kVGQ\nEIKDENoy3Jck9eXaFLfpAb+VBtMHMfxHxsbAbnoX4PuwLIJCIY9isQLOFeyjD8P697thv+KVsC65\nVD+vuTmIz/0lMF7Q+7UsPfjXIZIQRJTCBjIt4tYNSkFyubYJfsWJAgqzs7AobS2SQdYtotswYDbK\nIOAmSf7rqEhu1sjNzs7iqaeewo033tiw3c6dO7GwkK3TWY0vfOEL+JVf+RX80i/9EgDgQx/6EP71\nX/8Vf//3f493vOMdmfeRUuL3f//38Z73vAf33XcflpeXe9q3wWDYXERRhMXFeXhNpzubY6z79U1m\njMF1XVQqZQjBEYa6sEuQUiIMAziOG8dTCwAKStH4/hYIGVyptJoFnJTJGvTa0rZxnbwGtRCSLgp8\nnUSY/KPLTurLYi0G/BLI2BgwNgZiUbDJERCnDMIlxNMnURkdgRgbb0xT87xYw9x9cR66Lk4URrE/\nEmtmEdfzIF+c4MddF3MTBYycOwdrJU1yFAFQWo6y3kXWFqLfQUA1mgcmN24gRxa9DPaldcprRUdF\n8sGDB3HvvffWusbf+c53QAjBFVdc0bDduXPnVuz6tiOKIjz00EN45zvfWbuOEIKXvOQleOCBB9re\n75Of/CSmp6dx/fXX47777ut6vwaDYXMiBMfs7Fns3n3BUPdj2w4OH74M5XIZJ048gb17D8JLpdH5\nvl+7HgCOHn2o1kUFtOsFG1CnRBe5qmYF12oBpxCGATin8fWyyU4u23+5YR9JCEmp1P+COQcrl9u6\nYGwEhJSo5nMQXRwUOEJi/yOPwqZEp/htAHoZ5MtM8FtYaK9JllIn/DEayy/4tk7wGxSDGARUU1OQ\n7/89ABu7K9s3aZ3yGtHRJ9eb3/xmvO9978PS0hJmZmbwt3/7t9i3bx9e8pKXNGz33e9+F894RvcR\nsAsLCxBCYGZmpuH66elpPPHEE5n3+dGPfoR/+Id/wNe//vWu92cwGLYOSbfYcdyhaJNt20EuJzEy\nMopcLtci27Asu1Y4M8Y66qL2gj6bR1awgAMcx4Vl6X+UUkoIIWuvibaPW7uShi0vY/zb3xqKC0Y7\n14uu9ZaM6gE91vnvDQXgBgHguV2veyORmeA3OamH+dppkqentetHqKOat3WC36AYxCDgwoJ2LnG6\nd6vZtKxR+l5Hv+HXXXcdzpw5g7/+67/G0tISjhw5gg9+8IMNfqFzc3P4zne+g3e/+90DW1w7389y\nuYxbbrkFH/7wh1EoFPrahz5V2P0/DsZow9ftgHnO24PN8JwZ0zpYxgikFDhx4glccskz4Ti5NttR\nWFb757Pac7asPJ7xjMMt16cfH9CfJ9pfuLPPlLrlW93KbSVLhZUs4LSUlNb02ISIBqmcXlvWYzbu\ns74O1PaV/p4khToImi3r6msjtf1RSqCaXo/k9uR90VZ+rafvoyiAEBxRFDS8NyGjCPbsQcgoXMVr\nw3+KSETFBVhEgmS8383vsz1ZgJXP66/x9soikIQAoQ9kvY9+VXdhIwbS/F4JDmJZtefdvAJFtVef\nZZHM9dW2S9ZACUi8BkUJ9CtEoChFZNuwowi0+exAvCRKAaT/v8W/Iw2PF6f2EccFmKU745Tp7xvO\ngAhAKRAnTvsDAaSo7aOb57YWpN/n5LVUlMRGLu0tFjMhetiOUP3cALS8N93Q/DrV3ut8vrdBQEpA\neASgs89sZenXYtjvk5qfB//mXbBe+Ys9DQhmrbPhupwL5IYXIpLQ8WHgO97xjrbaYEB3fe+9996e\nFjE5OQnGGGZnZxuun5+fx/T0dMv2J06cwNNPP413vetdtdOHySnFyy67DHfddRf27t3b0b6npkb6\n6q6Mjw8+cnWjY57z9mAjP+eRERvAfuTzeZw5o7u2ExN55Js0pK5L4Hl25m1ZdPuc048PAI5jwfNs\n2B3GpOqGHY07w7RWPGYV2XooMF1Y68++5DqlVMPBgBCqVqjqxye1ol5vn6yh8R+lEPXmhGWxVCca\nABTsHVMIX/sa2K4LduZMXJg3buN5NtzIgmUxuK4F6TW+Hrr+EpiYyMOyLNx//4OoVqsZz1nC9308\n8cR/N5wl4Jyj6Fjgp45hrDSP5z73uXAcByLMo5xzMFLIg62g0UzeZ2upgB0AZqYLGIu3l2waS7vP\ng5yfB6qtshNZWkZYXgYhCpS0yles0Twsx4ZnKeSaClgptLtGYZX1iTCPomuBerb2dY7vG1gUxGII\nch5O7L0AB088BTsMG+6rJIOyKFy3fl8OXbQ7rg0r4/EIFHYuLsKDAqEE3HVQ3HkeJmZnYUUcUHFx\nwhiIxTL30elzW0vGx3MQVf1awrURJc/X6lyWoCSDZAS2zVAo6L/z5vemG5pfp6z3uuvHq+rn08nn\nV6d/I/0iwhLK1RJGRp2e9iPkOKoX7EJuerx2/7Vae5oNca7Etm0cOXIE3/ve9/CKV7wCgO4if+97\n38Ob3/zmlu0PHTqEf/qnf2q47k//9E9RqVRw6623Yvfu3R3ve36+3HMneXw8h6WlakNC11bGPGfz\nnDcSuVwBvh/AcfJYXl7C4mIFQdBYlFSrVfh+lHlbmpWecxD4OHHiGPbu3d8itUg/PgCEIYcQVTAW\ndfQcOOeIIg5CCISQ8fCd1h43o7XIqN2W1F+Jo4ZSClHEU9en5RYKSklEEYcQiexCb6j3W99PMvCn\n1ydq0lQpBYSQ8LmC8EYQRVH8WhEoRRq38SMg4HC4QBBwCL/x9YiiCGHIa69bsbgMxlitC55AKUM+\nn3XAoQAQCKFQLC5jdnYJuVwOqlhBVA3BixUQp9xyr+b3ubJUBecCS0tV8IVkewb11ncAfmvRDgB4\n9L+hHnkU5NJnavlB88ocF1wR+H6gtbzp2+LXpdhmfbXtihWEAQf8CISFtfsKLgEuEAkJIRUiIcGa\nO/BcAFwiCCKAhbpjD/17EgYRomrr45EgxMS5WagwhOICEQhmz9uJ/OwcaDKkJwQi39ePH0VAEEIt\nFIH4vVWVClCqrPrc1oL0+8zj11IpCpk8X9rF0CEXUEJBRQLFYvx33vTedEPz70DWe93t45FIP5/k\n91oPAmb//qq5WfC5BUSPHweJn08DXm4gISer/S2uCvWA1/1fiAAg/tvs+zGbmOyg0N4QRTIAvPWt\nb8X73/9+XHbZZTULON/38cu//MsAgFtuuQW7du3C7/zO78BxHFx00UUN9x8fHwchBBdeeGFX+9W+\nnr1PIAshB5K0tZkwz3l7sBmecxRxFIuLALLXK4SElKrj55K1XRQJVKs+okiAsfaPn4RjBEGAKGp1\nGUg7YSRdUSE4hBBx/HPS3ers8yjL3ULvOy5amgb3ktuFEDU5hR4AJC2uGfWhwPTjJ7epmh46fcne\nJvszNrk9OSCRUsG2W4vkdsN/WoqnXzMhRO1986sBTngO9lYDeCu837Xt5xdQKpfgzy/A2XV+fYPc\niL5kIMdmAWZBOh7gtZ6dkJTUnl/L85b6SIdzBbLC+hRXkEoBUoHEj6Fqj5W83o2vff3O8TokakU6\ni6+XEis8HgApgMDXuuMoBKpVoFKuD+7Npgb3OIc4erTusRxGQBggKlVBJzfG54Z+n/Vrmfl8OyH5\nW5D6fQPQ8t50Q/PvQNZ73e3jUVk/4I0Wih0NAvLPZQ8CDioNUHH9+7/a7/p6P+ZqbJgi+dWvfjUW\nFhbwiU98ArOzs7j00kvx2c9+tuaWcfr06YFNiRsMhq2JlBJRFMK2HVBKW3yTh0nihCHaWGOlnTCS\nQT/f92uOGEIIVKsZnZ02JJKJbgb3HMdNDfCpBtnFRqTb4b9uE/pELo/qxARErgcf5sCvpfQ1rIFR\nKItBVSpQzWdi2nWnNwqUxgNkXj3KW6nswb0wALn4klrQSxJOQrze/cgNA6CfQUCTBtjChimSAeBN\nb3oT3vSmN2Xe9qUvfWnF+370ox8dxpIMBsMmIgwDPPHEozh48CJ4Xq7FN3nQNMcg27azYjhG4oSR\n9ndOHDH6WYPWHaOpI93oca/1zrTF9347QwjAlMocaGxLUkSGIRCfxUhjiwj7n3wC9kgeYNmdOgy4\nkJSE1Af5+n2wJEwksYFjDEmYCM95KM7MoHBuFpYUOmwlrfWPupcLrDecfdBIAQAAIABJREFUMR2k\nsliEtZW8n3tIBFzLNMCekv/WIYBkQxXJBoPBsJnIjEE2DAQhBJSIIKUAFxEEr+uadbqhjL8K+HEQ\nQxD4+mwCD9HJCKZrO5iMONyVorGb4J6H+ZdcgcmrXg77vPNabmdzc7Du+EfQ11wHkqFZhucNRPOZ\nJnQcHN+/F/uOnYAX9F+oWlGE6adPtYSTcGZhbnoKIwuLW6Z44Fb8nErlrVUkb3R6SP7rJYCkX7bK\n77nBYNiGMGZhamoGCwvdBSlsNDgX4JzX9MBZcoG6DjVpe64uKWhO3EsP5QFKF6JN+2vcpnfE2BiW\nfv4XtJ642/sKgdnZs6AL87DLJczOnkMU1jtcSum1h2EIpSSOHn0IjDHIcgm+50E8/RSO7LmgZg03\nSIQUmBvJoTBRaEzpS5PPg0xPt799g2NFEaZPnVrvZRg2Ae3SAldLClRzc/psTK/7TaXv9WKd1ymm\nSDYYDJsW27axe/cFmJk5D7btIAyHc6qQc45jxx7HgQMXtjhc9EMSe60H7kIAKpWQVy9yE3lElrtF\nO3RR3Di4l8RqJ/KCarXa8jj1eG3SX7FsWRA9+tjroUMORigooWCUQqZOsRIhkAtDhF4OnNBayiFn\nDCUhEFACIcSK0hcAUMUi1NmzUMUicP5w0xu3ApboMf56nVFhGLt+cCBqEqRQEsdzh9lyERPB3ZaV\n0gJXSwpUvg+cOQ163et7O5hMp++ZItlgMBiyoZQOtHDNRheYg+iwpkkP+xWLi1haKsKy7JpGWUqJ\nIPBrz69SKdd0xdryLWyrp9UaZLbi4F4ul8vsJCfBHuutXaYk/TzqRbK9XMLOe+7FqRe/GHJ0pCHl\nsJvUxSAMsDiSRxAG6Hh0jzI9EEXXb5DcCUPsf/I47Kgzq8HVqGma+cqaZovH8dcZwS8bFeX7wBOP\n6/drcRGwmtIEczkdyT03p908mhESiEIoUyi3ssKQ4KpJgXJed6DXSAPdK6ZINhgMm5YoirC4OI+J\niamOAzy6ZdiSjmTYz/f92nBdvdBTDQl+zQl3K6XzpbdPvm8e3GOMQcpWecd6F8crIaXudCulrbMS\nbTJQ1yoLUdcpp2GMxkE0MQoQFuvUdQ8AQCYnQC+7HGRyot+nsjp+tbY0VanoriZloIrATWuPaWzL\nFkUA775wrmmaH30MW82bgngecPCQLpLDAHAdNJxicF09fDg9nV2whRyoVkCMu1Z7ehkSrKzs5NPT\nYN8QMEWywWDYtAjBMTt7FmNj40Mrkm3bxvT0DiwtFft6nGYnDEP3SClRrVYQVaoIoxDVagUBo5id\nPafjr+NAlTAMajrlNJQSFApjOHToEhBigeQ8MMsGyW2w0tDzQCYmdZcuKdx8X8sBCHQh7PvaJYPS\n+DqutxVCX9+HY8pWgzgOlO3o18ROorVjbEd3lm2nJfwFAKAIEJoCec3pYbBvGJi/IoPBsGVp9k1e\nTzaKE0Y3g3taz5x832UIwwDgo6M4fdVVEDWbMRXLReLOeNwVZ4zVuu06YITXdMpppBSoVnXKnm1b\ncKTCxNw8nD4CpYYBGRsDu+ldDQNRam4O4nN/CYxrnbd65CjIxZeA5POgjIKMj4KOT4AKqYtBZ/BD\ni5seEacFpulEk8w51ICkLdsJFQT64C2LalW/rgvzUOfOtd631BoJvx6YItlgMGwZHMfFoUMX11wN\nmn2TtzvJMF/CyoN72lKtPjSo4tvWLk1NMQaeYZdGCAFBXXrSKFGRUIo26JQThCAAUp0pIXVXdoDx\n65FSWJiawqRS6KdMJWNjrYEOnlcL76iFfeTzutBLft5gBf+GgXNgcUF3jVNnGCzbxrQQsGZnWwto\nQP9uhCFw/BiU75uwlA5RQQB1/32ZzhcAgCAEyiWIr/wt5Oho6+2OCzI+PtxFdoApkg0Gw6alOVFv\nbYb46gSBj5Mnj+P88/cNbL9ac1uPa04ijoFWS7dGS7jVSYbgOh3cc12v1qHVMcti3TvygyQUHIuF\nAkLBOx7cW002I8fHMP+sy1EYH1JimV/V0cZhVNN12gD2VyqwhWyRVytKsgfSVkBSisjzYAcB6EaO\nZOwGywImJgHHbtAkWwCmOQcm2mjMQ66jufftNwVyN3CuC2TGdEpjM5QBjIJMTdcP/BL8KlSxqMNq\nUqR1ymuFKZINBsOmZdiJequhlEIQDMb1gjGdlpfYnwH1gpnzCELU7dwSd4vEEi5J3OtE7tzN4F5r\nh3btusi9QISAXSpBup31cJVSEBbr6v1bN9lMWqfs+0DgA8tLQBSC8AjOYhGYKADNdluEQMlID6x1\nqFMOPQ/HjzwT+376MLwuC+wNDWOtmuTVUASwLJAhzTxseWwr+/VWBMhKbUQs8CpmzICkdcprlL5n\nimSDwbCpWSuHi3THehjYtoNCYQK2XbeAE4JjeXkZuVwOS0tLoJTBtm1QSiGlrFnCAVomQcjW6fL2\nglUq4bzvfhcnX/TC2nVady1r3wMCvl+FEBIhBZTtIKSA72cXg4yxoYSSdEtap6zm5iBTqX7NP6ex\nLILRsILwz/4fqD7/PiQhiBwHdsT7j782GPpgrdL3TJFsMBg2NWvlcLEWHWtKG7W0lmXDdXPgPAKl\nJVBK4gtFYg9X1wxvH9eMaGQET734RYhWOf2dJPclnflEohKGD+kDjbk5kCjCsdNPg0bZfq2u6+Lw\n4cs2TKGMsTFEnGN+YhxThQKcJIihTcofsShYWAKx7G6c7jIJHQfHD+zDvkcfh9fmoGIzwhlDcaKA\nwmKxo2hqFYbAKhZmbe9bqfSVNLfVUGHYkoykKhUgCKCaEvtaUvyGEPHejCmSDQaDYQU2kkOGQaMY\nQzQ6qoveFQYJE+kKIbRmEQcoOI4DxhiU5wCcw/McENdtuT/nAkEQNKT3bQT/ViEF5hwbBdmlPVYb\n32WnVMb+Rx6DXa7owT8h9Vcp4++3dpAGtyzMTU9hpFRetUiuhZO4HpTTw0F5GAFhoIcAe1zvlkEI\nqAf/s9UBI+JA4EOVy+CpxD7l+8CxJyFPnwKJ5UfspncNtVA2RbLBYDCswFo7ZPCMNLMkJEMPzykA\nsjbUNwxbtnYWcFnBHekBtvWwiesE3X1nsexCwbIsMGZBgoAKAQYCmhGdC6DWhU5dsf7+rV2m/pFc\nDmRyEpifz/RdpjyCO+9rzbIQ+iJlPcoZ0Ldt0YNEi3cet10LJxkZbRks6wRVqQDlkhkCBHQH2fd1\noEt6uI8ygADkwMHGoT67ArgeMDYOUFLX55si2WAwGDY3qzlhMMbgum7cuWz8Zy0EB+cRONcx1Hrg\nTsbOF7IhTa9fkscEVIsFnJQSxeJiTRMdhiEoJTUt9HrYxPWDCCKUHAdOsHIc80aj29Q/Oj4O+zdv\nBinVJQJZvsu4YB/ws58ChQIwPg7s3l0vqikd+pDUemGJOG67Q4jjaHlLlylzNbL8mLczzcN9Kw31\nOXb94GQNIq1NkWwwGDY16aG65iG+Zt/k9WQ1JwzbdnD48GXxcFkjvu/jkUcexsLCHCYnp+F5Hjjn\nmJ09FwdpNMZN90NScAOtFnBCcBQKE7AsC5xzRFFY23+yzUa0idOFe12TzDmHUgrcpuCeB25TkIw4\n56Rb3g0bNVmRjI2B5JqKumbf5SSpz9L2XLDtFeUsWwFJCCLbhh1FW8fubjMjeByvznXXPfWeaD13\n3fowGWJtYMA6ZVMkGwyGTU16qM73qw1DfMP2TR6064VtO2g3e2hZFgghDYN9jYN8g6O9BRxt2j+N\nLyy1zcYqqpRSqFb9ml0eAAhxVh8MLBVBKxUUFxcyi+HEnzqKoo6lNk65gv0/uA/0F2b0qeE1IOL8\n/2/vvsPcqO/8gb+nabTa7nW3wQ3jNTYOkIuJIeQS4DhKIJRQDgKBQEhy5OwLByH8UiGNuxRyhIQU\nCIZAKIbgENol1AvBT8gFHBOKAXeM6/bVrjTt+/tjNFqVkVbaHdV9v55nH3ulkfY70paPvvoUdIdU\nTLKscQ0wmYiMUAjb5xyAA7ftQDiAnUlLAno1FW2mBZUxd3FsC3h3l1vYaNsQL/81vW2h47jpFRvW\nu7nypuG+G5KSuhJ0njKDZCKiMSpX1wtJkhK74dW1O1kLvGEsbrDvDlFRFCUx1lqGYhiwJRmSTyqB\nEDZs20rb3Y+bBnZEdBxgGvANgSuQs2wD6GppQetYbpwynATDw4BpITQ45BbyGWZ65wFZTkwpHD13\nd6KyJAldIQ1Nlg2VO9PFcRITMGUJgJKdqwwAkcSLVcNyf5xbWkfeDYkNB56nzCCZiGgUXqpEKKRX\nJJVA18OYPXsO9ux5t+xfO5+R/GVXZnFfLm4aQ/BBpNXUhN0f+AAsn2EiqekPbnqKDFkAsm27caBP\nEZwsi6xYVwgBQ5arqkCx2BxlAP7DSaKDgGlAFg70gX53hy71+12CGyDb9khqBqVRhUCHYRYVII+3\npZyot5ZykgzIIjH4Jcdba6YNDA4AspzMDRdA4HnK/A4nIhqFbVvYvn0zFi5cXJYOF57UYj+PZdmJ\nIj4LjiMgSW63i0yl7H7h3r8Dw4gncqFHCvdSi/vy3da23V3aIAe0CEWB2dwMkdmRIgd1eBhaXx/M\n4WHUUpgRRN6z33AS6agPwPnNGggtBLyzHdLCRWkdHMIA5skytPccDllVgRCTOzKpAphsFL7THkRL\nOWHEIYZjQKip+NvXKiHc7islzplnkExEVKVSi/0URXbbljkW4nE3cHd3YwUcR4Jt28k0AgAl637h\nkWU5ubOeWriXWtyXy0jRXw3+CWpogDRjVnprqjILajR25nCS9pZWyOGw22lA09xzTAmSZQDZ3aRp\nPIJoKScNRSE1sKVcKdTgbygiIn+lGB8dCuk48MD52Llze2D3ORaaFsLkyVMxe/YchMNhxGIxbNz4\nKkKJ3by+vt604NSv+0XQRXVe8J1euJde3JeLXxePUknfUfdeOAgIYUPAzT32S//wXmikkiIRSLNm\njSmgqVZeTnOL5AbCiMfSuwgUooYn8AkAhqYhZBgV6XAx3pZymZ1Zxpq+wWmA2RgkE1HdKEUhndsh\nY/wtvcYbwEuShEgkgoaGhmTHDkVRkkFx5khr97L07hdVlEZbNu5uenoQLEQUgATLdjB5eBi9toN4\nNOpzWzdItnzaw1VS0FP/kjnNU6a6ecq7d7mB8kB/Wk9fYZlAbx/Q1pqcgpZ2P23taZ0GaoWtKHjn\ngNmYv3lLIB0uKmlc6RucBpiFQTIR1a3MvsmVNN4APqi32KuR49hpxX5+0/zc45y0XeFCcq69Y7y8\nacD9vyRJCJkmZmzciP6FC2H65FDbtkiMtq6yscwl6qAhNTVBufyzkHfuhPPow5BPOQ1SR0fyei93\nOfPypIB71FLxxpO+wWmA2RgkE1Hdsm0rrW9y0BzHgWka0LRQxQZouGOss7tK+BX2pY6NrpZZF7Zt\nYWBgIGMoSfY0PwDJgNUNoL2d8cKLE72g2xu84n6e+n/v64i0/xtGHLFEOkEsFoNlmYjFYr5fwxQO\n9nQuwmxV8W8RVwJBDjCRmpuBjg737f+ODkhTpqQfkOvyGhUyDMzesRO7Zs6o9FICky99Y9Q+zpwG\nmIZBMhHRGBlGHFu2vI158w4qa9cLIHuMtW1bMIx4MoiMxYYS460FhBgJPr0AUJa9Ir/K5mAoiorm\n5mZoWigtnzpzmh/gdcVwUnKshe+O83gIIWCaZnIHWggH27Ztxp49u5JrMIw4hodf831hpCgKtClT\nylrYF/S7DBNpOIksBEKmCanCPweUg235d7CwTMBxIIaHgUSqlBgaSp/CF8A7GwySiahulaKQrxLi\n8TjefXcHZs06MJmPnDrGOhaLYceOLTjggHnJor4tW96CqobQ0NDgW8ynqtURJANuwJ6dT505zc+V\nvguMQANkj5ueMZLDraoqdH2kr0NDjgDYsmwYRixvZ49SCDpHeVzDSapVPAaYltsPW2R8z3hDUkzT\nzctNVWQ+ugPAlCVojkB1DWd3FduibjS5igTF0JDbU9vM8SiYiX7bPkN8kmwb2L3P/zmwHbfI8LW/\nQ3itCE0rbQpfENP3avsvBxFRHkEV8oVCOubPX5iYelc+XpAvy3KyFVyq1DHWqqohHA4nd7RVVYWi\n5C7mS01jmKishgj6Z8+G1eCfu+mlYyjK6N06PBVpDhBwjnKu4SQ1ucPsDU3ZvctNJZAApHYycRy3\nM4dpuoMo4j5pNLqeP5hLYcgStkXCmDMUQ9gZ/wvQag668xYJGibQ2wuoiv9jlxgrjdY8A3CSE/jk\n9KE2ACA5bs5YQ8PIVD5ZGZnCJyGQ6XsMkomIRuF2uCh/MYsX5MdGaa8VZE5qtcic5gfkLtxzjxOJ\nYwrPURaKDCcUglCKCD8sC0o0CruxsWIT50YdjV2kQr9/bMdGV0hDawmmJZaKNzRF3rnT3WFsaU0r\naBNDQ8D2rcD06ZBb2yHb2W/tu7ul2d1PyiHooDtI+YoEzVgMfU0RtA4OQvX7vjIsYHgoO/j1I8s+\ngXbirZ7UqXxCAhwbUiTi/g4IoFMJg2QiojyqqUNGLvXW+cJvmh/gX7jnDlyJJQM8L4/YcZySFFMq\nAwNoeepJ9B93POz29sDvvxBBj8aut++fTMlixHA4a0BKMtBSNaBBBvwC0YnYO7FAuYoEJUlyA1tN\nc8dMZxISYBS2O19JDJKJiPIIqkNGpTphuN0vvP+PdLyQJBuO47ZfS40BHEfA3ZWt3K603zQ/d23+\nhXu6HoYse5MG3b7Ileo2UhYBT/0rOKdZVoBwg/tvrYoNp2Xhi6EhhAajmLN7LzRd98/Qr+FBKZWi\nCoGOvfuAsO5OcKxRDJKJiMpgvJ0wLMvCtm2bMXfugoJSPyTJDTS9zhfAyChrIRxYloAQoaz0BDel\nAVCUYMdYFyt7mt/I5ZmFe+nBtFPwZEGzsRHvrHg/rCKDTeE4sGwTdkZBkWVZsG2353OuFnGKoow7\ntz3wqX8F5jTnylWuCV5ucm9P+tvwsRjkoSj0zZuAqVPcHWUfyUEpOZ5X8mHbbq63H9NyC/uAkWNM\nt2MFJFTN7j2DZCKiPKqnQ4bbr7fQt9gVRcGcOYvSAjJvlLUsyxgaGsTUqVNg2+l9gb0OGKqqVmWO\ncyE5yak9o72peSNdPFJ6ICsKzKamor6+bdsYGopi//59MI30nEfHEXCMOERfP94cHoYcyg6GdV1H\nZ+fSsheBTnRebnJmkGvs3Yvu/3kEbcMx6Ged6z8kBUi2ExMMkgsiLAvo7XFTLnIV7nlVrrFh9xjb\ndp8f7/eOX+u3Mqv0b30ioqqWr0NGpbpejMYrxAqF9KxdZ0VREv2HFWiaBln2UixGuN0vyrniwoyM\nmM6fk+w4Dvr6egEApmklL/cCZLfF29hOUMCBIxxIkgxFydzlFgjFYpiz4RX0H388bD29qt6y7ERf\naxtBprdXqpCv1kjNzVmdDhwjjq7WVjTLSl0NScmlXN0yJFWFaGsHQimFdakMa6QYsjHiHmOabuAs\nye4PdxWkTDFIJiIao3J1vVAUFZMmTUZPT3dBx49WiGVZNhzHhmmavjvJmZP6AGR1mqgEN7VCGTUn\n2bYttCZaS8ViQ7AsMyVFY+wBcipZAkRWbq4DKZH6oSoaJJ+37r3UlyCJcBjmrAMgAhonXO+FfBNZ\nWbtleIV7fpsIQhrpDpN6jCyPBMlVgEEyEdEoKtXhIrXYr6NjCvr7+8Z1f96UvqGhKGzb3dV0i/e8\nVAX/SX0jt1cr3l+5sJxkOTnQQ5LkrNvUAtM0YOfIEc4cjR2XZdjTpiIuy5Biw+POe85VyFeXO8yy\n4rYyGyyyxVtGAaBHAzBnaAia7bAIsBCpecuZOcne534/B7ZTlnQMBslERKMIqsNFsVKL/YLgTemL\nRqN4552tOPTQQ2AYgJ3oDZtrUp/HL8WAgmeaBt544++I5+jzmjka27YtDA4OYGgoCkVRx5/3nKOQ\nrx53mKX2NkiLOoHBvxZ2g1wFgN79WSZCvX1AW+voRYAFCDkCc4di0KqsR3IgHAfo73P7JWfmJAu4\nOc2xmP8wEUcAovSBMoNkIqIaF4/HsHPn9rSx1bloWgjhsA1N0xCJRKAoApY18ocm16Q+ctlNzdh/\n1FEQTU0la5Ln7fK7k/78X5Skjsa2LAWKMoxQSAcgFZ33HHROcz3LVQDoEV1dcB59GPIpp41aBFgI\nGYBegwGyA8DQdWiSlDv3WZbd6XiRBv+c5LZ2twOGX/GfndhhLnHeMoNkIqIa5xavFd75gsZBVWE2\nN0NRlJJ3klZVxf+Fis/UP1keSTEpNu856JzmWuM4Dro1FaECx237FQCmiUQmRBFgPoYiY9vCg3Dg\njh35c58z85ZTc5I1bWTaXq6JeyVW+dJBIqIJwOuE4e72FS/IVnR1mVuag9cmbjwf1UYZGEDLH34P\nZWAgkPsrtO+y6O6Gfe+vIboLKyCtFQ6AnuZm1M6wbSoX7iQTEY0iiAB1vJ0w8rWiK5auh3HQQYvQ\n0NCAWMy/YCl1Up//9dldMKqhA0Yqt1+yWxSU2gLOsqycLe68tnLe/737qQa27Q6CEbYJx7GTA03c\n52KkN7RtjwwzURQZui7BNA1I0jj/5Bc4dKSWSJIEvbUVRufiyg5JyVEIWMjt6kqxhXumiWTvc9MK\n/HuTQTIR0ShyBaiV6npRSn6T+lJ5RWOKosBxbGR2waiGDhgeNwVBg2mmt4DLNyjFayvnXS2EKGrE\ntdXYiN7jji8457RQtm1j//69sG0LWn8/tOhgcqCJEAK2baOrax+EcEeNb9z4aqIftoRQSIUkKTj4\n4CVV19O70nQ9jDlz5mPLlrcrs4BRCgGFZQKJQkC/loIAIE2aBKmhAbW0Fe5IEsywDi1ujKQ0OM7I\nY1BI4Z7jAF1dgJK4znYA23IHmQRUYMwgmYhojMrV9cJxHMTjMWhaqKCArZhCvkx+k/pSxWIx7Nix\nBVOnzsDWrZsQCoXSumBUWweMcqeUCEWB3dqa1Rlk3PcrHNi25T6+sgw58a+jKJBsGw2GASsSgS3L\nAETyeZEkCYoCDA8XXszHQr7yCaIQUG2KQG5pAXpGb2NXLd0yDD2E7fPn4sC33hr5HpNlQNeLK9zr\n6AC0xM+aYQGm4Q4yCShNikEyEVGVMwwDu3a9g3nzDkI43DDq8WMt5Ms3qS+VqmrQ9TAURan6Lhip\nI6xrPd0CcKchyrKSMlhFgTYwiGl/egF7jj4a8ebmZJ9oVdUgyyNBcqEmeiHfeJiWhe6QikkFFgEC\n4y8ElNTC3+mo+m4ZicI9R5JgNjVB6+1xNwZyFe5pKRP9hAQ4TLcgIqoKQRbT+fGK/XINlQhaXfbB\nTRk6Uo50i2rlDorx360cbTgJ4L7DYNfhDrPo7ob9+ycgDg6mF7kNoKulBa2B3NvYgu56YITD2H7Q\nfBy4fx/ChlGxdTBIJiIaoyCL6fx4xX6xUYpzSh2s5zNagV9QtxkPvyl9+dIw3OuTn5V+gSVm2zb6\n+nqSecqZRhtOAgC6rmNOSxsMWa7Kjh9jZtsQfT2BDaWQ2tsgLz00sCJA27HRFdLQWuwO6VgKAeut\nCDAADJKJiGpcqYN1P27XBD0xuCJ3gV8opPvuxOq67u5O1lGnhGrlOA5s204+Z1ksC02GAVvTAFVN\nG06iqiosKzHC3K6etJMgSQLQtVB9tEQcZyFgMdMA8wnZDua89TY0Wco5ebAWMEgmIiqD8XbC8PKM\ncwWd5eaNuM4V5HoFfgccMA9hnz+6iqJA00Kwbe5eFctqasLuY46BPUpf40zuBL/s7z1lYBAtzzyD\n/uOOh93eDmBkOIl3vG1bQLgB0oxZQMPoefG1RBcC82ceAGkcLRqrxbgLAYuYBpiPDECPx4Hw2PrC\n+3EkCaauQ4vHyzbkg0EyEVEZjLcThm1b2L59MxYuXFxQ8V4+8XgMW7fuwNKli8d1P5oWytstQVU1\nhMPhca93vFKL9tyWdbnfiE4dIJJaxFdNhKLACrjFXEEKHDpSa8TwMOzfPgTlzI9BmjSp0ssZt3qd\nCGiEw9h+yGIc+NrrCA+O3skjCAySiYgmmPGMsa61aX311t0iSIUOJ7Est2d2PD5S4Oe9E1Dr4qaB\nHU0RzBzoR6QaU39kBQg3uP9ORKnDRBxn5MO2/YeJWBbE0JD7MxxAwR+DZCKiMihncV0pv1atdcBg\ndwt/hQ4nkSQJjiPgODY2bXoTw8NRDA1FEYk0orNzac0HykIIxBUFokpf8wVdCFiSbhk+RYJiaMgN\nWmUFfg9uyLYw5803ocUNoDHHOxNeoDs8nGgNJ7lB8fCw++E3TMSyIN7a6MbNRhwiFhtX6S2DZCKi\nMhhPcV0opOPAA+dj587tJf9alZLa8cJv5DUAOI7ISIcobCe83rtbjCVHOddwEluWAMuBHovBikQg\nZDn5WMiyBEmSIQQwNBRFNBpFODzyvNXL7vJ4VPs7LWPuluEnX5Hg4CAw0A+IJt/exTIAfbShQ5IE\nhEJusKwobi68prn/Wrb/MBEjDmnhIvd3Q3QQ0jiLEBkkExFVqdRiv3L84R3PpL6xUhQlq0uGbVtw\nnEQqgBBQFCWxo+mk7PS6j4Usy4E/Lpk5ybZtwbJMAEimIvh9TS+IL7e0HOUiU0NSh5MAEmKxONTe\nPkz/y4t4533LYbQ0J1+Y9Pf3QwgH/f0WhHCyWsrpul57u8sNDZCmTQeGtwVyd0G/01LNQXe+IkHn\n7bdgb9sKdB4COcekQGEYEC//1fe6UCyGOW9vhmYYIxP3vPHU3nCRHMNEpEjEvc5kugUR0YTnOA5M\n0yh4bHUu48lVHiu/LhmxWAwbN74KWZYRjQ6itbUt0YrMwv79+6AoSvI8R9sVLpaXu+wGyO5lg4OD\nMBL5jW5rOyO5q5p5WyGcGs5hHkk1cSf6SZATfZEdx4GqqpBlN/3Ctq20keRem7hCR19XCykSgTR9\nOrBzZyD3J7q74fz+CcgnnBhIEWC1pzflKhKUuroAVXXbyeV6hyNP1+tEAAAgAElEQVTP7xnZcdzu\nGI7jBsUVwiCZiKhKpaZN+PUi9hhGHFu2vF3w2OpyKGYHzK9LhqIoyWA4tRWZG7hJJcsT9nZUU3OS\nm5qa0NjYBMDdSTZNIy1Q93i5u7WewyxJEiRkp6jIspw4Nydt9LUn3/fohGHbED3dI8Vm1aZMhYCm\nbaN76hS0mga0qH8niqy8ZdMCHAHIDqolzYlBMhERBS6IHTDLsrO6LPjlKqcKYhc3Myc5s7+wFyzK\nWYGGAyFqbxfZy2m2wnrO/roAINk21GgUZgDDJqqJZdvY0aBjXh2N284l6ELAXGxNRdfMmWgcHILW\n15t1vbBMYO8+IB5z42HHBiwr8eJCAUJaRXeQPQySiYhqQCikY/78hYHkeyqKiilTpkFVVcTjZgCr\nC5aXpzw0FIVtWzAM9238XLnK2bdXEwVmpQlYvfSDTO5O8khQn8kN8qtvh9HLaRajrE0dHMT0deuw\na8UKWE2NZVrd+JmmkXfojS0B9tRpiAG+o5lZkFg8qbER0syZUN+7Aur06VnXi64u2GvuhWhshDRl\nKqRIxG3d9vJfAV13PzK+H0OxGOa8+ho0n0mCpcIgmYioBsiyHFgxnaZpmDp1GkKhEKLR6guSvTzl\naDSaNrUvV65yJkmSoSgKLCv4INkbt+3uNmfnJDuOg76+Xt+UC288NNMSysc0Dbzxxt8RzxFYOY6D\n4eEhmKoMY8dmKO9md5CpyYLEaqAokCa15xxaIkUiELrudqvwiu1U1e1WoShZQbIsBPQ873SUAoNk\nIqI6E1Qhn59ydcDQtBDCYTtral+uXOVykWU5ORrcLyfZtq2cwftIPjP/9JaLbbsFhW7KjH8erqZp\n6OvrRSikZz1vlS5IDLoQsFq6ZZiWhe6wjhZZRjXXefInlYioyqW2gitkpHUpC/kq0QGj2owUsfnl\nJOcP3nO97U+lpapK3hdU+V50VXTnP+BCwLJ1yxilQNB2bHQ16IgoCrTEMJKchXy2TyFfmdKWGCQT\nEVU527awf/9eNDe3FBQkj1U5pwIWIteuV2ZBXy6WZaUE8xM3qC+W2diId1a8H1ZDdXRKKSnLgtw/\nUHR/6VzipoEdER0HTIAiwHwKKhCUZbeF3NCQO4wkFnN7G0uABYG+SANaJQmqbfu3i1PVkhf3Vcdv\nQiIiyqlcwWu1TerL3PXKVdDn8fKFvXQI27aSRX5A6uS9sp9KTRGKArOpqdLLKAtlYACN//scet57\nRCD3J8JhmLMOgAioA0hdB92KAuWsc6C2u2kkoqsL9m0/A1paYasKumwDjdEhqLKMzFwXR5Jg6jo0\nx4Fcwne1GCQTEVW50YLXIDtfVLNcBX2eWCyWVej3yisvwzRNKIoKWZahKDIcp/p3lR3HTtspzzfp\nL/12lZn6Vwts287qeCJsE45jZz3eHsuyYNsWTNMsKHVJikQgzZrlTn0LgBACRmKgSy0pNPdZamxM\nL+wLhwEpMdTHnesz8pHC0EPYPncODtyyFeF4YrKeFXwRMoNkIqIaF2Tni6CUqsAvV0GfJ7vQT4Y3\nHKTSxUqFsm0LAwMDaQNL8k36S1X7U/9Kw7Zt9Pbuz8ov1vr7MXWgH+bwELq69mV9j3gDYt5++w0s\nXXpYzb8QDboQMJdRc5/9cpbDYUht7RC9PW4OdkgdCXwd202JicWSgTQsy03TiMfS7gOqCpjBBMwM\nkomIJhjHcRCLGXCc0uWclrLAr1oq9EtFUVQ0NzdD01LHPuee9JeqlFP/RoaOhFFrOd5CuJ1HJEmG\nLI983yiyDM120DQ0jFhLK4SSXmgmSe6LDsMwam7ktq8qmQjol7MsNTdDufyzQCwGdfdu4IVngcEo\npNZ2SJEIzNgwerv2oa1jCuTGRkgtTZBb2iDbKS8IVRUIhRgkExHR2BhGHNu2bUJr63sqvZQxKb5C\nX0AIb5cVeQN39zoBISRUMhCUZSWr20KhLwqEEMnUAUmSIIQVyIuVkaEjDlCjvZ7dkeZKyucKFNPE\ntP/7K3YdeyzM1taMW4ye4kLBkZqbgeZmSEYckqYBoZE+ypYsoUudiqZQA6SGBjdPuaHB7YBRIgyS\niYioYNXWASOf1Elpbj4v4DhSWrAshEgW9AEjgXRqgJy681gp+YaYpMocaOIGyTZM02QKRi1qaIA0\nY5YbDNaRWnk3qPp/yxERUVFKWchXbR0w8tG0EObNW4Curn1QVQ2a5g6UsCwbQriBZzweg66H03J/\nh4aikBPFUm7qgn+v13LKN8QkVeZAE28neXh4uCQpGBPRaGOuLctELM9kuGLGXAddCFgt3TLK1q95\nnBgkExHVmbEW8pVyUl+lqGoobfiH++9IWoV7nZRyvuk7y1lDDCoo9xCTVOkDTWRZguPUTtFitStk\nzLVhxDE8/FrOn6HMMdfjDbp1XQPQWND6y9UtY7wFgpKiIqTpFf/pY5BMREQASjupbyyK7ZCR7y1c\nx3ESrb7c9mruTrJI7BYLAE7iOJFMw6i1tlv5eHnKVqJbgF9LOcdxfM+73h6LVFZTE/YdeSQ61q8v\n6PhRx1xbFpoMA7amuUVkWVenj7kOIuhuaAijre39Ba2/bMZZIBiePh0HnfgRWG++GfDCisMgmYiI\nqlKxHTL83sJVFHfnVQgnsVsnYNtOotuB2xtXUUwoia4GXqDo5e+m7yrXJvcdAhMDA/0YHh5KXpbZ\nUs57jLz8bY+Xo12PgbJQFFhNTSh2wkyuMdfKwCBannkG/ccdD7u93fe2qW3oRg26ATTkyUf2gu7R\npk/Wm5AjMHcoBq3EPc8ZJBMRUeCqpcBP00JobW2DpmnQNA3hsIZYzIQQArFYDPv370V7e0dyKIll\nWdi/f19K0Gwn/1+rZFmGpmlobm5JO8/MlnKO48C2nWTBn8d70VDrLxaqWa6guxCmWcRubZkKAUuS\n+yzLgKoBsgwZgF6GoUBVlXR2991349hjj8WyZctwzjnnYMOGDTmPXbNmDS644AIsX74cy5cvxyWX\nXJL3eCIiKh+vwE+rgsaysuzm6HqBsqZpUFUtWdjm5e96l7k5ylJWsFjL/M9TTsnVVpLnm+uDal/Q\nhYC5jJb7LLq7Yd/7a4ju7tHvLDYMEY1Csh3ozS2QbAciGs37gdhwIOdRNUHyY489hhtuuAErV67E\nQw89hM7OTlx22WXozvEAvvjii/jIRz6CO++8E/fddx+mT5+OSy+9FHv37i3zyomIaksopGPBgoPT\nRjrXkng8hs2b30Q8nruYKZNluW3QvA/LMmFZVlqurneZO5BDsGXaBJEcktLUVOmlTByF5CwnJvAh\nHgf6eqH3dGPujneg93RDdO2D2PQ2RNc+oK83+yMed287zt9xVZNusXr1apx77rk4/fTTAQDXXXcd\nnn32WTz44IP41Kc+lXX8d7/73bTPv/Wtb+H3v/891q1bh49+9KNlWTMRUS1y24mFx9TBoho6YBST\nq6woCnRdTxxvA7BhGG4g7BZQWYjH48mdUtu24Dhu7rIsy1AUNW9f4lqWmnsNjF645x4rksWN9cIb\nklKVLAtKNAq7sdG3ENDPeLplFNOertRSJ/BlEl1dcB59GPIpp0Hq6PC/g3DYHU4yDlURJJumiVdf\nfRWf/vSnk5dJkoSjjjoK6wusOB0aGoJlWWhraxv9YCIiGpNq64AxGk0LobNzKWzbhqLIaGuLoLd3\nCLbtDtx4/fVXsHBhJ1pb3b8dsVgMGze+ilAolEjHkGs+J9mP33CSfIV77guTWKLvsjuqmTvtpacM\nDKDlqSfzFgKmGm+3jMz2dKVSaM6yN4HPVyQCqaMD0pQpJVkjUCVBck9PD2zbxuTJk9Mu7+jowJYt\nWwq6j+9973uYNm0aVqxYUYolEhFRjdK0ENyOXDIikQjicQHLchCLxZI9pVMDfjco9ibwObCskWDQ\nS8eQpJG2cZ5aChr9hpM4jgPLsnMW7rnvHkiJVBQ7cXxqS7mxtfui4IynW0Zme7pxGaVAsFz9mser\nKoLkXLxxoaP5+c9/jscffxx33XUXQqHiXv14BRrFUhQ57d+JgOc8MfCcJwa/c45EGrBw4SKEQrlT\nKdyWahIURYaqlvbx0vUQpk2bDl0PpX2tsa4h85wVxS1IUxQpeT+6rqGhIYx4PO7bNcAwDFiWAUAD\nkB2EqKqa6BiR/XfFG1wy2rq98/OO925bSBGdJI0c691H4pqs+3PTSZSU4SRWYjdZ+LaAM00jbSe5\nv783eVvHsRNv8Tsl/74YTerznPpYjqUIMfXx9O4387lJ5V7n/isK+B7we66LvT/vfFLPV9PUootm\nJcmEEHYgP9tqcxOUA2ZDbW7yvS+/n71Usd27sO3ZpzHnQ8ciPH1G1vVCdR8PVZUglfD7rSqC5Pb2\ndiiKgv3796dd3t3djY5cuSYJt912G2699VasXr0aCxcuLPprT5rUOK6q3ZaW6n+7MWg854mB5zwx\nFHvOui4hHNbQ1hZBpMQV8gAwdWp2Cl2uNQwPD2Pz5s2YP39+3t6y3jk7TgwNDTpaWyNob/cmljWi\nre39OfvOdnV1Yd26dZg8ebLv1/ACTz/uxfaoj52uSwiFVITDWjLQUZSRICjfizl3M1uk3XZoyO2H\nrOvufea6P0lSkh0/Mv8uOo6DxsYIZFlOtIqzMXXqlOTXME0ThmGgo6OlLN8XhWhpaYCqCoRC7guX\nQh6/TN7wmVBIQVube16Zz02aKZNgnHoKtKYmaD45xJnfA37PdSpZd3eEdV2FE/bpy5y4v8zzzbm+\nPAr9/kzlvmjM/lmxbff+QiH3+zmTFXID5JaWBjS3Z08LHOjXYFsGmiKa7/XDUQ1dTQ2YHdHQ4HN9\nUKoiSNY0DUuWLMG6detw3HHHAXB3kdetW4cLL7ww5+1uvfVW/OxnP8Ntt92GQw45ZExfu7s7Ouad\n5JaWBvT3D8O2a+cttvHgOfOc6xXPufBzHh4eRixmord3CPF47rdKvWEV+XalxyrXGoaHh9HT04+e\nnihisexzyjzneFygubkN8bhAT0+0oK9tmu7Oqm37F+bbtgPT9H883UDSGvWxGx4ehmFYAMzk1zBN\nM/E8SRAi998sd0fXQSzm3tYLdt1CRQuybOa8P7dwz7tNerqF+y8ghJT41z1/76l1Hw8x6rmVQ+rz\nPDg4BMOwIMuioMcvk/d4GoaN3l53EEvmc5Ml3AhYAkikoqTK/B7we67TziVuIWTZiMct2DH/+/Pe\n8Ug935zrsyzI0Sgcn0LAQr8/R4438Nprr/jmP3u5z729/f4//93dsPr60d3dD6sl+2dvqH8YlmWj\nv38Yls/P5lDPIN4VQKRnEJHGwn52M7UXEFxXRZAMABdffDG++MUvYunSpTj00ENxxx13IBaL4cwz\nzwQAfOELX8D06dNx5ZVXAgB+8Ytf4KabbsIPfvADzJw5M7kLHYkUt7vhtfoZK9tOz1ebCHjOEwPP\neWIo9pxt24HjiFFvF4sNl6zAL9caCl2bd32hx6ffVqR0eyjub4d3m0LWlz4ye6TDxGgjor0iO++2\nI/HJ6Pc3+v16t0PWY1DouZWTbY88x5I0tnHjqefqvZjMfG6Kkfk4+T3XqSRHJEeo+12fej6p55vr\n/pS+fjTnKAQs9jmMx00MD8dy5j/nGyVv6A2ItU+CIWu+X8v7ObNtkbxedHfD+f0TkE840ff6Uqia\nIPnkk09GT08PbrrpJuzfvx+LFy/GrbfeikmTJgEAdu/enfYW1j333APLsrBy5cq0+7niiivwuc99\nrqxrJyKi8qmGaX6WZSeL1oq5DZWf49hjnhpYb+3uSmEs0wKtpkaYkzuAIjY147Fh7IhHcUBsGJAV\nINzg/ltCVRMkA8AFF1yACy64wPe6O++8M+3zp59+uhxLIiKiKuNN8xsvSZKg63pRgZOb06rCcSz4\nddny3mb2Okdk0nW9LlvKVSvbtjAwMABJkmAYRqIQrvD0Hze4tmuqc0m1sG0bQvg/bm43FAfxeAwx\nn+l4pmVkXZbaEUOa1AZ56aGQ2kvb9reqgmQiIqpuoZCO+fMXVs3AgXLTtBAmT56K2bPn+E4sjMVi\n2LFjCw44YJ7v9dU0rGEiUBQVzc3NkCQZtm0lunkUU7gnYFlmxQbn2M3N6P+nE9xhIjXEtm3s378X\ntu1fAOumdJjYvPkt3wLDUHQAchXs4DNIJiKignl9hetBMZP7UimKgnA4nDPXWlW1vNdTecmykgyO\n3Y9idvKLT9EIlKrCbm2t3NcfI2EakHt7IBqbIGnZoaYkyZAkIBTSsp4Py7IRG45Bt213gE1ipzke\njyV3nxGL5ZwqGCQGyUREVJWqYQR2prGkaFB1yBzDXQi3YI7TBYulDA5gxgsvYO/RR8Nun+RzhAPH\nkdDf35f12DqOAOIxtIVCePudrUD3PveK7m5Y0UG8/fZG2K0tGB4expw580r6YpRBMhERVaViR2CX\no6BP18OYP//gkt1/qtRCv3yT/lIxmPPnN4a7EG4HBRvR6EAiXYNhU1CEELAsO2v4jiQJ2JEI1APn\nQk1pUyd0DY4sI6RrMBQNQgyNqztZIfhsExFRXSi2oC8ej6OnpwszZx5QVakRiqJA1/XEiGA3p9O2\nvbHPAo4jwbbd4MJvR1tR1KICwYnAbwx3IRzHnTTY2NjMALlE3MnHqSkXDoSQoapqWtcMR9bcKX2y\nBl0PAWiBruslXRufcSIiClwtFPi5O1lW1bX40rQQOjuXpuVcxmIxbNz4KkIh9/Hs6+tFa2tb2k6b\nR5JyT/2byLxR3MXmJBcbWFezaikElGwb2uAgrIYIkJKz7KW2OI6TNcnPVhUYHR3QVAXCsmDbFmKx\nWNoxQRfGMkgmIqLAlbLArxpzlYOmaSFkFv27ga8EIH9QL8TIMAhJkiCEf4cBGhvHsXOOLR+NmzZT\nwX7ZVVIIqA4OYsoLL2DX+1dAhN3dYMdxMDw8lGgdJ7B//760NAwhBOzmZgxHByAGB+A4NjZufDXt\nBaGu6+jsXBpYoMwgmYiIakqxucrlVKrCvswUDNu2YBhx2Ladtzez+1a22+GBxYbj5/VdLraVnMdx\nHNi2nbM1Wr1w9DD6FiyAXVQ6RPrAl8xcZQDJd07k/gF0vPQS7A8fCykxdM6y7MTPh531AnOsGCQT\nEdGE5AabwQYspSrsS03ByOzFnK83s6LICIWAv/zlr0zBCIDXd1nTQr6pLqOxLAumaaTlN493Z7oc\nrdCKJRoa0HfQQW6gW+RtvSA5X5qLIgRCQ1GYsgQpJW856BcfDJKJiGhCUhQViqLUTEFWagpGZi/m\nXL2ZVVWGrkt1m5ZSCbKsZBWVFSM1qA1iZ3okyOaLoKDVxm8GIiIiGpfRWso5joAQIquQsdoKG+tJ\nEDvTlmVCVVXYdv08T5JtQxsYgNPUBFHBd0AYJBMRUVUqtkNGOQr64vEYdu7cjlmzDqyZyYOqqkLX\ndQwPx/K2lHOL/NLzQj2yLDOnuUTGuzMtRP31xtaiQ5i+fj32fuADMCtYaMggmYiIqlKxHTKKHz6i\nIBJpLCpXd6yjrINUbHFgKBTCIYccinjcTF7m11KusbEJvb09vm/9u0M4GCRTdXCEQNe0aYg4DgKq\n0fPFIJmIiCYkTdPQ2NgELahS+DIZS3GgpoUgSel/8gttKQcgLQ2DU/2q21gLAcvZns7WdfQuWAA7\nFCq4sE+ybShDQ7AjEQgAlqahkO/d8WCQTERENMH4tZQzTQOOY0MIB0KInBP93Ntzql81Gk8hYDnb\n0zlht0UcIBUcJKuDg5j2pz9hz9FHwxz98EAwSCYioppSC9P8ymksvZn9WspNnToDW7dugizLiEYH\nc070c78mp/pVo/EUAvq1p6sUWw+h76CDcvZZdvQQzEntcEKlrQuo/CNBRERUhKCm+UmSjNbWtkB3\nRCtR2DfW3syZLeV0PQxFUVBIunXqVD8gvXMGVdZ4CgGL7bmcK7XDTd3ILgAduZ2bvpPrelvX0b9w\nYc7dcEcPI9Y+CSLMIJmIiChwQjjo6+vFpEmTA7zPyhf2jZWiyNB1HUND0bSJfp58k/0AdyQwd5cn\njnypHe73igFZlnxfhLpdVGxoWjET+cqPQTIRERElUzCi0ajvBL98k/0AN8+ZKTATR77UjpHUDf/c\naMcRsCyz6jumMEgmIiIqkKKomDx5alXkbQYlNadZ00IIh+08E/z8L692lmVnDU8pBDt55JcvtcMb\nKy3Lfu8u5E7FSDvKceB1sDA1Fb0LFsDUVDiOW1zqDVMBvBHdFmKxGIBgXrTVz085ERFNaGMZPuLl\nThZK0zRMmTJtrEusSmPNaa4FXhePoaFocniKECM7m0II2LZdQCeP6t7xrEbeYBo/juNdJyWP8QJf\n77ZCOIjFYmn3MTBzBmDbcEwTjuOgp6cbiiKn3KeNjRtfTT7vnZ1LxxUoM0gmIqK6UPzwEQM9PV0w\nDAORSGMJVxasWpz6VympKSTe8JTU1ADLstDX15u3k4dtj63v8ETm5a+7Q2j8c5K9fHfHsSBJMoRw\nEpMfvfsYmf6Y+SLFu0xVVciylLhMABCJATlSor2hjfG0QWeQTEREVENKXRw4lpZy1cxLIVEU/9QA\nWZZH7QbBILk4siwnCzxz5SSbpgEhAFV185bdd3ZGxqN7H/m+D9Pv34EQcvLFThD9nhkkExERUVI9\np19Q+UiSNGpOsmWZEMJO7iS7O8eAEEh2V/EuS7+5A8kwgXADECpdsSiDZCIimpAcx0l+BKUShX1M\nvyhcZj9nLyc9304xe0CXhlcomrqTbNtOcic5FNLhOA5kWc7aTVb7+zHjr/+HvqOPgc0gmYiIKFje\n390gswoqUdhXrt7MtZyGkTmG22PbbneEgYE+hMORnMMrvB7QXh7tWANnBtzpMnebU/OPveDYLydZ\nBqCU4bFkkExERBOSJMmJP8TBTdyrZ7WchpE6hjtVLBbDli1vAQDmzVvo2/8ZSG0nZvgG257RBq4A\nHLqST2p3C6/bhd+LPweApWmwE0NJgJEpfkFikExERFQgx3FgmgY0LZQzCKLqlDqGO5VX6FVI/+dc\nwbZntIErgH//Xu5Mj0zhc/+fPyfZUWT0zJiBYeFAJPoie23jvBSNIDBIJiIiKpBhxLFly9uYN++g\nmhuokctEzmmWJAmhkA7DMAq+Ta5g21PMwJVcaSCeQnamGxrCUFUV8bhZ8DlUIzf1QikoJ1mybEia\nBj0cBhIvRrw+yUG+eGWQTEREE1IoFEJ7e0eir2rtCLo4sFw5zdVI18OYM2c+tmx5uyJfP4idaV3X\nEAqFEI3WdpAMFJ6TLMJh9M+di8aGSEYLuGAnJDJIJiKiCcnrj1traRP1OPVvIhvvzrSq1tb3by3h\nI0tERERJ8XgMmze/iXg8VumlEFUUg2QiIpqQStHT2HEcxOOxQHsvj4bpF0SlwXQLIiKakEqRtlCJ\nwj6mX4xPLfd/zmUsXS/qqVNGUBgkExER0ajqtQtGkP2fKx1wj7dbBns4p2OQTEREVKBKjJ2uFkzD\nGF2lB66Mt1uGXw/niWzi/ZQTERGNUT2mNkzkwL/ajWVnOsg+zoXwS9OwLAuOIyBJAu58vHTlzNkf\nD/5EEBER1ZCgp/7VY+BfqGpPIan0znQ++VI7TNOAaRoQQs2ZvqEoanLCXrVikExERBSQcuzK1uPU\nv0phCsnY5Uvt6OvrxYYNL6GtrT3nEBTbttHVtS/v13BHTWc/N97l7o60e707cc+BZVmJz8cfgDNI\nJiIiCkg97Moy/YIKlSu1IxaLQZYlALnTRNwgdyQlw3HSA2L3ehuO4yAz20QI7wVOLJmK4gXNfX29\nANwg3K94sRj8CSAiIqphTL+gaqMociKdwkI8nn294ziIxYYSQayAEDIcx0kGyYqiQJZlyLKSHE+d\nyguIdT2cCMbdnWTbttDa2gbATfkY7ws9BslEREQ1jOkXVG00LYTJk6di9uw5vukWsVgMW7a8BVUN\nIRTSoCgqLMtCT08XZFmBosijpsBIkpQIpL0Xhg6EcEfNA8jZ4aMYDJKJiIhqSKXSIeo1DcOyLGzb\nthlz5y6oyuK9IJWzj7OiKHm7aHit5ty0CBuOYydyjR3YtoBpmskuGH7r9dthDlp9facTERHVuUql\nQ9RvGoaAYQRTvMduGYVTFAVz5ixKBsuxWAwbN76a2EV2i/8kSYKqar5pRJKUXthXirZyDJKJiIgm\nsKBzmicydssojqaFkjvNiqIgEokgHo/DcSwI4XauEMJJFurZtg1FUSBJEtyHOD0wVhQVkiQnbjt+\nDJKJiIhq2HjTICZyTrOiqJg0aTJ6erorvRRf1b4znctYh6B4LeW8nOXh4WE0NDRAVd2c5b6+XrS2\ntiXzjrO/rgxFUWBZDJKJiIgmvPGmQdRrrnEhNE1DR8cU9Pf3VXopvmp1Z3qsaR2pLeVUVYWiuIV4\nqupeKMvpn5faxPuJICIioqTMIJvpF0QufvcTERFRkmHEsXnzWzAMnwa3RAEoZ5eN8eBOMhERESVN\n5PQLKo9q6rKRD3eSiYiIKMlLv9D85g3XIb4oqD6SJCEU0pFvrHU5MEgmIiKiCSvIFwXVHnDH4zFs\n3vwm4vFYpZeSl66HMWfOfCiKUtF1VOezSERERFRjqn3gSq12y3BJidZv5dtdZpBMREREVIWqfWe6\nHCzLTv6/ubkFgIBlmQXfZjwm7qNOREREVMWqfWc6lyCGoCiKAl3XEY/HYdtW2nWO48Aw4giF9Jxt\nCnVdH3e6BoNkIiIiIgpMEGkdqRP4MsViMezYsQUHHDAP4bB/EK4oCjQtNOavDzBIJiIiIqIqlDqB\nL5OqagiHwyUdpc7uFkRERERUNrXSZYNBMhERERGVTa102WCQTERERDQB1Eq3jGrZaa7uR4mIiIiI\nAlEr3TKqZaeZO8lEREREVNUqsbvMIJmIiIiIAlOKtI7U3WVJkqDrOiSptNP3mG5BRERERIEpdVqH\nrocxf/7BJbt/D3eSiYiIiIgyMEgmIiIiorKplS4b1b06IkYSOOgAABWRSURBVCIiIqoro6Vj+AXR\nlQisGSQTERERUdXwC6Ir0b6O6RZERERERBkYJBMRERERZWCQTERERESUoaqC5LvvvhvHHnssli1b\nhnPOOQcbNmzIe/zjjz+Ok046CcuWLcNpp52G5557rkwrJSIiIqJKKNf0vaoJkh977DHccMMNWLly\nJR566CF0dnbisssuQ3d3t+/xL7/8Mq666iqcc845WLt2LY4//nhcccUVePvtt8u8ciIiIiIql9Tp\ne6VUNUHy6tWrce655+L000/HggULcN111yEcDuPBBx/0Pf7OO+/EMcccg0suuQTz58/HypUrsWTJ\nEtx1111lXjkRERERlUu52sFVRZBsmiZeffVVrFixInmZJEk46qijsH79et/brF+/HkcddVTaZR/4\nwAdyHk9EREREtc9rB6dpWkm/TlUEyT09PbBtG5MnT067vKOjA/v37/e9zb59+4o6noiIiIioUFU9\nTEQIAUmSijq+WLIsQZYL/xoeRZHT/p0IeM4TA895YuA5Tww85/o30c63nKoiSG5vb4eiKFm7wN3d\n3ejo6PC9zZQpU3yPz9xdHk1HR1Nxi83Q0tIwrtvXIp7zxMBznhh4zhMDz7n+TbTzLYeqeNmhaRqW\nLFmCdevWJS8TQmDdunU4/PDDfW9z2GGHpR0PAH/6059w2GGHlXStRERERFT/qiJIBoCLL74Y999/\nP9auXYtNmzbha1/7GmKxGM4880wAwBe+8AX84Ac/SB5/0UUX4Y9//CNuv/12bN68GT/60Y/w6quv\n4uMf/3ilToGIiIiI6kRVpFsAwMknn4yenh7cdNNN2L9/PxYvXoxbb70VkyZNAgDs3r0biqIkjz/8\n8MPx/e9/HzfeeCNuvPFGzJkzBz/5yU9w0EEHVeoUiIiIiKhOSKLUnZiJiIiIiGpM1aRbEBERERFV\nCwbJREREREQZGCQTEREREWVgkExERERElIFBMhERERFRBgbJREREREQZGCQTEREREWVgkEw0ir6+\nPnznO9/BW2+9VemlEBERUZlUzcS9ardnzx68/vrr2Lt3L2KxGMLhMKZOnYrFixdj2rRplV4eldDg\n4CDuvPNOHHnkkVi4cGGll1NS27dvx8svv4z+/n5MmjQJy5cvx5QpUyq9rEANDAxA0zSEw+HkZX19\nfXjttddg2zYWLVpUd+ecyTRNxONx6LoOTdMqvRwqMdM0sWnTJsyePRtNTU2VXk7JCSEQjUYnxLlS\naXHi3iheeuklfPe738X69esBuD98qSRJwnve8x5cffXVeO9731uJJQbu7bffxs9//nNs2rQJ7e3t\nOOWUU3D66adDkqS04x5++GFcc801eP311yu00mCceuqpea+3LAtbtmzBzJkz0djYCEmS8PDDD5dp\ndaVx1113Yffu3bjqqqsAAIZh4Nprr8Vjjz2W9j2uqiouu+wy/Pu//3ullhqYWCyG//iP/8DTTz8N\nWZZx0UUX4ZprrsHdd9+N733ve4jFYgAAWZZx1lln4etf/zpkuT7ebLMsCw899BAef/xxvPbaa+jr\n60te19raisWLF+Okk07CGWecUTdB87p167B582a0t7fjgx/8oG/AtH79etx33334zne+U4EVls/O\nnTtx/PHH48c//jGOPfbYSi8nEG+++Sa6urqwYsWK5GXPP/88brnlFmzYsAGWZUHXdbz//e/HlVde\niYMPPriCqw3Ok08+iYceegjhcBif+MQnsGzZMuzYsQM33ngjXnrpJViWhSVLluDyyy+vm5ikkriT\nnMcLL7yAyy+/HDNnzsTnP/95HHrooZg6dSpCoRAMw8DevXvxt7/9DQ899BA+8YlP4Oc//zmOOuqo\nSi97XLZu3Yqzzz4blmVh4cKFeOutt3DttddizZo1+O///u+63GF76623EIlEsGTJEt/rDcMAADQ2\nNqKtra2cSyuZ++67Dx/+8IeTn3/729/Go48+inPPPRennnoqJk2ahL1792LNmjX42c9+ho6ODlx4\n4YUVXPH43XbbbXjqqadw+umnY/Lkybj33nsRDofx05/+FKeffjqOO+44mKaJRx55BGvWrMHs2bNx\n+eWXV3rZ49bd3Y1LL70Ur7/+OubOnYsPfvCDmDJlCnRdRzwex759+7BhwwZ89atfxa9//Wv88pe/\nxKRJkyq97DEzDAOf+tSn8OKLLyZf8DU3N+Oqq67Cueeem3bs9u3bsXbt2poPkm+//fa81/f19UEI\ngSeffBLbtm0DAFxyySXlWFrJfPvb38aMGTOSQfLjjz+OK6+8Em1tbTj11FPR0dGBPXv24Omnn8a5\n556Lu+66K+fv+Frx3HPP4XOf+xwikQgikQiefvpprF69GldccQVM08R73/teWJaFv/zlL/jTn/6E\n22+/He973/sqvezaJiins88+W5x33nkiHo/nPS4ej4tzzz1XnH322WVaWemsWrVKHH300WLr1q3J\ny9auXSve+973ig9/+MNi06ZNyct/+9vfis7OzkosM1A//vGPxWGHHSYuvvhisXHjxqzrd+zYIRYt\nWiSefPLJCqyuNA477DBx//33CyGEcBxHHHbYYeKb3/ym77ErV64UJ5xwQjmXVxInnniiuPbaa5Of\nP/roo6Kzs1N86Utfyjr2sssuEyeeeGI5l1cyV199tVi+fLl44YUX8h73wgsviOXLl4svfOELZVpZ\nafzkJz8RixcvFjfffLPYuHGjeP7558XFF18sOjs7xVe+8hVh23by2Hr5HbZo0SLR2dkpFi1alPMj\n9fp6OOcjjzxS3HnnncnPjz/+eHHOOeeIaDSadlxXV5f453/+Z3HJJZeUe4mB+/jHPy5OP/10MTAw\nIIQQ4utf/7pYsWKFOO2000Rvb2/yuF27dol//Md/FBdffHGlllo36uO9xBLZuHEjzjzzTIRCobzH\nhUIhnHnmmdi4cWOZVlY6f/vb3/Dxj38cc+bMSV720Y9+FPfddx9kWcb555+PDRs2VHCFwfvXf/1X\nPPHEE2hra8OZZ56J6667Dr29vcnrM9NM6kEoFMLQ0BAANw1heHgYRx55pO+xRx55JN59991yLq8k\ndu3ahcMPPzz5+RFHHAEhBD70oQ9lHfvhD38Y77zzThlXVzrPPfccLr300rS3pf2sWLECn/zkJ/Hs\ns8+WZ2El8thjj+GMM87AFVdcgYMPPhhHH300br/9dqxatQpr1qzB5z73ueS7Q/Vi/vz5CIfDWLVq\nFZ588kk89dRTaR933XUXhBD4xje+gaeeegpPPvlkpZc8bsPDw2hoaEj+f8eOHbjooosQiUTSjps0\naRLOO+88vPzyy5VYZqDefPNNnHHGGcnUoQsvvBDd3d24+OKL0dramjxu+vTp+Jd/+Ze6+1tdCQyS\n82htbU2+NTWabdu2oaWlpcQrKr3e3l5Mnjw56/IFCxbgvvvuw/Tp0/GJT3wCf/zjHyuwutKZNm0a\nbrzxRtx+++146aWXcMIJJ2D16tWwLKvSSyuJww8/HI8//jgAoKGhAXPnzsWLL77oe+xf/vIXTJ06\ntZzLK4nW1ta0Fz/e/1MvS72uXlJrDMNAY2NjQcc2NjbWfAD5zjvv4LDDDsu6/DOf+Qy+//3v449/\n/CMuueQSDAwMVGB1pfG73/0OK1euxC9/+UtcddVV6OrqwqxZs5IfM2bMAOAGjN5ltW7evHnJWqFw\nOIxIJILBwUHfYwcHB6GqtZ9d6jgOdF1Pfu793+/nm0WLwWCQnMepp56K1atXY/Xq1YhGo77HRKNR\n3H777bjjjjtw2mmnlXmFwZs1a1bOHfGOjo5kXtdnP/tZPPHEE2VeXem9733vw0MPPYRVq1bhlltu\nwSmnnIJnn3227naT/+3f/g2vvvoqVq5ciS1btuBrX/sa1qxZg+uvvx7/93//h61bt+LPf/4zrr76\najzxxBM488wzK73kcTviiCNw7733YtOmTejt7cVNN92EcDiM//mf/8HevXuTx23btg133303Djnk\nkAquNjhHHHEE7rzzTuzZsyfvcXv27MGdd95Z88U+ra2t6O7u9r3u5JNPxk9/+lO89tpruOCCC9Ke\n91qmKAouueQSPPHEE5g3bx7OO+88XH311aM+57XsnHPOwdq1a/HUU09BkiRceOGF+NGPfoRXXnkl\n7bh169Zh9erVo76TUgvmz5+f9k7PM888k/Zvqt///vdp7wjT2LC7RR6GYeCaa67B448/DlVVMXfu\nXEyZMiVZuLdv3z5s3boVlmXhxBNPxH/913+NmppR7a6//nr84Q9/wDPPPJPzlbdhGFi1ahWeeeYZ\nSJJU890tcunt7cWNN96INWvWQAiBm2++Gccdd1yllxWY559/Hl/84hfR1dWFpqYmWJaV7PDgEULg\nrLPOwvXXXw9FUSq00mBs27YNH/vYx5K7TUIIrFq1CrNmzcJXv/pVHHLIIXAcB6+99hocx8E999yD\nQw89tMKrHr9NmzbhggsuQDwex4c+9CEsXbo06/fY3//+dzz77LMIh8O46667sGDBgkove8w++9nP\noqenB/fee2/OYzZs2IDLL78cAwMDcByn7n6HbdiwAd/4xjfw9ttv49JLL8VJJ52EU045BT/+8Y/r\n5neYEALXXnst1q5di/e85z049NBD8cgjj6Cvrw+zZ89GR0cH9u7di127dmHy5Mm45557MHv27Eov\ne1wee+wxXHnllVi2bBkmTZqE559/Hu973/swb9487Nq1C8ceeywcx8Fjjz2GF198EV/+8pdxwQUX\nVHrZNY1BcgE2bNiAJ554Am+88Qb27duX7JM8ZcoUdHZ24sQTT8SyZcsqvcxAvPLKK/jFL36BT37y\nk75vWXocx8F3vvMdvPHGG/jVr35VxhWW37Zt27Bnzx4sXLgQ7e3tlV5OoAYHB/G73/0O69atw7Zt\n2zA0NJTsAb5kyRKcdNJJWLx4caWXGZjdu3dj7dq1iEajWL58OY455hgAwKOPPop77rkH+/fvx9y5\nc3HZZZfhH/7hHyq82uDs2bMHt9xyC/7whz+gq6sr6/pJkybhhBNOwGc+8xlMnz69AisMzm9+8xv8\nv//3/3Dvvffm/R22adMmXHrppcke+PXowQcfxI033gjTNNHf3193L/QBN3C84447sGHDhqwWrZMn\nT8bJJ5+MT3/60+jo6KjQCoP1q1/9CnfddVfyd9iXv/xlhMNhrFy5Es8//zyAkTaW1113Xd20sawU\nBslERBPInj17sl7s19NAJCEEhoeHoWnaqD2fo9Eoent76yJHN5fBwUHcdttt2L17Ny666KK6etGb\nanBwEDt27EA0Gk2+0K+HWopi7NixA11dXTjwwANruo1jNWGQTEREANxAo7+/HzNnzqz0Uspiop0v\nwHOeKCbiOZcC9+GJiAiA+1Zuvb0dn89EO1+A5zxRTMRzLgUGyUREREREGWq/cSAREeW0du3ago+t\nhwK2iXa+AM95NDxnGivmJBMR1bHOzk5IkpRV+Z9Lrbd1nGjnC/CcC8FzprHgTjIRUR1rbW1FZ2cn\nrr766lGPfeCBB3DfffeVYVWlM9HOF+A5j4bnTGPFIJmIqI4deuih2Lx5M5YuXTrqsfUwbn6inS/A\ncx4Nz5nGioV7RER1bNmyZXj33Xd9h4hkamlpwYwZM8qwqtKZaOcL8JxHw3OmsWJOMhFRHRsaGkJP\nTw+mTp066nCNejDRzhfgOfOcqVQYJBMRERERZWC6BRERERFRBgbJREREREQZGCQTEREREWVgkExE\nRERElIFBMhERERFRBg4TISKqMTfffDNuvvlmAO7o2cbGRsyYMQPLly/H+eefjwULFlR4hUREtY9B\nMhFRDWpoaMAdd9wBAIhGo9i4cSPuv/9+3H///fj2t7+NU089tcIrJCKqbQySiYhqkCRJWLZsWfLz\nFStW4Pzzz8fll1+OL33pSzj88MMxe/bsCq6QiKi2MSeZiKhOhEIhfOUrX4FhGFizZg0AYO3atTj/\n/PNx5JFHYvny5bjwwguxYcOG5G02btyIzs5OrFu3Lu2+HMfBMcccg+9973sAgD179mDVqlU4+uij\nsWzZMhx33HG44YYbyndyRERlxp1kIqI6smDBAkybNg3r168HAOzcuRNnnHEGDjjgAJimiUceeQQX\nXnghHn74YcyZMweLFi3Ce97zHjzwwANYsWJF8n7+93//F/v378fHPvYxAMDVV1+N/fv34ytf+Qo6\nOjrw7rvv4u9//3tFzpGIqBwYJBMR1ZkZM2Zg//79AIArrrgiebkQAkcddRQ2bNiA3/zmN/j85z8P\nADj77LPxzW9+EwMDA2hubgYA/OY3v8Hhhx+OuXPnAgBeeeUVXHXVVTjxxBOT9/fRj360TGdERFR+\nTLcgIqozQghIkgQA2LRpE6644gocffTRWLx4MZYsWYKtW7di69atyeNPOeUUKIqC3/3udwCAnp4e\nPPPMMzj77LOTxyxZsgS33XYb7rnnHmzfvr2s50NEVAkMkomI6szu3bsxefJkRKNRfPKTn8SuXbtw\n7bXX4te//jUefPBBLFq0CPF4PHl8Q0MDTjnlFDzwwAMAgN/+9rcIhUJpu8Y//OEPsWLFCvzwhz/E\nCSecgJNOOgl/+MMfyn5uRETlwiCZiKiOvPXWW9izZw+OOOIIrF+/Hnv37sUNN9yAj3zkIzjiiCOw\nZMkSDAwMZN3unHPOweuvv4433ngDDz30EE4++WQ0NDQkr588eTK+9a1v4c9//jMeeOABzJ8/H5//\n/OfxzjvvlPP0iIjKhkEyEVGdMAwD3/jGN6DrOj72sY8hFosBAFR1pPzkpZdews6dO7Nuu3TpUnR2\nduJb3/oW3nzzTZx55pk5v87SpUuxatUqWJbF1Asiqlss3CMiqkFCCPztb38DAAwNDSWHibzzzju4\n4YYbMHPmTOi6joaGBlx33XW4/PLLsXv3btx8882YPn26732effbZuP7667FgwQIcfvjhycsHBwdx\n6aWX4rTTTsP8+fNhGAZ+9atfobW1FYccckhZzpeIqNwYJBMR1aBYLIbzzjsPABCJRDBr1iwcddRR\nuOCCCzBv3jwAQEdHB2666Sb853/+J6644grMnTsX119/PX7xi1/43uc//dM/4frrr8dZZ52Vdnko\nFMKiRYtw9913Y9euXdB1HUuXLsVtt92Gtra20p4oEVGFSEIIUelFEBFR5T3wwAP4+te/jueeew4d\nHR2VXg4RUUVxJ5mIaILbuXMntm7diltuuQWnnHIKA2QiIjBIJiKa8G6++WY88sgjOOKII3DNNddU\nejlERFWB6RZERERERBnYAo6IiIiIKAODZCIiIiKiDAySiYiIiIgyMEgmIiIiIsrAIJmIiIiIKAOD\nZCIiIiKiDAySiYiIiIgyMEgmIiIiIsrAIJmIiIiIKMP/B/jPbd99eaWyAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8VPWd///8nLnPJJALhFsCxCIawKrrXbwBbpGtF37bKr/grlrwgv2S0ooGS/wt7e4jKChuu3ErVcHiKqntdn+ssFLcKrhFrJcKCoSWxRogQAgkITOZydzO+Xz/mDmHmckkmSQzCZd5Ph7nMZkzZ845k0w+78/nfXm9hZSSLFmyZMmSpbcog30DWbJkyZLl7CRrQLJkyZIlS5/IGpAsWbJkydInsgYkS5YsWbL0iawByZIlS5YsfSJrQLJkyZIlS5/ImAERQqwVQjQJIfZ08boQQvyLEOKAEOILIcRfZepesmTJkiVL+snkCuQXwG3dvD4LuDC6PQy8mMF7yZIlS5YsaSZjBkRK+T9ASzeH3AW8JiP8AcgTQozK1P1kyZIlS5b0MpgxkDHA4ZjnDdF9WbJkyZLlLMA82DeQCkKIh4m4uXA4HFeUlJQYr4U9HpKJsUhFAQQgEZoGoTBCgJSgiMgxCmANh9E0iVBV3B0+AHJzchBWG+H8PPbv35/Rz9ZbJk6c2O09mUwmVFXt8nWz2Uw4HObCCy9ECIHP56OhoYGRI0fS2NhovG42m5FSUlRURG5ubqfz7N+/n+LiYpxOp7FPP9fEiRMB0DQNRRncPI3sPWTvIXsPvWf//v0npZTDezxQSpmxDRgP7OnitZ8D5THP/wyM6umcV1xxheyOrVu3xj0HjO3222+XgKy5+x658sEH5ZYXXpBbXnhB/v8rV8r/WPYjufLBB+XKBx+Um7//A7n9X2o6vX+wNyFEj/f08MMP93ieyZMny/fee09KKeU777wjATls2DCpKIocP368FEIYz/Xj169f3+n3+s4778Tt08/V1d9iMMjeQ/YesvfQe4BPZQpj/GCawbeA+6LZWNcCbVLKY5m84KZNmwAoa2pi0he7GfP+7xnz/u+58JM/Mu6jj5j0xW4mfbEby86drHrjDYQQmbydXiNTEL5cs2ZNj8fs3buX6dOnI4Tgm9/8JsOGDePkyZPk5OSwdu1a1q1bRzgcNo73er0sWrSI2tpaY19xcTH33XcfW7duJRQKsXXrVu677z6Ki4s7Xa+2tpYpU6ZgMpmYMmVK3HmyZMly9pLJNN5a4EPgIiFEgxBivhBigRBiQfSQt4G/AAeAl4HvZupeEvnTxIk0jx/HyVEjja2luBhvaSntpeM5efHFXFC3d6BuJ610575KRigUwuPxADB58mRmzZrFfffdx6lTp7BYLMZxwWCQyspK4/nKlSvx+XzMnDkTq9XKzJkz8fl8rFy5Mu78tbW1LFq0CK/XCyQ3RlkDkyXL2Ukms7DKpZSjpJQWKWWxlHKNlHK1lHJ19HUppfw/UsqvSSkvkVJ+mql7SYZNCITNhrDZkH4/QlUZnpODSyhYhWC2w8nzefn8tGAYp1Y+O5C3NuAEAgEAPvzwQ+bNmwdEYin6/iNHjhAKhWhoaIh7XzAYJBQKARFDFAwGO527srISs9nM2rVr8fv9rF27FrPZbBij2tpaqqqqqKmpwe/3U1NTQ1VVVdaIZMlyFnBmR3IGCKmqYDIhzGZyhg7FYrMyZtRo5j/1FA8s/SHqkSODfYsDxs9//nMgfiVTWFhIR0dH3HELFy4kEAgwYsQIhBCMGDGCQCDAwoUL445raGhg3bp1TJs2DYvFwrRp01i3bp1hjKqrq1mzZk3c62vWrKGysjK7KsmS5QznrMjCSjfqqJHYTSbaozNsabXqCVsAaJrE3NJCx29/i9rUhOzoYMvwIvZGZ9uJHFHDrIq6gc52NE3rtO/EiRNG/EVRFONns9lMbW0tN9xwA9u3b+db3/oWLS3dlf50Zt++fdxwww1x+xoaGmhoaOC1114zzj1//nwAysvL+/KxuqS2tpbq6mr27dtHWVkZVVVVab9GliznKuelAfns4EHMI0ZSOH4cAKPefS+a9htBCsGhyy/DoWrIohFYgkE41UZDF/GFYtPA/BoTZ/cDRWzwXghhPA+Hw8yYMQMpJTabjcsvv5w//OEPce8tLi7m7rvvJj8/n0OHDjF27FhaW1uNYHtZWRnbt29n2rRpxnv+4R/+gfHjxxv79FVJRUVFWgd33X22Zs2ajBuqLFnORc5bF5Zw2LFKsEr4y9TrOXj1VRy85moOXnM19dddy8Grr6J9UhnucWM5/FeXc+mlXx/0rKyamppBuW7sqiRxhaIbk0Ag0Ml4AMyePRu3283hw4fRNI3Dhw/jdruZPXs2AFVVVcyZM4fS0lJMJhOlpaXU19cza9asOBdWQ0MD+/btS+vn6sp9Vl1dndbrZMlyrnLeGpBeEQ4TPnKEJ66+mopLvs5Muz1um2y29HyO84jYeMWGDRtwOBydCqdeeOEFpkyZwo4dO4x9sW6yX/ziF3GZWxUVFYwePTqt95nMfXbDDTek3VBlmmwWW5bB4rw0IC0tLQirlaCAoADVZGLsJ58a2/gP/8CYz7/A/OWX2E6cZGhDA83Di9BOtaG0tjJcMcVtY81mns/L5yf5hSxOUrWdLs6WgSF2Bt/Q0BDnAlNV1Xju9Xp58cUXmTp1Ki6XCyEELpcLq9VKR0cHFRUVeDweKioqaG9vx+fzpfU+dfdZLNu3b6esrCyt18kk2Sy2LIPJeWlANm7ciFp/kOKwSnFYxdHeTv2113Doqisj29VX8dV113HsqitRzSZUsxl3YQFH8/JoGjkSbVIZaszmLx3PN+wOvj1yBD8YU5LUiKRSBNgTsXUYg4XJZOrxmMQZvN/vp7CwMOmxqqqyYcMG9u/fj6Zp7N+/H7/fD8DatWvJzc3ln//5n8nPz6elpSWtM+yqqirmz58fVww5f/58qqqq0nL+gSDrhssymJyXBgQimVjHwyGOh0MEHA7CFgshq9XYwtaIW+rLG6by1XXXcviKK3CPG4tn1EjaRo/GM2YMnjFjcI8ezZHLL6OgpARUDTp8/J+vTaB50ff50zduo3nR92le9H1avv+Dfq9OEuswBoNUChUTXU1SShobGzsdt3btWuPnZ555Bq/XyzPPPNPpvcePH+cb3/gGQFpn2OXl5eTk5DB9+nSsVivTp08nJyfnrAqgnytuuCxnJ+eNAdED4PrjZwcPMvbGGxl7441Is9l4zQiUC4HPZiNssRC2WlO7iKqCoiDtdswlJcgpkzGXlBjbmAHK1hpsUnU1VVRUGD9ffvnlWCwWLr/8cmPfvHnzuPjii3nwwQd58803KSgoSOsMe+bMmezevZv8/HwA8vPz2b17NzNnzuz3uQeKc8ENl+Xs5fwY0TjtQop1Jf34xz8G4KabbiJfUegIhRial4cMBNAsFnJsdtRQiAt+vx1zKETOqVYIhZECBBFDI5GEbbaU7uH+++/nsZ/+pM+fwWw+O/5cqdaC7N17Wi5m1qxZBAIBbDYbdrsdv9/P4sWLgcgs22q1Gsq/6Zphv/POO+Tk5PCb3/zGSOO98847eeedd/p97oFCd8MlpiJnXVhZBoKzY0TqB0IITCZTnDhgdwNx26lTDHE44vb9Zer12Hw+Rn71FXR0IGNWKlJKOoYOYfQnf+z2PgIf7CDceIzmRd9n3bp1SY/pqSCxtzpXZxP5+fk0NTWRn59vuLtipemDwSANDQ0oisIVV1yRthn2TTfdFGe8ZsyYwdtvv52Wcw8EurutoqLCKIasrq4+I91w7777LgsXLswWbZ5DnPMGZNKkScyePZsNGzYYX9zZs2d3iidogCm6qkDTkMFgROJEUQhbzGi5OdhOnASpIUE/EgnY3G40txtCIZCdK7kBNI8bxeXCXFIy6AWJZyK60YiNlZSUlFBfXw+cLmC84447eOutt7jkkkvSct3Nmzfz3HPPsWDBAlavXs3jjz+elvMOJOXl5Wf8QFxbW8uaNWt44403skWb5xDnfAykqqqK9evXx6U5rl+/vtNxmtWK327Db7cRcjpRbTY6iooI2e1o0TjIvhnTOFZ2MY1lF3MsujWWXcyxSWU0jhtL44QJnBw7NmOfJR2ZXGcTuvGA0599y5YtTJ48mT179qTlGlJKFi9ejMvlYvHixcZ1snUV6aW6uponnngimy12jnHOT3m7WuLX1tYaqaVmsxmEMJRlTXY7CpCbm4uqqgR8PqxEuhkW/e8BTq8/ACSayYQlGMTRdCLys8dDYMeHWD0eAvUHAVCbTgARV9ZdQ/PwB/yd7tUpBItzc88ZXa3eoLureuqoGAgE4mInmaKmpiblmXJWT6tn9u3b12nVmM0WO/s55w0IJF/iz5071/j5jjvuYNq0abjdbgCKcnOxSkkwGETTNISUEI157L/l5jjdLABNUchta4OwikRy7dubGXr9dTQfPYotmtKqudsACH15gAkFBTQdP96pFa9FwGxHJFB8vhkR3Wj0FOd58MEHeeWVV4DIpCBT8i6p6nDp/U5cLhdSSqPfCWRdM7GUlZWxe/dubr31VmNfNlvs7Oecd2GlwsaNG2lpaWHXrl3s2rWLIZqkOKwyfvx4cnJyMMfoP6lmM5rJFLehKAQcDgIuF768PL68/LIuryVDIaTfT6HTSb7JRL6iGFuuUBhtMvGAM4fn8/IzWtV+tqIbD4CXX345Y9eZMmUKFRUVTJkyhVtvvZW9e/cmdWVVVlYafVD0xIrE5ltZIq7kZ5999qwu2szSmawB6S1CIKSM25ASRVVRzRGDcuyCC/iD3cafRo7gD3Ybf7Db+OyqK9k3aVLkHNH+IxazGbPFgklRsCgKAlAQOBXBZIvFaGqVNSTJ0RteZYLZs2ezevVqZs+ezW9/+1vGjx+ftICxoaEBh8MR1zDL4XCktejzXNC6Ki8vZ/78+VRUVGC326moqDhjs8WypE7WgCRh+5cHeP/9bUadiDCZkJoGnZxOMUiJVBSElJhCYVyaZLjdgUuTuDRJ8cefMuR//xf8fgiFEMFgxJCo6mkjROQPYkIwXDGRpyiGIckakc5ksi5m5cqV3H333bzxxhs88sgjLF++vMug77Rp0+IGxlhp+v5yLmldzZgxgz179qCqKnv27Bkw4xFrgL/zne+clb+7M5WsAemBzz//HOF0ouTkoEQrloFITCSmal3o/cO7kHxvmTyJ45ddCnY7WCyRJlYmU2SLOWfEgGC4tC4wmRltMvGgK5ctw4toe/a5jHzOs5EhQ4Zk7NyhUIja2lrq6+uNmXJXQd/a2lqam5sBaG5uNgYofeCaMWNGn1cOWa2r/pFogL/3ve+dtQb4TOS8CKKngs/nM7KynE4nOZMnU3jwIDabjWAwiMlkivTCEAIZayR0Q6Jp8cagj+j1DrplNwkRdW1JFEWhY8sWns/L7/L951J3xJ5obW3N+DVie8AkC/rqWWNSSmPT35eO4HpW66p/xBpgiEjmZKI52flKdgUSZf/+/axbt45169axa9cu2vfuZd26dXz88ce4XC5yc3Mjg4NuMGJXIBCpFzGZjAwtzd1G+MABNHcbmrsNGQqCxZLUhdUJIQxnme44MwlBSXEJ0udj/lNP0aCqSbdM6G2NHz8+7edMB9ZUNcr6QKzSwPe+9z2eeuqppEFfVVURQnD8+HFD+FGfBJhMJtauXcs777zD2rVrMZlMvQ6uZ7Wu+kfWAGeW7AqkCz6MBmg3btzID37wA3Jzc6mvr6eluRkzIKKDl9beDk4nNrsd6fcjpSQ0aiSOKVMIfPgHbNddC8DB3/8ev8PBrjvvAFWL6Gmp0eyu6KzV3tbGxdveB0DRjYiUCCGwmEzk5OehRZssLVu2zIjRZJrYgr4zCT37KRPI6O9dSsnJkydZsWIFr732WtJZa2KBp/78gQceiKs/euCBBzqpDfdEVuuqfyRrmZw1wOkja0BS4N///d85fPgwl156KWPGjCGoqqjhMDabDWkygaYZNSNdVYuHTCbMUlLy2U4czVGxQePYyKMWExQWUdeVzWyOlC2asovFRCbpWW0ZIvZvGaulliovvviiofSrN8/qiq6KEfurdXW+FzkmGuCdO3dSU1OTNcBpImtAUsDr9SY1DIFAAGuSoHl3g03zhK9BaSkoCoX7959eZRBxg+V0Mi7JCXywg5l2e6f9TiF4Pi9/UGMhBQUFA3KddGY7pUJvYxhutxu73Y6maXR0dOB2uzu19oXTgd7EVYZ+rb5qXcWeV6/yP9/0pxIN8NixY1m+fPmAf/5YQz5Y95AJstPaKJs2bUrpOCklMhwmFAoRCoVQVBVFUTr5448ePUqTycTRo0c5evQofrMZf4KxaS4tpbm0tPsLdhEn0TxuTEOH4tZk3OYS8TUkidu5lA6cTNMskzQ3N/cqhqHHRAAjRqJpncU2q6urmTt3blwq8Ny5c/s9S44NIJvN5pQyuM6FmpNEysvLjfThV199dVCMx7maCZY1IGlEURQURcFsNjN69GiKVJXRo0czevRo7OEw9i5WFc2pBKmTrGq+/vVLyU0wCE6LFbcm8Uk5YEH2RFLtB3K2XEdH07SMdIWsq6vjX/7lX4y2vnv37qW6urrL6vdEuhr0extAPpdqTs4kElOx9Uywc8GNlnVhDRDCYkGGQpwcMybS4TDiuyLivJIcv/giwlYrbaNGMXHb+6czvPTU4C5iIBdeeCG5ubl4PB5yc3MJ7quDjo6B+EhZUiA/P5/W1lbjMRlCCDxduBt7cpt15/4qKyvjxz/+cadWBl0FkBNTXnvSAest52s/kGSGvKGhgb1792Iymc7q30XWgCRh06ZN3H777cbzlpYWCgsLsUU7DyoWC0p0RSAVBVMSv3YipuHDAQj5fISielp6YxEZjYFc8eavEZpGx9ChONoi4ovGykOF8Ff1EO3V3h2Xjyiio6Vl0GIkLpcrpePGjx9/xmZ4pQvdaHRXs5LMraUTCoWorKzscnCprq7m0ksvjWuKNWvWLKqrq5k2bRorVqxgxYoVTJo0ibq6OpYsWcKCBQuSniuTKa+1tbW88MIL5OXlnXeik4mZYO+++y5r1qxh/Pjx7N+//6zujZJ1YaXAxo0bWbduHQcOHEBVVbRQiPb2dtrb27H6/b2qRwg4HAQcDsIWC0G7jaDdTsjhYNzHn3DyglJOfO0Cjk6exPGLJtI8btzpehNFwVw6PnKOHR+iNp0gfPgwpqamuEf8fhxmCyGJERcZIhSGK6ZO8iiZio2k2hN91qxZabvmuUpPbrO9e/eyadMmli9fjtfrZfny5WzatIm9e/eydetWlixZwtq1a/nmN7/J2rVrWbJkCVu3bk16rkzWnFRWVhrtEs430Uk9E0wXknzllVeQUrJ8+fKzXl0ga0B6QUtLSyS9VlGwWCxYLBb8VitHjx7l2LFjRu1Ad2hRvSyhyThhxgM33cj/3nQjX94wlS9vmErbqFE0XHbpabmTaIqvkpeH7frrMBUNx1xSglpUFPdIklWHTQgCUhKQ0jAsiTGSdMZGUm181V1aa5YIeouBruIQQggeeughHnvsMZxOJ4899hgPPfQQQgj27dvHRRddFHf8RRdd1OWKInGgS6dibkNDAzabLaOik2cq5eXlVFdXG0kSjY2NrFy5Mm61cbYWN2YNSC/YuHEjwWCQFo+HxsZGGhsbET4fjY2NHDt2jFOnTmGxJHcx+Xw+fD7faTl4sylSca4oxtaVjlZfKMhPLnfiFIKvmSP6WjPtdmO7ymod8CwtU4z0i/6zKQ1yMOciCxYsSGpEpJS8+uqrkYlNdHv11VeRUjJ69GgqKyupqalhy5Yt1NTU8Mgjj0R63AhhZHzpJA506VbMvfvuu+M0vR577LG0nDeWMzWLLDYTbPz48RQXF8e9frYWN2ZjIL0kHA5jsVhwOiONn6TTafxsMplOa2YloB+jaRrhjg4UKQlHVx8yRhZFM5nQFIXGiyaiWq18fvs3cbjdXPTBB72+15tvvhn3kSNY3G4sOTm0trRg8noJyEjwxa3FrBQUaFDVAe3LHrtSSbWh1PmK2+1m7ty5zJ07l0suuYQvvvgCiKxA/H4/+fn5tLW1MXToUFpbW42VsNvtZubMmYRCIaOyfsiQIRw7dozVq1ezZMkSAKMxVyb7q//qV79izpw5RrD/+eefT+v5e6qnOVP4u7/7u3NGXSC7AukljY2NuN1uDh8+zOHDhwGMn71eLzabLWmxWCxCUeILBWNUffV4RyAnh5DDQduIERyZPIk/3xgf3OwuBiK9XhR/pGVuMGZRk19QgNlkYogQ5EZXIl8zm7nEYmGC2cx3XC5m2R38vmgEW4YXDWjtSE5OTtxjluQIIdi9ezdf//rXgdOSK0899RQej4ennnrKMBQNDQ34/X4KCgqMfRAxKrq7a8WKFRltzKVTXFxMMBhk3rx52O125s2bR0dHR6eZeH84W5SLZ8yYkfaV3mCtvM5bA6JnVPWW/fv3s2vXLkN4MeT1Gj9//PHHFBYWYrFY8Hg8NJhNeDwePB4PoVDodLDdbAaLBWE2n07TjTUigGq1oprNBHJchBwOGidMiLuPLmMgMYQPH8Z2qg3h96O53WhuNxYhcFgsaGDERQQQltCuSTqkpDGq0ZXp2pHYlZoeYNUfARwOR0auezajG4Hdu3cb+0aPHs3ixYtxuVwsXryY0dE2ykIIHnnkERobG3nvvfeASEvg2DjdggULMtqYS2flypWGe1f/DFarlZUrV6btGmeTcGKsS6u/vVEGs34nowZECHGbEOLPQogDQognk7w+VgixVQixUwjxhRDibzJ5P7H09E+TamV6W8wguHHjRqZNm8b999/P9OnTef3tt5k+fTqzZs1i5MiRxj92jwhhKPvqhsSXl3e6o2FPqCpoGjIQQITDEan5cNhICbbabJjPgFhDbBGkbkxijUpHD/UsAyWZcqZz5MiRpM+llPz617+mtLSUGTNmAJHq/VjX4erVq/s8meoN5eXl3HLLLUayybFjx5gzZ063A2dvZ9V63Uvse3784x+fkbGFdK4YBnPllTEDIoQwAf8KzAImAeVCiMQR8CngV1LKy4H/F/hZpu4nyf31qaNdomEZkuCustvtcbNoiBir119/vbc3GGdINJOJhnFj2X7bTKNF7qdTJrPnyiviHv88dWpkVaMoCJsNabeBokRWPWYzunCjxWpl3LhxnbLGkgXZ9QB7ut1ZscVzvYmB6Pf8wgsvpOU+RowYkZbzDASPPvpoyseazWaam5upr683DLOeYq1//x9//HEeeugh4z2ZcoXU1tbyzjvvxE0U1q1b1+X5+zKr1ute5s2bh8fjYd68eaxYsWLANdN64t13303rimEwV16ZXIFcDRyQUv5FShkEfgnclXCMBPS2ckOBoxm8n/gLS0k4HGb69On9mqG4EwLmXa1s9IExHA6jaRpq9B4kdJt9JfQGRYBZ0/A7nbg0idPrw9XRQV44jKujA4cv8rxjaO+69I0cORKXy4XD4UAxKZggLt03MeU30+6s2BVITxlZ6QqMnjx5Mi3nGQj+7d/+LeVjYxtcJUNvhKVTW1vLokWL8EZbBujFfukwIgsXLsTv9/PMM8/g9Xp55pln8Pl8LFy4MOnxfZlVx9a95ObmGnUvGzZsOKNa2r7++utpXTGkWr+TiclBJg3IGOBwzPOG6L5YfgT8nRCiAXgbqGCA0GexX375JX/+858H6rJAjOHoFQKsVoTJZDSokoEAaktLxFUVjDwHEWlYFQ6jud2YfB0RN1YgENk0abyeSElxCQ67vdPAPVxRkq5GMh1kT7YayXM4Uqq36Q2ZbI2bbtrb21M+tqfVnP531utxKisraWtrM1Ys9fX1tLW1paXYr6WlhWnTpsUN7vfcc0+XemZ9mVXv27ePZcuWxcUWLrroIhoaGs4oIcNDhw6ldcVQVVXFnDlzKC0tRVEUSktLmTNnTlz9TqbiJIOdxlsO/EJKuUoIcR3wb0KIKVLKuGm9EOJh4GGIuBu2bdvW5Qnb29u7fV1Hn3k1NTWxfPlynnyyU4gm7dTX1xvXVTQtImeiI0QkMyv2kYhUCoqCBPxOB5qmcbykhJz2dlSnC4uUhIYNIxQKYbFYGPH++0hNQwJaOBy5nqoiY1dK0ddDLS0gJTLamCng92PSNAoKCmiP+ce2iJiU32i6byzJUn+3bdvWq8EuVU5F4yJSypT+zql8H3rbGjeV62by/ek4j6IoDBkyhNbWVlRVZdu2bUZRn56xJYQgGAzS0NCQlnveunWrscLcu3evMWAmO/fYsWOZN28e27dv59ChQ4wdO5YbbriBsWPHdnkvY8eO5YUXXuDyyy839lVWVjJixAiEEHzwwQdceOGFVFRUsHTpUkaNGtXvz5Qq7777Lq+//jqHDh3CZDIxb948I8UYYOfOnd1+tu6oq6sjFArh9/uNtO5QKERdXZ1xvqVLl/K9733P+D0IIdLye8ikATkCxKYFFUf3xTIfuA1ASvmhEMIODAOaYg+SUr4EvARw5ZVXyltuuaXLi27bto3uXteZPHkyDoeDTz/9dECMB0S0n9rb2yNtUPX6D93NkDijju4T0ViIEIKcnBxCoRDjx4+n489/RhkyFNXjwZWXZ4gpHp8ymVH1B5GqiqWggI4OHxJQ9AwwbzvYbEhNw1JQQDAYRLS3IzUNm92O5vFgNpsZPnw4oydMwOPxYGs4jK3NbbjnrrNa42I/ur6WzhE1zC233JK2gbIrjh071qMbK9XvQ2/o7/nSdT+pnic2hVdH0zTa29uNnu6x59KPjX1POu5ZL2DUjZNuTJKd+/bbb2f16tWsWLGCBQsWGDUrCxYs6PJeli9f3qkOpLGxkUcffdQQcRw7diz/+I//yKFDh9L+veiK2tpa3njjDdauXcsNN9zAvHnz+OUvf8m4ceNYtmwZ27dvp6amhuXLl/fpnhYuXMh//Md/xMV6tm7dSkVFBf/0T/8ERFY9CxcujCt0njp1Ko8//ni/fg+ZdGF9AlwohCgVQliJBMnfSjjmEDADQAhRBtiBExm8J4Oqqiqam5upqqrKeGc7iCzhPR5Qf4eqAAAgAElEQVQPbrebjo4O/KoaiYeoalor0HskxoWlud0oXm/c82Sy8QDXXnutka0zRFHiepBkUhalO860/P4zlWRxECEENpstqZsrkzU5yYxTMrZu3crtt9/O0qVLcblcLF26lNtvv93Q8Urmz09WSV9QUMCGDRviXFhLlixJPSMyDSTGc+bPn8+SJUt47rnn0lIHkoq7L1M6Zxn7T5dShoUQC4EtgAlYK6XcK4T4R+BTKeVbwGLgZSHED4gE1B+QqQop9RP9j1VdXc2f/vSnjF9v48aNvPfeezz55JPYbDYsFguKomCRMqLmm2hEdBcWGH3R04IiwGJBahqmIUMIB4MoUhrPtW7Sm6+99lo0dxsdvg58X35pdGNUBIyOUeA1I2j6f75FwehRcSuTRPqrCFxXV9fn956t2O12/NEi0f4gpexS9FJ3PWbCBZkMu91uKAk/9NBD1NTUUFdXh9frZfPmzcZqYt68eRw8eNDw58+dOxcpJfv27eP+++9nx44d1NTUxA3EJSUlRkbWoUOHKCoqoqOjo1MfnUySbIBftmwZTz/9dFqUF1Lp+57Y2jdd1e8ZnSpKKd8mEhyP3fcPMT/XAVMzeQ/dESvbkM6gbFfo2S2d0LRIqm03JMqjnMjPJxgOQ2EhSA3VbOKU1AiNGsWu22Zi83iYvK8LwxgKIaSMrEBUNe454TBKFy18Y7EpgkD0EHO0CNF4TYB6vBGLzdopXhJLf2VTeqOCnA6GDx9OUVFR3L7i4uIBFQRMh/HQ6U5GfiDJy8ujqamJvLw8fvazSCa/1Wpl6tSpcb3gp06dyrFjx6iurqawsNAY/KxWK1dddRU///nPuf766+MMyJEjRxg2bBhwOivNarV2qp3JJKkM8P0hFeOQ2Nq3rKwsLTpngx1Ez9IVegwETsdCYtCKinBaragNRzAVjzEemw4f5vjEC9EUhWNTpiClFk0Fjrzf7m7j+jd/Hb8CiQbREwkfPowpGIQkg5bdZieQxsGsL2SyglqPDQD8vLycCx96KKkybUNDAz/84Q9566232FdXR9mkSdx55508/fTTGbu3c43a2lpj4Pv2t7/N6tWrCYfDrF+/HkVR0DSNP/3pT9TV1SGlNB4fffRRnnvuOVavXk1lZSWqqnYaFK1WK08++aQh3Lht2zY+++wzli5dOmCfT8+ScrlcHDx4kKKiIjRN46c//Wlazp+qcciEzlnWgPSBVKvU+0WCC0t3OXSl9qujKQrWjg5UkwlHuwdULS7ttSPZ0j3GpaUFAmguFyYpMZeU0OHxYA5mXuriTGPlypU8vngxEnj0l7+k7Isvupyxvfrqq6xfv56vf/IpX1x1JXPnzh34Gz6Lie2A+Prrr/M3f/M3KIqClJJhw4bR1NRkPOr7Ad5//31yc3MpKytj2rRp/O53v6Ouro4pU6YYA2kwGORHP/oRTz75JKFQCLPZjMPhINjFpCnTiCSTwXSQSRHM7sgakEEmICVOTnclNEiyAnE6nZ2q3DshBMJkAsWEcDgitSGqelpzix6+vDEurNgVSDgqHCkDAUgxuGqtP2h0RRyuKFgS/nHMCCYPt7A3FMpoh8S+sHTpUqNW5+W5c5nXhZKA2WymtbXVULzVY1td0ZPQ5vlI7ICvi0RqmkZ+fn7c6uRb3/pWXMr1sWPH0DSNkydPGgFjs9lMTU2N8Z4ZM2bg8XiMmhc9+yy/i3YHmaC6uppx48bxxz/+ESkljY2NXHnllWmVyq+traW6unrA2wWf19/m2EyOvtLc3Nzv+9DznuKiDjErECklmqbh8/nwer0cPXoUn8+Hx+PBq4i4x35ndJnNaC4XwuUyRBqx2zGXlGAuKcFUNDzmFpNfSx8klYDfyNQCQbsm47aO6ExyIDO3UmX58uUURQ3lP27e3GXBVTgcJhAIxIlB6q61RGOhKMoZqcs02Nx00020tLRw0003UVtba7REfvDBB+Myqh588EHjPUIIw5gcP37ciOdUVlbGVXjr39GVK1fi9Xp55JFHEELQpreMHgD27t3Lp59+Sl5eHoqikJuby6effmr0RO9vVXiqRYJnWyX6GU3iL32gCAQCmM1mFEVBURSsViumZANxjISJEAJFUXA6nbhcLkaPHo3T6SQ3NxeXJuMeBdEUSSkhrEIoHPlZ0yJbX+xLdAUSPnwYtekESmsrhMMMsdmwCxG3slBMCsOHnzYyNputy2s6hTA0twaywj0Vampq8IfDFBcX88I9c3rMVhkxYgSCeF0tv9+PlJLPF1YgpcTv9yetNi5JUFE+33jllVfIy8vjlVdewel0kp+fj9ls5tlnn2Xv3r1omsbevXt59tlnDf06PRie+LtL7MCoGxa9An7z5s0sXrx4wPvOOJ1OfvOb3+D3+7nrrrsMw5aOqvBUZF8yVYl+3hqQxF/6QPH555/T0tKCqqqR/uqahowp9Op3FrOiEHY6CdmsePLzaC8soL2ggPaCQtoLCgm4XOy6bSb7E/qLdEvCCkTLz48IM9ps2IYMwWy3U1Q0nHHjxlFSHP8PfcEFpVjMlqSrPBN02WL3TFiVWM1mVq5cyXWlpd3KTJjNZo4fP44kMhvWB7l77rkHu93OpS/UYLfbueeee5KuQFasWHFed2KMXb1dcMEFHD16tEuFYH2/2WwmGAwaPXl05s+fj6IoxqQLIkZdlzd59dVX4yY4A4XZbGbevHnYbDZqa2uNVgX6gD937ly+853v9Gl1kEodSKYUe88sv8EAkuyX3hd621Vt48aNbNy4kdtvvx0hBJdeeqkhtWA2mw0D0p9Am7RYQFWxDBmCdvIkQbM5IokCaIB71EhaSorxFxREsrTCKnaPh0ldpf32g6KiyIxc+8tXKR0fW+WeWOEO/a8dSRWXy8X/N3Uq5eXlbHr0u926nsIJxZf68w0bNpCfn08gEMDpdLJhwwa+8Y1vdHp/dXU1//3f/82iRYvi+nycL+Tn59Pa2kp+fj579uzB5XLh9Xo7VdALIYxU+HA4zJAhQ3C73cb7IWKE7HY7wWAQl8uFx+Ph+PHjPP/88yxYsIBf/epXvPTSSwPeCqC9vd3ob6+qalyrgtraWtavX08wGCQQCPS6k2IqacKZUuw9b1cgiZWZg9FbYuPGjezatYuOjg6CwSBSyohCqqpCONwnb1NSzGZMdjsmux0hBFYZUfbNtViwIXD6/XQUFqZ8Ot2FpQs0inAYk6/DaFolE+pdiopGUDhsWEqz7Ngq98Fclezfv5/5b7yB1Wpl7qtrO6XvJpKbm4siRFyBmtVqjSvKs1qtRmOnWPR/7i+++IJJI0em94OcBVit1sj3MlrXoxsJKaXxnTGZTJ1W5/qAnKhlpqsM683dAKPh1osvvojVak1bK4BUSay5if0s1dXVXH/99VitViPeM3fu3JRXB3odyNatWwmFQmzdurVTynmmKtHPWwOS+EvvMbupD/Q13Vf3zqpdyIr0ByEEUlNBkxEVX68XNBU0NZJhlcIgr6WQwaKdOtVpX2FhQZ96sAwG+vdB0zQ8gQALFy7s1q3g8XjQpIzrcWK32xkzZgwCGDNmDHa7vdNqBeL/uT98/AnWr1/PiNxcxo8fn9bPdKZy/PhxpJQcP368kzu5N31iAGbNmmW4hr/66iu+973vAREdOkVRGDly5BnVNlkXPfzlL3/J448/bsQn3njjjZSVFpJJuCRmeKViZPrC2fHfnAESi29ihd50hg4dOiDZGrHtbg3fraYhAE1V0+of14SgvbAQTUJjQT4hnw9zWCVoMfP57LuwHz3KBZ98mrbrJTJmTETRPxgMYm5rw9NN10FdRj6WWLfWETX9BjYRfeBqaWlh0aJFQOp9SHw+Hx0dHUgiFdFdxbdiC80OHTyIyWzGYTLxz8uX85377iOQxOgMRBfBgWLEiBE0NTVRVFTE8ePH+3Wu3/72t5HEFJOJsrIy6uvrAYzMLrvdzr333pvWFNpUGTlyJE1NTQwdOtRYNdmj3+9rr72WDRs28PTTT8dV3feHiooKXn75ZUMm5uabb85WoqeTRCkTvXApJyeHgwcPYrfbB8SANDc3o2kaVquVYDCIxWJBxgwaVoej0wzM5/MRCASQikB4PKcfoym/3WE2mQgHg1hCQcwdfiQSLRzCcaIJr8OOcLshNxfN3Ybi60BYkkiGRIPoADIYRHU6sDqckeeBAMLlxHTi5On6Ea8Xk5RoocjnUqJuOrPJ1KWAY65QIkJbMVgETI7OUq+yWml79jmGPvF4t583GW3PPtdrnS69N0ayf7pYlVndUITDYe68804eGzaM50+e5K23ErVEOyOlJBQKMSQ6oQipKlOmTGHPnj3GMVOmTDmndMB0o9Ff4wGR35+eRq1PDCGSSguRlgqrVq0akD7wsVgsFsNY6Fp4oVAooswtBB999FEn5eFkq9Vk6BlWsVImd911F16vl2effdY45xNPPEFeXl5aP9d5bUBi0TWNxo4da+jqNzc3G4N6pomtHRBCIC0W4wsU8niML5+O3uxHZ7zNxrhrr8Xn86EoSrdL/pDNhioE7Q4H0uFAOJ0EOzo4edFF+Bsb+eN9hQwvLODrwRCtR4/i+OKLPn0mNceFI5pmGQoEUDXVMDLhYBAlHKZwyBBcp1ohyUpEERDQEmft8b1J1D5qGqlHjvRap0vvjZGMZFl0ZrOZzZs381a0wNBsNicdFKqrq3n44YfZsGGDEQu4cNgwvvOd76BJSXt7O1VVVfzHK2uoazxmSHVDpC2BPjjG0tX+84nYiZQuiaL3yxgI7btYQqEQbW1tRiFjrMvcZrPx7W9/m7Vr1/LEE09QVlbGnDlz+Pd///eUzh2bYQWRin6/38/w4cMNCZdRo0aRF2374Pf7ex2o74rzNgaSyMqVKwH47LPPqKurY8yYMUaq4EDw+eefo2kagUDAGGQCgQDmaGZGa2ursez9yU9+0ilmo6oqH330UdwKJBgMEjKb0aKv60ZFi7rHTCYTJk67aXw+H0GTCW9uDgctFv5gt/GnkSPYl2G5+yuvvIpLL72Uhx56iEsvvTSj1+oPsY2KUkFV1bgU1a6Mel1dHW+88QY1NTU0PbOCWbNm8YeDBwkEAvxszhzcbjdPP/00Uy8o7eS7rqqqorS0lPfee4+TK1by3nvvUVpa2m/f9rnGI488wqlTp7jjjjuANKTL9wH9/zdR5TgYDPLBBx/E1Wh88MEHKY89+/bto6GhIa5IMBQKxa3o9EC97i6fNWsWl156aTaNN12Ul5dz3333IYQgFAoZ+eUTJ05k//79Gb/+xo0bufHGG3G73XEtVo/FrDK8Xi9lZWVdutX0mZW+ArFarZGsKLMZJUbKIZFYgyKFwNHhJ2Sx4PB4kCdO4rNZ0dyRa4rcIeDrOm7RFV25sKTXS/jw4Wg73gg333wz77//fq+vkWl27tzZq+MTB6muBi2r1UprayvTp0839pmEQJWS7775JmazGZfLxSsffsiHCQHSuFheVMxRf/181+SKFcT8n//5HwoKChg7diw33ngjv//97wf57k4zadIkZs+eHRefuPfee9mwYUNK7x89ejSVlZWsX7/ecGFNnz49bhzRO0CaTCbcbnev3WRdkV2BxBCOtoBdtWoVXq+XVatW8Ze//GXArt/Y2Mjhw4dxuyPd/9xuN8MUhcOHDxub0+mksLAQm82G0+lk5MiROJ1OFLsdp9PZeQVit3dagXSHcDpRCgowjx6NY+ZMfBMnogwbhuO223Dcdhv2qden/HlM7V6jgr07EiVSIGJEbAMs1z5YBAIB2tra4uTp1aix+Xl5Oe+88w6FhYUIIdizZ09SldU9e/bQ+uxzca8XFxcP3Ic4g9AFC2MH0NiGUr2dCKTjfrrbX1VVxUsvvYQ3qkHn9Xp56aWXerWKTLyG0+nE7Xbz/PPPG31fNE3j0Ucfxel08thjj/HQQw/125WXNSAx2Gw25syZY8gerF27ljlz5gzY9ffv38+6devYtWsXjY2N7Nq1i9999hnr1q0ztrvuuot169Zx4MCBuOPa9+5l165dWK1WowLXarVilRKFqLsqhWyuUCiEWxG0t7dTX1+PWxE05+ayQw2zQw2zy98Bra0gtUjwOxzuspeJmuMyKtiFy4XqdKAMGYIyZAiaywVmMyKmEVUy8rsJ+uXmDJ7USSZI5rJ4pLaW++67j6lTp2JVkv/9dI2j/Ccej6tiPnr0KK+99hqTJ09GiXYgTMYll1ySvg9xBqD3/YitD5k+fTpWq5XHHnuM9vb2AY2BdLXy1OtcKisr8Xg8RqbekSNHeiWvdPToUVasWBGXxrt69WoAo6MjRMa3TZs2YTKZKC0t5de//nW/XXnnvQGJFRgLBAJs2bKlky8yE/SlRmQg/LZSSkxg6HQN0SS24cMZNn06w6ZPR73+egIlJRBdqSgFBWh9zauPcWGpTSew7t6D2nTi9KpFVbE7HAwfNgyRkI2Vn5/HBV+7oP8f+Awi2aA23OXC7Xbz5ptvEkiStlxbW8uiRYviZq+LFi2itraWsrIyiouL2bNnDzv/z0L8fj+lpaVx77/kkkv4Ipok0ZUm17mo1TVlypTBvgWDY8eOEQgEqKysJBgMsmXLFnJycqisrEzp/bF/Z1VV2bNnD8XFxUyePNnQYzObzXE6YgAdHR39rss6rw1IosDY+PHjCYVC3HfffYYlv/feewf7NntNrAsrKETSIHpvetH5fD7q6+upr6+nsbGRP13xV+z6xl+z86Yb2XnTjfzvVVf27UajKxDdhRW8ZAqmouHGqkUvanS6XIwtGcuoUaMoLCjg5ptv5utfP3OD7X0l2QThpNeL2+02/qb691JHH3TgtAEKBoNUVlbGF4+pqtFPfP369bQ9twoppWE8AA4dOmTMVnVcLheHDh1K7wc9A4hNix5MdPUJq9XKihUrjL/vAw88kHKny6qqKu666664iv677rqLqqoqY1USDofxer2MGTOG9vZ2Kioq8Pv9cW6+vnBeB9ET09+WL1/O4sWLMZvNcaluscG4swFFUQiFQjQ3NxMKhSjIy4sTl9MJBoNIIXqsG9FrVHTyw2HUU6fAHKnH8DodKKEwUokEwkU/itzUphNobe7oExXF60WLLucVVY30NkkTy5Yt452nn+ZrZnPSXiVXFUU+83FV5dvNJ9N23d6gmxS73Y7P52P58uUsWbIEiPj1GxoaGDlyJGvXro1raNXQ0EB5eTk7duxg1qxZkWKytWt46KGHKC8vx72qs4ZbRUUFgUCAVatWMTcQZL3NypIlS6ioqKCmpmYAP3XmGYwsrGQEAgGsVmtcXcr+/fv5yU9+kvI5duzYQXt7u/GZQqEQ4XCYp59+mn379rFixQqeeOIJrrnmGj744ANcLhc2m42HH36Yn//85/26//N6BZIoMFZeXs6KFSuor6+PkwR49NFHB/EuT9PdcvPD6BewtbUVVVUJh8Pk5+dTnJ+PQiRDSzcUiqKgEBMjiT5PFVNJCcLpxFRQgKmgAM1mxz9yBJYJE7BMmBBZPfSRxBWI5nLFxU1kQj1Mf7nx8ssZMWIkigQrwtjMgEsouITCZIt10OXlAUYPGcpjjz3GihUrePnll43906ZNo6KigqInI4O9PiGqra3lv/7rv9i8eTOfPvpdNm/ezH/91391Kcny8ssvs2LFCh577DGc0XhB4rXOVoweNWdYQ6/E+q5Tp07x4IMP0tHRkXKc5sUXX0RKyciRIw25Fiklu3fvNv6eeuX5qlWrsNls+P1+7r777n5rYZ3XK5BkKpa67zB2iVteXj7g4mvJSHW5qQfg9Dzwgtxco8YkHRIYx00KgXHjDbHHoCL481/9FVZ75NwOr4+L29qSFgeeqZiFMBp72Yik0bqM1yLV71dZrYwxmftc/d4ffD4fPiK++8cffzxuxhprEPbu3WsUEOo5/kZ68Is/o7S0lOrqar75nXmdrhEIBMjPz490CKyro+zVtSxevDgtVduDXdioT556Wm0PNB6PJ85tmJeXh8Vi6VUBs+4C0xUtYgugFyxYAETcXLNnz6ajo8OoBXE4HEawva+c1wZE9xHHSgDMnz+/U3FN7D/oYLqzElVHe0tsDAQ6u7CCwWBK/2AhIbBZLQhbdPbk84HNypBRowHwKgKrEHT0t5ajCxdWbHtdy+T+XSIZihBITneKVIj0LEGJdE/Uq9/7IofSV/TvXU1NDd/+9reN1agunaJXWsdWXOsDdjI5lfwnHqcsqjKsp/2azWYWL17Mb37zG8Md9q1vfSstApj79u3jv//7v7n11ltxr3qeIYsfG/Bq8DORxJiTTm9XSrHGJrbI+IILLuDEiRPk5eXhdruN88qo8OeOHTuyleh9JRUVSzg9kysvL+fiiy8ejFsFiEvDbWlpobCw0KgLueyyyygsLDQ6HXZnCLpyYcWmAPeEsNmQAT8y4AdNxeT1obnbIpvXi2nMGDSb3dgnQ0GEP4AMRDYRDKak/NsToUGc1epyKF1t6ZSe143/zp07OXXqlLEa1f3eepMk/VHfP2HCBL788kumv/oqn332mfEdSszYAoz+Gjt37iSkquzcubNTYWtfKSsrY926dXHpxlmSU1BQkLYuqXq735aWFuD05LG4uBiXy5VdgfSXWEHFrtCbrrz99tvkpyBl3hs2bdpk6NX0RGzV6MaNGwG4/fbb2bRpk/FYUlJCQUEB4XAYi8WCzWYjnCSA3l9MMUVqoSNHaP3aBYycOjVynx4PQ6dN4+gf/4jjqqsA6Pjtb3G3t5MzOqLG6/d4MPcknheNgZijAfxwMIgIBo0Yi+ZuwzK5b0uQ0N69qIcbUJtOIL1eLEKgm7MzuTfg4sWLO4kpXnPNNezatQuI+NCvueYaPvroIwAOHDjAiBEj0KTk6NGjxgByYsVKI+CuC0SeOnWK6dOn8/jjj7M4Kgw5Y8aMpD1Mesu0adP42c9+xvDhw9Gk5OTJwUlKOBtIh6ikzuzZs9m8eXMnN2R9fX2PE81UOO8NSCqUlZVx6NAh3G53p6DXmcbnn3/O1VdfbXxhhg8fbmRlQEQVNDbdM5kLKygEsof+KM3NzcasWCoK0mYz4kaapuF2u7GWjudwNC6iXnUlgVCYemdETDEUCpF74gQXffxJen8BKWKZPBlzSQmauw21CUJe72mX1RnsWlm1alUnVVXdWEAkjhH73GQy4XA4UKJ/Z93lZTGZmDZtGq+99prRJXH06NHs2bOHd999Ny6ja/To0f2+7w0bNmCxWIyZsP54vnPq1Km0K+TGksx4KIpidGvsL1kDkgJVVVX8/d//PU6n84w3IBs3bqSgoIDm5mYArrvuOjo6Ogw5g5EjRxqB9PbmZvJMJixddGP0RGXik+nlqDF9SjRVxRoIoESzlFRVxefzIe12hkeVc9WwiuXUKSxRX23I58PnciJDQTR3W0Rj6xygp5a8QL+C8IsXL8ZisRjd+HpCVVVOnjyJlqAWrMdA7rzzzrjjE+MS6YpTNDQ0kJ+fHxdfidX+Ol9JZjxycnI6CS72lWQJEJqmpcV4QNaApER5eTn33nsveXl5HDx4MO3nT7Wveia0jaSU+P1+nFYrVqs1ktERDqNZLOTm5qK2uQn3MYiq2WynRRiHDiHs9WKLal6pJ04irBYsF5ed1tc6ejQtn2kw0VvyAkbQPZG+StDr9KZ7pslkSjoYaVIaGVt6O+ejR4/yi1/8Ik6YccWKFTzwwAP9ul+de+65h2nTpuH+bCfTpk0zYi6JlJSUcOjQoaTGS++5cq6QzI3UkcbsxZycHL766isjNpZusgYkRSZNmkRNTQ3Tpk1LOktLR2FSd/ImiqIYkvPpJvbeY11YsSsQfcaiqiqpJgIHxo3DceGFxvOm3/2OYbfeCsDJjz/B0e7BPuL86wEeSyYzuVLNntJ7kMdKYuiZUlu3bu13rYDO66+/zpYtWzhYX8+4F2qSGrbS0lKcTie1tbWUlpayZs0aY8Uyf/78btsKn41kOq24vb2doqKijJ0/a0BSJDblN5GBqGq99dZbM9KCs03TyOF0gF5RlKQrkNyoeyoYDKJGB5z+ojidhA98aTwX+/6EFntuMXBJgmaTiXAK6dnf+tu/Tet1+9LYKhm62yPW/aH/TXua4OhujsRaAcsPn0xLrQBEMotaW1uNlgN6YWt+fj4tLS2GwQqFQtjt9jiVCH3FsmbNGioqKrDZbJ1cM4tycvlpe3rcMoNNussEMjk+ZQ1IisT2XYDTktGapmGxWLBYLEacob8ky8w60gu3h57iC5GgucPhMF4zm80oitIpriE1jaamJsNQpINAIGD0pAZod7mM515F4M8v5MtrruGqaKbWvpoXGP7ll0aWlSeJsc4UFqsVqaoEuijeEopg3NhxjLrkkh7l6QcD3Wgkzuq7Mh7Hlj/NepuVxYsXG/t27NgR51IKhUKEQqF+1wrAaXnxxsZGAOMxUSF6+/btlJWVdVKJALjhhhvYt2+f0QY2lnPFeJxtnNd1IL1F77tgNpvJz8/nd7/7naGeabfb41wG6ZJO0P9RetMDe+PGjYb8e2NjIw0NDUY/Ea/XSygUQlEUw/ApioJfVeno6EgadNNdWB6PB5/Phz9qOHWBxq4W4bqGVqzWj8/nw+fzERaCQCDAgQMH2Lp1K598EsnGMo0Zc1qNNxxGeL1xtSMy2g89E9gdDoYOHdppcDIrJm668Sby8jOXLZMpupp9jl76Q2pqauK+sz/72c+A04O6/qjv7w9HjhxBVVVGjBiBAEaMGAHAyZMn48Qe9W6LukpELLpx0T/XuSZDfzaSXYH0AVVVCQaDzJw5M7LUj9ZbqKqKzWZj+PDhxopBSsnEiRM5GG1R2luklMYg31f2799vxFfuv/9+SkpKcDgcRqbWyJEjjcCsXqHqiqbbQmTVkujCCilKXBZWT6iqiknTjM6IipRoUSOWm5uLx+PBCnHZScc+/hi/JnGMOV07km70OhARDkN0sMRHt+wAACAASURBVDUDQlGwmEwIRUF207Vt2bJl/PjHP07b/cRmcUHnTK6+xETy8/M7qRgIIWhubo5biXblj0+Xn/6OO+7gP//zPw131Xe/+11efPHFpN0UAebMmRNRAz54kLEv1OD1evnpT38KRNQhNE1DEYKLikbw+K0zePPECd5555203OtgIYQgLy+v36oTA0XWgPSBMWPGGIOvjqqqjBkzhoaGBo4ePUpRURHHjx+nqKiIAwcO9OufMBQKDWjmSWsoRPvx4xw+fJhJ+clTfNNBKBQyGleFQiEUs8mQHAfgsksZ+9mujF0fIuKNahPIHnSHEtvuxrJs2TIgksWU/8UXKEOG9qolb6zRGG0yEYouGpxCYBHw13Y7IQknNNXQ44JIAD4Vkg1GWnSikAzdB59OX7yUkrfffvv09/jxSDoyEBe07+q9sehtGPQA+4dffcXCX72J6nTGFc7ZbDY0TUuatVbQRer6YJPYCOtMJ+vC6gM+n49gMMgzzzyD1+vlmWeeIRgM4vP5MJvNhlCZoig4HA4cDkev9YQSU3sHQ0W0paWF7V8eoLW1ld27d6f9/LqGk9VqxWKxUBxWyc3NNbaOoXkofr8hhyKamiLaWPrzNNaOSLMZbLbI1g2BHR+mXT5FT/11a5KQhICUBKREAGEJ7dG0YLcm8UlpSKX0Nx14oEmMu3WXjlxdXc2bb77JV199xannVvHVV1/x5ptvUl1dHRdgt5hM3DRhAi/cM4eGhgb+9m//lgkTJqAIwYQJE5ImvcTWSWXpH9kVSB9oaWnhzjvvZOnSpSxevBibzcY3v/lNQ6guUfHWZDL1qXm9LlEC8bPB/qQNt7S0MGHCBCwWC06nkyFDhsQZt65WSi0tLezevZuLLrrIiIHoSCBkNkf0raLnsKQhVqHk5+GbOJHCa64G4ORHH2MqKaYgpjI6HQHtRBdWMvSqddv116V0zZtvvpmdv/+fTvuXLVuWtiB8cM+eARNzTBf6d7en73B3QXT951iui3ZaXLJkCW+88YaR+nvvvfdSXFzM4cOHca96ns+u+CtuueWW9H6o85heGRAhxAzACfxWStljNZMQ4jbgp0TkhV6RUj6T5Jh7gB8RGYc+l1LO7c09DRYfffQRmzdvNlR8k2Wp6P8gmXA/JUtlTAW9Ur2wsJD9+/czceJEnE5nXKV6V7S0tPD5558Dp4OgLpcLTVWxhMMoUc2q/rg+jh49aiiLBnJzCUz4GoejrVwDE76GraODopgB2BSNj/QH4XJFZD6i9y/D4Ujsw2pFmExdGhZdT0vH6vHENcSaMmo0197399TV1TFp0qR+32ci0ufrVwpwOrSQeotMqIjvimStFmKD6ImvffjVV5jN5k7nPVMaR52rpGxAhBCrgDZAAx4F/qaH403AvwJ/DTQAnwgh3pJS1sUccyHwQ2CqlLJVCJG5ipc0YjabOy2/Q6GQMZNXFIW1a9caxkWX3+7LKiQZkyZNMqS6e+qtvn///k77WlpaKCkpMdR8bTabURWsf4ae7tVkMqFpGn6/H7OidFqB9HVgCgaDp7sfDh/OsLCK7bprATj88Se0CShIQ4MvPdtL83qRoSCEw6C7CaU8/XM36HpaOs1Hj+KSGsqQoQBGFf6ZymD0xkh1BRJbd/X1mAwtXRl7/vz5zJ07l9+88gr7m5owKQqqpjFlyhRmzJhhXCNdYpD94Vyrno+lSwMSNRj/JKU8Fd01Frgn+nMqDvGrgQNSyr9Ez/dL4C4gNh/1IeBfpZStAFLKpt7d/uCg60DNmzePgwcPMm7cuLg+IeFwOGmGVl9IZiD625hn48aNSCkNF1lhYaGxIrnssst6Vc+iaVpKg+2Zhp7t1fL9HxDau5dA/UGUqNKyeqIpEgs5i9oYJ3Kd1cpIk6lLF9cRNczzMW1QB4pkK5DYBlZ6f5LYuqtkGVo7duxg5cqVhEMhLioawR2XTOG5997j3Xff5bnnnjNa8lZWVuJwOIxrjB03juXLl2ekKLcrEqvqhy2pHLBrZ5ruViD/AfxSCPE2kZXEa8BWwA6k0uNyDBDr7G0Arkk4ZiKAEOIDIm6uH0kpf5t4IiHEw8DDEHGdbNu2rcuLtre3d/t6Ohg3bpyxutBnFjNnzmT79u14vV68Xi+FhYU0NTVRWFiIx+Nh2LBhtLS09Mu9c9VVV/Hss8+m62MYxK5IYlcjOl2JKer7ZVSczeT1kpOTg9VqRdM0wuEwJ06cMI43mUxoUeMkpIzIpgSDnDp1Ck3TOHXqFO25OUbCgL6vI1p8GPL7CZuUXv19e/o+jGhsxNrejknTCER7MAgJajiMlDIy0EnJqVOnMPm8HK+vx3LiBF9s28aIxkZCMX9Pn8+Hpb0dLRr01o9XVTWuoFJ/v379vuLvRjNpiKIYAfdkFJvi3T09/U4z+T918uRJZFTi/bvf/S51dXXMmDGDuro6Q2bF6/VSV1dn3Mebb75JQUEBJ5qaCIVDFJrMxv+iEIIjhw8jLozE+rxeL/Pnz+em/z3AluIxLF682LjGQLB06VLGjBljTCp7Q6bHsv5eo0sDIqX8ALhNCPF3wBbgX6SUt/T5Sl1f/0LgFqAY+B8hxCUxqx79Xl4CXgK48sorZXdBsG3btmU8SLZ8+XKqqqri3FTz589n+fLlVFZWoqoq69evN1679957jRVKbzsafuMb3zBy2z/99NMeP1tfXGWxK5L777/fWI3oXHbZZd2+X0qJJGIk3G43BQUFuFwuOjo6GDZsGBCRrRYdHSjR+hLp8eCPZmDl5eURDAbJy8ujI2qAAE6cOEHT8GEIXZrD5UQCx44dMz7r+PHjjUr2ZPT0fWjZ8J+EmpsJnGzGElVaDnncmMxmNFX9v+ydeXxU5b3/38+syUwyAZIQhETjRg2gYutyQVQiUErLRWpdSrBacOV3Ta0gQYnVoiIlKvfaxMoiVKyQqq2l2MpFK0GlcCu0SCVEFllDWLLvmfX5/TFzDmcmk2SSzCQB5v16nReZMzPnnDnMnOc83+XzQafXI10u+vXrh0cnSEpPx6XXkzF2LFXr/uwXwiorKyO2qRnh9oaGpN1OfNkJDOXlfmJ2nrpaMnzHVLXuz3Q1pR6jURjoLh19ryL5myosLPSTj3/zzTcZNmwYa9asYdWqVX5aWEouqdzX8/HtnV+qZbxKSG7lypU84Zu1JCYmcvz4cR5//HHqXllC/Xe+zahRo8jOzub555+P2GfScuTIEY4cOUJKSgqnT51SlZFDoScS/t3ZR3shLAMwETgNTAUeF0I8APxCSrkrhG0fB9I0j1N967SUAv/wJeQPCSH24R1QesckIkT8ptclJaph/bRp07jnnnuYN2+e33NaRdO77rqrU4JwnW2MCleepVMIgeBMUra+vj4skigejwczIHwVXYaWFtycsQF1OBxhk70OF/qByX45EPPoUdTt2UOqJokeWIV19dVX8/nOyPa7dNSgGGpPSSSYNGmS2rcxceJE1q9f364WFkB6ejoGg8GvjPc/l75OSkqKX1+JUiauRVvN1RNIKYmPj2ft2rXnVQhrHbANb9XVdCnlfUKIwcBzQggppXywg21vBy4XQlyMd+D4MRBYYbUOmAb8VgiRhDekdbALn6PHacvJMCMjg+TkZNVcCVAVTYuLi/n9738f0eMaP348f/vb37r8fm04C7zS2tqy5ObmZj9tLfD+QBL1eiqUMFUvJGc7y/bt22loaMA++AKkJRZ3xhXoTN7P6WlpwdLYyOVb/h7x43AWF+M+Xc6Nl1wCgP3kSZp8YQ5jGBOvfjLz0Epqvjd7Svr378/pU6fo37+/6rTZURnvww8/zMSJE9UcyPdHeJ0py8vLWbJkCVkOB28sWYKUkquuusovBzJ9+vSwKQyHitb7vLNRiL5MewPIRVLKyUIIE/B/AFLKMuABIUT7MQ3va11CiEfxhr/0wCopZbEQ4jlgh5Ryve+57woh9gBuYK6U8qzu8MnNzWXOnDmMHDnSL7y1cOFC7rnnnohfXPfv39+t92vDWYCaZNc2XgULaTl903K3263mMNxut9rt7HQ6EZpKLcUJsbMx4XDR0NBAfHw8BqcTT2MTnto6hG9gdDc20txDncpeS95iddbibGjA2dhIs6+6rafoqKek6uePox8ypMtGWO0hpcSj5Jt8tFfGW1tby7p168jJyVGrsPZvLmfAgAFkZWV5+7N8M5orr7ySL7/8ksWLF5Nld/DcsaMsXryYRx55JOyfoz3i4+PV6rBzifYGkGVCiG2+v/3aoqWUIc23pZQfAh8GrHtG87cEZvuWc4Jp06axZ8+eoOGtrCzvBCxc/iHBGDNmDCdPnmzVI5KcnKwmtDuLVt0XvJ28QuOz7vF4aAgyMOr1euLj49myZQvJyclY3G5qa2vR6XSk9uuHR68PS8PhucbAlBROnjjhLS3uITrqKTGkpUVMhVjxANd6gefm5raphZWTk4OUknHjxvG4LYFthw7xwJq3MVosjB49mqKiIkr27OGyyy6jurqaefPmsWrVKub6ZiDz5s1j3bp1EfkswTCbzezfv1+V2o+JiaGlpQWz2czphS9y50cbg4aqFavhvkx7SfQCoKAHj+WcYdy4cW0m6NrT5wkH77zzDrfeeqv6hTQajX7VUF1BCSsoPP300wwYMKBN5zRtzfuWLVtUkUmdlFh8A2e93Y5ep8PpM67qrSm9Lt7mDd94PGdEE6UEj8dbxislshfKlAckJmJoaKCxjZLqwDDi2UxbBSY1NTXq9/bw4cPqzUagc+K3Bqbw3OTJPPL73/tpZCm2uYH+69/61rd6NAei5CWVfF2Lr9pPWb9x40YmTpzIxx9/rPaMTJgwgY0bN/bYMXaVqJRJD+Nyufj444/D7gethJxcLpefd0hvhIi0syvlgmC322l0OlGeMep06AMugqf1epqamtTZU09M982jR+Gpr8N16DB6X9jKfeoUwmzGY7NhMJlwRzhRr+1eFz6jJZ3bDU4nFoMBN6DXnIvY2FhycnJo/OMfI3pc4aIj18Uqo5GF5aex2WyqkOCDDz4YtFn3wQcfJCMjg7179/o9d+D0aUwmU6vEe1JSEitWrOCjjz7iqu07eMtoYN68eQzWyOFEGrfbq/GWmJjI0SNHGJiSQmNjo5+YpTJYtCcq2Ra92ah49nWAneW43W4efvjhiO5D22jYUad6b6J4ksTHx2OxWBjodmOxWFQxxXO1ezcQ/cBkDGlpfiXBgHcG5PFgM5uxmkzc0L8/w20JPDbmJuxbt+GpqQm+wT6G4rrY1pLociHBr/dI6f+YNWsWR59/gVk+9YHGxkYyMzNZtGiRmperbGrklU2bcDgcrRLvZrO5tXlaL+Qhrr/+ejWRHhMTw/XXXx+2bStVncJXDZnWv+3BOtxEZyA9jE6n63aiOxx0Vh1YS1NTE0lJSWpIIVCXq61S4nidjro+WqEl9Ho/uXbpciLq6vDEmBFNzbhOlCEsVlzHjoVFf6stZEwMurg4XA4HOimRHg/6pCSk3Y4zJQWr9GAePQoA14kyjKdOBZ1l9obOVVeRmgIMLWlpaaxatYrXfQnxtLQ0jh07xrp167DZbLhcLjxScrq+Hp0vJ7dgwQLWrVundraXlZXRv39/tVTYaDTywAMPsGzZsh79jJ988gmzZs1iw4+n8ej2L1Th1XCQk+MtC5ZSkmy1cqwH5eDb6wNpdx4lpVzS3vNRWpOamkpDQwM1vjvH3vyRd6dfZN++fX4mRYFVWuCt0w+krw4eungbnpgYdAO9zX4tUmIYPJjmyy8nOeMKThwvY/h777R6n6KnpRDo6R5OuflgeGpqmDM2k8+3fI7Hfebc6vQ6hqUM8ktKn40c05xbu92uPi4tLeXb3/42//rXvwAw6fRck5bKP44c4cUXX2TgwIFqZ7uUktraWvV35nQ6WblyZY+GsJTm3tdff53XA9aHg9LSUtLT0zl8+DAVmu9fT9DeJwifOXYUAPLy8njsscfUx70RoolkBVhnqPV4sLW00NTURL9+Z6xiA3MgDiH8Sn/DfeRlZWU4Bl+A22hA7+sWr+nfH2v//tROncLAK66guqSE4UHeG1jSGujpHml0/fphHj2K8b4ZSVlZmXphbP7f/6X8RFmPHEdvoAweAA6Pm38cOQJ4vzNVVVVIUJPnHo+HuLg4GhsaiImNpbm5uVtFJZ2lrZs1l8tF/7lP+GmAdZUf//jH/Pd//3er6ku9Xk8/KamM0M1be1VY4fPpjAKc6WBX+kGSkpIwGAz069ev2wKJoSKlVMtw+wJ2u51//vOfmEwm3vrHP7jhhhtISUlh4MCBNDU1YdLKrNvthLtWS1H/dUvQ+/Zj9olg6qW3fv90HzlXnUWIvpvi1HbGB3bFQ/e8THJycnjclqBWYYH3eybx/n8bDIYuWSF0B51Ox4UXXsiRw4eJ12jNnf7VYlWmBeAHXdj2gAEDeOmll8jLyyPL7mDVtm3kfuANkaWlpXFUo8MWbjqcQwkhYoD7geF4hRQBkFLOjNhRncNMmzaNnJwcGhoaiI2N5fDhwyFPZbXdrF1Fr9d779A6MQsJ5qldU1NDf1+yLjY2losvvlgNzQFYLJY2y3wDaWhowGKxIKWkpaWlR0ssFRqFUJPSDqMRd0MDQic4fPgwTUJQVFREXFxcu7pbfY2rrrqSj3fs6JNdz36d8QFd8dCxl4kWAX4z05dffplFDgcZGvmYIUOGcOTwYZKSkqivr+9xyR+dTqcKatbV1anha6Ne7yfT8oMZnb+sWiwW3G43+fn5zD1yhNR+/TCZTDgcDpqbm4lk4DiU/6XfAV/j1cV6DpgO9Pwv/BxCqWOfP38+4BVb6wghhHrB7izaSqyuGFEFagkBvPLKK+rfkydPZujQoX42vFJK3nzzTSw+8USDwdBq3+3lf0pKSvjWt74VNISllD+63W6/BseuUl9fT4tOIHzJaI9Oh8vlwog3pOYRgvj4+DY9xPsi7tPeEM3cW72Ksw27d3Oqtka90po1s6q+MhtVCEWKXjs7CbwVstvtCLwqvwrKxbu38kKBA1bgd787+lzK9WTx4sUAWE1m3nj1Ve677z6/m7pgdNcqO5QB5DIp5Z1CiNuklKuFEGuBz7u11/OcjIwM3n//ffXLbDQaSUlJobT0jLtdQkICtbVnDImklJSVdT+mrXh9dKa8t6tNa2azmS+/9IoWjBw5ktjYWL9ke3vuh+BNeFb4zoEQgrT+/XGDKtSoOBd2F7fbrYpBAnh8UvMuIcDpxI33AuR0OjuciQQm1gGsBw/h0ohLRrKKS92HryBAqdiqPnqUS0eM4NPPPgUJNt0Z6fNnnnmmT/WUhCJF3x7BtKaURHZfq05TciBTp07tsj5XRkYGqampqogkwD9TUxk2bBi7d++m/Ed3Yh49iv45c/0+u06n6/bsNJQBRKkRrBFCjABOAmeFc2BfJTMzk4KCAmbNmsXLL7/MQw89xJo1a/xeox08FLTJ5p7k6NGjvbJfnU6nzmDA271uionxm4FEAimEt6ZeSq+1LWdmYR3NRIJpRW17/gWu/MXTETnWUDHW1eE6dowbL/aKNjobGrjGd8E6m3pKQkEJz2o70JUZQF8aPMB7s1JRUcGiRYv4f//v/3VpG4HujdsOHeJnrxWo7o0Kyu+lK82KbRHKALJcCNEf+AWwHojz/R2lCxQWFrJihdePa+XKlSxdupRhw4aRm5vb6j9cCIHRaFTvtDuajkYK7Y9u06ZNWK3WHmlQ9Hg8fu6IRp0Og9nsNwPpagirsrKS+vp6mpqacDqdeACpDEghVqopir4Kpw16ioqK1Meh5Ez0Q4Zg/+KLMytaWpBGozec5naDXt+pz9UWTpuNOE11mP3kSXV2At6ekmfvv58FC1rXzjz77LNhOYZwEEp469e+bn4tysyjr1QhaqmqqkIIQUFBAQWAOXc+Dz74IPn5+SG9f9q0aWzduvWMLL7ewIOzHmlV1ZWdnc2KFSu8r+nkPtoilAHkt1JKN/ApcEm39naeU1hYSG5uLk6nk4yMDB544AEKCgrIzMzkT3/6k99rld4KZfAI1msRDgIHgmASK9qQwK233srkyZND2rbRaFQv8Gazmbi4OL/EusFgUHWBQqHW40E0NPDVZ59x8803h/y+YCQmJhIfH4/D4fAOIi4XOt/F2uNyIXQ6ryZWOyiKvgomlxuz5nEoOZOEuU/gPn5cLf1t+t3bxF56KS319RhOncLTQ/kJT00N9q3beHKCV8BP6+li3+rVVO0LHu82nQ6rEIw1m4PK3RsQTIyxsLGlif/R3Hxo3Qr70gBSsTiPB7ZtVcUdT7y4iLVmE/PmzQMI6QJfWFjIO++8wwUXXMCRw4dJscXzzjvvMHr0aHUQmfun93lj2zaSk5M5deoU/fr14ze/+U3I+2iLUDIoh4QQy4UQ40Rfy7adZSgmORkZGdx+++0UFBQwevRoli1bxi233AKcyTc0NTUhhEDvu6j1hDKn1Wrl008/BSApKYmEBK/E+BVXXKEeR2dISkpi9erVrF69mgMHDtDQ0MCXX36pLlVVVX6JzlBo9Ml+K8cZJTwoPSXK4rhyhN9j8+hRPun53sc7cAgaPFJddBJMCAzABXodU2MtvBRvY0m//izp158nbN6mzq58jyNJ0rwc1q1bpzbeWkwmZs+ezeLFi9VIRUfk5OSoN5rKJdrhcKgd6gCrtm0jISGBwsJCKhbnUVhYSEJCAkuXLu3W8YcygFwB/A34L+CwEKJACDGmg/dECYJikpObm8vy5cupr69nzZo1OJ1Oli9fzoABA5g4cSLgNW6SUmKxWBBC8Pvf/54BEfaoaGxsVGcalZWV1NXVcf3117N79251/aBBg7pUtVNVVaXOSBITExk5ciRmsxmLxdKpkl8tgYJ6Uc5fDELgAjyAU6Im4ZUlxTfpcDqdfgZpfQWlSizhiTnExMSwd+/ekKslS0tLiY2NZdWqVZz+1WJeu/vHxMbG+hXluDwe1qxZQ2Zmplo6vGbNmm6XM3cYwpJSNgHvAu/6ciGv4g1n9a2h/CxAMckBr6SzNnxjsVjIyspi2bJlTJs2jcLCQvR6PfX19Wp1UEFB5NT1A0NZyjRfSqnG9a1Wa5dzDh988AGXX345q1evBoIbVXWWzoS/2mLXrl3YbDavzL5vELPExHTwrrYpKytT7waVqq0qW3y7uRFt5ZbEm4/Q1dR69bhcbq8el9GErrERkZLS5WPrLZzFxTw54bt+s8ZknR6b8H7HzBEKbIw2mYn3VZu1alaMtVD70ssRMcjqDDohWnmk2+12li9f3qnZUmZmpp+8featmRQWFnqdGH1Nyo899hg//OEP1RzIt7/97W4ff0jdOkKIW4C7ge8BO4C7ur3n8xClWqK+vh6r1covf/lLnnzySe666y42bdrEunXrcLlcbN26FfDmCDweD1dccQUlJSXdkjroDNrBZPv27fz2t78F4KKLLgrrfgKNqgLtc4PFqq1hvNgsWLAgqLsiHk+Xk9dKZ7tCfHw8A+r8PeIDcyPai1hJfgE3Zj/K3/MLyPjmG06UnSDtBq9ya1lZGQN6UMMpXBiHD8eQlsbQwReQnp7uFTj8979VH3ilpDjcxOtEu82KvWnjqxA4eHz9i2eY+cnf2Lp1a6eqDBVFXoCSUycp8T1ubGxU+2T279/PNddcwx9um8rj//on69ev7/ZsLJRO9MPATryzkLlSyp5V6zqHUAYAxZlw1apVPPzww/z1r3/l8ccfJycnh/T0dFpaWli7dq36+qKiIrKzs/22pbib9QQnTpxAr9ezZ88epkyZwpw5c1qZTHWFwG0EzkqCJfQb+1ACNNLohwzBUPK1OjsRJV/j0lxUhKX7ygRR+hZXPP8cZrOZjIyMsCgyNDY2+nXq79y5k0t37gR6rg/kKillXccvixIKirXtRx99xIQJEwAYPXo0Tz31FOCtV3e73QwaNAin0+nnqa5gNpu57bbbWvWORIoNGzYwYcIEDAYD69evj2gtvXZWotPpiIuLC0kq/lwkYe4T7I6J4VvZjwLe2YnyN3iNmgLVgJUBxtPYiH7QBT17wFFa0ZGZ1u03jiH9r61vxrQz1u4QTDRS4LVNPn36dORyIEKIHCllHrBQCNHqtk9K+bNu7fk8JjU1lXvvvZe1a9cyZswYBg0ahN1uZ8CAASQkJLBnzx4mTZqEw+Fg2LBhqqe6woMPPtjt6olQ+ctf/qKGtIYMGUK/fv1aJdG7KocQrGNYOyu57LLL0Ol0ESlfVlDyHwaD4UzITKdDSokbEG53RLWE2uolUf6t1rd9boOpASsDTNXPH+8xVeAobaOYabXF+3/f0mqd0+nkC21vUDc5PGUq6evPeMALIUhKSmLw4MHs9M1Gukp7v3xl/rQD+GeQJUoXycvLw+12M3PmTMxmMzNnzqSxsRG9Xk9+fj52u50NGzaQnp4eVOY5Pz+fRx55pMeP+/jx4+zevZtnnnnGb31XZyR9QeSvrq4Ou92Oy+XC6XR6zZl8DWd6vINcJDVtlV4SZUl1ee1PTT4lYGe0cv68o6u/p5iYGATQTyM9ZDQaMQbc4Hl8skjdHTygnQFESqncCn4lpVwduHR7z+cx06ZN49VXX8VqtSKEwGq1kpCQwDvvvMPJkye55pprGD9+PFJKv1puLaNHjw66PtJ17kVFRaoUPfgL8QmfBEhqampI2+orbUVmsxmTyYTZbPYmFfV6pJS4QO1SV7rWzxaUyi5lMdTX46mrPbNoJGJ6A/fpci40GUnV60nW6RllMqtLisFIsu78KPK8c+Q1YdtWS0sLEqjRlMQ7nU7S1r3f6rUNDQ2qo2h3CCUH8ooQYhDwB+AdKeXubu81CtOmTfObWej1ekpLS3n22WfJyspCSsnXX3+Nx+MhOzvbr1tU6WhXUOTWbRqfgUgRmNgOHECsVit5eXkhbauvdAQrORblzs9iMiGMRvRSIoxGpoMp1QAAIABJREFU3A6H2rV+thAY3jqeOY6k731PfVwdBmHO7qAfmMzFl13G37f+HYvbzTaH9/8gNjaWm4YPY9euXb16fD3Fe1+emQWYTCYO/OIZFpUd5/XXX2/nXZ0jcD6jE4LExMSwKBOH0geS6RtA7gKWCSFseAeSF7q99ygqGRkZPPPMM0yfPp21a9eycuVKXC4XP/nJT1i2bJmfLIHS0a69mOt0uh6rytKinW4PHjyYvLy8kMuNjUZjUD9vBbvdjs1mUwUVAwfIrjQfhkSQHEh9fT1ut9uvzyNcaLfpNujRHz5MYxAvknORG0ffiKeulguvukp1U2x463cMMpoY5Wl9gzHIaCJGenD2kZuPcOJwOEh/5hcMDGOvj+ILosUjJSdPngyag+wsIYV3pZQnpZS/Bh4BvgSe6eAtUTpJbm4uhw8f5u2332bZsmUAPPzww7z00ku4XC6/Kiylox28vSLV1dV4PB48Ho+fOVW/fv16pOt24MCBCCFU6ZNQ2bhxY7vP79q1i7q6Oo4dO8axY8fUwUN5XFFREZELq8fjweVyIZ1ONQcSHx+PxWJh8ODBYfEg0aL0jphMJpwINVTW1NSEWwgqKys5cOAApQY927dv79o+4uL8Qlpid7H/4z5UEqwfmEzKsAyKY8xsc9jVpTjGTMqwDFrO4sFjlMnExJgYdZlgjuHzgSnqsiEpmZwWuyrBUvvSy93aX1s3aEoJb3fDyKH0gWTgbSL8EVAJvAPM6dZeo7RCcSo8cuQIEydOVKuvBg0a1KomXNvR7na7SfGV5AXWdfeUeq9yh9PY2Kh6vocyC3nvvffaff6DDz5ASqlWgSkijtpGxzfffLMrh0xcXByJiYlqBZbfbEgIpMdDk8sFtbUYDAY+//xzUlNTVc0iOKPoq+DW6/083btyd+cWYNDrkYDT9/6mpiZVSVbRFFM+Q6gOiSevv47vaCTlO1MSrNATPiZaHn/8ccDf673hrd8RIwQm/DvYjb6iBx10KILZm/g5MQKD9XDS5dE8L/yqtrrb7CilREfrMJb2+e4QSg5kFfB7YKKUsncDp+c4U6dOpaCgAOkTDCwuLiY3N5esrCxVrRO8s5W7774b8H4BKioqVK/zpqYmGht7ttdzzZo1PP3000yfPp1Vq1aRk5MT0gDS3Thvd9zUrrvuOlavXs19991HWloaycnJfhfmwEoYj8dDRUUFGzZsUGd/iqKvgv3IUdwWi9qJ3t1Ql8fjQXCmMCLeI3Ebjeo+w+mQ2F5JcF9CPzCZWKeD01XV2DUXP4NOh4sQpTX6FN2bAXTUZ9KWt3y4ernaPd9CCD1wSEr5alj2FqVNCgsL+etf/8rUqVP561//SklJCfv27WPy5MmsXbu2lVeItrlOe6cbGxvb4wOIlJLGxkaWLFnCU089xaJFi/yeF0IEvdinp6erInJdoTequL744gt1AFF4/vnn1R/kyJEjaW5u7rbcfChUVFT4aWx1xY/krKSlhYFxcdT5vudCCIygzkCsQOv2ub5K92YAHfWZjBiQxOXA/gjZMbd7C+fzAUkTQrQ2xY4SVpTE+J/+9CdWr17NsGHD8Hg8bNiwoVUjYU5ODhaLhfT0dJ588kk1rFJdXc3DDz+svs7mk7DuCfbt2wfQavAYPnw4t912m19uxhKkhDQ+Ph7h8x4Plb7QR6IdPBSklHz22WcR37fL5QraQ6IsvVFU0SPExCCsVqTVSq30UOe7CGtvJ5J13vLgVL1eLRU+H6mprYnY4AGhzfgOAX8XQqwH1FtbKeWSiB3VeYg2Ma6U+DqdTmJiYlqFg0pLS/noo4+oqKggNzeXVatW0dLSwve//33Wrl2rvk5bsdSTRjpW65mEbG5uLo899hgXXHCB2gFbXV2tlvyCtw9DSUwnJiaGHJrpC30kgYOHzWbz83QpKyuj0WrFrSmbPZvKgcOB0pNiLC/HpdcjSr7Go5kli/jO3+jIxkYSDAZMRhNOl0sdPXRCoBMC3G4Mej12jVTHKJN/QYnTp1J7tjPKZMLWRjjXIgRz4uODhrHCQSgDyDe+RQeER6AlSiuUxHhmZqa6bsuWLWT4fKsDKSoqYv369Rw+fFiVPQHvTGbGjBlqiOu5557j//7v//jwww8j/yF8tBdCi4uLQwjB7bffzk9/+lOEEIwaNUrV7NEOPoMGDWp3P32lj0RLXV2dWkU1dOhQBg8ezKld/yZFo6IbztxFW5SVldHY2KiGtAIl5duTSAk3Sn7l35s3kzF2LCX5BSR/842/1Eon+1KE1YowmzHGxGAEdHV16EwmcLkwWq0Y4uKItcRy8NRpjpeVYdMJtdcE4PrrruszBlndRZuYT9XrA4oLYGqshSH6M5f6tvIiXSGUPpDWJslRwo4i9b5y5UrGjBkTVERRYcCAAeTl5ZGXl8cjjzzC0qVLycnJISEhgWnTpnHvvfeqrw2UHYkUbXmkL1y4kPLycsrLy9m7d6+a8/j888/56U9/CsDmzZuZNWsW06dPZ82aNRT77gxjOvDl6IvGQFoOHjzIW2+9hZQSsf0LLrnkEu65554e2bfD4cCoSbgHSsqf7gOzt57gsssvB6DB1zSn0+m49jvfYdL3v+9XdXauYBYCu5TYhMAgBDqgn07HcE3X+XUmE0P0hrAMJKGU8RYRJNMjpWyttR2lyyhhquzsbEpKSsjIyGiV+1CwWCy43W7y8/N54oknMBgMuN1u6urqKCwsVBU2tU1EBoOhV5Rsi9sIEyhlxwrLli3j2LFjHc6U9Ho9F110EUeOHOnzoaD6+no/Y65vvvmGt99+m9tuu62Xj+z84rLLL8eTMpC0q67yNutpSrEjjbO42C90pjXSAoiJ0ECuODQa8Do0akuHFW+UVH33a9ZC2YK2vi8Gbz/I+aOp3YMEypu0RVlZGW+++Sbz589HSsmQIUN45plnuP/++8nNzVWNqBwOB1OmTGHlypWMHTu2zYt5b/HII4/w+uuvI4RQcwnanII2nJWenq4OlEeOHAFg2LBhPXvAYeCbb77xe1xZWenXO+ISAo/DgdSck3BQa7XQrKl4UzrcFc7Ziq1exjh8ONv+8Q/1sU1rcgXERcBMyyYEJl9lmgB0Ai7VFLEYhTdvciwMRSgdBkKllP/ULH+XUs4GxoaycSHE94QQe4UQB4QQT7bzuh8JIaQQ4trQD/38JSMjg9TUVBISEti0aROHDh0iPT2dYcOGsXLlSmw2m3rxWb9+PcnJyX1u8AD4zW9+g9VqRUqpCrsZjUZMJpOqTAzeWcfhw4dxuVwkJCSofRZaPbCuUlVVhdlsRqfTeZVLfYtOp1OXSPqfJCYmYrFY2LVrF//617+oqqvjxIkTNNfUePcfpv249Xq1291kMmGR8vyo2OoD9GQ1JHhnHxJv86AEPBLsUqqLU9Jm0r2zdLgVIcQAzZIkhJgIdKhZ4esheQ2YBAwDpgkhWt0yCiHigceAfwQ+FyU4Sr6kpKSEI0eOcPHFF3PrrbdSW1tLaWkp1dXVrd7TFyqWAhkxYoT6d2JiIsIn8qZUnykujG63W61sqqmpUUNX4bD4/eCDDzhw4ADNzc2cPHmSkydP4nQ6aWhoUBdtz00k+Oqrr1qXJEt5Vqn/dpZAtWCttIqnsbFLlVl9lccff7zHBxEtRmCATqcu8UIwWK/nOpOJJf36U/Xzx7ssmRJKCOufeAcygTd0dQi4P4T3XQ8ckFIeBBBC/B64DdgT8LrngcXA3BCP+bxHuXDee++9zJgxg/T0dN566y1SU1OZPn262rm8ePFiZs+eDXirtoJZxPYm+fn56jFVVlYipaSyspKYmBgaGxvZvXs3999/P1OnTmXDhg2AN5czdepU9u/fH7bjqKqqAryqxuCdBcXGxqryJi6XC4vFEjHxxrZmOD1ZZdZRUyKEN8x1vplhKbIsVe//iR179/bovoUQuLRd+3jzIk1SUup2Y0hL63JBQShVWBd3acswBNAeVSlwg/YFQohvA2lSyr8KIaIDSCdQtLNcLherVq1SK7eklLhcLoQQFBQUcM011zBmzJg+ZwWrdToEr7Ci1Wpl9uzZ/OhHP1Iv1jfddBPPPfccGzZswGq1cvToUXJycoJWp3WVQM2thQsXsm/fPtLS0jh27Jj6L3hnSueiMq7SlKhgcrkxBzR19kT5MZyZnSgEWvUKY7Svua/QnqXtdcAxKeVJ3+N78SbQjwC/lFJWdWfHQggdsAT4aQivfQh4CCAlJYXNmze3+dqGhoZ2n+8JeuoYysrKmDdvHjNnzuTo0aNceOGFzJgxg0WLFpGcnIzRaAzLrKMrTYibN29uFVdvq9QXvAPi9ddfzxdffKEOHkIIJk+ezKFDh/j+97/PhAkTSEhIYPr06VxwwQUhneNQ/i9iNQ5u4J0NrV69msmTJ/OXv/xF/Vfhpz/9KZs3b+bkyZMd7j8YJ0+eVI/p5MmTfs2HSk5IcUN0c6avxuNx46qpUUuhm5ub/aRgYmtq1ES5cu6V56WUfuKawuHwe29721JwOp3d+l4r/xeNNTWttuO37rprvYvyXGIiJ27yNtmmnDyJ6cgRDDW1Xsl93+zN6PHgdrm88vsOBw6HA7fHjceXsNY3NVJTU4PBYFA/p7G8nH9H+HeacvKkKooJEF9RQarG9C1O6BimKbE14N/wWPOPf7R7jCld/A5qOXz4cJfPRXszkGXAeAAhxM3Ar4BsYCSwHLijg20fB7Tz0FTfOoV4YASw2RefHwSsF0JMkVLu0G5ISrnct0+uvfZaOXbs2DZ3unnzZtp7vifoqWPIyMhgwoQJvPjii+q6oqIifve733H69GlOnz7NQw89xOTJk8nKyqKhoYGYmBhaWlo6tZ+uhFLGjh3bqYvNqVOn/PzQwRtSUjrWGxsbkVJiMpkYNmxYyOc3lP+Lzp4PZXvbt2/3k3ZPS0vz601pK+Q1aNAgdRtFRUXs2bNHzXcoYbMEnQ5hs6HX6zEYjapUv86XBAdvT4O2JNV+4iQpvsfKRVJ5vuT4cRL69TtzbI2Nfu/dv39/m9tSqK+v79L3WvF9r6+vx2q10pCUiEXznYqLi8PYrx83trHtv3+1W32udvsOmo4exSN8oRm7HYxGb7URgNmM3mRCmkzEWmLR2bzpWo9O0K9fP78yXpdeT0aEf6dV6/7sF46rSkqitLJSfRynE3ztPBMdCGx4vPWGG7iknWOsWvdnutvNkp6e3uVz0d4AotfMMu4Glksp/wj8UQjxZQjb3g5cLoS4GO/A8WMgS3lSSlkLJCmPhRCbgScCB48obdNW82FeXh4/+clPsNlsLF++nOXLl5OamorD4VAvllozmdjY2Hbj+73VQ/LHP/6RQ4cOsWPHDjVPMGnSJNXmNxxJ9O6Y6iiKvgqTJ08mMTGRSs0FoqvUejzEuVy4XC4aq6qwWq0MMBhx+zxJoP2O/76E4vteWVnp9XsPCI/V19cTalAqYe4TuI8fx1lcjM6WQPPx4wibDUNpKTpfaFFGuOghyhnaHUCEEAYppQsYhy+EFML7AJBSuoQQjwIb8QplrpJSFgshngN2SCnXd+fAo7TffJiVlcWJEyf8hAvffPNNZsyYAfgLEVqtVr+wUeCMo7fyJ9rwm1JFtmHDBrKystpssuwsBoOhW7LwPYGUErvdzunKShIHJqvr7XY7ZRoJELdej973+Fyv4LJ/8QUAupYWaGlBuFzqwCH6uEJBOHEWF/s1J1qF8PNGEbTtBRIO2hsICoFPhRAVQDPwOYAQ4jKgNpSNSyk/BD4MWBdUW0NKOTaUbUbxp63mQ6PRyNKlS9UqLPBWGwWbTVRUVKh/90V9KThzXJMmTWLu3LlqM2F3UEJjSvVVX2dfQwOWXbsoLCzkqaeewmw2q7MR8PqRmH2P+3qXfndQKrjcx4/jKPkaAHHsGCbN4Op1Uumb3+VQc4qhlP4ahw+nfNcutTnRLARW707wcGYQiRRtDiBSyoVCiE+AC4CP5JlPrMObC4nSh/nBD37AvHnzAFS9rHnz5vHII4+wbt06KisraWlp6bMDRlukp6eTnZ3N/Pnzu72t/v3743Q6g/bNdJWqqqpWlrfaKi6g21VcDoeDRYsWcccd3jTk22+/zcGDB72aWx9/xCWXXNLKs+RcQxlESvILAOj32efYhpwZTJ0lXyPdLlwnvDMyYbEidhdj7N8Ply+J3dMOiwpXXXUV//7q38ggnu8KNpuNxx9/PKTy2quvvprPd4aSVQg/7YaipJT/F2TdvsgdTpRwMWLECD777DPmzJnDnDlzMBgMPPLII+Tn57Nu3TrMZrO3UiUg/t+Tsu9d4dVXX2Xjxo1hucM+fvw4SUlJfpIp7XHnnXeGZMMbSGAVV1dteLUon//tt9/2k0dRNLcuueQS+vXrp4a4nAaDXxmuqw82lnaHmptvYrjGQTGYo+I3+QU4rxwR8cR5KNx8k9dwrOWrr7jlyivV9Y0nT/Ift/+wS9u02eIRTZHpVWqLs88BMkqHFBYWsnLlSv7whz/4JddHjx4NeC+ccXFx6uChTSQH+qr3JZSS2vLyclJTU7u9PZPJxHe/+12+/DK0u7dgg0NvE6itpVBeXs7gwYNZsWIF4HVKbDp4EIBbbrmFZo1XTG9QVlamDoJOpxPd+eKmGAHcp8u50GTE09TEAL0BHa1D0VqJ93D6xvft7GGULrFw4ULmzp1LZmYmRqORzMxMVq5cqTbf6fV6VXtq0aJFfPzxx2qSetKkSX7bSkhIYNasWepjo6ZmvTc5fvx4xy/qAIfDwZo1a/j6669Den1LS0ufl5DXsmvXrqDrP/300x4+ktY4HA5Vl8toNJ4/booRQD8wGeull3JCQpXbTZPH46eFFWyosAoRFpfG6AzkHKSkpIQrNdNigDFjxlBSUqLKvSvyHb/61a/8PEMC5dRra2t544031MdOpzOCRx464QizdTZcZzKZSE5O7viFnSAuLs5vUNI2Nep0uj6nIBClcwR21VNdjT7BhsenwisN4bkEDxyYAoD74CGMIX6nyz3djzREB5BzkIyMDL766ivGjx+vrtuyZQuDBw9WFWznzp3LkiVLqK2tJScnR72QanWZ4uPjqa+vZ8iQIWpjWlxcXId3h3p95Pyn2+tm7ywejwedTkdeXl5ITY9vvPGGaoIVLq677jpee+01tXfk5ptvVjvcBw0aFLYBW9vtDnC0oYEvCguJi4vjO9/5TsQFIztDoJtioC7X2RTeCtT8Kp84CfvQy0nyNTM2v/+nsO1r4MAUmiurEC0tuFpa/Kqw7AFaWI1hCmFFB5BzkNzcXObMmcPIkSP9ciAAK1eu5N577+V3v/sdTz75JAUFBX4DQkJCAi0tLdjtdjXpevToUfX5pKQkmpqa2pU4T0joUKw5LGRnZ6uS713F4/EwZ86cVuvj4+P9wnVWq5XU1NQ2LYaVEGDgrCY2NhYhRIfNmpFGa7ULXlOyffu89TDHjx9nzJgxlJWV8dlnn505/sOHEEJw883ehG9PlQYHuikGazyMEjo6WudArAA6PaNMZuxbt+GpC6kzoxXRAeQcZNq0aezZs6dVg+E999zDmDFjyMvL47HHHmPNmjXU1p754gghMJlMfuvgzKzkwgsv5MSJE60GD7PZ7HcHq9VciiSvvfZatweQtqivr1fv/g0GAz//+c/btBgG1GbEwCKE5uZmpJS9Onh0xKlTpzCbzaxcuTLojcH+/fv5xS9+0Scu3MFmJwpFRUVn1ewkkhj0elWDy0PwGUi5x802h53vjh7VZTXeaBL9HGXcuHHs3r0bt9vN7t27mTZtGhkZGWzZsoVp06bx6quvYrVaEUKod886nU69+7T5dJgAhg8fDnhnIsFi8na7XZVAB9q8Sw83kSw31upCud1u1q1b12b3e0xMjN8A0pGXeyBK70hiYiIGgwGLxcKgQYMwGAyqwVVP5ELamlVG0lCrs2hnJ/Hx8aS63JgkmCTR5LsGnU6H0WCIuA9QdAZyHqHVzrrjjjsoLi5m7969zJs3j5dffpmZM2fyv//7v1RWVlJQUEBOTo4aj1ec+doq8fV4PDQ3N6PT6cLiFNjbHDt2jBEjRjBgwIB2X6d09isXeKfT6TewjR49mjvvvJOqqiq2bt0adBva8uDZs2dTWVmpCjOazWbqfCW3kfQkOZtoampSc3Jug54Wn/937e7deDweKioq8ATJm/QFXDYbxvJytZnR09ioNjsCyKZmv9lAd5oddXo9OiHwuN3Ex8ZSH2RwffbZZ7u8fYgOIOcVgdpZRqORefPm8cILL/Diiy+yYcMGsrOzmTdvHj//+c/VHIDW+KktlIHFaDSGRaOqt9H2xYBXuPCxxx4D/EUclYIFbQ5EO1vYunUrAwYMaHPwCGTfvn1qv4sQgquvvlrtYk9LS6OiokLtdDeEqYIn0lRWVlJfX09TUxNlZWW49Xo/H/jO9h15PB7sdjtutxvpO+9uIcDtRkpJY2MjNp9lr0JnBBsjSc3NN/k1M5bkF3CjpuHx7/kFXBzQABkulNykx+EgLj6ewQO7X1F4dnwDo4QNrXaWXq9X70CGDRvG1KlTWblyJS6Xi7q6Ou6++2527typvtdms6n5ESEEgwcPVjudTSYT1157LVu3bqWwsLDVIKJUdJ0t6PV6dVB4+umnaWxsJCsri5ycHL/PVlJSgtlsVsM8ijij3W5n8uTJfPzxx4A3TzRhwoROVZEFGl0FdrTfd9993f6cPUFiYiLx8fFqUyP4Ghubmrjlllu8yfnazjU2ut1u9Hq92uOg58wsWafT4RQiaLOi58QJdWYSzZd0n2gO5DxGyYmAN7y1du1atVpr7ty5vPvuu5SUlKje5HV1dRQVFanJZWXwGDZsGC6Xiy98CqnBEs1n0+AB3guU2WymoqICnU5HZmYmb731FqWlpX6vc7lc/OxnP2Po0KEIIRg6dCg/+9nPAO/sY8OGDfzkJz9hw4YNbN26Nayzhri4ODV3kpiYyMiRI9W/zWZznwp3LViwIOj6SDY1BmtW1OZPzoV8iX7IEDyNjXjqar2VVC0t4PGcWSKsNB2dgZzHBMuJPPnkkwCsWLGClJQUdZBQjKiysrI4ffq033b+53/+B4Dbb7+dhoYG9uw5Y3uv3BUqRklnExdccAEAzz33HAcPHmTKlClBX/fGG2/wxz/+UVX3/dGPfgRAdXU1EyZMYNKkSWzYsAGPx8N//dd/he34gvmRKDOU++67Lyy+JFH6Noo/imJa1fS7t9E7HOBwgHKzEsHfXXQAOY8J5ieyevVqtm7dytKlS1m8eLGq5Dt37lyMRiOVlZV+VTkWi4WJEydy0UUXERMTQ0NDg+qYB2cGkGCDh/JcV4lkDiA+Pp5Dhw4B8NRTT7Ft2zZycnJaJdV1Oh21tbXs3LmTUaNGsXPnTmpraxFCYDAY1M/tdnvvfhU9sijnB4obo8LpgDBatf7sDgJFB5DznGB+IgsXLmTevHmsWrWKuXPnkpGRwVNPPcXq1atJSEhQE/B2u129QFosFm688Ubeffddv4Yzl8uFTqcjOTmZU6dO+e2nu+WhkRJ9XLJkCXCm6/3FF1/kL3/5C0aj0c+gC7ylxAaDgTlz5qgzAGW25Xa7eeWVVxg8eDCZmZnMnTuXRx99tEeKDAJl5QMHvt4Ob2k74w8dOsS2kyfVxsWrrrqqV48tnChujAoml5sTmibJ02Eus/WYzRiamkDz2xBSIt3uMwKKYQxrRQeQKK0oKSlh586dvPDCC+o6p9PJiy++qFZyJCcnc/z4cVwuF1JK9uzZw9dff82UKVPYv3+/3/auvvpqHA4Hp06dIikpiYaGBlpaWhg+fDjFxcVdPs4hPejnEBsbS0tLSysRx/79+1NdXc2gQYMQQjBo0CB1oPzVr37F7Nmz+cMf/sDs2bNxu92qHW+kCVQOfvrpp0NWHe4JtJ3x2q548J7rq6++urcO7axDq7fl6tcPfX09OoMeYfRGAtxOJ9Jmw+CLDLgcDvRRKZMokUJJrmdmZqrrFixYgMFgID8/nzFjxnDXXXdRWlqqNiIOHDiQ06dPs2nTJpYuXeq3vZ07dzJr1iyqq6upqalRfdlDKQ9uj560bW1ubmbWrFmtPltdXR39+/dn7dq1ag7kjjvuoKqqihEjRvi9NvBxVzAajbjd7j7V3Bcpli5dembW+tFGUlJS+N73vte7B9UH0eptleQX0O+zzxlwvBSdz+fGUVeHzuFQ+5OE04kIU19MdACJ0gptcl3R0srLy+MHP/iBmi+RUjJu3Dj27t2rhrVSUlKoqKjwC9EIIRgyZAhLly5Vv8CK/8jMmTO7dZyKonCkUUJZr7/+eqvnXC4Xr7zyCtnZ2VxyySUcPHiQV155hRkzZnDXXXeRlJTElVdeydy5c6moqOhy3kaZ+Q0ZMoQTJ060Ej9UbHmVGVEgTU1NfiGtQJfEvtRTYrPZOHbsGAkJCa101Y4dO0Z8fLxfni2KPzU330RqSwtu32y5ofQ40mTCnJwEgKOpGZ0lFhHfsWVuR/Sdb02UPkOw5LrT6WTXrl3qoGIymThw4ADHjx9XL0RNTU2t3P2klJSWlqoXNuUuHQjZCbAvYzabmTFjBoAajpsxYwZCCBoaGtRmzNraWhoaGvjud7/bpf0oDY21tbVBlXOVC2pbF1alQVGhL/eUKJ332rCWgsViOWs87HsT7azk6LjxGBOTSLzhegCqy8oYMHhwW2/tFNEBJEpQApPrMTExPProo2pYy2w2c/XVV6tSJ+ANOQQaLhkMBqSU6l2xMniEg45kRnqCtmTQpZRce+21/POf/0RKSU1NDddee22njbCUZkbl/Cn/Bg5ESqgnsFAhVJSeEoXAGUp9fX2fkAOx2Wy4XC4/RWizEOiMRvS+TvQo/tjj44mtrVXzJKLka1wBBShdlUyJDiBRQsLhcJCfn88111zDmDFjmDRpEuvWrQO8M4+lS5cyb948HnnkEb/3uVzKc54GAAAgAElEQVQu9Ho9r7zyCgMGDGDOnDnU1NTg8XjUHMj3v/99jhw5os52Qk2s9yUPi2BUVFTwySefUF5ezuzZs5k5cyZHjhwJ+lqlU18Iwfjx49sUwRNCMGHCBDZu3BjWY22vpwTC4+MeDurq6lT9MaUC0KjTIXS6VhVPfZFTeu9xKlpeTUL4aXZFoqy39D9uwGWNUz3ig/nFd5Wzuwg5So8xbNgwpk+fTnZ2NjExMezfv59rr70W8Iai5syZg81mC9rncMMNNzB//nxmzJhBfX09//Ef/wGgzma0P6DOEM7ZTCTIzs4mMzNT7WTPzs7uMHYvpeRvf/ubeiet/DtgwACEEAwbNizsplZnG0ajEbPZjMViwWKx4IqJweOzaXa73X26YdUpBDqdTu2Q1+HVClOWWp2OoqIiddm+fXtvH3K7RGcgUUIiNzeX3Nxcv8T63XffTXJyMu+8804r4ypt+Gvr1q2kpKRw6tQp+vfv7ycsqEhuXHrppWzevJn777+/W6W9fYmCggKuueYaPB4PRUVFFBQUBDVlMhgMfuu1woyKVLzJZGLq1KlcfPHFrc5xRkYGBw8eBLzn85JLLqGkpCTSHy9kgoXHtKHOzvakOJ1OvxmIABKUElWXi5aWFqrsdsxOJ0IIPB4PQgi2HTkChw+xY8cORo8e3WMGWe3hwT9vZQkiAtkewRoVAT+9r0gSHUCihESwxLrZbOatt95SZxKZmZmsXLmS7OxsP8FGt9utXhSVH73iNRIfH4/dbmf9+vWt/MaV9wairNdFWOenuxw6dKhVmbLiraLFbDbT2NjI+PHjsVgsfuErh8PBU089xbhx43j77beZOXNmq3OclJSETqdDCMFll13mlxuKjY1t10ukJyRmgoXHEhMTuyW1Yjab/Rwjg1FeXt5mr8nBgweZNWtWl/ffVwjWqHhar1fXRVqDrm//AqP0KaZNm+ZnUlVWVsaYMWP8XjNmzBi/u1+3202/fv1Uk6X6+nqsVitut5uioiIqKiqYNWsWw4cPR6fTBb3ABqIMKlqP77OFYLOrxsZGpkyZwueff+6XHJZSIqXk2WefZcyYMZSXlwOtz/Hnn3/OpZdeyhNPPMGll17K559/rj6XmprqN4Ao/w9CCIYPH85NN93U6nji4+MRQvTpfILdbqepqUldlBmJy+XCbrerlVxt0dud+OGkrKyMw4cPc/jwYQ4YDVTqdezevZvdu3dz6NAhqm02Sn3+KEVFRZwKY54lOoBE6TJaNV+FLVu2tHIknDVrFlarFZ1Ox6BBg9QLf3Z2Nqmpqdx5551+A1N6ejrx8fEd9ib09RxIZygqKsJut6uJa+XuOjk5mS1btrBlyxZ1hqY9x0op9Pr163nppZdYv369ut5sNrN//37+8z//k7vvvhuAlpYWdDod8+bN4+abb2bTpk2tjqW+vh4p5VmnoHy+olUdBtBJidPpxOFw4HK58Oh01Ot0HDlyhCNHjlCp1/Pee++FJb8SDWFF6TLBGg4DfcNTU1P5zW9+o9buKwKDqamp7N69m8LCwlbbaGxsRAjBBRdcoFarKAghVP2pnrB57QmEEK0u1kpY6cYbb2T69OlIKVm4cCFFRUV+57i5uZnx48fzySefqNsaN24cmzZtQqfTYTAYWL9+vV/nusfj4Ve/+hUbN27EbDZHTFOsPQK1urRlw2azmZqamh4/pkigmGkpsvWDBg3CWV1NaWkpF110kdcIK8woJluKRbXweIjR6RC+mxK33a72KXWX6AASpcsEy4sE+oZPnTqV3/zmN8TExKi2t/X19fzkJz9pcxt33303q1evDtozoeROXC4Xqampkf6IPUJ7vQvr1q1TP/O6des4ePCg3znOyMjghhtu4MSJE2qVlvK4uLiY+Ph4VTomGCaTSb2QaJs8tUSi4TNQq+tclaJPTExUxTnBm4tR8jKVlZWMuPzy3jq0sBAdQKJ0i2BqvlqKiop46qmnWLduHeXl5SQlJfHAAw+oPSTBtpGWlobVauXPf/4zt956K5mZmWpViaLuC5CXlxehT9V3uP3229Ww1I4dO9TSaYXMzEwWL17M4sWLGTVqFNu2bVP7cYqLi3E6nQwZMgQhhF9RgiIxU11drYpSKhc25fwqcvs9qTkW5ewimgOJElFKSkp49tln/XIczz77bLtlpqWlpcyYMUN1Qty8ebNa9qmEsM51lEZBRRZFG+7RUlRUpErvL1q0iFWrVjFv3jx1wG1paWHSpEn8+Mc/VhPo4FXnXbVqlZ88vZQSi8XChRdeiBCCCy+8EIvFcl6c7yhdIzoDiRJRgin7Bku0B6LNm0gp1a5zRfU3Pj6+VbjsXCKwtLaqqoq8vDzeffddv/Va6X1lhuJ0Olm0aBEAo0ePZtWqVRw7dozGxkYuu+wyDhw4wAsvvMDBgwdZvHixX2NiVlYWK1asULf14IMP8sYbb0T882rpKD9yruS+AGqam9n96afqbM9isfD2ggWkpKS0UnXoKh4hsAvhtbsF3HjLf51OZ7f94aMzkCgRRUm0K17qShI4Nze3zffo9Xrq6+vJzs7mt7/9rd9zVVVVxMXF8dprr4WtWe6VV14Jy3YizXvvvceIESMoLCxU12VkZLBgwQJGjBjBc889x4gRI1iwYIE6QB88eFD1ZU9PT1dzC8888wy7d+8mNTXVbzB/4403MBgMqnx/Tw8e4M2PrF69Wl2+/PJL9e8vvvgCu92OwWDAaDQSFxeH0WhEp9N12+GyJ7DZbH4+9kajkcTERPr3709iYiI2m1ch99SpU62sA7qMEAhQz5He93c4/OGjM5AoESWURHthYSELFy5Un3e73dhsNvLz8zl69KjfhcHpdBIfH8/evXs7nMWEypw5c8KynZ6guLiYrKwswHtu28uBKArAM2fO5Morr6ShoYHa2lqSkpLU7nhtRZfZbMZut6vnWhUrDBDI7E0++OADBgwYQFpamipRX1lZ6a1uUrSxOmgw7E20RlqAOmBoGTp0qPp3Xy8miOgMRAjxPSHEXiHEASHEk0Geny2E2COE+LcQ4hMhxEWRPJ4ovUNgA2Lg4JGbm0t+fj4tLS3k5+cDMHbsWKxWq9pMp3Rnf/jhh0gpWbRokV9YrKsYjcY+fcFpi+nTpwPeHIiUkjlz5jB69GjmzJmDlJKioiLy8vL8PltcXBxWq5WYmBheeOEFsrOz/QZzt9uN2WxW+28MBkOvlfmeLzidTj8trLq6Ovbt26cubeW+Avn000/59NNPOV1fT6PParonQn0RG0CEEHrgNWASMAyYJoQYFvCyncC1UsqrgD8A535ZTRQ/Fi5cyMqVK8nMzMRoNJKZmUlSUhIffvgh+fn5ZGRkkJKSgsViwWAwMHnyZBISEhgwYECXRRgVrFYrTqeTBx54APBKgrRHsLvF3kJJbBcXF7e6wLvdboqLi5k2bRqvvvqqWoZrtVpZtmwZx44dU0NY2sHc5XJx3333+VVh3Xfffb2ac0hJSUEIQUpKirquqqpKFVM0Go0MGjQI8CoTKE2qAwYM8BNcPJc6z7VUVlZy6NAhNSSm3AAoPSCRDulFMoR1PXBASnkQQAjxe+A2YI/yAiml9grwf8A9ETyeKH2QkpKSVnIoS5Ys4d5772XmzJlqI2FSUhIrVqxg2rRpOJ1OzGZztx0Jm5ubGTFihOo0WFFR0e7rO5LH6Iso4S5FQiUrK4uFCxeq7om5ubnqIGIwGPjDH/7Ahg0bsFqtzJ49mzvuuCOsboWBJcLgdVEUQgR1U9QKSyooPSRKKEtB61+SmJjI/v37/XTBRo4c6feavuBv0l0SExPZtWuXGhZTZpyKD4+UEkMENeMiOYAMAY5pHpcCN7Tz+vuBDRE8nih9kGBVWqmpqaSmpqp3zkajkYcffli90G3ZsoWLLrqo2w1ugwcPprKykk2bNnHrrbf2iLBgT9KWp0hxcTGrVq2isbHRT9nXZrNRXV1NVlYW1113Hdu3b6e6ujpsDoAXXXSRakBmNBrVyrq6ujqklNTV1bUq0z558iRSSj/jMjgziEyePFld157jYrB1fcXjpLvYbDZ15hU4AxFCIAF7SwuOlpawz6L7RBJdCHEPcC1wSxvPPwQ8BN4p7ebNm9vcVkNDQ7vP9wTRYwj9GH74wx8yffp05s6dy5VXXslXX33FSy+9xP3338+4ceP45JNPKCgo4PXXX6dfv34ALFq0CI/Hwz333NPh9ts7Brvdjtvt5ssvvyQmJqbNju3Y2FiEELS0tODxeLp9XsP1/9Kd7dxwg/dezmg0Mn/+fC644AKqq6uJjY2lvLwcKSXl5eXExsZSXV0dlmM+cuSIOtuwWCzqAKKE4NxuN0lJSVRUVLTZ7xPOPqCe+H0EDnxdeX97x3ny5Em/xHxcXJyqzAyamwiTCRPeviC9Tofb911WZvhOp7NL5yOSA8hxIE3zONW3zg8hxHggF7hFShnUYk5KuRxYDnDttdfKsWPHtrnTzZs3097zPUH0GEI/hrFjxzJs2DC/KqxXXnlFnW0oz+fk5DB37lzAO0PJy8sLqQekvWOorKzkzTffZPHixbS0tLQp5dHc3ExqaipDhw5l06ZN3T6v4fp/Ccd2nE4nhw8fZuzYsZhMJp5//nlmz57Njh07+OCDD1iyZAnz58/v9r6Uc1tdXe1ncQwwZcoU5syZg06nU7vulUEiMOTV1cFDURiOjY1V8yE98fvYvn27XyI80Ia5o/zSoEGD2j3OoqIi9uxRswLqoKyEsIQQCCH83DstRiMx8fFYLBbS09MBr4BmV85HJAeQ7cDlQoiL8Q4cPwaytC8QQlwDLAO+J6U8HcFjidKH6UgOpaPnu0pGRgbvv/8+Bw4cALx3Z4q1bCBOpzOocq2CIhPSlofJ2YDD4WDOnDmtyprbCoV1BsXzRNH10p4nRezxL3/5i19u5Pbbb2fv3r0IIcjIyOBb3/oW77//fsj71G5LURju6WR6oBfK008/zZdffqk+HjlyZET2qw1hgX9psxQCp9MZFomaiGVXpJQu4FFgI1ACvCulLBZCPCeEmOJ72UtAHPCeEOJLIcT6SB1PlCiBDBkyhHXr1jFz5kwefPBB3G53q8FD+QEqYZXAO0gFm82GTqfrU5VanaWtu/twhIyqqqrIysriiiuuQAjBFVdcoT6nHVS0+2ppaWH37t1qxVh7opDBaKsCqa8bkYUDj8ejLtIn764sdpeLqqoq9u/f3+39RPRMSik/lFIOlVJeKqVc6Fv3jJRyve/v8VLKFCnlSN8ypf0tRokSPj799FOmT5/OZ599xooVKwD89KIA9S4uLS2NhIQEP+0oLdXV1Xg8nlZVRFHOcM011/gNCAppaWnqOdY2LX744YfcdtttNDU1cdttt/Hhhx+GtB8l6a9N/mtnUR6Pp081R/YmCxYs6Nb7+0QSvbs4nU5KS0tpaWkhISGh1/2g+8oxHDp0iNTU1LOyUa4nsNvtLF++XLWRzcvLIzk5mRkzZqDT6fjRj37Ee++9h5QSl8vFr3/9az/dqCihk5qayty5c9U8lpbs7Gy1iz4nJweARx99lIKCAr/wlnZ9eyiDuHYwD8ylnEt6Wh0hhPC7BiiDqc1mY+jQoZSVlXXZH/6cGEBKS0uJj48nPT29lUdwb1BfX9/rx1BXV4fD4aC0tJSLL764V4+lr2I2m1m6dCmzZ88GYMSIEcycOROj0cjQoUP59re/zXvvvcemTZtU98S25FPi4+NpbGzEarVGnfyCoNjxBiKEYP78+UyYMIGPP/6YH/zgB6xfv578/Hz27dvHxx9/rL5uwoQJ5OfndziABOsrUUJnF154IXfeeScvvfRSeD9giCjyKwo2m81vNmQ2m/2eD0evihLCUtDpdKrt7759+5g2bVqXv7PnxADS0tJCenp6WJJ95wqKBHhbP9wo8OCDDzJv3jzAW7Vyxx130NTUxEMPPURycjLz588HYPz48Xg8Hu6++25effXVVtsZPnw4Bw4cwOPx4HA4GD58OMXFxWoH9enTpxk4cCCnTp06b6XRtVVAWqSUfo2LWVlZpKamUlhYyP79+/nkk0/U5+6//34KCwsxm83079+/zRJZbV+Jwu7du9mxYwcNDQ1hsXLtKvv27Wu3X+Vs61U5JwYQCE+lyLlG9Jy0j6K7NX/+fFwuFy6XCyEEK1aswGazIaVUlUrbCwNWVFSwYcMG1ZJX6xb4zTffqLmRjIwMv5LL7tBWMv9sZOLEiUycOJGNGzcSGxvL0qVL/SRuduzYQWZmJitXriQ7OxuHw0FjYyMGgwEhBAkJCR1WVy1ZsoRRo0bx7rvvsnz58j59/oJ15PdVzv1yhB7i17/+NRkZGarIXbj55S9/ycsvvxyRbZ/PKCKOUkoeffRRtRKotraWKVOm8Oc//5n09HRWr17NO++84+f3Dt6ZS3V1NRMnTsRkMjFx4kT1x79nzx5mzpzJBx988P/bO/Poqusz/7+em4QsLAlgBE2U4IgsOchSlCJOR0ChrYKcGdoxUJUJykE0nSlYCYn51ZaaigV6nCiNYBgECQ4MnlQ4MKRIpi3jSFAWZUc0CrSsmggJkO35/fG936/3ZiHbvd8sfF7n3JN7P9/tuUu+z2d5nvdDcnJywJxHREREu7nBNIaKigo2bdpERUWFM2qoS+Lm3nvv5dChQ8TFxVFaWuo31ePbWYqNjUVEiI2NddpSU1PJzMxk+fLlREVFNTgN1po05bvt0qWLn+ZXZGSkk0joRvG1DjMC8eVvQ4dTHcCpG09sLDft3X3NfZYuXcq2bduIj483c+DtlKysLLKysli7di1Tp05l48aNHD9+3FGsraioqBUcMXbsWPLz851eY5cuXfj666+df+Df//73jtaWXY+huURFRbFp0yamTJnSoReBp06dSmJiIr/85S/Jy8tzdLsmT57MwIEDKSkpobq6mtWrVxMdHc2XX37Jhg0bnONtDShHysMbBAFW4t6oUaPaTCGyls4S3HXXXSxYsMAZUfXo0YOwsDCqqqqcMOZgzkR0SAcSSOfRmPPNmjWLzz77zCkdevjwYY4cOUJFRQUvvPACDz/8MCtXriQvL4/S0lKOHTvGs88+S3l5OatXryY8PJzNmzfTo0cPli9fzrJlyygvL+f2229n9erVtUJHjx8/ztNPP825c+eIiopi+fLlfnH1hpaRlJTEiy++SFZWVoOVFE+dOsXkyZPZssWScSsrK2Py5Mnk5eWhqo5jsf/Wl5tgO5xrqaeWlZUxYcIEQkNDO7QDAavWuz3as4UgDxw4wDPPPMPSpUuJi4tj5syZDB48uFatd1tk86uvvsLj8VBVVcWiRYsYNWoUt9xyC8uXLyclJcWZwmxNAjFCsHXBAObMmUPv3r3p1KmT81vq1KmTnyBmIKPQzBRWAMjOzubmm2+moKCA0tJSvve971FYWEhBQQE///nPHXmM/fv3884777Br1y7S09OJiopiz549jBo1ilWrVgFW9u2uXbvYt28fAwcOJCcnp9b1Zs6cSVZWFh999BGLFi1i9uzZrr7f64HGVlI8dOgQ69atc6bBrly54pSdTUxMdLJ9y8rKSExMrLc3OHLkyEaNTqqrqzusNLkv9U0xvfrqqwwcOJBTp05RVFTExo0bqaysdG7ENSXM7eJkc+bMISwsjB//+McsXLjQyftpqzR31HD06FH+/Oc/s2fPHrZv38727dspLy/n888/dx5ffPFFg8rTjaVDjkBak/z8fMrKynjttdcAK0Lsyy+/BKxelV1CMjo6mokTJwIwePBgPv74Y8ByMs8//zzFxcVcunSJCRMm+J3/0qVLvP/++/zoRz9y2uqLcDE0n8ZUUoT6a74DHDlyhIULFzJo0CAOHjzIvHnz6uxxhoSE8MEHH9C7d+8GI7Xaq0xKILFHJHUhIs5nZDuSRx55xG+fWbNmuVqFMjQ0lKqqqgZHG7GxsWRkZDBnzhwmTZrU7DKz4F9X3uPx0Lt371rlCALRETEOJMCoKm+99RbDhw/3a9+5c6dfvLfH43FeezweZ0g5ffp08vLyGDJkCCtXrqylkFldXU1MTIyfno4hODRGg8seqeTk5DhRWLZEev/+/UlLS+Pq1auEh4fTv3//OhfSx40bR35+fq2w1LoUgt1YGG1vbNq0yZF179atGyUlJU5me1FREW+//Tavv/66s392drarmej2/3ZDsvjnz59nwYIF7Nq1q05Rz6bgO62VmJjI6dOnOXr0aIvOWRdmCivATJgwgezsbOeffM+ePU06/uLFi9x0001UVFSwZs2aWtu7detG3759Wb9+PWA5rH379rXccEOzsNdLUlJSiIiIcMrEgtVT9o3COnDgQJ03/4MHDzrV9XzxdR62xlafPn2uCy2npmLnTpSUlADWDbSoqIiwsDC++eYblixZQkVFBevWrWPevHk8+eSTrtkmIn7TmfDt9ykihIaG+umAffXVV0RERBAfH++ajc3F/BIDTEZGBpWVldx5550kJiaSkZHRpOMXLFjAyJEjGT16dL0L42vWrCEnJ4chQ4aQmJjIH/7wh0CYbmgmddV8Dw8PZ/To0axYsYKJEyeyYsUKRo8eXWfP9+TJk/z0pz/1K9taU5OroqICj8dDSkqK3xy/Xbfcdj5hYWF+dc2vxfXgiOwM7LS0NDIzM3njjTeYNWuWqwvoqsrhw4fJzMx0klPt6aTnn3+eefPm+UVMxcXF0aVLF15+uWkVvnv16sXTTz9dK3u9oqKCqKgop+zt0KFDnec9e/bk4sWLzc54l/Y2HB4xYoR++OGHfm32HDVYPfhLf/8Profx+tIWpExsG3w/G7dpLzVJgoHH4yEhIYGcnBxH5n3GjBkUFRXVirQSEXr37k1ERASPPPIIr7322jVDwX1rY4gIHo+H2NhYJ+P93LlzftdoTGKar/R3fdtbQrCTWn/4wx82WmwRAhP91Fg8Hg9jx47l9OnT3HbbbWzcuNH5Dnfu3ElpaSk/+MEPuHr1KhMnTqxVarghfD9beyrPN5t9zpw5fhnwNbPd6ync9ZGqjmjo2h1yDaQpN3uDIRgMGjSIyZMn+y3CT506lby8vFr7hoaGcvXqVc6cOcPbb7/NCy+8wPz58+sUuLNDfe0RRnh4OH369OHYsWOoKmfPnqVfv3588cUXgBVgUZ/zqK92ib3O0p7WW5riPMDdtSRV5b333gO+DQCwHby95tFcMUNf7BGlmwoUHdKBGAytTXp6Ounp6bVGIDUz2cGKrLIryBUVFZGVlUV0dLQTaul7o/MNVwXLQRw9etQZZcTExDiLpbm5uUybNq3eG2V9OSc1r2EILhcuXCAyMpIbb7yR559/vlat+sZif5+ujq5cu5LBcB3hu7g+YcIEZ3G9rhvCoEGDmDlzpl/bjBkz6NOnj3MzSExMxOPxkJiYyHPPPec3coiIiCA6OhqPx0N0dLSzfvL+++8D1LseYp+7LetCdXQyMjKIj4+nW7duZGZm4vF4HN2vujobzSGY5RyMAzEYgoS9uP7ee+85i+t1kZ6eTm5uLgkJCcyfPx+Al156yQn/7NWrl98i/Q033OB3fKdOnep8nZ2dTffu3cnPz+ePf/wjHo/Hb9/w8HCeeuopiouL/Y63p0CMGGfwGTlyJEVFRZw9e9bv92HrfjWWmkEXNtOmTav1+wgkxoEYDK2MPVqprKzkN7/5DQCrVq1i1apViAhnz55lyZIllJWVsWTJEubPn+83arBHI/aIwn5dWVnJW2+9xZgxYwgNDWXgwIG18pP+9re/+QVZ2CrE9vnac4ne9kR1dTUiwl133YWI0L9//yYFv1y5coXhw4fX6lwsW7aMESMaXAtvNsaBGAxtgKSkJE6cOEFubi6dO3dm+vTppKSkOGGZqampdO7cmdTUVD81WY/Hw+XLl0lJSeHSpUukpKRw+fJlZ0HVt3RsXFwcH3zwAQDFxcUkJyeTl5dHXFycs8+lS5dYvHgxpaWlLF68uEXZ0Ibm8/nnn9fKHG+I3bt316ofMmnSpOCuifgqV7aHx3e+8x2tycGDB53n33zzTa3tbtNUGwoKCvTBBx8Mig2+n43bFBQUtNq1O5INubm5mpiYqB6PRxMTEzU3N9fZJiLatWtXDQsLU0DDwsK0a9euKiLao0cP9Xg8unjxYt2yZYuGhoYq4Pfo3bu3hoeHq6qqx+NRwNnP/uvxeFpkv6rWum5beLhFsG1szHkeeuihOp/Xdw3gQ23E/bhDRmGtXr06oIJzkZGRPProowE7n8HQFK4lqWKHC+fl5XHo0CHuuOMO53V6ejqzZs0iNTXVr6TpuHHj2LBhA/Pnz3ek5uHbKB5f6XPfdkP7xTfvI5B0yCmsQKuVNuZ8RUVFDBgwgOnTpzNs2DCmTZvGtm3bGD16NP369aOwsJDCwkJGjRrFsGHDuOeeezhy5Eit85SWlpKcnMzdd9/NsGHDTJa54ZrYC/B2YaysrCxyc3OdRLTs7GzuuOMOZ0rr9ttvZ9u2bURHR7N06VLuuece51x2IaJevXr5/Q1UxnpkZGRAzmNoGsEMhuiQDqS1+PTTT5k7dy4fffQRhw8fJjc3lx07drBo0SIyMzMZMGAAf/nLX9izZw+/+tWvHFkDX1588UXGjh1bpxy8wVCT+rS47BGLbyQYWB0d3wX5wsJC51y2UOfatWu5evUqa9euJSYmJmAjkMZ27NwUOrwe0CCugXTIKazWom/fvgwePJiLFy+SmJjIuHHjEBEGDx5MUVERJSUlPP744xw7dgwR8ZtWsMnPz+fdd991ytfacvCtJUdiaPs0RjUYrJ7ogAEDSEtLY+7cuYSHhzNgwAA/efQnnnjCL3v+iSee4Le//W3AbLUVhutSGgYrBDk2NpaTJ08G7JqG2gSq7roZgQSQhuTaMzIyGDNmDPv372fjxo11/gOpKhs2bGDv3r3s3bvXOA9DwHjggQfYv38/ycnJThTW/v37eXff1TwAAA0qSURBVOCBBwAr4TAnJ8dvOiwnJ6dRwoyNxZbs8JXu8E2SfOONN/jrX/8KWM4mISEBESEhIcHJdTAjlJaxadOmgDgPMA7EVUpKSpyQyZrhdjYTJkwgKyur2XLwBkN9bN26lfHjx5OdnU1MTAzZ2dmMHz+erVu3AlahpeLiYkdNOCkpieLiYmbNmhWQ6/fp08eZDquurnYcgW+SZHx8vNNhKi8v9wtPtp2Om1LshmtjHIiLPPfcc8yfP59hw4bVW5M4IyODioqKZsvBGwzXYuvWrY6Sb3V1teM8ALKyspg9ezbFxcWoKsXFxcyePTtg0udnz551Sqxu377dWdytr2zwQw89RFpaGp07dyYtLc1Rmi0oKLgupOjbAx3yWwh0tEdjzpeQkOCXtLVy5UqmTJnit23UqFEcPXqUPXv28Otf/5qioiIA7rvvPifMLjIyktdff51PPvmEAwcOBC38zmCoC3v6Sr313QPlPDp37szly5dZv349ZWVlrF+/nitXrhAeHl5nAEB8fDyFhYVs2bKF8vJytmzZQmFhIfHx8Rw8eNAZycycOZPNmzf7VfsLCQlxyrja2MmRTz31lJFoCSSNSRZpS4+OmEgYTBtMIqGxoS3Y4PF4dPjw4SoiCqiI6P33319vkmJubq7GxsZqQkKCiogmJCRobGys5ubmanh4uIaGhuro0aM1LCxMRUR79erlJMbZCZDh4eFOW69evVREtHv37tdlImFTr0EjEwk75AjEYDC0LQYOHMhPfvITv+mztLS0egNEkpKSeOWVV+jcuTMiQufOnXnllVdISkqivLycyspKjh8/zrPPPsutt97KmTNnnGMXLlxIaWkpmZmZTtv58+dRVafkrSEwmDBeg8EQdNLT05k7dy5Dhw7l3nvvZceOHfXWR7GpLzx50KBBnD171k98MjY2lnPnzhEZGekXptypUyfKy8vxeDxUVVU50ZE9e/YM2nutSXsqzNVUOswIpKN+QS3BfCaGtkJSUhIzZsyoN+GxKdiL7GFhYeTn55Ofn09ISAhg5U3FxMQgIsTExDi5VnFxcYgIPXv2bFa98ZagqnTq1KnOuhw1pfTBel/BlGAPJB3CgURERHDhwgVzw/RBVblw4UK9dQIMBrcZN26cX8huc5wHfDu9FRISwvjx4xk/fjyhoaGEhIQQFRXlBL1ERkYSFRWFx+NxpsIiIyOdqTA3eeyxxygvL691j4qJifF77fF46NmzJxUVFe2i0FeHmMKKj4/n5MmTnDt3zslybU3aig0xMTHEx8e3qh0GQzCoa3pLROjSpQsrVqxwpsmSkpLahBTQihUrGDhwYJ05Nd26dXOk26urq7lw4QJdu3Z1JPvbNI1ZaW/uA/g+cAT4FEitY3s48J/e7TuBhIbOWVcUli+tHW1ibDA2GBtaxwZAU1NT/aTvJ02apIBu375dy8vLdcmSJdq3b18/Sfxg06NHDwU0JCSkzigoEdG+fftqeHh4nZL9DVHXOZvyqOecrRuFJSIhwGvAD4BBQJKIDKqx2wzga1W9HfgdsDBY9hgMho5NfHw8b775pp8Uy+bNm7nhhhsYM2YMYWFhDBs2LKD1xhvDq6++Srdu3WolP06bNo3S0lIWLVrEiRMnePLJJ5s1vWfntQwfPpwBAwYE1PaGCOYayN3Ap6r6maqWA28DD9fY52HgTe/z/wLGicnyMRgMzeDll1+msrKS5ORkIiIiSE5OprKykiVLlvjt19R64y2lpqx+WFgYkydPZu/evXTt2pUVK1Ywb948CgoKmnV+9S7S7969m8OHDwfY+msTTAcSB5zweX3S21bnPqpaCZQA7sXXGQyGDoNv7ghY2e/x8fG11gF37NjhukCpLatfVVVFVVUV69at8wso+MUvftEipzZ37lw/UUobu6ZLsBANUuSSiEwBvq+qT3hfPwqMVNVnfPbZ793npPf1ce8+52ucayYw0/uyP9a6Sn3cAJy/xnY3MDYYG4wNbcOGHlgd1SLgkvd5d+AU8JXLttjcCXwOXPRp6wrcChyo84iGz4f3nJeALkA/QIArQEMRPR/V0dZHVWMbunAwo7BOAbf4vI73ttW1z0kRCQWigQs1T6Sqy4BljbmoiHyoqiOaZXGAMDYYG4wNbdqG3g3vGXQbWvVzCBTBnMLaBfQTkb4i0gl4BHi3xj7vAo97n08BtmuwhkQGg8FgCChBG4GoaqWIPANsBUKAFap6QER+hRUi9i6QA6wWkU+xhpOPBMseg8FgMASWoCYSqupmYHONtv/n8/wK8KMAX7ZRU11BxthgYWywMDZYGBss2oINASFoi+gGg8Fg6Nh0CC0sg8FgMLiPcSAGg8FgaBbtXkxRRAZgZbTbSYqngHdV1b1U0zaIiKxS1cda2w438Yn2+6uqbhORqcA9wCFgmapWtKqBBkMHo12vgYjIPCAJSyblpLc5Husm8raqvuSSHQOwHNhOVb3k0/59Vf1vF65fMzxagDHAdgBVneSCDSOBQ6r6jYhEAqnAcOAgkKmqQS8FJyJrsDpFUUAxVkLVO8A4rN/649c43GAwNJH27kCOAok1e5benugBVe3ngg0/BZ7G6uUOBf5VVf/g3bZbVYe7YMNurBv1G1gKmwKsxRsWrap/csGGA8AQb/j2MqAMr76Zt/0fXbDhY1W905uUegq4WVWrvPpq+1T1zgZOYQgiInKjqp5tZRt6qmqtZGVD82jvayDVwM11tN/k3eYGTwLfUdXJwH1Ahoj8q3ebW8KQI7DkCNKBElX9H+Cyqv7JDefhxePVMwMYoar/pqo7VPWXwG1u2eDtPHTFGoVEe9vDgdrl4IKAiESLyEsiclhEvhKRCyJyyNsW0/AZAmJDNxH5jYis9k7j+W5b6pINPWo8egKFItJdRFyplOT9zG/wPh8hIp8BO0XkCxH5B5dsGCEiBSLylojcIiJ/FJESEdklIsPcsCGYtPc1kH8D3hORY3wr3HgrcDvwTL1HBRaPPW2lqkUich/wXyLSB5cciKpWA78TkfXev2dw/7vdLyL/oqr/AewTkRGq+qGI3AG4tfaQAxzGSlxNB9Z7bxrfxZrmdIN1WFOH96nqaQAR6Y2luLAOGO+CDf8BHAM2AMki8k/AVFW9ivVZuMF54IsabXHAbqxRshudigdVNdX7/LfAP6vqLu9vMher4xVslgK/AGKA94GfqeoDIjLOu22UCzYEj8YUDWnLD6xR1HeBf/I+vguEuHj97cDQGm2hwCqgqpU+kwex1h3cvGY0sBI4jlUcrAL4DPgT1hSWW3bcjDV1BdY/7RTgbhevf6Q52wJsw94ar9OB/8VSut7tkg1zgf8GBvu0fe7W9+C93iEg1Pv8gxrbPnHJhj0+z7+sb1t7fbTrNZC2gIjEA5Xq7W3W2DZaVf+3FcxqNUSkG9AXy4meVNUzrWySq4hIPrANeNN+7yLSC5gOPKCq97tgwyGstcFqn7bpwM+BLqraJ9g2eK8Zj1Uo7gRWL3yfqro1nYmIpAATgZeA72Gp8L4DjAVuU9VHXbDh/7DeezSwCGuNNM87hbZY27moonEgBkMAEZHuWBFoDwM3epvPYAmHvqSqX7tgw8tAvqpuq9H+fSBLXQguqXHdSUAaVslqV5VwvVPKTwF3YHVqTgB5WNp8ldc4NFDXHwK8jLUm+zOvLY9jBXk8qarvB9uGYGIciMHgEj5rRNedDd7Q7r9T1f3X8+fQ1mxoKcaBGAwuISJfquqtxgZjQ1uxoaW09ygsg6FNISIf17cJ6GVsMDa4bUMwMQ7EYAgsvYAJQM21DsEK4zQ2GBvctiFoGAdiMASWTViRTntrbhCR/zE2GBtawYagYdZADAaDwdAs2ruUicFgMBhaCeNADAaDwdAszBqIwdBERKQK+ARLoLESS7bmd76Z3wbD9YBxIAZD07msqkPBkijHEubrhiVZYTBcN5gpLIOhBahV32Im8IxYJIjIX0Rkt/dxD1gVIkVksn2ciKwRkYdFJFFECkVkr4h8LCKuyowYDC3BRGEZDE1ERC6papcabcVAf+AiUK2qV7zOYK2qjvCK5/1MVSeLSDSwF+iHJTb4gaqu8dYyCVHVy+6+I4OheZgpLIMhsIQBr4rIUKAKS8QPVf2TiCwVkVissgMb1Kre+H9Aule59h1VPdZqlhsMTcRMYRkMLUREbsNyFmexFFfPAEOwChZ18tl1FfAT4F+AFQCqmgtMAi4Dm0VkrHuWGwwtw4xADIYW4B1RZAOvqqp6p6dOqmq1iDyOVR3RZiVQCJxW1YPe428DPlPVfxeRW4E7sYqUGQxtHuNADIamEykie/k2jHc1sMS7bSmwQUQew6rIV2ofpKpnvMWe8nzO9WPgURGpAE4DmS7YbzAEBLOIbjC4hIhEYeWPDFfVkta2x2BoKWYNxGBwARG5H6tGd5ZxHoaOghmBGAwGg6FZmBGIwWAwGJqFcSAGg8FgaBbGgRgMBoOhWRgHYjAYDIZmYRyIwWAwGJqFcSAGg8FgaBb/H5Wilt/843huAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -2018,12 +1487,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmYXFWd+P/3OXeptav37IQlEEICBEbZFdFxhtFRR0Rc\nERV+KjrjuM2XB/kpzjw6bvz0i4wjirgNMjrD4ICOOqiogCwBwYQlRBYhG0l39d5Vdavuveec3x+3\nqrqrl6ydhXBez5Mn3ffeukulIZ86+SzCGGOwLMuyLMuyLKtJHugbsCzLsizLsqyDjQ2SLcuyLMuy\nLGsKGyRblmVZlmVZ1hQ2SLYsy7Isy7KsKWyQbFmWZVmWZVlT2CDZsizLsizLsqawQbJlWZZlWZZl\nTWGDZMuyLMuyLMuawgbJlmVZlmVZljWFDZIty7Isy7Isa4qDJkj+/e9/z6WXXspLX/pSVqxYwe23\n377T16xZs4Y3vOENnHDCCZx77rn893//9364U8uyLMuyLOtQd9AEyZVKheOOO45PfepTCCF2evyW\nLVu49NJLOf3007n11lu56KKL+MQnPsHdd9+9H+7WsizLsizLOpS5B/oGGs4++2zOPvtsAIwxOz3+\nBz/4AUuWLOGyyy4D4KijjuLBBx/ku9/9LmedddY+vVfLsizLsizr0HbQrCTvrnXr1nHmmWe2bHvJ\nS17C2rVrD9AdWZZlWZZlWYeK522QXCwW6e7ubtnW3d1NqVQiDMMDdFeWZVmWZVnWoeB5GyRblmVZ\nlmVZ1r5y0OQk767e3l4GBwdbtg0ODpLP5/F9f5fPY4yZsVCwMlDhitN/zchADIDSgj+WFhEbhyI9\nKCRl8rOfF4HCoZ1RJBoDNK4iMPQygCsUx+afwwBjUZacE/B0ZSHaTHx20Qj66UUAXQxRwydNFQc9\n6WqaPhYAhkVsQ07aJzAcwxNTjm8lMaziUVxhkNLwpxWv4lM/OwOAT7/hDwyMTPkxUQqGhiAIQE8/\nb2Rc+sw8CrLENQs/y5LUwPSLtrXB5ZfDq1+dfP/gg/CiFyXbLcuyLMuyDrDnbZB80kknceedd7Zs\nu/vuuznppJN26zxDQ2WknKGbhgOX/OuxjG0pNTcNPj1KaaDKaN9mauMx1bKmPK6A6YWGlUCwob+X\nM1YOkW0TpNscBJJgPCLd5tAxP0OuO0XP0UsZ3lTiZz+o8Oq3dqKjMqWBavM84xWX2+8s47uatK/Z\nvlmz4DCJzGYAyEQjrHjuTn42cjplkaesUkg0kgiPCI1gM4sRswTJBonCZbuzEIBApzhsMGTbs8MA\n9A1K0n5MNq1BgOsI4lqIHB5EiADjCpjyIaNsshTDXp7TC9nuLWJ+rtayX1SrDPQZfvh/I16zZICe\nLk3q5lswt/+W8KJ3YXp6p93n+DisWydZvVrv1zjacSSFQoaxsQClZv+gcSixz2yf+VBln9k+86Ho\nhfa8c6WzM7fTYw6aILlSqbBp06ZmZ4vNmzezYcMG2tvbWbhwIV/60pfo7+/nC1/4AgBvectbuPHG\nG7nqqqs4//zzuffee7ntttu47rrrduu6Whu0nrmbxoI/W8CCP5v5da4r6ezMMTxcJo6n/1D2P1rk\nxv/3T5z3zy9i3vHTg76px3b88k8cec7iacf29Ql+E6do69Tky/3Uyk/SeerRMH8eAG2lbSy95zeU\nowUMOr08PToPz0SczIMIXATgETNTIF9/B9BEOPUV4SxVXjH+U3R5KSadBOLZtCKXS1bcPU8SSU0o\nNLGQ4DggpmTtaBcjJbFxKToLeM5TLbtFVKZsQopBG7XQoJTGxAoGB1G1CD3D+1nZPMQT1z/Forf3\n8uivHmfle08jd3j3tOP2FaX0jH/OhzL7zC8M9plfGOwzH/peaM+7Pxw0QfKjjz7KRRddhBACIUQz\nGH7961/P5z73OQYGBti2bVvz+CVLlvCNb3yDz3/+89xwww0sWLCAz3zmM9M6XhwqgkAgK0mmQ6UC\nur7ALcsQRhBriRKCFDXA8BjHkSJEAAXGW1IwJtMIIjwW11MiKpHH7fnX8uJGgKzGKURlsmESJLva\noRRErKscThB5ySrylJXk2DhEWjBKga/2vYmuoVLLfhHH9EZb8dpjxOAAgggqZQQgiv3NRHmTyWAK\n7QD0todcuvxXbJTn8btHuzl8XLPzz4BQKsG6dQ6rVyvys2fH7JogwNn4LOrwIyCT2cuTWZZlWZZ1\nMDtoguRTTz2VDRs2zLr/c5/73Iyv+dGPfrQvb+uAy2QMXV2aoSGJGhfEMYyNCyI3CSVr4w4PjR5D\nxWSpRS4aiUAzSicSTQcjrGADj7GKspgeJSocIjw6nBiMYUxmKMtk5VdUA84dv5lMLcYfT453HEkQ\nGObHeaSJ67nO09NVhujgN5zDvNogHdF4y75ApemP25k/UiLz7evJegO4G9YDAjEy0gxAdVc3lY9d\n1gyU90S5LLj7boejj9bk8zvvv71DmQxqxXF7dw7LsizLsp4XDpog2ZpZoQAf+1hIEAiGNkT85AuG\n174nomtFkuc7tCHm5k8fyVFHZCHr8ch9YzhSs20cHKHpESMcrx/jCbkCJaYXNCrjoHAIjQvGEBmH\nUDsAmHSG29rOZ16+TDZbX0l2HUZHNXcPz8fTAa7U01aSAUomy9PmKLrN76bt1wLGaaMra9DZHH01\nw62jF/LGwm10eD74KagGyK1bkJs2YnrnwfjYnr2BQ0O4f9gCr10C8zv37ByWZVmWZb3g2CD5eaBQ\ngELBIIoGzzN0dxvmzU9WRUXR4PuQyrvIgo/nBAhhqJFCGsMA3dxjzqBoeimb6QkKBoEykv6oCwzU\ntMvTZZegqsikDRWnjTEvjfIbOckOY56mj/kMUUDXA+qpYuNQw+eB+GTSOkq6YNTzzSM8YiSLBu7H\ne3gtaMVA5Th0OIz3cBE8DxFHiDAke/WXIJNBp9LQ3o7rGHqyZdyZLzuNUDGiUkGouLltTlMwdodN\n17Asy7Ks5w0bJB+CpDBkqOJKRa8Y4ExzL9vlYuQMK77KSCLjMM8bAmMYj9Isy/WTSc/b4TXyZhxB\nhGMUDmrafoVDjMMSnsM1CszEMQEZ+ukhkilMJg2AyWQBD5NxwfMhSqJg3dEBQiCHh9G5LD0dMe87\n+T6qXSt30NRux+Y0BWN32HQNy7Isy3resEHyPuL4Dt29Asff+ZLnrh4703HGcdHpLFq41GqSSDvo\nSU2ZHaNpo4RjZg8pHQw+EWDwhIcvpwe9k3m6yoX6FgJSuCjEDJ0zktZygnYzhsQwubtGhMt25vO0\nOon+KEmBKMbtfKP2dt4Y/I4OaogoIqdGyABoA9EcTlE8yFIwRGkcd91a4tUnYfK2T7RlWZZlHQxs\nkLyPdC/v4qLrT53TY2c8rquL6OT5uKNQKipqpHGiGrFxMAaqxuUJllFVLr6osJp1rGN1SxGfJ0Ic\nHaGMTILrSQvONeVSDhTUC/Rc1zBay/BrLkYSkqM849hGDcQ49DCQrCRPWvfVJANZsuWI6598BREe\nD8fH0MYCin9qw5MKYQwFM8ZHav9OuxwHpYj9FPKpJ5D9fcgN6xHF/uY5TToNbYXk60ldMVyHaekZ\nM6VgHFDVGs6Gx4mPPQ5skGxZlmVZBwUbJB8CUim49NKIalVwNTlSWvLIfWXSpkKnHmNrcDgLMmOk\n5QCvrv0K6aeZp/vZ4K6iInI4wuCIFLF2MXEKk85g0mmCqmBDZSmZcoWUkwSUUkqCEIo6y6ncT4Us\nesYwWSDQfJCvkqVaX21OVpM1EoVkWPSSImLIdDJan154trqDbjVEhEuIR7htGEf0g1aIu+7Ae/AB\niCL83/4a5MR1jZ8iXnU8+H5LV4yeLrXT9IzyxkHWX7dmv/debjA9PdTe/NZkNTltV5Mty7Is62Bg\ng+RDRFsbtLUZMgUf33dwFrbh+jFu5CE2l3EPW4DrKWSxnXxHOy8euYutvWcR+smkPQXoUKBLEnVs\nD7RpMm1w9OmCtkyOXNYghSCV8hjaNo745XZWV9dyO3/BiOyadj8aSaQlV/Jp8pTqfZobhXsuYxQ4\nx1tDrzvCmM5TDBeAUjwuV1EQ45RUmn7mcZq3DoPDQNzDD+X7eGPht/S6w60Xi2NEHKPb2pL85aFB\nRBDscuu48rjerd7L+4Iol/Huvgt19DHNINmmYViWZVnWgWOD5Oc5x4HuboPjJINGAKpVQaQdHCQB\nGbTMUyODIEzaveGhSLpP1MxEW7hYiOQnwpNA0mLOz/tkO11yeZBSkMn4VDUIp4+QFEN0MyxaV18z\npsyx5gnWcgJF5uFTo8BIPe8ZQlxiXAKTpqyzVEyGEBeBpEwGiaJCmhiHQTqRKMbIU5TziTIFjB+1\nXE8EFYjrqRPaQBA0h5KIYj+iXGoZUiIGhxFRmAwyGZveFm82YmCA1K0/ovY3b8D09Ozy6/bUTIGz\nZVmW9TwUhriPPbJPTu04EgoZnLEAJo2ljledAP6u/x3X8IUv/DN33PFrSqVxvv3tGzn66GPm8nZ3\nyfbt27jggtfxne/8+wG5foMNkp/nenoMl1ySBI1jY9DVpdm6VRKGSWJxlR6GU710KkNvtJ31lSMo\npRziGGpVQVW1drxIp5OAe0ci4bPVWcoazqDozCOQrX3UtHEIlUdNZgl0Bo1kJesxU4aOHBk+QVYE\ndJgUJ+KykcOYp/toZwyNIMZlQ20ZT3M4gUlT0970m4lj5HPPIWpV/PvuAWhpHUcUIYeHyH71K+Al\nr28b8Zi/5Rjarn+S7FEFeNUlu/Rel8YUD/yhjeNersjNcYxsHBfd3YNx7H+SlmVZhxr3sUfoPPfl\n+/QahSnfD9/2G+KTX7Rb57jvvnu47baf8i//ch2LFi2ivb1j7m5wN4kZOnLtb/Zv5ENIY/DIpk2S\nq6/26ehI0hvWr3dYuVLRVjH0330Eq1YJDu8znL5SMZZr7WRRqxnK5ZlyjCd4HiwqjHPa+Bq2eUsZ\ndlo/qfboUc7gfp4Vy9BG4qB4zBxHD0VSVNEkUfi94kzSMlmxDnSKbWYRD/BiMgQoXKr4nMzDCAxb\nWEyWGYJkrRFxDFImxXuNzR0dkE2SJ/S8+S0v6fbLvH/xrUSFZUlqRq22C+8ulCuSuzYfxdKKnPO0\nDNPTQ/WS985y4RLe3XfZtAvLsixrn9q6dTPd3T2sWnX8gb4VjNmPLVpnYYPkQ0yhAL29hkwmGXSn\ntcGYiV9Ay/dTfwiV2rVPbq7UFMQ4HhGOaA20PRFSYCwZGSI0DorIeLyV/0BgMEg0gh6G8UySJjFi\nCkR4nMF9dDCKQhLjspQtYAzz2c7j5iUMRgVuGXoZb+z+Nb3eyMRFhUj+WcmQ5J24u/CjrQ3UAsTw\nECLSiMEBZJ9q6Y4xl/Y0XUNUKjbtwrIsy9qnPvvZf+LnP/8fhBC89KWnsGDBIm666VZuuOE7/PjH\ntzA0NMDSpYfzzndewjnn/DkAf/jDg/z931/Kl770L3z96//Cxo3Pcvzxq/nHf/xnNmxYz7/+69UU\ni/2ceeZLufzyT5JKpQBYs+Zevve9b/GnPz2N40hWrTqRD33oYyxevGTW+/vTn57ia1+7hnXr1pLJ\nZDjllNP4+7//6D5d7bZB8iEokzF0dWmGhiRBIKhWBaOjElMVxDEMjjo8OHgkxUGHSjh91birS5PJ\nGIJgBwGzlFTIEBsXPaWtcmQcKirFKtYxak4nJEWZHF/mw6SImh2TO80YTn3IiEISkOIpjsJBYxDE\nOMwzRQDKZDnNPIXCYSDqIDY7yAlRqt4FY5YWb0ohqgH+6AgijkmP3oCz8Swy37yZXGe1pTvGXBIq\nRg4OIFQ8Q2fp6XY1BcMW+FmWZVl768Mf/gcWLVrMT35yC9dffwNSCr73vW/xy1/exmWXXcGSJYex\ndu1DfPrTV9LZ2cXq1Sc3X/ud71zHRz96OalUik9+8nKuvPJyfD/FP/7jZ6lUylxxxT9w883/wdve\ndhEA1WrAW95yIcuWHU0QBHzrW1/niiv+D9/73g9mvLdSqcSHPvQBXve68/jQh/6BarXKtdf+C1de\neQVf+crX9tl7YoPk55GBAcGtt7r8zd/E9PTMHmY10i6CQDA0BLfd5nHuuREMam79coazXw+/++ER\nvOvdMV0rpqcaZDKGQgGCIPk+CZYNUib1ceUy1GKX34mX0icWEIjWnOQYl/vkmRgDNTIEMkesXIbp\nIVnqFfXjfFJiogiv3QyTqhcMNkaUZKgS4WIQSTAehclKcRQCYfK7nuicASQpGEGQtLLzJqVoqDg5\n1nUwKR8RJeOypSfp8UaRvkRrjdy6BblpI6Z3HsKRUM1CuP//2aeRgiH7tu/wOFvgZ1mWZe2tbDZH\nNptDSofOzk6iKOL73/8uV199bTP9YuHCRTz88FpuvfVHzSBZCMF73vMBjj/+BABe85rXcd11X+M/\n//NWFixIOmidc86f89BDv28GyS972Starn3ZZZ/gda/7S5555k8ceeRR0+7t5pv/g+XLV/Ce97y/\nue3yyz/B+ee/hi1bNrNkyWFz/4Zgg+TnlXTasGKFJp3eecBWKEChYJg/H447LplW19fXhTx9PoWj\nirjtJbrmOcyfP/u5Jq9IV6sCIZKezCMjgiDyWCwqZL0I5bWuOLfrCi8x94KBJ+LlaOkSK4PCrbeC\nS9ItJr8qZaq8kZua25KjDAvpQyPoZx4D1cUE/WWiWpVAjVNxRkEpZODgiQhXKZCTphF6HkUxj/8a\nfAVvbP8F8/seSQLjOqE1qJjFcg0f8H6HeTKDMLql8E8IIOWRybfDuRfv9H3fEztLw7BFfZZlWdb+\ntmXLZqrVKh/5yN+2pGYqFbN8+YqWY5ctO7r5dVdXN6lUuhkgA3R2dvH44+tbzn399V9n/fpHGR0d\nQWuDEIK+vu0zBslPPfUkDz30AH/xF2e3bBdCsHXrFhskW5DPw1ln7Xhk9C7p6CQ+uRe6klHUs5m8\nIg1Jm5mODo8nn4y48spO7lj3ahYuNPTmWs/RHSqWbB+jqlzGRgrUlI/CIwl7JSDwCelmkAHTQ4jP\nGHmu5iP1IDphgEVsAwxVUizjOa6L5/NEfBR94SJyMkhWgnWJgijxYfNz2im33Ets6ukZWiQBspQ0\n2ncYlaxXm2wW49WLD6sBxDHa98FPIaQAHSG2bEZu39aSuzzVznKZx8uC+zcdyXFl0VL4t7M0jB0W\n9R0kbMqHZVnWoSUIKgBcddVX6JmygONPaS3nTqoDEkK0fN/YZszE3++XXfZhFi5czOWXf5Kenh60\nNrzjHW8ijltbvE6+l7POOpsPfODvp9VSTb23uWSDZGuHGivSAK5r6OyEkZFkRVlK8DyDN6XphMSh\nlOoiVxuhO19Dk0eNxujmSrKgkyEu4CZulecxKHpRRjCq84BBYCgwik+ER4hC4hKz3H8W3zVsjmp0\nOOO0ORVQmioRYyZPtQbtXj0dY7Y+do7Tus/opODP85N2csVi0k7u4bUY10tWko3GrQSkx/8dOfBK\nMt++hVyhPO3UO8tl3pfdMQ40m/JhWZZ1aDniiKPwPJ++vm2sXn3SnJ13bGyUzZs3cfnln+TEE5Pz\nrlu3doevWb58BXfe+RsWLFiIlDvuwDWXbJD8PLerecrQOnhkXxrxevnZvHfx2ue+mcSk0kXIGKFp\nplM4JN0xfBFRYJRV5lHu5Ewq5MhR5oN8rZmT3OiZvDJ6hprOMhSnOLP6W7rlMBhNpBUVk6FtcDPS\nCSCsYTqnTwHcqSnt5Izn11uExJhYIXs66QrTyHnd6Eyq9bVBZbcn/VmWZVnWwSqbzfLWt17INdd8\nGaUUJ554EuVyiUceWUcul+ev/uqvgd1v1dbWVqC9vZ0f//i/6e7uYfv2bXz961/dYV/kN7zhTfzP\n/9zKpz51BW9/+0W0tRXYsmUzt9/+Cz7+8Sv3WU9lGyQ/z+1OnnJj8Ehf39z8MBkDUQRhOH1fGCUL\nulqDEhLtehAm7d8QAowAx8H4KbLEnB6u4aH4JCq0EYg815r34RHTRgmFJMTjL9IP4DuKZ83R3JOu\nNVeSqY5SIc0x2Qpd7igZZ5Q2XZso7lMquVGtQEmKqoubqq/lAv9W5pm+6TffaCfXDJIleCG93Zr3\nLv1D8uy0FisKgGoVMT7ObJ9xJ0/6m5yuIYr9iIEiqe9eT/WSS3d7mt9BlbNsezpblmUdMt7znvfT\n1dXFjTd+j6uu+iz5fBvLlx/LO94xUaOzuwGqEIJ/+qfPcfXVV3HRRW9m6dLD+fCH/w8f/OD7ph3X\n0NPTw7XXfotrr72Gj370g0RRyPz5CznttDP26dCRg+BvVWtvzFme8m7IZg2FgkZrl1pNMPVfPpSC\nuJSmFPkoBQrQWtQTLUAY0AjGTRuRSX4Ex0wbMQ4agTGwnQVoJD4RBoFC8otKGl/GBDrNQLkTRxjS\nusJF6pso47B+Ww+e6CRLiZdmfk8qCHBwEaUSjhpEBFVwQpQpMBC1oeIaECQ3PMOckt0WhmS+8a+I\nanXG3ZmxHHLgJdPSNcbHDfc+7HJy++8Q579p94Pkgyhn2fZ0tizLmi5edQLDt/1mn5zbcSSFQoax\nsQA1dSz1bnrTm97Km9701pZt55//Zs4//80zHn/yyS/izjvvb9n2qle9hle96jUt2y6++L1cfPHE\n31MvetEp3HDDf7YcM/k8CxYsnHbexYuX8JnPfHHXH2YO2CD5BWhv0y4KBbjoopiHH3Y58URFb2/r\n/nIZnlqXItUzn84xB+EZNgYCHYPAIAQEJsu9+lSKUScA96tTKDDGIN2E+Kj6j6bCqWcpC3wZ0+YE\ntDnBxMUE/BcXoBGcln0CBFRrguPb+ujtqKHoxZBHdXRj4jS4HoYcpuJjUlkgM3v+8u5SCjE8jO7s\nhEx22m7tF9DdPeieXnRuIl1jLHb5bfUYlvvPkpslwLYsy7Kex3x/t0dE7zJXQmcONVwmjvXOj7d2\nmQ2SX4AaaRd7I59PxlNnMobclCo0Y8Bks/z+6IsYf9Al5RrSmSTQlVIigIKqcobzENuzxwFwTulu\najX4triEopiH1hID+MTo+kpySsb4csqAEKMpizxlsozKIgYYJkO/7sZEAQN0UFZpBqJ2PN0DyqNI\nF2Wdpai7yDNKLgyTVhoz9VzeE5ksJt+ajkFtF4LfOK6nYiR9kcXQEP5tPyM899XoxYttrrNlWZZl\n7Uc2SD7EBQFs3Cg5/HBNJjN353Uc0+xwsSukTPKLpEz6LbsYCk4Fz09yidrlODUMrlT1JnH114kk\nYNWGpBOFaf2UHCvJFrOAqknzu1LSkkbEEU/0d/HMgCYgQ4feyIbRdjZFJ4AQDNHBFt3NQ9Vj6JdZ\nVmzbzo+jv+QC/1bmV6sYwdylYADUqnj33o03mkMOL8YbuwfPG2ju9mqdiOoSZHWQzDe/AZ3J6jpB\ngPv0k7iPPoJevGSfTAGcKzvLi7Yt4izLsqznGxskH+IyGVixYu7/+aWrC445JskyLpVaV17L5aSY\nr1JJJvQZkyzQap3UwQHUjM9GDidQPi4xo6adGppYOzTWcg0GbQQaQZYSL47XsIkjCcTE0rXWktgk\nreXSMgQMVelxb+plFPwaOEkU/0fVgSiNg5SMmza2x4v5vXMq60xMT/uv6C8fTq1jPibcmlx9DluA\niChGVAJcL09PpoST8TDexCcW4+Yw6TTELrpQgEZnDr+MSWfQGLw19yK3bkUdrEHyTqYD2hZxlmVZ\n1vONDZKtPTJ1Gt9kQQDlsmDjRodqVeC6SbDc6HYB0C+6+Y77bkQAOTPOXfGZxAJGnS4i0uh6VkUo\nBCDQJuR453H625ZTdjqa1zIhECUpHL4TgzYoIRD1zhnNYFcp0mIQV2gULr6IyIgasZklGG6kYNRb\nwKH2vjiyJ1Pi/e0/rn83uRG7n0wKlAKyE6kaAjC+D14KUasmY7Uty7Isy9ovbJBs7ZGp0/gmG3py\niBs/38/o/GPo6spSKBgeeshhYCDJY3acJPZspGp0qBon6A2kq6M87q6mJnKoOFmd9mSMQdCmkp7K\nO6RNsmwN1IyHUT6QBMFeXOGs+H5AMEQXz+qFrNYPkTEVxNAQUVglCMuUAgePCL9YnAiwjUaEUdJG\nbm+oGGZol5fkQqvk/isVRKmUbC+XEWGYfOqI4ontlmVZlmXtczZIfgHZncEju2LyNL4WZR9vQRfp\nnENaJKvOjgOum7QfnprJMO508/P8G7kgvA5XaKQQiHrxnMRgAEdohNZkojFOrj3JH91VBDKHULIe\nGIvmMrXCZU31JKJaaiK/wxjuVStIiZAYl3Ha+JM+Ao3DUeE2noqPok8uYJ7aSK8Y4OK2X5FPxwgE\njlGYIKA4luJHG07mDcv+QG9mSsDayDGZMqqzSSnkc0WEnp764ugKUTnkHrOaVz70OPn0Y8mOKEIO\nD+EX+5Gjo6Rv+C7llasO2rxk2ElucljDfWAN0TmvsCkXlmVZ1kHPBskvIErB4KCYi8yBHXIKeQqr\nOihvk1CGalVMDBaZ5dpKQUWniY1MeiVLBwxoP4UxEMc+I7mFxF29HD62jg3d5xB48wgrClUyIMAU\nCsm5aimCQJCRIZ6sX9BoYukRi2RAiE9MVeeomhTSG0AiSLsRLzG/I9YOzsgIjh82XyvDELHhCYaG\nVkOwHtcfbLl/EYZQKqGWHT3zAzam+bnutE8JrhLknYA16gxOS/WTy4zVdzhQ8hhzO1mrTuCEwRA5\nw0Q/MTBA6tYfUfubN+x2j+W5tqOezSKM8B5YQ3zKaTZItizLsg56Nki25lxPj+Ftb4u57joPrQ0j\nI5IwTALlyYV8jZhRSghil9t5BSNRG5FoZk0QxRJjoKTz3Fk9jS1ji6gFp/HsSCeBk0aFiqpWIEAZ\ngSPqKRfGJGkTop7HawyCiIm+GYAwKByysoovYlKu5j7nLMZNjlO6h8hkywghcHSMLpWJlq9AP7OA\neOXxxLmx1ocul5HF/uSBdsRxWoNkrel1hnhX5od8s/z2GV+SFjVWyj+Sjg4nKvY3J/qZTAZTaEeo\nGDk4gFDx3javsyzLsiyrzgbJLyC5nOGssxTVKnzrW96cpV3MaGiI3PotvP2jS6hkuvn8532eekqS\nzycZCWFOUZYuAAAgAElEQVQIxaKgt9fUv+/hj5t68Rxox1AqJZP8pEwC6nxc5qWZB/h9dxdnjDxA\n0LucYS9HVNVUR2IwCkfVc4aV24zEs4xzrN7AHzmWcZNGGdlMwYjwiIxHxWQIjUtZZajQwzAdbGMh\nijICgUeMLweTojrfh1wOk29NmxAAo7OkWsxGa8TYKCiN0CmII5xt23DcYnM/cUy6UiFTraCfKhNd\n/SUavfx0VzeVj122F39IlmVZ1v4QhvDYY7vYM3U3JRP3YGxMtvxr7apVetYMwP3ls5/9J0qlEp/9\n7FUH9kb2kA2SX0AaI6z7+sS+T7tI+ZieXnLdPrmcIZ1OFlk9z+B5SQzrOKLle9cVePXexI0AWdZT\njl2haXdKZL2IDqdE2mv8x+8gcklQrJccBoAe0cihQUxKkHYqrK48xtP+8WwaPYJwUvNjjSTG4YGy\nT2Q87olOxMQxNZPiC9vyZNwoKTA0hi5T5KJw086fOwyTgrvJ28rlZNl8ar6JUhCreoSdfFgxkysa\npQTXxUQRAoGREu374KegGiC3bkFu2pi0jzvIGcdFd3YhR0cO9K1YlmXtd489Jjn33NzOD9wrrcMQ\nbrutzMkn2wl8e8MGydYe2WkRYC6POqwTcnvZEaIuxmXY7W2Oq24hRPLL9zHGgKvq2yYO0UYQGhcp\nNI6oF/gZBwPkZIAvxsBARLKvyxkj6yU5yTWVYqDWQRDP3AN44iZjnGeexin2JyvOjdsLQ+ToCKJa\nhTgCUQ+CjUbESQqIUCEYhSiXEc44AOMmz4P6ZF7EgxS0Qo6O4j+8FuN6iDhChCHZq7/EaG4hd1VX\nsqIs2Nf/C57NzvKiTU8PtbddSPp73259nR0yYlmWZR2kbJD8AtRIu8jl9jzVYmdFgI4D3d1JV4uZ\njilEg3SVniXuOoKq3z1tfyNvufF1kV6+3/4BFrOdEZWnGklCkq5sjePCep2dMgLpuAhtEDpGaI2o\n34RjFAXGOME8zFpOZkR04JuQlIjqecuGWHrk3Bp5p1p/jaa8K+Gn66KOXIbunUfLrO5yGW9oiMG4\nk5v0G7kg8z/0OkMTK8kAjffIkc2V5JJu4w5zNse6T1IQpWRVOZ3GeD5ESV6zSaeoDFa5a+hIDqvI\nAxck72FetB0yYlmWdXD44Affx7JlRyOl5Oc//yme5/He976fV77yr/jyl7/Ab3/7a7q6uvjwh/8P\np59+JlprvvjFf+bBB3/P0NAA8+cv4LzzLuCCC94y6zWMMXz/+9/lxz++haGhAZYuPZx3vvMSzjnn\nz/fjk+46GyS/ADXSLvalnh7DJZckq8h9fcmSrlITrYa1ShHJXjyVIg4ngl2lqHezSI4TolmHx+Cg\nIHby3FE6hY3kCZwk/6oxzKRYBBCEoaSzqweVb0fhoIsdqNwCqLoYR5IVMadHD/CEezwjxscUCmhH\ngVJEIzUikaZkMhiVnDdQPhWdYiDIUQpT9JdnCEXLknw0TLtPPWc539wl6g8S41LU3cR7+p+dlElC\nt1dfpVYKk87Q44/xnlV3ke44Zs/Oa1mWZVnA//7vT3nb2y7i+uv/jdtv/wVXXfU57rjjN7zsZS/n\nne+8hB/+8EY+85krufnmn+I4DvPmzeczn/kC7e3tPPLIOr74xc/S09PDy1/+yhnP/2//9m1++cvb\nuOyyK1iy5DDWrn2IT3/6Sjo7u1i9+uT9/LQ7Z4Nka5/LZAwdHRqlHKrVRrDcxrBToDMydIUDHF+8\nm7H4JYyR/FN9Ix9ZTLQ/prfXMM+pcpL7NKXOlYx5OaIIgkA294OhXBZIR2I8H0O9MbPnTKRlCNn8\n2iDqHScg1pKtqouqSXH32GpckXyQUEZSVR61xxYSmAz/9/6z8ZwphXtxRK/azuXL/4tp66FRhBwZ\nRtQKCB0mKRWyNCndAlwT0UsRLwoQMlkSFyYCpZLfqU/9a0wCjOqfLCoVvLDMfNNHMNKP8aZePNHo\nhHEg7bCHsmVZlnXAHX30ci666GIALrzwXdxww3fp6OjkNa95PQDvfvf/wy23/BdPP/0kK1cez8UX\nT7T8XLBgIY8++jC//vWvZgySoyji+9//LldffS2rVh0PwMKFi3j44bXceuuPbJBsvTAVCnDppREj\nI5KODkMul9SyrV/vsHKloq0SUbyzg95CTKEj+cf6LVsmWgqrZJGXTAaqXje/yr0LaB3sPFljJTqK\noIpkROWpRQ7KCIQRRMZlzLQRGQc9KTdAG0FsXCSGtKw128dF2sEIzbzMOLns2IzXDCqCgUqBikpN\nD5I9D93RiYldTOxjcjmMk29Jt+jVg/wt12L8NEYkT2a0BzgY1wPlQLWKs2ULRspkKImK8R/6PSKO\nUaVxsl/9Cs3KxykanTD2VaA8Xhbcv+lIVm4Zoet/fjxjbvKOeihblmVZB96ySb3+pZS0t7dz1FET\n27q6kvTI4eFhAG6++T/52c9+Ql/fdmq1GnEcccwxx8547i1bNlOtVvnIR/42qR+qUyqe9TUHmg2S\nrTk3U1FfW1sS5GazSZAsBLS3a/J5Q8YkucvSSbpfAEgpWloKm1kSXbWGWg2MEc10i1ot2RcEgoAk\nPWNzVCBQKaTWFGnnHn0aA6aDKh4q1oCq5wUbBAqfqDkGWwiXWEhyXkjen/lGRCSoMn1Ed5Pj1JfH\nRWuvZCEomh5uMq/jTeImemR5orCPZMW7RJ7fmrN5kXmQnJTgeRilEBhMKg1uTHz0MZCdJSM5qCCH\nBhEzDCKZK+WK5K7NR3F4ydCzu7nJdhKfZVnWQcGd0utfCDFtG4Axmttv/wVf+9pX+OAHP8qqVSeQ\nzWb593//Nx5//LEZzx0EFQCuuuor9ExZRPEPdK+6Wdgg2dojOyr+21FRXxAIGu3OjjlGozWMRFmG\n/Pm8YvQW7smcx7Db29ItbYZJzk1SQioFYJrpFqVSEqzm84ZukvSMkeyxDI97+CKilyHOjO5lq1yK\nwqctHuaE8GEe5QQwnTRGXAsalYNM5H+wF7ncWoM29QdTzQTs2DgUTQ8xTnKMmHS8MZRNht+qszlW\nbiAnw0mfHHSycixFkgedy894WQFQre75fe9jdhKfZVnW888jj6zjhBNW8/rXn9/ctnXrllmPP+KI\no/A8n76+baxefdL+uMW9ZoNka4/sbvFfJmPo6tIMDclmoV1DEBTYKlwWBF1UK5qqPxFgN1aQk8l8\nM69NNtoK+36j33LyvedB1U/SM8IQnLxAOBqXEm2VCDeVQZgcqfkdrB55kidyZ2IqXpKrXC/mS1oY\nJ2kSOC57HCRrjQhjhJqek5zkHCcPK6KoOeykmZOs4yQgrgfNB4oYG0UEwcz7BocRUYgYHkKUS4hJ\nkwEbDoa8aMuyLGtuLFlyGP/7vz/j/vvvY+HCRdx228/YsGE9ixYtnvH4bDbLW996Iddc82WUUpx4\n4kmUyyUeeWQduVyev/qrv97PT7BzNki29otCAT72sbC+ktyqWBR848ua4sgSVq0yxN2K++5zSKdp\nTguS0rRMc94TRtRTHXCSlAbHASOTbhHN4j5a+is3Q1JjIAoRhDOfPJaAz1iUQZcLMLkZW1ni6fkM\nuFASHfSnD0M4mSQAjsbpN/MoqxzjtLHAG22mWzhG0iuGcaSAcFIl4wEgxkbJfumLyKHBGfdnxnLI\ngZeQ/sGv8Pv/gNy6tTkZEIBqFTk0yPj/9xX0kUc1N9shI5ZlWQcHMePfL9O3JccJXv/6N/Lkk0/w\nqU9dgRCCV77yLznvvAtYs+aeWa/xnve8n66uLm688XtcddVnyefbWL78WN7xjovn7kHmkA2Srf2m\nUIBCYeaV0EwayhLSaYPOmpbpfAAdUZFXFG/i190XMOL17vRak9vNQWuLuQCfjeJwAuWjDNSienGf\n8tE4oBXEMcLU+9AZIJakK0McFa9na3oZodM62Yg4Tc3N8tVnXkuwtT0ptqsTcYQceDFRLWaQHr5Y\n/js8EddXjkMqJsMTLKNEns+JT9MuSwD0MsQHnG+xTfXWg/cDEyADiCBADg2i02nIZKft7ypILpn3\nOJ1xCjOWQbd3tPaKHhzAHRpElEstr2sZMlIu4d19lx0sYlnWIWfVKs1tt5X3ybmTsdQZxsYClJrI\nT1y1avem7V1zzdenbbvpplunbbvzzvubX3/841fy8Y9f2bL/fe/72+bXV1zxqWmvP//8N3P++W/e\nrXs7UGyQbO0TlQr84AceF14YzTyRbzc5JqYzGsBpBK47oDWMjAgqFdFcfVYqyYd2HAhED9/h3Zha\ncuzmwTx3BKewSRUIZBaBIVrk46YNAgHawZQN8oTjWfrsAzy38mTC3IKWa0ZlQW2zYejJJ+nKRGQy\nEyvOIooQzjBCBixwBlsm7mUZJiDFc8wnwqGqPdqZ8j82Y5JA3ZiJVh9KNZO1x1WWNVuP5qQjhmjz\nZ1npniuZbEsP6AYX6AVKQ+3cH5zGiV6KfH7SB4Xyzv9yEJWKHSxiWdYhyffZZyOiXRc6O2F4WBPH\ndgz1XLJBsrVPaA3Dw7NP5JvMcaDQ4/BEbgkdOocoT7RwawijepvgiJaEhygZlNeyyCol9VZzEyvR\nUQS1mmy2lYN6B7YYDusu8bKRBxjrWM5Q2AYInLSP8eon1g6mpiCbTXovZ6cXyRkD1MdYZ72Q3KQu\nGIIQKSsIUUlaeNSDZE9XeQm/YtB00k8vZ3IPuWis2Se5+XodJTnJSiU5wWE4kaOsNSWd5a7njuGY\nRWv3fZDcUKsioukfWEqjLncOn8hRo+tp82sTOyoViGLE4ABibNTmJluWZVkHPRskWwdcT4/hLRdJ\n7vn9EsaUgVEIw4kpfQDlmmR95QjcsRFeX72F29ovYNjtbaZRpFJJ3nLjeMdJCvcmd5WRsrX7GiTB\nbcrTdDglUp5uFgHulThChJM+zUcRNeUS6yxGORMRvUnzK/NKApHij2Y5f2Q5y5xNHCufaTldv+ym\nptMgHUwmkzyUUggVMzc3vJtqVbx770ZUphfxebVOROVwvLUP4qWGm9tFNUAWi+Q/eQXR6WdS+cSn\ndilQFqVx3HVrbQqGZVmWtd/ZINmac7mc4ZRTFOvW7XqlXVsbnHGG4rzzktXJq6/2m4NHAGTR0H/3\nEZywSnFyXz+llTXGcopyGe67zyGbNc3BIweM42B8H2KFmNRyrVoV3F15MUQRK8XjrBerqIhcPY1C\no5DU8CiT55vhxXTL4ZbTBjrNcywiMGlgUmBqTD3Zev8+tIjiJEB2XcyU4SXGzWEquWRgijep7ZzR\nyacTrab1bN7RJD5RLtsUDMuyLOuAsEGyNefyeTj1VM3jj88eJM80cCSVaoyWbh08AhCGGUY7D0cW\nIrwhQzZrUDnTbPm2K50vJvdehonU3krss1EspRL5zZ7MYTiRxjH1dbPyPNSxK4h6jyCc1D86KAaU\n+2osNM9yBvez3VuKEekkz7hWI0WVV+ufcAfn8JfmFyww/S2njXCJjMs804cIVDPdQmiNHBxAxALa\n9n8empm6VA/QHAPut+wbr7qsVcs4ie1MLftrTOKTfdv3+T1blmVZ1q6yQbJ1QEwdOOI40N09+2pw\n6OUZbm8ncrft1nU6oiKvGLyJn+YuoFqdj5RiItvBJAHwU8M9PONcjBqh2cO5WATHEc3jwlAQxbvQ\nXcLzMFkHM6mxgykLEBGuVDhG48vkF0YjZAS4/Ez/NZtYyjrnZPplX8spSzrDsO7kDPkA2UytmW5B\nHCUrsFEnOAcg7WKqOKbH9PO+rv+g04xBOPEHWapluCM8i6Ojn5CtVqf1UTaZzPTzWZZlWdYBZINk\n66DQ02O45JKkUq+vb+5anTW6YvgyJp0G1zXTCvd6ew2eZ4giCIIkdGtsE0KgNVQqBs/d2y4dk7pU\nmPr0PQMIQ4k2KuQokadEpeVV4yLHqOhAC6c1qboxcU/tZQPpuRDHyC2bSUcRC2fY7UQ9oGKcgQG8\naBPZq7/U0kdZd3UTvOOdu3SpyXnKgM1ZtizLsvYJGyRbB63JI6zL5STLoFJJfi+XoVTfPrkTRryD\n1d7ZCvd8n2YXjMnT+zxvIt2iVgMtXcrZXrTczf9sXK8+uIRmgCwaI6oxZHSFI3iSPuYhMM2pemWT\nZb05jqVs2r3rHQDjUZq15VN4kf8Ibd70EdjGJDkxxnMxvo/u6IBsDoIAd8NjUE26ZcyWmzzZ5Dxl\n3dVNvHwFJpXeV49mWZZlvUDZINnaJ3I5w1lnKXK53V99nWmEdRAkqRDPjeW5WZ1HOFJAhZKkI1pr\nJ4x02jS3zaRLFXltcBO3+BfQz84HkzSUMr3cc/Klu/08xvfRPT2gM5g4hckX0E4HKIUcGyPDGCdU\nH+VOXobxUxgnCfiUzlCOCmg3jVEeot4GruVXFOHGVXrkEG4wjqA0/QYanzD2oZLOcEd0FsemN9Lm\nRNMPcOpdPYRMkshzSRs9AYhYgTGYri6ql7x39y7seZjeXf8ztCzLsqxdZYNka5/I5+Gss/as68JM\nI6yLRcFNN3m84hUpfv3rE7jogoje3hrFopjWCaNWM9x33+w/2i4xXaqIy/Q+v7MV7kVREmuaWWL+\nRhw6rY6tQUpiXBQOIT4hPqAQ9a81Eo2kQpZxk6QNlE2GGikqJos2GleFLX2SG4V7800/f9d1DeaJ\nmS8uwhBq1eSTxr42W5WjUhNpJnEM5TLCkLxxUZSsJBf7EZnMbvVQti3iLMuyrH3FBsnWATdTp4up\nI6wdB5Yu1cyblwwJ6e01zJ8/cyeM2QLZnWmkVRgjZizcW7/ewfNmPnkYQqkkWLZs5i4TSsH2agcj\nKssm3UG/6ErGUocFyrjUSGGAB2onkpbJSmxkXAZ1J4OqHY3D58zlfDJ9DYVU2FK4J1RMtPL4JH1h\nJuUysjTekgO8TxiDKJcQjEzbJXQKFSoGRZbeaBv+ffcko7ujCGdwADk0SPbqL6EXL6Hysct2qT0c\n2BZxlmVZ1r5jg2TrgJva6WImjcK+uSzqm0rKpA0dmGmFe6WSYeVKRTY7c5BcLkOxmEz0m4k2UDMp\nhmQXQhg8EQEGQYRHTIYKbYyTFgqvPlPQwcMjT5oaNeOzhcMoizYKTj0IbRTuSdFMX5iJAAhrM+6b\nWyZ5UEe0jkAEehjkTf4t/Cdv5v3Ot5mX9jGeD66DcZM8ZZNOTe+hXG8PN01Yw31gDdFZLyV493sw\nHR374fksy7KsFxIbJFsHxOSc5XJ57wPfqUV+jWK+UZnn/uzLGFP5ZiaAYqL9G1MuPVvhnudBLkdz\ntXomo6M7uEEpGZDzuEFejCM0LvX0A6FwjCJFjVNZwyazjFg0BnQYHBQCzZhpoyr8acHnftWomITk\nzXUnVUA25oM3fk25T0/E9IjB5P2Vsv4GT6SHiNI4BjH1j2NWIozwHlhDfMpp6PkL9u65LMuyLGsG\nNki2DojJOcuNuGtPzFbk1yjcC2WBzeE5uJNSZWOSwFdrcFPQpfr5i8Gb+N+2C4D5e/FUszPCwWSz\naC+NaMSW9cI9Qwq/GnEKD9KfOoJxp542oF2IXIyTQoU+WnoHZgw1QBDgPPFHnHRSVCiHh6DkNVuF\nOGGEiGPKOsUd6gxeJP9Am5hURGgMmBj8mVfiRaySP5BdmQpjWZZlWfuBDZKtg0KlAj/4gceFF0bN\nvORdMVuRX6OYD2D9eocjjlA8/LBDOg0LMbQXDUt6Dbm0xldJL2VnhkK+OSVEvQfdxCYtJMoINLKZ\nfBGaZIU1NEmhX4SLQlIlRZ/qSfoiK0VOjzFzgsU+kMmglh+Lruf9emNjmEy6uRqsKgXMqEtJF/it\neTnL3WfJy3pHjWZfaGdiCT8Mk4X/qJ5frXXy6cZxWgaNmBkK+Yzjoju7kKPTc58ty7Isa67YINk6\nKGgNw8M7zkuezdQiP5go5gPwPEMmY3Dd5GuPZKCI59UHi+xZE44ZTc5IaGikf0xt/KAjKIVZjOrg\nSY6mi0Geq/VQFPOS/UYQ41KOfSomwwa9nM+P/x0ZWQMMvWKAj6sf0jFDodw+4fsT+Sae1zJ62o0k\nvc4QrqnnsEiZ/EqqHhFagYkQIkSoCs6WfoyUoDWiVkNEIf4j6xBStgwa0V3dLYV8kOQp1952Ienv\nfRvKJbxf3YYAotPPtMV7lmVZ1pyxQbL1vDJ5fPWeCpw8DxVeRuDs3jpsPihyxhP/xbpjz6ecnd6b\nN47hmWckxaJoaQUXhjA6KqhWBXE8ka5rtENNC/qZx3d4N3/GQwit8ep9hnOUOJGHecC8mCppPEI6\nGSIvAiomS9H0UiG7/4LkyZRKVoHreinxAf+bbI87JiV8JzktQtc/GRiT5IALgXGT4SKRcRk2vXTH\nWxCOgyiX0Ok0dHZBUJlWyDeVqFTwHrif2t+8wQ4UsSzLsuaUDZKt55XJ46v3VMVp4w/tL9vt10kd\nk6sUkXrmtAzXhSOP1PT26pYCv3IZhoaSLhm+T+tYbCURaNprY5xh7uOnmfORThJht+mQM6M1PO6f\nSH8ocSXkCg45z0Mrl4rKgSMp1jr54aMv5bwTnqA3uxcJ3rsqipBDg8kDT3oYUa0i4hjQiDhZNZ4I\nmKl/bZIHl0nqyYDq5braW7hUXkuv4yKMgXQak08GjVCdPr1vGsfBdHdPjE20LMuyrDlgg2TrgMvl\nDKecoli3bm6LtoJAoLVpjrOePL56sjBqth2eqTHDbmlkJOSnLFK77sxjsYUQSCFwhSJDdWIqHSS/\nC1FffSVZgW2cBAejkxuNjcNAkEfp/VTU53norm5MalKHiijECSoY7YKWGNfDSL++ktwIkuspGK4L\nYg5zXCzLsixrHzhApfKWNSGfh1NP1bNPqyMZOPKtb3kMDOw8gm10vKhWBaOjSdeL8XFJGCYpD+Wy\nYHAw+b1aFdTqaRC1WrLamwS0eziRZA8ZAxhQGpQyyS9tkjxmneyPtaQSpxgPfcqhTxB79AUFxvQO\n+tLtK44zkZPcaOcmG0H9pJzk+rZx2njMrOQdzo30MNA6WtvUW43EcfKwlQqiVEqW4EdGSH/zWuQz\nf2p9vxpDRmo15KaNUE46aYjSON7ddyFK4/v/PbEsy7IOKXYl2Xpe2JWBIw2TO15MjLOOueEGWjpe\nrFypyOWgUFYcvt7wZ0coig8bstm9y3meTbcu8sbyTfw0dwFDzkROszGCwGTYznxGajlGZBaAtMlQ\nNR4iDlnJIzzHQn43fhKeVETGpWZ8/n/23jxIsrM88/193zkn98yqyqrqbkkIDGhBQmhBLYxaGDUQ\n44WRrwAbgVksYcRi6fpewooAR1z7OhRcZvDMtQMYDAMYa+Ey2MaAwQxmsLElIZCEWtDIEouEFrR0\nV3dlZS2ZJ5ezfN/948uTS1VWd1XX3v39Ik5kdWaetZZ+z5vP+zz/JX4HY2mfYim9/ge8jtR1nrv1\nFbw4/AyeaKAXjDhb6AwiDIxf9EwVEbRJ/eAAOpM1ko1GA/eJxxFz8zT+75uXhIw4Dz2I8/RTiEYD\nsAl8FovFYlk/bJFsOSlJHC96cdZqieNFEmXtenmeesGvIAv5AZntehLHIJXCi5roWBF3ntPa5O4d\nkafxCf2/k06rbsBJpNPUwhIZJ+LXw2/xZfnbpIseKddBxg46dvEmx5jRu8n0exJvFUrh6pBJpnF1\n2DOjTgJG0J28Fz0Y4tKxxtOuiwgDdDqNzmYhdCCK0K6DnJs95gBf9xDK4zaBz2KxWCzrgi2SLduC\n/gS+9WRxnHW/TjmxaqtTZKZ85UBSX4IQnfpuDYQhzM0JZDvPPWov0408vhBGQtGZAUz2EcWyq4mu\n6SL368s4qnZxLy8HIUi52shSOhrqbFbTam4D1ZSKEe02u+I6N8q/hCix8NC9QhmMtAJtBvyEQOiI\nOIaKHqVMk7SUZgAv0d64LrirGMjzPPRkr0sv6jXcHx0kuuhi21m2WCwWy6rYBv+7Wiy9BL7FA2/r\nxTCd8vy8ZHZWcvSo5Gc/c5iZ6emWk6XZNIVsLgeue2LVsucZmcdo2udy7wCTOZ9CwXSyXbczx9aR\n8npebxlxfV7mHGC3W+Hl4j6k2Fyd9KqQjukAu64Z2vNSZnG9nlYZusOI2nXRjlkassBtXEtFlU1B\nHYbGNy8MenctrRZi+ihiYR5RqZD57KcRlYrZRi6Hdobf7yfyC7GWWEeLxWKxnJLYTrLllGCYTvmN\nbwyZnNRDdcuJhZsQgkzGIY5j0AUeO/OVBKnVV/KOA65UlGQdz1FdSYcQMKGnuVr/HV8U1+DLyT53\nDUkgszgCsqKF0hBEAtAEMUSxce1oBeA3BEenJfhD7ntbHoUou6G/7NPhKF8O3sU1/A2TcnYwPju5\nA0hqfK0RQdDpJAfdhBWjK45xpqbQjmNcMcIAHBdZWyD3kT9HnfEcmm+/FjlTQcQRlMtEL74A97FH\nCc88c0O6xbYbbbFYLKcmtki27CiqVfj61z2uvjpaVXw1DCbz5fOayUnN7t29f4+P665uOSmSpTTh\nb80mtFWRx5+7en/l4+ESGR3voljsGTnJZ1I3sis+DEBLpZiuj+EITawFsXY4ED0XL24yMfcE/712\nKcodPsBXHgn5P6McG1XiRThMq3GilfxJSXz2hGCCGa6Tt/NF9dvgSBAu2vOMRjmOESo2XedUCp1J\nm3CRRd7JIgjx7r+P6LJfXlLErodG2Q4DWiwWy6mJLZItO4o4Fit2uTjZUNJDFHI4LhCDjgXehEs5\nmOL1+Xu578W/y0Juz5L1Gi3JkdCj4WqKbLBkoz88BBYN7jH4KASeiJiggiTuDfctt2mlEUETMVNB\n+HXE9FHzQtCG9DLuHos0yhaLxWKxrBRbJFt2BMlgX+JOsRbWI9p6SxAC6To4ncE9HYGX83ClSyrv\nkZvIEReWeibrOrRmJdDe+GOMI4QO+7K3ddf1osgC93EZr+HbFJXfK5hVDGhEuw2ijZifNy18rU2k\ntZfqWsMJpeAzLdxnn0Y++6y5JlOHiF5y0caeV9DGvf8+wv2vtt1ki8ViOUWwg3uWHUEy2Jdfh9yM\nxFIv0RAAACAASURBVPFitXKNtVLTBb7t/gfmVbGXo6Eh0pKaLhBr2XVN61/aOsWTPI9A74DYZWf4\n4N6knOEtfIGDXEKdQi9+cEC73Bnwc5Igko41XCYDrotOZ9CpFKpUQjsucuowKpNG7T5twyOpE0mH\nHQC0WCyWUwfbSbZYFtFsmuE4MLVaFEGrNagiGL7O8igFM0GR7zhXdBOZEwu4ms7zIy7iLP0o/x4W\naYrcwLpH9Di38g7QUF6rH91aaTZAaUQUGh/jDiIM6ZpvJDHa9D8ueiIZ5ut/TkpTKCePGnPhHAd0\nx/pDCsjl0J6HiGNIZaDZ0yhvxJCdKo/TfPNbyXztK+uyPYvFYrHsDGyRbNkWJF7Co6N6XZuClYrg\nq191VzTol8kYm7hq1VjEganj0mkTWR0EgtlZwdjY8GMcHVXUasM/nJHSbCeV6sk84hiiSFDUPvvi\n7wKCp92zieRgkZwU08m821ags1lUeRxZnYFm07hTQM+ZoulBHFHVI3xFv45r3C8zKSqLtMjC1MPL\nfBtC7XKUSUZ1E0/0aZmT6OowhDgysdVhYLbXaBh7ON83FnHTkPrWPxHv3o0+a51kEZ4H4+ODXe8O\n1vnCYrFYTl62VZH8+c9/ns9+9rNUKhVe9KIX8cd//MdceOGFy77/1ltv5W/+5m84fPgwY2Nj/Nqv\n/Ro33XQTqSSIwLJjaLfhkUckF10Ur2uRvJI460SjPDras4nrvSYZHfWYmwuZmtID1nGLqdXgox9d\nPh46URj0a6GFABdFiRogcIVaUottZXHcPYbSCFPv/gDN2TZipkL2M59ClUrGQBqYeTagfSjLlHMm\nj3MOT+fOIXDKEMfIeB4hNLV2brBo7iwTTHMDn6Cl83xCv5d3q9s4TR8xA3lKIZRGoHEOHwKtSB38\ngSnUWy1S9RoiCNBPPoGYmwPAfexR8BsDMdYbhXW+sFgslpOXbVMkf+Mb3+DDH/4wH/zgB3nJS17C\nbbfdxvXXX883v/lNyuXykvf/4z/+I3/xF3/Bhz/8YS6++GKefPJJPvCBDyCl5AMf+MAWnIFlLSSa\n460g0SgnJDZxYAJExsZMlzmO9RLruEFOrJKtU+AesY9L9QMntP5msLAAf/7pCapVCc0JvEeuNbZs\nnTS8fOMoZ6rvc3v8Jh7kEp7SzyEnWqRUi/8YfgU0tEgR07lD6Evh81DsYprD2gO0kW6Inn+ykW9I\n452shQkPyeVwpqfNc60manIXasyEkWjXXXGMtcVisVgsy7FtBvduvfVW3vSmN/G6172OF77whdx8\n881kMhm+9KUvDX3/wYMHufTSS3nta1/L6aefzr59+7jqqqt48MEHN/nILZvJRsVXbxVaQ40id/MK\nZigT9Q3vjUQz/E77FkbjmQHlQbIkGulYuNSyEyi5cfe8zaagWpVGkjIaUU7VGHfnmOgsu91ZLpMP\nMClmyIoGZTHLuJihKOsc4DLukZfzL7yGFhmzwU5bvSZK3MGV1JJhPiHQnmeK70S3LJ3OQF+nDZ9K\ngZfqJLS4CCGIXnKhsXrL5wdirEW9ZhL36rUNuzYWi8ViOTnZFkVyGIY8/PDDXH755d3nhBDs27eP\ngwcPDl3nkksu4eGHH+4WxU8//TR33nknV165/mEPlu3DRsdXbyaJ1jiKwNd5DrCXhTBPGBr5rR+l\n+Xn0fPww3S2Mm01BvS5oNExktlIw605y1wW/j5/beD/gbFZTGHEplCRF4VOM5yjGc+TVAmnajOgq\nu9UUZT1DiRolvYArYyI8FhhBJ1N9HSeLuihyB68yjheib6gvibJeo85kvWKpk1ASVR5f03YsFovF\nsnPYFnKL2dlZ4jhmYmJi4Pnx8XGeeOKJoetcddVVzM7O8pa3vAWAOI5585vfzLvf/e4NP17L5rNR\ng31biRDgdn4D87HPXn2AJ7zzCKS5AxhRPi/jAI+55+HHBbQ2RWoq1esmS8mmB6vodJrw8isg6klU\nounH0dVv4QUuo0ENJ59GpQpGk7ywgMZDtqHsLOAqvTJlSle/nLTMOwN8/UODYQixMsN89Tr4vnmu\n1ULUauji+g3v2VASi8ViObXYFkXycmitEct0ku677z4+9alPcfPNN3PhhRfyi1/8gg996ENMTk5y\nww03rHgfUgqkXH23ynHkwOOpwFaec6UiuO02l+uui9izZ+VSC8cx31/Hkbiu7mwL/uEfXF73uohF\n92VD1u+ds+PoJdtavC8hoNWSSNl7Pen4KjVY0HYltwIcoShSHxjcc1GUhHku+TXoH/zrH+gTQgwz\nXwB6TdnljvtY57z43MzvC5DNQCKdAEQjb/yNHWkK4P4DlYKGynFIn86fyP/MpJ42lm7JSXTtLsyj\n0Bq00ZOEuMy2Sowxi6froDXOM8+YfUQRTr2OaDZIH/g+Op+HMETOVJDVGXKf/gStG27sfs+ku/zP\n7Yn+bAtHrmj7ANRquD/6IdFFl8B6Fe9rwP4NOzWw53zyc6qd72ayLYrksbExHMehUqkMPF+tVhkf\nH/7x5sc+9jGuvvpqfuu3fguAs88+m0ajwZ/+6Z+uqkgul/PLFuIroVTKnvC6O5WtOGfXhd/4DXjO\nc1Krqi9aLchmYXQ0xdhY7znfh0Ih3X3ueJRKWXx/6bb6kRLOOMMU4f2f7jcaRlKhlNl3Om3em2iK\ntYY6Re6Sr6LpFLs3bRKBEIJxqlwVf4UvimtQctLYBuueWwZAJuOQXebbEkVmn6Oj3orPNznnhOS4\nMxlzDVot07BNCOMUofZo6QwxDi2dBZ02sYA6IlAuezhMHAnaOkVGtEEIhFI9W2WlEFojoghJBMAM\nE3xKv5f3iE9zGlWQEpHyeifebEITnEwaigVzUM0GeB6Ov0DGE5BNkR3Nwdjxk2iG/mzXavDAA3Dp\npUuL28Jz4ab3kR0bO36gSWsBHrgP9l68omPZLOzfsFMDe84nP6fa+W4G26JI9jyPF7/4xdxzzz28\n5jWvAUwX+Z577uHtb3/70HWazSZyUetMSonW+pgd6MVUq/4Jd5JLpSwLC03i+BgpEycRW33OF11k\nCr7Z2ZWvE4Zw6aWSMFTd9ebmBM2my9xcRCZz7M5q/znX64p83qVej5Y9hj/4A2g0Bn+epqfhP/2n\nFD/9qaTZhD17jGQiCOCZZ0yH1qfAvc6VZkhAmWNSyvwsSx0yoY/iipCWUt2hPdOZ1p2wE7Vsl7jV\nMj7Pc3Phcc938Tkn3+e5OUG77dFqaeIYvvc9OXCe5VYGr/Eifhi+iLP0z7l/4ZeZk+MmWjoMaKg0\nNQr8F3UT5/AI75P/jZKso5HouNNDlhKtBNp1UdpFhCEa0EKYpXN3oIVEi87vvpBIIBYOWrqQdmH3\naYiFeVQQ0VxokmoGtOca6MzyuuRj/WyLqaOk/+lbtHefid4zpFPj5aEeAMExr6uYa5BewbFsFlv9\n+7wV2HO253wycqqd73oxtoJmxbYokgGuu+46/uiP/ogLLrigawHXarV4wxveAMD73/9+9uzZwx/+\n4R8C8OpXv5pbb72V8847ryu3+NjHPsZrXvOaVXWGldIodeJOCXGsiKJT64dyJ51zNgsvf7k51sg0\nJ4ljgVK6cx4r+97HsWJ0VHHddcHAthaTy3Wtg/vWFaTTGsfROI7A84yu2nSDRVcOcSL0bIeX/zk2\nbmtiVedrjrv3fY5jgdbm96XdBt8XuG5PH950yvxj5k2Mq1/wYvUTHpEvJhCdroZuo9DMMUJLZHhc\nvwCfPCXqALRJ8z0u51X6bm6Q/51R2QS19ILoTtdZ92tWOlZyOgzQ7TaACRqJIlSzhZpf6H6v1Qp+\nZof9bMtYrWoby3Ei29mMsJKd9Pu8XthzPjU41c75VDvfzWDbFMmvfe1rmZ2d5WMf+xiVSoXzzjuP\nv/qrv+p6JE9NTeH0pTDccMMNCCH46Ec/ypEjRyiXy7z61a/mfe9731adgmWHsppUvo3CFKCDz0VK\nsqALBNqlpgvEWg5YwCVza1uVVO15xo0NQDgOMgWpRoijY1KEpAk6wukAVwW4hIzqWSK8gTCRAI97\nuIJ98gCncRgtMoM76miUk5Q/sbDQu6uIY6NTnp5Gd8JEhDLpfF4QoD93K3rPaZt1SdYdG1ZisVgs\nW8e2KZIB3vrWt/LWt7516Gu33377wL+llNx4443ceOONm3Folm3CRrhcrCSVbyNJrOAWO55V9Bh/\nr3+bhajE/XovNZUnagqCoFdUz8yYr/v1wVuBdhzU6WdAcBgdpNGFEsoZ7bpbpJ0GI8EhUp4iFTUR\nKQctUzhKMt6qMke5N8TXFzTS2XrfgwbZsZBLnoyFcdpIp8Fx0HGMUMoEjSwsEJ99DtrZVn/qLBaL\nxbIDsKOQlh1FtSq45RaPanWLc5pPgP7ubxCYx0Rb3MnFGFiUl+JQ6pfIuCGXiQMUpW98iguaXE6T\nyWjGxzUvHJnmNT/7JPnG9NaeoOsQOR5z7jixk+o6XGiRFLUCj4hf5VvkoxoiitgVT/EObiWH370Y\nIgwR0ZCqv1M4h3gcZRehSPXuKjQ9Rw3H6Uw1upBO0/6dt6GPZ2NyPII27v332VASi8ViOYWwRbLF\nssFks5rRUUUci86QnegucdxzvlhONuEKRUnWcYQaqAMdx0ge0jKk2Kwg1TJC6U0iimBa7+JvM9dy\nlF0EsWMW7RFpF42gRpGv6qt50nk+U84ZTDmnMy120RYZU9hK2UvcW0ynIK7ocT4ZvJNKPDbopbw4\njtBcbERt7YWtCEK8++9bUyiJDSSxWCyWnYX9DNKyo1iPWOrNjrYuleC97w2ZmpJMTUkuvjgmnzc2\ncffe66CUcbnI53VX49tPMdZ4NRBbJAdZCVEEzxz2iP1dpnNMzwdZhEXKqsJeHuXfwlcC4IcFcqIJ\nQEOneJbncB23c5qYMsWyHjJ8ohSgEe026Aih2gjdNvsIAki0ylojVIyMQrwfP0T2U3+J/yc3o0sj\nm3MxlmMtgSR+He+739nQAT6LxWKxDGI7yZYdxXrEUm9FtHWxaJw2SiVFoaDJ541kwnXB83Qn7GP4\n0nIL3JO+0kQ3b1NM41YiJKREREqEZiHEwzyexc/ZwxQjzFGmyjgzjDPDGFViJG3V6R4r3e0QT1Dh\nBj7BBBV6oSN99EdZJ3HWiWZZOkaXPDuLaDZP+Ny046LGyn066L7d12sm9nqDZRii0ViXeG2LxWKx\nrBxbJFtOasIQpqfFlg+2gQniuOACtcQi7nj4ssj3UvupURzqbtGOJNWgQM13qNdZsvh+L8l5I9FC\nIEsFxGipt4wUcFIuMu2QIuA0pijik09HFLIRYymf/dzFL/ELsrINQiKinibZI2IX03j0SUkSZ4x+\njUpSIEPPny/RJa/1vCYmaL/lbegh37jEfWKjitdEoqFHV5ECY7FYLJZ1wcotLCc11argtts8rr02\nZPfutckrttIqTmtTFDeHuFs0ogL/1LyMwz8u0k45S9YNAhMmsoZm6nEZDad5TfNL/M/8G5l3FkkK\npOj4Hne6vbrzKCShk+b74mUcYQ+z7iT/Jn6JS+VBimoescSMWmDcLSRo0ykGucQ7T2jdVXvseDoS\nDXFkCuIYMTMD5fHjp/tZLBaLZc3YItlyyrNSjfJWWsUlcoxs1uiWk4G/8XHNSLvObxTu58Hzz6ae\nXxpL6vtQr8tlY6vXA4eIcTWNy/DhwQiXeUaHCSaQUvA8nsaTMXfGr+Rc5zGKYmF1B9BvNN3faY6i\nrffHWydEs0nmbz9P84b/A7V7z1YfjsVisZz02CLZcsqTaJQ3g2az0w3FFK/9zhaJhGIYSjGgWwaz\njudBOlaUU3WK+ZjlZMubIbc4FlXG+Qdex1k8BiRBIqqjP6bT+VW954eW053n4ti8V0VmmrEjuRCB\nSdzr5HUjtEKqGPeRnxqHC1tYWiwWi2UVWE2y5aRms50sliOb1ZTLilZLMDsrmZ2VzM9LgkAQBAKl\noNUyxWwULV2SInlYfHVDFnjk9FcSpLbhYJ8QaCn787PNo1IIpYwrhjoNHSsjk9Aa0VmWRxMjqFAm\n1E53PwMXR2MG7bRGzlQQU4fWdBracVHjEzaUxGKxWE4h7F98y0nNZnaJj0WpBDfdFHQ6yYbpacFH\nPpJCa43vC4SA008fbgMXBPDss73ZtH4aTpFHz7iSfGprbwQARqIZXtv6Cl/LvJGqMwlIyI8QhzEq\nmkVrl0ikqOd3odw2ot3CCWIiN8XR7PNoBSOofAkVzSPb7aHm0RNUuIa/44tcw+/zSU5jaiDm2qyT\nuF5IiNXyLfoVoicmaL3z3WvahqjXcH900Nq4WSwWyw7BFsmWU46NiLZeCaUSlEqDRV82C6mUplzW\n1OsCzxt+TFqDGNZG3kZoDe1GRD6aphHEzHWP10ErSTpOc4Z4ikfVC7jbH8eVimJcZYQZpqI9/LfG\nO5lRZa4tfJHTXBcz6MeSQtkTMRO6iqSvGJay65FsCuJl2u5bSOKEEZ919qqLZFUep/nmt5L52lc2\n6OgsFovFshgrt7CccuzkaOutJAiMjtr3zY1GEq8dBNAOJQu6QCv2qOkC8aI/LUJoFJIxZx4hNBnZ\nJidbZGQbiSJFQFoENHSWps4kK1GjyB1cSa1fbN1X/NbJm9f1EKlJ1yZOIWaryCNTyCNTiIX5dbsm\nmybD8DwYHx/+UQJAGCKmp0+aIUWLxWLZDthOssWySWylhdxaaTbhkUckmYwpUGdnBfW66A4RzgYF\n7ov2Mq0nuJ+91OI8cb9EWAmOit3c6lwPOmZMHCIlY1IqRqJwhSIrWkv2W6fAHeznXH5GkXpnYxoj\nOk4WOlHUUV/XWUMUIuIYBGQ/fzv62/8CmK5s46b3rziBT1QqpL/6ZdpXvwE9MTHw2nrIMI657z6J\nxrGQ1Rkyt/01rWt/zzpfWCwWyzphi2SLZYWsdQhwKy3k1ko2C+ecoygUjM3awoIgm+1JQ9yWRvoe\nhaDBZfoAj7vnEched1crjVYxAo3uaodVn4mFRuiYDG1cFYKOO68Piafuk1+kaXM+PyZDc6l+WetO\n+h6oQgk9VoZmA1mdQTSbKy+S48gM/8XRUM+NjaRfomGxWCyWzcXKLSynPCtN5duoOOtWSwwk6CUS\nhv4lDLvOZqZpOqR23GhSKcjnzeJ5ZkmlzBJlCjyQ3kcgs5REHVcqkxDdXQRCCERSZXbcLVCKEAet\nNem4wYucR5hQR7uJe8ejSplPcAMVJpZ/kxCQzaILBciuMu5wG5Gk76ny+FYfisVisZwS2CLZcsqx\nuCO8VRrlxBau3TY2cFFkCuZk8X3BzIx5TArpfks41wUpt79sQ2soqwrvFp9hJNMgdjza+VFahXHa\n2SIgKOATZ4r42XEO7b6QZyYvYso5gwV3HeKYtYZmE5FkdDebiOmjG6JR3lA66Xsrmja1GmWLxWJZ\nM1ZuYTnl2G62cE89JfmzP0sxOys4/3zVTcbzffjxjx3OP98c6733OmQydC3ipNTd7vN2RWtotyGO\nI8b0NK2moB7neNp3kBJGY8Gl/JwKE/x76yyqYoI/O/JOsspHxvNkRJMxZgY3KsRA1kibFN/jcn6V\nf+7plpOdRxFIgffwv6OfeBwRhYggIPeRPye50Ko8TvsDfwRj+U24IpuD1ShbLBbL2rGdZItlCymV\nYHJSMzoKL31pzMSEJp83Sy6n8TzzmMtpXJeORZxZkqG57USdAt9x9uMLo0lJ5Meiz6lNonBljCdj\nfHeEH3EJIEjJgLQMGHMXGHfmyNKkqsuEi+7lazrPw5zP73IbZaoEpLiHfdSXixt0HHQ2h85m0ZkM\nOpVCjY6ixsqoTMZolBvNY59Yo0H6C/8folI54WtjA0ksFotlZ2GLZItli6lW4dFHJc3j1GnbicX6\n6UQzXaPInWI/C7pIR3JsrIu1HLCGc1A4Iu4+AqSISRFRwKcoauTwSek2KQZb5XUK3M2vkKWFR0SK\ngMv5HoX+LnJCoqBJBNReynydz69KoyyUQs5WEXF0wtcsccJY7JCxIvw63ne/g6jXTnj/FovFYlkd\ntqVhsWwxcSxot7dmGO9ECEOj43bdngVcHBs9dRT1cj2gZ1VcJ88B9rIQ54m0i1IaVyhQumvplol9\n9opHSYc+QpvCOcKlyAIuyxenaQL2cc+g1KLLCkNFajU4fBgx10DGg98IMX0UGj6i8/XizoLOZlfs\nlHGiiEbjhINILBaLxXJi2CLZYtkk1moht13wPCiXNel0zwIuDKHZlGgtuo4WQLebXNA+v6Lv4hIe\n5Iup3yEeGUM5QByj4ypEklROsjc4yLN7Xm46zv4h0sRcF97OJBVT7AoBqlf0hrj45JdIMoDe+49H\nEJD55MdBR2Tb4dIk7DBETh1GVquIubmulhmAVgtZnaH2/34U9fwXrOo6roSVSjQS5ws9OrqyDYch\nYnYeCs9Zh6O0WCyWkxNbJFtOeVZavK41zvp4A4OtlqBe7x2D7/dS7sDMoC0e0ouirUkNdJyeggHA\n0SG7mOcQZbT0BoLhhDDyilHmGdcLeCIioCeoTiQYkZbESBrkiHFpkqehs1QYJ0+Nkk46xb1rVKXM\n/VxGlTLP5ZnBg0xCR5ZUvYuIY+RsFU7bjcqX0Grp+1W+gNd+CDUyajzwEmYquNUZhD+si712EomG\nPDJ17DcmzhcrRFZnSH/uFnjfH0CmtMajtFgslpMTWyRbTnlW6nZRrQpuu83j2mtDdu9ev25wJqPJ\nZjXttmB2tlf0NpumcJ6ZkczNGRs4YEkYSTarcd2t7U6nVYtz4x9TZS9Nlt5BaG1K2ziGQJswEiEA\n7SDDHCXmeKJxFv+sXsmRZ59PQxaJouchtOKnvIgp9vBKvkNatwe2W6bKZdxPmSoANQo8wKVcygNG\nfpHoPVaiZcnlwE0PLZIFoDtG0brPKFskdzCbQdDGvf8+wv2vtpILi8Vi2QRskWyxbDHFIlx+eczr\nXx8xOdnXJa3C//pfHnv3RvzDP3gUCpo9e/RAIxPAdTXp9CYf9CIaTpGHvf00QsEw0406Bb7LPl7G\nA0CfbllrZmWZf+IqznSeoaFypESIli0imjRFln/VryJFwIU8yG4xPWD/5hGRx8fraJaXxFgLwYD+\nYwcjghDv/vuILvtlWyRbLBbLJmCLZItlG5BOGyu4/g717t1w3nkBR44I8nnIZCCXW1ok7wTqosg9\n7ONi8e/dutUUyQItBUqD05FFuLoNSiIJSOk2Z/NzHuFs1ArMeArU2c8dxuki0SSvRJcMxtC5FSKG\ndJLxfURH+zKwtUYDwsgElWwjVq1RTghDxNycWe9ENEUWi8VyEmGLZItlG9BowBe+4PG2t4VMTOzM\nwT6lQKqQMTFPTY8QCa9rAae10R7XdIFYS5QyteuYqvIb4mv8k7wKlctBzUHv2kOcyqP9X5DXdc6J\nHuUXPA8cF6SLq6AY17iPX+bFPDxwDEXq7OfOzr9WodcOQ7j3XrxWe7iEOY4RrSbe9++l36BatJrI\nmRkyn7sV//wXb7jLxYpZpUY5wYaQWCwWS4+d/xmkxbLDyec1l14aU68v1RvvFJQyjVgvbnNO+yFk\n2CYMexHaWkOjYwNX13nC0NSlfpTmsfj5+CqDwjF1reeB63VqXFPoZmkgMbriSVHhLfwPDnIxPjli\nJBXGlzpcJNX58Qb3wFz4ZhPtesbSbfFSKKAmJtGFwuDz6TRIgZifRxzH6FpUKmQ+++kTCiTRjosa\nK4Owf7ItFotls7B/cS2WFbJRFm6FArzsZarrFLETkdJIRhwHlJfC8zq1rtuTVuTw2csBCsLvvj7i\n+lwmD1ByfbR0aIo8sRgsdh1iruQu8qpzF7FoCK9Bjtu4jgpDQjpWM7gHPcuO/uV4emYNtFvGQ/nI\n1MAiFua7bxNxhJypnFAgiZ6YoP2Wt6FzKws/2VDCEDE9vb3z0C0Wi2UdsHILi2WFrNQFYznWaiEH\n0GwKBibXVrzOxiMlNGSB+519nfhpQyIJbpLjB3IvTZHrFs4uipKo4wjNrBjnkDfBWa7qpucF2uVr\n/CYebV4qfkRBNlbWGU5Y6+BeFCGfeRqxTEEo4hjabbxHHyH3kT8f9FDGaIMbN71/48NG6jXcHx0k\nuujiDR/qs5IMi8VyqmCLZItlk1iLhZzrakZHNa2W7FrBJYQhzM4KxsaWL77LZUU2u7Va53onshog\n3dEk92uWk4ZvGEIgHWJSoCJmGcMl5LDeQ0a3GdFz3W2WqXIdt/JFrlm6w9UO7g1DKVMgSzmgRU7Q\nUiK0RmeyqNFRyPVNVTYbyOoMotk84SJZVCqkv/pl2le/4djv8/1VJfKp8jjtd76L7MQE1IMTOjaL\nxWI52bFFssWyzXEcOP10zdveFjHs0/bpacEXv+jxxjeGAxZy/WSzmtI2yIxICuJ229SugYZYQaDA\nVwKtYWpK4IoMSj+XUTHDmJ7hCJP8J/F/8Vz5DH/ifAhaAoSkLfI8os4lwjN63X7N7mo6zsfDcYYW\nyYApoF3XeCjn+zyUAVqtNe22X6Kx0vS9FeF56MldHQcLWyRbLBbLMGyRbLFscyYmNO9857H1n/m8\nXmIht51wdUiZWeb1GIH2ek1eIKd9ruVWPievpyIm8Txw0CgZI5VCokgRkhEtKnqCJjmSws4XBb7H\nvtX4WOxYkvQ9i8VisWwOdnDPYtmmVCqCz37Wo1LZ+SXgBBVu4BNM0HN2SAplRyjGmcETkfl3p2nr\nCI0WDm0yCDRZ+t0jOjcDSfR0J346VA5H1QShcgbdLcLQZHyHwc61EFkFol7D++53EPXaVh+KxWKx\n7FhskWyxbAOGOWfEMczMiJOipkuS8OoUljx/j9hHwHBrj1lR5mFezDx9oRha4RIxqY/iqn6pgKbC\nOJ/g96kw3nlKQxwjZyo4R6aQ09OImZlVOTPUVJ472pdTUytIcWm3EPW6CRfxfWg2u64XYvoowq8P\ndcFY7ISxVhKN8mpjs5MQElUeX/tBWBcMi8Wyw7FyC4tliwlD40DxspfFOz7kLBnAS0gG82oUVcyA\nJwAAIABJREFUuZP9XVlE0uCtUeS74hU8Tz1BpOUQ3w49+LXWzDDOHezjGvFFIuFBd3+i77Hzdac1\nrcYn0LkcIgxMct5GXOh2G+/++xAN0/EWUYgIgp7rRRgiZ6vkPv7RofvfLCeMY3KCISTDsC4YFotl\np2OLZItli1mL68Vm02wKlNJE0WCDMAxN5zuKBg0lFhfNySxdUjwD1LQJGVkI84TCbAMpUMIxjhcI\nQlyaKktLZDmqJniWM6joMoFO4xDzdj7HBJVBr2QhQXYOJvE/hlXLLYrSZ793D8hlBvcSosgUyK6L\n9jwIzfv7XS/Urt3D1z2OE4aoVsl8/Wu0r34DemKIH7TFYrFY1h1bJFssluOSzWrKZUW1Kmk2BUFg\nquCk3my3jeRXCGP0sLhI1hpcTGR1VY+A9JDSPJ+LfF7KAabiPbyCu/nmwtXMyEm0LqGEJo2kTZr7\nxMuJcfisficQ8UNeyr+K1/CofiHXi1vwHA3aASVMQStkb+f9muQwBN9HaIwkIlhfdwe9uCBf5Hqx\nhHYL4eueNKPvpa5E4+gUzlNPIqcOofvCSHQ2iy6NrK/zxXFIJBl6dPT4b7ZYLJYdjC2SLZZNolzW\nvOMdIaOj69stdhwYH9fLOpStB6US3HRTQLMpmJ4WfOQjKUZHNfmOTHd6GioVF8/TZDI9t7Q4hoUF\ngRBQbld4t/4Un+Q9VMRp3UJaoihSJytanMkzpGTUKaAFQmoytFAIMqJNhEveaVCP0qRok9ItHGIa\nOtspiFWvMheKUDnM6jIjlTm89ALEMSIK8X78ENpLGelFvY4+88xjnn9N5XkgvJhLU/9OUa5O53tM\n2i28e76LXFgYlGYkdCQa8skncZ96EvnsswOvdyUaq3S+EPUa7kM/gv2vYNWjKesoybBYLJbtjC2S\nLZZNwvNY1sd4LazEIm49KJWgVDLHn81CLtcrkuv1XqjdYkth0ScPPlZYYPJ6EpKntWkKO0IhtMAj\nNEpj4TDNbszbBY/xQuYY6awkO51k45lc0ZN8SryXd458mz0jDaNJbrUIz7/ASCB8Hzl9FKmPHVtd\n13nubF/Oud7jFFm/IlmERqKhHRdSLA0koSPR8H300SOokVG6F30NYSXC93Hv/g7svRgy28BAeznC\nEDE3Z7rWO12wb7FYdhzW3cJi2eZUq5w0VnDDSJwvfIa4RwgGtRskImdTbY8yz9k8yhhzS9eFXuWe\nSCC8lPk6n0cXCqbgTA131thUPHfguBYv5PNoIXCfeAwtpXkuOyRZ5iRDVmfI3vIZZHVmqw/FYrGc\ngthOssWyTUls4dLpk8MKrk6BO8V+6nqRDZwocqfez3PE4SGd5o7IOVKdYtaDXAHmHcDFczQTQQXS\nHtrLoFUaQhftpdEyg45TEKzg5iIMe7rl/qS+MAAVU2CBK73vUlALQN83Io4HJxM3Eq0RzSZCqWM1\n5M1bN1GjbLFYLCcr9i+oxbINSDyRy2Xd/VS5UIArrog5cmRnd5C7LhYUuYP9KMDpWMA5KqSk55lj\nhFhLarpApKVxtVBQjiu8Lb6Nr6j/jQCPCBdf5wjwCPBokUHhMKPLHNanEeLyBu9reCIejKg+FlGE\n/MWTMD+HrPuDWpE4RjRblJyjvEr8MyxWtWi1uYXyCjnRdD5Rr+H+6CDRRRejC8UNODKLxWLZOdgi\n2WLZBjSb8Ld/63HDDcG2t4FLaDZ7IuNGg25h29/xjqKOpRvD/ZOzus0FPMQB9lLvs4ILRGfoT2VI\n0aBNiulgDI3kgDqPVOzzJa5mNh4lRchfB7+L27f9CTHDH6f/68pOxHVRz/slePoXqGzeuFMkhAGq\nFTHrTDLm1vBENLBqLczwg+b5XMIh0iu/dMvTbhvXjcX4PiIMAGG+7jzX74iROF2shSSEJD7r7DUX\nydYFw2Kx7HRskWyxbDHlsubNb4742td2xq9jvx1cq2W63LUaxLEgjjXNplFGSGkKXSmNrLjfG1lK\nsxSUz974AD/mPFwBe/UBnvDOo0WBOIYCPmkCJCZlTyHJyyYjVFhgBIFCIaiR57n6ECkR0iBHRZVp\nqPSgdOJYeF6fbnlwQKwiJvl06x28u/gFTnOODrxWj0vcGf8KZ6uvr71IjmO8B+6HMBr6mqjXEK0W\nXrMJnrckrGRbhJH0s5EuGHagz2KxbAI7439li+UkxvOMhZvcIWO0/XZwCY8+KnjqKUmtBmEo2LNH\nk0oZie8zz5gi2feNFVwQ9ApnRxj7NwdFUxT4gdxLW+aQJC4XGqFBaHCIEQJSOqApcxzWp3G2/hlZ\nmswwyVn8giJ10NAki0hi/RDsiIurlHGqyGQHu9kddDqFMz2NzmbMAGJ/WIkQJ+x0sVq2gyTDpvlZ\nLJbNwBbJFotl1fTbwSWcc47ioYeMntjzjLZaa5BSdIti6D1Cz9miToGWKHKX2E9mkVWcdhyIBTqV\nAhx0oYio1SB2yYiIM8JnmZPj6HQaLSO0SqNVClUsmVZ2wwNnBUVyHC8zuKdA6Y6OJF66jtarTvE7\nFgNhJItxHFMgLworodHEefQRRLUKKygateOa5D539f8FrKckw2KxWLYztki2WHY4lYrgq191ufrq\niImJnaFnTqiLIneK/Z1EvuUQ3axrjWCUWfbF3+Tz4q2kZchv8nUeFeeZQb3uIsBxmJBVfj93KyV3\nBDhG2kocQ7WKdL2lg3utDCIOEL6PkPXBI4uzJo56Yb4nvl4LcWwK82GEweDrfemB+A1Ew4d4Zceg\nJyZoX/8ecmN5mF3HcBSLxWI5ibBFssWyzUms4PL54QVw4oyx3S3ikgZtf6NWa3B0SIl5fDVCJLyu\ndllruo4Xse51gh0dU9LzSBRNneUrvJ42wzuvnojYJSvEsoA+VpHsOFAuo9LZJYN7uhmggxQ6n0c7\ng/Z1+VBzpbiX/Kh3Ql3ZAeIYUZ3BmZ0dLg9RCqIIp90GKRFKQRyRuvd7xqFjfg5Rry9dbwez6uE/\nq1W2WCzryA4Q6lkspyZhCNPTgnTaWMEVCsdfZ7uidc/pot8FQynI0OYlPERKt1HKnHcUmXV8nef7\nai8LlIbO4C2IIo/xQsL18JZwHCNj6F88M4EYC4cKE4Qy3YsUdByKXov96Xsoeq21719rRNSZdEwG\nCfuXdNpIK9JpMxTnuuA46EwGLR2IYmivw3FsJ5LhvxUWvDZ8xGKxrCe2SLZYtinVquCWWzyq1Z3t\nkwxG/eC6ZkmcLRzHPObwuZQDFITfrQ+TpqwGlOMhdYzqhO2FsSDWglhLIuWggVA7+CrDTFTi0fB5\nzMc5FsIsqPVprzd0ltsbb6SiyuuyvWOSXJyVLqmUSezrQ1QqZD77aUSlsqpd2xASi8Vi6WH/Elos\n24ByWfOOd4SMju4sTfFq6B/cSxYAh47DhVAdR4uep3KdAnfrKwCFF0ZoBIfiUZoqTYRgJh4lQ51Y\nwQOtC2iKHNNqgpxo8LHa7/GfC/8PpVQL5DGkFsdDdbQfXRPoIYl7UWTMosMQ3M6+Eg1xh1qQ4odT\nZ3DJnmcpppbRHa8TIo6QMxVEHB03na+fEw0hGXoM28AFw2KxWNaC7SRbLNsAz4PJSb3jZZRKgRC6\nm/Achr3asl+T3L8MY8lrjkSkPKTnIgtp8k7AaKaBmwKHiLPE44yla2TSMa6rcVxBJfscamecgzrz\nucYh44ROKGay/QzXcQu5cN4M79XrvaXhI1ot5Nws3iM/Q85WcaancY5MIaenETMz5iIAfpDmO0+/\nAD9Yl9iRbU/igiF8OxhosVh2JraTbLFY1kw2qxkdVYBDoaA7wSKmPkyaqUmwCCwqmAEBeIRM6qM0\n9RgxvbuFbgdami8cR5LD583xF/iKfAMayZXybr7t/EfqKByhcKQCKdFe6sQLZADp4GY9xkUL2XbR\nuUXDex3bODU6RnjOuXjNZtfHWIQBIgjWd4CsP5Eljnu2dZ27ETFbRR6ZQkwfRfj1bhofrE8iH2wP\nSca6pfnZQT+LxXIMbJFssVjWTBAIJifh3HNjdu/W5PPmed+He+91UAqeeUaQzWqaTdHVJSsFzVaB\nu9hPmjbXqb/mdv0eDnHaMfcnUYzpKnVR5HGew2v51sadnJRGriH6tMKLX3ddyOU6Q3aLfIw75FNt\nfuXMx8mn2id2HEoZq7m4o0XRGqEVzjPPdK3hsn/zP9Df/hdoNnEfexT57LOQzZrV1ymRbz0lGSfM\nOqX52VASi8VyLKzcwmLZ4RzPIm4ziGNoNIwTRy6nyefNkstpXNeEiyR6435NshDgyyLfcfbji+H2\nHYvlGQu6wP3yZbR1inbs0CDLgioQKEmgZGegT9KMXKb8AnfNXEC96ZqubhRu8pXpUUwFvPK5T6xK\nj1xTee5ovZyaync88RTdCynNo3Zd43ThpVDlcdRYGTUyis5kUSOj5t+ZTDeRD8xgX/qvPgXT0xt1\nuhaLxbLjsZ1ki2Wbk1jBjY4O1ywXCsYibqeQzMDBIvVAxxM50nJAj5w0Y9udBuxhPcq/xvv5Jf0Y\nzdhckJZO8VR7D/O6RElXmafEQ/osPn74jZzmVjiXn1HyTIGoszlw1+ej9VC7zKkiI9rtHeyQsA+x\n3P2L75v3aDU0ta+u89zZvpxzvccpsmCeTIpkjbmASWdbSsjl0IUCAkxCYT7f/Tetnj2ciCPjfBFF\n2/p/ATv8Z7FYtpJt/OfRYrEAzM0JvvENl2uvDdm9e2e7XyR+yUkXOSmYhTAF4QH2shDmGZYblxTO\nQghIpxChZFzM88LwMUblAm5aUtJNTm8/zRPOC4myBWZGXsDYaJHg4n0E+U6R6Xro9PoMz1VUmc+0\nfofr468zHkXGn7fjX0wcI6IQ78cPob3hYSciCJCzVVPghsHyk4zLkURiJy4bjYYJFPF90zn3fVMg\n+z40m12Nspg+2rvr2MasNgJ73bTKFovFgi2SLZZtS2ILtwNqmRWT+CX3W70lRbLQEKoUrgdup5h2\nCBlhnnlGQJrur+OA1AIhBa6IydLsDOsJlIaCqCOlNk5sHRkCuTw6r074uCdkld8v3M6YnF/+Ta6L\nKo+j06ne4F6rRXj+BZDLD1/H9/EWFsB1EI0Golpd+UFpbQbPFhaMPlnFeD84gM5kO3HaTbzv3wuO\ng4hCRBCQ+8ifG41ys4l7+FlYeDdkSqu7GNuZ1WqVk1jvcOtkOBaLZftiNckWyzblZLGFW0xXUisH\nNcoNWeA+Zx9Np9B1tJikwh/wcSapDHgr96MRzIlRIlw8EXOFcy+uOPGCeBieiNjlzOCJYT3uPhyn\nN7jnpcw3sSN5GLaQz/cS9Y7hwlFXOe5oX05N9+m2E5G2wOiThUCnM8bFolBATUya/WSzJpUvlUKN\ndjTK6bTxde5olBNONIRkGNvBBeN4iLlZvIM/QMzNbvWhWCyWbYgtki0Wy44mJMU/Oq+nKspG25sU\nj0nIR9iRHfT7G3cWmo3jbr+m8qZAVct0gzeQgvC5Mn0PAHcGl1NnyHCjEMZ5QwhTbC+O1h5SsJPJ\nDt1ffwjJWklcMPTExJq3ZbFYLFuBLZItFsu60W7DD3/oMD0NHWksUZTokHV3UG/Yshp8UeA7zn6a\nIk+Ax0w0goo1on+DcUymPY9XnUZWppGz1aVLq4UaHTuml3KdvClQ9QYVyYmhdBT1klc6S1EvsN/7\nLgVdG0z+67+QpyCiXjNBJfXaVh+KxWI5idm+n4NZLJYdg7Ghi5ibc3jmGZfZWUmrZT7NDwLRtRIO\ngp4Gud/ZojeUt/w+kvcoBQuiyF1yPy+MfspujvKkcw5hboSQBoo0sZMlGBlH7W6j23Wav3c9/ovG\nhm+4tkDhzz60btdiOcJYMtvKMpZp4jkdOUgYmmE/IRBBgEiG94JBmzih8kbjrEKEDAcvoNbLX7ik\n8F7stNFomNempxHpIrLjvdwfQiKWCR8RlQrpr36Z9tVv2LIu8WoH+pZD5wtE556Hzg+3H7RYLKc2\ntki2WHY4YWgcMJaziNsMCgX41V+NecELFJ/7nOCNbwyZnNRMTws+8pEUqZTmBz9wWFgQeJ4mleoa\nQDA/L7raZBhskMZIahSIkV2HtKgZMirMMF+oFOfwU74XXcGC75LHpR1KmtKhOu/xeJhhlxfRzE2g\ndg8f6Nqsj9Nmmnk++6OX8c6Lvs+eQqcD6nmo8jhIgfB9ZBiiM5leGEkHHefROoWOPbT0OlOPMSK5\n4xhGFCGfeRoRhuZ9cUTq3u+hXQ8RtBG1GnziE2QzuV5Dui+ERJ3xnKHhI/2SjJ3exxZ+HfdnP0H4\n9a0+FIvFsg2xcguLZYdTrQpuucWjWj1GG3aTKBZNV3lyUrN7t3nMZk1steP0hvWS4DopTaGcSDKi\nqKc8AGiQ5wH20qAndUjT5nz1EGndZpYyT/CC7lCfki4zcpJYuEgJaS/mVfnvk8+uYJAviiAwUdLd\nJQwQShupQ58Mome7tg7+1I5j9MKuO3hxFi+d4bwlE4/LoRQiDLuBIziOGeDLZtG5HHpkBHbt6gWQ\n9IeQpNMD4SNbxU4Y/rNYLCcvtki2WLY5iRVcubzT+3ZLSSzhTCpfb3E7NVEOn0s5QA6/u05R+lwm\nDlB0fAqywUUcJBYeUkLVmeSv0jcyIye79ebx0NkseqzctU0bXFoQhcZCLQzMY98ySYX3Fm5nwpvb\noCu0DvQX2osH+QoFWOS2oVOpZQf7NpvVDv9ZrbLFYllP7O25xbLNSazgTlb6m6MJSSJfkxwPsJcm\nuW7T1BGKoqjjCEVbZqmqCUKGh3WsBF0aoXXDjWT8BaJcEZXL9V70fdQdP6E1nePu4q/zH8YfoOj0\nHDEkMBHFiDBg5WHTxzqYvo51HwW1wJXudymEtd7FGZh6XMUQX+L4EYZmutINTbcceiEkjQaEQTd8\npHt42e1RPC/HemmVLRaLBWyRbLFYtjF1itzJfsDYAR8PpUztdywVwlAKJRPpnM+j+4I/hDYf+Qci\nzT2tS3i5/DkFb9AeTegA1iOLQikj9+g89lOizqv0YUTcAiUGBvdEGALC2N+p48hKogh55Aiy3YY4\ngrvvxhN9MeCdbnpqfg4RRb3wkeQQy+M0337tOpzs9kCPjhFdcil6dJmhzmGEIWJuzqT6nWwm5haL\nZQArt7BYLBtOqyW6ycmLXM5WbAe3+PXk6ywNXqIOMqpmBtzRkv0cr248Hi4R43IWudFjalJCKtUN\nA9GFAkF+lCPZ5xHkR9G5PNr1zOKl0J5nAkQ8D+25PZH3sejolHWiRclk0Nmc2Wd/CEkuNxg+MlZG\nZTJGp9xqreh01jOYZMPwPHQut6piV1ZnyN7yGeNKYrFYTmpskWyxWNYNYwUXk8+bgjKb1ZTLinZb\nEASCKBoc1AtDBorn/iJ3OYJYUlNZctEcKla0cXm+eoyoFdNud+fvaDYFlTmPR+d2UWuuQJwMJhq6\nP2zE99klprku/QXy+EaXvGi4j2gdI42FGNAQV8Qkn2y+g4qYNM8NG9zrDxNZKUmRPCx4JJUaXmwr\nDc0mYqbStYmTR6aWLGLBRHevZzDJYuxAn8Vi2QzsXxiLxbJm+m3orriip6ctleCmmwIefFDy6KMZ\nRkc1jYagUDC1mO/DE08I8nk94HrWbkO7LYYWyw3yHOQSnsvTHGAvX+P1nMEhmuSWvH9GTvLZzI1c\nmW0Cy7eUdS4LExOIZw8j+x0dmk1TDEcpRNBENHxEeqnjg87metOGa2GxJjmOjYwijqmpDD+IXsGl\nzkGKNE5ck3w8ogh56BCi3epaxgFmWDEI4JYQ2WyS+/hHh3ZgVXmcxk3vX59jWYZkoG/N+HWcp58C\nawFnsViGYItki8WyZqpVwW23eVx7bcju3YPFWqkEo6OmOXnuuTE/+YmL5+muk0V/8zQhqTeFGF77\neYRcyIM8yEVUKfOb4n/yU+cCGhS69aVcTXO1NAJ/8ic0D1WI414xLaaPkvvwh4gfb6AXsgQXX0ow\nOaQz6nrmTuEYjGd93nXxvYxllrFVG6JJ7oaIaB9fC+6MruBF+ieU1NyJaZJXglKIKDLWcZkM2uvc\nvYTmG6QmJlG5ZdIHm41tYR23YlJp4vI4pNJbfSQWi2UbYotki2WHk1jEjY6eXA4Y/eEi/TRkgYP6\npbxM348jFFrTdbsQDBbGShkDh7mVOLSNjKCVi4p6haYEyGTAC0wVn82h88MLUXGcItlzFLvy/vJv\nSDTJ6XQ3TETHeXQjhc7ljcNF+F3yThvtpLphItrzqOkCP4gu4iLdYN2y44To2cUlxLGxiVsmoU4A\nrFCzvC3wPMjn13cAzw72WSwnDdtKk/z5z3+eV7/61Vx44YVcc801PPjgg8d8f61W4+abb+YVr3gF\nF154Ib/+67/OXXfdtUlHa7FsDxKLuFPx/2NXh4xTQWpTuJb1DHvV/ZR1b6gqjgVxvIagFSFM4TqE\nWpDirqeeTy04cQu6xftaEiIijH646LXY795tLOgWaZLrosgd+krqKnf8fewgVjv8tx20ynawz2I5\nedg2neRvfOMbfPjDH+aDH/wgL3nJS7jtttu4/vrr+eY3v0m5XF7y/jAMue6665icnOTjH/84u3bt\n4tChQxSL1hvTYjnZSbrLY1R5G59DYvTLjo7I4ePoqOtwISXMzsKRI6ZQzmY1pdIqdpbJwNnPYWK+\nhisHu8h+kOY7T7+Ac8oVVrPJ1RJqh6NqnLKu4x1DW32ysdoI7HXTKlssFgvbqEi+9dZbedOb3sTr\nXvc6AG6++WbuuOMOvvSlL/Gud71ryfv//u//nlqtxt/93d/hdMSMp59++qYes8ViWR3ttui6WoB5\nHJafkXw9TI+sNXRG1bqFk9bG1UKheR5P8mNe1HHSEAgBn/+8x7e/bd5bLituuilYVaE8yVFuKN9D\nqC6Aep8e15dmmM33AR8RhV3t7nq6XlTVKF9tXMN79F9ymjpinhzmnReGPY/lMDCx2XHnA8P10Csv\npt1ChH0abd83w47TRwF6LhhDVtXZLLo0sv7HtBr8OvKpX9jBPYvFMpRtUSSHYcjDDz/Me97znu5z\nQgj27dvHwYMHh67zb//2b1x88cXcfPPNfPvb36ZcLnPVVVfxrne9C3k8r1CLxbKpZDKabFYTBMYK\nDkwh3G6b2i2RsSa/uosC545JQIoH2EudAgXqPJ8nu57GiSKhUNCMjWmaTUG1Kmk2BaXS8XuTOptF\nlceRzz6DaDWR83MQtLuvy4U2cqaCrEz//+y9eXxkZZn3/b3PUnuSSqXS6UZWlR0BZVOaTdRHB1lE\nEEcBGxQEe2bwmWFEZ0TnQXhdeNUXfR11WGRxQ3AZfMRlHjdQoNkXWQWGhu4GulOpbLWf5X7+uGtN\nqpKqpLJ0+v5+PvkkqTqn6j6VpHKd6/yu3w/DHlMFc90BKNeLLulgymcCwnCmhYkI6YKUGKNpzMJY\ndQ0iXwCzvCa/S4N9FYoF7HvuQuRqQ3oVB4zIVV8By8IYTc/qgrGUhbLI5TA3vYTI5WbfuIyfGCB/\n7vlKc7xUaN2zRrMoLIsieXR0FM/zSCaTDbcPDAzwwgsvNN1n06ZNbNiwgZNPPplrrrmGjRs3ctll\nl+F5HuvXr1+MZWs0mik4DgwPKyu4+v/dPT3wlrd4HHOMx3e/C/G4JBqFkREYH1fd3p12qtnAZbOQ\nzarbp4TPISVM0MNv+B+M08sIA9zFUWREDxGZY5IYfrl3WSmSw2GIxQAkhUL7+mTZ28dL53yKn38/\nz/sT19LzoRORg6uq9+efHsX/Uor8h88jN+AQueor+PG4GgYDsOyWeuZ2SBppPha7iYIMqAOxLKRh\nq7OJusG9qCxwnPsnIgMhvJ7VTHoRHpp4PYcV/g89tirqhefOHjbSAcJxVYFsWSrYBGoOGPE4RKL4\nq4aa71zngrHk3eROsW3k4OCSLsFIjxC68TsU1n0Yf2j1kq5Fo1nJLIsiuRVSSkQLDyff90kmk1x+\n+eUIIdhvv/3Ytm0b1113XUdFsmEIDKPzoR7TNBo+7wjoY94xmMsxm6b6O5qcNLj5ZotzznFZvbrW\nqe3thXe8w2fNGohEVMEai6m6b2BAMjkpqjkWoDrLMzU9c8TYwJH0MM5jHESeEFJCligPcCg5okgJ\n/XKE1/r/Ta+zK4aRqM67maaBZdXWN9Mxy544aT+Cu/PuGDu/BpmsFUhG2obAJMaqVRiDHiISRlQO\nrsyM7y6GOhGQla2mbGwLl1XmCK945cK8PkxE+iAEQgh6RI7jzD/hhfdFBmNkS3HuzB/BfmIDPWZZ\nDiF9BJXnqz2Zeoute+K691yBqH1f/mwIgTREbe2BAKLygxMCPA+jnBg443EXC5imgWG1/j0TpoFh\niGnbidQwgf/8KaX3vLfh5zEbU3/ORsBGRKOYARsxwzo6odWau0knz6Hfw1Y+O9rxLibLokju7+/H\nNE1SUyaY0+k0AwMDTfdZtWoVtm03FNGvfe1rSaVSuK6L1aaxfyIRbVmIt0Nvb3jO+26v6GPeMejk\nmGMxuPhiKBQChMMQjwfo76/d39+vurnXXKM6waGQ+t51lSeyYajPlYZkIFDzSp5JerEzm7mQb/My\nO/GUiBOVOQ7lQZ5kP7L0YOMRkTn8ksB1A9XEv2LRrko8IhGq+uRmx1woQGggQuSCC4ivmXJfbwbb\nNunrDROP+xC0wXfALU57nMlSkAe37swhQ5vpCZTvd4uq2MUHs1zBG0J9XYcpBYYQGEKd2GMI8GvF\nqyh/tiwTbBPbNzANgWGozwAY5YKqcqZQPkewrClphL6hHh+htrfN2u2WiRWyIRwA1wbLhJm2aYVr\nQ9AmGI9AfwvPZYBCBMIBwlO3K0xAdoJILDjz/i2o/pxX9cNr1tC3qn9Oj9PRmrvJHJ5Dv4etfHa0\n410MlkWRbNs2+++/P/fccw9ve9vbANVFvueeezj77LOb7vOmN72JX/ziFw23vfDCCwwODrZdIAOk\n09k5d5J7e8NMTOQbwgdWMvqY9THPhG3DyIggn7cYG3MJhRo1v6mUYMsWVZwWChLLUgUYxWG5AAAg\nAElEQVSo65r4vsB1ZVUN4LoARtMwkPqAERuHAUawcNSVJzxiTGLiIaXEc3125QWeeHwvci95uK4a\nHvxf/8snHFYPMjAg+eQnPXbZpfkxj421PqbxiTyO4zE+kSfUHyAc60OMpGBsYtq6Ryai/O7Jfdh9\nvxSB3rJfcj6Plcsjy37EhgTpS5iyBs+XOL5QDhdeWjlcyHL/WUokAiElnushHQ/H9fF8ie+rzwDC\n9/FdH8P3kcJASIkBuK7XOCDp+pi+Gov0XR9peNXbhevhFhykVYKCg+16SNeHVtu0ouBgFB3yYzlk\nKAsT4w3a5urPengbweE0xWc3IsdyTW/3S1KFwbTB1N9t45UUkWefJ/dKCj/ZncFvMZYjmC9RrBzb\nAtDJc+j3sJV/zDva8XaL/jZOMOddJLuuy8aNG5FSsscee3RUoNZzzjnn8KlPfYoDDjigagFXKBR4\n73vfC8All1zC6tWr+ad/+icAPvCBD/C9732PK664grPOOouNGzdy9dVXs27duo6e1/clvj/3EAbP\n83HdHeuXUh/zjsFcjtnzBL4vy/vKafdJKZFSlP/uqrNnAOX7attL2UFiXpkMMf7IcWTKkRoCyWuN\njTwf9PFDsuqm0dfnE4moQb5USpDJyJbHPNMxCXwGwhkEPm6kh8w/fqJl2lyurF/OnXsemX1Um10M\nb6vpmEslQls2tzy2nAxzo3smFxv/P2sYrr1OddsokwuJLL+QU9/ZJOo1npRRHnLewGHeJCGjVN2+\n+iAN25eL7PJnX0qkLxG+rD4fLbZpRWVfz/OR6VEiX7myua+w42CMpgl+7f9rHFDL57GefxY2b8Z/\nzc4dDwBWfs6m56uTKc/H69bfd18/7rrzkH1xWKD3DMPzq7+Tvuu3Ncin38NWPjva8S4G8yqSH3/8\ncS666CJefvllANasWcPXvvY1DjzwwI4f64QTTmB0dJSvf/3rpFIp9t13X6699tqqR/Krr75atXoD\nWL16Nd/5znf4whe+wCmnnMLQ0BDr1q1rahen0WhWJmkS3M9hpFHvExl6uIPjgPLQXnk7267pncuh\nceXZujYG+dJprIc3w0k7w1B/w13JhMcFb9xAIbEfPmrQr1WxJodNpD2BHEjiDykdrQFKdxKJTq9o\n26FaoE6xgHNK6kB9v6ZX8Tx1v++RkWHuKB3Jvt6dhOwZOr6LgMjnMdIj+KEQhKeHoTQd/gtkkaEw\nfjDYMAAoUimCt/2U4invRU4ZBF80lmCwTw/yaTQLw7yK5Msuu4wPfOADnHnmmeRyOb7whS/w2c9+\nlv/8z/+c0+OdeeaZnHnmmU3vu+mmm6bddtBBB3HzzTfP6bk0Gs3Skc8LQJLN1jyS61OdK1+38kmu\nUCTIqwxRZLqDhJTgI5h5cm52hOeSH3e4+ScRzrxQkEwufvx30kizLnwLPy6+o3ZjuUBWcdgCpI8x\nkoLJAH3+JMe5v6WnMIJwlUxB+D7GyAgiX0CQVy9yJ157C004MvOwXx0CNTBIKNxgyddx+IhpISOR\nJU3o02g0y5e2RiG/8IUvkMlMN1t/6aWXOPvss4lEIiSTSU499VQ2bdrU9UVqNJqVgWVJ4nGfQkEw\nOmowPm7gOKqKzecFIyOCbFZQLIpqyMhM5IjyEIegfBimX2bMEqUkZ/eRnZyEV16BV18VbN3a+DEy\nIiiWDLa8Yk67f1vaIhftQgxyPge5HPh1ySp1H7ZfJEkKU/Wry8N+qMhs20baFpgm/kASb2g1kTU9\nHL3zc8QiLjISVR+hEP7AADIcQobCqr1umjMua8WTSOC+8RBokuraCpGZxL7rT4jM5AIuTKPRLAfa\nemcfHx/nXe96F//4j//IaaedVr39jW98I5dccgmnnXYa+Xyeq6++mkMPPXTBFqvRaLZvgkG48EKH\nSnr88LDgqqsCxOOq7/fkkyb77eeRy6n7DEP5KFeoH9oDiJDlaO7gaO7k21zIMI2X5qNkCYiZk+9K\nJfjWt2ykVK4XU7vXkUmLRHoTGx4+kPRVyr2jxs4kEn/PxYHSnGKpq2El6RGYnFDex55XTeub9CI8\nWDyAQ4KPI3wXkAgpEX6tSEYYONJijB56rDBWoM5VwjBrhbD0VWFsmCCNzgXfi83UNL96slkV3JLL\ngVOqpvqJ4W2IbEa9lgskOxDZLPZdf8J7/Z7IWM+CPMdsdD3QRIeTaDRNaatI/uIXv8hjjz3GFVdc\nwQ9/+EM++9nPcuCBB3LFFVdw+eWXc8kllwBwxBFHcOmlly7ogjUazfIlkZCce65TLXorOI5yvvB9\nFSwyNKTuT6dh82aD/n6XcBhsWxKJqKEuo96tTNaCQaBWKJv49DIJiHKXtYYQqtN8p3EcOSPWUnXh\neTA6KlizBqLR6YO8vQGP/RMvcQ+Svj6/mhMCdJzgNxXZ20fu4kuULvfpJ7GffBy/pxeiSps7nu3l\nj5veyuuHyn51hQB+NIYfKKpEvckJEIKUHOBq71w+4t7BauoGB1tokpHlqUnHAaPUeObhlMom1Ysv\nK6nSJM2vAc9DFPIExscQrqsS/sLh2kBfNkfus5dtf0El7dJl3bPWNGs0zWn7GuGBBx7ILbfcwo9/\n/GPWr1/PUUcdxSc+8Qm+9rWvLeT6NBrNdkAmA48+anLQQR6Dg9OLq3Ra8NOfWhx8sE80Wrvf80Q1\nmnoupEhyA+dwBrc2X5fo4U7jOPYxfaKzFH2RiPJmnrqWKBAhz+6jjzJo7IkRq/dubz/BzzIhGcky\n1Za4MuwnhreVzaItpK26wdK2QRjVRDupklDqZBIzPLevCsmKr940TbLrwvAwhlXzpx/2EtyaPYH3\nF79H0kipwnoJGotN0/ymIGMxhFOCQqGa8Ecgi7QsjLHR9tL8xscx//oMjI8vWOdZo9Fsv3Qcz3L6\n6afz61//mr6+Pt797nfzne98B9dtcUlMo9FoygQCcNhhHm3OZrWFi80IyWoM9UIh8LHdPIY/90G3\ngUHB+W9/joHBRZI5GCYyFG6qSY6GPY4N30tsKIq/eg3e0Gq8odUUB9ewLbQrTjCqtDFLrFmWFVuS\nVh92QMkDolE19BeNgtVBVd/Xh7fX3tC3QjvOGo1mXrTdSX7hhRfYsGEDpVKJAw88kH/5l3/hjDPO\n4POf/zy33HILn/70pzn66KMXcq0ajWaZEovB2rVL75Rg4dDPKKP04y1FC3QGZDJJ4SMfnX1D11V6\nW1DOFdJHOA5Ja4z1weuIywx45QE/WR7ia9UkN4ymmuQeo8Bx5gaM8OtwjECd3CKgtq9oXZYjrltr\n9zslJRnJZhESyGbV94VCVadcjzANMJIsZI6WyExiPfoI7kEHL5lmWaPRdIe23il+9rOfcemll7Lb\nbrsRCoW48sor+cAHPsCll17Kddddx29/+1s+97nP8brXvY5Pf/rT7LLLLgu9bo1Gs4JQkgVJqaTq\nnFyuVgfVwkYaP1fwMJgkhodBP2nO5rt8l7MZlkNNt29FsagSAKfKLZxSjOfjb8Ldaqp11Rn9jIzA\n008bvPQSDDWx8+0EGQohA0GE60JBaXFFMYjwfUQ+T9Ddxip/HDwLMJUuV/ogjXKIh1i+hW23cF2M\nzZvKtndKQoLnEthwN9KywfMwshmMsdGaTrkOIYDXrIF/+CeILEwBuxSDfXqQT6NZGNoqkr/+9a/z\n8Y9/nI9+VHVB7rnnHj784Q+zfv16EokEb3/72znmmGO49tprOf3007n33nsXdNEajWZlEApJwmFJ\nsahs3woFwfi4US5WBZ7XWOE2K3hzRHmQQ8mhJurqv5aSarLfTDgObNgAhYLZ5Dn6iRcP59D8b3jg\nkf0YC9beNgsFGBkxuOGGAHvvXaR3LhYXFXp6cfc/AL+np5J0QmnYwr8rTnrvQ3nm2X05JHE/sV6h\npAalEubmzUjLwvdikLPBVEWy45uMOv0k5ebp/fRKzKH0lbWHURd7WB9CQvn+yutRuW8p8VVXvdIh\nl56HQKoTjLKO2w8GEPU65TqMQh5SKaV3XqAieUnQg3wazYLQVpFcKpXYbbfdqt/vsssuSCkplWpJ\nTYFAgPXr1zdYxGk0Gs1M9PTAW97iceqpLqYp+c1vbN75Todt2wyefNIEVHS0lEoFUHG6qK/VImQ5\nhAd4kn0Bql9niSFEe8oBz4N8XjXNLGt6JR6zfPbPbeTpqE/RrottlmAYkvFxMWeHiwYCAYhEkdGy\ncDujisGcGeeO/AHsFXqGqF1UWlwJsiqnMBss3VJunGuHT+QCuYU1jNYe3/fVMB8CgYStWzFE7cUx\nPR+RyyKcIkIUMIaHa3INzwPXZXgiyE/++mZO23kDO83vaOeOOcXarqJPrlCOVay+jmWkISA7Uf1e\npNNYDz+IOOk9bQ/uSdPCH+iCN7ZGo1n2tPVX/sEPfpDPfOYz3HfffQSDQf7rv/6L4447jtWrp7+p\nDM33mqNGo9mh8Dz47W8tzjrL4X/+z1L5NollAciq9Vu9HVx9Z3hUJvguH2KUfpKk6CGDiV/drxM7\nYNtufnU5gKrJAnXx1gDh3AirihuJlXYDujiRWMa0pHLEaFK4zwnDUEEiQiX0iaEhfMNCljvJnjOA\n9KLIQhBphPAHB6sdWuGUEKUSrhkklYvi+itA2uG5iFwOvPaHz9vWli8gWves0SwObRXJf/d3f8dB\nBx3E3XffTalU4h/+4R848cQTF3ptGo1mhRONSg45xOPRR805X8l3sRlmVdP7LOkwKEexZB8LMaxl\n4hL2c5iyiw4/+VzV2G1VEM4/fpJXhi2lQfZcZXsGKkTD95GeR5JhPha+nl6rD5jFkaLSWpdl2YZh\ntR7ca9ah3d6oDyUpJxuK4W0Yno8YSanifySFsfXVprvLcHjZ+S13W/fcdU2zRrNCaPu/xlFHHcVR\nRx21kGvRaDQrlERCctZZTjW/otKtjcXg8MN9nnpq5sJOysbBvVbDePVDfFJCP2k+5F7Pve7Z5Jm7\ntjJvxnio91jyZve7xRUa0vcKhYb7jMkQwnEQ7iQiUIJgORjEcxFIAqbPYGAc3+qbVwRIzMxxTM+D\nxHKTql0/VZPsOKrIrKbdOTQYPy8H3XI9U0JJhOeC6xD+6v+LHwrDxARGKkX4O9fSSlDuJwbIXXzJ\nsiuUu0q7mmY90KfZwdCiKo1Gs+DYtmpQ3nijzbp1TjVxrx0qBXE7gSNTh/iyRNnAEfj+/LyJc2YP\nD/cdO6/HSKUEt91mccopLsnk9OOvT9+bSv7pUbxNLyGzvZQO3hUGByGbVa4OoVC5I2wi2/Q1dqTF\nmN/LgG82uOX3mHmOjd6PVUohpJymSRaug/3XpzHSb8B2nsYYTUPGnqZbxpk5CnyxmBZK4jhgGvjx\nfvxwBHwlcPdjPdCfmP4A+RxGeqS9YJIdAD3Qp9nR0EWyRqNZ1lR0yK00yfVIoEig2vyMkuXN3Mu9\nxl5zfv56W96pGI5aT6kIw8PTC/FwWFYblN5wmvHfbsY7cmdI9jdffzl9b9rtwyZFY5h7nEM51nKJ\nRWMICdKylWa4XhLRBik/wTX5s7nQvYOkNT7loEwIhpDI6ZrkQgFnr33wX1iNs/s++PkXkOFQ9fkr\numVsm+FclJ8+8wbeu/dfGIxkO1pft6mGkggBQqqhvkgUkc2qH2AopMJIpiBgWld/1ufSg30azYpB\n/xVrNJpli+c17wDXD+PVSy9yxNjAkdVtTHzCorMipx7XhVc3uURLY4yJflzReIk54Qj29TZy/wt7\nc9VVgam2vCQSPhdfXKK3V13qF7mcuuTfIdK0KNkR7im8kUOcxxZgRHAKhgHI5prkSAQZCKgcb9tW\n9wem65Y93yCVi+KthAG/DliKwT49yKfRLAw71ruXRqPZLgiFJIGAbOjgVrTIVZvfGbTJ3cL3obc0\nwocL32LITFXdLyofAUvyOnMjoaBPPC7p7/erH6GQJJ02yOfnH0NtDiboPWQPVbsWC4hMRqXMuU61\ne9vwUdYGi7KcgHnEaa8IPFfpq0t1CX2ZjNJVe57SWWcy0z7IZtU+y5zKIJ/IdqdjXxnk8xMDXXk8\njWZ7RXeSNRrNsqOnB/bf36dUkoyNCRxHYFmqwel56gp4RX5RmRObavXWzQK6Ykc8VfJb8W62LJX/\nEW3IrpDlJMH5k0xKPnDKODf/0sUolTBGJyCfr8ZXUyohCnll72aaDMpX+VjsJgZSWxGuMpmWloqk\nni8xu8jRu/w3MbuoXnynroisi4lGZtX6slkEmcYHWczi0/MwXh5WyYW+D9LH3nA3vmmpE45cFvuR\nByEYmrarcB0QAjE52baP8oqgy+EkGs32SltF8hNPPNHRg+6///5zWoxGo9nxiEYla9d6FApw3XU2\np5yi5AiBgArqqBTDUz2PO/VAXgiyIsZd9rHkjAUXQECsB3+XXcmffxDZffoRw9uIXPUVlSwH2E8+\njrPfAdVKPZ7NYm5I49UP9nXBeaInUOSYXV9AjGaUE4dlTR/ue/JxLDmCsfV1WDyOFRhpeAxRKkGx\noBJcpmpUuo3vq6hvy1LhK76HDIaUTtkykbkcMhptruvOSYx8rhoTDiBSKYK3/ZTiKe9FJpMLu/YW\naN1zF9GOHZoZaOsv7LTTTkO08d9ISokQgqeeemreC9NoNCsfx4F8XnD44R7ptGBkRLTlIDbVEq7V\nNhVLuKJjVK+0d9OhLGv0cJd9HElDAt2XNIz8Nc3tVz7Huy95PQDSNJEDSfyhQaWVC4chEmWyFOSx\n3BEcaAWJRdU/+qaDfd08eNvGTwwgg4HGwb1CAWe/A3DlGnxW4+53AG50onHfbBYjM7nwBXI9lUJe\nUNZa27Xbp+qqKzglmGI2IjwXYySF8Nx52e3Nh27rnndkTbN27NDMRFtF8k033bTQ69BoNDsg6bSo\n2sK1S70lXKsBvgrDDPJt8TGiEyGsgjFnhzJDevR7KdJGctrwXj3FYu2xs1nVKK24XqRHlGxkZEQg\nt87shFHBK3mMDEu8koc0LWQk0rR7mHGC3DmxH691nidGG155LXB8k1Gnn0FpYYs2XqRmBWY5EhoZ\nVQN+0Sgy1rgmAcoSZBaGnTg/Tr+L0wd+z6A91tnB1OP7tRME3yv7P8uar7PTQvrhOO15D27ndDuc\nRKNZKbRVJB9++OELvQ6NRrPCSSQk557rEI/Pr/9WKYwrMoxKDdNMkyyFQcGMsvOATyTi4zhQKomO\nr6qGZY735W7k6p6L2WauabpNsQj332+Sy6mFuK56rorrRWTSYrfURm64fi9yPcFp+9c7YTQlkcB9\n4xAkHFigHmbKjXPt8IlcKDezRjRPoFtMXExSThxXzkNL7XnKe7pq5SYxNm9CGIb65XFdzGKx7OjR\niHBd8D01xKfRyXyaHQ4taNJoNIuCbcPgYHeKu3qNcqU4bqYIq9xfscmFhQuEc13I5QSWJankVgDE\n45JIRBKMhukxd6F3MEww0NidzOdF1Qmjt7f5a2SaMDAgpw0Pqqhlq86loWwxV3a/wGlMxBO+T1Ko\nGOsBKwEsjLA7GlADftHA7B1jqgN+ZbJZ9QJKp67TW1KffQ+8ckHrebN3eqUE6auhRSHU+UW9jjo4\n/YSluqvvIRxP6ac1eqBPs8MxpyL5tttu4+abb2bjxo0Ui9PfAB966KF5L0yj0WiKRdHS8m2h7d/m\nytSCvOZ60cMriWOxgemN7NmdMJJJyUc+UpNA1MdYG5PKicGYnMCwCuA4GK++gqh0TytnBuUo64Ap\nWRUax7ATOAv0OvYEShyz6wuzb5jPY/71GcxQSMkzUIN9xmga0wgj8hlMhjHNbeWucAHMEghDFb8V\nKcVsVweEUN1iKZtblTTdp3OX1KUY7NODfPPE8xAjI5AY0MN7mgY6/ou67bbbuPTSSzn11FN5+OGH\nOe200/B9n9///vf09vZyyimnLMQ6NRrNDkQ4LEkkfEZHDXxfNPVIrmiSZyqWu+F+MSKS/Ci8jlNK\nt87/weaIGBsjdN3PGgqv+hjr/NOjeF9KkT//0KrzRfiG6/BjPfirV9e86eqjrMNhDMsCZ4k9lMNh\nvL32VtHQdeu0JybwrAHkWAxvcBDPNsApYRYLYJWjsD1PhbO0Gce9GCzFYJ8e5JsfIp8n9KPvk19/\nkR7e0zTQcZF8/fXXs379ej760Y9yyy238MEPfpD999+fTCbDRz7yEaKNRqEajUbTMb29cPHFJf74\nR5MNG0xMUwW8lesipFQuGLatrtS3soPrxsyVK2xGjSQ+S1eIpdPw69++nncfKUnUNScrMdZ+Oojf\n5+KvWo0/1E82K7hv7CAOsQpEI1FkVFnU1TteiDl2HR3PIJ2NkvByszZv26Y64FdeJ6gfbqUYrh8O\nNMzGTrBcgMG6ytmYrzrVYjSNsVVptMXwNkQ2gxje1jyNa3Ki2a3bFXqQT6NRdPwu+eKLL/KmN70J\n0zQxTZNMeaAhFotx/vnn8/nPf55zzz236wvVaDQrE8+DkRHBmjU+a9d6RKOq/9bbC319qiA2DNlQ\nF7XjkVwv0VADe+pzNetCzj/TwpIOPf4olowz1wDTYnG6E0aFqiNG2uCV8RhbtwmcRG2bqiPGlKG+\nbM7gTy/vyd6Jx+h22yJViHHds2/mI6//A7t2+bEb8LyWmuRJp4cHi2/kEONhev1C2a2ivF/FsWKu\n+D5iYhw8HzwX4XmEv/9d5O9+W358B2M0TeQbX2t6ad4PhtQvrkaj2e7puEiOxWKUyv9VhoaGeO65\n5zjiiCMA8DyP0dHR7q5Qo9GsaPJ5+NGPbNavL7F2bWfFzWzx1FLWivDJSVG1gHvySRPblpRKkMkI\ndtllbhfGE36KDxSu5n975wOrOt6/WIR77jGZmBANThgVzFwfATfOT34RpfBimmuusXH6a4NmFUeM\nlkN9APlcw0BcdZhPCPANcH1E+QWsxFkvSHe2ExwHIz2CKYJNNclZIbjTPYR9rEfoo4AxPNwQaFL1\n+bPm0OuWUhXIFQ2z7+P39CD7E9VN/FVDzffN5zBGR/GjkTkcdPt0W/e8I2ua/cQA+b89k9DPf7bU\nS9EsQzr+izjggAN45plnOProozn++OP593//d6SUWJbF1VdfzUEHHbQQ69RoNCuQRELyt3/r8vOf\nz/xWVCl2oSK3UB/1zhat5BaVAjISkTgOFAqC/fbziEQk2SwMDxtIuTTRfY6jHDFMUxII1JwwqvRH\n4TUHYAxvw30Wenskfr8qYOsdMYaGGof6ADBM/N4+jMLWmv1ZJcq60i2NxRB1TyecQtn2zEcGuxNj\nPSfKQSVhK8zRzjOEIzE8s6ZJliKCLAaQwQhShvAHB1VoCuVAk1JJdXnnIwqut08Jh6tSkBl3AViE\nRlG3dc/d1jRvV9g2DAw0tQCcEzrBb0XRcZF8wQUX8PLLLwNw0UUXsWXLFr7whS/geR5veMMbuPzy\ny7u+SI1Gs/2TycCjj5ocdJBHpd5Q/59ky/9PwaDENFVx67q1Yrk+UAQaC+Z6Kl7KrR0nYHxcdXRn\nIm0kuSn2McaN/s4Ouk1sW621fl0NZCFDibdsupXnhs4gGxlkNkcMaZoUPrSO7B61rmY1yjoQILDx\nBXjTwbhWEL/8gvZ6Bh8efZbEIzZ+9DXIpRyIM016Qi7H9j5evqFOk2yYynnCNEGa5QS9KYEmmq6z\now30zQWd4Ley6LhIPvjggzn44IMB6O3t5Vvf+halUolSqUSsjTNtjUazY5LNCu66y+T1r/eJxdrr\nf8ViyvqsVIJ4XNVCpRK89JIK6ggGJRMTgkCgucFBfdDafHCFzYjZuZyiHsNzCBdGyYf68c3OO0wC\nSaQwhuG77e8U68EfqvnaVqKsJ0Uff8kPckSgBysC0lc/DwtYZWSwbDHvAtnxDEYLYfpDeWxzhaXW\nFQsIp8nPIZuFQgGRzbYc7JPhMLJ3+9Qs64E+zY5Gx0Xyrbfeyjvf+U5662KhAoEAgWa59xqNRlMm\nGpUNg3ntYhgq+8G2VUiHlGAYAsOodYqhO3ZvC0k0n+LNj17LhoPOYzLWPLVvJgpegF+lDieRN2CW\nfsRMEdYAmYzkjvSB7D/2V+J+EeHX/UyahZAAuJ1leY/ko1z36OF85KD7WB2b7GjfuTLphXl48gAO\nMR6mdUTIPCkWsO+5C5HLT7tLuA6iUMDLTLYe7EsMkLv4ku22UNZodiQ6LpIvu+wyPve5z7F27VpO\nPvlk3vrWtxKunzTRaDSaJsRidDyYNxOG0T0X2orrRanUOAToODN3ox3PICdDXVtHsdh8CNF1IqRC\nO+HktxHICPzwdEeMqtMFtIywrgaQjJYL4bFxDDdbe85WISTV/SPqjGUp8X2Q5eFCz1Nfl90tMk4P\nd4wdzN6xJwhms+rQKzqdiqXbPBGOqwpky0JOLYLLJxbu6/eESBPdTD6HkR5B5PNdLZL1IN/80HHb\nmlZ0/Bdw11138Zvf/Ibbb7+df/7nfyYYDHL88cdz0kkncdRRR2Et9RuoRqNZMUQikmRSsm1brU3s\nOKqY7JYlu+vCiy8KxseV04Vp1p7L89SAnGm2GAz0otztHYHnz7+N7Xnw4IMGjjP9sTwvjlECY3KY\nLQ+ZTIYtXJcGR4yK00Vvb+sI60oASf7hl/G/NAIXHUN+5zCep4rHliEkFSwbnAXr0c6O7yEKeQQ5\nhFtC+DlEnbuF6fmIXBbDHcV+8nGQYExOICpC9soPUfowT99rWS90r6cseq94U9cjoDZE2UX0IN88\nWc5x23oQcEnpuKLt6+vjjDPO4IwzziCVSnH77bfzq1/9igsvvJC+vj7e+c538rnPfW4h1qrRaFYw\njqO6ovG4rP4viEaVJjmVaiwcfV8wP+uCGpYFu+0m2bRJdWNtu/a4qiA3sKzmmuf+UpYjvXv5nbHX\nvNfh+6ogD4Vk0/+FMaNAMOMRCkncsBpmBOWI0Vsc5o33/oTSlpOgNzktwroe2duHHCghA5MwOIhc\nHcN3VZFsADIaRYRCEGle6A1YWc4/eAMJNzPvY+4Yw0SGwkQNyTH+g0QNifRr7ikRPT8AACAASURB\nVBaeM4D0ovixfpz99gQJ9jYV/oFlgRCqUJ1D3PRiIybGEfnpkg6YHmgy9fvtWfesaWR7HQRcKUOe\n82r7JpNJ1q1bx7p16/jzn//Mv/7rv3LrrbfqIlmj0bRNIiE591yHYhGuv95m3TqHoaHFCvRV2HbN\nAWNqgWoYjQFv9UzaCW4On4tldu8ybX2D0vQder1RJsx+bLu1U0dEOvQWh1XHtFvU+yvXEQCGmIBC\nE+1yh7rlOWEY9NgFjjPvK3si17tblCc4LUu9MJJqcVz1PZ4px3yZICbGiXzlSoz0SPMNpgaa5PNY\nzz+LsWULlCU1WvfcHiulmNMsDPMqkl999VVuv/12br/9dp566qlql1mj0Wjaod4Wzp9BsuB5VDun\njtPom1ypeZrVPgtdD7nCJmWsIikk0H3bsbib4j1br+E/h86nMEOiX65g8OuRw9lpzGCgjceVpqVy\nvpvJ4ywbP96PUSg0lwaUCzQ/HFZ+xNCgXVa6ZRu6UC870mTUidNvTmIbc3x96421K3HTM51MVLav\nbLsERbXI5zHSI/ihEISbB5M0BJoEsshQGL8vDoboWPfcbU3z9oR27FgYZKwHZ+3RS72MedNxkZxO\np/nVr37F7bffziOPPEI4HOZtb3sbH//4x1m7dq3WJGs0mrapt4VrRjgsicd9PM+kUFD1S2W4bWrt\n00wzXJGhtpMT4HmdD+55Xvds5majYEQZC+5GyJguxvZ9wYQXxfXa1EYnErhvWg0DASBbvXkyK7hv\n6z7se/5h9KxubqEhhrcRuvVmise/Hb57I3483qhdtmxkMNiVIjnlxrk2/V7OG7qNNYEWXdWZcByM\nifFpmmSRy7aWXEhfdciFqP1yuR3Y7nWTcKTtEBMZCNR+Dh3qntvVNO9oA31zQQ8Briw6/k0/+uij\nMU2TY489lq9+9au89a1vJRhcwkEOjUazYunthQsvdBgbM4jHJdEoDA/D2JioSjJeeEEQjcqWM1Se\nN7shg+dBOg2W1dngnpSqfhob604dVd8xByg55eLdgQliDNu9DPo+dqnmyJHNgpnvzLjBNJXWe+rr\nks0Z/GnTa9nV7CM61HyQSemWY8iBJITDLbXLS0HMzHFsz4PEjJy6wbbxe/saNclSIiNRpGky6Ud5\n0DmQQ+zH6DHKJwueB65XLpJ9lUComz/ADjjQNxeW8xAg6EHADun4L/+KK67gHe94hw4O0Wg0i0JP\nT7kWi6giOZNRneHKgJ0QrTXD0N7VctOEREIl/HUyuFfpPsfj0wvOqWTDSe4++ALyoeapfapQF4yO\nimrnu+AbjOUFW4oGr2Dgumo9hlHrYG/YYNJXMEnmBLls04eeRjIpOe88l/7+4IKlKA+E1YBff6j5\n8NlC0GPmObbnIUQhT6lyY+UMp16TXP6FydDLHc5a9g5upMes675WtvVbRDkuFTOEmIhSSZ0xgYof\nrwz1mQYUIlCSENFygh2d7XUQcKnouEg+9dRTF2IdGo1mB6Q+YCSbXdpixDQ7H9yrv382fNMmG22d\n2lfpSgeDtTVYnnrskOmwk9jGeKAfV6g7KxKPUAiMksT3oVgqywnmqDGdLYSkE2zTZ1W0zapdMzsz\nhJjgKWs8+74NCOkjSiUiV30FwmFV4wdtwrE+Mv/4CT3M14xSEev+e3GOO17rkjUNtPVOeMUVV/Dh\nD3+YnXbaiSuuuGLW7S+99NJ5L0yj0ax86gNGsk3qKceBkRHRICWwbQiFJCMjgt7e5e9U0Cn1RbeJ\namQOiDTvzN/G92MfZZtZS+uTUhX2U7vYc/bNbRFCMiMtXDBm22c5kPEjbHR3JuNH5mubvODMGGIC\nNe2yo3rofjwOkSjCEOA7iJFU28N8O9ognyg52Pffi3vYEbpI1jTQVpH8+9//ntNPP52ddtqJ3//+\n9zNuK4TQRbJGo+kK6bTgRz+yKRaVNhiUP3AgoII/HEdWh/iaDc91IWBtuyBvRBmzdscPKSeEVNrk\n9offzLtPMkkMzbJzh0xmBfe9tAf7ehFCiQFlUzaTC0Z/omU8swyHW3oBz4QjLUa9BP0yTaCdCcEW\n7hZZN8iL7mvIukGouGcsA3eLmWgZYlJPXaCJMAS4RRibaPs5uh1Oopk7ehBwaWm7SG72tUaj0cyX\nig3cfvt5nHuuQzze+G/ZsiTxuKRQMCgUBPm8SpqrJM75fq1Ga+ZiYVnzi7Bux93CdSGXU53vSlfX\ncbrveuH7NaO5yolBqQQ5P8ZWo49UIc/WrT7pbYJXxmNs3SZwEk1iq+dB/XBf7uJLZgy8CN16M4X3\n/S1ycLrMpBJ4MZciOeUnuDr/IT4avomd2DLzxr4Pvo9wnGnuFsLNKalCLocolcNRlpO7RTcplao6\n5anMFk4CKzegRJoWfn8CY3xsqZfSnOU+CNiKFTIg2LHwbOPGjey+++4LsBSNRrMjUm8D1yxEJBhU\nDhc95augw8OCL34xwKuvGuyyi8fEhMCyYKedmjtcGMb0eOZ2qRTghiFmdbf4619NRkdFOdq6bJLg\nNrpVdEraSHJT7GMEZAEpYXISxqSoPreUsHkzeJ7AceDmm21+9zuwR22KLwquucbG6VfuQ/Wx1fOh\nXrcse/taFk5VF4zBVUs7IGQYYBjIJu4WEQd2k68QiYK0y3KFlehuUSxiPvF4Vac8jVnCSYAVG1Ai\nk0mKHzyL0I3fWeqlrChWyoBgx3/573rXu9h///056aST+Ju/+RuGhrp8LU+j0Wim0NNDQwEdCil3\ni0hE1iXRNY9zng+GoZ7LspoX2vXuFnvt5ZHPm+Voa1Ucl0piXmtyhc2IuYpV3isY0qPfG2HYGMQz\n7GqRXAmU832VXtjfLzFcyagFvT0Sv98nnxek0wb5vNJxi1SK4C9+BuecDVYtrMI0YWBglpOKueiW\n50jSGuOC1T+l35yc3wO1cLeIUWR3ewsxu9g4fblc3S3miuMgikVkKIjsTzTdpGU4STQK+VzHASU7\nKjrBb2XRcYD9N7/5TfbYYw++/vWv89a3vpWzzz6bW265hfHx8YVYn0ajWeHUO1wsR+rdLZp9GIYq\nVCOR6fHWc+1gNyMsc5zl3kiSVKU52mB/ZxhqDbGY+myate/D4cbXVnguIpWaJiNIJiUf+YhDMrkE\nP4t8DpHJIDIZZWnmOgTcPENyGwE3jyiVEE4JUdG/SB/8Rj2L45tsc/px5JT+T70mubJ/5UNO+X6Z\na5LngwyFkbHYrB9Eo9VwEhmLVVP/RDpN6Lqr1e+OpimVBD/RbBJZs93RcZF8/PHH8+Uvf5l77rmH\nL3/5y/T19XHFFVewdu1aLrzwQn7xi18sxDo1Gs0KpeJw0an1uusKstlaKp7q3M784boroCvYBVJp\nk28/9GaGRzr+F9A2k1nBnS/tweQs1n4yHMZPDGAUChijafUxPqaK4lwOY2RY6WMLeUShAJ6rinzf\nR/g+0rLBUGcjKTfOt4dPJ+XWDTnVaZKF44DrInJZRCZDOhPggfwBpDOBaoEucqpAVx/uytEkd4O6\ngT7N9kllENBPtBNgr5mz0CoYDHLCCSdwwgknkMlk+M1vfsPXvvY17rjjDk488cRurlGj0WiqVKKq\nn3/eIJs18DzlelEoCEolpSEOhVp3ccNhiWWtnO5gM0qBCOne3UgEIjTzQXA9SOWiuO48/gnMQnXA\nL2cwPUi7huydPgAohrcRueor+IEA9sb/xtnvAHXZP5slsOFuPHMn/LE43uAu+KEe5Ewt+xk0yU6p\nl6zTgxPuRQZWsCa5FW2Ek4jy9+TzykauPNAnVtAg3w4Vt71cBgG3k8G+ef9G/OUvf+GXv/wlv/zl\nL9m2bRt77LFHN9al0Wg0TQmH4ZxzHI46yicUkmzaZBAMwmGHqUvvTz6pnDKiLSozy5IEg4u44C6Q\nNpL8KLyO/1H8ccPt9fZ3vq8cNjIZyJZibA33MVDyiGaqNQ7Dw6qrmx4RTZ03lsofd+oAoAHqBx0I\nIu1ANfpaSJCWrbrHpom0AzMXyBVaaJKjVpHdrC1ErRWuSW5Gm+EkmKbqqpdKcE0Ba8smjC1b8F+z\n84oZ5NNx24vP9jLYN6ci+bnnnuMXv/gFv/rVr3jxxRfZaaedOPHEEznxxBPZd999u71GjUazg5JI\nyGm2cOm04Je/tFm3zmF4WDlbVIb4oPZ1qyJ5IfG8mpuF46iPbLa1rLUiF6mz7m2KK2xGzSS+qMkj\npFT7TkwITN+hzx/lsQf7sMI2nqc66vfdZ2GaVO3yrroqQDis3C/8TYLJSQjVPU87/rhtDffR3fS+\nhSJm5Njd2kzMWB7hJotJ2+EkAI76Yfu9vciRMH4wqAf5Fgk9CLi0dPzuddJJJ/Hcc8/R39/Pu971\nLj7/+c9zyCGHLMTaNBrNDkTFL/mgg2r6ZNuGwcGZpRFCqAQ+w1ja8BDXVQW8ZTVawD35pIltNz+G\nUglGRwWGIarFcrtUZsqEgFVGinPd/+D/mOeTC6uuTEONUy7c43F1AuFkYcJpngEyG5XhvlnphgtG\nIT/tsr9wHQbNYS5M/Ih+OYEo1c4uhFOaNsw3J6YO7uXzaqCwvAZliN3kLMEpdd8ce4FpK5wE1HFF\nImqgLxSGUnHhF6epDgJ6r99TF8lLQMdF8gEHHMAnP/lJ3vKWt2B2c3Rbo9Hs0NT7Jcdi7RdVlgV7\n7+0TiahCe6mwLNX5DgZrFnCFgmC//bxql3sq2Sxln2dJLidIpzu/tC8ECCo2eK3rnXIIG9Eo5ILL\nW5NdHebbshlRyKugh1JRFaulEgF/gtXuCDIUbpBJCKeghvlCYbDsWU2qHWmSlWEcWfe/TKpBPSGo\nFsvWfz+PHBkBIJO3uGfrPhwSfpIeO934gN0wx9YsKjtaBPdisVKSAjsqkovFIqOjowSDQV0gazQa\nzRRMs7FQrS9MW2HbqsBezLfUkh1hOLo7MtK5JmUxiorKMF/26c08dfW97PvRI4jtNtB6oK9MKduL\n9+TuOAcehgyWlJvFDKT9OA+UDiLtx9mVV8oHqDz9ZN3gnvva1yF33hWA0WGLP770Ol6fyBCJNEY9\nC6ekOt/LeBBpViqOHvU4JVX453Lq+HI5cKYn+G2PqXzdjuDeoYYAZ2K+A4LLZLCvo59iMBjk/vvv\n55xzzlmg5Wg0Gk37FIuybO221CuZOxVb3kptUhnEm8qwTPIt8++ZoK9tC9/KY07VR486MV4JxtmW\nMwm8mis7hMDEsyZ33vsWjjnSZChM03S+bhcVrZC9fWQiJe4c3p9dIquIDA22HOir7RRVtweCQGnu\nTz51cC8crml0s2WT6lZt++1MbtGA62Js3jTt5EJ5U7sEHnkIHIfA+BjCdacl+K3UVL5O0EOA3WG5\nDPZ1fKqzdu1a7rrrLt785jcvxHo0Go2mbYJBQSCg/I8zGUk2q3S+7fr45/NL61zgOErHLISyr3Mc\ngZTqGKYiZYCCl0T4tYS9mQpl14XNmwWOI6rF94YNJpalHn9yUvDNb0IoZFcfwx4NUHw6xhPfDtDz\nusC8YqzbHfCbiU6H/wbCWc4/eAP9oSaODU2Iijy7mZuJiva2X/GU/aSrCTplpOchkOpnYQeU9rtQ\nwI/HoXI1QqfybRfoQcDO6LhIPu200/i3f/s3stksxx57LAMDA4gpFjn7779/1xao0Wg0rQiFJOGw\npFgUjI4KCgWQUjAxYZSLTjUY19/fOrI6HvdJpRYuVGMmbFvpmA1Dks2q4b1QqHWD0nVFrclZDo9T\n2tnGbU3fIVocZVNpAMO0McqHV4nztiz1GKtWKUs831cPUImzDgZoiLGeC20P+M1Eh8N/tumzKtp+\n0tmc3S0q1iJTz2YqsoRsFtFsuZWzuOVOJcaxHumXoyQbtUSVTr6AuU2CahYVPQjYGR0XyRdccAEA\nP/jBD/jBD37QUCBLKRFC8NRTT3VvhRqNZoegk3hqz4OREVXAveUtHqee6jZ1wRgeFtx6q8373ue0\ndMmYnIQvfWnpjJNNU2mSK4Vrs/qkQqVArtj9trLwjbspThq+hlfkBaTNNYDavhKXDeo1jMXU81Yk\nqCUnwnj/bkRj4TkbUmxPONIk608Z3JsN10Hkc5gjI5iTI433eR6pUi8/+uM+nLbqTgbtsYa7RakE\nxYIyrdYsH3I5gj/8HoWzztHDe4vEnAb7lkCn3HGRfNNNNy3EOjQazQ5OJZ66nma2cImE5JRTXH7+\nc4sTT3QJBpVN3NBQ86ouGpUz3l/ugWmAkh1jtK+PAdubl6R3wZlqDdeKbFZFWEupmjhTtClpP84D\nzpTBvVmIhX2OGXiccG8YL9SolRROiVKmh62xvSnsO44bbRzsI5vFyEw26Hg1S4/wfcRoesF19nNh\nxQ4CzmGwbyl0yh2/6ocffvhCrEOj0Wim0cwWzraV1tVYGoXEsiRFkv8w17PK6mOhe+KptMntD7+Z\nd59kkhhqvd1CuGBUrOGyL6Z4bGR/Dhwp0FPv1+s4GKNp/P6E+kXJ55XGVko1fCaESuoz5n5i1BMo\ncmzPQ8pmrpkuxrIgYCspQqzRJUKA9hdeAsTEeEPsecN9w9sgp062prp1VFhK1w49CLi0rLBTE41G\ns6ORy8EPf2hz1lkOyeRy6wMtDq6wGRarSAif4AL3wlwPUrko7iwmDgvhglGxhht+bBu/++o4a87r\nw9izpqsUw9sI3Xozhff9LXJwlbKMu+wzBCYnkMEQIhBAWOb2ISWZ2imfKcSknu0w0GQhERPjRL5y\nJUZ6pPkGjoPx6isY6TRibKxpl1+7dnTOShkQ7LhI3meffaYN6k1Fa5I1Gs1i4ftqOG++dYGKbm50\ni3Ccmi1bq+fe3nBdkCWHnvwYuYkkRqB2HJW5slxOHfvwcON7fTisHA78XXdDRiILvtZmDhmytw9/\nzzjOm238PR38OhmNAchoDDm4Cn9oteoKBkPK+9g0kaapBN2eOuCEMcahgUdJGI3a4SUnn8f86zOY\noZBKuEPpmY3RNGTsmU21daBJAyKfx0iP4IdCEG7+O+tHY9jFx/H74tNNzbVrx5xYKQOCHRfJn/rU\np6YVyePj49x9991s27aND33oQ11bnEaj2bGZbZjPtiV77+3z/PNz116Ew5L+fonnqeH8imcwqDqj\nUm8EAjSVeFQG7rqBlK19kit+ypWCtmL/Vinq24m0dl3YulUQz6d5X/5qfnXHhYwEVlX3rbwG4+MW\nriu46qpAQ2MtkfA5+2yBt0s/ROcRN90mXXHIAOXMUHlhpa/8jwHbLxEli+3XdV8rL7T0O8sJ7ybh\nMN5ee+PHempFWzaLPTGBDIeYNOI8lNuHN0WepsdsdOZYEYEmC0E4UvO6noIAdTISjU7bplPXDp3g\n1x2WS2Jfx0VyqyCRiy66iEsuuYTx8fH5rkmj0WiA5sN89TiO4JlnjFmvbs1Eby+sX++SzQaIRPyG\nCOlsFv78Z5NMRrB6tWwqQXVdiePMf/jP91UX1/dFC59kVeQK0eiTXGkY1hfQMz2H4wgMQz1GKATh\noHImqhCLVSK1IR6X1dcjnxek0waFwvIddJzMCu57aQ/2zQqilDXMvX1Kk+x54CoPYFF+oVzHJ1ey\ncS0fYZdfSM9DSB+koc4BhIClGJqaUrQJUIWvHSBDH3fmDmevnlfoCTRJ0tFyiyVjscJ25sp2Mwg4\n38S+LtHVV+nkk0/mkksu4eMf/3g3H1aj0WjmRLuBFrEYRCKqc11fJEtZs2Sz7eZey/WF6nwwDFUX\nBYPNi/FWPsn1lm7tdrQrj1EJjWvWMJ0eqS07KpDbHfCbcZ0dduWyOYM/bXotu+YMVST39lH40DkE\nN9yF39OLiEYxLAPf9ZFIhsd25/4XD2U4+WdeEy+PPJZKmJs3I8veeKJUbD6gtxR4ntIcU2r8up6p\nXs2GUPoZXThDsYBwmpxUZLOt3VKyWTUAOjkJS5j81i30IGBndLVI3rhxI/72KNLTaDQrglRKcNtt\nFqec4pJMyu5drl8kyuYLHfkkV5ro9c30MSvJrYMXMrJloCODO9N36PVGScl+YH6FYbsDfjPRla5c\nxQzattQlddtEGp7qntuWeuFsS8VZA0iQ9YlzojMtTczIcfROzxINdNnFwnHU8JllYWIhMhlMhjHN\nbY3beR7CdbCffFyl4wkBhRxicmL7zm+fL8Ui9gP3InJNXC48D1HIY9+3Ydofn3AdRKlE+D/+nexn\nLtO65C6xvQz2dVwkX3/99dNucxyH559/nl//+teceOKJXVmYRqPRNCOTgaefNjjjDAdryjtYJWRk\nR2+aeYbNqL0KVxh0okyNuynes/Uabu47nzFnJ7LZWpe53FBjZESQzYppQ30VwmE55yjrxSZhTajB\nPWti9o3LOJ7BqJsgLktNX9seM8cxr3kOGWiuf50zto2fGEAGA3gMIonhDQ7i2Y1FvHBKiEIBZ78D\nIBJFGAJ7YhQ5nGLaH8yOhOuqAtmykE0uCbXSK+OYqogeHdXDe11kLoN9S6FT7vgv5ktf+tK02wKB\nAKtXr+ZDH/oQ69ev78rCNBqNphnZrODee0322af7V61yOVGNaFbPVZv3aiWpcN3uaXQXenCvHXwf\nXn1VsNUVbNhgVusq5f4huP56pU/+xjcCTeUniYTPxReXFtQFo5WMRpoWMhJprres2Jf4Brg+Qkps\nt6AG99yCutwO4JQQvo/0vKYi71Qhxg3p93Ne6H+zJjjZ9WObEdMsx0IHal8HAkx6YR7K7MObYk/T\ny3hDZLQwBLjFmR0xdiBkRWPUCebSxW3rQcA66nXKi5S+13GR/PTTTy/EOjQajWZOBAJw8MHKASOb\nnVvBGolIkknYsgXy+VpnLp9XhaHjQDotiMWa1xrhsMSy5lelLsbgXjuoQl0N94VCSosNtedJJiWR\nSPMnqgz35fMCorEFc8FoKaNJJHDfOASJ2nPKUAgZCCJcF/I5sExEWQMi8jbCcRD5PMIoX4Z3HPBc\nhJraU9Zxy7wDm/Ei3DnxRvYKv6SKZM2KYbkPArZioQcEFyt9b3n/5Ws0Gs0U6m3hsllBIACHHaZi\nq7PZuT1mby985jPw8ssOnlcrAIeHBV/8YoBNmwxsu1KMT9/fsuS8h/cWc3CvHYRQ66lv0nge9IQc\nkiJNPtSPb07t4HQ23DfntXXSXevpxd3/APyeHoxYDCtk4xYcfCkZ/W+DF159LaN7H8rAa2tm0YEN\ndyNDIUCowb3gQucYdkbMzHFM78PEpti/aRaH2RL8RDbTMr0PljbBb7FYKQOCbRXJ6XSabdu2sc8+\n+zTc/vTTT/PNb36T559/nmQyybp16zj++OMXZKEajUYDjbZwY2O1ILL50tcHvi9x3cZ+TTgMPT0+\nvi+IRGTTIhm6s4ZuDe7NRtpIcn34YySsgY7XGCukOPLZa9hw0HlMxtZ0vH8ntHLI6Li7FghApGyn\nFg4grRLSl2TNAC/6u5A148ioat8LCdKy1dAbgLf8ht16zDzH9j3c2U6eB7kcIpNR3zdL8HNK4Hvg\nGdP31UP5QJsJfqNpIt/4WksZgE7wm53lMtjXVpH81a9+lSeeeIKf/exn1du2bNnCmWeeSaFQYO+9\n9+bZZ5/l7//+77nxxhs57LDDFmzBGo1GU898PJLbIRSCvff2ee65laPpdIVNylhFn2FgMPcpx2Kx\n8eSgMtxXGeqb74Bfpw4ZM1r+5XPKDs21oeAgfAml8hlPqYjIZKsHIVxHDWwt8O/WouG6iMkJ7L8+\ng9yyGWiR4Od5iHwBzFKjq4f0a9GTO3hGSVsJfqtm8DzUCX5tsVwS+9oqkh966CFOP/30httuuOEG\ncrkc11xzDUcddRSFQoFzzz2Xa665Zs5F8ve//32uu+46UqkU++yzD5deeikHHnjgrPvdfvvtXHzx\nxbz97W/nG9/4xpyeW6PRbH/YttIT63CxxadUgnseMMnlaoVkZbjvqqsCWJaKC59twG+mQrnT4b9m\nWmUZDuMnBlRhUixA0MYoOkgJA26GQ4OPMeBuxRgtC8Hz+doQn20jwxGwtvNfMMtC9vTi7LU3JMuD\nT3UJflTs75wSZrGgjrf+TMPzEJ6rh//qmSHBbyY6TfDrNnoQsDPaKpK3bt3Knnvu2XDbH/7wB/bd\nd1+OOuooAEKhEGeddRZXXnnlnBbyy1/+ki9+8YtcfvnlvOENb+DGG2/kvPPO49e//jWJRKLlflu2\nbOHKK6/U3WuNRjMtxnqqb/JcKRTUMN1MmudsthZhDd11vViOOI5yA7Gs2klK5dgrSX2rVjXft37A\nr7d3hp9LF4b/ZG8fuYsvQeTzmKZBMB4hP5bD83y8e54n8swmvA++n+xbXgcoTWnkqq/gx+MqScWy\nkR1okh1psS0XIx4ysM1lJFEwTYhEmib4TZp9yh0j8BfixsvNNT9yGR2LZs4sl0HA7SX5r63VCSEa\nLmmmUik2b97MunXrGrYbGhpidHR0Tgu54YYbeP/738973vMeAC677DL++Mc/8pOf/ITzzz+/6T6+\n7/OJT3yCiy66iAceeIDJyUW249FoNEtCJgOPPmqyZk3jP+6pMdbz9U0OhyWJhM+WLSqOeXzcaHCe\ncBzVLe3vl9UuauV5K/vP1/Wintks4ByH6vocp3aFHNqTlFZDSDa1r1We6qg1Pamv6ZEsary17O1D\n9vZhWAb0R5GhLL7rkwmNs9HxyYSSJMsT8gYoIXpEWah1SsqNc80TR/PhQx9hdWxx/ic1DPJ18rte\nTu3LOBZ3jh7IXvGniLfSJHue+uWSKO3yjm5G3kXmOwhITxT6Z/yDW3bMZbCvXqe8WLRVJO+xxx7c\nfffd1a7xH/7wB4QQrF27tmG74eHhGbu+rXAchyeeeIILLrigepsQgiOPPJJHHnmk5X7f+MY3GBgY\n4LTTTuOBBx7o+Hk1Gs32STYruOsukxNOWNheSG8vXHxxiZdeMrj1Vpv3vc9hcLD2nMPDono7wFVX\nBYjHa8N9liW7ZozQjgXcyIhgcrJWqOfzotoQ9H05a6FcH0IyXwzPIVwYrME/CgAAIABJREFUbeGC\nsTzIFUxeLK4h18HV72Qow4WJHxG3SsDykB80DPK1W7s2S/DzRlpqkoXvYwwPqw6zslrpzrTqDk43\nBgFJJuH/+Rwr3bCsXqe8WLT1ip599tl88pOfZGJigmQyyQ9/+EN23XVXjjzyyIbt/vznP7PXXnt1\nvIjR0VE8zyM5RR8zMDDACy+80HSfBx98kJ/+9KfcdtttHT+fRqNZOVS6xYnEwmiTe3th9WrJrrv6\nrF4tp8k2olFZLZzDYWZ0wJgPQqjAtJks4AYGlMwBVP1SLBrVMJBuW8TNRjSf4s2PXrsgLhgtXS86\n1FtKwwRTIo32u9q26bPKSiNFmOVSJM+JZgl+8QGkG2qqScZ18AcHleuHU1K6bT0MMG+6MQhojqQg\nl4PQdhJ12QUWK32vrSL55JNPZuvWrXzve99j4v+y9+7BjpTnue/zfd0tqSUtLUlrrbmAARsDhhnA\n4Nsx2Imz7VSd2I4Dpja+BF/gwBiIY2rbJGz/4V0pV+IT70qccNipfQ4GdgDbwZjYxnaCa2dvJ76U\nPRMSc3HCgPENDwyeGWlJ6yKppb59549PLbWklpa01JJaa72/qlUzS2q1uluX9fbbz/s8Gxs4ePAg\n/uiP/giqz2B9dXUV//RP/4SPfOQjoW2cECJwcr1areK2227DH//xH2NxcbzpUM4Z+AhfkB6Kwjv+\n3Q3QPu8O5mGfFUV+bhWFodFg+NKXYvj937ewb5/osxwfKHvYap/37QNuvNGBVHIy3+Pa6we8ApYN\nXYxy7hkosObjGQZpb7eygJM+y6z1u19a6sky2l+pzPd7e5+6v3K97+D280j5Hees+fysx4aOMQbu\nW677O9bbb+912dhAxwCgR6kE1GocpRLvqNmKtQUcSx/EqdoCEjXeGv5jcKGWV+HAhVB7X4Tu1zm2\nnIWeMxBb1qE2l2cKl8e5bgQXz0ZNDrFZVs/BYrbd3A4GFvS3pXnMFIVL6UcfvG1gXK7H/1gwBkuo\nKNsLyKmb0HhX67i5TZwxiK5t8G5rrU9VgFgcDHFAUcC0GJiiQPTRJLNYXL7JGAMcp3d9Q+zbNPC/\nzh3Hsnn8RnItaR1PdHzOO16bUeg6Tq3tS6WkXmw76zMbAIb7zmYKb31nTfJ1YsUCYg9/BeaVV0F4\nw6KjPD5gOztu0+OAPuDkISSG7s0fOnSorzYYkF3fH/zgB9vaiFwuB0VRUCwWO24vlUpYWurVxj3/\n/PN48cUXcfPNN0M0v/nd5nXECy+8EN/85jdxxhlnDPXc+XxqLAupTEbf9mPnFdrn3UGU91lVgbe+\nFdi/P4ZEQt6WzWrI5TqXq9dldzebjfXcF8So++xfPyAzJxIJedsw2LbcF68m8YrsIBMBIdoFstdJ\nBjqLZFVVWs09120vC8h/VbVdoHpFs6p2Ppn3OHkfOtanqoCd3Y8nLv8IbCsHVVUCl0kkFCQQg6Yp\nSCRisPXOdBTblscqm9XAOfDf/hvQ9fUPQNahq6vAnXdqHU3LWi2JZ59bwYv/AzjzTBkEs7gIoJ4E\n9Bj0bHKgRtN7nV92VgWXnflzvOysC5DzlufLwOn75QZVN3ofvL4ObG4AENJUuQt1IQ01rkFPaNC7\n9hu2BsQ1xLfYPtSTQFwDEhrgrcPWpKexylFEHncVfgc37v869mulzse6HFAVqP7HQhZQSlwNXF9O\naeAtSz9CLtYA5xybSOOH1qV4dezfsMCrcmiPN4sVTQl+jmH3bYpkMjpQbR7LuNraX2gjXAFo7iti\nKmLZZqe3+7UZhe7jFPRaj7q+mCzlhvr+GvIzMjb1DaC6gWQ6vr3nsTPAmadDX860Hz+tbfcRCQGL\npmk4ePAgDh8+jLe85S0AZBf58OHDeP/739+z/Nlnn41vfOMbHbf95V/+JWq1Gj7xiU9g//7hL+2V\nStVtd5IzGR0bG0ZHQtdOhvaZ9jlKvPKVstP40pdy/OQnCtbWbCQSnUXL2hqDYaiB9/kZtM/FIvDw\nwyquvNJG9xV8//oBoNHQUCoB9fpwWulqFajXlZbMUwgO1xWBM1FSXtH+rvKG9rxi2XUBw3BbRbNp\nApbFWsWwbQOGIWBZXudXdsVt22kt4y3nPY9ti1bBbNvyp2YBxXgWNUvAth3YNnqWqddd1GHCshzU\n6yYMtTNnu14HGg2GtTULa2vA8eMaEgm0pCJ++l1N1TQFjLk4flwmJbquAFurIW6YaKzVIBK9ViTd\nr/P6hgHLcrC+YSBR9pZXgY98DKwWPEjFnzmK1NPPwLr4EmClt0NmmHlYRxmMutWz36hb4A0LRp/t\n82BrNegNC27dArx11C1otgNhu7DgwnFcWLYLq7uTbLtgtgO7bkGoJjhniANy+YYNYfSuL8EreEPq\nh4BpwrVtrCOOf2y8FueIHyOprEkLONuCW6tD2DI/ndXrsFfXIOpNXXK1Cr5Z3XLfpoH/dXa9Ywml\ntb/oPmaDaB5P17RRW5MJhz2vzSh0vQcCX+sR16eYNmJA+/trY73v+5cVTiFeKKHxk+cg1noTG0VS\nB0Lwb97qs7glahL43Wvl/5ufzbHX2UVuiEI7EkUyAFx77bX4+Mc/jgsvvLBlAVev13HVVVcBAG67\n7Tbs27cPH/vYxxCLxXDOOed0PD6TyYAxhpe//OUjPa8cZtn+8I/juLDt6BYSk4D2eXcwD/tsGAxH\nj/Lm1V+3Jy3PcViz6Oy9L4igfW40GE6dAhqN3jQ+//p1XSCXU1rWZt34nTC8rqhhyPXHYgLxuMAo\nNmdekewf3CsWWctpondwT3ZlDcMrkgUchzWlG6JjvX75hXefd7sQojUEKLdBdDhstJYRwrds537J\nx7LWCYkQQCLhotsOud/wn9RiC8TjLkyTt17fUoHh73/4f+Dtb2fIL/d/73qv88aLmzh2jGHjxU0s\nXeC7aplckD8BKNkTEKoKN6FDJHv/yAo3Jo9JwH4zVx4rx3HhDvhscceVx9aV6/E/VggBAe81ER2v\nHQAw7+qqaD/Ww3+bf32tF9CxpU80amC2CSaqYLzSGtxjhVNgzTM6ZltQnvo3iKbHMjNNoFGHU6kO\n3Ldp4jguXP+x7N7fIWgfT3S8X/2vzSh0vweCXuvR1ycf5zgunFJ5qEHA+P/zl4Ga8rDSALnjtr4b\nw3o/TGKdWxGZIvltb3sbyuUy7rjjDhSLRVxwwQW4++67W24ZJ06cgEJG5gRBDMCyZHc3m5WFaLdv\n8iTxnDCCCmSg0wnDG/QrFFjLEcM0BV58cXiNoCetHHZwz7bl/Z5DBhD9bIhRh/9GTeirqRk8hxRq\n6jYORN1oRzz7qXJZMFarYOi63+jt3EUKrkAkdAiWhGjEIJIpCCUdPLhXr8M6cCHgnShUq+CVzeG1\nRsREGGsQkNIAe4hMkQwA11xzDa655prA++6///6Bj/3TP/3TSWwSQRBzRKnEcN99Gj74QQt794oe\n3+Sw6Y5BzmQwMBzDc8LYu7e9jOeIMUJzq0X34F63ZzHnnYN7mtY5+LfbURQgqZlQlOELO5FIQOhJ\n8EYDKJd67t/TKOLmxI+xuKmBm70nPW5+CSLkQtJyFZSdBeSUTWxD1doJ5wBXpAVcx+Sni00lix8a\nF+HVsX9DRlsFUm0vaQYAzQGyeWLT0WWQSvoZLCjBEoW5ZBuJgNNMA9xO8t8sAkgiVSQTBEHME0Ex\nyEQ4NBoAr6KVdOjvyVabt9dqsmNeKMgzhdIqg2UxVAMavEHksw5eve8F5LNnD71dm3wR/3LGB3DB\n9a9G+qzewXJWOIX8Q19E/er3wFzpjRwUuh56l65oZ3H3yStww96v4TSMX+ilWRVvih9GmnXqPiuO\nju9uXIpX5H+KnWI2VnGS+O7GpThPP7aziuSIs53kv+0EkIwLFckEQcwtqZTAa1/r4MknI64b2ALD\nYKjVRCshL2hwTw729SbtDcKfuOc47RQ+7/Gm2dtV9pYZl6q+jB9cciOMxBC2Il00GsDhwwqS6yrO\nLHMc2VBR1Np/rhxHNrzW11XYtpSs6DrgbmRRKL4M6w8s4j8fQMsaLkyqNY7vnngFzkjuQXJv7+Ae\nByBSaYiVPXCbKX7zxgKv4je0I7PeDGIO6JcWuFVSICucAmts/8qDP31PpIPnB8KAimSCIOaWdBr4\nrd9y8PrXu8hmBUqlyUQd12rAAw9oeN/7rJ4wkXHwYq9LJY7NTQbXZXAcqRsGZLHq2cT5i+NhiljX\nlYWk597TO7gHnDzp+SC3j5ssQBkYky4b282LcBUN1VRvJ3UYLEv6JmdUqS1P6AK61j7uirBwRryM\nksih0pCa7mRSoBpLoryYwcmqC8NoDJS+AABbWwM/8SuwtTyA0b1cdxtpxZDx19wYLf561pimFKxb\nlrRz8+NFbFsmgAB3CYrg7svAtMCtkgINA8qLx2G89xpgGyeT/vQ9KpIJgiD6oGnoiIqeBK4rnSnC\n/lvpH/Z75hmOo0cVLCy0E/tMU0oJvP174YW2r7LjAJubrMPz2A/n0rPZC1HpHtwTAti7l4HzTocE\nywIMwwtjCHd/R8ULfot1aa2XzCKuLN2FL+UPoaGdhlQKHVHgw1IqAf9aPge/VRq+RBaKCpFMTlUX\n2c2yuoYb930FOWUzlPW1NM1idWCG4IJSw5sWH5eDifOiMjIMKM/+GIqigJdLQKUzTVBxXBnJjQIU\n5VTv4x1Haq29M1eixVZDggOTAt0iVKMGNiUN9HahIpkgiLmlUgGefFLBK1/pbCusahgmLenwhv0K\nBdEM5mhbxAkhU/20ZhfVCxoZtnjdanAvFgse4ptmfPWo2DZgWi3DBViO1CgLIf+1LNlB93TKfmRC\nYvt3x2WoOQmMZAeez8O+dC+QtzCKZd+2MGrtHn+1CmZbgKUgBmAvDKBZt7Fmt5NZJsBGr15bmub8\nQ3hJWNseFXQdznmvgMsVaIYBoScArX3G5VhLMpJ7ZQWO1vvGZ5YJVq0CKpVLfdnOkGB1sM/xdgb7\nJgG96gRBzC3VKsP3v6/gnHNcpNOTKVjSaeB1r3Px9NPjFcndThjE6Ng28MILDLUGx5rB8CuD46Rg\nOHJEJv85zYJ5bY23dMp+GANOPx34yEeAZBLgqTiSqQZ4Kj6bHeqD0HW4+SV5GdvrtBmG7OACzTAP\nAyKhyzhpqw5mW2D1OphmQ+hJ2YYnJLEYEIvLs0Qt1nlZAjH54ey53YcS7W7nTmQ7g32TgIpkgiB2\nLN2+ybMkKk4YowzumWb7PsuavjRzTV3GV/bdhA0l19p2LzHQ66grQspKvG57PC7rSk+n7Kde5ygW\npd45mQSW9Dpeoz+FJf3gdHdsC0RmEbVbb+sYiGKFU0je/hm4zQhC7ei/S5/iVApmNQPn6EthHrgc\nZmoDUDWIeLQK/0jQ0h77GEaTbNvyw0CMRqMOZvWRqdRqgGWDrRbBT57ovX8zIBJ+BlCRTBDEjiGf\nF7juOgvZrCyOun2TdzveMJ83qDdocA8ACgUpUfBut+12wt80cJiGstY7/KcoaBfKTdmI/yTIcdCh\nU/bgXKDjKq9jg1mWTJoLic26hn9evwQH6hq2Dr3tj8gsdljFcaBpqi3XKrQYkGz6FIuU7/dopN1F\nDtuWnXlP1N9k0d3Eb1j/C4vF56DwAAmA44A1GlB+8XMZkUlhKcPRqEM7/P3+8dhmA2xzE/pf3w0s\n9NrQuPEEsDj7QBMqkgmCmFu6E/WmMcTnp1hk+NrXVFxxhR2a64VtM5hmOzXPs24Dei3dRrGDA9rD\nfIyJoQb3VlZEq0NrWYBpspl35MOktK7iXysX4P9cV4ce3NtKNlNJLOOfFq/EmQkLqUlcKDZqgCt8\nqX7AslPDh877FnJODazSVSRzJou7EbCEirKTR46vQ2M7ZGBNVWWQSzzWoUlOAvg1PAdgAQ56XRKY\nZYJVKnBedjYVyCPALFsWyKoKEfSloSoA53CXV9qpjR5GDbxchpvqHAb065SnBRXJBEHMLZNO1NsK\nxwFWV8NxvUgkBGIx6T7hdXItS3ZvazWGer09YC9Eb5HM2HADd6MM7gV1aKOM4lrIWWUURB4IdGft\nxHEZqiMO7s1KNtOhUzYMsLoBvr4GmA3ELQunlUtwc/keuy3GADiW1KEMOXxWdPP4rPEBfCj9BewP\ncnyYV7bSHvdDVUd/DAEAskDud+yal3y81EYPBgDlcs/iHTrlKaXvUZFMEMRcMy2HC3/HehIsLAAH\nD7odFnCGAfzsZxz797t45hkFsZiM2o7FpETSs4QD5N+b3T6An7WLeEfhLvzNwocASJlGo9HuxBuG\nlEIWCoDjMJTrOhzNRbnOcfJksMe2rouJhJKMil+nzAqnkGim+omVPT2/+1EUjnhjE/af/N9yeG0M\nLFdBycoiL1bHj78miDGYVvreLv9KJQhi3pmWw8U0OtaxGJBMtovkVApYXnZQqcjBNM8OTtNk99ez\nhAOGl1zsBEp8Gfenb0ZJ5AaGWnjJfbVap676L/4ihkRCAIUFaM5JfPHhvcD3gwvIfN7FrbeakSmU\nRWYR1SrDP69ehAuSe5Hau3dgyh9XOVBPbj8VxkfRzuKu0lU4lH8Ip2HI7O85YNPR8VjlfLwq/cxw\n0dQ+qcvIeJnqhKTRAOv+7qpWgXodrFrtSOzrTvGbRMR7N1QkEwRBDCBKDhmExGYaVpU9W8o/vOQ+\ntZncZ1nypCKbFdB1F9x2wZNryOVW4OZ6NReGwVAqcRgGa6X3RcG/tVrj+N7zZ+PMGh9tOLCP7/KK\nego35R9ETqyCuS4gHEB4AngHcCOusxmTipPEdzcuxXn6sa2LZC+cJJGA2IYEg5km0KiPrBPfkTgO\ntB/+C9DlgOHZGTqVzc7EPsOA+rOfgB8/DjTlR7Vbb5tooUxFMkEQxACm7ZBhGAzdIRVeSIZ/iM+z\nanMctGKmw6KfBZxl9QZ3+CUes7CJGwZPFsmY/Emlmj7JmzaqMJFO2HADpTqipQ/3iIJ/68ipf8kk\nxNIyeLEY6Lsc4yb21U9AqJp0/GA2mOvKYkXIN5xQNYDvTJPvtFKTcdtKbeuFvXCS9EKvfcowVKvg\nlU0aAgQA1wUzpN93x3CfJd9n9jnndg71xaoQCR3uYhbgDLy0Kh9PRTJBEMR8s5UThq4L5PMuSiXe\nU5hJLS3DxoZMjIvHOwtSRZHFKufjl22uK2UKQrBAC7ijRxVomoBpyqjuSqUt+ZiFTdw4NKo2frKx\nD9mqjbm6SDBq6t/iIow//M9wN9sWZ4G+yy89G7EfPQFHOQ3uWhbOyhlwYk2HAa5AODuzSF5QDLxp\n8fHhHxCLyYGzbQxBMEDGXBMtAof7Aob6GCC7997JyRQiralIJghirvEP1XUP8XX7Js+SrZwwMhng\n1lvNZie5k0KB4b//dw2PPabgkkscrKzITu6RIwoSCc+lIpw0P68IB0SPBVy9znDggINkUvoNb2ww\n6HpbhhJVmzjHkV1xzy2kWpUnA4aZxAZTsWbGoAdIbLcjH41ssmJmEW6ybXEW6LusJyFUTXaNFQVC\ni8nbPSJ4lWBcLFdB2VlATtmExnfgDs4bti0DXJqXrTr0ytVqy/oQgLwa4tMsA+HrlKlIJghirvEP\n1Z082TnEN2nf5LBdLzIZtLSv3SSTslus63KwTwj5uzfIFyaDLOD8IR2a1pYy+JeJEo4DvPgig+uy\nVtrgkSMKFIUjWeVImmt46ql9qD3X++fQtqU8Y3MT2Lt3uOdbQQEfxlfQwFUQmI5mebPK8Oixl+GC\nKhsrwGQ3UrSzuPvkFbhh79ewP7Y69vo2zRgeP3E6Lt13HAsxGtAbCdsGf+F58EYDcGzEjvxAnrB5\nOA5Y3YD26BEw4YKZJpK3f6ZDuhK2TpmKZIIgiG0yLdcLb9gsbO3xbsB1ZUCLlKPI3+Nx2SFPCRcL\nsTVsJvdA6L0nJ7WaDFaR8hd5f7Gk4O8ffz3e/g4F+YDCeRaa5Uojhu+uXogzGrHRi2R/OEmtBmZb\nWFEKzUG+DTCz/f5mXoSzbWN71g47n6oZx/eePxvn5YtUJI+K64JZFgTnYFAgEonOKxlAW+LSjBd3\ns9m2btmoha5TpiKZIAhiCzypRD4/G4eL5WWBK6+08a1vResr2z9ICPQO9/VjUi5Ya+oyHlq5CWt2\nvuc+T/7AWLtDnjBtaDCRUG2YAUYFMn2w8zbbAYq1FOwodcxH1SijTzjJ5gaYaSLmbmCfvQqR0Dsi\nnJlVl8N8tg2RSQJqxHQ1ESAVa+DXzvg5UrERdMdkKdcJ5/IkLNaZjtiBZYFtbACctwpnBoSuU47W\nNy5BEEQEMQzgwQc1/N7vmVNxuPDwD/t51OsMlYrUBA8akpuk+4W3/lKJQVV7B/e84b5+mCbQaDAY\nRrhD/g7XUNb2wHYYhhHQpu01LJkvYtXehw2cHt6GTJgwdM9B4SSNN/8m8Ln74MZi0J77OawDF3Y4\nOGQcjv+r8Twy8YthxRWI+HjhJDuRhZiJXz/zF8M/IARLOdaoy8seiQiYeU8NAebYbSueCUFFMkEQ\nRETxD/slEgK6LtBoMJTLssA0TVn9mqZsoCQS7cZff/eLcCpmTZODkVK60H5O/3BfP6pVoFLhc+mC\nJZJJuGeeBZFMzmwbworG7g4nOaDvha7rQCwuL3MnO90FVAArAIDkzOzvdhwhWMop1U2oM3w/7mSo\nSCYIYscwifjofF7gPe+x8fWvz/brcmEBuOwyB+98p42VFYFCgeH222Mt546jRxUcOOC0/s4GuV+E\nPVSnKMGDe/7hvn5M8wqx11H3/u/5P9tW+9+g7fG68R2k0nDOyAGp4aUNUcfTNJ/laU7qRstFYOhT\nKmMIj+GI4giGorWIZXVtNg4X41rKWV3Sju3KN3aidGNMqEgmCGLHMIlBOk2Tl7Y533rZQYxbwCsK\ncNppAvv2iZbPsq6j1bHVNNERaR3kfhE154lp4DhSLuP3nn7hBQbOGWwrhXOxhkcLKRxf632B7ebV\n3ErEEphDT/1raprdfatSp3z8BalRXl/r9PS1LPByCW4uHxhz7eaXIObw8kDNTeBzhbfio6d9MRSH\ni5kyhnyD0gB7oSKZIIgdS7dv8iwZt4AP6xJ7FPFbnwLBaX5Ap84akP9uJUkUQgajcC612d7Jg6IA\ny2ID78TDeFx9E04FzKC5royybjSiZeUwMQeNhQxqt94GfuyXSDz0RdSvfg/Eyp728za1y923e4Tt\nUUtsg3HkG5QG2AMVyQRB7Fiq1U7f5LCxLGBtjSGbnY3rBSBjrF1XBBaa3YN9fvlAVOzkDAN49lmO\nRIK1ZBtBaX6A1xWWt3kFr+tKGclWx58xOTQvhCyQvR/G2v/38PyU5fqBcll6cAMy2KVaZSgUgg+g\nUVjAt9ffh3fUF7A0zoEZgTADTERmEWJlD0QqDbGyB+7efa37OBB4+zyzrK7h/SuP4Murb571poTH\nAPnGIB9nSgPshYpkgiCIbVIqMdx3n4YPftCaqusF0BljbRgM9TrD+jpvJcudOMFaEgOv8+of5vOG\n/AZZtU0DXQfOO89FOu126Km70/wAuf2NBm91gh1H/oSZbue6wMYG4Distf4vfCGGb32rnTxYLjP8\n1V/FAgvzeFzD4mIOdmJ6muWwrzLspnASjTtY1jagsJ2hL99x2H0cLCwLcFzp7e3poarVjhS+MK5s\nUJFMEMSOZRKDfLOgVAL+7u80XHGF3dIj+2OsCwWGhx7ScPXVVmuo7957NaTTUsMcNMyn61J20M9C\nbpo0G18dkpigND9AdoP9nd+wi3whZIHsdZ5dF1hYEMjl2n+o9/QqDQDILne5zKf+fgtbozxWOElU\nqRtgtgVYvWdUXkgKs0wwdA2u2aN9QCyHo1zXkUsY0JTJ2pNth5Et6rai35BgSzPV5wzWC6YZdIZr\n2+AnT4IFfEkxxwHMBmJPPAYRk1aEzLY6UvjCSN+jIpkgiB1LWIN8+bzAdddZLSeJaeEV+fF42wrO\njz/GOpUSWFkRrY52KiW7xf2G+RQlInqLGVLmeTwZey3KvDd8hLH2j65jSE27QLk8/eMauka5TzjJ\nPHaYW6Epx1+Qg2lA5wSr44BXmn7D9TqY0zu01h2qMohVI4V7nnwdrn/lo9iX3hx7+yNddA8YEmSm\nCV4uARUt+Ng1i1yR6/3stWgm8LXOjH0IzqXkKplsp/I1T4DcbBZgLJT0PSqSCYIgtkDTgJWV6Xej\nvSLf08P2I0xNalToTvMDggf3HKdt6eYtM6yLh8M01FgKDhteUM4dC3q9DCORg6vMRoi+VTT2qAz7\n/qnWOL73/Nk4s8bnp0huhqbwY79E8vbPyALKP9BWrcJ94ldw8BKYl1wOM7XRu5JGA9wv+J8iYRfd\noTJgSHBzzcG/nTgfl2Z/ioWE3fNQZplg1SqGsg3qHhrwEG5vKp/nQSkQSvoeFckEQRADiJJDRj92\nmvNFUJof0G9wDygU0OqMe6l/Qe4YYZAyinj9k3fjyCtvwGZ6f/hPMARhR2PvtPdPN94wovRM7AxI\nYQLNTqTWvK+3W8sEOqdiiTb9hgRNC1ANWcDG+hTCSrgR0pOAimSCIIgBhOWQMSsnDMNg8C6Z+x0v\nGJMFpm136nqtZsDGLN0vgtL8vG3rHtyzbdnl92KwLUsmEWra7IcSJ0XYqX/DapqFosrL28oclw5G\nrVM/W61iRZzCobP/J3IOwCoBkoY5DkqZFQuxBt6U+lcIRQcwetx2VJjjdzpBEMT8MK4TRq0GPPCA\nhve9z2oN7w1CVQWyWYF6nbdcLrwoa8/BIZ32Csl22eBJGuJxL8Z6NgSl+QHBg3uxWKcF3LByixJf\nxv3pm7HOcyNtm+M0o7W7bq9W5RXeahV9LeJ0XSCTGenpegk59W9oTXMfrfI80NIml1Y7L8MbBtTa\nOk578TG47v6+XoJeUAqjoI3hcRw5oBeEZcozXO//3r+u0/xSisb7i4pkgiCIAUTFIUP69fYO7/Uj\nHgduusnCwkL7Ni/KOhYTeO45Ba96FaCqLoSv5eo5YCST0dQ4D6NZPluJAAAgAElEQVRJtiy5H0K0\nO+WeNMOPzTSsKn2sKvpgmsDzz3McKasoap1/Qm0bsA0boryB//eOFHi8t4OWz7u49VZz/EKZGAlP\nm9xd5FZ+uYqn7/gOXrX0S6iHrgkMSQHadmJUJA+JZckTEu+yTzeOA9aQnszMMFqXhphRb17GCvjA\nzgAqkgmCIAYwyCFjVq4XW+ENYmWz6Ok66zoQiwnEYnLfVFXAddvL+BPpoobryiYg52xLTfLRowqE\nENjclCcWfgnJODIMrwhXVQFdFz33LdgF3Ny4E0cWrsdGqlOzbBis5WvtuZKEwawG+eYNkVnscTqo\nFBR8b/UinLtvA9kdFJLSj6m5ZWia7L7HuwbrmjDLbPkbu+m0XMYyoTTqAONgEMMN9U0YKpIJgiC2\nybRcL1Ipgde+1sGTTw5XtWw1iFWvM5imHEpU1c6GTVBSHwDY9uwt4ziXtnaqKgZqkut1hgMHHAgh\ncOqUTMhT1XaRHIbeWg2QggDyeHq+z27PoKdoSV/CxIoncWr5AKx4OBrlnT7It5uZqluGojQH9/po\nkr3JWv8yXGlGY86+iwxQkUwQBLEls3K48A/7ve51Lp5+erzWnpfSd/w4h2HIuGVFYRCCtZ4vKKnP\n/3hVnW3XfFhNcirV7op7fsdeLPU8sLHhDV320h2NXagtYCOfR6FmASfF2LrnfoN8O7HDLBQVQtcB\nNmLXsnsAsMmyU8OHzvsWck6NhgCHwa9b9muShdsckHAAJ+C1cZypyDGoSCYIgtiCsBwuRsU/7BcG\nXkrfsWMcf/u3MRw6pCAet+A48o9Nv6Q+D1UViMdD2RRiABsbwGc+E0OpFFy4dUdjGwbws59xHD/O\noOvj6577DfLtyA5zPg/7ohQgDg+1eN8BwCZxy8Jp5RLcXH7LIcBhWNKrOHTJEeQSO1AL7bpga2Uo\ntVqPJplBgK+uyt8Vs/ckRrjtAYUJugVRkUwQBDHnFIsMX/ua2hFb3Y9MRsoT0mmBvXuBRELAttuP\nCUrqI9pUEsv4Yv5mmGoWk2qoetrlRKJX9+zhj8aOxYBEgmFx0QXno+uew9Y072T6DQB6sMIpJB76\nIupXv2fLIcBh0BQXe1Lz59FsORxlO4+sMPvXsJxDZHNwU6keTTKEC3dpCdy2pLap+/KF44A59sSH\nJ6hIJgiCmHMcJzi2mggfV9FQUvdAZ2JiRbKHrotAeU9Q6p+ng96O7jlsTfO8YZrAkVNn4g1Dxm0H\nDQB6cAAilYbYBUOAgyjW07i39G7ckPgG9scHaJ+7dcstTTKTnXiuDE7cmzCzHx0kCILYBXhOGPn8\n9uQaYVrRKYq8dD6JRLqo4TlbeE4Y3hXaQT/est7jokbKKOLyJ+5EyiiGtMI0nDPOBFKDBfesWETi\nns+CFUN63ohg2gqOlM9HpTG/oRfEZNgFX5EEQRDjEUaBOq4TxiArulFZXha44QYbuVwc5XLwMv6k\nviCCXDCi4IDhx7KAjY1eC7hajfV1uPC8lf0Wc17mwaxpNOQ+8arsfnqBJlXf74DUKHtDfYrCUK/L\n+8cN6Bs6dGSOUBQge1oC66mLgbyJmYVY9BkEHOZxO4rW2ekQg3stk/TmbZY5fJLQkFCRTBAEsQX9\nCtRZuV5MkqCkPj/e0JiuC5hmrwtGFBwwPDQNyGREhwWcEBgYlCJt5do+zLaNkTrua+oyvnPwRjA9\nG85ONGk0gMOHFdRqDMuWijPLHEc2ZKCJ48gZskcfVSGETFW8/fYYdF3uczwOpNMaPvrRBoWYdLG8\nLPC7v2vjvvummBXvY6tBQFgW+BaDgGJ5WZ4BRcM1bSgsoWDNziOnbLRlS64DVjcADDe4x1wXXJqk\ny9s8T0irqWMOASqSCYIgtsm0XC8sS3YGs1nR7+9kB6MM8nUTlNTnp1BgeOghDW9+s43PfQ7IZjsH\n/KLmgDFtuzKbaagk9yClhPt+sCzZAVdVgYQqoFWAhC6gawKKsHBGvIwNNYe6Ld8g2axAMinAuYwh\nX11lQw/z0SDf9AhjEJAvpJBYXATKWw/4RcUto2hncffa23Eo+yD2QibvgSsQieaZ3RCDe7AtuCsr\nEM2wEmaZYKYpTyZC+vhRkUwQBBFx1tYYHnlExQc/aGHv3q2//bc7yDcoqc9PKiWwtCSg69F3wfB0\nyJY1/3ILQP79j0G+VrFmoMmSWcSVpbvw8N5D+JW2v+UTnUrJGSjbBtbWhn+O3T7INw6bVYZHj70M\nFww5BAiMPwjI1eHHyyLvlsE5wDksV0OR7cESK0NTWP/BvVhXoh/JLQiCIKJBmMN0QXjDfo3GRFbf\nw070wW3+zZ2a3CKqmGZbp9zNVuEkgJTR2Duww8yKRcT/5n+C1d6NMAx3K40Yvrt6Ic5oxIYukgex\nnaJ7J1B08/j/iu/GjeKvsB99BiemwA746BMEQcyGMIfpgvCG/U6eHDzSM+lifRBbDfj1f8z06E7c\n6+co5V+ec9lFDiPCetY0GsBTT/GWTrmbrcJJABlQcu1bgWItBXsHWQ0yxwYvlwAWkqA3n4d96V4g\nbyGMa/7VGsf3nj8bZ9b4aEXydgYBd9oQYAhQkUwQBDHnTLpYDyKRkBHXpdLgAb9cLlhHnc+70HUx\n9YJ5N2JZQKPBkEgAuVxvMcgdCy9fKKMak77L/nCSVKodblJv7MzXSuEulrPOjojbHncQcJQ0wEEs\nJyq4Kf8gsqoJTNxRfHJQkUwQBDEFxnXC8HTG+fxww3uTZmFBRlz3K3K9Ab+rr7YCre90XSCTkV1L\nYjTW1GV8Zd9N2FByIz0ukQgOJ1moFPH6Z+/GkVfegM30fgDtcBK5vAwoEXoS7plnQYzrJRcxVpJV\nXP/edbjL4xeHs2bcQcBR0gAHoSku9qglCKYjrCLZEirK7iJyfB0aptMUoCKZIAhiCozrhGEYwIMP\navi93zOHGt4bRLHI8Hd/p+Laa8fT22YyGOiWkEoJrKyIsbd3XPxhIkIMnu2ZhzARh2so82Cng0ni\nJtNwzsgCqXCkBJGhVkP8gc+j/r5rpZ3anLNTEwGLbh6frVyDD6W/gP341VSek4pkgiCIXYbjyEJ5\nO0NpngPGvFya3mnuFmEybDhJtSpP0lZX2wN+3pWAeadYUvDIj96Aq855HOkIhqQIRYVIJiGUXVqu\nub6zWseRjhaOA6BPmIhlyTesgLxvTHbpUScIgpgu0xyum+RzzZsDBrlbBDNsOImiyGNgmgx33QUc\nPy4H+k4/3cWtt5pzXyjbDlA00rDd4W3UpkrIg4ATccsIGhKsVsFsC7CCP2jLKOKm7N8gp2wA6CPf\nEQKsUQezqwDjYG5KeiGLKhirBoaJMNuCdvTf5aFq1MfWc+3Ajz5BEET0GGe4Lp8XeM97bHz968N9\nZc9ikG9c/C4ZQZHXQDOl1m03ltwhDQl2urtFh0Z5yK53v3CSGBfgjoX9ShkbSg420yCEPB6aJqAo\nAq4rcPw4x7FjvENvvlO6y+MQ9Sst23bLCGDgkODmBtj6uvwQxXu/i2IAVtI2mOn2DwpkDCKegIil\nAEWBcFIQtRhEMgWBVHCYSL0O68CFgAB4ZROBdi4jQEUyQRBERPEP+y0tCfAJN7vGSerbLrre65Jh\nGLJz6UkdEglZfFhWu0D2tMKqCnAe7rZ2a5INQ74WgCzgLSu4u+zfvmkyjkbZH07CGXDyJEO+UcJb\njc/ifv1DOMn3t05MfvxjBZYFPPOMAttmPZZy+fz8dZdFMgnn9Jf0jXwelbCvtES56B40JMifOQr1\npz+FefErgZWV4BU0GtCOHA68a5mXcNPyg1g6Wfad1Soyntr7f78wkVSqKbcY32CeimSCIIg5x7Jk\nKt+wsdX92G5S3zhkMr0uGYWCLMBiMYHnnlNw4ICDVEoWqEeOKEgk5N9GQBbIYRYQQZrkn/+cY3VV\nbp9pSmu7SoUFJ+UGdMDnBVcAliWlJooiTwQ0pV34J5Oym2xZsnHoRV8DbZu4YaOvI0MqDfd0DRCx\nrZcdAlYsIv61r6BxxVWhDAFGXd7Ub0iQFU4BmgroSYhUsJ0PG/A20ZiNPWoZnNkII+Rlu1CRTBAE\nEVH8sonqgCTZUonhvvu0oWOrp8EoHbAglwxdB2IxAU0TrehrIZqFmzY5GzzGOvXLtg2cfbaLl7xE\nXhSuVoGNDTm41r0NliU74FGw6BsHRUGrUPZePyGaTbvmvvmjr5tLBPpl7zaYY4OvFsEiOAQITG8Q\ncLOm4PHqa3DhpsBCqhK8ULdu2TLBXBcCIjI6JyqSCYIgiNAJowNWr7Mel4WtOrW2Pf4f125Nsq6j\nw19Y05oyhYDm4yzkFuPiaZrX3MG+y4prIWeVUBQ5SJHGzqBmMHzup6/Ge0s7J267LyEPAvaj4ur4\nduNynF07gsVyqXcBywI/8SswT8vsOE29kg0GBSKeAPjsNSZUJBMEQcwB+bzAdddZyGbH/8OWSgm8\n8Y0y1CSK9maeTvn4calTXl/nMM3+WuWgx6uqmJjswft73o1l+RyoAl4mz1otaniaZmeLbcvaRVxV\n+iy+lD+EKk6bzsaFwMZG/yj0QoGh0oihnjwPJzaTsAIi4GkgcRukF+CecSaMQ69E9fzeky9WOAX9\n3nvgphfg7tsHT08VO/IDiEQCSOgQXWecy7yEm9P3I8fX0X/aL1yoSCYIgpgDNA2ByXXbIZ0G3vhG\nFwsLQLkcyipDxdMpHzvGO1L7+mmVu1FVgXh8Mtpgy5LyFlXtr0k+elSBpvW+VqYp46EpZXB6bGwA\nn/lMDKVS8NSrZQEnTjCUSmei8Fk30AxhHgcSo4BQFIilZbh7ewf3ZKhJCiyRAJIpiFQaTABC1aRb\nhaL0XJbRmI09yuqUtl5CRTJBEMQOI6xBviCm5YCRyciTgu7UviCt8jTRNNnVj8eDNcn1OsOBA05r\noM1PtQpUKnxcVypiBLyBwkRCQNeD36+pFNBoKFhcdHveT7MeSAx7EDAqbhmbVYZ/OX4OXm2vhufX\nPAGoSCYIgog4fiu4dPCgeAeTHOSbhQNG1FCUwZrkzoG2TqIot9gN6LoY+NmJxeRr1rvMbAcSwx4E\nnJZbxlYDgtUax/dePBevyP8IKS+MpN8gX9CXjTudLyAqkgmCICJOtcrw/e8rOOccF+n05LpZ00wF\nHIZ+Xa/ugb5+VKvNJFvR/iG2psSXcX/6ZqzzwYN8OwHuWEjW1sFEHy/fESmWFPz946/H29+xC4YA\nBzHMgCBX4GYWwesnpaegYYA1zyI3DRWPlc/Da6wCFlCXnshdCFWb+HAfFckEQRARZ1rFa9SS+rq7\nXv0G+jwsS3oY53JSCmEY0vfX8zv2bM0mHcoy79hMw6qyvXCSeSNlFHHuU1/EY7gJwPg6GCuexKnl\nA7DifaKWR2QnF91CUVD/wAdRfZk8VqxwCsnbPwM3m0Wptohvf/cVOC/3PJJZo+eyjeUqKIscsqwK\nDZP7zqIimSAIIuJsVbyG6XwRZfoN9HkUCqxn0O+Tn4xhc1NBPC7/zqoqm4uOcnenfFDSn59Zpf7N\nA41G7zAnbx5XE8FXJqpVebK1uQnsHaZITaXhnJEDUuFYrNkOUKylYM/Zazq09jm90Brs44AcOmCs\n99B1/V60s7ir8E4cWvkK9mvNYT47fBkJFckEQRBzTpjOF2ExqQG/fgN9Ht23x+OdwRicR7+INAzg\n2Wc5EgnWaqANSvrzM++pf5Oi0QD+9V8V1Gqd+uJlS8WeVRsV3cKjjy70HFvblraDd94Zw3/5L425\nd7gIexCwH1tpn4M0y0LX4eaXwEur4JsAs20wy5Jeyo4DOA5Y3YBI6GBuCsyW9zHH8K0jCahaaB8A\nKpIJgiB2GVKWEDSkFB6THPCLyoT+pNB14LzzXKTTbbeFQUl/fiaZ+tcROhLxE41ubBuo1RhUtfP4\nJVSBTMzAKxZfwC8TaTis88B5nflymc1f5HYAkUkEDNAsi8wiarfeBmYYMJ4pwznxK1i5V8A8Kw6k\nUthcc/BvP3Rx0aUcppaDc/SlMA9cDjO10V6vqkHE42AhFcmkzCIIgthllEoM99yjoVic9ZZsD69L\nNWyHWohWIwq23f5/v58oDPr53RbSafn/YbXUruvZzcmfWi2c7rnDNZS1PT2F5DzhuZK0fjQgxWq4\nsnw/9rBi533NGO6dejIWRURmEe7efRBLy/LFibd9lCtqDt+pvQ4VNSdv02Kt+1o/8Xio20OdZIIg\nCGJoouaAMQiZlOZCCBWOI2Db7bhpAK3kPlVtF6DdRbKUasx+XweFmPjpDjRhjKFel5raKKYrEoMR\nySTcM8+CSIYzCBgV5uVqEBXJBEEQO4xJDvJFzQFjEJkM8IEP2DhyRMPCggweUVXAtuVxMU057Ley\nIjq0vy+8IJdzXSldCPJDnjaDQkz8dAeacM6wsaGgUNh66I8Yjq1irqtVhkKhv7fySDHXIQ8CRsUt\nY1p+zeNCHxmCIIgdxnYH+SaZ1Dcr0mlZHGqaQCwmtbqcA0IICAEoCoOmtfdXCIDzdreWzS5HoodB\nISZ+/IEmnMsOctQ7dvPCMDHX5TLDX/1VrO9nqDvmetyie2EByA1paT0tt4xxBwSVmIKlvIDKe/2R\npwkVyQRBEASAySb1bYdRHTIGXcK1bRlA4kkshGgPZflnfCxLLuM4bVnGTsBxpDa5UpG/B1nK+fe9\n+7E76Vj4WVOX8cjKB/Dm1b8davmtYq65Y+HlC2VUYzm4Sm+V3B1zHUbRvbws8KlPDbX5U2PcAcGl\n8/L44GfOQ+pPTMzyrUdFMkEQBBFJRnXICLqEm0gIxGJSj2wYntwCABgaDVk41moM3rxPt8+wooi5\nlynYttQkP/usguPH21KTbks5x5FFnKJ0dtBlGIuA42DHXGHwcLiGdW0Zgo3Wau8Xc71QKeL1z96N\nI6+8AZvp/QGP7Iy53qroBoA9A3JdDINhdZWhVgMSiZF2Ya5Z0qs4dMkR5BLG1guPwZx/9AmCIIgo\nEpUBv4UF4OBBFwsLAuk0QyKhoF53IYRAoQB8//sqLrnEwUozlbhaBY4cUVoFh2kCIQ/MTx1Vlcfh\nvPOcVkc+yFLOsoBGg0NVO+UZnusHSTYmR7+ie2sEGo3hNUHTGgSciPaZc4imXkpTbOxJbZFLHwKR\nKpK/8IUv4J577kGxWMT555+PT3ziE7j44osDl33ooYfw8MMP4yc/+QkA4ODBg/joRz/ad3mCIAhi\nekRpwC8WA5JJWYToOqCqAq4rUKnIwk/XRcuPWIi2hhkAHCdCouQxUBQgmez0xta0Xo0z5+3gFT/z\nkFJIDEHIg4D92Er7PJJm2aiBAVCRxtLpcaiwwTzd0IDHhEFkfJIfeeQRfPrTn8Ytt9yCr371qzj/\n/PNxww03oFQqBS7/6KOP4rd/+7dx//3348EHH8S+fftw/fXX49SpU1PecoIgiPkin/d8hme9Jduj\nWPR8nocvYA2DoVKRsoNu/2BPq1upyA6rl1hn2zujQCYG0wpJUef0AzGH+DXL/Wgl8NXr4OUS9taP\n4ebTv4a99WPgp05C/fHT4KdOgpdLvT/1Otz8EoSuj7Wdkekk33vvvXj3u9+NK6+8EgDwyU9+Et/+\n9rfx5S9/GYcOHepZ/s/+7M86fv/Upz6Ff/iHf8Dhw4dxxRVXTGWbCYIg5hHpfrE9fWkUHDBG0Srr\nukA+76JU4mg0pHSi0WAQgmFtDajXgbU13tIdG4a0fQPk8dF1AVXdmW3UQUOL3cs5jpSe+AcedwoO\n11DmA4S/M4Q7FvR6GUYieBAwiHHcMkayp5sw/gS+bljhFBIPfRH1q98DsRL82gldh8gsjrUNkSiS\nLcvCU089hRtvvLF1G2MMl19+OZ544omh1lGr1WDbNrLZ7KQ2kyAIYtcTNQeMrchkgFtvNZsDaRzZ\nrIa1NQuO4+KZZzj+63/luOkmC+efL2foCwWG22+PIZv1fJXF3GuSgwgKJxk8uAcUCtIyzwssCSn5\nlxhAyiji9U8OGgTsZFy3jG57ukkxrGZZZBYDC10OyIS9lT1w9+6b2HZGokgul8twHAfLXdf+lpaW\n8Itf/GKodfz5n/859u7di8suu2wSm0gQBEHMKZkMkMnIjnAuJx0vbFugUBDQNIGlJdFR8Ou6LBKF\nELCszmLQL8foZp7kGUHhJJYFGAbv0SR7nWR59cA7JtJSz28pZ5rT3w+ik3HcMrrt6cZhqwHBafk1\nj0skiuR+CCEjNbfis5/9LL75zW/i85//PGIjRiNxzsD56F9sisI7/t0N0D7vDmifdwdB+7xnD3Do\nkI1sVnYYgx/HmmEbfOIyhEwG+PVfd5HJdG7Pdrehe58VhYExBkVhUFV528KCtJJbXWWBrgEbG8D6\nOoPrBrteJJNyEC7o7wrnXsz14O2W2+X9fep8LGNsYMCJdx9j8rH+7fBu89anqkAs1k4UlAmD8jFB\nneS1tc5O8tGjSkdSYb0OmObk3xdb4X+dFUW0juUwx68b//H01tv92viRz8P61hbd74Gg13r09bGe\n/U2lgHR6tNqGc6DR2Pr9OQxKJgNxVh5Kxg5cl6Lw1jH1Pnt+Vp9dxTc+/RO84+PnYum8pZ77mcJb\n3wE84PFhEYkiOZfLQVEUFIvFjttLpRKWlnoPjp977rkHd999N+69916ce+65Iz93Pp8aqhDvRyYz\nnih8HqF93h3QPu8Ouvd5kCcrIAshXQey2djQKV/bJZcDzjxz+G0oFIAvfQl417vQsnQLwtvnfB5Y\nXATy+WRrPbkc8KlPyWG+IP7934H/9J+AV70q+FhpGpBIBHul2bYsrLNZbeCxq9flcomE3E/vsarq\nOW/0f6zrymUSCQX+mSVF4YjH+cD1ua4sroI6ybYN7N8vC2qvIH7Vq9puGZWKPIHYvz858ffFsGQy\nOqpVeSzj8eGOXzfe8YzFgGxWlkzdr03H8rHT8MTlH4GbyEEP0BB3vweCXms/CTsGTVOQSMRg671N\nQNtuu5P497ff+gYx7PvTz/p68Gel0ZDrazRiqNd77zcbFTCmYDGjI5dL9dxfj1ewXlaQiscD798s\npvDPJ8/Dq9UUFgLuD4tIFMmapuHgwYM4fPgw3vKWtwCQXeTDhw/j/e9/f9/H3X333bjzzjtxzz33\n4MCBA9t67lKpuu1OciajY2PDgOPs0CiiLmifaZ93KrTPw+/z2hqDYahYW7ORSPTvNskBPyCbDT+A\not82FIsMx46pKBb7d6/8+6woDBddpEJRbJTLncv3C2aIxxkYi0NRnMCQESHk8F8Q9bocGlxbswYe\nu7U1hkZDQ73eDjKp1wHbVmDbCOw4eti2/KnXXaiqaP590+A4LhoNB4Yh+q7PC1mRHdf2Or3fORfN\n7rT8XVXd1nGW27n1vk0D/+u8tibQaGgAxFDHrxvveJqmwNqa1JN0vzbdVHkWMAWAXv1J93sg6LX2\no9ZNWJaDet2EoQavzzQ5ALVjf/utb9Ag4LDvT4+NDeDP/kzD6mpvDeVp3n/5y+ABX61swfmFixd/\nZSBxVq/f8fqGActysL5hIFHuvf/kr+r4Xz85A/t+Vcfe5e35JQcV391EokgGgGuvvRYf//jHceGF\nF+Kiiy7Cfffdh3q9jquuugoAcNttt2Hfvn342Mc+BgC46667cMcdd+Av/uIvcNppp7W60MlkEskR\nTLJdV/plbhfHcWHbu+OPqgft8+6A9nl3MOo+Ow5rpq+5sO3+352nTk1uwK/fNgy7bd4+D7t852Nl\nhSX/doy23a4LCMGG2D7WSrnznkM+VjaQBnkWy/sYhOj92+a/LWh98vfBTaP28ixgfVvv2zRxHBeO\nI1rHcpjj141/X72Tye7XZhS6j1PQa925vGgd56BaRa7P8/Tu3N+g9aWqhb6DgKO+hpubDMUi66t/\nHnQ1p9JI4sXYS1Fx9cDvH8dxW8fcu9/vrSz3U0z8OzsyRfLb3vY2lMtl3HHHHSgWi7jgggtw9913\nI5/PAwBOnDgBxXf954EHHoBt27jllls61vPhD38Yv//7vz/VbScIgiCmRxTS/Op1hkpltOfvZ8tF\nTBbTbA9bjhoxvtPs7ibBdtICq9UUCqlFuMk6gOGK3NWCwN//73Pw9ssFhKJCJJMQymTL2MgUyQBw\nzTXX4Jprrgm87/777+/4/R//8R+nsUkEQRBExAgrzU9RgKUlMVLcstc1azQYyuXgy8zlMkMuF3yZ\nOZ93+7oOEOFjGMCzz3Ioiny9KhU20uvt+UPb/TMviD40Gv1tAms1ed/qKsPJk72fo1pAoF6HI8ZK\nHvale4H8ZJMDI1UkEwRBENEmnxe47joL2ezuLPQWFoDLLnPwznfaWFnpPQaFAsNDD2m4+mor8P4o\nhTXsBnQdOO88F5y7MAwGXR8tBMeygGqVjdyBDouqvowfXHIjjEREpiGHpNEADh9WUKsFXz0xTSnX\n+Ou/1rCw0Hv/sqMhFYEOPhXJBEEQxNDItL6dUSCPktznJx6Xx6Cf1jqVEgPvJ6ZLLCZ/NE3+jOgU\nO1LnOWxcRUM1Fc00wEE4dQuJjRLceBYs1ntWoqpygDKTkd7bfup1hlMFhv11htVVBtHsNJdWGSxL\n3uaAodGY/H5QkUwQBEFEkihEYHezHYkGEQ26Y7iHwbI8d4vJbNNOJV0v4j2l/4Gvn3YIm7HgpEDT\nBJ5+msOyOrvNtg3w2gJii1ncef8inKQ0JNfKGhq/ZLjrLg0biRhefJHhve+1sHdAYt+4UJFMEARB\nRJJRI7CnMdC3vCxw/fXTyWOWg35yXwYl/fmZp9S/aWLbvTHcw+A4Ujrwi19wGMbo3sNEf1xXvscT\nic6TYMsC6khDefVFSCYFvME+bguUVSCzIGCpAq7LJx6NTkUyQRAEsSMYdaCvVAIef5zjHe/ARLtR\no6LrAvm8i1KJo16XRa9hAKYp/++FeSQSwVIAXRczT72LGqraG8M9DJYFVCoML3uZSwXyhAiSwDiO\nDLZJ+a2Mq8CGIlMt3ZTAuee6aBqgTQwqkgmCIIjQmYcBP7FCt9wAACAASURBVMdhqNUYHKfdsY0C\nmQxw661mh2VcocBw++2x1vE8elTBgQNOZxHRRFVFYGT2bkdRtqdJ9hL3dgJRGQRUhIW8vYYNJQd/\nKepdLZEDk+jwtLatJE4lz0LCSqJRlSeOhULnlZOwB2OpSCYIgiBCZ5IDflHUKodNJiOHmvzouky6\n8wIm+gVjeEUGIIej+iUAEtvDNGUBtx2q1dnqm6MyCJi1i/jttbvwYPZDqGMfAFkgv/ACQ6Mhh2mP\nHFE6XEUcJ4t6I4tfPi6LZ9OUJ47+Dn8+7+LWW83QCmUqkgmCIIi5YlSt8jSZ1GCfX4JhGAz1OsP6\nOodpDvZmZkxeuo7HSYIRBp7vciLBttVdNk0Z/bzTT1waWhr/knoTDD58yojrApbFWrHhiQR6nC+8\n0JK0UcB/WPtbFBJXwcktA5D6Zu/z0X2CuV2oSCYIgiB2JY2GDAVpNMIrHic12OeXYHR7MQ/yZlYU\njkZDw5/8ibtjJAOzxPNdTqfdQKnLVlSrQKXCO7qf89yZ7kcjtoB/Sf0GdEVg1Lcd5/LkzrPtCyJu\n2VgRBRgJG06rDhctDX9YUJFMEARB7EricYZ4XCAej5YmuR9+CUa3F3M/b2ZVFajX+xcbxOjEYnKg\nbNQoZg9/URtWZ7pWk51XIlyoSCYIgiCIXcBWlnKWJS95d4eruO70tnG3EUZnulrlSCZ3lnG3Kizk\nrBIMJQuHz+4Mj4pkgiAIIpKM6pAxjYG+YpHha19TccUVNpaXo999BqRl1tKSQLHIBlrKqWq7QO4e\nCJQJafOxv/PGuJ3pSXsFz4K8W8R/PHUnvnHaIaz2CSOZBlQkEwRBEJFkVIeMUQf6kkmBM88UzcCC\n4dhulHWYjDocuLgI/OEfWtjcbO9nkKXcS1/q4Ec/UpBI9FqecU4pg0R0MG2O7xivw946xyTdDqlI\nJgiCIHYlqRRwxhnbu8w9S7YzHJjJoOdkIMhSTtJrLec47S4zpfpFm+0OAk5zCNDgaTyafBNqPA0+\n5GMU10LGKWNDyUEIoOKmsOJO9r1IRTJBEARB7DKCLOU2NzlMk8F1pV65X6Kf93iylIse4wwCTtOe\nrqYs4NHkbwAAFoYcms3aRVx58i48vPcQNocurceDimSCIAhirpiHNL9psh1v5iBLuTe/2cbnPgfE\nYgLPPdc/0Q+gVL+oMs4gYJA93ayosjR+uPAmGEqwULvOU1jTzsLpWhKT3FwqkgmCIIi5Iqw0v1hM\n4OBBF7FYeMX2LAb7tuvN3G0pt7QkoOvSzWJQoh/QmeoHoCNCm5gt4wwCjiq36CftqFbl+0PtU2Va\nlpTv9Duxq/IFPJb5DWhK8BvQUNL4VSyDhmZjkvaNVCQTBEEQuxLTZHjqKY7XvCY8n+QoDPZtl0RC\nSjCOH+cdiX4eg5L9ABkJrOvU3d8tDJJ2mKZ8r1QqLLAQdhy5TC4X7fcLFckEQRAEQWBhQUowjh3j\ngQl+g5L9AKlTzmSmucXELBkk7ahWgY0NBl0PPqGyLKBabUdQRxUqkgmCIAhiSFIpgTe8wUEqFe0O\n2Cj4Nc2ZjJSy9Evw63d71KnXWU94yjCQk8dgBkk7NE3+9BsgHEZDb9vtMJt1RzpirDvpllyjVgMq\nFXl/tSq724WCfM3COGmjIpkgCILYEWwnfMTTTg5LOg284Q1zqKUYwHY1zfOA5+Jx/Dhvhaf4pTCO\nI4NUBjl5JBLkEb0dHKf/Z8uyZAHs/d/7V+rh5e+2DZw8yWBZ3onKIp7GfwBKbbnGE08orSLctqWE\n6vbbY9B1Kf+59VZzrEKZimSCIAhiRzDqQN/aGsMTTyhYW7PxkpfMT2d0HlP/ZoXn4nHsGG+Fp/il\nAdWqDFIZ5OTRaAhUqxHXBUQMy5LhPqraX5PcaMj/G4ZcxnHk/xkDANHs/EtJRvc6OJce38kkoGmi\n9ZwAkM0KMIaWvaE3nLodqEgmCIIgiDli0sOB27GUizKehETXZaCKvxgWQhZZ3bf7EWJ74Ry7GU2T\nV3bi8f6a5EpFvoeTSbmMZQGGwZtFsnyfuy766pYZk1IO//odR8o/hBCtCPZxoCKZIAiCIIgWO1l+\nQUwPRRmsSeYcWF9nMM12J7nRYK0ieXW13WVmXfUucx3EXAOwNUCbXClLRTJBEASxK/EGuTxtZBjM\nYrCP5BfDI/2c28fIi2Ie1CkmD+jJwDma8pd2J7nRkJ1kIeTVDNuWXsvdVzVyZgHvqt2Lw+77sYF9\nE9tGKpIJgiCIXYkcEGJ9AzO2wywG+6blzTzPMgx/DLf/MrxhSCuyn/1Mwb59wdIAoO0B7RXM3cX2\nsFDB3Ul3t5lz+SNlMGjpkbvfc5riIsnqE98+KpIJgiCIXYm0qOpfGBGdzLMMwx/D7adQYLj3XvkG\nuPbaYP9nwG8nFlxse2wVuAJQ6MogPHcLIdpuF0Enf5bDsSHSaFjtwBvPFi5MqEgmCIIgiCGxLOmK\nkc1ScT1v+GO4/SSTAoyxofyf+xXbHlsFrgDB/r3UmZYFcb0OAHKfBmmSXSeFI9Zr8PxqGo1NOdnn\nOG0JVb847FGhIpkgCIIghqRUYrjvPg0f/KA1d4Ea/djNmmZFkdHI6+vDF5v9im2PUQJX+slAPIbp\nTC8vCyST7dCNeYVz6VfNmNhSkxy3AEXRsLxHwI7LHbcs6ZOsaQhNQkVFMkEQBLEryWYFLr3UHTp8\nJCqEPRw4LU1zFFleFvjd37Vx332zuSwQRmd6YYFhcTGGcnmSWzodhtUkN5DGY+xynJUQiGnt40Jy\nC4IgCIIIAU1re7TOEzsx9W83M25nWlV3juQialCEDEEQBEEQLYpFhnvu0VAsUvFF7G6oSCYIgiB2\nJZPwNLYseYncmqIJBMkvCGIykNyCIAiC2JVMQrYwi8E+kl+Mxzz7P/djO24ZO8kpIyyoSCYIgiAI\nYkt2qgtGmP7Psy64x3XLIA/nTqhIJgiCIIghmUXsdFQgGcbWzDpwZVy3jCAP590MFckEQRAEMSQ7\nUdqwmwv/qLOdznSYPs7DECTtqFbbwR5B2PZ8SDuoSCYIgiCIOSLs1L+dWPgPS9QlJLPuTA9ikLRj\ncxNYX2dwXSAeD358IiFgmtEulqlIJgiCIIiQmEZXdiem/s0KkpBsn0HSjmee4fjpTzkuvtjBykrw\n4xsNgSNHBpehrhscEOI48sc02+l6liV/qlV5m2mOuke9UJFMEARBECGxE7qyJL8ghqWftKNQkFc5\nGANEn4xoy+qUZFhWO1qbMfn/eh3gnIF11eFCyPsLBUBR5J2OI9d39KgCIQQaDQbDGG//qEgmCIIg\niDmG5BdE1EgkBHRdFqrlcrDLxokTrCXTcBx5m9c1jscBVRVIJBhUtVeT7RXEKysCWjOW2rKAep3h\nwAEHQghUKhy6Pt5+UJFMEARBEHMMyS+IqLGwAFx2mYN3vtMOdNEoFBjuvVdDOi2QzcqiulYDHntM\nQTwOxOOi1VUOgjE51BiLoePE0HGAVIrkFgRBEASxK5mVHGKnyjBqNeCBBzS8731WJIf3wmSaPs7x\nOAa6aCwuCgACjQZHo8FgmoDrMjiOQL3OUKnIbjHQ1h37UVWA88m+XlQkEwRBEMQcMSs5xE6VYbiu\nDNgIY3iP3DKGJx4HbrrJwsKC/L1QYLj99hgSCcB1BZ56SgHnAqkUAmVEnIvWAB8wGVs5KpIJgiAI\nYhcTtqZ5N0NuGaOxsIBWp1nXBU4/XVrKmaY8hl5nmXN5bOt1IJGQHXHHYT0+zLouoKqirz/zqFCR\nTBAEQRBzzLgyiN2saU6lBF77WgdPPjmjHOktiHpnuh/bDUHxLOU8zfKJEwz79slucrUqnSsOHHCQ\nSgWvQ1UF4vH+ISajQkUyQRAEQcwx48ogdqrWeBjSaeB1r3Px9NPRLJLntTO9XVmH31IulZJd42RS\ntIbxNE20fp8GVCQTBEEQxC6mu8gm+QVBSPisN4AgCIIgiOhQKjH89V9rKJWiHRlMzC/TdNkYB+ok\nEwRBEATRYjfLL4jpECWXjUFQJ5kgCIIgiBae/CKdnvWWTAc6KYgeigLkcqInjnraUJFMEARBEMSu\nJcyTgqgX3MUiwz33aCgWoy2lWV4WeO97LSQSs90OklsQBEEQBEGEQNQDV+bVLQMAOJdOF3yK7V0q\nkgmCIAiCICJI1DvT08AwGAC5/+ee68J1gUplmMeMDxXJBEEQBEEQESTqnel+hBGCousC+bxM4KvX\nO4tey5JR4rlcf5vCfN6Fro93ckFFMkEQBEEQBBEaYcg6/Al83RQKDA89pOHqqy2srAQXwroukMls\n//kBKpIJgiAIgiCICOJP4OsmlRJYWRETjVIndwuCIAiCIAhiasyLywYVyQRBEARBEMTUmBeXDSqS\nCYIgCIIgdgHz4pYRlU4zaZIJgiAIgiB2AfPilhGVTjN1kgmCIAiCIIhIM4vuMhXJBEEQBEEQRGhM\nQtbh7y4rCrC0JKAooa0+EJJbEARBEARBEKExaVnH8rLA9ddbE1u/B3WSCYIgCIIgCKILKpIJgiAI\ngiCIqTEvLhsktyAIgiAIgiCmxlZyjKAiehaFNRXJBEEQBEEQRGQIKqJnYV9HcguCIAiCIAiC6IKK\nZIIgCIIgCILogopkgiAIgiAIgugiUkXyF77wBbz5zW/GxRdfjHe961340Y9+NHD5b37zm3jrW9+K\niy++GL/zO7+D73znO1PaUoIgCIIgCGIWTCt9LzJF8iOPPIJPf/rTuOWWW/DVr34V559/Pm644QaU\nSqXA5R9//HH8wR/8Ad71rnfh4Ycfxm/+5m/iwx/+MH76059OecsJgiAIgiCIaeFP35skkSmS7733\nXrz73e/GlVdeiZe//OX45Cc/iUQigS9/+cuBy99///34tV/7NVx33XU4++yzccstt+DgwYP4/Oc/\nP+UtJwiCIAiCIKbFtOzgIlEkW5aFp556CpdddlnrNsYYLr/8cjzxxBOBj3niiSdw+eWXd9z2xje+\nse/yBEEQBEEQxPzj2cGl05N9nkgUyeVyGY7jYHl5ueP2paUlFIvFwMcUCoWRlicIgiAIgiCIYYl0\nmIgQAowNL8oWYvS2O+cMnI8u/FYU3vHvboD2eXdA+7w7oH3+/9u796goyv8P4O8VhQVKlAUVpURJ\nWQQRMCH0dDHNUMIURU1FUYwulKRJRmUpllpZlGFWZqDiBUEhr5R4S5KTdUzXUtEwEBUWQUFYhWXj\n+f3hab+yoPRTdkeW9+scjuzMs+v7c5DxMzPPzLQOrNn8tbZ6TemeaJI7duwICwuLBkeBL1++DIVC\n0eh7HB0dGx1veHS5KQrF3R2rb9/e+q7e3xKx5taBNbcOrLl1YM3mr7XVawr3xG5Hu3bt4OHhgZyc\nHP0yIQRycnLg4+PT6Hu8vb3rjQeAn3/+Gd7e3kbNSkRERETm755okgEgPDwcmzZtQkZGBvLy8vDe\ne++huroaISEhAIA33ngDn376qX78lClTcPDgQSQmJuLs2bP44osv8Oeff2Ly5MlSlUBEREREZuKe\nmG4BACNGjMCVK1ewbNkylJaWwt3dHd9++y3s7e0BAMXFxbCwsNCP9/HxwSeffIL4+HjEx8eje/fu\n+PLLL/HQQw9JVQIRERERmQmZuJOr3YiIiIiIzNg9M92CiIiIiOhewSaZiIiIiMgAm2QiIiIiIgNs\nkomIiIiIDLBJJiIiIiIywCaZiIiIiMgAm2QiIiIiIgNskomaUFFRgcWLF+PMmTNSRyEiIiITuWee\nuHevU6vVOHnyJEpKSlBdXQ25XI5OnTrB3d0dnTt3ljoeGVFVVRXWrFkDf39/9OrVS+o4RnXu3Dn8\n/vvvuHr1Kuzt7eHn5wdHR0epYzWryspKtGvXDnK5XL+soqICJ06cwD///AM3Nzezq9lQbW0tampq\nYGVlhXbt2kkdh4ystrYWeXl5cHZ2xn333Sd1HKMTQkCj0bSKWsm4+MS9Jhw5cgQff/wxjh49CuDG\nL9/NZDIZ+vXrh5iYGPTv31+KiM3ur7/+wjfffIO8vDx07NgRQUFBGDVqFGQyWb1xW7duxdy5c3Hy\n5EmJkjaP4ODg267X6XT4+++/0bVrV9ja2kImk2Hr1q0mSmccycnJKC4uxpw5cwAAWq0WsbGx2Llz\nZ71/423btsWMGTPw2muvSRW12VRXV+P111/H3r170aZNG0yZMgVz587FunXrsHTpUlRXVwMA2rRp\ngzFjxmD+/Plo08Y8TrbpdDqkp6dj165dOHHiBCoqKvTr7Ozs4O7ujuHDh2P06NFm0zTn5OTg7Nmz\n6NixIx577LFGG6ajR48iJSUFixcvliCh6Vy4cAFDhw7F8uXL8eSTT0odp1mcPn0aZWVlCAgI0C/L\nzs7GihUroFKpoNPpYGVlhUceeQSzZ89G7969JUzbfLKyspCeng65XI6pU6fCy8sLhYWFiI+Px5Ej\nR6DT6eDh4YHIyEiz6UmkxCPJt3Ho0CFERkaia9eumDVrFvr27YtOnTrB0tISWq0WJSUlOHbsGNLT\n0zF16lR88803GDhwoNSx70p+fj5CQ0Oh0+nQq1cvnDlzBrGxsUhNTcXnn39ulkfYzpw5AxsbG3h4\neDS6XqvVAgBsbW3RoUMHU0YzmpSUFAwePFj/etGiRdixYwfGjx+P4OBg2Nvbo6SkBKmpqfj666+h\nUCgQFhYmYeK7t2rVKuzZswejRo2Cg4MDNm7cCLlcjq+++gqjRo3CkCFDUFtbi+3btyM1NRXOzs6I\njIyUOvZdu3z5MiIiInDy5Em4uLjgscceg6OjI6ysrFBTU4NLly5BpVLh3Xffxfr16/Hdd9/B3t5e\n6th3TKvV4vnnn8fhw4f1O3z3338/5syZg/Hjx9cbe+7cOWRkZLT4JjkxMfG26ysqKiCEQFZWFgoK\nCgAA06ZNM0U0o1m0aBGcnJz0TfKuXbswe/ZsdOjQAcHBwVAoFFCr1di7dy/Gjx+P5OTkW27jW4oD\nBw7glVdegY2NDWxsbLB3714kJSUhKioKtbW16N+/P3Q6HX799Vf8/PPPSExMxIABA6SO3bIJuqXQ\n0FAxYcIEUVNTc9txNTU1Yvz48SI0NNREyYwnOjpaDBo0SOTn5+uXZWRkiP79+4vBgweLvLw8/fLv\nv/9eKJVKKWI2q+XLlwtvb28RHh4ucnNzG6wvLCwUbm5uIisrS4J0xuHt7S02bdokhBCirq5OeHt7\ni/fff7/RsTNnzhTDhg0zZTyjCAwMFLGxsfrXO3bsEEqlUrz99tsNxs6YMUMEBgaaMp7RxMTECD8/\nP3Ho0KHbjjt06JDw8/MTb7zxhomSGceXX34p3N3dRUJCgsjNzRXZ2dkiPDxcKJVKMW/ePPHPP//o\nx5rLNszNzU0olUrh5uZ2y6+b15tDzf7+/mLNmjX610OHDhXjxo0TGo2m3riysjLx9NNPi2nTppk6\nYrObPHmyGDVqlKisrBRCCDF//nwREBAgRo4cKcrLy/XjioqKxOOPPy7Cw8Olimo2zONcopHk5uYi\nJCQElpaWtx1naWmJkJAQ5ObmmiiZ8Rw7dgyTJ09G9+7d9cueffZZpKSkoE2bNpg4cSJUKpWECZvf\nyy+/jMzMTHTo0AEhISFYsGABysvL9esNp5mYA0tLS1y7dg3AjWkI169fh7+/f6Nj/f39cfHiRVPG\nM4qioiL4+PjoX/v6+kIIgSeeeKLB2MGDB+P8+fMmTGc8Bw4cQERERL3T0o0JCAjA9OnTsX//ftME\nM5KdO3di9OjRiIqKQu/evTFo0CAkJiYiOjoaqampeOWVV/Rnh8xFz549IZfLER0djaysLOzZs6fe\nV3JyMoQQWLhwIfbs2YOsrCypI9+169evw9raWv99YWEhpkyZAhsbm3rj7O3tMWHCBPz+++9SxGxW\np0+fxujRo/VTh8LCwnD58mWEh4fDzs5OP65Lly547rnnzO7/aimwSb4NOzs7/ampphQUFKB9+/ZG\nTmR85eXlcHBwaLDc1dUVKSkp6NKlC6ZOnYqDBw9KkM54OnfujPj4eCQmJuLIkSMYNmwYkpKSoNPp\npI5mFD4+Pti1axcAwNraGi4uLjh8+HCjY3/99Vd06tTJlPGMws7Ort7Oz7/f37zs5nXmMrVGq9XC\n1tb2P421tbVt8Q3k+fPn4e3t3WD5iy++iE8++QQHDx7EtGnTUFlZKUE649i2bRtmzpyJ7777DnPm\nzEFZWRm6deum/3JycgJwo2H8d1lL16NHD/21QnK5HDY2Nqiqqmp0bFVVFdq2bfmzS+vq6mBlZaV/\n/e/3jf1+86LF5sEm+TaCg4ORlJSEpKQkaDSaRsdoNBokJiZi9erVGDlypIkTNr9u3brd8oi4QqHQ\nz+t66aWXkJmZaeJ0xjdgwACkp6cjOjoaK1asQFBQEPbv3292R5NfffVV/Pnnn5g5cyb+/vtvvPfe\ne0hNTUVcXBx+++035Ofn45dffkFMTAwyMzMREhIideS75uvri40bNyIvLw/l5eVYtmwZ5HI5fvjh\nB5SUlOjHFRQUYN26dejTp4+EaZuPr68v1qxZA7VafdtxarUaa9asafEX+9jZ2eHy5cuNrhsxYgS+\n+uornDhxApMmTar3c2/JLCwsMG3aNGRmZqJHjx6YMGECYmJimvyZt2Tjxo1DRkYG9uzZA5lMhrCw\nMHzxxRc4fvx4vXE5OTlISkpq8kxKS9CzZ896Z3r27dtX78+b/fjjj/XOCNOd4d0tbkOr1WLu3LnY\ntWsX2rZtCxcXFzg6Ouov3Lt06RLy8/Oh0+kQGBiIjz76qMmpGfe6uLg47N69G/v27bvlnrdWq0V0\ndDT27dsHmUzW4u9ucSvl5eWIj49HamoqhBBISEjAkCFDpI7VbLKzs/Hmm2+irKwM9913H3Q6nf4O\nD/8SQmDMmDGIi4uDhYWFREmbR0FBAcaOHas/2iSEQHR0NLp164Z3330Xffr0QV1dHU6cOIG6ujps\n2LABffv2lTj13cvLy8OkSZNQU1ODJ554Ap6eng22Y3/88Qf2798PuVyO5ORkuLq6Sh37jr300ku4\ncuUKNm7ceMsxKpUKkZGRqKysRF1dndltw1QqFRYuXIi//voLERERGD58OIKCgrB8+XKz2YYJIRAb\nG4uMjAz069cPffv2xfbt21FRUQFnZ2coFAqUlJSgqKgIDg4O2LBhA5ydnaWOfVd27tyJ2bNnw8vL\nC/b29sjOzsaAAQPQo0cPFBUV4cknn0RdXR127tyJw4cP45133sGkSZOkjt2isUn+D1QqFTIzM3Hq\n1ClcunRJf59kR0dHKJVKBAYGwsvLS+qYzeL48eNYuXIlpk+f3ugpy3/V1dVh8eLFOHXqFNauXWvC\nhKZXUFAAtVqNXr16oWPHjlLHaVZVVVXYtm0bcnJyUFBQgGvXrunvAe7h4YHhw4fD3d1d6pjNpri4\nGBkZGdBoNPDz88Ojjz4KANixYwc2bNiA0tJSuLi4YMaMGXj44YclTtt81Go1VqxYgd27d6OsrKzB\nent7ewwbNgwvvvgiunTpIkHC5rNlyxa89dZb2Lhx4223YXl5eYiIiNDfA98cbd68GfHx8aitrcXV\nq1fNbkcfuNE4rl69GiqVqsEtWh0cHDBixAi88MILUCgUEiVsXmvXrkVycrJ+G/bOO+9ALpdj5syZ\nyM7OBvC/21guWLDAbG5jKRU2yURErYharW6ws29OD0QSQuD69eto165dk/d81mg0KC8vN4s5urdS\nVVWFVatWobi4GFOmTDGrnd6bVVVVobCwEBqNRr+jbw7XUvx/FBYWoqysDA8++GCLvo3jvYRNMhER\nAbjRaFy9ehVdu3aVOopJtLZ6AdbcWrTGmo2Bx+GJiAjAjVO55nY6/nZaW70Aa24tWmPNxsAmmYiI\niIjIQMu/cSAREd1SRkbGfx5rDhewtbZ6AdbcFNZMd4pzkomIzJhSqYRMJmtw5f+ttPTbOra2egHW\n/F+wZroTPJJMRGTG7OzsoFQqERMT0+TYtLQ0pKSkmCCV8bS2egHW3BTWTHeKTTIRkRnr27cvzp49\nC09PzybHmsPj5ltbvQBrbgprpjvFC/eIiMyYl5cXLl682OhDRAy1b98eTk5OJkhlPK2tXoA1N4U1\n053inGQiIjN27do1XLlyBZ06dWry4RrmoLXVC7Bm1kzGwiaZiIiIiMgAp1sQERERERlgk0xERERE\nZIBNMhERERGRATbJREREREQG2CQTERERERngw0SIiFqYhIQEJCQkALjx6FlbW1s4OTnBz88PEydO\nhKurq8QJiYhaPjbJREQtkLW1NVavXg0A0Gg0yM3NxaZNm7Bp0yYsWrQIwcHBEickImrZ2CQTEbVA\nMpkMXl5e+tcBAQGYOHEiIiMj8fbbb8PHxwfOzs4SJiQiatk4J5mIyExYWlpi3rx50Gq1SE1NBQBk\nZGRg4sSJ8Pf3h5+fH8LCwqBSqfTvyc3NhVKpRE5OTr3Pqqurw6OPPoqlS5cCANRqNaKjozFo0CB4\neXlhyJAhWLJkiemKIyIyMR5JJiIyI66urujcuTOOHj0KALhw4QJGjx6NBx54ALW1tdi+fTvCwsKw\ndetWdO/eHW5ubujXrx/S0tIQEBCg/5yffvoJpaWlGDt2LAAgJiYGpaWlmDdvHhQKBS5evIg//vhD\nkhqJiEyBTTIRkZlxcnJCaWkpACAqKkq/XAiBgQMHQqVSYcuWLZg1axYAIDQ0FO+//z4qKytx//33\nAwC2bNkCHx8fuLi4AACOHz+OOXPmIDAwUP95zz77rIkqIiIyPU63ICIyM0IIyGQyAEBeXh6ioqIw\naNAguLu7w8PDA/n5+cjPz9ePDwoKgoWFBbZt2wYAuHLlCvbt24fQ0FD9GA8PD6xatQobNmzAuXPn\nTFoPEZEU2CQTEZmZ4uJiODg4QKPRYPr06SgqKkJsbCzWr1+PzZs3w83NDTU1Nfrx1tbWCAoKQlpa\nGgDg+++/h6WlZb2jxp999hkCAgLw2WefYdiwYRg+Pd819QAAAjpJREFUfDh2795t8tqIiEyFTTIR\nkRk5c+YM1Go1fH19cfToUZSUlGDJkiV45pln4OvrCw8PD1RWVjZ437hx43Dy5EmcOnUK6enpGDFi\nBKytrfXrHRwc8MEHH+CXX35BWloaevbsiVmzZuH8+fOmLI+IyGTYJBMRmQmtVouFCxfCysoKY8eO\nRXV1NQCgbdv/XX5y5MgRXLhwocF7PT09oVQq8cEHH+D06dMICQm55d/j6emJ6Oho6HQ6Tr0gIrPF\nC/eIiFogIQSOHTsGALh27Zr+YSLnz5/HkiVL0LVrV1hZWcHa2hoLFixAZGQkiouLkZCQgC5dujT6\nmaGhoYiLi4Orqyt8fHz0y6uqqhAREYGRI0eiZ8+e0Gq1WLt2Lezs7NCnTx+T1EtEZGpskomIWqDq\n6mpMmDABAGBjY4Nu3bph4MCBmDRpEnr06AEAUCgUWLZsGT788ENERUXBxcUFcXFxWLlyZaOf+dRT\nTyEuLg5jxoypt9zS0hJubm5Yt24dioqKYGVlBU9PT6xatQodOnQwbqFERBKRCSGE1CGIiEh6aWlp\nmD9/Pg4cOACFQiF1HCIiSfFIMhFRK3fhwgXk5+djxYoVCAoKYoNMRAQ2yURErV5CQgK2b98OX19f\nzJ07V+o4RET3BE63ICIiIiIywFvAEREREREZYJNMRERERGSATTIRERERkQE2yUREREREBtgkExER\nEREZYJNMRERERGSATTIRERERkQE2yUREREREBtgkExEREREZ+D8LfDLg4Qr3BAAAAABJRU5ErkJg\ngg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8VPWd//88Z65JBjIJgUQIyVAvJYCL9rK2lcrNllJbzdZavsGqCFaxP9BdqKEaa9Q2UWjpbotVqiVcqkntZTf10Uq1lcQu2u2uu3jhVqQ6xAAJBjJJJsnczvn8/jhzTmYmk2SSzCRc5vV4fDJzPuecz/mcmcx5f96311sSQpBGGmmkkUYaw4U83hNII4000kjj3ERagKSRRhpppDEipAVIGmmkkUYaI0JagKSRRhpppDEipAVIGmmkkUYaI0JagKSRRhpppDEipEyASJJUI0nSKUmS9g+wX5Ik6ceSJB2VJOltSZI+lqq5pJFGGmmkkXykUgPZAXxhkP1LgUvD7U7gqRTOJY000kgjjSQjZQJECPFn4Mwgh9wA7BIa/gtwSpJ0Uarmk0YaaaSRRnIxnj6QacAHEdvN4b400kgjjTTOAZjHewKJQJKkO9HMXGRkZHx8+vTpxr7mIzIg9TsnGHFrFoJY8IWPE+hnmCSViyZ48PtlpJCCT+nSjjfnYM+W8U+axJEjR1J3YyPAZZddNuicTCYTiqIMuN9sNhMKhbj00kuRJImenh6am5spKCigpaXF2G82mxFCMGXKFCZMmNBvnCNHjlBYWEhmZqbRp4912WWXAaCqKrI8vnEa6Tmk55Cew/Bx5MiRNiHE5CEPFEKkrAEuYP8A+34KlEVs/w24aKgxP/7xj4vB0NDQELUNRLRKAYjreUTMZbu4be4+cdvcfWJJ/j6xJOs/xVy2i7lsF9/IelZUzm+Ic/74NkmShpzTnXfeOeQ4s2fPFnv27BFCCPHyyy8LQOTl5QlZloXL5RKSJBnb+vG1tbX9PteXX345qk8fa6DvYjyQnkN6Duk5DB/AGyKBZ/x4aiAvAGskSfoFcBXQIYQ4mdpLPgLADfwfMntweVxatx08Hh8eWgBQu538aL/gEWlhaqczTIgEiC+3bds25DEHDhxg0aJFAFgsFvLy8mhra2PixInU1NTQ3NzMPffcYxzf3d3NvffeC0BZWRkAhYWF3HrrrdTW1jJv3jz27t3LrbfeSmFhYb/r1dXVUVVVxaFDhygpKaGiosIYJ4000jh3kTIBIklSHbAAyJMkqRmoBCwAQoitwIvAF4GjQA9we6rmEosaSrkENy5fgdHnVQN4wz7/U7i48fTtvD1WE0oiBjNfxUMwGKSrSzPdzZ49m6VLl+L3+wGw2WzG+0AgQHl5ufHg37RpE6tXr2bJkiUEg0EsFgsZGRls3bo1avy6ujruvfdesrKygPjCKC1g0kjj3EQqo7DKhBAXCSEsQohCIcQ2IcTWsPDQ7Rz/nxDiYiHE5UKIN1I1l3iwA9jtWuvtxUqAgiwHDsAGLAe2A7tkGfGd74zl1MYcupD4y1/+wsqVKwHNl6L3Hz9+nGAwSHNzc9R5gUCAYDAIaIIoEAj0G7u8vByz2UxNTQ0+n4+amhrMZjPl5eWAJjwqKirYsmULPp+PLVu2UFFRQV1dXcruN4000kgOzm5PzlhBUVBlM5jNOLKdyKYMHFkXs6Kyklu+8x1oahrvGY4ZfvrTnwLRmsykSZPo7e2NOm7NmjX4/X7y8/ORJIn8/Hz8fj9r1qyJOq65uZmdO3eycOFCLBYLCxcuZOfOnYYwqqqqYtu2bVH7t23bRnl5OXPmzMFkMjFnzpy0QEkjjbMQ50QUVrJxlCsoBnwnrFpHcDICkLQFNyFgUk8T1NdDSwt0d7MPeHOA8ZrQ7HPnA1RV7df34YcfGv4XWZaN92azmbq6OsMHcuONN3LmzGCpP/1x6NAh5s2bF9XX3NxMc3Mzu3btMsZetWoVQNJNW2nzWRppjBwXpABp5U3eYAYZuR8F4OutmwkhI4XDgRVknhF3MPVoJ/guIVvuIoeXcQ8wnmtMZk2/1f1YIdJ5L0mSsR0KhVi8eDFCCGw2G1deeSX/9V//FXVuYWEhN910Ezk5OTQ1NVFUVER7e7vhbC8pKWHv3r0sXNgXsPDQQw/hcrmMPl0rWbt2bVIf7rr5bNu2bSkXVGmkcT7ighQgAL1kc5HdB8APpPuwS36QNAHiEzYmi1ZuzHsD2tpwK9PZMauV3771FuNZAHjLli3jct1IrSRWQ9GFid/v7yc8AEpLS/nJT36C1+tFVVU++OADVFXllltuAaCiooJly5aRlZVlCBi3283dd9/NnDlzDM1gw4YNHDp0KKn3FWk+g9QJqjTSOF+R9oEkgmAQmpqonDuX1flzKYWodsX4zu6sQ6S/or6+noyMjH6JU0888QRz5szh9ddfN/oizWQ7duygu7sb0CK31q5dy9SpU5M6z3jms3nz5iVdUKUadXV1aX9RGuOCC1SANOHDgcdnx+Oz4xNW7lSf4g5lK3coW1mr/is3i59TcOL/KOh5j48p/02D95PQ3o7D20IBRLWPoEVs7UDPNEkNzpUHQ1VVlfG+ubk5ygSmKIqx3d3dzVNPPcXVV19NVlYWkiSRlZWF1Wqlt7eXtWvX0tXVxdq1a/F6vfT09CR1nrr5LBJ79+6lpKQkqddJJdJRbGmMJy5QE1Yll1HEtTNdAPzq1BR+zD9jl/vCUH2qlZmZJ7ihYycBrLwTnEnH8QkIRYEYQ1Y2HVxPI7k5OSAEeDz9nOpCCCSpP+XKcBCZhzFeGIoqBei3gvf5fOTn59PS0tLvWEVRqK+vx2KxoKoqR44cMUKDa2pquO+++5g6dSo5OTm0tbUxZ86cpDm6KyoqWLVqVT8fSKQAPNuRNsOlMZ64QDUQLRKr8XABjYcL+FDk4RWZeJQJRvMKLfFto3Q//8q/UGP6Bm/aP8Vb0pXskz7BWyat/S+fYBcryC0uBlWF7m7umzoVcdtt7MtfgrjtNsRtt8GKFaPWTmLzMMYDiSQqxpqahBBxhUdNTY3x/vHHH6e7u5vHH3+837mtra18/vOfB0jqCrusrAyHw8GiRYuwWq0sWrQIh8NxTj14zxczXBrnJi4YAaKv/vXXVt5kweqZLFg9k5AUDueVZa1pB+LumYJXZOLFkdhFQiEwmVAyMsDlwjPzU+ByGa0oubd01iJRU9PatWuN91deeSUWi4Urr7zS6Fu5ciUzZ87kjjvu4Pnnnyc3N9dYYSdDS1iyZAnvvPMOOTk5AOTk5PDOO++wZMmSUY89VjgfzHBpnLu4YExYut090h7/yCMPh9+tJhdQVB/ObCf4fPjMJlx5AXzNPr6lbMShdjMzcBREEIGEFA5GUoFOJiY0hxW33cbtO3eO+B7M5nPj60o0F+TAgQPGe51CxWazYbfb8fl8rF+/HtBW2Var1WD+TdYK++WXX8bhcPCb3/zGMGFdf/31vPzyy6Mee6xwPpjh0jh3cW48kUYBSZIwmUyEQiGjT6Msj3+8p8OD02aP6vuBdB8F8ilKrX+AUA8qsqGohBRoZjqlA6YZhtHQAMePI267jR0DCJGhEhKHy3N1LiEnJ4dTp06Rk5NjmLsi/S2BQIDm5mZkWebjH/940lbY11xzTZTwWrx4MS+++GJSxh4L6Oa2tWvXGiHPVVVVZ6UZ7pVXXmHNmjXppM3zCOe9CWvWrFls2LCB2bNnI8sys2fPZsOGDf2OE2jS1AyaL8Pn05oQeEUmTco0Cnreo0Cc4CLRTIGitWk0cxV/AY8HAgEt5DceOjrA4QCXCzfEbReKiSseWlpaUFU1ylcSWfdFNz1++ctf5o033khaPYXdu3dTXV1Nd3c31dXV7N69OynjjiXKysrYv38/iqKwf//+s/KhXFdXx7Zt29LRYucZznsNpKKiYoBs44eijvPiIKhRLBKS7YSQcdvzOCNChJAJoLBBPMZV/DXqPAGoyFzUcwZCIbLp4JMcS8m9JELnfj7B7XYb7/V7f+mll5g9ezb79+9PyjWEEKxfv94wl+mITGJMr5RHj6qqKu677750tNh5hvNegAyk4i9f/i59JCRWVEyAFwC72YzNFMLlsuLzmen4MEB2RgB8Qb6ovEhkBUQBBLDilDtxib/hw0bG8ePQ2IjLDTSGD9RX1g0N/D+bDV+Y6TYSDrQ8kvOFV2s40M1VQ4UJ+/3+KN9JqrBly5aE6U3SfFpD49ChQ1x++eVRfelosXMf570AAe2HH/uDXr48MifjERTWALr55BJyMnyGVUqW+ug7HuZhQhEfmwCCWJil/h2kEEIIXpt2I44FC3A3gmtB+ECPR3v929+Y6XTS0trab55WNBp5uPCEiC40hvLz3HHHHfzsZz8DtEVBquhdEl0pR9Y7EULErXeShhYt9s4773DttdcafelosXMf570PJDFUormw64F6Zua1UTrzMKWlUFQEEyx92kIPGQSwRjUFEy3KZFpEPu8xg++dvnfgSwUC4PORa8kiF5gU0SYC04E1aJntqcxqP1ehCw+AZ555JmXXmTNnDmvXrmXOnDlce+21HDhwIK69vry83KiDovtp9OJbafShoqKC73//+zQ0NBAMBmloaGDVqlVUVFSM99TSGAXSAmSYUJGRUY1mQkVCYJf8+LDhx8Yvu77MivpSHj9cyor6cGt6lIda7tYGCYVQZTNWiwXJZEPChEWWkdC+kCw0fi29qFVakMSHP44ZMFkoLS1l69atlJaW8oc//AGXyxXX6dvc3ExGRkZUwayMjIykJn2eD1xXZWVlrFq1irVr12K321m7du1ZGy2WRuK4IExYw8Wrx9xwrJFXX21k7tyHteTCoUJohSCEGRMqWXIPLqcHl7Nv94KjT+PpnQD0gqJgVkMgFGShAgqofdJcQuPYsqIJEj3P+EIzaw2FVObFbNq0iZtuuonnnnuO2tpaqqurKSgoiGvKWrhwYZSPbeHChUl7yJ9PlPOLFy/mu9/97phfN9JHVVRURHV19Tn32Z2tSGsgQ+Ctt96ECRMgOxvy8sK9Ekiy1pC0ZrEQ6VyPRaPjS9RnlEFGBlithMx2MJlQZTMi4muQARN9Jq2Popm1/hnYB/DQQ/0Hv0AxcWJiCZwjQTAYpK6uDrfbbayUB3L61tXVcfr0aQBOnz5tCA9dc1i8ePGINYeBKjamEwUTQyzZ5D333JMOH04i0hqIgQ76orKcHKYUrQahg44OsFo1JURFJoQUxaeoImu5I1pdw1HNQgqPoosUU7hPBmRJgt/+lu2DnH8+VUccCu3t7Sm/RiQBZjynrx41JoQwmn5eMpzraa6r0SGWbPLKK69Mhw8nEWkNxEADcHu41TOT+vD7WqZNgxkzNAEikMJNDjftAePBSQArQV0mezxw+LD2qodzWSzQ2wuBAOaQDxQFWQ0h0b+MrC6fdLFkIpxY193NisrKMU1GdLlcKRh19LBarSkbWxccQgjuueceHnzwwbhOX0VRkCSJ1tZWg/hRr9poMpmoqanh5ZdfpqamBpPJNGzneprranRIC+DUIq2BDIBXjXeVzJv3EC6XViJ9/9sChzUI9jDdSWcnocyJOPMyCbVpQqZ3WhGUzoLGRliwAICGrYc5HpjCCmUbqCqKkDGJEKqQ0HQYwXSa+K6hP+i6iPbOYjaTkZMDXi1X5eHKSh5+ZGzc65EJfWcT9OinVECn3xdC0NbWxsaNG9m1a1fcVWtsgqe+vWLFiijfyIoVK/qxDQ+FNNfV6BCvZHJaACcPaQGSAH71q1/R03MQuAG4HK8fFL8Pm80OwoYa6FMy1P7KBAAdgUwc1gAr1Bpcyt+18rlCDWsw2t9e+ji4JGQkBGaTBbOsgsk0Bnd6bmHWrFkpHT9SMIQGIk8bBE899ZTB9KsXzxoIAyUjjpbr6kJPcowVwPv27WPLli1pAZwkpAVIAujp6Sa2iBSA3+/DFsfncebMwKaVRsvnQF4EsswC/0th0aEiAe04KeFvAEjh8OAB0dBAaZxuB1ro73j6QnJzc8fkOpGryrHAcH0YnZ2d2O12VFWlt7eXzs7OuBxeQ0VaxUuETQSR4+pZ/udqBNdIESuAxysK63yNBEv7QAwkag5SMeODcLNLfqxWcDqjj2pshEa3S3tthJbebFq80XVFGuVFNEiLBr2arIbihxB3dCA5nXggqjmIziGJbedTTkltbe2YXu/06dPD8mHoPhHA8JGocVRUjVpneVSOxPLly0e9So50IJvN5oQiuM6HnJNYRJJNbt++fVyEx/kaCZYWIEmE1ar5yXNzAyxYAAtcbu11ARRkdFDg8MY9r4EEVtJxWH7nzp2L3RYtuTJNJjxorF7uOG0sGH8TrQdyrlxHh6qqKakKefDgQX784x9z5MgRVFXlwIEDVFVVDZj9HouBHvrDdSCn66unBrGh2Hok2PlgRkubsMYKFgsEAjQEPkOHqucvCMMH8gI30IWDfXyMR6gM54YIVNmMPIgPpKBgLi4XuN1a4UPefhvGILw1jcSQk5NDe3u78RoPkiTR1dUVd99QZrPBzF8lJSU88sgj1NfXGz6Q0tLSAR3Iqa6vfqHWA4knyJubmzlw4AAmk+mc/izSAiQuYjlxm9ByRByARJBMQIsACgkpMf/2RRcB0HHQSzsT8Kt9fhJdjPyaG7EQwk0xrjAlvEkJgCK0crlHj2pqzhD4xKRJBE6fHjcfSVZWVkLHuVyuszbCK1nQhcZgOSvxzFo6gsEg5eXlAz5cqqqqmDt3blRRrKVLl1JVVcXChQvZuHEjGzduZNasWRw8eJANGzawevXquGOlMuS1rq6OJ554AqfTecGRTsZGgr3yyits27YNl8vFkSNHzml2gbQJKyFUouWE7EXj3u0B2oA28kzthANtEkKLMplTah5esjiDkzZyOc0kvslPeIXFvMzneJ5l1HMDDSxASHJfrfZLLtEGaWzU6OHdbpwed9Qrvb04zGYC9PlFnGjUKAVALvF9JMn0jSRaE33p0qVJvOr5iaHMZgcOHOB3v/tdVFGs3/3udxw4cICGhgY2bNhATU0N1113HTU1NWzYsIGGhoa4Y6Uy56S8vJxg2Ax7oZFO6pFgOpHkz372M4QQVFdXn/PsAmkNZFhoAmRUzBAOuW1VHPiOtQASdns+QxXKCwgLJlTMKASwYkZzkFdTgYqMlQAWAqzlCY5RzDXyX6JNWLm5mlPF4wGnE48bnC6MVzo7+13Tjuby1xEmlscd0edK/EMYEokWvhosrDUNDZ3h77Ouri7u6lSSJL7xjW+wbt06ANatW8fRo0fZunUrhw4d6ld986Mf/eiAGkUqc06am5vJzc2lpqbGGHv58uUp8SmdbYiNBFNVtV9O0bma3JjWQIaFSqCbIG3AYeAw2cb7Q/h8rUyYEP/Mlhat9ZJBAAs+bCiYCGE2mkLycj1yB1CLHMBMNGd6aUSbx9hHaZkibH/6e1M63yUuVq9eHdeZLYRg+/btSJJktO3btyOEYOrUqZSXl7NlyxZeeukltmzZwl133YWqqkiSZER86SgrK6OqqipljLk33XRTFKeXLvSSibM1iiwyEszlclFYWBi1/1xNbkwLkGEjgLamdwJOOsgz3oMFmy3+WQUFWstw2rCaVOymkKGJgE6RAj5sdJPFb7mevVzNSuUZHlJG5q1YMH8+ruy5OLLycRUXM8HhwISmjUSauCKjtsayLnukppJoQakLFZ2dnSxfvhxJkviHf/gHo1+SJHw+Hzk5OciyTE5ODj6fzzATdXZ2smTJEj73uc+xePFient7mThxomHu2rp1az8hkqr66r/85S+j6oH88Ic/TNrYcO5EkX3961+PMmmdy7VR0gJk2PgbWuXCN8ONiPdnyMmBrKwhspYlCYRAS04UhvAQSKjIWoEqCjhDLm/xD9Sqy3go+J3oMQbxgeD1YurtBcDj68tunzRpEiZZxglko2kiM4FPACXAPcBXgHfRmH/HMnfE4XBEvaYRH5Ik8c477xhCRKdcefDBB+nq6uLBBx80KFiam5vx+Xzk5uYafaAJlczMTNatW8fGjRtTWphLR2FhIYFAgJUrV2K321m5ciW9vb39VuKjwbnCXLx48eKka3rjpXldsALENpCqMCQawCBavB0bbfSRMNZyxRVw0UU+3G6oPzwTt1t7rnu9GiN8+OJaWK/FCibNDSXCtPC6EPHioJcMWsjnDLn8VrkuehoFBeBy4XG6ol6j4HZTEGrGGvAapI5WScJuMqGAkQ4JEAQ6gR5At0q7Sa1WEhl9pDtYgxH5LhkZGSm68rkLXQi88847Rt/UqVNZv349WVlZrF+/nqlTpwKasLnrrrtoaWlhz549gFYSOJJhePXq1SktzKVj06ZNWCyWqHuwWq1s2rQpadc4l4gTk6npjafmlVIBIknSFyRJ+pskSUclSfp2nP1FkiQ1SJK0T5KktyVJ+mIq5xOJoX80ia27O6K2KtmxA/bsKWLnTom3Wreyc6fEL35hZ948GJx5Q4p6DWIlhNkQJO8xo6+i4WAQQstcVxTw+bAKP5KqaGHAYT4nu92OLI1//MSECIeRLkwihUpvWIsaCGNFmXK24/jx43G3hRD86le/YsaMGSxevBjQsvcjTYdbt24dxWIqcZSVlbFgwQJOnjyJEIKTJ0+ybNmyQR+cw11V63kvkec88sgjZ6VvIZkaw7hqXpF1DJLZ0BjI/w58BK243lvArJhjngbuDr+fBbiHGvfjH/+4GAwNDQ2D7tchSZIwm819dqRhtUrj/QTej9pns9niHifLu0RlpRA5OUJkZQmRbesVFosQNlNQyIQEqFFNJiQkQsKMX5gICAs+cbHlmPis7a/itrn7xG05vxW35e8WN2btjnr9jvw9IbKyRMhuF6K4WJy0FQu/JUuI7GytybIQWVlaX3GxeB9EV7jp70+COA1iX7i9C2J7uD2S4GekfxeJfqayLEe9DtYkSRKAqK2tHfJ7Huz/QR8vPz9/WN9/vDFGev5wx7j77rujxhnsWLPZbHxW8ZrJZBKSJIk1a9YYc6mtrRWzZ88WsiyL2bNnJ/QZJ4La2lqRmZkpLBaLAITFYhETJkwYcPza2loxY8YMsWfPHhEIBMSePXvEjBkzBp3PmjVrhNlsFps3bxbd3d1i8+bNwmw2R91fos+HVOLBBx8c9r0NBlmWRSAQiOoLBAJCluURzxF4QyTwnE+lBvKPwFEhxHtCiADwCzQ620gItMJ7oJnlT6RwPtEXFoJQKMSiRYtGtUKJzR8eSLNRVc05HC4Hgi9kRlEgpMphKsVoSGGjlilM9W5CxWHxcyI0RSuXaz2By97CnLwWXPYWCs3aa5OYPqz5O7OLcWRlYbVkIUtSXCd7JC1Kqs1ZkRrIUBFZyXLwtrW1JWWcscDPf/7zhI8VfQu1uNALYemoq6vj3nvvpbu7G8BI9kuGKWTNmjX4fD4ef/xxuru7efzxx+np6WHNmjVxjx/Jqjoy72XChAlG3kt9fb2x2r/99tvH3an+7LPPJlVjSDR/JyV+kkSkzEga8FXgZxHbtwBPxBxzEfAOmtm9Hfj4UOMmUwMBRHFxcUKr3uhWGfH+/QSP2y4qK4Ww2zUlwCQpAoSQYjQPvZnQNBMbvcKCX9jpFXNzjomLbR+Iyrn/ISpzfiQq858SlVnfF5X5T4n1WU+JyvynxG3yLiEsFqGYTEJkZ4suU7YIyRYhbDatgRAWi9ZXXCzas4ujNBJhtws3sjgJoiHcTg6gjQymlejfxfA+16Fbjt1uaCGJIBENJCcn55zRQGLHGc1naTKZjFchhCgsLBRWqzXqGKvVKgoLCxP6rAcDIBYvXhyl3ZSVlcX9PIQY2ao63jm7du0SgLHa/+EPfziq1X4ykGyNoba2VkyePFm4XC4hSZJwuVxi8uTJUfc4XI2OBDWQ8TaElwE7hBCbJUn6NPBzSZLmCCGiuB0kSboTuBMgPz+fxsbGAQf0er2D7tchwiuvU6dOUV1dzbe/3c9Fk3S43W7M5mmAjEXx4w1lIBk1QaK1EAWt3rqQTaiSCWSBNzeX3gwT7iuuIM/rJeRwYG9pwVdQQEuLnYICHzec2mWs4kOhEEKYkNQQItg3vlBVhJAItbVhDcioqg9Z1cJBLYpCVtZFqD0nQHd20pd8CNEJiBA/CbGxsRGvNz555GjQ7tPc/kKIhL7nRP4fhlsaN5HrpvL8ZIwjyzITJ06kvb0dRVFobGw0kvr0iC1JkggEAjQ3Nydlzg0NDcb/5oEDBwzndryxi4qKWLlyJXv37qWpqYmioiLmzZtHUVHRgHMpKiriiSee4MorrzT6ysvLyc/PR5IkXnvtNS699FLWrl3LAw88wEVheqGxwCuvvMKzzz5LU1MTJpOJlStXGvQlAPv27Rv03gbDwYMHCQaDRvi2z+cjGAxy8OBBY7wHHniAe+65x/gcJElKzueQiJQZSQM+DbwUsX0/cH/MMQeA6RHb7wFTBhs3WRrI7NmzxSc+8YkRrt5GroEM7AMRQtM+tFcTISGjCJspKCwWTXOZO1eIiy8WorJSaFrI/AZRWbxdVM5vELcVN2ivlueG5QOJp4G0ZxcLkZ8vxPz54v3i+ULk5IjXrVbRENZCGiM0knhaySMp1EAiW7J8IMNtox0jmfNI5LiB/CAWi8XQQoYaa7SInUvknOIhEX9GLOKtskHzG+maj8vlErt27RqVf2C4iJ3X17/+dWE2m0VFRUVSfCCzZ88We/bsierbs2ePmD17trE9XK2Hs8AH8j/ApZIkzZAkyQr8P+CFmGOagMUAkiSVoGXofZjCORmoqKjg9OnTVFRUpLyynYYm3G5ob++ku7uXDr9MMBgkqOgayBhBVSEQ0EgaPR7sPk/UdjzaeIBPf/rT2MJEjtnET0LU21glI55t8f1nK0QcP4gkSdhstriJm6nMydHnEm9OkWhoaOBLX/oSDzzwAFlZWTzwwAN86UtfMni84tnz42XS5+bmUl9fH1WLY8OGDUao81gg1p+zatUqNmzYwA9+8IOk5IEkEr6cKp6zlJmwhBAhSZLWAC+hRWTVCCEOSJL0KJp0ewFYDzwjSdK/oK1GVoih/rOSBP3Lqqqq4vDhw2NcDM0kAAAgAElEQVRwxUp+/etNaAmHDjRZacZCiAD9+U/UsBs9pMoIkcSKtrIMVitKAExOJz4P2EMhY5tBwps//elPg8dDSwu4Wt9CD/6UiRYaZoBrrsHlcrF9kKmMlhH44MGDozj73ITdbsfn8w194BAQQgxIeqmbHlNhgowHu91uMAl/4xvfYMuWLRw8eJDu7m52795tcGetXLmSY8eOGXkPy5cvRwjBoUOHuO2223j99dfZsmVL1IN4+vTpdHV1sXLlSpqampgyZQq9vb1RIeSpRrwHfGVlJY899lhSmBcSqfueKp6zlPpAhBAvAi/G9D0U8f4gcHUq5zAYIkuFRiZXpQp6dEssZJQhebBiFYOG9rl0NJmg9yLozKC3M8ibnRa8wemsUJ5imtxMFT+NP1gggEkhrIEAat82wSB24TFyRgaCDdBFjRktCVGHHZh44gT2zMx+/pJIuAa9wtCwJkBtn0xMnjyZKVOmRPUVFhaOKSFgMoSHjsFo5McSTqeTU6dO4XQ6efLJJwHtu7366qujasFfffXVnDx5kqqqKiZNmmQ8/KxWK5/85Cf56U9/ymc+85koAXL8+HHy8vIADLOL1WrtlzuTSiTygB8NEhEOsYSOJSUlyeE5S8TOdTa1ZPlAYsGw7M8j8YHo7V0BJwW0C+gSNtqFCb9gmD6QuXOFmD9fiPnF70e9ZuEVOZwRWXSKi03vi2LeFzM4Ki6W/i4ulv4uPsur/X0gelRWdrYQJpPotWVrjhp9v90evth8IebOFSfz52q+EhDt9OWQ6O0kCHHxxeLkkiWiEgZs20do+49sQ2GkPhDdNwCIXaWlA9qpAXH//fdrNnZJErNnzxb333//sOY8mnsf7eeX6FijxWBjR/oscnNzjfwsSZKiIsVi/Sd333234R/Rj4u0+wshhM1mE5s3bza2GxoaxObNm4XNZhv1PSWK2Cip/Pz8flFSybhGMvN3OEeisM5RpJ4dSgm7pwKKCRFOJG9pgaHM0gEs5Emn6RU2CuUTIBRUVSCHNaxmEcf2G2HSwu/HZ3Nit/s0ihQ3OONQxJ/v2LRpE99av16zq/72t5S8++6AK7bt27dTW1vLvD172LtoEcuXLx/7CZ/DiKyA+Oyzz/LFL34RWZYRQpCXl8epU6eMV70f4NVXX2XChAmUlJSwcOFC/vSnP3Hw4EHmzJljrLIDgQAPP/ww3/72twkGg5jNZjIyMggEAuNyrzpjcrIRaU0ZS1ywXFhnC/o8DtHmBD2B0GpSsFg0+qyCggQGlCQwmxEmE2RmgsWCkM1h7i0LseHC/RAMao51r7ePpLG3F4PUq6Ul4XtzvPuuQRe/Go2sMbJ9hT7SxrGkkU8EDzzwgPH+2X/6pwH5isxmM+3t7SxZsgTr977HkiVLBg0LlocqGHMBItIZridKqqqK0+mkrq4Ov99PXV0dTqcTVVUNAXLy5ElUVaWtrc3g+jKbzVGcUABdXV1Riaper5ec4VSBGyWqqqooLi7m2LFjqKpKS0sLxcXFSQ0CSZMpjgMiP/SRwz3qecRzo6lIqGEnuqJoPpCWFjh+PKogIW6PM+pVEaP8Si0WfHanpuroJI0ZGRpRo8sVJcUGEkV6v8nnMyK1QPOTRDbdhetmbGnkE0F1dTVTwqV5K/bsGfAHGQqF8Pv9UWSQOhtBrLCQZfms5GUab1xzzTWcOXOGa665hrq6OqMk8h133BEVUXXHHXcY50iSZAjq1tZWQ0CUl5dHZXjrq/1NmzbR3d3NXXfdhSRJdHR0MFY4cOAAb7zxBk6nE1mWmTBhAm+88YZRE320D/xEyRTPqUz0VLVk+UBiY7MZsf24YZB98Xwg+wScFtAloEeAX0BAaIXPIzPRR+YDschBUWz6QEyWT4n5Wf8j5st/FvOk/xTzLa+J+ZbXxMUcHX4eSDinRBRr/V1Z+UKYTELYbKIXhD/C/3FMkrRzL75Y9EydKl63WkVj2C/yfkzroo9zK9EM99g2FEbqA3G5XCLbZhOFhYViz6239rOtx46Rn58vJKJ5tfS4+/dvu00IMXDc/fTp0y9oH0gkP1ZmZqYoLCwckKcust9qtfb77Hbt2hX3upF5IPfdd19S7mk4956ZmRmVB6L7ccYqDyRVmegXrAYSG5s9dngBLYA1gEairkASKxFiMuMxTaJDTOSwcimHxUf5m7iMw6rWWpnCit6neFj5ztBj6YjRQLyOAs0cZrdjz84GSxZ2WzGu4mKKiqJ1iY985COYzWZMcUw3Jvo4t2JzSdyMv1ZiNZnYtGkT84qKBqUEN5vNtLa2ItBWw2az5lr82te+ht1uZ8bOndjtdr72ta/F1UA2btx4QVdijNTePvKRj3DixIkBGYL1frPZTCAQ4IMPPojav2rVKmRZRpIkQwPMz883qNO3b9/O5MmTU3g38WE2m1m5ciU2m426ujqjVIGuKS1fvpzbb799RNpBInkgqWLsvWCd6PE+9JFhUI72OKiMaDJwPfDR8HsL2oJJ/zsyhCwZyLKCPT8bWlrwBLMIoQnJADJvcgV/Vq/mRKuLYBAsIsBUTlBN8muU5+fnAyC9+25Cxy9ES1QELVtme8z+0eaOJIqsrCyqv/AFysrKaLjttkFNT6GYkGd9u76+npycHPx+P5mZmdTX1/P5z3++3/lVVVX88Y9/5N57742q83GhICcnh/b2dnJycti/fz9ZWVl0d3dHFcECzWylh8KHQiEmTpxIZ2encT5oQshutxMIBMjKyqKrq4vW1lZ++MMfsnr1an75y1/y9NNPj3kpAK/Xa9S3VxQlqlRBXV0dtbW1BAIB/H6/EYYLiRGGJhImnKpaKResBhKbmTk+tSUq0YpTdQDdaGIjiCncLKbkxOmHTDbMDjtmhx2TDM4MPxMtPlz5vUx29OLKaMVtujjh8RzeFs0p4/OBz4dJCeAIeYyiVcQkoOXn54dj8Yf+d4vMch9PreTIkSMs//d/x2q1csMvfjFkudEJEyYgS1JUgprVao1KyrNarYazNxL6j/vtt9/m8pg8kwsBVqsVSZKMvB5dSAghDM3MZDJFCRPAeCDHBi3oLMOTJk0yrAt6wa2nnnoKq9XKE088kdJ7ikVszk3kvVRVVfGZz3wGq9Vq+HuWL1+esHag54EMViI3VZnoF6wAif3QgwNQeIwOI4st0p3qIWWI0rgjgSRpxaZUFXw+zD2doCha0SmfT8tUHwJeRwLhYGfO9Ouy26bHNWWdjdD/H1RVpSsQYM2aNYOaFbq6ulCFoKurj+Dfbrczbdo0JGDatGnY7fZ+2gpE/7jfvvtuamtrucjhwBVbYfI8RWtrK0IIWltb+5mT9UztRDO2ly5diqIoqKrK+++/zz333AOAy+VClmUKCgrOqrLJOunhL37xC771rW8ZTvDnnnsuYaaFeBQusSHniQiZkeCCNWHFZmaqqtpPZc7Ozh6jaA0fkIkWvySjBfEqmj6iqJiTaB4PYuEwMwkgUU8pXgI46KUdByvYQZF0kHX8OHkXjMH06Vq9Eo8HMvytdAySWV2AFgIciUizVlMqJhgD/cF15swZ7r33XiDxOiQ9PT309vYi0DKiY1fQOioqKli2bBlZWVk0HTuGyWwmU5bZXF3N7bfcgj/Ow3MsqgiOFfLz8zl16hRTpkyhtbV1VGP94Q9/wGq1YjKZKCkpwe12AxiRXXa7nZtvvjk5WdjDREFBAadOnSI7O9vQmux2OwCf+tSnqK+v57HHHovKuh8N1q5dyzPPPGPQxMyfPz/pmejnxnIwRYisSwwYiUsulwtJkowvN/VwA6fQdI8eIIiZHizhFq80+IBhvIpWsCoYjB9kKwTYrSpWAjjxUGg9hVPuZILiwRU4QpNvCjbvae1AnWwxXpBB2ImO3Y5isuI1O8EZbg4H5OZi7uwksih8pJnL7tNoU8yDOI+z0YRIZMsFrgi35QAPPTTQ6YPjoYfYDgO2eLpjR0cH5eXlcYfTw0Ujk8RCoRBLly7lf5YtY+nSpXG1j1gIIQgGg1jCmlpQVZkzZ07UMXPmzEmRxjw+iNRARgshBH6/H1VVOXTokGEOO3DgAKqq4na72bx585jzqFksFuN5YrPZDE1LN7f99a9/ZeXKlQZv1/PPP59wrfp4Ybx33XUXTz75JNXV1XR3d1NdXc2f/vSnUQulWFywGkgsdE6joqIig1f/9OnTWK3WMcpa9aJpIGZAxk8mWowS+Du8WK02oO9Bfvr0AUKhMHFxB3xENjH9is9y4gRYraAoA7vhPVIOfoIcJk+77gQHHf4g9UWz8f69lX8Su/nHmQqPLmzgcCMUeOpHdEehiROx6GYYnw9vyI7DGd70gN3vJy87m6yuLohD7Cej6Wb95h+50TRCPaSpadg8XXptjHjQtYtILcNsNrN7925eCAaxWCyYzea4QqSqqoo777yT+vp6wxfw0bw8br/9dlQh8Hq9VFRUUP/00+w/dYqGhgbWrl0LwOzZszlw4EC/MQfqv5AQ6XeQZdmwMui/77FEMBiko6PDSGSMXADYbDa++tWvUlNTw3333UdJSQnLli3j17/+dUJjR0ZYgZbR7/P5mDx5MuvWrQPgoosuwul00tXVhc/nG7ajfiBc0BpIJDZt2gTA//3f/3Hw4EGmTZtmhAqODV5A00C86IIDvGTiBbwEgy2G2vuv//qvhELRK1BFVfjLX/4SpYF4POAJOQgoJt3fjapqtCgmWWgKhDmEbkVqaYEz/iyOBoqofedyVtSX8vjhUh5quTuld/7JT36SK+bOZcH8Sq6YOzel1xoNIgsVJQJFUaJCVAey4x88eJDnnntOW0FWVLB06VJe++AD/H4/26+/ns7OTh577DGuKSrqZ7uuqKhgxowZ7Nmzh8CDD7Jnzx5mzJgxatv2+Ya77roLj8fDl7/8ZYABzYmphP77jWU5DgQCvPbaa1EaxGuvvZbws+fQoUM0NzdHJQkGg8EojU531AeDQaxWK0uXLmXu3LnpMN5koaysjFtvvRVJkggGg0Z8+WWXXcaRI0fGYAaVaEUXW9CMNZqjrweNOkQI+PDDFqZO/SSdnfH9MoGAH4ulTwNxOgGfl5BqxWzXTEXxLB+RAgWLoFA6hQdw4cbu9dIk5WmmJ4DsbGgZgV/I68UR8hnqg90HhIIGZQo+H4S1kwXz59P46qvDv0aKsW/fvmEdH/uQGuihZbVaaW9vZ9GiRUafSZJQhOD2F17AbDZrEUT/+7/8OcZBGuXLO3iQkv/4D2P/hc7JZTKZDKH95z//mdzcXIqKivjsZz/Lf/7nf47z7Powa9YsSktLo/wTN998M/X1iWn+U6dOpby8XONjC7PxLlq0iIkTJxrH6BUgTSYTnZ2dbN26lQ0bNiRkVh0MaQ0kAloJWMHmzZvp7u5m8+bNvPfee2M4g7+h1QtpQdNEWtBSnt4E3qS39wBaHRwXmoBxAjMBJz6cgFOvF9WngeDsp4EMigkTIC8PioqgtJTDefMgPx9KS7W2MPG8lygfyGCIoUgBTYjYxjTBc/zg9/vp6OiIoqdXwsJmV2kpL7/8MpMmTUKCuJxchi/voYei9hcWFo7ZPZxN0AkLIx+gkQWlhrsQSMZ8BuuvqKjg6aefpru7GyEE3d3dPP3008PSImOvkZmZSWdnJz/84Q+Nui+qqnL33XeTmZnJunXr+MY3vjFqU15agETAZrOxbNkyampqmDBhAjU1NSxbtmwMZ9AA3I6WG3IYqOdD6sN9tyNJK/nznwlv7406bib1QD0TJ2oaiMWiaSBOuw+rSdH93UNG6Xq9cLgtj6YmqK/X3u89XcKKZ69lxbPX8tB/XIm140PNWx8KQSik1WyPg9DEiX0Z7A5HlKPdZ3dqjvghQiozMyYNuG/CWRSOmQzEM1ncWl/PrbfeytVXX411gIADg+Po0UejsphPnDjBrl27mD17NnK4AmE8XH755cm7ibMAOs1GZH7IokWLsFqtrFu3Dq/XO6Y+kIE0Tz3Ppby8nK6uLiNS7/jx48Oq+3LixAk2btwYFca7detWAKOiI2jPt9/97neYTCZmzJjBr371q1Gb8i54ARJJMOb3+3nppZf62SJTg+HniIyF3VZRNL+I1ao962fmteEonoTr6/NwfX0eTVfeQFP25dqDPy8P8vLwZYyQ2TQYYcJqacHlbowIL3ODomC1OsgLr74jkeN0cvHFiSc/nguI91CbkpFBZ2enFpUTx4dSV1fHvffeG7V6vffee6mrq6OkpITCwkL279/P32+9FZ/Px4wZM6LOv/zyy3n77beBvhDrWAzUfy4jNrJtPHHy5En8fj/l5eUEAgFeeuklHA7HgBF/sYj8nhVFYf/+/RQWFjJ79mx8Pp9Wt8NsNih29OdIb2+v0TdSXNACJDb8zeVyEQwGufXWWw1JfvPNN4/3NIeNKBOWz97PhBUIaHVGEkVLi6aN1NfD3r3wUMd6VnifYEXbD1jR9gOqff8ysonqGkjYhOV2LdBMWbrWEl5xOxwOiouLcWYX48jKZ8H8+cw9i53tI0W8BcKHvb10dnYaEUX6/6UO/aEDfQIoEAhQXl4enTymqkY98draWkRlJUIIQ3gANDU1GatVHVlZWTSNNNLtLMb+/fvHewqA9p0rioLVamXjxo3G97tixYqEK11WVFRwww03RGX033DDDVRUVBhaSSgUoru7m2nTpuH1elm7di0+ny/KzDcSXNACJJZgrLq6mszMTMxms6GB1NbWnnNEd1YrSFKQ7u7jdPhbUFQlbgSQIWCGECiBQHSKx8emNOPCbbTjgclYVZ9BbcJoktxiNBC7Lzp3xBpIXp3uhysrWcjAtUreDbfGpF1x+NBFip5DUF1dzdatWw0h0tzcTEZGBjU1NfgqKqipqSEjI4Pm5mbKysq47rrrWLp0KZf9/OcsXbqU6667bsCwzbVr1+L3+zUf4P33s3nzZvx+f5TAOl8wHlFY8aDnevj9fkKhEKqqcuTIEf7t3/4t4TFef/31qNDgYDCI1+vlscceY+vWrVRXVyPLMp/+9Kd57bXXyMrK4oEHHuDOO+/EowfHjBAXtACJJRgrKytj48aNuN3uKEqAu+9ObRhrohhM3dRjltrbzxAMBgmFQlrUycRsbCYVRelGlgPIsiZgrCalz0cS3k4YM2ZEmbD8ZgdNmTNhZrjFmEmGhRgNxGeP9psErMn1e8yfO5eC/HxkwBrRLGhhCg7gSs6OoleFEyawbt06Nm7cyDPPPGP0L1y4UFtphuks9HyAuro6fv/737N7926O3HILu3fv5ve///2AlCzPPPMMGzduZN26dWSG/QWx1zpXoTPznm0FvWKTlT0eD3fccQe9vb0J+2meeuophBAUFBQYdC1CCN555x3j+9Qzzzdv3ozNZsPn83HTTTeNmgvrgg7jjcdiqdsOI1XcsrKyMSdfi4dE1c1AQFvVnDqlxYFbsCBQwwlU1sFOTQgN77vo6CmAXu0f3BO08WjnvUx8W9NiiqwneTT/Sa2S4TkCM6AHNNrRqOZ1UWVBy3yfR5jM8aGH4NFHx3R+PT099KDZ7r/1rW9FZSlHCoQDBw4YCYR6jL8RHvzznzNjxgwtzPerX+13Db/fT05OjlYS9uBBSn79a9avX59wRvRgGO/ExsiKhGcTurq6osyGTqcTi8UyrARm3QR2+vRpVFWNSoBevXo1oJm5SktL6e3tNXJBMjIyDGf7SHFBCxDdRrxt2zYjfnrVqlX9kmsif6CRseVjjcFKpSYCIVSE0ExSKCYttcNnJ6D2bQeDwBAWqA6/HafTB/bwgW0h1FAGrn/QVlNuTxFc8Rf44x9HNd8+E5a2afeBrIb6woKHEakyHMhopiNdoJjoy353Q1/2e5gOZSAkk3pe/7/bsmULX/3qVw1tVOdv0zOtIzOu9Qf29ddfz3cyMvhuby8vvPCCNl5YQFRUVBgmLbPZzPr16/nNb35j1He/8cYbR+1oBU3b/+Mf/8i1114LDz8MDz885tngZyNifU46hqspRQqbyCz3j3zkI3z44Yc4nU46OzuNcUWY+PP1118fVSb6BS1AYgkVByIY0wVKWVkZb7/99ritpKJ9MU1o+SDO8OsVaPkiZrRHXvxVo27CIqDgdJrA4yMUshvbCS82bba+B7gi4Qi2gydM2uU1Q1ERit3el4AYCGANKuDT7sEcIiHm3yHx5pujH2OkGAEdykihL1r27duHx+PB6dSyLnVb/uTJk2ltbTVe9f5LLrmEv//971x18CBTp00zBFFkxBZo/9sTJ06ko6ODffv2cZWisG/fPjo7O8nOzo4zo+GhpKSEnTt38s///M+GdpNGfOTm5iaFFwwwxjkTZsfWNbDCwkLa2trYunWrUTt+JLigBQhoP5yhJLBedOXFF18kJ2eEIasD4hFgQUJHRmeNVka8PhLxegWaoSWAZoxxEIyoeJi0RV+kn+NwC3s9C7mkNJwM6AYenYf3v/8bx6c+pfXV19N02E7uTE1LaXODw3d48GuEfSD2CP4sc8iHVefX8njgiitGNv833zTCh/F6sdL3YzibQybWr1/PnDlzosgAr7rqKt4MC1KPx8NVV13FX//6VwCOHj1Kfn4+qhCcOHHCeID4H3yQvYsWsXz5csrLyykrK8Pj8bBo0SK+9a1vsV4IJEli8eLFcWuYDBcLFy7kySefZPLkyahC0NbWNuoxz1ckS3gAlJaWsnv37n5mSLfbbWiro8EFL0ASQUlJCU1NTXR2do4hQ+9I8QIaT60erXQJ0Esfv5aZQMA+qAnLI+wMxXCwb1/YFAYogTxUFX4cZoEPBuG99+ATx2/hTMtsrbPpY5wJmsg9rD2evV6YxUEedWxK0n0PE1dcoTnqPR5oaSHQ3W2YrM4uN2s0Nm/ezH333WdoIIAhLEDzY0Rum0wmMjIykCUpqmSBxWRi4cKF7Nq1y6iSOHXqVPbv388rr7ximLCWL1/OVI3+YFSor6/HYrEYK+EzcerFXIiI1CZTgXjCQ5Zlo1rjaJEWIAmgoqKCW265hczMzHNAgFSiaSDu8PYK+mr8gaLMRFE093BHRxtOJLAUxx3J7QY8TnrjmLUCgb5o3ZCikmc5AxM1DcTngxMn4LhvCiXTwyas9tPkebtwoDnxvYEATRRoA3k8GsfWeYChSvICo3LCr1+/HovFYlTjGwqKotDW1oYawxZsevRRSn79a66//vqo42P9EsnyUzQ3N5OTkxPlX4nk/rpQEU94OByOfoSLI0W8AAhVVZMiPCAtQBJCWVkZN998M06nk2PHjqXgConxS6WC20ggCAa9ZFmshg/EafPhs9txuQC3h87Oka2QNB/IaW0jJwfvSYGjQCsd7PV6QbLB5Zf38Ws1jvp2xh16SV4d7ngHjTIxbzi1QEwmU9yHkSqEEbGll3M+ceIEO3bsiCJm3LhxIytWrBjVfHV87Wtf0yIeX32VhQsXGjXNYzF9+nSampriCi8RNq2dL4hnRupNYvSiw+Hg/fffZ/LkyUkbMxJpAZIgZs2axZYtW1i4cGHcVVpyEpMGzjSQZdmgnE8lIk1YkRpIZOBTAgVtAfBeeil86rPG9mH3mxSUaj6LwzvcuMzNwyJnPC+RwkiuRKOn9KJLkZQYeqRUQ0PDqHMFdDz77LO89NJLHHO7Kd65M65gmzFjBpmZmdTV1TFjxgwtQjKssaxatWrQssLnIlIdVuz1epkyZUrKxk8LkAQRGfIbi7HIar322mtTUoJTJ2bXVrVWLJb4Gkik3zrMMD96ZGVFMfU6D7eAI+KhMoZJX7JkAjF0ePaNX/lKci+cpEgu3ewRaf7Qgy6GWuDoZo7YXAFLdXVScgVAiyxqb283ijn5fD5UVSUnJ0fzh4QFVjAYxG63RxdJCmss27ZtY+3atdhstn6mmQeB7416lmcHkp0mkMrnU1qAJIjIkF/oo4xWVRWLxYLFYjFok0ePR4mNzDp+/PgwztdDfEGLxCqK2GclXpivQNDS0oIkJapfDI1333XQEiFsWnqK0IsbtrTl0Wx28VDRDsMdUL+gkStcOzCk1Y9/DGOU92U224EAgQHMQ7IkUTx9OjmXXz40Pf04QBcasav6gYRH9/33szUvj/Xr1xt9r7/+epRJKRgMEgwGR50rAH304i3hfwj9NZYmaO/evZSUlPRjiQCYN28ehw4dQlGUflaA80V4nGs4mwNOzjrodRfMZjM5OTn86U9/Mtgz7XZ7lMlgdNQJkT947YcyvBrOlegU8Brd+zvoNUXgDFpUlhlNuGh510FC+P2+uDTSvb199FQtLdDidRAM9lFfDcSj5fOZDA4tPQeypSUcORuwcuYM1NbCihURpc2LivouFgxi7uk0LmQO+QiZRsGzNQQyMzNxxnXmm7nmmmtSEMKdegy0+nQ89hhbtmyJ+p998skngb6Huv6q948Gx48fR1EU8vPzkYD8/HwA2traNLJHRYmqtqizRERCFy76fZ1vNPTnItIayAigKAqBQIAlS5Zoqr7Fgs1mQ1EUbDYbkydPNjQGIQSXXXYZx44dGyElhMBisYySw6eBPv/KdrRcESd9Lt6Z9FUfF3R2dmK19znOMzKIMWF56VAcfVFY6tAqt98PdjmgySvAntmDz2o1yHjd7rDOFBmdtHcvbW0OHDO1ubSFp5vUoMdwHohJCYBPM/mYkDHJIEsWzGZQAgPHND9cWcnDjySPJSsyigv6R3KNxCeSk5PTj8VAkiROnz4dlVs0kD0+WXb6L3/5y/z2t781zFXf/OY3eeqpp+JWUwRYtmyZxgZ87BhFO3fS3d3Nj370I0Bjh1BVFVmSKMnLo+Kzn2WH18vLL7+clLmOFyRJwul0jpp1YqyQFiAjwLRp0zh9+nRUn6IoTJs2jebmZk6cOMGUKVNobW1lypQpHD16dFQ/wmAwOKaRJ+1ChdYW/P5W5qYwvNbrxShc5fXCm96ZuFf07S86fS8r6e9zSioKCjQh0jtEXoJedkbfDG4AACAASURBVDcOHq7UHumNjXCFpx6czmGV5I0UGnoKKGjCwwJcH+5rIYKPCyLUtsER72Gkhqks4kG3wSfTFi+E4MUXX+z7P37kESzhipORTvuBzo2EXobBcLA3NbHqhRcIOhxRiXM2mw1VVeNGremRZ2cbYgthne1Im7BGgJ6eHgKBAI8//jjd3d08/vjjBAIBenp6MJvNBlGZLMtkZGSQkZExAj6h6Oik8WAR9XjaefWYm/b2M7z11ltJH19RMApXORxQOvOwQcTrckETRdhD3j4697bmKHr3ZOaOKCYrRtnGwdDYOCr6lHjLAD3014MmKHz06YNBQPdKeNDSQ93EcHKdI4itvz1YOHJVVRXPP/8877//PmplJe+//z7PP/88VVVV0WUYTCYWzpjBtuuvp7m5ma985StccsklyJLEJZdcEjfoJTc3t98CMI2RIa2BjABnzpzh+uuv54EHHmD9+vXYbDauu+46g6gutnSoyWQaYfF6naIkejU4urDhJrR1rB3NGFQARDL0xl91ejztvPXWWxQXzzV8IPoUVMWER3UYCRCh0JCVahPDpEkcDs2joNQFaKG/uFwULIg4JhkO7RgTVlzoWesLFiR0zQXz5/NmjBYiAZWVlclzwu/bN2ZkjsmC/r871P/wYE50/X3UviJNL9uwYQPPPfecEfp78803U1hYyAcffAAPP0zjggUsWLAguTd1AWNYAkSSpMVAJvAHIcSQ2UySJH0B+BFa2M/PhBCPxznma8DDaJ7jt4QQy4czp/HCX//6V3bv3m2w+MaLUtF/IKkwP8ULZUwMeqa6Cy1zbwGaINHT32YOeKbH047Ho6++PwooOBwOQqqCU/aCU5MaoyHJbWiAjnBssfd0CWd8N7PjWY2k8UxrLwVtp1jgimD5LSqKM8ow4XCgBLyY7NrPQfWrmEwQku2Y7aCG/PH5sXQ+rTBcbsDXYhBIXpGfzxWrV1Nf76G0NAV0Fd3dowoBTgYX0nAhYjLiB0K8UguRTvR++5qaMJvN/cY9WwpHna9IWIBIkrQZLW1ABe4GvjjE8SbgJ8DngGbgfyRJekEIcTDimEuB+4GrhRDtkiSlLuMliTCbzf3U72AwaJipZFmmpqbGEC46/fbItJD+mDVrVgQj8FAO3MY4fU1ojnQXmvBwoGkiLfRpI0NJATOKItHZGcAs9ddAAgHN+T5cdHRoJi0Nk/iY0wILtNWme4ebJt/lsCMJZYb1aC+vFwIBpFDA4G+XUEFKgFJR59MKw90ILo+n7wZGWe0t1RiP2hiJaiBRpRYUhb3hCC2dGXvVqlUsX76c/3j6aQ63tWGSJBQhmDNnDosXL9auUVWVNDLI0eB8y56PxIACJCwwviuE0H8FRcDXwu/fSWDsfwSOCiHeC4/3C+AGIDIe9RvAT4QQ7QBCiFPDm/74QFEUTCYTK1eu5NixYxQXF0fVCQmFQnEjtEaG/gJi9HTylWjrAN1E5qJPIyklmoxjcAiR4MP2bIMe7bViBbz5Jn5vE5Y8rWBXsLcNc4Z5aBl6FmMhMI0BuLjQlhAPJ41BIXHE00AiC1jp9UmiSi3EidB6/fXX2bRpE6FgkJK8PP6ppITqvXt55ZVX+MEPfsDqtja25uVRXl5ORkaGcY2inTuprq5OSVLuQIjNqrd+7/zJWhlMA/l34BeSJL2IpknsQosHtQOJ1LicBnwQsd0MXBVzzGUAkiS9hmbmelgI8YfYgSRJuhO4E7T48cbGxgEv6vV6B92fDBQXFxvahb6yWLJkCXv37qW7u5vu7m4mTZrEqVOnmDRpEl1dXeTl5XHmzJlRRbZ88pOf5Pvf/36ybiMCkRpJpDaiI15ltBB6MmJQDdFBGyavh6ysLKzWLDIyFDo6TBw+rD2FOzos9AazUNq0Zb4csBJQVAKBEB5PD16vGQ+ecCKcdoze5wmbiXw+H4GAPKzvd6j/h5ktLTi8XlRVNXJghBDh+tQyoZCKECoejwez10ub2429pYXDjY3MbGmJkjEejxOv12uw+urHK8oE3BGmLv18/fojxWCcSdn0OdzjwUX0Q3yozzSVv6m2tjZEmOL9m9/8JgcPHmTx4sUcPHjQoFnp7u7m4MGDxjyef/55cnNz+fDUKUKhEFPoMxVLksTx5makyZOxWCx0d3ezatUqvrRvH7+aOZP169cb1xgLPPDAA0ybNs1YVA4HqX6WjfYaAwoQIcRrwBckSfo68BLwYyHEghFfaeDrX4pmiC8E/ixJ0uURWo8+l6eBpwE+8YlPiMGcYI2NjSl3klVXV1NRURFlplq1ahXV1dWUl5ejKAq1tbXGvptvvtnQUIZf0bAc0Diw3njjjSHvbWSmskiNZDt92oiO0oRGUZQQnZ2dTJxoJyMjA+jl0ks1O9bhw2D3dEPeBO1gj5egPxOr1YrTqZnNnE4nDhyGBejoUdilLIEmbYzeziCKkLjjDs3vkZUFN9wwOLHtkP8PO3ZASwte+YzBtNwrecOfI5jNMkFJMVhTHWGTVcGCBdq5kSYsNzhavBhc+D4fDrcb34c+XO6I6C6PRzs/fP2RipCMkdgIB8BQ/1ep/E3V1dVF0cfv2LGDWbNm8dxzz2m/sQgurP+fvXMPj6I8+/9n9pxzCAmJEHG1WglYQWtPmGqCWIr1BWo9lGAV8ATva2qVAkqsHCogePi1DRVQoaiV1EPbFK9C1UoCUmo9FLSEgFAJEHSBQBLYJHt+fn/MzuzsIckm2U0C7Oe65kp2dnZmdrOZe57nvu/vd/jw4QAcP36ct99+m6KtW9UyXmVKbs2aNfx8924K/v1vBg4cyJEjR3jwwQdhwQJGjx7Nd77zHUpLS/nlL38Zt/ek5eDBgxw8eJDc3FyOHT2qKiNHQ28k/HtyjI6msAzAOOAY8hXkQUmS7gZ+IYSIpqbzCHC+5nG+f52WeuBf/oT8AUmSPkMOKB9G/xZ6n46cDG+//Xbmzp0b9JxW0fTWW2/toiBc1wQUY5Vn6Q46nR6fz8upU6fIyen5xc3lguxkJ6TL+0r3teDwGMjPl5P1TU39sJI1Ly84B1JUxJ6mJoYVaZLoIVVYo0aOpDoOZdJaOmtQjLanJB6MHz9e7tt48knGjRvHhg0bOtTCArBarRgMhqAy3jEvvURubm5QX4lOp8NkMgUdT1vN1RsIIUhLS5NvKs+hKaxK4J/IVVdThBB3SpI0GFgkSZIQQtzTyb4/BC6RJOlC5MDxY2Sno9BjTAZ+J0lSNvKU1ufdeB+9TntOhgUFBeTk5MhfYj+KomlNTQ1/+MMf4npeY8eO5e9//3sP9qCdzsL/u7Ymt5ngS5HMIOCYz4sk6c6IypfHHvMHn213w8mTuD12jA3yhcbjc3CR4wvmsST+J7JzJ9hsFF0ge7K0Hf4Si0+eMjR19LouEiozDyHTW30YiQcMGMCxo0cZMGAAb775JtB5Ge99993HuHHj1BzIhEsvBeSRyTPPPMMMl4tVzzyDEILLL788KAcyZcqUmCkMR4vW+7zrsxD9l44CyAVCiBslSTIB7wMIIb4A7pYkqVMfUSGER5Kk+5Gnv/TAWiFEjSRJi4CPhBAb/M99T5Kk3cgNCLOFEGd0h09ZWRmzZs1i1KhRQdNbixcv5vbbb4975cu+fft6uAftdJby2Erw5SZ8SkspKBYi8P5OnTKoN9t2Ozg8gUotHBbcHnl9X3DokH/2aWcD2G1gOAmGZADctHLIZ+2dNttRo+Qg4h+1eBscODxNOJzO3m3S6qSnhKlT5cq1bhphdYQQAp8QQTceHZXxNjc3U1lZyZw5c9QqrM/++U+ysrIoKSmR+7P8nehf+9rX2LlzJ8uWLWNGQwM/b2qSf58xI+bvoyPS0tLU6rCziY6+o6slSfqn//dntE8IIaJqxRVCbAQ2hqx7TPO7AB7yL2cFkydPZvfu3RGnt0pK5AFY7PxDwiksLMRms4X1iOTk5HD8+PFu7lWr7gtyQZ6OwNfHo8rCa0lP92C1Gnnvvffw+S4hAwfNzQ2AxAUZGTidltg0HJ5l5OXlUV9vA293+ny6SSc9JapgWRxQPMC1XuBlZWXtamHNmTMHIQTXXXcd8yWJbYcOUfLHP2JITmb06NFUVVVRu3s3F198MY2NjcydO5e1a9cye/duhl5wAXPnzqWysjIu7yUSZrOZffv2qVL7FosFh8OB2WzG8fDDjPvnPyNqeClWw/2ZjpLoK4AVvXguZw3XXXdduwm6jvR5YsGrr77KmDFj1C+kwWDE4/H0IHhAeD/zDuQg0rmtqhw8vEAqDgKJZFszePTyCESVmYqfNXT7ZGTIwxGfT01+S3jB50OHBzwgpN6XkUlNzSPV04DdX4UUSlK/t1aOnvYKTJqamtTvbV1dnaqdFeacmJ3N8uuv586//CVYI8tvmxvqv37ppZf2ag5EyUsqUvtKtZ+y/q233mLcuHG88847as/I9ddfz1tvvdVr59hdElImvYzH4+Gdd96Jgx/0QnX/Wu8Qjyc+gSpafKpSrx2npujVAthDIkZ1nRWbI9B/1yvTxMXFcvfi/v2QnQ2Au+UYWCy0GrIxZYKrwRHTfEQYtkD3usllhyYHFgfgc5GkMzLA5w7qhE+yWJg7dy78/vfxPKvY0Ynr4jGDgYe9XtLT01UhwXvuuSdis+4999xDQUEBe/fuDXpu74kTmEymsMR7dnY2zz//PG+//TaFmzezIiuLuXPnMnjw4Fi/y3bxer2kpaUxcOBADh08yKDcXFpaWoLELNVg0YGoZHv0ZaNiIoD0Ml6vl/vuuy+uxwhuNAzoafU3jEZUOfemJijKrKOpyaoWMX3xRZ+eXu+hrdz6oiGw3utF8kGG2Qw+H9/WJWMxeBh11VWyqOPJThSE+wuduC5e6HQiIMjMSun/mDlzJkvT0njk9GlWrlxJS0sLxcXFLF26VLVqPdHaytJt2xCEa2SZzeawysS+yEN885vfVE20LBYLI0aM4N13343JvpWqTkmSQAiGZmRwsDnSpHLsSQSQXkan08Ug0d1z9HpDD+7wmwkYUoFcpaXNhkdu4U4nmkmvPkKvDxbxcrkwO06AzoixzQH19QEL3ljob7WDy5SKKdOCowksBg8eF5jyssHhwGYZhjXTL+gIUF+PyW6P6KKok6Qu9Rv0JcpZhlYmnX/++axdu5aV/oT4+eefz+HDh6msrCQ9PV1u9hQCW0sLOklCp9OxcOFCKisr1c72L774ggEDBqilwkajkbvvvpvVq1f36nt89913mTlzJv/4wQ+4Y88eVXg1FsyZMweQA+Og5OReCx7QcR9Ih4ltIcQzHT2fIJz8/HzsdjtN/umKvhCzU/B6e9IvUoUsNFDvf2wlvOfZGvaqfhs8MjJk4a482c73yPEMDEPPZ6/9akZ9P4/3q3xcu/+l8Ncpelp+wjzd4+ilAsDJk8wbPZr33nsPr+Z7pNfpuDwnB5smKX0mcvhwQMjC6XSqj+vr67nyyiv597//DYBJp+OqwYPZXl/PkiVLGDRokNrZLoSgublZ/T9zu92sWbOmV6ewlObelStXsjJkfSyor6/HarVSV1dHQ8xstaOjo3eQ1mtncY6wfPlyHnjgAfVxX8xbxrMCrCs0Azja8HrbgIC5jyYdgNcLTQ5LUOmvxxfbhLas/lsMFCBLuMB+2sgjiZ2sYxR5HKCOiPZQISWtYZ7u8SYrC4qK+K5/RFJdHRicUFl5xgeQjlCCB4DL52N7vXwzI4Tg5MmTCFCT5z6fj9TUVFrsdixJSbS1tfWwqKRrtNfc6/F40C9aFKQB1l1+/OMf8//+3/8Lq77U6/Vkeb3E6912VIUVO5/OBECgg13pB8nOzsZgMJCZmRkDgcToEEKQlZXFyZP9Qx3U7Xbx4Ycf4vWmsdC5BbM5jwsvHEBubi5ffAGZFgdk+qfKmhw4PAZi2WKnqv82OdQqsGxjM6mpSWR6HFitsNN5ZlY89Y+/cGS0nfFhXfH0zMtkzpw5cnmvvwoL5BGMAFwuFwaDoZtWCN1Hp9MxdOhQDtbVkZaeruZ7HGVlqkwLyF3VXSUrK4snn3yS5cuXyyKSH3/MLH8V5vnnn8+hOJVfQxQ5EEmSLMBdwAgCk94IIabH7azOYiZPnsycOXOw2+0kJSVRV1cX9VBW283aXfR6vf/OLPpRSCRPbVlcIN//ezqyTmag+mvwYPjvf6Pbf2trC7J5q8DpdLBnj1JimRv1OfaUA02ZOPfIv9vdGZw6BDZXNk2VcKg5I559dHFj5MiRvLlrF55+2PUc2hlfF/K8tQv7kgj+Nj/11FMsdbko+POf1XVDhgzhYF0d2dnZnD59utclf3Q6nSqoeerUKXX62qjXB8m0TL755i7vOzk5Ga/XS3l5ObMPHmRoRgYmkwmXy0VbWxvxnCSP5sr1MrAHWRdrETAF6L0i6rMQpY593rx5gCy21hmSJDFgwIBuHjEwmFSMqLpyTQnVEpIp0vw+3/840DW8davgK1/xEmjuMBGebG//JPbsqUWny404haXcUPXEuErLgQNwzJ6C3n9NcfkMeNvApJen1FxefTz76OKDv+LnUX9VUvO/amh0BCq8tGOq/jZSiUaKXjs6Cb0VcjqdSMgqvwrKxftoH03rhQas0NxnT/S5lOvJsmXLAEgxGnnhhRe488471Xxre/TUKjuaAHKxEOIWSZImCiFelCRpPfBej456jlNQUMCf/vQn9ctsNBrJzc2lvr5e3SYjI4NmTTWFEIIvYlDX2qom2aK/le6u6usll9j5/HOl43cScjCp02zRvvshgM/npNlp8+ukyN3rDo8Bq1UOaLHya3I6Qa8TKANBj+TD7Qa71wR2aHMbqKyUmx47HYmEJNYBBh86BHVDg7eJN/6CACUp0vzpMazfGkG132ZXCeuqzW4/6imJRoq+IyJpTSmJ7L4sXImEkgOZNGlSt/W5CgoKyM/PD4hIAlX5+QwfPlxeV1QERUXof/nLoPeu0+l6rMkVTQBRagSbJEm6DNko4oxwDuyvFBcXs2LFCmbOnMlTTz3FvffeyyuvvBK0TXOEUrzMzFi2akc/hXWoz4T29Gjb023NYDCagkYgO6MS1ekaPqFDpwODzgcGMOm9ZGbKd2qdjkQiRJb1oyr55rroJPHjRUbbcahrVUUb7Q0OFlzlD+BnUk9JFChFItoOdGUE0J+CB4DPXy22dOlS/vd//7db+whzbzx0iLteekl1b1RQg0U3mhXbI5oA8pwkSQOAXwAbkOchfhGTo5+DVFRU8Pzzsh/XmjVrWLVqFcOHD6esrCzsDy5JEkajEZdLVmftbDgaL7T/dJs3b2bz5mt4/PHeqLHwop0ptwAWU/AIZFSnsp6RUezMbTa/q61Xj8ehHFUnH7qT0b2q6Kvsc88w6qYGHkeVMxk6FLZtUx/qHS3gAIMH8HrxSbEpGGhOyiHDGrjvszuaSNX6QNTXs+CnP2XBwvC/64L5/acRNZrprcf1+rBAoYw8+ksVopaTJ08iSRIrVqxgBWB+4gnuueceysvLo3r95MmT2b59e0AWX6/nnpkzw6q6SktLef755+VtuniM9ogmgPxOCOEFtgAX9eho5zgVFRWUlZXhdrspKCjg7rvvZsWKFRQXF/NnTcIPYODAgZw4cUINHsrj2BN8wRgzZgyhFtLaKQG5qiW6C8qgQQ4CEw6pQDbBqVMTXekOaQY8LXa2bPmIa68tivp1kVDszJua/EHE5cVgkQVDfE6f3FjYCaqirx/rsD1gzVMfR5UzWbQoaEfN+39P0rB8Guog1bEHh8NCr9SAnTwJ1dUsuPZaQD539b0pjnX9wOM9A/mb9H0i1+IZgIluN38BFmmCiNatsD8FENejj3Lrrl2quGPLI4+wKjtblqqBqC7wFRUVvPrqq5x33nkcrKvjvNRUXn31VUaPHh3wLtq4kWc//picnByOHj1KZmYmzz77bNTHaI9oMigHJEl6TpKk66Sz1Rm+l1BMcgoKCrjppptYsWIFo0ePZvXq1Vzr/8dV8g2tra1IkoTefyHrDWXOlJQUtvjnyLOzs8nwN8INGzZMPY+uMH16HTDNv2wDGpAtYJTlEO3PdEdGkRbcsqW6y+eToAP8PSXKUmctCnpMUVH3h3sxRgkcpzSLzr/eiOxiVwK84PXyO+TRijIQ7M73OJ6YHn+cyspKrP5onWwy8dBDD7Fs2TJ1pqIz5syZo95oSpIEkoTL5VI71AFWffwxGRkZVFRU4Hr0USoqKsjIyGDVqlU9Ov9oAsgw4O/A/wF1kiStkCSpsJPXJIiAYpJTVlbGc889x+nTp3nllVdwu90899xzZGVlMW7cOED2uxZCkJycjCRJ/OEPfyArK6uTI/SMlpYWdaRx4sQJTp06xTe+8U127dqlrs/Ly6N7dTuHkCehrP5lEvK9ZKZ/6br8wp49e7pxHgnORgyAB3nm0UUgCa8sg/3fX7fbjdls7otT7BClSkxauBCLxcLevXuj7lWpr68nKSmJtWvX4igrY+2ECSQlJQUV5Xh8Pl555RWKi4vV0uFXXnmlx+XMnU5hCSFagdeA1/y5kF8jT2f1r1B+BqCY5IAs6ezQ1KEmJydTUlLC6tWrmTx5MhUVFej1ek6fPq2W2q1YEU91/eCpLGWYL4SgqqoKkEcoAwcOVCpEu8h84Brk0Yjy2EpXRyBanM6e1/F+8slO5A70VGiWK9SMdL/fRu5sl39XqrY+OHQlfkdjIEJuJKhyS0B9PelH28DQgrmtBXRGMBqxOJriL48SD3buZMG116oVYCB/4kp5RLym6NptVlQuzI891ueNPZE0y5xOJ88991yXRkvFxcVB8vbFY8dSUVEhOzH6m5QfeOABfvjDH6o5kCuvvLLH5x9VB5skSdcCtyFPPX4E3NrjI5+DKNUSp0+fJiUlhQULFvDwww9z6623snnzZiorK/F4PGzfvh2QSw99Ph/Dhg2jtra2R1IHXSMQTD766EOmT38RgAv8FTyxI9SoKtQ+N7xiJhmIldrPwoULiOSu6EN024xQ7Wz3Y7VC5tB/k2kNlO6G5UY0F7FVddUsqC7iN0XVLLCu41/VUDTVCsCeasgr6uaJ9SX+hJPVv1RXQ15TpeoDHy8bmI6aFSXoUxtfhdDg8cXPfsbNH3zA9u3bu1RiqyjyAtQcP06N/3FLS4tab7lv3z6uuOIK3h4zhrv27WPDhg09Ho1F04leh+wg9Bqy5Wxkh5sEnaIEAMWZcO3atdx333389a9/5cEHH2TOnDlYrVYcDgfr169Xt6+qqqK0tDRoX4q7WW/w5Zdfotfr2b17NxMmTOCGG2bz5JMLYrDn0GR86Kjkp2Gv6F2puD5m6FAyHR+oH0fmHltQkp4YKBOcq/SfNHowg3/1K8xmMwUFBTExvWppaQnq1N+xYwc5O3YAvdcHcrkQot8KqZ5pKNa2b7/9Ntdffz0Ao0eP5pFHHgHkenWv10teXh5utzvIU13BbDYzceLEsN6ReLFp0yauv/56DAaDX4Z6eRyPph2VGJArtzqXij8rWbSIyq3VjFpXBPjFGv2/A/IUTKgasBJg7HYYMqTXTjVBO3RipnXLt79N6vvvh61PS4uNlm0k0UgJGJSby7Fjx+KXA5EkaY4QYjmwWJKksIAthAi/PUwQFfn5+dxxxx2sX7+ewsJC8vLycDqdZGVlkZGRwe7duxk/fjwul4vhw4ernuoK99xzT4+rJ6JnIYp54pAhQ/zCj8FJdEnS0Z3KyEgdw8GjkkLkr2hd13ceNf78ByaUfwcfeoQXHD4DOIi5ArCW9npJlJ8HDlhZ0N6LI6kBKwFm6tTeUwVO0D6dmGm9HiF4uN1uPvjgg5idQsvVV5Pyj3+ojyVJIjs7m8GDB7PDPxrpLh39Zyjjp4+AjyMsCbrJ8uXL8Xq9TJ8+HbPZzPTp02lpaUGv11NeXo7T6WTTpk1YrdaIMs/l5eXMmDGj18/7yJEj7Nq1S5a+0CBE97p7ezp8jg025BGOC3l040CHF71eNnSyWMCoi1/3stICoiyThu2R8yYWWQm4+QxVAk7QfbrbLW+xWJCAAZbAd8ZoNGIM0bvy+WWReho8oGM59zf9v/5HCPHv9rZL0HWUgLB48WIkSSIlJQWPx8NLL72EzWbjiiuuoLa2lqFDhzJnzpyIyfPRo0dHrMqKfFcfO6qqqvB6ryE7O5uGhgZ/Y5b8nNImNCTKqZP+09SVCiShzBR70eF1g10ygQd8Xj11dbETb+wVQjS5kuwnoSnQeucw93E1l83GRf4KJAvB0pzn0X9zFLGmZMQIpsXIykGp6mzUfFHdbjeW98KlC+12O0ajMcx3vqtEkwN5WpKkPOAN4FUhxK4eHTEBIAcRbWDQ6/XU19czf/58SkpKEEKwZ88efD4fpaWlQd2iSke7giK3nq7xGYgXir+CQmgASUlJYfny6HIk/SN4QCDHIs8H60lGZzSRrHOBxYLT7sVq1fWHRuzoCZneOrBhDDmTrlEf11V3TTI95uTlMXTYMLZt20aq10u1f3WSxULRpZey01+hdbazXhM8TCYTx372M9X/PVaEjmd0ksTAgQNjokwcTR9IsT+A3AqsliQpHTmQPN7joydQKSgo4LHHHmPKlCmsX7+eNWvW4PF4+MlPfsLq1auDZAmUjnbtxVyn0/VaVZYW7XB78ODBLF++POpy487vgOwEdwzkIU85KcTH+zlSDkQZgVRXx17RQ9s7gm0YNIGtIdyLJH6ZmL6jsLAQmppoypwUcFNctYrBkkRRhBuMwZJEkhC4evUseweXy0XWk08yKDd2PjiKL4gWnxDYbLaYzFZE9Z0UQtiEEL8BZgA7gcd6dNQEYZSVlVFXV8fvf/97Vq9eDcB9993Hk08+icfjCarCUjraQe4VaWxsxOfz4fP5gsypMjMze6XrNidHFunL6GKT21tvvdXJFhuQA8ZO/6IED+Xxgbgoo0t48flc6EWbmgOxWmWF9Hgoeii9WyCXbgAAIABJREFUI5mZ0OiwqI2aNpssJb9zJ6xfD5V7hvFYN//zGk3Z8pSWf8nc837Q435VEpyXx6DLL2dHejrVoC470tMZdPnltPXlufWQYuTOI2WZAOzTLB8LwVKbTZVg6fYf3E97N2hKCW9P1ami6QMpQG4i/BFwAngVmNWjoyYIQ3EqPHjwIOPGjVOrr/Ly8sJqwrUd7V6vl1x/SV5oXXdvqfcqdzgtLS2q53s0o5DXX3+9ky3mIw/AF2oeg7bRcdGiqV05VRU58FgJVGAFAq0PCfDS6vNCcxNgZuvWf5KVdREBF8aAoq9KnRWbIzBC6U7OxOkxYLEADg9N/tfbbOBygd2Vyvr1gaqtrjgkbsorYZxGUr5LJcEKveFjouHBBx8EQrzeV60iCfkvpi0vUGro+vsoLbS5cShQr3kc6pjT02ZHIeSm2PbS8j2dRo4mB7IW+AMwTgjRc0ejBO0yadIkVqxYgRACIQQ1NTWUlZVRUlKiqnWCPFq57bbbAPkL0NDQoHqdt7a20tLSu72ep07NIinpn0yZMoW1a9e2m/gPpafzvD1xU1u0CH75y2nI93mjgIuRxR5B7j0Jro8XwseJEw1s3Pgpw4ffAAQUfVWq62hqsqqd6D2N3x6PbHSlFNUMS2+gKTVVPWZMHRI7KgnuT+TlkeRyYWtsDOoIUrSwojOH7t+EWvR2SCd9Ju15y8fKF6XDz1uSJD1wQAjx65gcLUG7VFRU8Ne//pVJkybx17/+ldraWj777DNuvPFG1q9fH+YVohVa0446kpKSej2ACOGjra2VxYsX88gjj7B06dKg5yVJ8o+Ogl9ntVpVEbnu0Bfi0B9++IEaQBQWLVqkKWWWhSEVdeV4smMHQRpb3fIjORNpayMvJYUm//dcQsKEUEcgqR2+uP/TpTFBJ30mozIyKHC5qG2Lz8Rfh7dwfh+Q8yUpRq42CdpFSYz/+c9/5sUXX2T48OH4fD42bdoU1kg4Z84ckpOTsVqtPPzww6oUdGNjI/fdd5+6XXp6ei++g2qAsOAxYsQIJk6cGJSbSU5ODnu13HkrdakDtz/0kQQHDwWhyuLHk5aWyD0kytIPpJ7iQ1ISpKbiTU2lCWiKoA6d51+s/iUvbItzg6bm5rgFD4huxHcA+IckSRsI2DEghHgmbmd1DqJNjCslvm63G4vFEjYdVF9fz9tvv01DQwNlZWWyjLPDwQ033MD69evV7bQlvb3Zc5GiSciWlZXxwAMPcN5551FXJ/uMNDY2ApK6ndlsZuDAgZw+jf/n6aiO0x/sacKDR6BqzGaT5+8dtmFYqgNbnFHlwLHA35Ni8VcHZO6xQaqmYrA7CsN2OwMNBkw6I15fIFEsIZepIgQGvR7tsLcodB/x8EPuA7Sqw6GkImcM4+UpGU0A+a9/0QGxEWhJEIaSGC8uLlbXbdu2jYKCgojbV1VVsWHDBurq6lTZE5BHMtOmTVOnuBYtWsT777/Pxo0b4/8m/HQ0hZaamookSXz3uzfxxz/OR5IkvvOd76iaPdrgk5eX16F0fP/pI9FiQ0mT5uVZKSqCpqY9ZBYNU7eIae6iHaqq4MiRwBRXqKR8hxIpscY/j7anupq8oiI5v2JdF5xAqu7iPlNTwWLBq5R4tzZgSTaAx4MxNZVT5JGdB43Hj3Pkiy/IDDnEN7/xDRg+vLvvqF+hTcxbCS8uKEFO1iu0lxfpDtH0gfSG+fU5jyL1vmbNGgoLCyOKKCpkZWWxfPlyli9fzowZM1i1ahVz5swhIyODyZMnc8cdd6jbPtbDMsDoiTzZvnjxYo4fP+4PENVqzuO9994DvgZAdXU1M2fO5MYb53Lq1FFq/M1VFkvHMh790RhIy3//+18WLvw9IOCTT7jooov4yU9+0ivHbm6Wr7HKNTpUUn7nOSKRcskllwDQ+oVc/6PX6fj617/ODTfc0DuRvJexIAvyZCJf3PVAFnKZiEIhckCJRSCJpoy3igh5HSHEmAibJ+gmqndxaSm1tbUUFBSE5T4UkpOT8Xq9lJeX8/Of/xyDwYDX6+XUqVNUVFSoCpvaJiKDwdBj5c2OiTwaqGlHpuH48WNBVVSrV6/G5xuETre6w6PodHrOP/8CDh48GNYg1d+w208T+FwEn3/+X15++WW++93eCSIJZC655BLIyaExcxJWa52aM+wVdu4MmjrTtsWCLKATD5SqNJBV3kJnTeuIjRJBNFNYP9f8bkHuB4nnleicJVTepD2++OIL1q1bx7x58xBCMGTIEB577DHuuusuysrKVCMql8vFhAkTWLNmDUVFRe1ezPuKGTNmsHLlSiRJUssKteWF2uksq9XK4cNyoDx48CAAw8/AKYjPP/8v3/1u4PHOnXKuRMmL2F0mHE2Aw4LLB3hjY/z5T9swnIFKcLXDXeGsrdjqa0aNUo2zQA4e2ot5PMpcMpG7mkzIOSE9si+5ggk5b3IgBsfqtJBeCPGxZvmHEOIhIuSjIiFJ0vclSdorSdJ+SZIe7mC7H0mSJCRJuir6Uz93KSgoID8/n4yMDDZv3syBAwewWq0MHz6cNWvWkJ6erl6IN2zYQE5OTr8LHgDPPvssKSkpCCEwGo2ALG9iMplUZWKQdcLq6urwej1kZGRgMslFgVo9sO5zCDnVqEe+P7Ig//sZNEv8qr1GjZI73A8ffo+DB6tpcZ+kubkOnDZMJjDpY3Ps065ktds9MxOGZjSfGxVb/YCMXq2GlL+xArl5UCB/ex2axUX7Sfeu0mkAkSQpS7NkS5I0Lprj+3tIfguMB4YDkyVJCrtllCQpDXgA+FeXz/4cRcmX1NbWcvDgQS688ELGjBlDc3Mz9fX1/iqnYPpDxVIol112mfr7wIEDAVnkTak+U1wYvV4vSUnyYL+5uUmduoqNxe98YBuyrtYe/+JEbipUlvhqjH366af4fOGBoqWl97XNeg1FLTiStIrdfmZ6v7fDgw8+2OtBRIsRuTVWWTKQcyCF+OVSpk7ttmRKNFNYHyMHMgl56uoAcFcUr/smsF8I8TmAJEl/ACYCu0O2+yWwDJgd5Tmf8ygXzjvuuINp06ZhtVp56aWXyM/PZ8qUKej18rTHsmXLeOihhwC5aitUSbevKS8vV8/pxIkTgODEiRNYLBZaWlrYtWsXgwY9y9VXT2LTpk0A6PUG/ud/JrFv374Ynoly+63IlFiQJxeSgDbkeza5QTAedNdPJZZ01pQIMZ7mOsfMsBRZFtuqSpqO9q7SsI7wnIML+baoDuTPupsFBdFUYV3YrT3DEOCw5nE98C3tBpIkXQmcL4T4qyRJiQDSBRTtLI/Hw9q1a9XKLSEEHo8HSZJYsWIFV1xxBYWFhXFOoHeHgNMhyMKKmzdfw5gx1/KjH/2INn/z03e/+1127HiKTZs2sXnzNRw6dIj33lsbsTqt+4Rqbh1ALvochSzaqPwEsPa2JFSvoDQlKliH7QnTwuq1oqUQL5Mwq17/dGeCvqcjS9tvAIeFEDb/4zuQE+gHgQVCiJM9ObAkSTrgGWBqFNveC9wLkJubS3V1dbvb2u32Dp/vDXrrHL744gvmzp3L9OnTOXToEEOHDmXatGksXbqUnJwcjEZjTEYd3WlCrK6ujiAv335F+OTJkzl6dCbPP79SDR7ytNt84AA33HADDsfDZGRkUFo6hfPOOy+qzziav0VSUhLBzbp1wDT/sRdqfsqMGWOluhpsNm1qMnpsNhvV1Xv8vw8juDYnC/D5J82MtLolvvjCh88H+y2ptJ5yUVcnl6S2teVSVxfwdMhsaqLJf+G127Pld1In63v5fMHimi6XK0hGpqN9Bc7bop53d1D+Fk1NTWF/k6B1Id/Zyp1NTJoqfz7DbDZS9+/HdPIkPsDj8dsQ+3zyjZPXi9flwoULu92l3nkb7HaaaAp63xabjT1x/j8dZrMFaXYNaD4SVP2URnCJrYHgBLN92zY+6uAch3XUKBUldf4mz+58Fh2NQFYDYwEkSboGeAIoRX6/zwE3d7LvI8D5msf5/nUKacBlQLV/fj4P2CBJ0gQhxEfaHQkhnvMfk6uuukoUqdKc4VRXV9PR871Bb51DQUEB119/PUuWLFHXVVVV8fLLL3Ps2DGOHTvGvffey4033khJSQl2ux2LxaI6l0VLdxr2ioqKuhREZXObBWg9bmSjLLljXW5OFJhMJoYPHx715xvN36Krn4eyv82b4a23rJpnRhGsxBR5yisvL4+iIvmOet06kEc3ysVdruRPBZoZjEGnJzlZj8cjl2KbTCbq6uRjtrURXJJaV0em/7HSZG21yufzge4QmZmBAtImmwOrZoSRlNT+voLfe9dFQRTfd5vNRl5eHjttNprWBfYzdChkZrb/d6rWPrd5M+zfrz7ncbWCyYTer4WFyYTeZMKEidRUE2jec2ZmJiZTU9D7zIv3/+m6dUFDO1vGEOocDerjdOBTzeahDY9FhYUdf3/XraOnIUT5PLrzWXSURNdrRhm3Ac8JIf4ohPgFsnRpZ3wIXCJJ0oV+La0fIxs8ACCEaBZCZAshrEIIK/A+EBY8ErSPkkyvqqrC7XZTVVXFXXfdpXqup6en89xzzzFhwgT/P49JvVgqeRJATVC3h1bHqjf54x//yKRJk0hPT1fPcfz48ZSVlVFRURGTY+j1+m53tMvT+NM0SyVyQr7Sv1R1+7zk0OPC7WujubkOl+sk1swm1ZOkqAiysrq9+15F8X3Py3P0XLNr0SIoLJSjzrBhNCQPpSF7GE5LBmRnw4AB8XgLCdqhoyuDXpIkgxDCA1yHfwopitcBIITwSJJ0P/AWco3kWiFEjSRJi4CPhBAbOt5Dgs7oqPmwpKSEL7/8Mki4cN26dUybNg0IFiJMSUkJmjYKvaD2Vf5EO/2mVJFt2rSJe+8tabfJsqsYDAZ0Oh09tIaOO263C5vNhiXTqq47eVLW2lKps6q3rzGY2ei/DB0Kfj8ci8cODXb0XhfqXJHZLBfSnQvs3Bk0Aaq42+iRRwcS7XuBxIKOAkEFsEWSpAbkUpT3ACRJupgoy1GEEBuBjSHrItaLCSGKotlngmDaaz40Go2sWrVKrcICOHnyZMSO9IaGwJC6f+pLBc5r/PjxvPLKGLWZsCcoU2PyVFmPdxd39jod8MlOdu/eyLx588jK0hgtAVTXQZEVOMsFG5UKrkOHsPkjpan5PyTl5aibOBoziFfVXE+J1u8jqtLfUaOwffJJ0ASoEkR8BIJIvGg3gAghFkuS9C5wHvC2CFxZdMi5kAT9mB/84AfMnTsXQNXLmjt3LjNmzKCyspITJ07gcDj6bcBojwsvvJCRI0uZN29ej/c1YMAA3G53xL6Z7nOIcJEIbRVXz4393G4XS5YsYehQ+TN4+eWX+fzzzwEBW7Zw0UUXkZZ2lsul+INIZVE1AMUH1nLtqMCMfNPfbCCaoN7v95eSQuae9wmSV+ujcrqRI0fKvT8d/O9lpKfLpb9RlL6NGjkyqNu9N+lwKkoI8X6EdZ/F73QSxIrLLruMrVu3MmvWLGbNmoXBYGDGjBmUl5dTWVmJ2WzG5XKFeWr0pux7d/jVr36FyfRETHSwjhw5QnZ2NikpKVGVqN5yyy1R2vBGWtdzG14tbrf8/uXg8V/NM7LmltF4kqysLHWK63hbBq11ga0c9jPddimYqgunc63GQbGyqJpR1UVB21QWVVP0cC8kzqPgmmuuAaDtX59S9K3L1fW2PU0smDGpvZd1SHpaGkRphRArzgYHyAQhVFRUsGbNGt54440gZd/Ro0cD8oUzNTVVDR56vV79PdRXvX+xkObm+cBx8vPzO926M0wmE9/73vfYGaUvxJtvvtnjY8aa4OARwO0+RF5eFlu2LPCvmUTDQXmi49pri2hy2OlL776qKlkxGOTWjp32c8RNMR7YbFwkSfhOn2YgOvQIQifJtAOvWPrG93cP+gTdYPHixcyePZvi4mKMRiPFxcWsWbNGbb7T6/Wq9tTSpUt555131CT1+PHjg/aVkZHBzJkz1cfGftLEdeTIkc436gSXy8Urr7zCnj3R9TY4HI5+LyGv5ZNPIgfGLVuqe/dEItDcHNDlSk09h9wU40FeHuZLL+WwTscJfLQigrSwIs0npBIbl8bECOQspLa2lq997WtB6woLC6mtrVXl3k+elCu0n3jiiSDPkFDjqebmZl544QX1sbuflCvFYpqtq9N1JpOJnJyczjfsAvI0vHYkoNWA0nPulBOdpYR01Zuaj2NIDZTNe3WxuSHLzc2Vf9mzD1OU4p+xKNRLBJCzkIKCAv7zn/8wduxYdd22bdsYPHiwqmA7e/ZsnnnmGZqbm5kzZ456IdXKqaelpXH69GmGDBmidu+mpqZG6DAPRttjEnti52/m8/nQ6XQsX76cWbM6nzt+4YUXmKoVjIoBixbBL3+5Db8qETADWdARZBHurjU5tk+wE8UnR+GThdUkJ6fwjW98g5M90pWILaFuiqG6XGfU9FbIiR762/fJLMwj1d+8Z19VGbOJxNzcXOyHG8Flx+tuCarC0n6LDMROHjQRQM5CysrKmDVrFqNGjQrKgQCsWbOGO+64g5dffpmHH36YFStWBAWEjIwMHA4HTqdT9SY/pJlPyM7OprW1NSjQhJLRS0qqpaWlquR7d/H5fMyaNStsfVpaGm1tRpSK55SUFPLz89u1GJZHM+GjGlkmRfL/bIv42t4hYLUrI/c8t7ZCbe1HwEyqq2HLli2okx5bqgGJa6+9Fui90uBQN8VQXa6z0EgwrugIz4EoU1hFIDcTdfOPmwggZyGTJ09m9+7dYQ2Gt99+O4WFhSxfvpwHHniAV155hebmQK28JEmYTKagdRAYlQwdOpQvv/wyLHiYzWbVgx2CNZfiyW9/+9seB5D2kIOnPF2n1xv42c9+1q7FMCjFB+FFCHLQEH0cPDrm2LGjfOUrsHXrIiK1nW3duoXHHnusX1y4I41OFOqmnmGjkzii1+kCJm1EHoHYkPtOi4qKuh2VE0n0s5TrrruOXbt24fV62bVrF5MnT6agoIBt27YxefJkfv3rX5OSkoIkSWoCXafTqXfP6enp6lTUiBEjAHkkEqkr3el0YjQaVbmR9u7SY008y421ekler5fKysp2u98tFotqz6vT6Tr1cg9H6R2xIreAZSJPX5kImFzFaiqrfdqTle8PcvMK2tGJIouSaXGQaXEkku8a9Ho9RoMhrk2EkBiBnFMo2llr1qzh5ptvpqamhr179zJ37lyeeuoppk+fzt/+9jdOnDjBihUrmDNnjtrpq/Pf0bRX4uvz+Whra0On08XIKbBvOXxYdiLIysrqMD+gdPYrgdXtdgcFttGjRzNkyK0cOfIO27dvb2cv2t6RamQ5eUWYMZVAujN+niRnEjYbVCr2vLZh2Oyp2F1GPv0NuN2yt4l0NDxv0h/ulpvNg8jT6szYT0O9JiNxWgSPBnrQ7KjX69FLEh63D4s5FYcz/LuzYH6kvqXoSQSQc4hQ7Syj0cjcuXN5/PHHWbJkCZs2baK0tJS5c+fys5/9TC3Z1Ro/tYcSWIxGY4ycAvsWbV8MQEtLCw888AAQ7ISoFCxocyDaUZocNF4D2gseoVQRkJDXARMIdLGPQg4uVgA0lvH9mp075WtiU1OmfG2ss2JzBKbdHQ60+f1OcbmgsRGcTsDfEOnwGMAFXi8cPgxfS3ME+ZvU1YXrA/QFVRdOR2iaGVfVVbNA0/C4qqiaBZqGyFiS6c9Nulo95GWlkpfX80Le/hCUE/QikydPVqe23G438/13IMOHD2fKlCmsWbMGj8fDqVOnGDt2LMOHB1yI09PTEUKod9iDBw9WnzOZTIwePRqn0xlRKTctLS3O7yy2yNN38gTAo48+ytq1a9Hr9cyZMydou9raWsxms6pYbDAY1F6RG2+8Uf3dbDZz4403dvEs5iOr+mrVfgPqv1dc0b331tuMGiVrdn3yya/YsmUBWw6u4+jRnRw8WO1X6e36Pp1OsFjAYvD4Fy8GA+j1YDJBs9NCVZU8UqmslLUXK/cM44knhjF1ao9cXBNoSASQcxglJwLy9Nb69evVaq3Zs2fz2muvUVtbq3qTnzp1SpWOB9nQCuTg4/F4+OCDDwAiJppP97LEQk/xer2YzWYaGhrQ6/UUFxfz0ksvUa9oK/nxeDz89Kc/5atf/Sog8dWvfpWf/vSngDz62LRpEz/5yR1s2rSJ7du3x1QaX57dsGqWSZrfZUeR/sLChQsiro9nU2OkZkVFUv6syZcMHSq38jc1QVMTekcLks8rO4j5fCDFNwuSmMI6h4mUE3n44YcBeP7558nNzVWDhGJEVVJSwrFjx4L286tf/QqAm266Cbvdzu7dAdt7JXdiNBr7TRNitJx33nnU1cHChQt5443XmTBhQsTtXnjhBf74xz/6LXmv4Uc/+hEAjY2NXH/99Xi9j7J+/eP4fD7+7//+L2bnJ/eQTNOs0Wpu/Y5Ab0mCs5ZFiwKGK0Dz/t+Tih0jdlBuVlyx6voIJxFAzmEi+Ym8+OKLbN++nVWrVrFs2TJVyXf27NkYjUZOnDgRVMabnJzMuHHjuOCCC7BYLNjtdkwmk/q8EkAiBQ+dptSwO8TT6CotLY26ugMAzJs3j4ED05gzZw5ZIS5OOp2O5uZmduzYgc9XyI4dO2hubkaSJAwGg/q+vV4vRqNR1SNLcG6guDEq7NwzjPefUJwo4cABKwv64sRiRCKAnONE8hNZvHgxc+fOZe3atcyePZuCggIeeeQRXnzxRTIyMtQEvNPpVC+QycnJXH311bz22mtBSrkejwedTkdOTo7ftjZAT4IHEEfRx2K/qKl8N79kyWJgIUajMcigC+RSYoPB4G9GPKVu53a78Xq9PP300/z73xO48sp0Zs+ezf33399LRQahsvKh1Tx9Pb0V6Iz/5BMbn4DauJibe23fnVaM0QwOALkpsi7Pqq7b6exqyXfHOAwpZDhPgkbORMKHzudBMYj3SbFTikgEkARh1NbWsmPHDh5//HF1ndvtZsmSJWqXeU5ODkeOHMHj8SCEYPfu3ezZs4cJEyawb9++oP2NHDkSl8vF0aNHyc7Oxm6343A4GDFiBDU1Nd0+zyFDhnT7tV0lKSkJh8MRJuIom1E1kpeXh80mkZeXpwbKJ554goceeoipU+t46KGH8Hq9YUn4+BFanrkDOQnfX9B2xgc7gR89msHIkaP64JzOUDR6W02W80h3NpCUhFxNALhafDiTszH5K90cTWCJUV9RIoAkCENJrhcXF6vrFi5ciMFgoLy8nMLCQm699Vbq6+vVRsRBgwZx7NgxNm/ezKpVq4L2t2PHDmbOnEljYyNNTU2qL3s05cEd0dra2u3XdpW2tjZmzpwZ9t5OnTrFgAEDWL9+vZoDufnmmzl58iSXXXZZ0Lahj7uD0WjE6/X2ePR2JrBy5UqOHfOPWrdUM2hQLuedN7PjF52LaFrvK4uqZXMt43a5cgBwH23F4HGovagGD7LtbwxIBJAEYWiT64qW1vLly/nBD36g5kuEEFx33XXs3btXndbKzc2loaEhaIpGkiSGDBnCqlWr1PJfxX9k+vTpPTrPk72mAChPZa1cuTLsGY/Hw9NPP01paSk1Nbfw5z+/ztNPP820adO49dZbyc7Opq5uKlu2rKOhoaHbeZuMjAyam+VR15dffhkkHQOotrzKiCicZoKntIJdEvtXT0keu3Y14PUWAAFVg2PH4MSJBozGbDRptgQhVF04nWuvsarJl9OfnkCPmdQ8OaDYbZA6AIiBZl0igCQII1Jy3e1288knn6hBxWQysX//fo4cOaJ2bbe2tpISciUSQlBfX69e2BQfciBs2zMRs9nMtGlKJVQNNTUwbdo0JEnCbrerzZjNzc3Y7Xa+973vdes4SkNjc3NzWPAA1MIFU7tXVqVBUSHYJfGKK6by6afdOrU4YENOb1WHPeP1ZpKent3bJ3TmoRmV/Gf9BCzZWeRNsgKwpxryimJzmEQASRCR0OS6xWLh/vvvV6e1zGYzI0eOVKVOAFatWhVmuGQwGBBCqHfFSvCIBaEVUX1BpIs5yIHzqquu4uOPPwYETU1NXHXVVd0wwpLr+JXPT/kZGoiUvEtooUK0BHpKFIJHKHV1fWYhHkIebW3Q2GhHyQqbkWUvjQ659SFBMEd1eYx0HFKrujP32ILUjYFu/3ETASRBVLhcLsrLy7niiisoLCxk/PjxVPoFiVpbW1m1ahVz585lxowZQa/zeDzo9XqefvppsrKymDVrFk1NTfh8PjUHcsMNN3Dw4EF1tBNtYr29i3d/oaGhgXfffZff/e4Cpk27lunTp3Pw4MGI2yreKyAxduxY/v73yA1gkiRx/fXX89Zbb8X0XDvuKYF166bG9Hjdx4bDYQJcKJP6FsCHAaezlZSULmii9AFVB6wcqc9GcVE+1JyB1mImHmW9v7P8L0XDmhjll0ipLKpWf+8piQCSICqGDx/OpEmTgqa1rrrqKj766CN1KiorKytin8O3vvUt5s2bp6r2fvvb32b79u3qaKaqqoqLLrqoy+cUy9FMPCgtLaW4uJgXX6yjuLiY0tJS5s2b18mrBH//+9+Bq9XHoIg6SgwfPjzmplZnHkkElIqVgmQTYKCtzQvo+9LuvUOanRZSB3jI9Mc5m96rBhOAQ8dygwJKf5enTwSQBFFRVlZGWVlZUGL9tttuIycnh1dffTXMuEo7/bV9+3Zyc3M5evQoAwYMCFKlNZvNtLW18ZWvfIXq6mruuuuuHpX29idWrFjBFVdcgc93AVVVVaxYsSKoR0bBYDAErdcKM5pMFtxuHSaTiUmTJvHTn14T9hkXFBTw+eef43TKn+dFF11EbW1t77zJKIg8Paa9wne1J6UN7QhERu7P8fm8tLS08UkLcNSOJPn8xRt6f69JHXp9PYWFhb1mkNURLq9eDSYAZDRjtQYsbzuz6YjUqAioSsTxnnZMBJAEURHkaBazAAAgAElEQVQpsW42m3nppZfUkURxcTFr1qyhtLRU3V6puFI8R5TGQ8VrJC0tDafTyYYNG8L8xpXXhqKsVxLL/ZUDBw6oZcovvyyvU7xVtJjNZlpaWhg7diz/+EcyTqccQECeOpw37xGuu+46brvtH/z5z/8b9hlnZ2ej0+moqZG4+OKLg3JDSUlJeDwe2lOR6Q2JmcjTY1Z6JrWSSrDPXiT2I0R4r4nXC//61z+47ba5PTh+/yBSo2J1XaBRMd4mYIkAkiBqQhPrer2ewsLCoG0KCwuD7n69Xi+ZmZmqydLp06fVSqyqqioaGhqYOXMmW7dujToHogQVxcDqTCLSe2tpaWHChAm89dZbOJ1Xo7gCynfOQlVMPn58KxD+Gb/33ntMmDCBG26Yzd69/2bDhg3qc/n5+ezfv199rGiagcSIESPIzc1l8+bNQecj52MkTV6mP2In3GfPQ7DfXvs4HP3XIbKrVFXJwpEAtv1X0eww8+lv5MduN/haL6VpT7M6KollniURQBJ0m0gNh9u2bQtzJJw5cyYbNmxAp9ORl5eHw+GgpaWF0tJS8vPzueWWW3j22WfV7S+88EJOnDiBy+XqUK6kv+dAukJVVZW/KEBOXBsMsh97Tk6OqpisjNC0n7ESjOWgsRzYoK73eDzs27ePCRMmkJT0Y159dSEOhwOdTsfs2XM5depoxN4WOWiIfhw8EmhRVIdBDptmgxe73YjPhzyS9ZnY2zCQQ/77CntzPiNHwsSJPc+vJAJIgm4TqeEw1Dc8Pz+fZ599lgEDBgCoAoP5+fns2rWLioqKsH20tLQgSZJfDbcu6JhyfkCoToBnA5IkhV2sPR55Wunqq69mypTxCCG4+uq/UVVVFfQZt7W1MXbsWN599101b3LdddexefNmdDodBoPBH1wC5iE+n49ly57AaHwBs9kcR02xjgjV6tKWDacCXS137p8oZloB2fphcLQJaOKCC6y0uWN/Cfb45Kldg0EuazbhIjvVCelylHHZfUhSbOTsEwEkQbeJlBcJ9Q2fNGkSzz77LBaLRbW9PX36ND/5yU/a3cdtt93Giy++GLFnQsmdeDwe8vPz4/0We4WOvN0rKyvJz9erv+/b93rQZ1xQUMC3vvUtvvzyS2pq5CqtwOMa0tLScDgc7eZATCYTdrss961t8tQSn4bPUK2us1OKftQoePHFBZo1mSgaYAcP1jHA8i3A2AdnFhv6dxYyQb9H63C4a9euMKXZqqoqHnnkETXRm52dzSOPPEJVVVW7+6isrCQlJUXtddBOkXk8HlUHavny5b3wDvuWm266icOHD3P48GHmz58f9hkXFxezbNkypk+fzrx585g+fTrLli1TPzO32+0XnZTU4CsjS8zodDpVlFLRFlOKE5Sfvak5luDMIhFAEsSV2tpa9cKnBIj58+d3WGZaX1/PtGnTVCfE6upqtcNdmcI6+5GD45/+dDmSJDFw4MCIW1VVVanS+0uWLGHt2rXMnTtXDdAOh4Px48czefJktZABAja9Wnl6IQTJyckMHToUkBg6dCjJycnnyOedoDskAkiCuKK1zVWIlGgP5dlnn1WnU4QQatf5oEGDALlSKJJ17tlDcJXQyZMnWbZsWdhW2gCt/akE6NGjR7N27VoqKtbT0tLCxRdfDMDjjz9OaWkpy5YtU10nAUpKSjhw4ADz58/nwIEDlJSUxPE9toeSH1GWUKve8F6aM5VGRxtbtlSzdetWtmyp5pOjNhYuXBCxuKG7uHwGGlqTaWiAhgZwePQcOiT7xPfUHz4RQBLEFSXRrnipK0ngsrKydl+j1+s5ffo0paWl/O53vwt67uTJk6SmpvLb3/42Zs1yTz/9dEz2E28cjke47LLLqKioUNcVFBSwcOFCLrvssqCfSoD+/PPPVV92q9XKiRMnANRgk5+fHxTMX3jhBQwGAwsXLsBgMPDCCy/07puUzw6YplkqNb+vRy7TVTrRs/0/9QRKefszeQQHxyTAihBD/Y9ljapjxyJXyHUHHxIGnQ+DQU6sWwxeTCZZ7b2n/vCJJHqCuBJNor2iooLFixerz3u9XtLT0ykvL+fQoUNB1rdut5u0tDT27t3b6SgmWmQ3wTMBQU1NjToqmDx5spoDWbZsGSdOlDJwYJqqSaYoAE+fPp26uqlkZ9tpbm4mOzsbr9dLVdXWoIous9mM0+lUP2vlZ6hAZt8yH9ldcRRyMtqKnHAfRqAvJLYuf7FFa6QFkBthmyJAlq/Xypz0R+I6ApEk6fuSJO2VJGm/JEkPR3j+IUmSdkuS9KkkSe9KknRBPM8nQd/QUaK9oqKCsrIyysvLcTgclJeXA1BUVERKSgpCCIQQaif7xo0bEUKwdOnSoOR6dzEajark+pnElClTADkHIoRg1qxZLFliYtasWQghqKqqYvny5UHvLTU1lZSUFCwWizqFpQ3mXq8Xs9msepYYDIY+LPM9V2hDDoDKYkPumJeXUVEaM27ZUs2WLdUcbbHT4nbhdrvirjAAcQwgkiTpgd8C44HhwGRJkoaHbLYDuEoIcTnwBkrmMME5w+LFi1mzZg3FxcUYjUaKi4vJzs5m48aNlJeXU1BQQG5uLsnJyRgMBm688UYyMjLIysoKquTqDikpKbjdbu6++25AlgTpiPT09B4dL5Yoie2ampqwC7zX66WmpobJkyfz61//Wi3DTUlJYfXq1e1WdHk8Hu68886gKqw777yzT/ttcnNzkX3StXfqh5BzIZnIo41h/vXp/gXkUYqyTSZ97wEfH3bulD3lg3NEJkCPzyfhdsdX3z6eI5BvAvuFEJ8LIVzAH4CJ2g2EEFVCCKVG8H3g7CjsTxA1tbW1YXIozzzzDB6Ph+nTp7N7925sNhtJSUm89NJLeL1ePvvsM06cONHjHEhbWxuXXXaZOtfc0NDQ4fanTp3q0fH6gpKSEr98ygJ1+kubL9HmUwwGA2+88QabNm3i0Ud/waZNm3jjjTe67aIYidASYcDfZCqpzaZalJGn8lNmPnIuZCfyHbuybPAvfwP+o9lmJ3CA4GS8tZ/4m/QMeYRiIzCCsSMXGXiR80HxDf7xzIEMAQ5rHtcD3+pg+7uATXE8nwT9kEhyKPn5+eTn56t3zkajkfvuu0+9W962bRsXXHBBjxvcBg8ezIkTJ9i8eTNjxozpFWHB3iT4ohugpqaGRx/9hDFjgpV909PTaWxspKSkBJttBi+8sIrGxsaIF/bucMEFF2Cz2XA65b+pUlknB2bBqVOnwsq0ZcMyEWRcJjM/5Cd05LgYad2iRVN78G76E3nIoyzQjkDk8YGEF3A4HTidTjJiYGOrpV8k0SVJuh24Cri2nefvBe4FeUhbXV3d7r7sdnuHz/cGiXOI/hx++MMfMmXKFGbPns3XvvY1/vOf//Dkk09y1113cd111/Huu++yYsUKVq5cSaZf8Gfp0qX4fD5uv/32Tvff0Tk4nU68Xi87d+7UiAyGk5SUhCRJOBwOfD5fjz/XWP1derKfxx838Pjj8oV83rx5nHfeeTQ2NpKUlMTx48cBwfHjx0lKSqKxsTEm53zw4EEGDBiA0ymRnJysBhBlCs7r9ZKdnU1DQ0O7/T6x7APqjf8Pm21Y5xt1+Hob1dV7Otm/NjGfjRw8JBQ3SwCnXz6/udmDhAFvs5fU1Dbq6hr8+7F0eJx2UZKUsV6A7wBvaR4/AjwSYbuxQC0wKJr9fv3rXxcdUVVV1eHzvUHiHLp2DuvXrxcjRowQOp1OjBgxQqxfvz7s+fz8fFmaFkR+fn7YNt05B51OJ1566SUxYsQIAYiUlBT1GKFLfn6+GDNmjJD/ZQK0t31HSyjd2Yeyn+6+NtK+zGazePrpp4UQQsyfL5/b008/Lcxmc1SfdUcEf7bzg449YcIEMXt2i5gwYULYeel0OgHz/T8jnft8zRK6PvA4LS1NwAKRlJTU7t8hHvziF0LA7zTLCQE7NMuXAqo0y46g93TnnR3v/847hf81yuu/FHBagFNAm/+nS0CjupilFpGbK8TIkfLfef58EXYc4CMRxfU4niOQD4FLJEm6EFkZ7cdAUFeSJElXAKuB7wshjsXxXBL0Y0Jl4rv6fHcpKCjgT3/6kyp37nA42pUwd7vdYbLnWhSPkvY8TM4EXC4Xs2bNUsuaF/pne9qbCusKiueJ/PkEe71olYS1Jds33XQTe/fupaZGoqCggEsvvZQ//elPUR9Tuy9FYbitrXdl3MO9UHYg97UoTIrTkQNTWDKB0ma30GG3Q9isYDeIWxJdCOEB7gfeQh5hvCaEqJEkaZEkSRP8mz2JPGn3uiRJOyVJ2tDO7hIkiDlDhgyhsrKS6dOnc8899+D1esOCh3LxVKZVtGZNWtLT09HpdP2qUquriHamhtpb3xVOnjxJSUkJw4YNAyT/TxlFo0uv1wcdy+FwBHXYtzfF2B5K8AilvxuRxQYlie5F9pdxqIsPFy0tNo4e7XmTSVw/SSHERiHEV4UQXxFCLPave0wIscH/+1ghRK4QYpR/mdDxHhMkiB1btmxhypQpbN26leeffx4gSC8KUHtQzj//fDIyMoK0o7Q0Njbi8/lobGyM+3mfqVxxxRVBAUHh/PPPB+TPWNu0uHHjRiZOnEhraysTJ05k48aNUR1HSfprk//aUZTP5+tnzZF9x8KFC3r0+n6RRO8pbreb+vp6HA4HGRkZfe4H3V/O4cCBA+Tn55+RjXK9gdPp5LnnniM5ORlJkli+fDk5OTlMmzYNnU7Hj370I15//XWEEHg8Hn7zm98wderUvj7tM5L8/Hxmz57N7NmzgcD0GMgqBUoX/Zw5cwC4//77WbFiRZhRlrK+I5Qgrg3mOp0OrzcwrXW2eMlEh47g7nwd8sRPHlBEdTXd9oc/KwJIfX09aWlpWK1W7HY7aWlpfXo+p0+f7vNzOHXqFC6Xi/r6ei688MI+PZf+itlsZtWqVTz00EMAXHbZZUyfPh2j0chXv/pVrrzySl5//XU2b96suie2J5+SlpZGS0sLKSkpCSe/CMiVXeFIksS8efNwOk9hNj/BD37wAzZs2EB5eTmfffYZ77zzjmqUdf3111NeXt5pABkwYACNjZL/pxxEhg0bRk2NrDB8yy238OSTT8b8PUZHM8FGWnngr5CSSQ16Pja9KsoUloLW9reaoqKibnunnxUBxOFwYLVaY5LsO1tQJMDb+8dNAPfccw9z584F5Ca6m2++mdbWVu69915ycnKYN28eAGPHjsXn83Hbbbfx61//Omw/I0aMYP/+/fh8PlwuFyNGjKCmpgZJkjuojx07xqBBgzh69Og5K42ulOyGIoRg06ZNbN58DWPGXEtJSQn5+flUVFSwb98+3n33XfW5u+66i4qKCsxmMwMGDIjQGyKj7StR2LVrFwsWQFHRtXz44YdxeIfRUkXH/SpnVq/KWRFAIDaVImcbic+kYxTdrXnz5uHxePB4PEiSxPPPP096ejpCCNLS0rDb7R1OAzY0NLBp0ybVklfrFvjf//5XzY0UFBSwe/fumJx7e8n8M5Fx48bhds9j2bIlJCUlsWrVqiCJmy1bZOOsNWvWUFpaisvloqWlxW9rLJGRkUFbWxuuDlTen3nmGdzuUl577TWee+65fv35aUdO/Z1zoRyhV/jNb35DQUGBKnIXaxYsWMBTTz0Vl32fyygijkII7r//frUSqLm5mQkTJvCXv/wFq9XKiy++yKuvvhrmQWIwGGhsbGTcuHGYTCbGjRun/vPv3r2b6dOn8+abb6qyLLHAYrGcMReYaJC7/xfidrvVUUMkiZvCwkJqa2sZMmQILS0tQSZb2pulnJwcQPL/lHn44YdZsmQxzz//PMnJyZ1Og/UlXfnbylNcWs2vDAKNhDrk6av4cXYGkLw8kKTYLXl5nR7y2Wef5Z133uGVV17phTeYIB6Ul5fjdrtZv349AG+++WaQYq1yAdMyZswYXC4XqanyPHZqaioulwtJktDpdKxcuZL/+Z//YeXKleh0uh7pSiUnJ7N582aSk5ND7GnPLkpKSjr1OfH5fLz88ss8+uijTJw4MehzFf7+SqWCDlCT5h6Ph+985ztx6SvqHj2bJVi0CII1v5Q+Fw+yJpYHuW8yPpw1U1hBHD3aq/ubMWMGn3/+OePHj+fHP/4xe/bsYe/evbjdbhYsWMDEiRNZt24dlZWVtLS0sG/fPn7+85/jcrl4+eWXMZvNbNy4kaz/3965B0dV3wv8890k5EUegDHRpJJ45ZUMIrlWq3RsMQI6KjK2eo1YRVDKw9AHVSCBq1ZFUaBjg0wKJlXQlIvVifYOloChzrVWoSJQQJSqsYCVQDRgApjX9/5xzll3kw3ksXvy4PeZObNnf+f13d3kfM/v+xw4kNWrV7Nq1Srq6+u56KKLWLt2bavQ0Y8//pjZs2dz5MgRYmJiWL16tV9cvaFr5Obm8thjj1FYWOhXoytQJ8VDhw4xadIkXn/dKuN24sQJJk2aRFlZGarqNUc4r23lJogIItLmdufcEyZMsE03fTuKaOzYsT6zvT3s2WPV8LrvvvtYuXIlqampTJ8+ncrKKX5JiSLCl19+CVi5J1b0VRNLly6lujqPr76qYvXq1eTl5XlNmN1LMG7uD/qs/wUYBsTwbSHFGMA3bLkJf6d65+mbMxCXKSoq4vzzz2fLli3U1dVx1VVXsXXrVrZs2cL999/vbc26e/duXnnlFbZt20ZBQQExMTG8//77XHHFFaxZswawsm+3bdvGzp07GTFiBMXFxa2uN336dAoLC3nvvfdYunQps2bNcvXzng20t5PiBx98wPr1671msFOnTrF+/XrAcq6fOGEVmz5x4gRZWVlt+qUuv/zydiW4NTc3u55N3R20ZWJasWIFI0aM4NChQ1RWVgIP0dT07VO2qvopYac52S9/+UsiIiK49dZbWbJkiTfvp6fSef/lFqAIeAX4rb2cAN71Wf6OVbm36/TNGUg3Ul5ezokTJ3jmmWcAK0LsX3a/yLFjxxIXF0dcXBwJCQnceOONAIwcOZJdu3YBlpJZuHAhNTU11NbWMmHCBL/z19bW8vbbb3PLLbd4x9qKcDF0nvZ0UoTA1YSdHvAffvghS5YsITMzk7179zJv3ryAUVhhYWG88847pKSknDFSq7eWSQkmVnn6wIiI9ztyFMltt93mt8+MGTNc7UIZHh5OU1PTGSPwkpKS+OlPF3H11T9g4sSJ1NbWduGqTl95sHwiTtFFX7reI8UokCCjqrzwwgtkZ2f7jb/77rt+2a8ej8f73uPxeE0SU6ZMoaysjFGjRvHcc8+1qhja3NxMYmIiO3p6r8s+QHtqcDkzleLiYm8UllMifdiwYXaOwzdERkYybNiwgI70nJwcysvLW4WlBqoQHMxqtH2Hh3HMOPHx8Rw7dgwns72yspJ169bxu9/9zrt3UVGRq5nozv+2ZcZse7+jR4/y6KOPsHp1kddq0Xl8zVrXAvuwzFvBxZiwgsyECRMoKiry/pO///77HTr+66+/5rzzzqOhoSGgQz4+Pp6MjAxeeuklwFJYO3fu7Lrghk7h+Evy8vKIioryOt3BelL2jcLas2dPwJv/3r17iYmJaRUq7Ks8nBpbgwcPPktqOXUUK3fCUh4AD1FZWUlERATHjx+3w3gbWL9+PfPmzePee+91TTIR8TNngm93SyE8PNyvDtiXX35JVFQUaWk9v7+e+UsMMosWLaKxsZGLL76YrKwsFi1a1KHjH3nkES6//HLGjBnTpmP8xRdfpLi4mFGjRpGVlcWrr74aDNENnSRQz/fIyEjGjBlDSUkJN954IyUlJYwZMybgk+/BgweZM2eOX9vWljW5Ghoa8Hg85OXl+dn4nb7ljvKJiIjw62t+Os4GReQ0CMvPz2fx4sd49tlnmTFjhqsOdFVl3759LF68mPx8y4fmhCsvXLiQefPm+fymQmpqKv379+fJJzvW4Ts5OZnZs+8jNrZ/iy2nsEJ80+3FvzNjZWUXMt7bU/O9Jy2B+oHs3bvXu378+HHV5GRVCN6SnNzqmqfj+PHjHdo/FDgy+H43btObepIEGxHRjIwMraio0E2bNmlFRYVmZGSoiLTaF9CUlBRNT0/X+fPn270r2u7d4fTGcI71eDyanJysIqLJycmtemcMGDCgXf1AzrS9K5zp+l1fFnZofzcREc3JybH7zjzk9xsuXNioFRUVGhkZacv2UMCeOKfD/7MF6o2ypcXYg2f8LugB/UC6j2AUujcYukBmZiaTJk3yc8LffvvtlJWVtdo3PDycb775hsOHD7Nu3ToeeughFixYQH2A1Gon1NeZYURGRjJ48GD279+PqlJVVcWQIUP47LPPACvAoq3EtLZ6lzh+lt7lb3m0Q3u7+dlUlTfeeMN+ZwUAODMOx+cR6LfuKFahSOhqbklH6JsKxGDoZgoKCigoKKC4uNjbaGratGmtMtnBiqwKDw9HVamsrKSwsJCEhASOHrXajfre6Jx15/Wbb77ho48+8uaZJCYm8tFHHwFQWlrK5MmT27xRtpVz0vIahtBSXV1NdHQ05557LnfcsbBVr/r28u3v6d7v1veNoAZDN+DrXJ8wYYJfRntLMjMzmT59ut/YtGnTGDx4sPcmnpWVhcfjISsriwceeMBv5hAVFUVCQgIej4eEhASv/+Ttt98GaNMf4py7J9eF6ussXLiItLQ04uPjWbx4MWFhYd66X4EeNjpDWFjo5glGgRgMIcJxrr/xxhte53ogCgoKKC0tJT09nQULFgDwxBNPeMM/k5OT/Zz055xzjt/x/fr1C/i+qKiIAQMGUF5ezqZNm/B4PH77RkZGMnPmTGpaNINwkthMMc7Q8+ij4VRWVlJVVeX39xGobM7paBl04TB58uSQhiwbBWIwdDPObKWxsZHHH38cgDVr1rBmzRpEhKqqKpYvX86JEydYvnw5CxYs8Js1OLMRZ0bhvG9sbOSFF15g7NixhIeHM2LEiFb5Sf/+97/9yrM4VYid8/XmFr29iebmZkSEhx+2StoMGzaszd4zgTh16hTZ2dkMGuT/cLFq1Sq++93vBltcL0aBGAw9gNzcXA4cOEBpaSmxsbFMmTKFvLw8Zs+eTf/+/Zk/fz6xsbHMnz/fr5qsx+Ph5MmT5OXlUVtbS15eHidPnvSG6Pq2jk1NTeWdd94BoKamhqlTp1JWVkZqaqp3n9raWpYtW0ZdXR3Lli3rYja0obN8+umnfv1M2sP27duprs7zG5s4ceJp66t1mfaEavWkpV1hvN1MR2XYsmWLXn/99SGRwYTx9n4ZSktLNSsrSz0eT6sQTxHRuLg4jYiIUEAjIiI0Li5ORUQHDhyoHo9Hly1bpq+//rqGh4e3CmdNSUnRyMhIVVVvaKmzn/Pq8Xi6JL+qG2G8HV/cItQytu9coQnj7ZMzkG6o5m4whIxAiYoOmZmZzJkzh6FDh+LxeBg6dChz5swhMzOTFStWeGcv1113ndenkpOTQ01NDTNnzuSLL77w1lJznlR9S5/7jht6M78OyVn7pAJxuZo7AJWVlQwfPpwpU6YwevRoJk+ezObNmxkzZgxDhgxh69atbN26lSuuuILRo0dz5ZVX8uGHH7Y6T11dHVOnTuWyyy5j9OjRJsvccFocB7zTGKuwsJDS0lIKCgrIzc2lqKjIq1wALrroIjZv3kxCQgIrV67kyiuv9J7L4/F42/D6vgYrYz06Ojoo5zF0FA8hC+1tzzSlJy3tMWGBBn05E59++qmGhYXprl27tKamRrOzs/Xuu+/W5uZmLSsr05tuukmPHTumDQ0Nqqq6adMmvfnmm1XV34S1YMECXbt2raqqfvXVVzpkyBCtra09swAtMCass0eG05m4fGXANkstW7ZM6+rqdNmyZV4zlaplChkwYIBWVFRofX29VlRUeLPYuwodMNt8m5VtTFihOX/wTFgmkTCIZGRkMHLkSL7++muysrLIyclBRBg5ciSVlZUcO3aMu+66i/379yMi3jo9vpSXl/Paa69529c65eA7EpFhOLtoT9VgsMJyhw8fTn5+PnPnziUyMpLhw4f7lUe/5557/LLn77nnHp566qmgyepUGA5UaRisEOSkpCQOHjwYtGsaWhOsvut90oTVXZypXPuiRYsYO3Ysu3fv5k9/+lPAfyBV5eWXX2bHjh3s2LHDKA9D0Bg3bhy7d+9m6tSp3iis3bt3M27cOMBKOCwuLvYzhxUXF3epDW9LnJIdvqU7fJMkn332WT7//HPAUjbp6emICOnp6d5cBzdLsfdNHg6K8gCjQFzl2LFj3pDJ5557LuA+EyZMoLCwEGsW2fFy8AZDW2zcuJHx48dTVFREYmIiRUVFjB8/no0bNwJWo6WamhpvNeHc3FxqamqYMWNGUK4/ePBgr0O+ubnZqwh8AwTS0tK8D0z19fV+4cmO0nGzFLvh9BgF4iIPPPAACxYsYPTo0W32tF60aBENDQ2dLgdvMJyOjRs30tzcjKrV+tVRHgCFhYXMmjWLmpoaVJWamhpmzZoVtNLnVVVVVFRUUF9fT0VFhTfTva22wTfccAP5+fnExsaSn5/PDTfc4N3/bChF3ytoj6OkJy3tcaJ3czX3HpWLYpzoRoaeIENsbKwCOnPmTK2pqdGZM2d6HeaBAgDS0tI0JSXFz6GfkpKiaWlpKiJeB/D06dN1w4YNfiXrw8LC1OPxaEpKinfMCRyYOXOm93i3cGTozBLq87d1DdrpRO92hdDRpS8mEoZSBqNAjAw9QQaPx6PZ2dnem7eI6DXXXNNmkmJpaakmJSVpenq6ioimp6drUlKSlpaWamRkpIaHh+uYMWM0IiLC2wfFuSE6kWW+0VxOvxRfReMWfVmBmHmgwWAIOSNGjOCOO+7wM5/l5+e3GSCSm5vL008/TWxsLCJCbGwsTz/9NLm5udTX19PY2MjHH3/Mr371Ky644AIO+yRrLVmyhLq6OhYvXuwdO6gJsp0AAAqhSURBVHr0KKrq0/LWEAxMGK/BYAg5BQUFzJ07l0suuYTvf//7vPXWW232R3FoKzw5MzOTqqoqv+KTSUlJHDlyhOjoaL8w5X79+lFfX4/H46GpqckbHTlo0KCQfdaW9K7GXB2jz8xA+uoP1BXMd2LoKeTm5jJt2jTy8vKIioo6bX+UM+E42SMiIigvL6e8vJywsDDAyptKTExEREhMTPTmWqWmpiIiDBo0qFP9xruCqtKvXz9v33pfWpbSB+tztSzR31PpEwokKiqK6upqc8P0QVWprq5us0+AweA2OTk5bdb06giOeSssLIzx48czfvx4wsPDCQsLIyYmxlsyJTo6mpiYGDwej9cUFh0d7TWFucmdd95JfX19q3tUYmKi33uPx8OgQYNoaGjoFY2++oQJKy0tjYMHD3LkyBFvlmt30lNkSExMJC0trVvlMBhCQSDzlojQv39/SkpKvGay3Nxc6urquknKbykpKWHEiBEBc2ri4+O9pdubm5uprq4mLi7OW7K/R9MeT3tnF+Ba4EPgn8D8ANsjgf+xt78LpJ/pnIGisHzp7mgTI4ORwcjQPTIAOn/+fL+w4IkTJyrgDQdevny5ZmRkBKwXFioGDhzoDS8mQBSUiGhGRoZGRkaetp5ZWwQ6Z0eWNs7ZvVFYIhIGPANcB2QCuSKS2WK3acBXqnoR8BtgSajkMRgMfZu0tDSef/55v1IsGzZs4JxzzmHs2LFEREQwevTooPYbbw8rVqwgPj6+VfLj5MmTqaurY+nSpRw4cIB77723U+Y9JyEzOzub4cOHB1X2MxFKH8hlwD9V9RNVrQfWATe12Ocm4Hl7/Y9AjphGzAaDoRM8+eSTNDY2MnXqVKKiopg6dSqNjY0sX77cb7+O9hvvKi3L6kdERDBp0iR27NhBXFwcJSUlzJs3jy1btnTq/Go76bdv386+ffuCLP3pCaUCSQUO+Lw/aI8F3EdVG4FjgHvxdQaDoc/gmzsCEBsbS1paWis/4FtvveV6gVLfpmBNTU2sX7/eL6DgwQcf7JJSmzt3rl9RSgenp0uoEA1R5JKI/Bi4VlXvsd//BLhcVe/z2We3vc9B+/3H9j5HW5xrOjDdfjsMy6/SFucAR0+z3Q2MDEYGI0PPkGEg1oNqJVBrrw8ADgFfuiyLw8XAp8DXPmNxwAXAnoBHnPl82OesBfoDQwABTgFniuh5L8DYYFVNOtOFQxmFdQj4js/7NHss0D4HRSQcSACqW55IVVcBq9pzURH5u6pe2imJg4SRwchgZOjRMnRrk+qe8D0Ei1CasLYBQ0QkQ0T6AbcBr7XY5zXgLnv9x0CFhmpKZDAYDIagErIZiKo2ish9wEYgDChR1T0i8musELHXgGJgrYj8E2s6eVuo5DEYDAZDcAlpIqGqbgA2tBj7b5/1U8AtQb5su0xdIcbIYGFksDAyWBgZLHqCDEEhZE50g8FgMPRt+kQtLIPBYDC4j1EgBoPBYOgUvb6YoogMx8pod5IUDwGvqap7qaY9EBFZo6p3drccbuIT7fe5qm4WkduBK4EPgFWq2tCtAhoMfYxe7QMRkXlALlaZlIP2cBrWTWSdqj7hkhzDsRTYu6pa6zN+rar+2YXrtwyPFmAsUAGgqhNdkOFy4ANVPS4i0cB8IBvYCyxW1ZC3ghORF7EeimKAGqyEqleAHKy/9btOc7jBYOggvV2BfARktXyytJ9E96jqEBdkmAPMxnrKvQT4maq+am/brqrZLsiwHetG/SxWhU0B/oAdFq2qb7ogwx5glB2+vQo4gV3fzB6/2QUZdqnqxXZS6iHgfFVtsuur7VTVi89wCkMIEZFzVbWqm2UYpKqtkpUNnaO3+0CagfMDjJ9nb3ODe4H/VNVJwA+BRSLyM3ubW4UhL8UqR1AAHFPVvwAnVfVNN5SHjceuZwZwqar+XFXfUtWHgQvdksF+eIjDmoUk2OORQOt2cCFARBJE5AkR2SciX4pItYh8YI8lnvkMQZEhXkQeF5G1thnPd9tKl2QY2GIZBGwVkQEi4kqnJPs7P8dev1REPgHeFZHPROQHLslwqYhsEZEXROQ7IrJJRI6JyDYRGe2GDKGkt/tAfg68ISL7+bZw4wXARcB9bR4VXDyO2UpVK0Xkh8AfRWQwLikQVW0GfiMiL9mvh3H/t90tIner6u+BnSJyqar+XUSGAm75HoqBfViJqwXAS/ZN43tYZk43WI9lOvyhqn4BICIpWBUX1gPjXZDh98B+4GVgqoj8CLhdVb/B+i7c4CjwWYuxVGA71izZjYeK61V1vr3+FPBfqrrN/pssxXrwCjUrgQeBROBt4BeqOk5EcuxtV7ggQ+hoT9OQnrxgzaK+B/zIXr4HhLl4/QrgkhZj4cAaoKmbvpPrsfwObl4zAXgO+BirOVgD8AnwJpYJyy05zscyXYH1T/tj4DIXr/9hZ7YFWYYdLd4XAH/FqnS93SUZ5gJ/Bkb6jH3q1u9gX+8DINxef6fFtn+4JMP7Puv/amtbb116tQ+kJyAiaUCj2k+bLbaNUdW/doNY3YaIxAMZWEr0oKoe7maRXEVEyoHNwPPOZxeRZGAKME5Vr3FBhg+wfIPNPmNTgPuB/qo6ONQy2NdMw2oUdwDrKXynqrplzkRE8oAbgSeAq7Cq8L4CXA1cqKo/cUGGv2F99gRgKZaPtMw2oS3TXl5U0SgQgyGIiMgArAi0m4Bz7eHDWIVDn1DVr1yQ4UmgXFU3txi/FihUF4JLWlx3IpCP1bLa1Uq4tkl5JjAU66HmAFCGVZuv8TSHBuv6o4AnsXyyv7BluQsryONeVX071DKEEqNADAaX8PERnXUy2KHd/6Gqu8/m76GnydBVjAIxGFxCRP6lqhcYGYwMPUWGrtLbo7AMhh6FiOxqaxOQbGQwMrgtQygxCsRgCC7JwASgpa9DsMI4jQxGBrdlCBlGgRgMweV/sSKddrTcICJ/MTIYGbpBhpBhfCAGg8Fg6BS9vZSJwWAwGLoJo0AMBoPB0CmMD8Rg6CAi0gT8A6tAYyNW2Zrf+GZ+GwxnA0aBGAwd56SqXgJWiXKswnzxWCUrDIazBmPCMhi6gFr9LaYD94lFuoj8n4hst5crweoQKSKTnONE5EURuUlEskRkq4jsEJFdIuJqmRGDoSuYKCyDoYOISK2q9m8xVgMMA74GmlX1lK0M/qCql9rF836hqpNEJAHYAQzBKjb4jqq+aPcyCVPVk+5+IoOhcxgTlsEQXCKAFSJyCdCEVcQPVX1TRFaKSBJW24GX1ere+DegwK5c+4qq7u82yQ2GDmJMWAZDFxGRC7GURRVWxdXDwCishkX9fHZdA9wB3A2UAKhqKTAROAlsEJGr3ZPcYOgaZgZiMHQBe0ZRBKxQVbXNUwdVtVlE7sLqjujwHLAV+EJV99rHXwh8oqq/FZELgIuxmpQZDD0eo0AMho4TLSI7+DaMdy2w3N62EnhZRO7E6shX5xykqoftZk9lPue6FfiJiDQAXwCLXZDfYAgKxoluMLiEiMRg5Y9kq+qx7pbHYOgqxgdiMLiAiFyD1aO70CgPQ1/BzEAMBoPB0CnMDMRgMBgMncIoEIPBYDB0CqNADAaDwdApjAIxGAwGQ6cwCsRgMBgMncIoEIPBYDB0iv8HaQztRSEF99sAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -2077,6 +1548,19 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", @@ -2105,7 +1589,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2114,8 +1598,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2123,8 +1607,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2132,8 +1616,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
test modelfemale11.3975620.7911921.000000
test modelfemale22.3309530.9742151.4679630.975762
3test modelfemale32.3578000.9557022.1259440.920641
4test modelfemale42.7433880.9137193.6417940.911259
\n", @@ -2142,10 +1626,10 @@ "text/plain": [ " iter model_cohort sex level_3 event_time survival\n", "0 0 test model female 0 0.000000 1.000000\n", - "1 0 test model female 1 1.397562 1.000000\n", - "2 0 test model female 2 2.330953 0.974215\n", - "3 0 test model female 3 2.357800 0.955702\n", - "4 0 test model female 4 2.743388 0.913719" + "1 0 test model female 1 0.791192 1.000000\n", + "2 0 test model female 2 1.467963 0.975762\n", + "3 0 test model female 3 2.125944 0.920641\n", + "4 0 test model female 4 3.641794 0.911259" ] }, "execution_count": 18, @@ -2181,7 +1665,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 19, @@ -2190,12 +1674,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XeYXVW5+PHv2u30c6ZmMknoaSRAOi0QOkFEqqC0KKCC\nKFJ/XEDFAhdQrl5AEA2gtAgXpASRGmoMECAVhGCoqdNnTj9nt/X7Y0/JZCYJgTRgfZ5nP5nZfZ+Z\ngfes8673FVJKiaIoiqIoiqIo3bStfQOKoiiKoiiKsq1RQbKiKIqiKIqirEUFyYqiKIqiKIqyFhUk\nK4qiKIqiKMpaVJCsKIqiKIqiKGtRQbKiKIqiKIqirEUFyYqiKIqiKIqyFhUkK4qiKIqiKMpaVJCs\nKIqiKIqiKGtRQbKiKIqiKIqirGWbCZLffPNNzjnnHPbff39GjhzJc889t8Fj5s6dy/HHH8/uu+/O\n1KlTeeSRR7bAnSqKoiiKoihfdttMkFwoFNh11135xS9+gRBig/uvWLGCc845h7333puZM2cybdo0\nfvaznzFnzpwtcLeKoiiKoijKl5mxtW+gy5QpU5gyZQoAUsoN7n/fffcxZMgQLr30UgB23nln5s2b\nx5133snkyZM3670qiqIoiqIoX27bzEjyxlq0aBH77rtvr3X77bcfCxcu3Ep3pCiKoiiKonxZfGGD\n5ObmZqqrq3utq66uJpfLYdv2VrorRVEURVEU5cvgCxskK4qiKIqiKMrmss3kJG+s2tpaWltbe61r\nbW0lHo9jWdanPo+Ust+JgoWWAs/vfQVuSwcAwvcYlHsPXbokaeeX/Jp32bV7fwF46CxkHAAzOJkT\neIhWqvAwANm5F0gELdTiCYNV8RGAJOpkKOox6gsfoEl/jfP61NAMQBvVhChTJIyPDoCOR4wcUQqA\nRKfn2C5FIht4FQQp0uhC4mkG/x55PGOe+A0AC46/CqOjpdfeumezfdsCKoqr0Xyvz9myMs4cuQ9o\nOgfVv0tFqNT3kokEXHYZHHlk8P28eTBhQrBeURRFURRlK/vCBsljx47l5Zdf7rVuzpw5jB07dqPO\n09aWR9P6qaahw063/JD8inT3qvQHzdgtOT5pTHNsto1j8rNwskFwqkmP7Tve5usNd9FBJW8yiVO4\nnxo9zQeDJ/PhyKnY4RRutoCWiBKpS2FWJ6gfWkN+WRvl+/5B4uRvkHY87JZc9zULBXjk5QyGoWFa\nMHz5i/xnuwNxoikA4k47E1c9TnsH5EWcGq8BH6ggC/iAxMJZ5/NrSAxc2vWdAQj7BczW1TR9HATG\norUJ2wrjh6MIAZquI0sZ9DYXhMAxQkjR+wOJdlnN8/Yh4MMYs5lYLN1ruyiVaGvyef9/X2HgkIlU\nVUHooUeRz72IPe27yJraPveZzcKiRRpjxvhbNI7WdY1kMkImU8Tz+r4B+TJSz6ye+ctKPbN65i+j\nr9rzbiqVlbEN7rPNBMmFQoFly5Z1V7ZYvnw5S5YsIZVKUV9fz+9+9zuampr4zW+CEc5vf/vbzJgx\ng+uvv54TTjiBV199laeffprp06dv1HV9X+L7/VfTGDB+EIwftMaanpFjw9CorIzR3p7HdXt+Kcd9\nK8wLL8Br0YOhAJZXYtdlzzGyYTalk06meNlP8IYO63Wd1rcbWfZsJfUHDqV6t7pe2xobBX93Q1RW\n+iTzq0nnPyG95yH4dfUAiNxq7Ff+TchZQVavZGZ6Mpr0+Ab/AAQbqhMiCEarbT8Ybdalw/DcR7j5\nAjIcrPPCEWQsjhAC3dTxNQ9fN/CEgauHkJre65yuH8HTdIT0cYwottV7tFk4YHuQL2rYtsTzJNL1\noLUVr+zgu33/yEvLWwjdPpP0afvR/uxsKn5wLNEdajbwdJuO5/m9fs5fBeqZvxrUM381qGf+8vuq\nPe+WsM0EyW+//TbTpk1DCIEQojsYPvbYY7n22mtpaWlh9erV3fsPGTKEP//5z1x33XXcc889DBw4\nkKuvvrpPxYstbdw4nxdegAXeHswZfSZ7VCwjMWcWwraJ3HsX4Rl3Y3/tKArnXYA7YdKnPm+xKDAK\n4HnB6LLbOdis5cFxAB8SIs007qZAlIGsxkPgo6838VzDR8OjJTQEiSTltNMU25HKzgDZ8Mrg5JE2\nCCEwfR1ZylPOu4QdH0d4+GsNxIdkB5P92bzFbjQ3eIjW3iPZlutSsjX8CgfR2oLAg0I+CNibm7rv\nV0YiyGQwYl6dchk8vJFVwuajt1sJZT2in+J1y+Vg0SKdMWM84vFPccD6FIvon3yMt8OOENlQCoui\nKIqiKF9k20yQvOeee7JkyZJ1br/22mv7Pebhhx/enLe10caPD0ZNS2WNxfo4qq+6nAFWB5E/3kT4\nwfsRjkPoiX8QeuIf2PtMpnjeBVA3Zp3ni0QkVVU+bW0aZDVcF7JZjZIRhJJ2RqM5HcZhEPXuKgbQ\njIdGNS246IDAxMXF6JMW0cXBpKwXEdIjqpXIakFOtygVGZxdglcOQzYEBB/r+MUSSbeDiCxi4SDp\nHSXHyXKIeJ5a2Ux1eTV1TlOv7Zrv0OJU8ElHihF/vYOo0Yqx5B1AIDo6ugNQv6qawsWXdgfKn0U+\nL5gzR2foUJ94fMP1t9crEsEbueuG91MURVEU5QtvmwmSvyzGju35qGNJbjsOArzhI8jdcAuF//op\nkem3Er7rL2i5LNarc7BenUNop+E4+gjw3D7nSybh4ottikVBeolDx28kY77vkBpZBiC9xKHpKpPH\ndjyb6kgBMfe32CLEwNz7ZEUKQ3hs5y9jubY9ZRHue8MSXDRMqaNLm4i0yPoxagAZjrAyMRI3nkBG\nY8FIsqHjpjPQ1oomfRzNwhd6n9O2+pXMkftyqvw7UmidgXRXkCrw0fggujteZC4tZUlDemeGJxsw\nTAusEJSKaCtXoC37BFk7ALKZz/Tz0Nua2XfBY+jfOBrqtlx6hqIoiqIoX2wqSN7EBgyQbLedz/Ll\nGu9lh/Ta5tcPIv+LqyhceAnhO/9CZPof0ZsaCX/0H3bnPxQuaaTwt/uQtb0nriWTkExKjGZJ3pRU\nV0uq64KA02iWdFgg4wnKiRi2HiErkjzDNBxpkZBZDpAv8pJ/IGlR0e89SwmGA5r0MP0yhXw1Py4J\nImGJq4ewzRjSSiCEQJo6runhCRNXatie3m+QbEibcSzAcnOUPEFM5tBkMMqu4WMQw2htwly8EOm7\n/Cc/kmH225iLC2CaCNdB2DbRG34HkQh+KAypFLoO0SjofS/ZL+F5xArNCK8nL3qTpmBsDJWuoSiK\noihfGCpI3gzGj/eCIDk3GMj12S6TKYo/uZDi2ecSfvB+rN//ntCKj4guep3QYVPI3DkDd+z4z3z9\nkLA5lb+R0VLowmcH/yMimt3vSLKUwRI2CUaSnSyZ2E5EwhPXew1Net35zP3UBiFJhv2ZjYbAQ0eX\nwSi57J5MKPE1AxkJI4Hl0eFIXkBGwmBa4ARRsF9RAUKgtbfjx6JUVEjqxnmUqmQ/xe4+nU2agrEx\nVLqGoiiKonxhqGYim8G4ccGo5cfFgUy7aDAzZphk+ssWCIUonfYdPrn3aT7e+UAA9FUrqfjGVEL3\nz+izu2bpUFsT/NtJ6jrZSA2eMCiXBb4PllekSrRRTwN1somEzFEnm6iXDX0XGhgkGhjIagbRwADR\nQkLLr/f5NN+hwm8jTJE4eeIy23chT4QSYYpEZAETBwO3+98EWXTPxnUEriPIu2EW5kfQVKzAdQSO\nI+iuZONLcDZdF8UgBeNP6G3Nm+ycn4fIZTHnzEbkslv7VhRFURRF6aRGkjeDww7zuO46SakkeGNh\nhDcWwuWXhzjiCJcTT3Q48EAP0+zZv3LUQHjtMTIPPUDiovMQxSLJn/yQ4qIF5H59LV07Vw6vofL2\ns3pdy6uq5ZWx56ClIducpUXUMtj9hJAsY0iXgozQTDV4LkmRI0yJEuE+KRKmH4woOyIo7dYl60Wx\nCyYSgUBgGOCVInzATlTSgo/e3dhkTRo+YQokZRYPDYGDjovoHEs2cDgg90/C779HgSia08pSBrHd\nhy/gam0I3wM8jNLzaBrgebhWCO39/6A1NaIteQfR3DMhUIbDkEgGX69RFaO/9Iz+UjC2qlIZfcm7\nuCN2hbhqpqIoiqIo2wIVJG8Gw4b5vPpqnr//3eSBBwyWLtUplQSPPmry6KMmNTU+xx8fBMx77OHT\n1fCvfMJJuMNHkjrjVPRlnxC5Yzr6v98mc/vdyAED1nm9UAjOOcehVIowncup9VaTnnsz1bKNom/h\nF220iEWllmZI+UOarO0J+0UyRiWeMEGAEOD7UHYN3Eg9teEIxZLgb4VjieQLaB3BPpqm4dtlBvoJ\njuYxMiRx1/FrpOExmVc6c5DdXlWb4xTYT8wBaWDhMEm8iSZdqr1Wol4WrbMRCqvLQUdE30PMfglz\n3hvgOFgvPk8QPQekFcIdvRtYVq+qGFVVkkEbSM8ofNJCx/RHt3jt5S6ypobyt07GWLQQNzwWqQJl\nRVEURdnqVJC8mQweLDn/fJuf/MRm0SKNBx4weeQRg9ZWjZYWjenTLaZPtxgxwuPEE11OOMFh8GCJ\nt/setD/zIskfnIn18gtYr71C5WFTyPzlnvXWVU4kIJGQyGSKDivBjQOvpSKUp8JpZr/lD/Cv7U4i\nZPoc0TyDVyumsk/H0zxVeyrtZk/zEtuBfE6w3fAwP02ECSWAvScRDheIRkHTBKGQib1qNROffYD6\n8iokGkWt/641ll+gSAQJRAhSLny07tHkshlHGhbtfjX/klMwvRKjtXcJiTKmVwYEwjQBSYtbw/3a\n2Xwz+SK1RnvvC7kuwnXxE4kgf7mtFVEsfurSccWsR+NG1F7eHEQ+jzlnNt7QYd1Bsshlg8B5jAqc\nFUVRFGVLUznJm5kQQVm4a64ps3hxnnvvLXD00Q6hUDCq+t57OldfHWL8+BgnnBDh/vsNslY16fsf\novCj8wHQV6+i4pivEZ5xd5/z6zpUV8te6QSlkqBDpmignkZRz2ptCI2inkbqyJGghRpyJGikjtXU\ndy+NYhDNRj0Fsye49ONJ/NoBUBcsWn0dTt1g0kY1Eh2PoLrFmotAkpAZPAwaqaOBgTQxgCYG0Ewt\nTdTRQSU+Ipg4CND5r98ZQneu6gynBS46zVodTiSJjMV7LVhWz8P7EorFoClJYwOiuQmRz3V/rzU2\nBA1MHDv4N9O7ZfZ6f5YtLYTvmI5oafnUx3weXYGzyK8/R1xRFEVRNpXf/Oa/OfLIQ5gyZU/ef3/p\nVrmHhobV7L//pK12/S5qJHkLMk04/HCPww/3SKfhscdMHnzQ4LXXDKQUzJ5tMHu2wX/9l+RrX3M5\n6aRrOGy3cVRefC6iUCBx4Y+xnnmK4g9+iLPvfiAENTWSs84KOtplMlBV5bNypYZtB4HmagZwe+hc\nKl1Jnb2aQgFKIYHrQrkkKHm9a1OEw3KD5dWyWopbtPMI086T+lE0aQN7ba+UrXzNe4JnxGHEZA4D\nl6/zODpedwCs4TO2vAhDlKimzInyflqoJuFn0HG6Q2W/7CKRRGUWw+9n8p7roq1ahSiXsF57BaBX\n6TgcB629jejNN3bndpc6NBIrssRvv4XozpXwtTM+1c+vkHFpWdhG9CCXyCbOypC6gV9dg9TVn6Si\nKIqydbz22is8/fQ/+cMfpjNo0CBSqf5Lx24JQvRXO2vLUv9H3kpSKTj9dIfTT3f45BPB3/9u8uCD\nJh9+qFEsCh5+2OThh00GDDidb379MM761/cYv/pJQk8+TujJx3GHj6D43bMon3Ryd1pBV+ORZcs0\nbrjBoqIiGK1+5x2dUaM8UgWP6BwYPdpnh0bJ3qM8MrHek9fKZUk+v/4PGEwTqpIOO+aXMd5cRIve\nu6Ne3M9QTyPjxCJ2dxfhojNYLidBDg8QCEKU8ISBqwWd/GJ+gTlyX0byLhFKaHhIJK7QEVKSI4aN\n1fdmfB/huqBpweS9rtUVFRAN0kD8AXW9Dqm08gwYvAonuUuQmlEub/gHBhQKgmXLBNsXBJu6yrGs\nqaF01g/635jPYc6ZrdIuFEVRlM1q5crlVFfXMHr0blv7VpByC5ZoXQeVbrEN2GEHycUX27z6ap4n\nnshzxhk2lZXBL0dTk8YfHxzEhNVPsFvVCn4b/jmrqMf4z3skrriU6j1GEL/4J+hvLQaCQLm2VhKJ\nBKkeUspeC/Rdt+bieZ/unZuhScKUGEDzGgkbwVJHIwlyDKCJerG6s8RcEwNpZBBN1NNINR2EKRGR\nBSKyQIo0o3iHOAUMXDQkOmBKDwOPGHlMadPqJLm14XianbXe3QoRpF2YVhDFG5/i/V9XakZ7W3f6\nhdbYsFEpGBvjs6ZriEJBpV0oiqIom9U11/yKG274HxobG9h//0mceOIxANxzz1858cRjOOSQyZxx\nxim8+OJz3ccsWDCP/fefxOuvv8aZZ57KIYdM5vzzz6W9vZ1XX53DaaedyNSpB/CrX/2M8hoDUnPn\nvsq5536PI444iK9//RAuvfRCVq5csd77+/DD97nkkp9w2GFTOProqVx11ZWk0x2b58XopEaStyFC\nwMSJPhMnlrnqqjKzZhk8+KDBM88YOI7g322D+S9+zeXilxwcn8t3srdwXOERYvfcSeSeO3EmTKJ4\nxveIHnQcVVUmbW3BqHSpJEinNbSShutCOi26JxDm7b7vk6qqfCIRSbG47oC5JCJkSFHyLWCtdtrS\nQ/Mdamkg68dwMNGpIUsMOhMpTFyElEgZXL9IKJjMh4GJSaizuoUtTQQ+GRLYWHjotDgVuHI9OSGe\n11kFo2+b767tolTESncgXJdw+h70Tzwit/2JWKXTqzrGpiQ8F621BeG5fJr3x582BUNN8FMURdm2\niUwafel/Nsu5dV2DZAQ9U6SnwQB4w4Zv1P/HLrjgEgYNGsw//vEot99+D5omuOuuO3j22ae59NIr\nGDJkOxYunM9VV11JZWUVY8aM6z72r3+dzkUXXUYoFOLnP7+MK6+8DMsK8ctfXkOhkOeKKy7hoYf+\nj1NOmQZAqVTk298+jV12GUqxWOSOO/7EFVf8P+66675+7y2Xy3H++edy9NHHcf75l1Aqlbj11j9w\n5ZVXcOONf/yMr9yGqSB5G2VZcOSRLkce6dLeDjNnmtx3n8mCBTq+1JiV3YdZ7EPMKHE1P+MC93eY\n897AnPcG8arL+e8TTqf5O2fSENuZp582mTrVQWv1WfG/1XzjGHDvl5x5pkNqZN9Ug0hEkkxCsRh8\nHwTLEk0D14V8Hjr8JLPF/tyrfYeWtXKSB8gGzhF/wJAO88Q4WrVa6r2VRCjgoiPR0JD8gOlEtRIA\nUVlmLzkXf63+faL7X0ncS2M6BeJeB7pTAuygyYjfWS6ui+8H1S3CEeSaBak9N9jX0JEhC+E44Pto\nlkbELKNZBr5fRlu5Am3ZJ8jaAQhdg1IU7C3/sU9XCobW2LDe/fqrjKEoiqJsG0QmTdWE3dE286hn\ncq3v/VQFbfPe+tSBcjQaIxqNoWk6lZWVOI7DvffeyQ033NqdflFfP4jFixcyc+bD3UGyEILvf/9c\ndtttdwCOOupopk//Iw88MJOBA+sBOPDAQ5g//83uIPmAAw7ude1LL/0ZRx99OB999CE77bRzn3t7\n6KH/Y/jwkXz/+z/sXnfZZT/jhBOOYsWK5QwZst2nesaNpYLkL4DKSvjudx2++U2Hp54yWLJEY+ZM\nk08+0ci7YS7kf3COnMqFS36I8eEHaG1tVN52IxW338SOBx3CmDO+jz38cBpbapi51zkcs/NqmlM1\nVA3QqKlbd/AXiUiqqnza2jRKJYEQQU3mjg5B0TFpEPUUzRSOGe91nOvH8H0TA4ex7mIyWooR3luk\nSGNjItGxKJMnRkEGecO6dIjQk07go6PjYuEAkgQ5JhVnU928gomlMlHvE9ALQUOQYgkpAM8DbY1u\nhKZJsxjA31sP5pupZ6hrfCsIjDsJ3wfPZaD2BgNNB7k0gpB+r4l/QgAhk0g8BVO/uyl+nH2IlhZC\nMx+mfMzxyJq+MwLVpD5FURRlS1uxYjmlUokLL/xRr/xgz3MZPnxkr3132WVo99dVVdWEQuHuABmg\nsrKKd999p9e5b7/9T7zzztuk0x34vkQIQWNjQ79B8vvvL2X+/Dc47LApvdYLIVi5coUKkhWIx+Gb\n3wxSCH76U5u5c3V+/OMwy5ZpXPrEYVi/X8x3hjxL5M47sJ76J8L3sZ6fhfX8LLwh2+EffwZx5yyc\nilpeGXcOw6qCAHRduiYCdqVd6LpGRYXJ0qUOV15ZxV2LzqW+XrJzrPc5qm1JqkGiuxrPpyfjegar\nqSVECR8d2TlxbwgrWSkHUyYclI0jjUEwkVDDQyD5LncSpYCHRlqkWOoYzPIOIGrbVGvt6L5NrV8C\nIbGk3qf3nys70zN8EQTImtbdfk96wTVkNIo0OycFlorguviWBVYIoQnwHcSK5WgNq9fIXe77uq3Z\n6a8/+Tw0L9eI5uk18W9DaRjrndS3jVApH4qiKP2TyRRt897arOkWyWSETKaI9znSLdZWLBYAuP76\nG6lZawDHsnpPpDfWmAckhOj1fdc6KXvu7dJLL6C+fjCXXfZzampq8H3J6aefhOs69KdYLDB58hTO\nPfcnfSb0rX1vm5IKkr+ghIC99/Z48MECRx8dpbFR46JLIkT/dDjH3nkw2qqVhO+5k/A9d6I3NaKv\nWE7dTb/mp9q1tC45hsbwEYQ+GAM1Q1lfzbdkEpLJ4BfSMCSVldDREYwoaxqYpuzVYhtAQycXqiJG\nB+/FxmMKmyPTjzOU/1AgiotJiDLbs5yV2nbYIoQhHWr8BrzOuaRJMpjYRCghgBh5JlqLaTSGoDnB\ngLGug+4FKRlSgl920E0ZjCiv65l0vfc26fdM+HNdtObmoJzc4oVIwwxGkqWPUShiZe9nWcsuDPvr\nHcQShT6n3lAu8+asjrG1qZQPRVGUdZPJ1Hobgn0uhgaVMbz2PK67rt6yG2/HHXfGNC0aG1czZszY\nTXbeTCbN8uXLuOyyn7PHHsF5Fy1auN5jhg8fycsvv8DAgfVo2parOaGC5C+4RAJOPtnhrrss2tsF\n554bJhIpMnXqYAr/9VMKF12K9eTjwejyv17G8B3qXvg73+bv8CTIaAx39z1wxo7DHTMOd+x4vJ13\n6dXyeWN1mLU8MeC7fGPVbRSNBO1alJIWZYDfTJkQDkEqRkLkqBNN+GjEZJY4aTwMQFJBurumcpAR\nDUmnFd132M99kUHlj4iJIpr0sPwiUoLe2hRkW9hlZGXVxt/4WuXkpGl19ut2ka6HqKkkY++KqC3h\nR3K9jy0WNrrTn6IoiqJsq6LRKCeffBo33fR7PM9jjz3Gks/neOutRcRicY444uvAxpdqSySSpFIp\nHnvsEaqra2hoWM2f/nTzeusiH3/8STz++Ex+8YsrOPXUaSQSSVasWM5zzz3D5ZdfudlqKqsg+Qsu\nHJYccIDHwQcXOPXUKNms4HvfizBjRpEpUzwwTeyjj8M++jj095YQvusOrIcfxmhrBkAU8phzX8Wc\n+2r3Of14AnePMZ1B8zicMePw+8kRkhIcB+x+enzYTjCg6/vQIVLcpF9Ahd9GO5XkRZyYzDFeX8wS\nK0j038OeR8kNkSWBECDkx52T/HQ0PHQ8OkIDadXr+Jd/IFUhmxq9Hd2z0Us5JCBilcFAsZFH931w\nbHRKPRP9fA88jVavgn+UDuUb5tPU0E85tjXLyQkBvgamTW21zw+2XxA8O73zsAVAqYTIZtdZV1G0\ntvabriGamxAtzYTuvJ3SWef0m5e8PttUzrKq6awoivKl8f3v/5CqqipmzLiL66+/hng8wfDhIzj9\n9DO799nYAFUIwa9+dS033HA906Z9i+2334ELLvh/nHfe2X3261JTU8Ott97BrbfexEUXnYfj2NTV\n1bPXXvts1qYjQm4L1Zq3oubm7Gc6zjA0KitjtG/ijzc+j9df1zjppCiFgiAalTz4YIFJk/reW2MD\nPHpzI6ePep2ajxdgLpyPsXghWlvbOs/tpyrwxozB3HsvmnfYjV8+PokZc4ZTXRPUZF6T50Eit5rT\n8tO5xT2bJr2eeK6RS9xrKRGmSIQ4WfbW57HInADAROc1fM8nQzAKO4iVON1Bsk+EAgWrmrSWYok/\ngpHae8REEcsvMNx+B6SkEKpCCDBliVgUCIfIEmd+biTjI/8mmV0NukaOBPPs3ZlgLCJOFm/ESGQ4\nAraN8dGHgMTbeRekaSGEwPRd3GwOe8qBQRvsfohcDq2xAZlMIkqlfvdpyEZ57p0hHDJqBQPXSNfI\nZ3yyby2jtqJMafqf8YcOX89PefP7LL/bWmMD4bv+QvnIowg98Til75yJXzdwwwduI7bFv+fNTT2z\neuYvq6/aM3/VnndTqa3d8EDONjD0pGwqe+7pc/fdRU49NUKhIDj55CiPPFJg9917/9HohsDYaQiF\nwwdSqPlGsFJKtOXLMBYtwFy4AGPRQoxFC7pL1mjpDrSXX4KXX6IWuAW4WqtiWXgcq1MTWDZgAp/U\njqc9vh35gmDVIoNoTTWVGR1hShqKFTzhHUWss4JFhWxje38lC53RAAz2PqSVSv7NbpQJEyeLj9ad\nciERHC+eIGkU2ZOe3CUhdMqEkUgysQEAhMpZrARoFTFy1PEGBzC8IkPCbQfDJEctb8h9GRFeSRx3\nvTnZG8XzEO3t+JWVEIn23Wwl+bB6EgdW2/ixTPf6rKuxvFSgsvDJOgNsRVEURVG2LBUkf8lMmeJx\n++1FzjgjQiYjOOmkCDNnFhk+vCdQrqmRnHXWWjNIhcDffgfs7XfA/saxwTop0T7+CHPRAoyFCzDf\nWoi5aCFkggCv0m+jsuk5xjT1dN/JRWr5pGYcr/sTSQ8bRyRvU7R8RCTEPLkXMa2IEFDrNzJBe4cP\nosFIcjH3EpPK8yiLMHkRZ5L/OiXCeJhIQMfD0j3W/lRFCJBCQyLxNAuQuJi4vovmCFwEvgeuI/B9\nkB5BmxIZpIL4yCBfRNJ/zeXPIhJFxtcacS5vIPiVgOd2d/0DEG1tWE8/gT31SPzBg1Wus6IoiqJs\nQSpI/hKsPIzFAAAgAElEQVSaOtXjlltKnHNOmNZWjWOOifDoowVGjNjI4E8I/J12przTzpSPPSH4\nSCcVIT1vMasem8+86YuZKOaxY9tCwk4wkS1ebGb08mcYzTOwEi4AWow65okJvOFPZKGYyAJtIm1a\nLSU9TtqqBcDRwhi4JLUcJh61NFMkgis6y8xIMKVEX+sRdD8IbH0EuaxAAgnXx21qx2spYIoMX/Pb\nCWWa8JwSvnCwaGac9wpWuRWXEuXVWd51hjLKep9EaY2ay2tV7fjMyiXMV+dgpmNo7YMxM69gmj25\n0Hq5ghWlEYwpv0Hktj8HhbEBikWMD5ZivP0W/uAhm6UL4KayobxoVSJOURRF+aJRQfKX1HHHuRSL\nJS64IEJrq8Z114X46183wUf5moY/dBjet4by+NLTmRWWREMudemlbN88jx2aFzCkYR7btywkLIOW\nfTVuI1N5gqk8QWcZZBoYSJteiyVLLDF2Cyb4UYHtWwgkaZKUsfBlEKlGyFPlNlOWEaToSY/QfAeB\nj0MYqWto0gNNIx+qwrFieLpFAih7ldi5LJ5m0k4tc9mXHfRVhKRDe2oHXspPZUiFTdxuB+SmS8EA\nhOMiCkUMM05NJIceMZFmTyK3b8RZFh6G9Az8ZBK6KnNYeWQ4go/EnPsq2sqVeNtqkLyB7oCqRJyi\nKIryRaOC5C+xU05xmT/f5u67LV56ycB1wdhEP/He3fhM2hjFu7WjoPZ0ijvBB+/57Ga8y+DV8xnj\nzmdkbh67+wuJEATqA2lgoNfAqPxbAOSIcRfT+IN2ITni7OP9iyJhPGEhgSrZysXGLXySGE1Jj3Xf\nh2XnGe38iwIx0AyEHxROFroeVKjQO0eiPUAIBEElCiFACLnuzIquFIzOEnB43ud+zWoiOX6Yeqzr\nztfYYoGugdQg2pOqIQBpWWCGEOVS0FZbURRFUZQtQgXJX3KHHeZy990WuZxg8WKN8eM3zczXtbvx\nraljaQsfXjeTlwaeyNuDT2dZ8jR+NV+no9llN+0dxvtvMsadzxh3HqOcRYSwiZMnpWWxzRg6gv28\n2ZQIU9YiICElO9BZd6Cq4aP5ZUwZ5FrLzp4iXUcI18Nyi0g0KmhmL/8VKvwWLFkk3racifZLRJ0V\nUAy692nNzT2jydJH2E5Q7+7z8Fzop1wejg2eH+RDFwqIXGcN5nweYdtQLILj9qxXFEVRFGWzU0Hy\nl9w++3homsT3BU8/bbBggeSYY1xqaj5/5b81u/GtScuHeL1uV4xYiDDBqLOuA6bJ0tAYPtTH8HfO\nAmCE8zazGscAoOMjBDgijCssBsrGoM20gLAoEPaLVDqNhEtF0kY1nmZiegVCshxc1w9GWosiAqUy\nuTI4nTP9TKmT9CJ4wiBLjJIMkZMxdFzet7dnlncgcTvHrl4LmpAYiQq0sIlAoEsPWSzSljH555Lh\nHLnLEqoja3Xcy+eD0ee1WnV28zy0Vc0Iv++bFN0vkM9JFjCCMfOXEA//O9jgOGjtbVjNTWjpNOF7\n7iQ/avQ2m5cMG8hNtssYb8zFOfBglXKhKIqibPNUkPwll0zC2LE+8+frvPaazuTJ3qbIHFgvkUzQ\nstsU7NUa5KFUEt2NRda+dqMc0P11RAad8zpIcRU/JyKKhKxgVLjabeTH0buZW304kzNP88/q02gz\n64gVWvhG7maKIkZFMqhyQdlmYvFfCK1nMFjzCTrpCZ2osJnAIjTp4fs6nhUmZ1eAYWJJG3yJ3tGB\nZvWMJGu2TXTJQoa2pYkVV2JY5d7PbNuQy+HtMrT/F6Wrm59h9Ml3NjyBZfg87h3NzqGZxCKd5eEM\nHXImOSNFm5cg1Vrqt6OfaGkhNPNhysccv9GNSDa1rtzk/gjbwXxjLu6kvVSQrCiKomzzVJD8FTB5\nssv8+ToLFujsvfdmjpAJSsydcorL9Okmvi/p6NCw7SBQdt2e8muuC57e0z7alRpFx8ARUCJJhiRG\n5/6e79NajvNxppYRxQTvd9TRpNdj2XF0/0g8oXOU/Bch4aDLYDHR6QpHDWx0fCQeXQkiGkFJOV10\n5igbOrYeAglG9QCMqIkQAt138XN5MsPH8/pH+7LLqAWEY/neD53PozU3bTjpW9d7B8m+T63exncj\n93Nb/tR+D7E0h1o9jXBy2M1N3R39ZCSCTKYQnovW2oLw3M9bvE5RFEVRlE4qSP4K2G8/jz/8IRjR\nramRlEpwxx3mJku76I/e1sxB7zzGkIuOJhcZwHXXWbz/vkY8HmQk2DY0Nwtqa3Uy6QqSXgcfhnbF\nideQQpLLCTQNNC0IqHUXolFJVbVPvENSU+sjTB+j5DG+YxEDZCN1XhC46p0pGJoPUtqE/SKOMNCk\niyYlQvSkPDiYuFLrzmEOspvBERays/ycRAPdxovGyVrVeLEkMt47F1sApNeRarEuvo/IpMHzEX4I\nXAd99Wp0o7l7O65LuFBAFAv477+DccPv6Gpx6FdVU7j40o3/4SiKoijKFnDNNb8il8txzTXXb+1b\n+UxUkPwVsOeeHqYpcRxBR4cgHIbWVrFZ0y5kKExD9a6MqA4TiUnC4WCQ1TQlphmMDuu6wDQlabOG\npNdBjWjpTuntCpA1LdhXiOBr0wwGYi2zM9gmyW3R84lSYPshEokk3NHE2W3XUQhVoukwrLCYZdZQ\nhqbnU5QRHLqCX/Ckhp13GCUX4jlFHFeAlDSvEvhmVz4zRKTA6W/S3dpsO5hwt+a6fD4YNl8738Tz\nwA2qcWi4hGUR2fWgXS+CYSAdB4FAahq+ZYEVglIRbeUKtGWfIMPhz/vj2uykbuBXVnV3cFQURVGU\nbZ0Kkr8CYjEYP95j7lyDOXN0pk37nFUagJYWwcyZxjpHo/1Ygg+3P4D9Yxu+VtqoZjveZy9nDkeU\nHmWOdRAdVPTax8Wg3ajF6+dXNqulyJIiZkmklIQNQUlEgsi6MwFBSvAlQXm4NSJYHZ8qrYN9xVwM\naaMRNCbRDdA6L6V54JYFrtu3kkfvm3TRP/oAvbkpKN3WSdg2WrojaDntOiA6g2DpI1wHEMS8NHvJ\nV9HyOYSeDZ5Lxpnnj2MCb5L0PbR0GmvxQqRhIlwHYdtEb/gd2Vgdy0txonmI9HNbW8KG8qJlTQ3l\nU04jfNdfeh+nmowoiqIo2ygVJH9F7LdfECS//rrO7bebTJzoEYt99lQLz1v/aLSuQ3V1UNWiv30q\nnGaOyD3Ea1Un0BDant1ycxntvcVf2k/ARecNsRfP64fygnEYr7MnzdRyb+pctmMVnge2E1RTc5zO\nTtIEg7gAjh+j3ahlgN9MxC8Q8orEtXZCshzUHqZMWBYpEsEXOqYM0iV06aDhY2thhK6hdU36+7Qv\nk2Hg7bQLfu2A4J1Jl3wes62NdjfFP/yv843Ic1TrHT0jyUDBizKXvRihf9I9kpzzE7wkpzDCWEpS\n5INR5XAYaVrgBDcnwyGKrUWWtyXYriC2XpD8GfOiVZMRRVGUbcN5553NLrsMRdM0nnzyn5imyQ9+\n8EMOPfQIfv/73/Dii89TVVXFBRf8P/bee1983+e3v/1v5s17k7a2FurqBnLccSdy4onfXuc1pJTc\ne++dPPbYo7S1tbD99jvwne+cxYEHHrIFn/TTU0HyV8TRR7vcfLNFuSy48cYQ8bjkzDNtzj7bobZ2\n0+cl19RIzjorGEVubAxGYD2vp9Sw9MK8q40i74W5ZeCv8FzYMzOLStmOgcc+8hX2cV/hp+6vyZDg\nRQ7i1eWHsiQyllwRWtBo0jU8L8i1BmhuBhDYdoqbK37KgESeOho5onkGs2NTmVq6g4xeiRCwq/MW\n7xi7k5NxkknQdEnYy7NH+l/kiWFJA70ruPeDQLlYAscRFAqCvOg9qqwVBCEHTMuCWKy7IUhwR4AQ\nuGi0+pW46/izM3DR1qgFreETJ9uzTtOCHBOzq0GKhwxHqLIyjBudwq1Q0/YURVG2RZkMLF2qbXjH\nz0DXNZJJyGS0XoNSw4b5JJMbd66nnvonp5wyjdtvv5vnnnuG66+/lpdeeoEDDjiI73znLO6/fwZX\nX30lDz30T3RdZ8CAOq6++jekUineemsRv/3tNdTU1HDQQYf2e/677/4Lzz77NJdeegVDhmzHwoXz\nueqqK6msrGLMmHGf41XYPFSQ/BWx664+jzxS4PrrQ7zwgkEuJ7jpphC33WYxbZrDuefa1NdvniAr\nEpFUVPh4nk6pFATLWSfJB/qBVDoS4ZeZLfbnR9Eb2FFfzkHOs+xXmsU+8hUsHJJkOZrHODr3GOQg\nrVcy0nyf2RVH8UryYBYXgzJyQbAvyecFBT1Fq5nEAop6gg6zhiJRCiLeWYvZoiDi5EUCQw9GvH0f\nSq5JSeqUMqKzKx8YPoQ8eP9tlzgfs/B1l8haZdzCjsZAVzByhKTPfwYdB62jnXhZMMl/lXihGSHy\na6RbQEJmOYCXSLgdCBEMicdkmone68RkBujs+tfVCdCxg3cchQKGXSAmsxQ7mujs4t1HVyWMrWm9\nNZQVRVG+pDIZmDAhTjq9gZS9z633Z4mplGTevNxGBcpDhw5n2rQzATjttO9yzz13UlFRyVFHHQvA\nGWd8j0cf/TsffLCUUaN248wze0p+DhxYz9tvL+b552f1GyQ7jsO9997JDTfcyujRuwFQXz+IxYsX\nMnPmwypIVrauiRN9/u//iixYoPG//2vx1FMmxaLgz3+2+OtfTU4+2eG882y2337TBsvJJJxzjkNH\nh0ZFhSQWC+ayvfOOzqhRHqlCmcEvN1OT9GmumMgDTOT3K64gqeWY7L3M/qVZHGA/y0jvHQBSXjtH\ntt/Hke334SNYrI/jReNQ/p07lAXRfZEyjOsGMaRNEFuWHY12mSIrE+jSpywtsjJGgTApikCQtyw7\nH71r0iCABggfKiIlJkQ/6vcZdQlOQeB5/QTJpolfUUnOFbzh7sOIaCMxXfRKt4j6RSYxD2mGu6tq\n5P0Ub7InI40PSHgFKJXQV6xAalrQlMRzsea/iXBdvFyW6M03BjMb+9FVCWNzBcr5PDQv14ivaCP1\n+GP95iavr4ayoiiKsvXtskatf03TSKVS7Lxzz7qqqmoA2tvbAXjooQd44ol/0NjYQLlcxnUdhg0b\n0e+5V6xYTqlU4sILf4SUPXGG57nrPGZrU0HyV9C4cT53313i7bdtbrzR4rHHDGxbcNddFjNmmHzz\nmy7nn19ml10+W7Dc36S+RCKoXBaNBkGyEJBK+cTjkoiU3eWDTTPYX9MEZTPOS+EjeT58JK4LE+tX\nsE9+FnumZzEp/RxVThMakrHefMZ68+HD31Ikwivm/rxoHMYrsUNpMWrI5QWr7BjPeQfhSZMEGQb5\nH7HY35V2UcWx7vNEcLC8PAYOFgYadAe7Bi5CdFbWWEeVN+Fs4LXSdXxNJ6cl8XWzp1ayEDTLGh6U\nR3OSeJAaLd89sc/HICeSZEixRA5ngpxHrLPEh/Q8BBIZCoPh4g4dBtFY/9cuFtDaWvttRLKpFAqC\nZcsEO+U8Kjc2N1l14lMU5UssmYR583KbOd0iQiZTxPN6Spx+lnQLY61a/0KIPusApPR57rln+OMf\nb+S88y5i9OjdiUaj/O1vd/Puu//u99zFYtCp9vrrb6RmrUEUa13darcyFSR/he22m89tt5W49FKN\nG2+0eOghA9cV3H+/yQMPBEHu+efbjBrVt5VyLCaZPLn/yX/rm9RXLPZUnBg2zMf3od2J829rDEem\n7+PZyGm0G7W9qqV1TcxrtgbzZGwaTw6YhpA+uxTeYnzrc+zeOIt93dlEKBGhyCHOMxziPANFaDNq\nWWXtgGfGCBmNWMIhRp7hcimu/hw2FoPcDirLrRREpFeLa9FZek5KQV6L4mkmn+fDMuF7xP0MmucA\nXvCAUuJLKMowPiJ42M6LaL5LXGYoS4M3vXGM1N4lpjk9Abb0g8hdE0EedCze/3UBSqXPceebl+rE\npyjKl10yCRMm9P1/6aZgGFBZCe3tPq67ea7Rn7feWsTuu4/h2GNP6F63cuWKde6/4447Y5oWjY2r\nGTNm7Ja4xc9NBckKw4b53HxziUsuEfzhDxb332/iOIJHHjF55BGTr33N4aKLbCZM6DkmHofJkz99\noeVIRFJV5dPWpnVPtOtSLKZoFntxbHExdsGjZPUE2F2fyBgGaGuUmZBC4/3YGN4xx/BR8RJCssSx\ntf8KRpk7ZjG6vACAKreZKreZ3QpvAvC+PoLF1gSWWbtwd/RHNMg69qhr4KiOe5kdm8rhhTvoEJWY\nyTiaLoP6xFJQcAzqDQvzs/a0833idgeTvL45yTGZYSJvEpN5hON016jrykmulY1MlG8Q87MgQ5/t\n+puAyKQRxWL/21pbEY6NaG9D5HOINToDdtkW8qIVRVGUTWPIkO146qkneP3116ivH8TTTz/BkiXv\nMGjQ4H73j0ajnHzyadx00+/xPI899hhLPp/jrbcWEYvFOeKIr2/hJ9gwFSQr3XbcUfK735W56CKb\nW26xuPdek1JJ8OSTJk8+aXLooS6/+hXsuuvGnzuZhIsvtjtHkntrbhb87XceoQ7J6NEedrXHa6/p\nhMOs0VxEstZcuV7KIswbyUN4PXEw2dS1VLrNHCyfY59ckJox0F4OwFDvPYYW3wMg5bdzZfR/aDPr\nuif3lUQUiYbsqq+MRCIwpE3ILmPI/oNk4QQfIzlukJvsr1H9QisIYlIja1bxutiHYaFGwp05ybrj\nkSPJm95EdhVLiJled7pF2Y/xkRhKndbKm/4kRmpLiYnPX+P6sxCZNNHf/RatrbXf7dlslGUtQxh5\n/31YjYvRVq7s7gwIQKmE1tZK9n9uxN9p5+7VqsmIoijKtkGI/j4r7bsu2E9w7LHfZOnS//CLX1yB\nEIJDDz2c4447kblzX1nnNb7//R9SVVXFjBl3cf311xCPJxg+fASnn37mpnuQTUgFyUofgwdLrrmm\nzAUX2PzpTyZ/+YtFoSCYNctg1izYf/8wF1xQZr/9PPr9m1qHZBKSyf6DzEgkmCgXDkuMqOzVnQ+C\nusoHNz/I89Un0mHWbvBaLaKWf8a/xTNV3wIpGZx7j11XPM9B7rPs7zxPVBY4pPwUB5af4Rn/RNpC\ndWS8KB+yEwNkI7VuK5rflW6h4Xg+iYJNymklH64O8orX4HrQYVSx9MMMrSs0SmZPRB92NMY0C0Sp\nyEjxDk7BIS0MNCmIuYKib5AlgSP1IEDunDFYraX5rnE/q71aciKBFJsnn+3TEMUiWlsrfjgMkWif\n7ZVJjUNqS6TcCDIdwU9V9K4V3dqC0daKyOd6HderyUg+hzlntmosoiiKshXcdNOf+qx78MGZfda9\n/PLr3V9ffvmVXH75lb22n332j7q/vuKKX/Q5/oQTvsUJJ3zr89zqFqOCZGWdBgyQXHmlzY9/bDN9\nusXtt1tkMoLZs3Vmz46y554ut91W6rd0XKEA991nctppTr8d+TaWLl0qnRZ06W5wX9+Hjo6gnnHX\n6PMqbxTPytHcYp1HtdXKReVr+YFzC2HKfC39f7jouNkyv+Rn5PQkYwdlCYd8hBD4vk4u53HYHqvZ\n76MZzBt1CrnYgF7XzOchsyLHN5f+Fj0aBPtdQrpE0yGh5dlffxXZ2aVE+ICU6Ljd9ZCl7/d5365J\nl7jMosnOPOaupTNZO+tFmbtyKGN3bCNhfZre2Z9DJNqrBnQXA6gF8u1JGot1pKwKYvGe1BCRz2/w\n1KJQUI1FFEVRlG3G1huaUr4wqqrgsstsFi8u8N//DVVVQQD4+usGZ58d7neCnu9De/u6O/KtSdch\nXBPjjdgBpL0E+Tw9JdzszsWhp9Oe3bM4Tk/echdNg4oKSW2tT11dsNTW+kQikmhUYiequK7mevap\nfo97rTPw0DDw+E7xzyyyR3M+N1EyE7Ra9d1Li1lPNjqAshUnFxtANl7fa8nE6imawTRiw5BYFt2L\naXaWlOusu9y94GPgkiLDJN4kTpCTLBy71xJzMt05yaJYRORyiEIeikXwfXJ+lNmrhpG3t2C+crkU\n3MdaS6HDY1l7kkKH12s9hQI4LqK1BZFJb7n7VBRFUZTPSAXJyqeWTMIVV8CiRQXOPDMYsXztNYMb\nb/x8pVtqaiTHTQvzbt0BpP0k6bSGbQtKpZ6lWBAUCmBl2zh25a1Eci3d23y/78S+oJxc30C1q9Sc\nrkOjtR0XpW7nnOGz+Dgc1GhMkuFnpZ/z6FvDOb7hVnR/43OALaeAZWd7FieP5rnge+C74HUu0sdD\nJyMTvMT+/IUzaNbr8A2r15IzkrwpJpHXEsHkt3gcGY315KhsaeUS5qtzMF9+sc+iL5zPx/la9IXz\ne623FryJtnoV8Z9fQfTqX33qQFnksphzZiNy2c38UIqiKIrSm0q3UDZaLAZXX11m8WKdN9/Uuf56\niylTXCZO9Du3SyZN8li0aD0z7daSSMA++3gcd1yQTnHDDVZ34xEAo9kjOgfGjLIZ19hEblSZTMwj\nn4fXXtOJRoOJfZ9m5Hpty8PDeK7mJBaFJ3Lix//L/u6LVLuNXPLRT/j26hv585CredQ6YYPnKetR\nMqEaBnrNGMWekmu6XcAt2PiOiyY8XGEhhYaQHtKXhCmyB4v4N7tRtA3Ka8W9vu9RIdvQxVqpJlKC\n4/x/9t473M6yzPf/PM/7vqvvvnd2Qgm9JBBq6CABjuIgGtChSRAsoIB6GGEEPZ7xx7EMNg6goyLC\nUIYjwogUR0EdBhkgCQklQFBqIAFS1tp19bc8z++Pd5Vdk72zS9rzua7n2jurvG2t7Ote9/re3y8i\nmN5hPuH5iEIRbBs9JLxE2SneLhyASr6KdsoDjlWFn0xUMMyzeWNJfCKfNxIMg8FgMGwRTJFs2Cxs\nG3760yInn5wklxNcemmcxx7L09AQ2sMdeaTir38dvUgeKXAkGq1GSw8OHgHwyklWtJxIW0McpzuU\nTQRJjdbhsWzM+aLKQO9lqEt7S75NRrTzYuQI7kr+mZP9P/Kd4OvsX3qBXUpv8q03zuO86KEsnnXF\ncG3HAApOE/fu+3Vmt+cGzazJ9AaOXft/2JtXiOkiaWcWvohga5dZ7hosBQv0EzSRo5F+HD1YV9zJ\nBj7Nv2JpjS7GK9HUCqEUsitDQ5DHaZx+H2RdbdUPIlJp40cG3ZcrWfQH0C5shr5U1SQ+uX7dlB+z\nwWAwGAxjxRTJhs1m9901111X4otfjPPOO5KvfS3GT34ytmJtaOCIZUFb2+jd4HKkgRVNJ3KCM7pR\n+Ug0e2lO7rqP3yfPolTqREpRc+TQOiycX+uZwZvWFwl6oFQW/J4Ps6T5g5zh3ss/9v0TuwdvMrf8\nPHP/80Jy8XZiXpblB36Kte0HMtTeo+A00Z9sQA2YbZN5KMsYSlhoLAIZIZBRhAr9nrUl6fOTLOUI\n9pKriMshw3dKIQKBlAodj4fFZxCA76Ha2sm6zXhWbFzXZUrwfdr1Bj7f+mtadD+49RcyX47yrttJ\nk5vBKpWG+SjrgXZxBoPBYDBsBZgi2TAhzjrL57HHPO6/3+Heex1OOcWvSSbGQ3u75rOfDWUD69dP\nJNduMFVXDEf6xGLhUF216xwE4YBgR4fGcTSeB8ViWLq1zxAsdc7mPH0mH0vfzufev5aOYD2pYoYP\nPPtjPvDsj0m37M2L+57JS/ucyavJQ8dwLAFSBzjaRWiwtYvUitCNWZKjEYU13JVy4LRfVVANtcQ9\nHThDnzH9+D7y3TXEPI9ZI9wtvVbWBPOZl3kVx+slccOPBvkoq9Y2ihdcOKZdiVwWe8UL+JXEpurv\nRo5hMBgMhsnEDO4ZJoQQ8P3vl9h111CP/I//GGPNmskpcotFQS4HuVxosea6oUmC64b/rt4+0AnD\n90ff99DBveoa5kIh67fJWISHdr6U0/Z9jd8ccx3rW/dDibBI7eh5g1OW/oAr/u1YvvX/9ueildew\nb88zwyQZrp2gz2pDEmBpn4gqEQ2KRFQJqX2k8ohTIEoJoVVtZVQrNwefI63a0OMxpN4CZL0Yf8kf\nQZaG8EIOWcqOsMbaDW076EgE1dyMamlFxeLIt99Cvv8ewvNH1SYPpKpTFvk8OhrD33d/dHQr6KQb\nDAaDYbvCdJINE6axEX760xILF8bp7xdcfnmMu+4qctxxAcnk+D2SR4qwLhahVBKszTbyn8FJbOht\nJHAlxSK4bviYqkwjFtO120aiNUjz0eJ9PBA5iw1sOpgEoCiT/Och/8CS464gUexi7hu/46DXfss+\n7/wntvJoz77DmdnrOfPN6+l+fhdW7nsGL+57Ju/sfAylaBN3tv1PZqr36PTX8tfU4ZSsJLEgzyH9\nTwKKhlI3AihFmyha4cBbTrWx1tuVrN1GUpWIqt7BPslBAJ5HJCiym7WGSLEPQWH4wVc/YUwhORXn\nL95x7Bd7hwZrhEFCy6p8SpGhiDyZRCdTCED4AWiNbm2l9NlLxrdjx0F3jO01NBgMBoNhPJgi2TAp\nHHVUwD/8g8uPfhRlyRKbW2+N8JWvbF5hNlKEdTotuO8+h5NPjvHYYyfwubM8OjrKpNNimBNGuaxZ\nsmT0t7aNT2uQxma4LKSSzxHOxumwU65U2KnO58PbcrSxYY8LeXyPC4mXe5n3zn9w0GsPMO/9PxJR\nZVpz73LCcz/hhOd+Ql9yFs/vvpDflk6mTBQXhzxJijQQAB4OoNCACnvNBJXRtgALhUBhoVUYYy3C\nTwWDBvc69AY+3XIr+rWRrfiE60K5FH7SmGqGTkdWqYafBCps/efzCE14UT0PKjplEY/XXC/GwkDp\nhZFbGAwGg2EyMUWyYdK48kqXxx+3efZZix/+MMKFF3q0tW26kzyS08XQCGvLgtmzFTNmaJJJTUeH\nprNzZCeMjRhQbBSloFwGrQXpNFiWqG3PdQWvvGLhOEM33sYSPoXb+Sl0PMfZyd/xwf77OXD1I0T8\nIk35tSxY+XMW8HPKROkTTbzt7cx6aw4eImzwarDxOJzl2OU8pYoIqqzBV1AOwNMCHwsZiyOigwf3\nRE0IQmoAACAASURBVODjzT0QEklGJJ9H5rKDNMBTgtaIfA5B77C7hIpSdG3SIkXMX0tkydNo2wHP\nw+rKILu7SNzwI9TOu1C48qtjsocDYxFnMBgMhqnDFMmGScO24Z/+qczChQl8X7BqlRhTkTzU6WIk\nqoN9kznUNxQpQxs60LVhvjCWGnI5zdy5AYnEyOeTz0M6neTpyDm8vdNZtETy7P/2H5n32v3MeeP3\nxPw8UcrM0BtY6N1PyYuxxppNnCJ5nSBGmSN5Bi3r3WCLAInGFgGWDtAItLAQQwb3kKImXxgJAeCW\nR7xvctGgNFhimOtHO12cEfk9t3MRl1q3MSMWQTsRsC20baMjEXQsOtxDuWIPNwy3jL1sKd5xJ1D8\n9MXo5uZpOD+DwWAw7EiYItkwqcyapWq/ZzKjF7TJpK5plvP5iRe+oTQjLGAHDvP1yRTPJE6kP0jV\nlAABdfu3oVYS1QC76iBfVW7hOGGISnKUZi1A34AQOS+S5KV9z+Slfc+k3FvEevh3fD79XfZUbxDB\nI0aJfYLXAAgQaAQxJL7StYOw8ZAE9KkUj+qLOE/cQ6eY3uCQQVQnJiG8uHbd8djySqR0P1L7dZ3K\nABzh0yHS4alVJyOd+gcCkcuiEcOdPUZBuB7OsqX4RxyF6pw5wRMzGAwGg2E4pkg2TCpVuQRAOi0J\nS9LhpFJw3HHhfdW6a3MYbcivOrjnykbWuAuwB0hlfcLCVymwo9AabOCDXffxSMNZQOfmH8woeHac\nRxrP47flj9Dh9HCs/yQnl37PyaU/0KD7sdCAxkHxXnQ2gRVauqVVG1mvhbXWbFa5e5GXjSB7Jv34\nxkSxiPXaq1ix0EVC9nRDzqnZ0aXcCEf4S3F0iXeCWcyS64mKAZp0rUnqfhxnZJ268Cua5bGkwhgM\nBoPBMA2YItkwqSSTYeFaLIqNdpKHUijAr37lsGiRN6jQ3hSjDflVh/kAXnnFYvfdA1580SIWg1lo\nmtKaXTo0yZgiEoReytYIg3yTSVY24dpN3B/dnfuTi9jJX833uy9mrreCDp0mQZF4kKXbCp2GPSIE\nWPiVn4qKJCUAEYBQG9/fpBKPE+y7H6qi+3X6+9HxWK0bnCskWdZ3FG2qi0f1qSyy76VTpsPnag1a\nkVcNeNhhMey6YePfc+tDfcUiWNagoBE9wiCftmxUSyuyb7j22WAwGAyGycIUyYZJRYgwnGP1akE6\nPfYiWSno6dm4Lnk0hg75QX2YD8BxNPG4xrbD3x3CQBHHqQSLbMY+R2OgIqFKVf4x1Pgh70d5yZ/D\naj2D8/g1NgG7um/R5ydxRYyI7udQlhH1swgdoJSmkFUgRcXzQhANpvE/cSRS15s4zqDoaeE5xC0P\ntBWGokg7lFWEU48IFaB1gBAuIihgvbsBLWWYJlguIzyXyEsrEFIOChpRrW2DBvkg1CmXP7mI2B23\nQT6H8+dHEYB39LFmeM9gMBgMk4Ypkg2TTnu7ZvXqjWuSN5eB8dWbS9FK8VzjiRStkQfdRiNVTHPM\na//Oiv0+QT4x3JvX92HVKkk6Laq1IxAWzn19glJJ4Pt1uW5ZNfOwPp0meikR43Pchk3AvupVVsm9\nSJFld95mDbtg41eWB4QtZE84OFsqDygIwi5whQ5yXBa5hQ1+Q6hNVn54nEohVPjJQOqAlMghhEbb\nNlgWnrbpo4224F20ZSHyOVQsBi2tUCwMG+QbiigUcJY9Q3nhx02giMFgMBgmFVMkGyadjo6wgzue\nTvJYGRhfvbkUrAaebzpx3M+TyidZSFcKwOHYNuyxh6KjQw0a8Mvnobs7dMmIRBgQix3lOf8odmU1\nC92HeFfvwq68S4IivhXlRecw5ngv8aJ1OO+6s+mSM4g3JNCRSFijBhazLZ90Ock9L5/AmfNeoyMx\nAYH3WPE8ZHdXeMIDMr5FqUQygPl6GUm/DyHcAROSkCTPfLWMZJAFGQXLIhN08P9KH+EL/Iy4ZSO0\nhlgMnQqDRiiVNn08loVuawu72waDwWAwTBKmSDZMOu3tYVE01k5yMqk54oiAFSsmd2irWBQopWtx\n1lXHi6G4Xs12eCRjhnFRVSSkhjSpbXtwLHaVrGykjzZiosx7emeEFOyi1nCw9yzvy13wRISiSOKJ\nCIFw8K0IWBECQrc18PG1RaaYIlDT1FV2HFRrGzo6wKHCc7GKBfKqgeXqCPa3V5GSbqWTHL4f8jrF\ncnEE+9tvktySLh0Gg8FgMIyBLfRdrWF7pjp4t26dpDwGe95UCo48Ug2SKAwlkxHceqszpsK76nhR\nKgn6+kLXi2xW4rqh5CGfF3R1hT9LJUG5IoMol8Nub1jQbmYiyQRwhM9TzgcokADgpPIjJIIsUZXH\n1i5SeQjfBbeM8EIdr1/yCKZzgK+KZdU1yVU7NylRwiYnBmiSpQQhyNLAS/pAzrQfoo3uwdHaWofL\n98NEvkIBkcuFLfjeXmK3/Ay56q1Bu6+FjJTLyNXvQD4HhFZyzlP/jchlt8BFMRgMBsP2hOkkGyad\n/fcPq7a+PsFll8X4xS9KE3b2GkvgSJWBjhf1OGufu+5ikOPF3LkBySQ05gN2e0Vz2O4B6Rc1icTE\nNM+j0abS/H3+Pv4jeRbdVl3TXCDBBt3Bzno1wvV4WhzLKfrPxCgzJ3iZTNBEI1000UWQ1QQyqNWV\nmbWwPprAb9q6rdNyOsmT+jgO8G7BEQV0fyjOFjqG54IrLVJdGYRbJvLccnQsjvA9RKGAveotRG8f\nhX+6dljIiPXyi1hrViMKBcAk8BkMBoNh8jBFsmHSWbjQ58EHPR55xOHhhx2uvlrzgx+UJyRjGC9V\nx4t6nLUa5nhRjbK2nSSr9zwBmUoOktlOJkEAjvJp8dOIwCeg3kTtpYmv8c/ERZFINHz8l/3rudL/\nARE8TuFxXmQe78nZ9DfsStlOhk4ZvqBjhiatWlFiK/ivrBQRXWY33iaiSlQH99A6HNqjH6kVoGsh\nLpKAiHDxrCja9hCei45G0fE4eBb4Ptq2kL09Gx3gqx1Ca5tJ4DMYDAbDpGDkFoZJx7bh5ptLHHVU\nOOB2550Rvv/9jWgpGJzAN5lUB/1aW8N/F4uCfL5u1ZbLQZfbwIutJ9LtNdR0y65bXyPpmMeD50Fv\nr6BcFnge5POCXE5QKIQyD9+HfhpZTydrg07WqU6+Lr/HpdbNFAit0A7iJY5VT5PUOdxIA2WngZKT\nwo+lCOTGr+20oAJEuUx7sIFPczvtwXqE5yJ8D5QiqfPM51mSOgdaI3wfEfgkgyyHq+WIwMcTFYmG\n49QlHLYN9jgG8hwH3dFRG+Iz8guDwWAwbC6mSDZMCfE4/Nu/FZkzJ9RH/OhHUW69dfRip5rAN3Tg\nbfKOZ7hOua9P0tMj2bBB8uqrFl1ddd1ydRWLYRGbSIBtb14B7zihzCMa1ZV4a00qFXaybTusA4UI\nl+PU1x8jp3OL/QWelMcD0Eg/f9dzD4f2/wWhJ9HceTKQVtgBtm207aCdSLhsB6QkL5Is53DyIgVC\nhI+zbPJWA38RH+An6ot0B81h57n6KcVz69OWpRIivQHR34fIZIjd+gtEJoO2bHQigbZG7qRX5Rdi\nIrGOBoPBYNgh2Qq+ozVsrzQ1wb33FvnIRxKsXi35+tejtLZqzjxzapPtRmIknfJZZ3l0dOgRdctV\nCzchBLGYRRAEoFO8uesHcCPjr+Qtqz7HNtDhQgho12kW6nu5T5xNXnbUZCkKm9XWntxtX8R3ylex\nQP8XDj6H9T/B7PyrPJ44FavQgnQFvuVSzBQoFoYXg6JUxJliM4m018z97sWczT10yJ7wRGsHIFDC\nIqcbUIQBI8J1w2JZB2RVxe6tUAICrHXrQs9kpcJC2bKR2X4SN/wItfMuFC+4ENmVQQQ+tLbiH3Ag\n9puv4+2665TokEUui73iBfyDDzE6Z4PBYNiBMEWyYUrp7NTce2+B009PkMlIvvjFGM3NRU46afM6\nod3d8LvfOSxc6I8rvhoGJ/Mlk5qODk1nZ/3fbW26pluuFslShl3xYhHKqoG3Zo/fX3lT2Ph0kMYe\nEovdJTu4JXI5M4K1vCAOI0Mbp/AYM/QG2oP1nJG9m5XlQ8nLAzg68j7vZ3267JGtLtymGeztx5mi\nRj0+FmnVhj+WPylVnz0haKeLi+Sd3Kf+Hm1ZIGy044Tex0EQJvXZNjoSQceiYbjIEO9k4Xo4y5bi\nH3HUsCJ2MjTKZhjQYDAYdkxMkWyYcvbcU/PrXxdZuDBBLif49Kfj3H9/gcMOG793WRCIMbtcbE+U\nRZTvyG/yzw3f4yLvFr6Y+z4RXA52lyOi0DVjHk8dfBnZxIxhzy2VBP1+kivtGCmm1tpO6KAWHgIM\nGdzLIqsykUqh7AifGWygkT6k9mEjx6eVRrhFRFcGkc8h0hvCO9wyRKMjP6mqUTYYDAaDYZyYItkw\nLcybp7jrriLnnBOnUBB88pNxHn64yD77jK1Qrg72Vd0pJsJkRFtvCbKikZIzk/+bvJaHY2dxU++F\nzPNf4KDycvy3VjC79AZv7voB3tn5aFbPOpJSNHSCcHNQ7JHAGEyrJ4CjXVJBP0J79USWSuJeg85y\nHE/TQzMtdBFRfngfkFRZ5rOMVLkXRBnR1xe28LUOI62dSM0aTigFt5Sw31uDfO89EAK57n38eQdP\n6bnhlrGXLcVbcLLpJhsMBsMOghncM0wbxx0X8POfl5BS090tOfvsOKtXj80XrjrYNzDueXOpOl6M\nV64xUbI6xZP2ifSr1LAcjepSavjytE2aDjxd/0z7qnMgH25ezC9mfI0Aia089nr3v/nQ4u9w8b9/\nlGt/PJOv3H44n/jj5Rz96l3Myr5WK0qnCk9EyFmNIw7uJWSRPXmT33E6PTTXxdlSkicxaKgPqyLe\nliKUXcRiYNvoaAwdiaAaG9GWjVy3FhWLojpnTXkkdVXSYQYADQaDYcfBdJIN08rpp/v84Adlrrwy\nxnvvST784QS33Vbi6KO3Hv1EsSiofu0vZWiwUCoNVhGM/JzRUSq0mvuzdRJigOLA98HXkCDPhfp2\nbnc/R5ccLA9Yqzv4Fy4HDa0DCl1PRPiXmd9iWewErin/HyJ4zMq8hB24SDSzMiuZlVnJ0dzKhYD/\ndCvBkUfiHXEU/hFH4R18KOP+1FEsgNKhtZtXb8ULz0No0MjQA7l6OWo/BQqLHA0orLqdB9RvlzaI\nakqfDF8CpcJiWlesP6SARALtOIgggEgMinWN8lQM2anWNornnk/sod9OyvYMBoPBsG1gimTDtHPB\nBR75PHzzm1EyGcnHPx7n298u89GP+jQ360ltCmYyggcftMc06BeLhTZx3d2hRRyEdVw0GkZWu66g\np0fQ0jLyMTY3K7LZkb+ckTLcTiRSl3kEAfi+wNYgA0UbXcQdH2fIJqrFdHXebSivx+bxtxn/g2fn\nf5ZCrJWdN7zA7u8vYbf3lrDb+0toyq8FwO7txv7jI0T/+Ei4XcvCP/Ag/PlH4B1xFN78I1G7zh7x\n+HU8jmptQ3Z3QbEYulNUTwKQRYvdgzfo1Q38Vp/B2fb9dIhMvXutNSDConmUl8HTNhvooFkXcYSq\nt9eDAHTFGi7ww9hqzw23VyiE9nD5fGgRl4bIH/9A0NmJ3nuSZBGOA21tgx07KhjnC4PBYNh+2aqK\n5Lvvvptbb72VTCbD/vvvzze+8Q0OOuigUR9/++23c88997B27VpaWlo49dRTufLKK4lEtoJwBcNG\n+cIXPPbYQ3HppXFyOcE118R4/HGPG28s0dIyefsZS5x1VaPc3Fy3iavfJ2ludujt9Vi3Tg+yjhtK\nNgs33jjKABnD7d+g0lBlUMN1WC02WnE8EoEdZfVOR7F6p6Ng/v8ErYmsW82Mt55h0R5P0bhyKfbL\nLyKCABEEOCuex1nxPPFbfxE+v3MmwZFHwYknYB14KP4BB0E0im5sYv0lX6XcU8Lq2sCMW36I39iC\nToSd6Px7JXZ7fw2+lWA9O1NKtOJbPgQBVtCHFiBcSOksksE6k3bSfJEfU9ZJ7lTns0jdR6fOhAN5\nSiGURqCx1r4PWhF54bmwUC+ViOSyCNdFv70K0dsLgP3m65AvDIqxniqM84XBYDBsv2w1RfLvf/97\nrrvuOr71rW8xb9487rjjDj73uc/xyCOP0FqNSxvAww8/zPXXX891113HIYccwttvv83VV1+NlJKr\nr756C5yBYbycemrAH/5Q4IIL4rz9tuSRRxw+8xnBL39Zoq1t+vTCVY1ylapNHIQBIi0tYZc5CPQw\n67jBbF7udo4Ui8WxHK6f3aznbxQh6G7YjTdn78EpXzsD1akhn8dZ8Tz28mdwli3FWf4MsqsLAGv9\nOqyHH4SHH6QR0JEI/kGHkD/4KP605lieix0L7MJ5r6XIRhooOWFhGMkH7KXexw+gLCT9BZu4sJFK\n0+iFRXGCHPNZTpJCzfUCwEHRTjc5/PB+rx8h3FqXOvwUIUPvZC3C8JBEAiudDm8rFVEdM1AtraAU\n2rbHHGNtMBgMBsNobDVF8u23384555zDGWecAcC1117L448/zm9+8xsuvvjiYY9/4YUXOPzwwznt\ntNMA2GmnnTj99NN58cUXp/W4DRNjv/0Ujz6a5+KL4zzxhM1TT9mcemqCO+4ocsABw0XAUxVfvaXQ\nGrI08DTHciAv1Yb3IAwZ+bh/L7+xzmad7qgpD6qr+rhA2GTj7aGmdywkk3jHHo937PEUKwdhrXoT\n+5mlOMuX4Sxfiv3XV2qhH87yZ2he/gyX8GMAupO7oKRNT2IWXQ27kYu3kbR72E2uIa3aECgkPhY+\nQiiUsAiAnE6xnPnMYSUpWQIpyakELzKXg1hBXqRYruezv7OKFOVQcwwgLUDXtcmRSCjZsCywbYQQ\n+PMOQnd0IHK5QTHWRg5hMBgMhs1lq3C38DyPlStXcswxx9RuE0Jw7LHH8sILL4z4nEMPPZSVK1fW\niuI1a9bwl7/8hRNPnPywB8PU0tIC99xT5POfD3Wuq1dLPvKRBL/73fCib6rjq6eT2uBe3Q0Nz6sv\n7fm0+Gm059cK42JRkMsJCoUwMlsp6LE7eOLAS8knNtMPWAiCPfemfO755H54A9knl0JPD9nfPET+\nH7+Ge9IpBKnG2sNb8+/Snn2bfdYv5ug37uGkl3/OQe8+SiQoIJXLXup1HFXG1j629hHhOB8aSY4U\nisqAnhBkRSN/5FSyNIapfKIBJezK8J4Yu85ktFObpFjqaiiJam2b0HYMBoPBsO2wVXSSe3p6CIKA\n9vb2Qbe3tbWxatWqEZ9z+umn09PTwyc/+UkAgiDg3HPP5ZJLLpny4zVMPrYN3/pWmQMOCLjqqhiF\nguAzn4lz1VVlrrrKJQigt1dM+mDflkSI8LyB0PFChzNi1cE9W4EFODZYFRlvPK6JROrdZCmZmmCV\npib8k07GP2EBAOvXam6/+i0OKTzNfl1L2P29xXT0vgGApQOSpW4AWqwsu7GGXGoWTqQRK3Bp6V+D\nj0CXJe1WL7bSY1Om1Ib+qi3zygDfwKFBz4NAhcN8uRzk8+FtpRIim0U3TN7wngklMRgMhh2LraJI\nHg2tNWKUTtLSpUu5+eabufbaaznooIN45513+M53vkNHRweXXXbZmPchpUDK8XerLEsO+rkjMB3n\nvGiRYt99S1x4YZT16yU//GGUv/3N4pvfdLnvPpuLLvKZOXPsUgvLCl9fy5LYdvi8TAYeeMDmjDN8\nhnwuG+H59XO2LD1sW0P3JQSUShIp6/dXO75KDS5oa5JbMWCAb8Dgnhx4n6juoz74N3CgTwgxkvlC\nuJ1KU3a0497YOdducwTvNR9Acc+5vJT6HACJYhez31/Kbu8t4eC/3ktb3yoagx4OFi/wnpxHYIUD\ntEpI0rqDP+sTOMe6jw6dDmUTUE/iIwAkKZ3F0j5Ukvs8LPpKKZrow9G5UBry7rvhxfJ9rFwOUSwQ\nXf4MOpkEz0N2ZZDdXSR+8VNKl11ee82kPfr7dnPf28KSY9o+ANks9orn8Q8+FCareJ8A5m/YjoE5\n5+2fHe18p5OtokhuaWnBsiwymcyg27u7u2lrG/nrzZtuuomFCxfyiU98AoB99tmHQqHAN7/5zXEV\nya2tyVEL8bHQ2Bjf7Oduq0z1OZ96KixfDmeeGf783e9sVq2y+V//C3bZJTKu+qJUgngcmpsjNdeM\nUilsOKZS0TE7aTQ2xsnnh29rIFLCzjuHRfjAb/cLhVBSoVS472g0fGxVU6w15GjgCXkSRauh9qFN\nIhBC0EY3pwe/5T5xNkp2hNJcXXfLAIjFLOKjvCy+H+6zudkZl3PIwNe5etyxWHgNSiXod2bx8m5n\n8PJuZ/DSbh/jC7/5IFG/wEy9llifT1f7fmgdenf4SrAvrxHz86HPsggr/KTOcQTLSVIEVQ5/9/uR\n+ACUibFSH8Dh4jkiuCAlIuLUT7xYhCJYsSg0pMIucrEAjoOV7yfmCIhHiDcnoGXTntAjvrezWXj2\nWTj88OHFbWo2XHkF8ZaWTQealPrh2aUw/5AxHct0Yf6G7RiYc97+2dHOdzrYKopkx3E44IADWLx4\nMaeccgoQdpEXL17MBRdcMOJzisUickjrTEqJ1nqjHeihdHfnN7uT3NgYp7+/SBCMLVp5W2c6zzmZ\nhAcfhCuuiHLffTYrV8I3vqH44AeL+P7Yt+N5cPjhEs9T9PSEt/X2CopFm95en1hs453VgeecyymS\nSZtczq9tayhf+hIUCoPfT+k0fPe7Ef72N0mxCDNnhpIJ14V33w27z3lSLLFODIcEVHhMSoXvZak9\n2vUGbOFRUqo2tBd2pnUl7ESN2iUulUKf595eb5PnO/Scq69zb6+gXHYolTRBAE8/LQed517FJB+U\ne7Mrb9FAjmY3jVzn8nZkHxo8jackT3EMewVvkCCLZYXt8bxKsYz57M8rIB2WBfPZ315FUpcQnkee\nBMvEEewnXiNl9YHWaCHRovJ/X0gkEAgLLW2I2tA5C9Hfh3J9iv1FIkWXcm8BHRtdl7yx97ZYt4Ho\nH/5IuXNX9MwROjVOEnIu4G70uoreAtExHMt0Yf6GmXPeXtnRznlHO9/JomUMzYqtokgGuOiii7jm\nmms48MADaxZwpVKJj3/84wB89atfZebMmXzlK18B4OSTT+b2229nzpw5NbnFTTfdxCmnnDKuzrBS\nGqU23ykhCBS+v2O9KafrnB0HfvKTIrvuGuH666O89Zbk+efhkEPGvu94HI4+Onx8tbgOAoFSunIe\nY3vtg0DR3Ky46CJ30LaGkkiEa/BzBdGoxrI0liVwnFBXHXaDRU0OsTnUszpGfx+HbmtiXOcbHnf9\ndQ4CUXHe0JTLkM8LbLuuDy9Zrbyb2IcG1Y8T+MR0iUbVx97lVyiLGJKAMnECLEDUpCIKSRdtPMnx\nnKSf5FPW3TTLIqiBaXwpNAKtVJhFMlCzUrGS056LLpcBwqAR30cVS6i+/tprrcbwnh3pvS0DNa5t\njMbmbGc63DnM37AdA3PO2z872vlOB1tNkXzaaafR09PDTTfdRCaTYc6cOfzyl7+seSSvW7cOa0AK\nw2WXXYYQghtvvJH169fT2trKySefzBVXXLGlTsEwBQgBl17qcsMNEZQSPPGEzSGHbLxjN17Gk8o3\nVQy0fqtStRIeuAZawFXn1vSWOWQcJ3RjA1AyQTbSihSKgkjiyiiNQR8JXSCqS2RoYk/ewiJAoEML\nNw1ojYvDYo7jWLmcWaxFi9jgHWkNOqil/In+/vqniiCcaLTSaXQlTESoMJ3PcV30XbejZ86angsy\nBZiwEoPBYNhybDVFMsD555/P+eefP+J9d95556B/Sym5/PLLufzyy6fj0AxbkKamsHv83HMWTzxh\ncd55k+tyMZZUvqmkagU31PGsV6f4L72APi9ZK5CLRYHr1ovqrq7wd88bffvTQd5u4t5Z/5MO9306\n3LX8NXkYB+SXsV9hBRaKXVjHPryG58TwfAcnIkAKHAW7ldbQRzNSVyw+BgSNSAYM9mnC+6UILeSo\n/DsQ4HuhaNqy0EGAUCoMGunvJ9hnX7S1Vf2pMxgMBsM2gBmFNGwTHH98qG945hmLW25x6O6emH/u\nlmBg99d1w59VbXElF2PQKjkNPB1ZQNlJVdwpQgu4VEqTSGhiMU1bm2bvpg2c8urPSBbSW/T8CnYj\nZZkgZzdRtBt5suWjrEzOByBOkYN4CRBhN9n3Eb5Pe7CBz4h/5QSeIKlyYQy15yH8sOpPUqin9FUK\nZw+HDczAE5H6p4pquEh1SQmWDdEo5fMWoTdlY7Ip3DL2sqWIXHZi2zEYDAbDNoMpkg3bBCecELZ5\nSyXB2rXbVoEcj2uamxVBICpDdqK2gqDufDGabKJqC1ctlAcux4GI9GkoZpBqHBONU4DvQ4kYf4sd\nTJ4kgRI8lzyebissUJsJB+98bALbQdkRlO2QI8VyjiAvUyAl2nHQldS8PAmWczh5ErWCOKPb+Jn7\nWTJBy2Av5aFxhOHFRmQnXtgK18NZtnRCoSQmkMRgMBi2Lcx3kIZtgiOPDIhGNeWyQCkxoVjq6Y62\nbmyEL3zBY906ybp1kkMOCUgmQ5u4JUsslApdLpJJXdP4DqQh0DjZSuDIVorvw9q1YRqgL4p4lYLW\n0XmyKkFr5XHP+IcRoUiH2x0WvVrga4t+Uiis+ieCSoBIOLjXEN6nFKAR5TJoH6HKCF2uxWdT1Spr\njVAB0vdwXnmZ+M3/Qv5/X4tubNoyF6fKRAJJ8jmcp/7bxGsbDAbDNGI6yYZtgngcjjgirBLffltO\nKJZ6S0RbNzSE59DYqEilNMlkKJmwbXAcPWKXuLpKdorF0RPJsfVmcSsF/X6SHqudhCjSThftdNFK\nz6Bwvd15Bw1IFJKg9rOBLKLaCVe61iFuJ80X+THtpKmIkpEoUuSQqIFpKvUCu6pZllaoS+7pQRSL\nm31u2rJRLa0DdNB1RC4bxl5PsQxDFAqTEq9tMBgMhrFjOsmGbYbjjw948kmb55+X5HKMqcj1OExx\n4gAAIABJREFUvK0nzjoWgwMPVMMs4jZFXoba5GxB0BDoYe4Wvh9qnPN5yI30/Hw9yXkqycombmz8\nBilZqN3WHqzni33fZVZ5LQ4eO/M+LnFK0SawLETgkygVOVw/R9IqgZChHrli9eEQ0E73oP0kdZ75\nehlJnaNaOA+KKvT9SpFc0SVPEN3eTvmTi4jdcduw+6bafaIq0RDl0qRv22AwGAwbx3SSDdsMJ5wQ\ndhp9X/Doo2Mrfrq7Bf/6r5Mz6JfJCG691SGTmX5N9EB3i1xOUCiEmuauLkFvryCdFrzyisWKFcPX\nK69YvP56GGQyVTR7aT5T/CmOdtlgzaqtjNVJUSbpF6HUIUEBJQRKWOGSNnlSvMledDkzeMo6nqzd\nUtMkDya87nmZYrk4grxsYCSTabGlPPGmgqpEw3EgCBBdXVveysRgMBh2EEwn2bDNcOihitZWRXe3\n5EtfilEolLnggokXDGPVKG9Jq7iB7haRCLWBv7Y2TXNZ05HSzJ0b0J8cfnD5PORyctTY6snAwqdN\npbEZeXiwTzbRFmRIkqe7plAOaZfdLOJXdItZ/Cn4H+xhrSElRpcvKCQ50YAa+Bl/oNF01VS6Ory3\nnRSVolgk9uu7KV72ZVTnzC19OAaDwbDdYzrJhm0G24af/rREKqXxfcGVV8a45prohGug6dQoh51g\nyOXC4rVaw40UFDLUrGE0dwvbDkM9ksnwXIauZJIRBwKnk6xoBEIrOEsHSB0gtY/UfiVcRIfDetWf\njPSBpXLbQPeKARndwi0j3HJFh+IiigVkdwb7tb9NisOFwWAwGHYsTJFs2KY4+eSAP/yhwO67h13D\n226LcM45cbq6RpZATLeTxWjE45rWVkWpJOjpkfT0SPr6JK4rcF2BUlAqhdph3x++qkXySPHVBZni\ntZ0+gBvZ+gb7iiJBt9VOToTHJtHMYi0ycJGBT4/fwMPB39GtmmsDe6KyRkMSECdPL414upLCOfTi\naEJdstbIrgxi3fsTOg9t2ai2dhNKYjAYDDsQ5i++YZtjv/0Ujz6a5+KL4zzxhM2TT9qcemqCu+4q\nMmfO4Gznapd4S9PYCFde6VIs1gu5dFpwww0RtNbk8wIhYKedRraBc1147736bNpAClYDr+98IsnI\nltfiNvldnFb6LQ/FzqLb6qCXJv5v8hvsbL/J7b0fZzZrSJGnTyTIpHan343R7PaTtxuJJKPocgyV\nbET5fchyeUTz6A4yfJo7WMlcduU9HHLD87urnhpCQlDxUJ4Aur2d0mcvmdA2RC6LveIFY+NmMBgM\n2wimk2zYJmlpgXvuKXLJJaFtw+rVktNOS/CHP2z6c5/nhQXqdEtVGxuhs1PXVkeHJh6H5mZNa2vo\nvuE4etQ1Uhd5a0JrKBd8koU0hf6A3t5wqHBNfzOrijvxJMfRQzMATeU0Tk+avqKNAlzfIpu3KbkS\nJSrxg4zcOpdCoxE8y+HkSVZulHUNSrWrvJVdsKoTxubYuKnWNornno+Oj9MaxWAwGAybjSmSDdss\ntg3f/naZG24o4jhhN/bCC+Ncf31k1PQ6mFzHix2Jqs1cPh9+0KjGa7su+DVd9cjXVAmJS5Q3rH0o\nE7bKZ/ur6NTraj7KlRyQ+msnBFkaeJwTyQ70iBYiHN6jgf7q/XoEqUl1eE8rRE83cv065Pp1iP6+\nSbsm0ybDcBxoaxv5qwQAz0Ok09vNkKLBYDBsDRi5hWGb55Of9NlrryKf/nSMTEZy3XVRXnlFcuON\nJZLJLX10dTIZwYMP2ixc6NPevuWlEeOhWITXXpPEYmFJ29MTWtFZFUmw78pwjk6BEpWBwwH1clYl\neVh8jLKdolFn2VO/iaM99vP+SoFY2PQdob7OkeJxFrAfr9JQdYHWmlB0XF1UBvj8ARW2Bt9DBAEI\niN99J/o//wyEXdnClV8dcwKfyGSIPng/5YUfR7e3D7pvMmQYG933AInGxpDdXcTuuI3ShZ8xzhcG\ng8EwSZhOsmG74KijAv70pwIHHRRqTx96yOGjH03w7ruT1y2e6BDglrSQmyjxOOy7r2Lu3IC5cwNa\nWjQdHYrOznDFOxIsiZ1I2U4iJZUkwfpqdPJ8SPyJZvrQCFZH9iRAItEcxAoSOo+jy3SQwVEVhwqt\nkNonRRbJgIumNZKAFFkSFDiQl4hRHK5f1romu1CpRlRLKyoWQ3Z3jSuBTwR+OPwXjGxvN5VMRKJh\nMBgMholhimTDdsPOO2seeqjAGWeEXzm//LLFhz6UYMkSa6PPG6tGeaqs4kolMShBryphGLi8Sgjd\nQEu46aZqM5dM1ovfSCRcXqyBxdEFFGSqng49YHkyRlEmieoSUcpoJGsju6EQOATMZC0xP8cl1i/p\nUOvD1D0gSYH5PEuSwqBjqd5uEfAy8ygTG/3AhYB4HJ1KwTas6a2m76nWti19KAaDwbBDYIpkw3ZF\nIgE331zi618vI4Qmk5GcfXacxx6rF8pDO8JbSqNctYUrl0MbON8PC+bqyufDRL18XtQK6YGWcLYN\nUm79sg2twVYu6+nktugXeME6jOeSx/NfzQtZHD8JgAQlOtR6NkR3pTBzD0odu6Atm5zdxHIOJ8/g\n4jZPguUcToa2Ee8fdgDFIqJqTl0sItIbpkSjPKUMTN/bFEajbDAYDBPGaJIN2x1CwBVXuOy/f8Dn\nPx+nWBRccEGcW24pcdpp/lZnC7d6teR734vQ0yOYO1fVkvHyeXjlFYu5c8NjXbLEIharB4NIqWvd\n560VraFchiDwiesca0ut5IIEffkUBdlANjiQnXiDPVhNQhWYmX2d1WsPJK4j7KokReWQowHFgG8D\nhEBpixwN+Dh00caTHMeH+FNdt1zdue+DFDgrX0KvegvhewjXJXHDj6heaNXaRvnqa6BlKxKwTxCj\nUTYYDIaJYzrJhu2WD3844J57iiSTGs8TfPazMe6/f+v6XNjYCB0dmuZmOOywgPZ2TTIZrkQitH5L\nJMIV6nzrlnDWxlUkW4QcKf7bWkC+Eh5SdauourFVzRmqjm3StnifXXiL3QFo1P3MLryKVemQayBG\ncZAmOacTvM5efJpb6SBNlBIvcyAFRsndtix0PIGOx9GxGDoSQTU3D9YoFzahUS4UiP7q3xCZzOZe\nGhNIYjAYDNsYpkg2bNccc0zAb35ToKlJEwSCSy+NcffdY/i6ehrp7obXX5eMY5ZsizNUP13VTGdp\n4C9iAf26oZoWPcjWTSEpkCBJgZTOktQ5LBHwCnNJyw4AGstdtOdXh4N7BBzN0iGaZIHCpo0emujn\nBJ7ibO6jhd7hB1pV0FQF1E4k/D2ZHJdGWSiF7Ome0PBe1QljqEPGmMjnwgG+nInXNhgMhunCFMmG\n7Z7DDlPcf3+BtjaF1oJ/+IcYv/zl1lMoB4GgXN4yw3ibg+eFOu50WrJ+fbjSaUmpJGqa6aqPclU/\nXS2Wu/1GHuAMhApoUV006R4i2kWieVvsTkmEA3ipcjeWDrAJeIO9KBOt7b+qR86TIE+C5zmEVrqI\nMJLuZIyhItksrF2LWLeuplWuaZbTG6CQR+Tzg7TM06lpFoWCcbkwGAyGacZ872fYIZg3T/Hgg0U+\n8Yk469dLvv71GIWC4MtfdqftGCZqIbe14DjQ2qqJRnVthszzoFiUaC1qjhZQL5ClhqTKs0j8ivvs\nc7i+6f/DsqA9WM9ngh+hfUV3chdiZc2e+g2Sbi8WijbZy+f0vw62c1NWTafsYbOemYOK6BpjTd1z\nXWI/+wlon3jZGx5E43nIdWuR3d2I3t6alhmAUgnZ3UX2hzei9thzs67nxhirRKPqfKGbm8e2Yc9D\n9PRBapdJOEqDwWDYPjGdZMMOw777Kh58sMAuu4Qt229/O8p110VIJMZWvE40znpTFnKlkiCXo7by\n+cEpd9UO7UBrON/fMqmBljXYAi5me8xgAw7eMPu3aq0qUbTqLkoizlpmsZZZrKeTEjECLIrEKYgE\nS2efSdkOZRBxVUBXq9aKbqPqkSwJ6KeBN9mTfhqGH2RV57Gx+EWAIED2dEM8jmptC7XKA9eMTvy9\n9kEnk6im5sH3RSKhpjmf2/g+NpNaWElr68YfOB7nC8LBvuitt8AENNYGg8GwvWOKZMMOxZ57hl7K\ne+wRFsrXXx/lBz+Icuyxm/Y/niqruFhME49rymVBT4+srb6+UMLQ1SV5801rkD1cdfl+aCVn21u2\nOx1VJfYLXiFGacT7tQ6H8IIgLO77+wW9vYL+foHwPBzt0p+P8lZ5Z17aMJPH4n+HJpQUiyEbGuid\nvCvvcik/Z1feBcDF4W12w8Wp77jazt4UiQSkUugRFskkumIUPej22CjDglOBW8ZettTokg0Gg2Ga\nMHILww7HLruEhfLf/32cV1+1+PnPIxSL8L3vlWsygemkoSEcMDzzTJ+Ojnqx290Njz7qMH++zwMP\nOKRSmpkz9bCobdvWREdQG0wnBauBlc4CCp5gJNONHCme4liO5FlgQIdZgbQEfbRiWz5KSRKiRGDF\nKJAgQQFBLXwahCCvQ03yHF4BYAUHcRAraCJLD838O5/gAu6ikzSDkk22cYTr4Sxbin/EUejUCJ1z\ng8FgMEwqpkg27JB0dmoeeKDI2WfHeeklizvuiPD00xbnnONz9tkeM2dOb2c2Gg2t4Do76/vt7IQ5\nc1zWrxckkxCLQSIxvEjeFsiJBhZzLIeIl2p1qxBQFgm6ZAdtKk1Eezh4NOleGnUPCElJR4lTHlQo\nK+Qg7+SBvycoMp9nSVCs6zzGokuG0NC55CHUCK99Po+oaF8Gba1QAM8Pg0q2IsatUa7ieYje3vB5\nY5RuGAwGw/aKKZINOyxtbZr77y9w7rkJnn3W4vXXLb79bYvvfjfCggUB557rcfrp02M5USjAr37l\nsGiRR3v7tjnYpxRYyqONHvp0C75whlnAVX9XKqxdbe2yjpncYV9EMubzsdyvWTLjbHZy1rNX/mX8\nQDBbvVMvTKXEBhqCLEs5igNYOegYGsixgL9U/jUOWYznwZIlOKXyyBLmIECUijjPLGGgQbUoFZFd\nXcTuup383APQjU1j3+dUUtUojxMTQmIwGAx1tv3vIA2GCdDUBA88UOD660scdVTogauU4LHHbC65\nJM6cOQkuvRSWL5ebnP/aXJJJzeGHB+RyoWZ3W0SpsBHb7Gf4nPtTmrzMIAu4gddOqbpFnPZ8EkGW\nTNBKl+jAFRF6nQ76nHaUsAmkjULU9MkEAR2kWcS/8QZ7UyZCnDy9NOINFXqMdXCvsl2KRbTthKEj\nQ1cqhWrvCLXIA2+PRkEKRF8fYhNG1yKTIXbrLzYrkERbNqqlFYT5k20wGAzThfmLa9jhiUZh0SKP\nhx8usmRJjq98pVxzwOjrE/z85/ChD8U588w469cLspM8N5VKwZFHqlrc9LaIlOF1LNkpnrQXUHZS\nOA7Ydl1aMfCxjsOg+20bAmGTER0EYvgXXNV+frVQTpJnPstpp4tDWcEadqNMbPiBjWdwDwZbdlTX\npvTMGiiXNumhLAIf2ZXZrEAS3d5O+ZOL0ImxhZ9MKZ6HSKe37jx0g8FgmASM3MJgGMCee2quucbl\nq191eeopi3vvdXjoIYdiEd580+LNNy3uvtvhxBNDOcaHP+wPss3dGJ4Hvb2C5ma92XLPYnHQGNs4\nnjP1SAl52cBT1oJwVq5ye7VAzpHiCRlGVlcLZ0ldNtwlO/iFczl724rZFbeKft3AMo5gT16ng14E\nGkGoS17OfNpJ8zRHI4CDeYEUQ8I2Jjq45/vId9cgRikIRRBAuYzz+mskbvgRQ98MqrWNwpVfnXIZ\nhshlsVe8gH/wIVM+1GckGQaDYUfBdJINhhGQEk44IeBnP3NZtw5uuqnM0UfX5Rj/9V82n/98nHnz\nUlx1VXRMcoyJWMjZtqa5WVEqDbaJ6+mRbNggefVViw0b5LD7enpCG7nWVkU8vmW1zrlKZHWWemT1\nQM1y9d+eB9kgHgaEKE2BBD4RtBC1jweNZEmQo5F+PsH9BNi14b0a4x3cGwmlwgJ5YPt7wNKOA9Eo\nOhZHNQ/xUI7FQg/lCeSNj1WiIfL5cSXyqdY2yp+9GDYnIttgMBh2EEwn2WDYBI2NsGiRz7nnuqxa\nJbj3Xod773VYs0bS3y+4884Id94ZYe+9A8491+esszxmzZq8gtSyYKedNIsW+Yz0bXs6LbjvPoez\nzvIGWcgNJB7XNDZO2iFtNtWCuFwOa1dXQ6DAVZBXAq1h3TqBFM28oA/GBWawAQ+bkogjpSYahLZw\nC/hvyjLJa2o/fJxQrztQszuZInLLGjSwN4iqXiSZRCfrZtsCoDSyb/RYGSjRGGv63phwHHTHjIqD\nxfSlThoMBsO2hOkkGwzjYI89NFdf7bJsWZ777y9w9tkeiURYjL3xhsW3vx3l0EOTnHNOnN/+1mYC\nTcQa7e2az37WY489Qou4oaujQ5NM6pqF3EhrSxfItvboYAO29gYmTCMEJHSeC/XtdMo0tl3XKvsy\ngiurOuPwwYGwa0XiHP6Ki8PTHIvLNizoHiPV9D1tur8Gg8EwLZgi2WDYDKSE448P+MlPSrz8co4b\nbyxyzDEjyzGuvDLKsmXjd8fIZAS33uqQyWyZ6OnJpJ0Ml/FT2qnLBqpFsiUUbXThCD/8d6VpKwQg\nJXmSFSVyiLZtNCDRzFRraaCfBvqROsBTFhnViqeswe4W1Txvz912LUTGgchlQ/mFSeczGAyGzcYU\nyQbDBEml4LzzfB58sMgzz+S46qoys2eHbgr9/YK77orwkY8k+djHEqxePXLBm0xqjjsuIJmsV9JB\nAF1dYruo6XKkeJwF5EgNu32xGL0TXBJxlnDMYL2xEKhK0dxGFyfyF45hMUnylInyMgeEemYIC+Qg\nQHZlsNavQ6bTiK6ucTkzZFWSx8vHkFVjSHEplxC5XBguks9DsVhzvRDpDYh8bkQXjKFOGBNlvBrl\nKtUQEtXaNvGDMC4YBoNhG8dokg2GSWT33TVf/arLVVe5LF5scc89Dg8/bFMoCN5+W/L++w7nn+8N\nStbzvNCB4sgjg20+5Kw6gFelOpiXpYG/sKDWD642eLM0sFgcy4H6pfC2IduL6iKgK07JGqE1XbqV\nDA3M5W8Iwo7yYo7hYF4EYDnzmcPfSJGj2ppWbe3oRALhuWFy3lRc6HIZZ9lSRCHU2AjfQ7hu3fXC\n85A93SR+cuOI+58uJ4yNspkhJCNhXDAMBsO2jukkGwxTgJRw3HEBP/5xKMf44Q9L2LbGdQVXXBFn\nYIrxRFwvpptiUZDPhyEhVQWD64a/B8HItw8ME6n+VCp8fHVVFRHVAJKcStAl2nGUW7F90wilEDrA\nCyQZ2nErn/GPZBl/z7200j0gsroyxCcrmo6q/7ETGX0AbxQaZJ4F0cU0yE10ZX0/LJBtOwwaicXQ\nkUjd9WJGJ/5+c1AzOge7YIzBCUN0d292EInBYDAYNg/TSTYYpphUCj71KY+uLsE//3OUVaskX/pS\njNtuK03InWw6icc1ra2K7m5JsShw3fDAq1KQcjksioUIh+6q51XtLGsNNh5toocu3YKWDlJWimYV\ndpCbgy4Wivt5sP9s1sgOrlX/m3k8y+f5OQJFP00EWORIIVGUiRDBJ0GR2eI9HEsjtSCl8kgpwiK5\nuvOBmmTPg3weoQklEe7kujvoakFevUBDXC+GUS4h8rouzRhwV02isWEd1uq3keveRw8II9HxOLqx\naXKdLzZBVZKhm5unfF8Gg8GwJTFFssEwTVx+ucvKlZKHHnL4j/9w+PGPFV/+8sQLNMuCtjY93gbp\nuGhshCuvdCkWBem04IYbIjQ3a5IVmW46DZmMjeNoYrF6szYIQl22ENBaznCJvpmf8XkyYtawDwiO\n8JlBmoj0kRJyooksrRwZPEOKAq6Mo7DQlkXBT+BjUyBGghJJnYdAkxQ55utlJHUOtEIpQZEY0a5u\nrGw/BAHC93D+f/bePE6uss73fz9nqb16qa7uToAQ1oQ1kERAFjFuc3EGBwHHuYoKjCKIP3WUn9y5\nV/R1GddZnOt2Z0YEFWYYuaiMzDheZkYRUCCCQIAQNiEhe9LVa+1neZ77x1NrdyXpTrqTTvK8X696\nJV116tRzTnef/ta3Pt/PZ91alBvR0otCAbVo0W6PPy+TPOGfycrIs3vuKM+EagX30YexJibapRl1\nahINa8MGnI0bsLZsaXu8IdGoOV9MF1HI46x9GlZdwIw/UJxFSYbBYDDMZ4zcwmDYT0Qi8M1vVjjt\nNN1+/dKXIjzwwL5XtnWLuGx2bsNCurpoWM7F45BIaOu5ZFIRj6tGsF3dnaLNpYI9Z3q0blffV90B\nw0JiE+IQgrB4ipUgLLajta42EoSgKFL8VpxFUaTAshgS/fyduo4dXScQDi5A9vcjezP4p5xGcMZy\n/FNOIzz2uD1KMAoqyYPVcymoaQzvzQDha4mGsp12aUb9VpdoZPt1YEl3z6yElYhiEefXv6JN9zMf\nMcN/BoPhAGKKZINhPxKPw/e+V6a3VyGl4Npr42zZsvvqcWSEQ8YKrhN154siUwvQMjp5z0JiKx8H\nH0sG6CE+cPHIkdEbS4lUggIprUkGpOVQEGmkG21qkl1XSyBSKUgmm9KIA4nrtK1r8o1kEiUEzvpX\nUJal74t3SJY5xLBGhol/7ztYI8MHeikGg+EwxBTJBsN+ZvFixd//fRkhFKOjgk9+MtaxUVa3hYtG\nDw0ruAIpHhQdbOCEdr4oiqm63YLo4iXnFIasQbZFFrPZPY7x5JFIyyVwIviRBFs5AtAJd3G7qgfn\notHG4Ny0hN/1qcH6xGFj8tADGZKW47zNvZ+0HG+fOAzDdjuPuUQpRLmMmMbr7U+NssFgMByqmCuo\nwXAAeNObQv7H//D44hejPP+8/qj/ne8MyGRUwx0sldIOGTt2HNwd5LqjRZ40D7AKCdg1Czhb+vSo\nUUbpbXPAkFLfusIRjgxfQyrwcfGIEOAiEaiaCGOILJ5wiSifnmCE62K30ivG2yOqd0cQYL22AcbH\nsArFdulFGCLKFdK2x/niIZj8ZkbJ/VsoT5OZapTriEIe5+k1BGeciUql52BlBoPBcPBgOskGwwHi\n4x/3+P3f11XX88/bfO5z0YPCBq5OuSwoFLSstVRqFratTdYgaN5areDq22VkM4lvshFFtQoFL6Ll\nFUo1LeWKZU6UL7A2WMqwlwYEY0p7CwslyVS3Ib1g+gmHjoNcfAz09iL7BwgHFzRv/f14sRRD0aPw\nkt1TZBD5WD+/tt9Int24V8yEarURRtJ6o1hEtDpzdAormYUwkr0NIenErAaTGAwGwwHAdJINhgOE\nEHqQ76WXLH73O5uHH7Z59lmLwcH5ratotYOrVHRRn89DGArCUFEua5mvZelCuD6A11ok1wfzLAmE\nzfuE0tJch5p7GiUcQmwkEXwEgoRVZUBsZZ06mThlQmx+xflcwr/hEODKKiEOSKamk+wK123xUm4P\n+siJfm6pXs2HIz9gob2z7bF82M0vgjdxrPxpPeNv7wlD3CceBz/o+Jgo5BGVCm65DK47JaxkXoSR\ntDKXLhi+jxgb0zZ0B3sCj8FgmLeYItlgOICk03D77RXe9rYEpZLg05+O8cADRbrnSZ3TiVY7uDov\nvyzYuNEinwffFyxYoIhEdEd482ZdJBeL2grO89qdK+p7KYoUD7KKkpXCQj9WFTHKJEioInHKuATE\nlE8IrBbncqn6Id2M8xvO5g3iUQbUTiwUUVlCeA6WFQA1u4z5jpSIchkVi2uv5UmoaAR7aAgVj+kB\nRF/LQmRPDwjRcLqY6yJ5PkgyTJqfwWDYHxwEfzkMhkObE0+UfPazVQC2bLH41Kdi05cKHCDqdnD1\n24knKpYskUSjWtLruqpxq9vCdbKCqztbFEhREGkeslZREM3CKy+6eMx6Pc+JZayOXMBD7lt4OnUB\no5EBCnY3JbebAYZwhWQkdgSBpYtLG4kVeCzwNvFf1T+RyO9gj5OPYdhxcM+SPik5gRX6U4b2rNAn\npSYQ4exZlDXCSCbf6mmBbmSKUwcI7JdfQoyMTO81bAeVzerklxkym5IMg8FgmM+YTrLBMA+4+OKA\nO+8MWbvW5l//1eX73w+5+urpFV65nODeex0uuSSYc6/k2aYg0jwoVtUS+TrjiSgVEaMkUhRFmlAU\n6Q93kKBEwqowwE5iwkNaDvnEANFqnkhQwlEBAsXJch1sBLXZQnX3aPu0yQVzGMLICJbjThncS1V8\nzgofJVUaQoj2wjAVhrwu+A3pia0QnLjvJyQMtaNGJ3yv/fEWjTLFEqJUhLCDVKMDKpul+qFrSfQm\nYdQUuwaDwdAJUyQbDPOEN785oFQSvPqqxec+F+V1rws5/XTZsIJLJjsXwGF4cFjEtbpXtN5nK59e\nRpmQvQTCbWiX6zepBCXVTJmzlMJVHpYIGVdpNnMkJfTjStiUoz0UnW56kh52udCwTRNSIkZHYHSE\n+PdvIzhxKeExx2gXDNuGTAYZnSR18D0K5TKPe+eyNLGDpN0+WKn8KK6wtDZ2L7qybYQhYmQYe3S0\nszxESggC7GoVLEtbwYUBkdWPaIeO8TE90HcIMeMIbKNVNhgMs4iRWxgM84RIBP76ryvEYopqVXDN\nNXE2bBBEo9oKLjVLBgoHAqXaXS5ki3NaFu1wkZHa4cL39Xb1IrkqXR5Qb8RTU4ueikjwO04kL7ra\nHxAC5UZQXd2oTIbgpJMIFyxE1QpZ4Xm4zz1L7N/+leh//F/sdc9BpdIc3muROEjLZVz0sJMBfCva\nFieYcqucF32ClLvv8eIohQhqk471QcLWWzSqpRXRqB6Kcxywbe0HbdkQhFCt7Ps65hP14b9pFrwm\nfMRgMMwmpkg2GOYRJ54o+eIXtT751VctrrwyzvDwwWMLtyuE0I1Wx6Etvrq1YVq/33WbTdkCKZ50\nzuI8HqFbjRMPtZRCKIlQEruWvoeSIAPyQZRfe2dRCGKoIAQZ6oI5lSY89jiCZWcSLj7zSbQqAAAg\nAElEQVSG4ORTULGYXpvnYW/aCK+9hvPMGuwN6xH5fFvLu6Ti3FH6I3IyM/cnq1O29+5ukYhO7GtB\n5HLEbrsFkcvN6KVNCInBYDA0MUWywTAPyGQUV1/tk8ko3vc+n0svbfon/+Qnh0bB0nCzmHyb9Hjd\n+QJ0AMnPwzczJnpx/DLd/jBOcYyIrLAifJykP46Nz7Hyd1Cpkq9G+bV3DkU/QiUfoAKJclyw7MaL\nqFQKb9WbKX3kY1TefjHhkYtQNR2y8H3sbVtx1z6D+9QT2Fs24/pFuuQYaTnecXivLoOgVKol97Wk\n9bVoYPJehIc2Hkvem/sYbBEGWMM5xDQ1ynXqISQqm933NRTyesCvkN/nfRkMBsOB4ND462swHOS4\nLvT3NzuXf/3XFX77W5tNmyy+/OUob3pTyNKl8yvVrRNSghCqEbPt+7RpjIWYqknuRH17gAnRzRe5\niZ5ICYDl0Wc5vvBJhBvlZXkyR3uvcIJ4ldHoIGWRIO/3ssVajBNLcvSRCjdmNYrgNmwbufgYfNfF\nKhWJvLAOWSwixsYQSiGqVezt2xgEbhKf40XrZFLWpOE9JRFBiDU2ivvSi1ijI1CoDf/V01RqJ6Po\nRfnVpuNYksmRjsyCPGOeU3fBCE840aT3GQyGgxJTJBsM85B0Gv7qryq8971xymXBO96R4PWvD1i5\nUrJiRcjy5fNLoxyPK3p6JGCTSqlasIiuD+vN1HqwCLQP8Sl0N9nFp1/tpKx6CWlqUIWAvOimamn/\n33FnOwrB0eF6xqwzqBDnJOtZJuwBCvQghU0gXHwrgooolD0Nxw/bhq4uwgVHoITAGh3ByuV0wYzC\nVT6nhs8wYh+LSrTIX2q2cbKnF3/JUtxyueFjLHwP4XmzO0DWmshS72Q3ogj1YKK1YztiaCeiWNBp\nfLWnqnh8VjyU54MkY8YDfbvCDPoZDIbdYIpkg2GecuqpklWrQu6/32FsTHDffS733acfE0Jx0km6\nYD7hBMnQ0IF1t/A8QX8/LF0aMjiotHUv2p1s9WobKWHzZkE8riiXRUN/LCWUKykeYhVRqlwlv8sd\n6lq2snC3rydQxFSFqoixmnNZJtbN3sE4DrJ/ANk/AKUSzisvo4plbBXSO7ERFe8Hp6Wgsiwtok4k\nakN2taE/aJNbJCNV3rDoVZKR6t6tS0odPR3WPlFQSuuyN29uWMPF7/on1C9+DuUyzisvY23ZAnHt\n/DFbiXx1ScYBZZbS/EwoicFg2B2mSDYY5jErVoRcfrnP44/bPPmkzbp1FkEgUErw/PM2zz/flBH8\n8Icuy5eHrFgRsmKFZOXKkAUL9o9vchhCqaSdOBKJZpGslK4flVJteuPWW9FK8yuxigVqW8d9T7aO\ny6skQ2KALjVOEApeZAlV6WJLDxsPS4U40sMOPMYKcZ6XS1mReIG0XYJghqEfjoOKxRlxBukbexVL\nhajcMHJgYMYpfumIx4VHr5/Rc/IyyRPe6ayMPEtaTegCuX7ilARlaZcLIRAygsz0oXozECmiYnFk\nd492xCiX2hL5RC5H9Kf/DFe9H5zEjNZkMBgMhwumSDYY5jnnnhuyalVIT48iCOCZZ2yeeMLiySd1\n4bx5sy7WSiXBww87PPxw89f6iCN0t3nlypCVKyXLloUkDnBNpJTuIEO7eqBNgtFS29ebsdVaA3aD\nHGSdPIlz5KOkwxEyjODKKn4FXFVgCc8RpYBSZbZuS/CAs4ylvEiXW9b7jyfaO8HToBpJ8x/Rd3BR\n9V8QgY81OoLM9OErhzGZpls5zcV2CPsQu3qvUizqbZTsmAhYUEkerJ7LUvdV0kzoO+vvNlTtBNb1\n1pYFiQQqlUIAKhKBZLLxNZWmPZwIA+18EQTz+q/AfIjANhgMhy/z+PJoMBgAxsYEP/uZw5VX+gwO\nKs45J+Scc0JAd0V37BC1gtniiSdsnnrKpljUutmtWy22brX46U9rcc224uST2wvnE06QM22K7jV1\nv+RGM1TVh/1A1opj34dOngyNTrLVzd9G/5Syn+TX4nwu9X/ImJVhXXQ5EyrFYHUnT9sricfB6U7j\n9RyLd+Z5eMlakem4qGh0xmt/xH0jF4pfk6iM6ICSfJ5c7Fi+U3kPHwp/Sl8QaH/emn8xYYgIfNx1\na1FuZ0cL4Xl62M+ydFE90zxypdpdNkolHShSLGo9dLGoC+RiEcrlhkZZDO1svuuYx8x0+G/WtMoG\ng8GAKZINhnlL3RZuT7XM4KDi7W8PePvb9ddhCC+9ZDUK59/+1ubFFy2kFIShYO1am7Vrbe64Q2/f\n1aU480xdNK9YEXL22Yre3rk5prpfcr0ZWg8WEQJKKsVDahVVN4Wj6k1OncY3Si/Kqhf6UFRdlKwU\nedFFkiJSOJStFJ6M4whJxYqDbeM6Cd1RTSRRyb13B8laI3wk/Q9YpFG5PML3ERPjRMVEcyPH0XKH\naKQ5uFep4J9yGiSSnXdcLOJOTIBjI0olxMjI9BdVe0chJia0PlmGuE/+FhWL6wK9UsZ9bDXYNiLw\nEZ5H4mtf1Rrlchln2xaY+DDEuvb8WgcLM9Uq12O9/RnKcAwGw2GBKZINhnlK3RZux46ZhYnYNpx8\nsuTkkyVXXKHvKxTg6adtnnii2XHesUO3jycmBA895PDQQ83LwbHHwvLlUZYvD1ixQsdj17I39pl6\ngVzvXje0ySLNQ2oVMRtETXmQJce1fJtvcy050XmYTyEoizgSi6RVZpG9hSGxgJDZs/9wRcCArVPc\nZF8Wa+cOhJT0TbzGgNuipbbtqYN7ySQq2XktAmrpKXZTNtGBgkzwgH8ur1O/Io22wmv66lFrywtU\nNIaqDeqpVvsTX+9b9vTogl3mtK9zudy+nlyO6L33UL3ksn32Sp4PLhh7QoyN4q55kurYKBy16EAv\nx2AwzDPm79XLYDDMGqmUjrY+/3xdfSoFW7dqmUa9cH76aZtyWRfk69fD+vUO99yjLxGuqzj1VNno\nNq9cGXLssaoR+nEgqRLjJftILCQJWSCiPBKqQCgVVkCL7KAw9cnl0h73n5dJnqiuZGXsOdJWsdEx\ntnJDWCrko97X8DfF4TdDiFJJd65niZQo8sboowA86J3LSTzVLJLrCAEIELIZq92JloJdFIsdN2kN\nIdnXkc954YJhMBgM+4Apkg2GwxAh4MgjFUceGfCOd2gFsO/DCy9YrFnj8OyzUR55RPLSS1btMcGa\nNTZr1tjcdpveR2+varhpHH+8pFLRMtennrI56aSQeFx/kh0E9SAR1RYs0nqrr2m6FEWKX9mrGJNd\nVIjxRHAmrxPP0M0oMVWiV40iZQVRLXH8yGPYwzuxvM4FsezpReR27vK1CiR50DuXpdENpKkVl7GY\n1r2OjWmPZ78ML74AgNq0CZVO61s02pxS3BVhqAf3gkBvW9cYA2kmWOU+zI4wS0pOYKmgub/JE46H\nEWagz2Aw7A9MkWwwGADdhDz9dMny5QG9vVFGR8sMD0ueespuOGk8+aRFLqcL59FRwf33O9x/f/My\nkk5LbBtSKUU2qz/N9zzRsBL2vJZBvQ7OFrsrlOvbSAkTIs1D1ipOkmsZZAdr7TP4VfIdLGQbl5X+\nkR/Y76PSPcBpgzu4rHo31as/SPGkvs47zk+Q+osvzvh8qVSaHfZCHh8/mbdGHyTu5xGeh0Ah8hOQ\n13pl+3u3ES4+Bu/o4xhecDLpgRiuXSt0fV8P+wmhn1sf3vPaE/lSSnGW/yhJOYGw/PYTWI8y7ES9\n8J7stFEq6ceGhhDRNFbNe7k1hETsInxkNiUZe8tspfmpZIpg6cm7lMMYDIbDG1MkGwwHOb6vHTB6\netSsh4Z1d8OqVdqCDnQ9tnGjqEk0tFTj2WctPE8Xafm8LqAfe0zwN39T4fjjJV/7WoRIRPHkkzYT\nEwLXVUQizeTm8XHR8E+uv0anBmndIS0o+2SEHuYLZECMMiU/wqvFBZRRjPhpNloLGBlfgO8Lznej\nHJXIIgcHOx7jvhh7hHaUJ5xzWD44RN95xxH59a/Aq2Ll84j8hJYLe1Wcl1/EeflFEvxfvK4+xHGL\nCY85BpnJIjN9YAlEsYjl+6hYbIpkohBmeVyey0nhi6Qsrzb1GCLq7zg6EQRYmzfpIUMpIQyIrH4E\n5bgIr4rI5+Fv/5Z4LNE83y0hJPLIozqGj8ymJONAI4oFnBefRxQ7SHEMBsNhjymSDYaDnJERwe23\nuw2LuLlECFi8WLF4ccBll2mZhufBc89pN42HHrK57z6HfF5w3XUxPv1pj1gMolGFbTcH9uzanFrd\nwWxyrbc7hUKfynGt+ja3iGvb1iUESOEwbPUTCgfL0lrqZFLVQ+d2TxCA5yFaK3TfQ0il/enCEJjk\nZSxbvrYsVCKB6utDLo4gymWs4Ryyuxt7y2as0VEAIhPDsGYYd82TKCFQsTiqK60H3IRonpzWl8Gl\nYHUhpdM8iWo3BTLohD7f1+uyLAQKFYtpOzqn9s0YGEA6UZSsHXM9hCQabQsfOVAcDMN/BoPh0MVc\neQyGeU7dCq6nZ3727SIRWL5csny55OKLA5JJxb//u0s+L/jKV6Icd5zk9a/vXPVOtoSrE4a6Zu2E\nbYOlwLagIpO8Jo+hJJJYFoxY/dxqfZQggJildmcY0UDF4zqlrmabRtjywr6PCEKO9V/C8isI1W4V\n1k+O61J30ONaU7uqto3q6sJ/wxvxkilyWwOeWB3ye/wnya2/Q1QqCKUQ5VJjgFABwvdQ8YTuKDuz\ncImunwQl9TfLbXHeSKWgpUhuhJDE4uAdeB/lmQ7/Ga2ywWCYTUyRbDDMc+pWcAcLxxyj+Kd/KvHJ\nT8b43e9sXn3VolBwSSY7H8NkSzhodpILpHiAVRRINZqmQgA1GW7JSvGaOoai2HtNqerqpnL9R4kV\nJwgSaWRrJGGxiHrgOY4a2s7j6Tfxhr51Ot66hgVkgxDhe3hTd91G0NXLbwfP5owzsixIjGPt2I79\n0os4zz2rPZKpWcJVq4iaObaybVQ0Sq/rc5H176TV+NTBPaX0CZnuEF8QNDXKhQI4vu6W145XeJ7W\nLPteI3ykca6m1ZI/cMyWVtlgMBjAFMkGg2EOOOYYxX33lbjqqji//rXDzp0WjqNIp2dmG1cgzYOs\nAmoF5B6QUtd+M7amS3XpSOdkEtUS/CGULlRD4fBE5TTOtLaQcttb3EJ59fDD6WNZyIVHoNJd2o5N\ngDU0hJXLgZINyYcIQ0SpRJIS57K9KceoJ7EopSUVCN0p3pOTRhBg7diBVa3qjvmvf40rrGZ9Xeum\nR8bHEEHQDB+pITN9lN9/5QwPdv6ienoJlq9E9cwgPcf3EWNj2t1ktocADAbDvGI/hdEaDIbDja4u\n+Na3Kpx0ktbtBoFgdFRQqTRdzsJw15Zwk5n8eP3/cVXkA+H3yYRDjQS/etx1Xe+8LzhCErcqiLkc\nU7NtVCqFSiSQmT7CgQFkdzdhLI4UWi4hQBfPSqEcF+W6IATKdVGu0yyed0dNp6zqwvBYTEs74nF9\nS6WQ2X6trY5EkD09yN6MvsViWqdcqUzrkEQuR+y2WxC53D6enDnEdVGJxIyKXWtkmPj3vqNdSQwG\nwyGN6SQbDIZZI5lUnH9+2JBWpFKKN70pIB5XPPWUDQhKJYGUilRKtVoCt7E75UAQgiKkS+YYpxuB\npFcNE1YDqqJVjSDIhS4vVwdYUrbZhQFcG6JUakoPAIpFsuSIx3aymjfpqOnJwopgFiON653iSAQV\nibItMcB38u/h+uitDORf1TZxYQhetVEkt4WJTBfL0lV3JAKWM/WEhx0E4VJBuYwYzjVs4jqV5Kpm\nHTeXLhhmoM9gMOwPzBXGYDDsM602dPVUP9Dd5Btu8HjmGYtPfSrG5s0WQSCoVASxGAwOSsplQTKp\n2lzPqlWoVsUui+UEJa7idv6ea3mE8ziLJ4Cptd6w1c9tsY/yxngZ2HURqRJxyGYRW7ZhtUY1l8ta\no+tLjpYvYZUKiGh56vPjidkZsqvbfdTeOVihT1IVCO0IE+mFqJFxepSWQrT5JM9Ek7wnggBr61ZE\ntdKwjAMQga/Pxfd8rHKZxLe+3rEDKzN9lG64cXbWsgtmLc2vWMDetBGMBZzBYOiAKZINBsM+szsb\nuq4u6OmBZBJ+7/c87r8/QqUiGBsTVCpaDzvZ9axebwoxtfYrkuJRzuN1PEGp9v8zxbN6HzQ7063e\ny3ukqxs++1nKW3OEYbOYFkM7SXzli8hXt7NoYpjgzBV4/R2KbcfV7xR2Q1+8yDVnrqY3NrXIBnTR\n63na07gWJqJDRB4hVRoCKVmjlnG+eARHBQgptRuG54GwpqdJng5S6iLcspqWcQC+/gbJbD+yRbfd\nRrnUsI47KIhECTN9EIke6JUYDIZ5iCmSDYaDnPluEddKPA7HHCPZuVMwMmJRqQiEUB2boK3hIq0U\nrTSr1XksU8+2OV0IUdPtTvJbLhRgbGwai+vuRkkHGTQLTQsgFtPaVduCeByV7Fx5iz0Uya4tGUgW\nd72BZWmZRTTaCBMphFkeV+exNLGdpMxj+xYlu4e0P6qH+gClFHmni6fD0zlVecxadpwQ7ZZxoN+B\nJJO7TKgTANPULM8LXFe/e5vNATwz2GcwHDLMq8G9O++8kze/+c0sW7aMd7/73TzzzDO73T6fz3Pz\nzTdzwQUXsGzZMi666CIeeuih/bRag2F+ULeIO1j+HluWLpQXLaqn+InJKczTxlE+feSwlC5ss2qI\nj6j/TVYNNbYJQ0EYztTuogUhkNE4qsPlMu9FeGjjseS9SIcn7t1rNdrqto20ayEitkvKrXKe8xgp\nu6KH7WqtdyElEb/EA/JCCjKxhxc4uJjp8N980CqbwT6D4dBh3nSSf/azn/GVr3yFz3/+85x++unc\nfvvtfOhDH+K+++4jk8lM2d73fa666ir6+/v51re+xcDAAFu3biWdNt6YBsN8Rwg48kjFtm2qoVFO\np6ffCa93l3sZ4X38AxZav2yrgH41hE3QcLiwLBgdhR07dKEcjyu6umaw2FiM8omn444PYVuKVjO6\nohflV5uOY0kmx0x2OVN8ZbNT9pFRBVx00p6KRLRmGojJMu/lToQ8eg5Xsf+Z6fDfrGmVDQaDgXlU\nJH//+9/nj//4j3nnO98JwM0338wDDzzAj3/8Y6655pop2//oRz8in89z9913Y9c6KkccccR+XbPB\nYJgZ1arQWRY1ZUJXl2JkRFCt6vvqDmZ1XXEnGYZSOpmufqvfFwTt9weB7iILAXfe6fKLX+htMxnJ\nDTd4MyqUM+QYzLyKLxNQaNHjFi2tCS4WgSIi8Bva3dl0vRiRPdxbejfXqW+yQDa75AiBEgIhJcfz\nChM7PUgt0I/5no7NDmsndTb0ypOpVhB+ixNGsagL96GdennTcME4oBQLWBtfM4N7BoOhI/OiSPZ9\nn+eee45rr722cZ8QgvPOO481a9Z0fM4vf/lLzjzzTG6++WZ+8YtfkMlkuPjii7nmmmuw9uQVajAY\n9iuxmCIeV3iewPN0JzYMIZFQjIwACPJ5RbJWf3ayhdsVHhGe4HUUSJGi0BY6Utcqp1KK3l5Fuay1\n0OWyoKtrz71JFY8jM31YWzYjKmWs8bG2uGY7X+G44cexh3diOWO6YG45AO16MTs6GFd5pMIJhKyl\npdSLXiEIhIOjAtKjm5FbAj35GIaIcgXs2prkLA321alWcB99GFFqDunVHTASX/sqOA7W6MgeXTAO\nZKEsSiXsTRsRpdKeN64hM32Ur75Ga44PFEb3bDDsF+ZFkTw6OkoYhmSz2bb7+/r6WL9+fcfnbNq0\nidWrV/OHf/iHfOc732HDhg3cfPPNhGHI9ddfvz+WbTAYJuH7MDSkreBa/3an03DuuSEXXhjyD/8A\nPT26IB4ehh//2CIMBUoJFi/WRVyxCMWi7gJP1isr1YyrLpLEI8qjnEdBpEmp9o5gvUiOxyGVAlBU\nKtPXJ6uubjZe9Wf84s5h/jhzK9YH3o3qH2g8Xn1hmKP/4h6qV3+QUl9I4mtfRdatPAAcVw/i7SVZ\na4SPpO6goiL4IkLB7iJlVWuJe6F2uIhEqIRREt44FgpRKTN2zOk8O7GYM8sPkIrojrYIgz2HjcwA\n4Qe6QHYc7dkMTQeMnh5IJJEDg52f3OKCccC7yTPFdVH9/Qd0CdbIMLHbv0vlyj9BDi44oGsxGA5l\n5kWRvCuUUohdeDhJKclms3z+859HCMEpp5zCzp07ue2222ZUJFuWwLJmPtRj21bbv4cD5pgPD/bm\nmG1b/x7l8xZ33eVw1VUBCxY0O7VdXfC2t0kWLoREQhesqZQuYDMZxdCQoFzWUoxEQhsk7K7pWY+r\nPoqNJCli47fJMEAX01k1xB/Juyl6l2FZ2YYtnG3rmOzpHLNK9zAsFcFRxxA76khUtlkgWSMWRKJY\nA/1Y/SAScUT94Grs9upi6TcCqr7VpI1dETBgD7Mt1IW5ErVUPatm+SYEQggSjo8ILQhDrLEx/FLA\nz8sXcoL1FCl7tHYgEkH99Zovpi+xLS/ccs0ViObXtX8tIVCWaK49EkHUTa6F0GtIpVCp3fhsWAJR\nrWDbFpaz658zYVtYlpiyncgNEfnJPXjvvKzt+7EnJn+frYiLSCaxIy5iN+uYCbta82wyk9cw17BD\nn8PtePcn86JI7u3txbZtcpMmmEdGRujr65yTNTAwgOu6bUX0cccdRy6XIwgCnGka+2cyyV0W4tOh\nqyu+1889WDHHfHgwk2NOpeCGG6BSiRCPQ09PhN7e5uO9vbqb+53v6OI1FtNfB4F+bKgmsx0etunu\n1s5j9V/h3UkvMoxyFr8lwyhbxGKEqqXP1W4OIVmVo+ALgiBS0ylDteo2nMoSCRr65E7HXKmA7Eug\nrv0kPQvbH/O6EriuTVdXgp4eIOqC9CGoTtlP3ovyxI6jWDm4mXSk9nhQ1cUuEuxaBW8J/f8WbCWw\nhMAS+o09lgDZLF4F6BMmBAQBmU1rcXtDLMvCrjcBrFpBVX+nUHuP4Dh222shLb1/hN7etZv3OzZO\nzIV4BAIXHBt2t82uCFyIukR7EtC7C89lgEoC4hHik7erTEBxgkQquvvn74LG93mgF45cSPdA717t\nZ0Zrnk324jXMNezQ53A73v3BvCiSXdfl1FNP5dFHH+Utb3kLoLvIjz76KO9///s7PmfFihX89Kc/\nbbtv/fr19Pf3T7tABhgZKe51J7mrK87ERLktfOBQxhyzOebd4bowPCwolx3GxgJisXbNby4n2LJF\nF6eVisJx6pa6NtGoRbUq2LFDcdRRkiAAsDqGgbQHjDRH9ZRSqElfB4FColi7VlLcGBIEenjwf/5P\nSTyud9LXp/hv/y1k0aLOxzw2tutjmpgo4fshExMlIr1x4qluxHAOxiamrHtkIsEr66Ice8oQka6a\nBrZcximVtVOFG8FSoKSCSWsIpcKXQjtchCPa4ULV+s9KoXTPF7lgIfbmTbjlPCvdB5COJKzFbAsp\nkYHEkhIlLITSpnZBELYPSAYSW+pzKAOJssLG/SIICSo+yvGg4uMGISqQsKttdkXFx6r6lMdKqFgR\nJsbbtM11xNBOokMjVF/egBordbxfekqHwUyDyT/b1rYciZdfobQth8zOzuC3GCsRLXtU68c2B8zk\nNcw17NA/5sPteGeL3mm8wdznIjkIAjZs2IBSimOPPXZGBWorV111FX/2Z3/Gaaed1rCAq1QqXHbZ\nZQDceOONLFiwgE996lMAvOc97+Ef//Ef+cIXvsD73vc+NmzYwC233MKVV145o9eVUiHl3ocwhKEk\nCA6vH0pzzIcHe3PMYSiQUtWeq6Y8ppRCKVH7vWsmK8fjimpVD/UND+tBP6VmkJhXo65VLrREalgW\nRKOKMKbwff163d2SREIP8uVygkJB7fKYd3dMoGrFtiJIpCl88tO7TJur1PTLlas/SOEk/QmZGNrZ\n1DF7HrEtm3d5bCUV5/bgCm6wvslCmg4XrSuSvRnE6AhWscib8//KaPeiSavV5zWvkjzpn85ZYZ6Y\n5aFaq+SW/6vamw0AUftXKoWSCiFVLRW7GYk9eZtdUX9uGErUyCiJr/5lZ19h38caHSH69f/VPqBW\nLuO88jJs3ow88qgZDwDWv892KFFKf2/D2fr97u4luPJDqO4emKNrhhXKxs+kDOS0BvnMNezQ53A7\n3v3BPhXJa9eu5eMf/zhbt24FYOHChXz9619n2bJlM97X7//+7zM6Oso3vvENcrkcJ598MrfeemvD\nI3n79u0NqzeABQsW8N3vfpcvf/nLXHLJJQwODnLllVd2tIszGAzzm1gMHEd7Jr/8ssVRR03vQj9C\nhsc5ixH0daKuVYZmAh/ouqEum62FxtVm6/Y8yGePDHHeU/+C/Y4/hMH24eJMRnHE8pBKRiHRg367\nKtbUkEC5EVRfFjmoB9os0LqTRJJpGQFP2Wm9QFUNH7zwqEVYL75AXJWIjb0IBVcP1tkWlEogQ0oq\nwm+85ZwcPk7M3cskl1lClMtYI8PIWAziU8NQOg7/RYqoWBwZjbYNAIpcjui991C95DLUpEHw/cYB\nGOwzg3wGw9ywT0XyzTffzHve8x6uuOIKSqUSX/7yl/nc5z7HT37yk73a3xVXXMEVV1zR8bE77rhj\nyn1nnHEGd9111169lsFgOHCUyzpPuljURauUsGiR5LXXLKQUbNpkY9udq8bWpmeAS5EkAVO7Z/VB\nvt1Pzu0ZEYZExoe498eCS64TZLP7P/47a41wZfxuflR9W/POWoGs47AFKIk1nINIBD+Rxi3l9aEH\nvvZvBqzfvYwSgqxV5DJ1F06xD/befGN2iSd2P+zXgkAPDBKLt1nyzTh8xHZQicQBTegzGAzzl2ld\nGb785S/zsY99jNSkC9jGjRt5//vfTywWI5FIcOmll/KJT3xiThZqMBgOfhxH0dOjqFQsKhVBuQy+\nL2qPweCgZGjIIghEQ+awJyxC+siRI9uxWJ4O+Txs26b1x5MjrMeHtQxk61bB9k36Z18AACAASURB\nVO2ibZDQHnHIJrOIfS2yyqVal1fpdw2TphVdQrLksHW/ujbshw4TqX28LsJQRzInEjAwiD82ir1t\nKyIM9cfxLZKISFhlKS/Ai6BsG5VKI9NpVLprnyzrDjoyGYLlK6FDquuuEIU8ztNrCM44E5UyCa8G\nw6HMtK7s4+PjXHTRRXzyk5/k8ssvb9y/fPlybrzxRi6//HLK5TK33HILr3vd6+ZssQaD4eAmGoXr\nrvOpp8cPDQm+9rUIPT26gFu3zubcc33+8z9d8nntndyqQ2gf2tMkKHEVt/NVbmA7k+wnpoHnwd/9\nnYtS2vVi8v6TEy7njQjWrLF57WvavaPJUWQy/x83RLy9iqVuhJWMDEN+Qnsfh2EjrS8fxnmluojj\no5sQMgAUQilES5AIwsJXDmOkSTtxnJquRPVmUBMTuohWClGtIBNJrNwQoa9wpZZZiDBEjI/poBRq\nZ9u2wXEQw8Oo3l6IHIDCeXKaXyvFog5uKZXA9xqpfmJoJ6JY0OdyjmQHoljEffhXhCeceMCK5FkP\nNDHhJAZDR6ZVJH/lK1/hmWee4Qtf+AI/+MEP+NznPseyZcv4whe+wOc//3luvPFGAM455xxuuumm\nOV2wwWCYv2Qyiquv9htFbx3f184XUupgkcFB/fjICGzebNHbGxCPg+sqBgYUb3+7x49/HKl1dZuF\ncn2Qr1Nc9WSEgCIpHrJWUbJSu1RdhCGMjgoWLoRkcuogb1dEkslI4ii6u2UjJwSYcYLfZFRXN6Ub\nbtS63BfW4a5bi0x3QVJrc/PFJGObUuQHXSQ2VCLIZAoZqepEvfwECEFO9XFLeDUfDB5kAS2Dg1I2\nu9JCoLq6UOUSQ2qAfy5fxBUD95Ou7kQU8ohSSRfg9ZMShjjrX4X1WtqgkklUNIq1cwfh0XNsNdUh\nza+NMERUykTGxxBBoBP+4vHmQF+xROlzNx98QSXTZZZ1z0bTbDB0ZtqfES5btoy7776bH/3oR1x/\n/fVccMEFfPrTn+brX//6XK7PYDAcBBQK8PTTNmecEdLfP7VYHBkR3HOPw5lnSpLJ5uNhKKhWpwaH\nRKO6YG3KMXShPLk4zpHl+1zFu/lh53WJNA9ZqzjJliT3oFJNJLTkY/JakkCSIu8cvZ1Xrasg1Vqc\nTD/Bz7b1a9iTbInrw35iaKdegOug3NqUoRsBYYEbQWGhdBJKy05289pSF5L1lD0hJdbwMKJcIcUI\npwRrsb2yLrh6M6ieXioVyBViHOm/hi39xt6F5zUit+0f/xDluMiBAfA8ZE8PqjfTNLaeBTqm+U1C\npVII34NKpZHwR6SIchyssdHppfmNj2O/9CKMj89Z59lgMBy8zPiq9q53vYuLLrqIb37zm/zBH/wB\nH/7wh/nABz6w19ZvBoPh8CASgbPOCpnmbBZC6EJ5bAzq4SBqUpUc4DJMFsncJk0JJN3BMJYM2FuD\npd5+mwVv7aXab++VkcWMsWxULN4sXgMf2deHFfgoYriOjRgcQLp+47yO+r3ctf2tfKDyHQbFToJF\nRyPKZUQ+jzUxjqglsIjAx966BQA7p+3oZDwOyZRO4BsbQyWSM/fwm4RqtSXZFTW7EpWsfVrgzEAu\n0N1NuGQpdB+iHWeDwbBPTLuyXb9+PatXr8bzPJYtW8Z//+//nXe/+9186Utf4u677+Yzn/kMb3jD\nG+ZyrQaDYZ6SSsH55+8mGm8vEaKuQ66Xle0a5ck4+PQyyii9hHs5xDdXqGyWygc/vOcNg6DRtcV3\nQUXA9+h38lwfvY0eVYCwNuCnakN8uzolltXsOiup9aaWTcqqcp79JFb8eHwr0tCvhMQo2D1IS29H\nLKblHwODSM9DFPIEx5+ANTyMvfE1rO3bGgOBVrkMNY/o+A/+ERVPEJy4hODM5Z1t3PaWIGi2+31P\na3mKRYQCikX9daXS0Cm3ImwLrCxzmaNlBvsMhkOHaV0p/vmf/5mbbrqJxYsXE4vF+Mu//Eve8573\ncNNNN3Hbbbfx85//nD//8z/n+OOP5zOf+QyLFi3a804NBoOhhpYsKDxP1zmlUrMOam8eK3ZXKGfJ\ncS3f5ttcy3a1sMPzd021WougntQq9r0U63peT9eONZRKEBSajw0PwwsvWGzcCIP7WAeqWAwViSKC\nACq62BRVByETWOUS0WAnA3IcQgewtS5XSVBWrVAVDWnFnOE4yMXHEJ5yGkGhgPvgL0FJRKWCyE9g\nTUzULOlAlEu4z6zBfWYN4RFH4p+5Qndt9+VTxyDA2ryp+RpSQhgQWf0IynEhDLGKBayx0aZOuQUh\ngCMXwsc+BYm5KWAPxGCfGeQzGOaGaV2tvvGNb/CJT3yCD39Yd0EeffRR/uRP/oTrr7+eTCbDW9/6\nVi688EJuvfVW3vWud/Gb3/xmThdtMBgODWIx1Ujbq1YFlYpgfNyqFauCMOxU4e6+UG7bUtFI9tsd\nvg+rV0OlYncoqnvJVN/A5ZXnWbPGYSTavGxWKjA8bPH970dYurRK195YXNRJdxGcehoyna4nneAP\nWciHc+RPWkTppTTZzE6SXZaWIHge9ubNKMdBhiko1QJDAF/ajPq9ZNXmqf30esyhktraw5KNdxK2\nXyEVjmFJH6g9Xj8fvjfFmg4hUImU1iQvPAJZrSLyE4RHL8batg3npRcQQYC9dQv21i2oX/4c//Qz\nCE9YsnfnSEpdINc65CoMESj9BqOm45bRCKJVp9yCVSlDLqf1znNUJB8QzCCfwTAnTKtI9jyPxYsX\nN75etGgRSik8r5nUFIlEuP7669ss4gwGg2F3pNNw7rkhl14aYNuKf/93l//yX3x27rRYt84GdHS0\nUlo1IERr0bvnQlnUmqt7arCGoVYKuK72cp5MwlEkSpBIKspuS2yzAstSjI+LvXa4aCMSgYTW1wJQ\n0AdesdLkyoPEYiUSbqAH+hSohpzCbtP/5oIebh26mGvVFhYy2ty/lHqYD4FAwY4dWKJ5clLhOGeV\nHiLpjyJEBWtoqCnXCEMIAnL5KD966fVcftRqjpi8fiEgEiFcspRg+Uq8N70FZ+0zuE8/hTU2hiiX\niTy2GvXYauQRR+D+6kH88/dCptc6vKikPm9ui3a5RafcirIEFCeayx0ZwXnqCcQ73jntwT1lO9qP\n2gSQGAyHPNP6LX/ve9/LZz/7WR577DGi0Sj/8R//wapVq1iwYOpFZXBfP3M0GAyHFWEIP/+5w/ve\n5/Onf+rV7lO1T+VVQ5dsWc06UNu06S9yZPlbrmeUXrLkGvutP28ms2Ou2/nT5Qi6JotMmiNLlYe4\nuPpjNniXwV45Je8eyxGQiCOcWZJRWJYe5hM6oU8MDiItp6H5Lvi9PB5eyMmVF0lZAbK/v9GhFb52\nuPCtKLlSkkBOY03xOMFZ5xC87mzsDetx1jyJ/eorCKWwt26l6/prCI88CtmXRS5fybSnOmeLMECU\nShDuwo+5A9PWls8hRvdsMOwfplUkf/SjH+WMM87gkUcewfM8Pvaxj3HxxRfP9doMBsMhTjKpWLky\n5Omn7Smf5O+KyUVvgMsQAx23dZRPvxrFUd3MxbCWrQL65BCb1PSLrD1SLjWs17JRyL45ws6hCkOh\nDhoRfn2oz0NIiQpDsgzxkfj36HK6AXtXe9bUW+tKd32xnF0M7lmdO7R7gxCExx5HeOxxiIlx3N8+\njvPcWkS1gr1lM/aWzTjPPUuw9CSCM1eg0rP4hqM1lKSWbCiGdmKFEjGc08X/cA5rx/aOT1fx+Lzz\nW55t3fOsa5oNhkOEaf/VuOCCC7jgggvmci0Gg+EQJZNRvO99PlJq/W+9W5tKwdlnS55/fveFnVLN\nAbzpDuIpBX3kuDb8Ng8E11Bm77WVZTvFk11vpGzPXaezLX2vZrVWx8q7OH6ZaDCMiFgQ1VHThAEC\nRcSW9EfGkU73PtnLpewSF6afIFWa0JqWyZpk38cuFUh7w9ilgl6D0/K966RbnnycXd34Z7+e8Ljj\n8c8+h9hd/4T75G8RYYi77jncdc8hs/1I10VF9lEPOymURIQBBD7xv/krZCwOExNYuRzx797KrgTl\nMtNH6YYb512hPKtMV9NsBvoMhxlGVGUwGOYc19Vyhdtvd7nySr+RuDcd6kXxnobvOj6X5vDevlCy\n0zzV/cZ92kcuJ7j3XodLLgnIZqcef2v63mTKLwzDpu/ill7BO/M06O+HYlG7OsRitY6wjZqcVLIL\nfOUwJrvokzatPmlpu8wbk4/jeMMIpaZokkXg0/XSk5w9MkqXvx5rdAQK7hTdMjX3id1i23hvvxjv\n7ReT+v//FGvTRpyXX0L4HlZuCAtQO3cg+weQ2X7UXkgxpoSS+D7YFrKnFxlPgNRWejKVht7M1B2U\nS1gjw9MLJjkMMAN9hsMNUyQbDIZ5jfZJbmqS24ve9uG9AikeYBUFUo1HxT46o7Xa8k7G8fV6qlUY\nGpoqfo7HVbNBOTTE0p//C5z3h5DNdtxfPX1vyv1DAmk7bPWyZJ0eEskUQoFyXK0ZdvcQuDGJnMzw\nnfL7uS54kKwz3v6gZUM0hkJN1SRXKkwsWcFj68/j+GMeIV0eQsVjjdev65ZxXYZKSe558XQuW/os\n/Ynibtejenrwjz0O7y1vw1n3HO6Tv8UaHUGEIfb2bdjbt6FcF9ndo7vbM7SRa4SSCAFC6aG+RBJR\nLOpvYCzWsQgXMKWrv8fXMoN9BsMhg/ktNhgM85YwnFliW4E0D7IKqNVD+/j6QQDbNwUkvTHGRC+B\naP+IOetbhCGsX2/zta9FJtvykslIbrjBo6sLRBiSLA0h9kLXq2ybcSeDLPcR96Mk9uWgpoNlAaqj\nJjlMpMhH+ggTqdqkY6R9mrF2fKG0yJWShNMZ8KsTjRIsX0F4wolE7vsZYmJMu2IohfD9Rrqfyk/o\nAcRotGF7N184EIN9ZpDPYJgbTJFsMBjmHbGYIhJRFFsakFNlF02Hi7lCSujyhrmycgt3pj7MTnth\n2+NOzZouGlX09CgSiWZXu1wWjIxYs2MN19/PCyv/K2du+hJUy4iC1ClzgQ/+VImFqGmDRU1OMMen\nafYRApVMIrNZQttCjI1hjQxjjY7q4UWlEOUSlEsowPYDZDaL7CSZAO1e4aHlFkEtoU8qnVoThnqY\nr1CY+rxiUXeu5zlmkM9gmBtMkWwwGOYd6TSceqrE8xRjYwLfFziObnCGof4EvHWAr5PV23QH/KZD\n3Y54suS37t3sODr/I9mWXaFqSYL7TjareOclPlt+JrA8D2u0COVyM77a8xCVsu6u2jb9ajsfSd1B\nX24HItCVvHJqUdP7SMqt8oZFr5Jyq/qb4bcUkS0x0baa0AN+xQkEk+QWMyk+bQfVlyXsyxJWKtiv\n/A4R+IhKFSFDLamZGMeaGAdeQdb8kcXoKKqnV6fwbR1CSKkT+pTEXf0I0na080WpiLvmCYjGpry0\nCHwQApHPT9tH+ZBglsNJDIaDlWkVyc8999yMdnrqqafu1WIMBsPhRzKpOP/8kEoFbrvN5ZJLtF1X\nJKKDOupa5MmFcF2ffCApihQPu2+kZO0Hf99UGrnoaMrXXELxpD7E0E4SX/uqTpYD3HVr8U85rVGp\n9xSL2KtHCFsH+/bWwq2FdKTKhUevR4wWtBOH40wZ7nPXraVLpTl7x1a62IITqbbtQ3geVCs6wWWy\nRmV31GzpVDKJ6rWgUsEql2ohKVo7bBWLUCwSv+tOZE8PSli6kxyNoRwHZIiKxrRO2bFRpRIqmeys\n6y4pvf9Kc5hS5HJE772H6iWXoXahLZ9rjO55FjGOHYbdMK3fsMsvvxwxDUd+pRRCCJ5//vl9XpjB\nYDj08X0tSzj77JCREcHwsJiWFa9S7QVzp2JZqdpIn9Cv49WanLNQJzYoWmkedleRtRQwizuuMfpS\njg1/eS/H3HgJoLXJqi+LHBzUphTxOCSSFHyX8dIg3W4PyWQUoPNg32wevOsiM32oaKR9cK9SwT/l\nNCbUAI+xnONPeYpYcmon2SrkZ1YgT6aW7qcsQbj4GFQQaknG8DCiWEAA1thYY3NlFZpOII7T1FHb\n9lRddR3fg0lmIyIMsIZziDDYJ7u9fWG2dc+Hs6bZOHYYdse0iuQ77rhjrtdhMBgOQ0ZGRMMWbrrs\nyi+5U6E8RJb/ra7HHu/BqlgzcihrxVIhvWGOESs7ZXivlWq1ue+iVkQ0XC/Gh7VsZHhYEOzYgxNG\nDemFMJRDeiHKtikm+jvavJW8CBsnejnei5Cc8uj08aXNqN9Lv3JwxfRs3DoO7iWThKpLD/glu1Cp\n9uMVAF57d7kTQ34PPxq5iHf13U+/O7b7jeNx5JFHofoHEPkJwoVH4Kx/FWvTRq1hllKn65VK2Gue\nRHT3oNIp/Q3zdyH98P199w88CJhtTbPBcKgwrSL57LPPnut1GAyGQ5xMRnH11T49PfvWf6t3kCfL\nLTppkkPhMuIMcEJWkkjIWkdZzPhT1bgq8Uel27klfcOU4b061So8/rhNqaQXEgT6tequF8kJlwtz\ngnu+61Lsik55fqsTRifCTD+PLL+OEzM+zFEPMxf0cOvQxVynNrNQdE6g258E2OT8HgI1Qy216xKe\ncirhyafi3vcz7M2btB65rmGWEnt0BEZHALB27tBeyratNdC2DY6NCLWGueNQ32GIGegzHG4YQZPB\nYNgvuC70989OcVfXJ++uSG7drm6TC7OrOGglCKBUEjiOop5bATRcL6LJBMPOBaT7E0Qi7d3J6Thh\n2Db09akpw4M6ark20ViqOV9AZ/eLWpR1VugY6z4nw1xZXyQjesAvGdlzxxjP0+utf10s6nQ/VSEV\njmH7FcDTHV8ZQlizfQvDPXd6hQBLNP2eQ92Vp1rVhTMglNLa1EkfMajaD1Dif/0V/oVvIlyyBJnp\nO/Bi+AOFGegzHGbsVZF87733ctddd7Fhwwaq1akXwCeffHKfF2YwGAzVqkDKZix1a23S/H97oMiB\nZnJB3nS9SLMt80ZcYGoje89OGNms4oMfbBZxrTHWVl4PzFn5cSzHB9/H2r6tMczWeGdQi7KO2IqB\n2DiWm8Gfo1OXjnhcePT6PW9YLmO/9CJ2LIaqnTjheVijI6SsgLPKD5JiA7Zd1oOB5QrYHggLlNRF\nchh2Oqnt1FNlLEuHtliWLow9D4JagRwEbT7WovZDF/3lL4j+8heN+5XjEP23fyE45VTCE5cSLFlK\nuOQkwmOPQ0xM7PfBPjPIt4+EIWJ4GDJ9ZnjP0MaMf6PuvfdebrrpJi699FKeeuopLr/8cqSU3H//\n/XR1dXHJJZfMxToNBsNhRDyuyGQko6MWUopGgdxaME+m033TmDfeI8Miy/+JX8kl3g/3fWd7iT02\nTOy2e9sKr9YY6/ILw4R/cQ/lay5rOF/Ev38bMpVGLljQ9KZrjbKOx7EcB/w5aq1Pl3iccMlSHQ3d\nsk53YoKCs5DHx97Ikv4KCXcUfA+7WgGnFoUdhogwmOrNNx3qg3+1wrzx4yNlrWgOtM2e7yEHBrF2\nbG92noMA54XncV5oH1JXto1cdDTKcbBfeZlg+UrCJUsJTlgy2R9wVjGDfPuGKJeJ/Z87KV//cTO8\nZ2hjxkXy9773Pa6//no+/OEPc/fdd/Pe976XU089lUKhwAc/+EGSc3ghMBgMhwddXXDDDR4PPGCz\nerWNbUMi0aiLUEq0zVTZdufo6dmYuQqEy6iVRbLvHsN7y8RIyI6fjzJ4XkhPS3OyHmMtRxwK3Uci\nBwaRg1nKRdg51kO/XSae0L7B0O54Ifay6+iHFiPFJJmwtMfm7bSJRHRUdKoZJ47rEjoxCnYPoRtr\ntuctu920Ws3yYJ1lgeM2u7IC8jd/gXDFWdivbcB5+kkiP/s3VDqNvWUz9ob1Db9qEYbYG3T33Pnd\ny227DY9aRHjikkbXOThxKeGSJahM3+yufxYwg3wGg2bGV8nXXnuNFStWYNs2tm1TqA00pFIprrnm\nGr70pS9x9dVXz/pCDQbDoUkYwvCwYOFCyfnnhySTuqfX1QXd3bogtizVVhd1Cg+ZTKtEo9UCrpZ1\ngVL7HqjmKJ+0HMVRPcDexSNXq1OdMOrUHTFGRgTeuEDsFFQzzW3qjhiTh/pKJcGmrQ6JTJR9MFnr\nSK6S4raXX88HT/glR8/yvtsIw11qkgt+imeqp7LMeo60rOhvYr0VXEsb3GukREyMQygh1PKL+J3/\ngPrFz2v79yGdRvVmCAYGCc5YjigWERPjiIkJ/f9CHlHIa8/mGvbmTdibNxFpkW0AyGxWF8wnLiVc\nurRWPC9FLjxidj4KMRgMe82Mi+T/x96bh8lVlnn/n+cstXf1nu4EkhAkrGGTYQfD5sawuCAoi6DC\ngF4jviMjOvNzXkdhXPi9Oowy+o7oIIzKEkFRAR0HGZAQEMMyQhYCZA9JL9VbLafqLM/7x1Onlu7q\nTlUvSadzPtfVVydVdU49p6q6+z73+d7fbyKRoFD8q9LV1cXrr7/OySefDIDrugwMDEzvCgMCAuY0\nuRzcf7/Jpz5V4PTTJ1fc+PNbNR0uikX4yIgoWcCtWaNjmpJCAdJpwcKFkxPmtnl9fMT6Pr9yrwPm\nNbx9Pg+rVukMD4sqJwwfPdvKPOcshn/dzAmbBSvuNLFay84YviPGuEN9ALls1UBcaZhPCPA0cDyl\nvaUcZz3t3dlGsW20VD8JUaipSRbCxHEKCCOLwELr7a0KNCn5/BmT6HVLqQpkX8PseXjFotjHm9dV\nvU17sb2fy6INDOAdcAC5T34apFR66w3rMV5bj/6a+q719ZY21fr6CPX1waqVVbv0Ek24S5dWdJ1V\n59ldvAQxMDCtuuf9WdPstbWT+/AVRH758729lIBZSMM/EcuWLWP9+vWceeaZnHPOOfzrv/4rUkoM\nw+D73/8+xx577EysMyAgYA7S1ib58IcdfvnLiX8V+cUu+HIL9W9Nk3ieAARCyDGSC88ru0LEYhLb\nBssSHHmkSywmyWSgt1dDyr3TsbNt5Yih65JQqOyEUaI1jnXAGcR638LYAE1NHtFWVcBWOmJ0dVUP\n9QGg6XjJZjSrT+V4q42UNMDvliYSiEqHENtCOA54HjI8PTHWk6IYVOIZzeiFdrx4F65ulTTJadHB\n89ZpHBbZTkLaeJ2dZfcKu6CO0TSnNs9ZGfMYjZakIBNuAuA3ioTA656PN38B9vKzqx83kEJ/7TWM\nDevR169T3ze8hr51S+kxWnoE7cUXMF+sHoSXoRDuooOQ8TjegQspvOs9U+44T7emeZ/CNKG9vbZe\nazIECX5zioaL5Ouvv54dO3YAcOONN7J9+3a+9rWv4bouRx99NLfccsu0LzIgIGDfJ52Gl1/WOfZY\nF7/eUH+fxha3PuGwRNdVces45WLZT9zTdSgUJCBK+uPKffmR1uM7TsDQkOroTkRK6+CexCcZ0lon\nffwTYZpqrZXrqkTLQJwM5269h5e6Pk4m1snuHDGkrmN99BoyS8rFXSnKOhQitGkjvP04HCOMVzzr\nSLoaHx/YQNtLJl78gJrBJXsMXScRcTk1+VrxhrIm2dNM0loSTzdB6urNNUcFmsxiZGsbzsmn4Jx8\nSvUdmQzGGxtU97nYddY3rEff+KY6eUE5fxivq9ek+arLcJYcTP5DH8a65DK8g5bM6Lr3t4G+yRAk\n+M0tGi6SjzvuOI477jgAkskk3/ve9ygUChQKBRJ1nGkHBATsn2QygpUrdQ45xCORqK/Fl0go67NC\nAVpaVC1UKMCWLSqoIxyWOI7A8/xCWRIOl6+8++5gU8URJv1643KKSjTXJmoNkIu0quKuQQQecSuF\n5jn1b5RowusqSwP8KOuMaGJHbh7doVb0mIb01PthAPO0NIYpplwg267GgBWlNZLD1OdYal3eUu4X\no8lkwLKULrm3p6ZKXUajyGRz7f3G4zjHHIdzzHHVtxcK6Js2FgvndRir/0ToiccRjo2x8U2M275K\n/LavYp98KtaHPkz+4vcjm6c/8CMY6AvY32i4SF6xYgXvfve7SVbEQoVCIUK1cu8DAgICisTjsmow\nr140DQwDTFOFdEgJmiZ8y9vS/X5H2bIksdj0XT2dLuK5Pk55+Qc8e+y1jCRqp/ZNhOtCf58glwN2\n04+YKMIaIJP22JxK0jRok/RshFfxntQKIQFwGsvy7s/F+eHLJ/GJY/9Id2KkoW0ny4gb5cWRZZyg\nvcjYTMNpIm9hrlqJyObG3CUcG2FZuOkRYnf8S83L7V5bO9mbbh6/UK5FKFTUJB9GgYvQdu0kcuf3\n8Lq6Cf/mMcynn0RIifncKsznVpH4/26m8K73Yl36Ebx3vWsqRxsQsF/TcJH85S9/ma985Sucfvrp\nXHTRRZx99tlEo9M9Px0QEDDXSCSY9GBeLTStXNjpOkQiSnorpSCXU4VyvfiuF4VCtd+ybzM3Xje6\nUh89HeTztffn2glejJzKkbnVpNPgRMc6YvhOFzB+hHUpgGRgWBXCg0NoTq78nOOFkJS2j6kzkr2J\n56FJm4Q3jObaIN2Su0XOjrN68G0ckfgfwpmMOnRfp+MbbU8RYTuqQDYM5OgiuHhi4RyyFGI1dDO5\nLFqqH5HLNVYk1yIUpnDR+7Gu+yT6K38mfts/oW/YgPHGBkQ+T/hXvyD8q1/gtbfD5ZejX3wJztHH\n1aVf3t8G+YK47YDxaPgnYOXKlfz2t7/lkUce4W//9m8Jh8Occ845XHjhhZxxxhkYe/sXaEBAwJwh\nFpN0dEh6esp/2G1bFZOjtbumCZ4nKRQEnqcK5XoucDkObN4sGBpSThe6Xn4u11UDcrpeu7aIuaKu\nZOR6cF1YvVrDtsc+keu2EiucRnf6VV54wWAwauA4VDli+E4XyeT4EdZ+AEnuxW143/g53HgFuQPj\nuG4xJGO8EBIfwwR7xnq0u8dzEVaOBH2c6DxDQvZVuVsk3CFOzD5FwtmBucYBCdrIsErR84XsUHTv\nmJqcRFYK3Sspit59b+pKBJSHKKcR2dmJs+wY0rf9M1rPLsIr7iPy4Aq0jKihOgAAIABJREFUvl60\n/n74zndIfuc7OEsPLeuXD1w4/v72t0G+2Ry3HQwC7lUarmibm5u59NJLufTSS+nr6+ORRx7hscce\n44YbbqC5uZl3v/vdfOUrX5mJtQYEBMxhbFt1RVtaZOlvQTyuNMl9fdWFo3K0GNtyDYVUoew4AtcV\n2PY4tmgVGAYsXizZulV1Y02zvF9VkGsYRu1Qt2hBorvTI+3wPFWQRyKy5t/CZk2ipyESkUSjapgR\nlCNGMt/L8c89SGH7hZDsGBNhXYlMNiPbLZU019mJ7E7iOapI1gAZjyMiEYjVLvTajQzXHfcsbU56\n6gfdKJqOjESRWgzDCyG1GNIru1uk7Vaed9/BYYl+zCMPBwlmTw8ik1ZvtBCqUBWzTItTAzE8hMiN\nlXSAOpkRmXRJ91z6f18vXlc32c/9HZn/fQuhJ39PdMV9hB57BCwLY8NrGF/9CvGvfoXC6WdiXfoR\nChdchGxK1nyegL3PvjoIOFeGPKfU9u3o6ODqq6/m6quv5umnn+bv//7vWbFiRVAkBwQE1E1bm+Rj\nH7PJ5+Guu0yuvtqmq2tyGgYhlOwil5O4rsBxahfTozHNsgPG6AJV06oD3ioZMju4K/pJDH36LtNW\nNih1zybpDjCst2KY6viMGk4dMWmTzPeqjul0UemvXEEI6GIYrBra5QZ1y5NC00iYeU7TXy56Ipfd\nLVxUQp9nhNULIykVxyXf4+nUx8wQYniI2DdvQ0v1136AbaMNpMq651wO440NaNu3Q1FSk73pZgrn\nvRvvPe8lpDlk7v4J5v33EnrmaQBCK/9AaOUfkF+4ifx7/5LcJ67HOfHkPXiUs4O5UswFzAxTKpJ3\n7tzJI488wiOPPMLatWtLXeaAgICAeqi0hVPd4dq4LqXOqW1X+yb7NU9l7ROJQDYrkVIVyps2aRx8\nsLvbrnKjOMKkT5tHh5DA9NuOtTh9vG/Xnfyi6zomCga0LBWYMjgI9YQcq8G+jtr6YsPEa2lFs6za\n0oBigeZFo6U45krtstItmzAN9bItdQbsFlr1EUxtkq+vL7XwNcmVH56JHu8/di8U1SKXQ0v140Ui\nEK0trq8KNAllkJEoXnMLaGKs7rm5mcJVV5P9yFVoWzYTefABwivuw3h9AyKXI/LQzwj/4iGGfvwA\n9nn716Bf4NgxM8hEE/bpZ+7tZUyZhovkVCrFY489xiOPPMJLL71ENBrl3HPP5TOf+Qynn356oEkO\nCAiom0pbuFpEo5KWFg/X1bEsVb/4w22ja5/RmuFwGCxLOV4MDwteflmno0PS1la76HHdyQ3uTZfN\n3O7IaQlWhZeT08ZKIPw1uG59oRJuWyer3v5JTm4PAeXo5EwGenuixK+9klh37YJB9PYQWXEf+XPO\ng/+4G6+lpVq7bJjIcHhaiuQ+p4UfpD7AtV0PMz80Tld1ImwbbXhojCZZZDPjSy6kpzrkQpQ/XE4D\ntnvTSTRWd4iJDIXK78MEumdv0WKyf/M5sv/rbzFeXE1kxX1EfvofiFyOxD/9IwPnnDeufmh/G+ib\nDMEQ4Nyi4U/6mWeeia7rLF++nG9961ucffbZhMN7cZAjICBgzpJMwg032AwOarS0SOJx6O2FwUFR\nkmRs3CiIx2sP6dm26larwlrQ2yvo71eF8sknlytb14VUCgyjscE9KVX9NDg4PXVUZcccoGAXi3cb\nhmjidfMsOj0Ps1B25MhkwMw1Njyo60rrPbqnkc0KtmwRLNKTRLq6am6rdMsJZHsHRKPjapf3Bgk9\ny/Km1SS0rLrBNPGSzdWaZCmRsThS10l7Mf7HPpxjzHXlbVwXHLdYJHsqxGMuNn+EwHn7X5B++1/g\ndc4j/vVbMV59hch9P8G6/Kqam+x3A32TYTYPAUIwCNggDf/k33rrrbzzne8MgkMCAgL2CE1NxVos\nporkdFo1uvwBOz95bzwpRVOTZOlSyY4dgv5+Dc8TrFplsGaNzkknOUQiatu2NpXw18jgnt99bmkZ\nW3COJhPt4JnjricXqZ3apwp1wcCAKDXyLE9jMCfYntd4Cw3HUevRtHL3+NlndVotg0Ozgkym5q7H\n0NEhufZah9bWcClFebppj6oBv9ZI7eGzmaBJz7G86QWElSvLU/wznEpNcvEDM0Izv7PPYUn4LRJ6\nReyi/1hP1j472ltMEGIiCgVKH4BcrjzUp2tgxaAgIVb76oB16UeI3vl/0fr7iN/6j+QvuGjqFnUB\ns5J9dRBwb9Fwkfz+979/JtYREBCwH1IZMJLJzFwxEg7DoYd6pFIeW7bo5HKCoSHB735n0tbmsXSp\nh643PrhXef/u8HSTTHz81D6/Kx0Ol9dguEUPaN1mgehhKNSKI9SdvsQjEgGtIPE8VbADiL4+wg8/\nRP7iDyA7Ona/OH8NuwkhaQRT95gXr7NqD9g9E4SY4CprPPOPzyKkhygUiN3+TYhGVY0fNokmmkn/\nzedqF7+mSf7sc4n+7H60vl5i3/r/yfzjrTN+SLOGQh7j+eewzzon0CUHVFFXkXzrrbfy8Y9/nAUL\nFnDrrbv/wfniF7845YUFBATMfSoDRmp1QW1bDaRVSglMU9mg9fcLksnGhqoSCViyxOOAAyTPPacz\nPCxIpTSee04jmYTFi/f+FcjKoltHNTLbRYp35x7mJ4m/okcvp/VJqQr70V1s4Tpo/X0I16nD26PM\neCEkEzKOC8butpkNpL0Ym5wDSXuxqdomzzgThphAWbtsqzMlr6UFYnGEJsCzEf19E4aYeActoXD2\nuYSeeJzo97+HF4liXXt9QydZ+yqiYGM+/xzOiScHRXJAFXUVyb///e+55JJLWLBgAb///e8nfKwQ\nIiiSAwICpoVUSnD//Sb5vNIGg/IHDoVU8Idty9IQX63huVo6XSHgkEM8jjrKZdUqndWrdRxHMDwM\nr7yisWCBZMECb5+SoWa1BE8bZ3F4RBVKqZRg14s6XRcKWmpLiydNJgO9WzXibpRIW7uyKZvIBaO1\nbdx4ZhmNjusFPBG2NBhw22iVKUL1TAiO426RdzRGnAh5RwPfPWMWuFtMxLghJpVUBJoITYCTh8Hh\n3e4787m/w1z5B0ShQOTnPyP/sU80dJIVMP0Eg4B7l7qL5Fr/DggICJgqvg3ckUe6fOxjNi0t1X+W\nDUPS0iKxLA3LEuRyKmnOT5zzvHKNVmso3zCqI6wrbz/+eJeWFsmaNTpbt2pIKdi+XdDTI1i40KOl\nRdblbuE4kM2qzrdfXNv29LteeF7ZaM4/MSgUIOs18Zp2FhdbOXbt8hjqUXIS0SPIt42NrZ4KlcN9\n0ZtunjDwIrLiPqwPfRjZOVZmIqNRZLJ5UkVyn9fG93Mf5a+i97CA7RM/2PPA8xC2PcbdotPdykXu\nL+jMbUUUiuEos8ndYjopFEo65dH4YSQyEsG66hqiP/w+xsY3CP3iQQrv+yBQfr/mGlI38Frb0IYG\n9/ZSajPbBwHHY44MCDbcK9m0aRMHHXTQDCwlICBgf6TSBq5WiEg4rBwumopXQXt7BV//eoidOzUW\nLnQZHhYYBixYUNvhQtMmTt0Lh+HIIz1CIY2+PsnQkMC2BW++qROJSKSUmKbYrbvFa6/pDAyIYrR1\n0STBqXaraJSU1sE9iU8SkhZSwsgIDEpRem4pYds2iumCcN99Jo8/DpEBk5M2C1bcaWK1Kvehytjq\nqVCpW5bJ5nELp5ILRue8vTsgpGmgacga7hYZu5MXvJM5I/Yq0iyeac1Fd4t8Hv3VV0o65TFUhpMA\nMhJBWBaJW75E/o/PQSxWCiiZa4Wy7Oggf/mVRO7+9729lDnFXBkQbPgn/z3veQ9HHXUUF154Ie99\n73vpGscmKCAgIGC6aGqiqoCORJS7RSymIpyFUP+fSsMiHIalSz0yGdi8WSObFViWAASeJ0kmxxbh\nle4Whx7qksvpxWhrVRwXCmJKa3KESb8+j3nuW2jSpdXtp1frxNXMUpHsB8p5nkovbG2VGI6SizQ1\neURbPXI5pb3O5ZSOW/T1Ef71z+Gaq8Aoh1XoOrS3T3xSMSnd8iTpMAa5vvshWvWRqe1oHHeLKA6t\nZoao6VRPX85Wd4vJYtuIfB4ZCSNb22o+pDKcJH/GcsL/9VtEoYD5/HPk3/nusQElATUJEvzmFg0H\n2H/3u99lyZIlfPvb3+bss8/mqquu4oEHHmBoaGgm1hcQEDDHqXS4mA20tEiOOcbl4INdDEOtybaV\nfdzAgJJ3+G4Xuq5qKcOAWGxsvPV0JvxFZZYrnbvpoM9vjlbZ32maWkMiob7revn/0Wj1aytcB9HX\nN0ZG0NEh+cQnbDo69sJ7kcsi0mlEOq0szRybkJOjS/YQcnKIQgFhFxC+/kV64FXrWWxPp8duxZaj\n+j+VmuRy8gqaa5PwhtFcu6xfmeWa5KkgI1FkIrHbL++QpXgHHAiAvvMtzFf+DIBIpYj88PvqsxNQ\nEz/BT9Trxxgwq2m4k3zOOedwzjnnkM/nefzxx3n00Ue59dZb+cpXvsIZZ5zBBRdcwAUXXDATaw0I\nCJiDVDpcNILjKF9gXwdcj6zBcerrCgqhOtfJpMtrr6kOrJSqs2xZqvhMJuU+22RMpQTrXtA4vB+0\nA2bmOfwBv1gGalzgLyGjUbzRA4A5VRTjeQhnCBmJqqrftsF1EMJBeB7C85BhEzR1NtLntPCD3gv4\nq6afluO5J9Aka26YBfk30eQIQp/jmuQGcRcuAs9Df2sH5ourkU1NMEnXlIDZQzAI2BiTFlqFw2HO\nP/98zj//fNLpNL/97W/5l3/5F5588smgSA4ICJgx/KjqN97QyGS0YhSzxLIEhYKqs/yAkPG29zvE\nu8PvxjY1STIZNWQIgmxWDerFYhAKzb5yIW8meCG5HNNMUEvt4bpqAM9xYDc+CZOmNOCXFRMXyclm\nsqMGAEVvD7Hbv4kXCmFuehP7yGUqcjmTIfTsM7j6ArzBFtzOhXiRpol9nSfQJO8qLOJB+xKOjm6m\nM1QME5mLmuTxmCicxLYpnHYmkUd+qTyYn30G7bX1iExaDfrNoUG+/Spue7YMAu4jg31T/kT8+c9/\n5tFHH+XRRx+lp6eHJUuWTMe6AgICAmoSjcI119iccYZHJCLZulUjHIYTT1Td6DVrlFNGPF57e8OQ\nhMONPaemKRlGUxMMD/uezuViWYjaLmjTRUrr4P7o1bwr/7Oq2yvt7zxPrSWdhozdxJroco60XeJK\nvUAup4YeAYb6RU3njcmGkEyV0QOAGqg3OhRGmqFS9LWQIA0TaSgtizRD9QWfjKNJDhseTYZF2PDm\ntia5FnWEkxjpNO68eRhbNiMKBZJ/97d48xegbd+Od8CBc2aQL4jb3vPsK4N9kyqSX3/9dX7961/z\n2GOPsXnzZhYsWFCSWRxxxBHTvcaAgID9lLY2OcYWLpUSPPqoydVX2/T2KmcLf4gPyv8er0ieCroO\nra3lYjmbBVBR0g89ZNLcLOnu9nXM6iuTGV/W6stFKqx7a+IIkwG9A0+Ux0ikVNsODwt0z6bZG+B/\nVjdjRE1cVxXtf/yjga5Tssu7/fYQ0ahyvzh9q+CQEcqyBOoLIalnuA+mN71vpkhoWQ4ytpHQZke4\nyZ6k3nASmUjg5nLovT1oAwMgJVoojDaQQl/zKs7xJ9DwWWdA3QSDgHuXhovkCy+8kNdff53W1lbe\n85738NWvfpUTTjhhJtYWEBCwH+H7JR97rIsfHmaa0Nk5sZxBCJXAp2m1w0NmAsNQBXwsBkNDarDP\ncQT9/YJUSjlIRKOq8F2zRsc0ax9DoQADAwJNE6ViuV78mTIhYJ7Wx8ecf+N3+nVko6or47+GUNZr\nt7SoEwg3o0JZJtP99of7dse0uGBYRW1yJqNS/YoDfZ16Lze03U+rHEYUymcXwi6MGeabFKMH93I5\nNVBYXIMSwtco/u3C9JtjzzD1hJN4CxehZdKIbBZtcJDQSy8AEPrDk0hNwzvgQNyDDsY9aIn6WlL+\nd9UHMaBh/EFA95ClQZG8F2i4SF62bBmf//znOfXUU9FncYcgICBg36LSLzmRqL+oMgw47DCPWMzX\nDO85TFPplRMJD8cR7NihAkmGhgSZjKStTXLYYS5NTbWPJ5Oh6PMsyWZVgd0oQoDAt8Ebv94phrAR\nj4MVnn066kpKw3zbtyGsnAp6KORLA30hb5hup7880FdE2JYa5otEwTB3O81pS52MjGLLir9lUg3q\nCUGpWDbefAPZ3w9AIeextSdCd2SQsDnqrGw6zLFnI0LgHrhQ+S2/tUOduPh3eR761i3oW7fAH/57\nzKZe57xy0Tzqu2xt2+tylr0lMZrrzJUBwYaK5Hw+z8DAAOFwOCiQAwICAopEInDKKQ5PPqnT36+R\nTqvOck+P4Je/NDn9dIcjj/RqJgKapir09+Sv1LyZ4Pn4cs6INd7l2xNFhT/Ml1u3hcz3f0b8ry4h\ntrhz/IG+IoVMEnfNQdjHnIgMF5SjxQSkvBb+VDiWlNfCIt4qHqDy9JMVg3vOwW9DHrgIgL5ejRVb\nurmi7T+ZF6u2+RJ2QRWQs3gQabc4zthLMrYqigsnnoy58U3shYvQBwcpnPtOtKFB9K1b0LZuQd+2\nVZ3YVHTTtd4etN4ezD8+O+apvOaWYtG8BPegg/EqCmivq7t2hOY0U4/EqBH2qyHAiZjqgOAsGexr\n6F0Mh8M8//zzXHPNNTO0nICAgID6yeclhcLsceiKx6G93S06O6hAkpERwW9+Y/LHP3qcfbbDkiXV\nf4p9W16/NvEH8UbTKzv4N/1TDMrWui18/X2O1ken7CZeCZ/F5Vkdc2e26BAC6Q2CzLM68dMEnVFq\npvNNd1ExHjLZTCY2jy29MRbF5hHp6hp3oK+8UVzdHgoDhXH2XAejB/ei0ZJG181opLVmXDMCoRpF\n+D4mt6jCcdC2bR1zcqG8qR0ls7BtQkODCMdBPv9cKcHPW7gI59jjyd74N4jhYfSNb6Jv2lj8Kv9b\nVGh8tKFBtJdfxHz5xTFLkdEo7uKDyjKOii60d+DCWes4EgwBTg+zZbCv4U/Z6aefzsqVKznllFNm\nYj0BAQEBdRMOC0Ih5X+cTiubtqKEtS5yuem/1CuEGu6LxVx6ewUjIxqDgyrx7sEHQ7z97Q7veIdb\n8nZOpQRCKPs62xZIqY5hNFKGsNx5Sl7h7T7rwnFg2zYVse0X388+q2MYav8jI4LvfhciEbO0j8hA\niJPWa/zx/4aIvS00pRjregf8JqLR4b/2aIbrjnuW1kgNx4YaxEWOxfo24qK+x895fD9pTau6tCFd\nF4FExmJIM6S035aF19ICsWInP5dVqXyOg7fkYLwlBzPmFMLz0HbtLBfQG99EK37XN21EGy6Hkolc\nDmPdWox1a8csUxoG7sJFVZ1nd8nb1PfFB0EiNmabAEUwCNgYDRfJH/zgB/nSl75EJpNh+fLltLe3\nI0Zpio466qhpW2BAQEDAeEQikmhUks8rhwnLAikFw8NasehUg3GtreNHVre0ePT1Tf9lXSFUJ/b8\n8202bxY89ZRBNit44QWDrVs1LrjAIRxWumVNk2QyangvEqmtK1ZyV1FuchYLZaWdrX6s7tnE8wNs\nLbSj6WbpqrUf520Yah/z5ilLPM9TO/DjrEMhWRVjPRnqHfCbiEaH/0zdY168/qSzybpbRLwsum2N\nPZuxC6WWvai1XP8sbrbjxzhWIr1ilGTxw1kUufudfAG7nwTVNLz5C/DmL8A+7YxR+5eIVEp1nSu7\n0H4B3dtTeqhwHIyNb8LGN+GJx6t3IwRy/gJYegixhQdhLz5IdZ+Lg4RzwbJuKgSDgI3RcJF8/fXX\nA/DTn/6Un/70p1UFspQSIQRr14498wsICAiYiEbiqV0X+vtVAXfqqS7vf79T0wWjt1ewYoXJhz5k\nj+uSMTIC3/jGzFlYaRosW+axZEmBxx4z2bRJo7dX4z/+w+S00xw0raxL9ht44zVO/QLZt/sdb+ap\nxenjwt47eUteT0qfD6jH+3HZoF7DREI9ry9BtQsJXm5dDon4pA0p9iVsqZPxRg3u7Qbh2JxqPUGi\nfyv6yKiC13XJFgxe+e8Rjpi3iZhZfb8oFCBvKdPqgGqEQLa347S345xw4ti70yNomzZVFNAV3ejt\n2xDFyyFCSsSO7bBjO2GeZPRPttfeXiXh8NraENu3Eb73x1hXXhMM7+0hJjXYtxd0yg0Xyffcc89M\nrCMgIGA/p1Y8dS1buLY2ycUXO/zyl0axG6ts4rq6ald18bic8P5iD2zGicfhgx+0eeEFnaee0nEc\nwVNPmTQ1SRYunB061nyoiZebl3OI6U5J0jvjjLaGG49MBuE6KmVPylIh5ZPyWviTPWpwbzfEox5a\nWzNecydupPp9E3aB4XSMJxMXM/+IVwiN7mpnMmjpkZKON6B+ZKIJd9nRuMuOHntnPo++ZXOpC21s\n2URk62bcDa+jbd5UpbHW+vvR+vsxVz9ftQu3sxPheeQ++vFZVSjP2UHASQz27Q2dcsOv+kknnTQT\n6wgICAgYQy1bONNUWtc9MPg+7QgBJ5zgsnChx69/bZBKaYyMCDZs0OnomLzJcx9qqG+e0Tymczbd\npFKCXS/qdF0oaOka/3Ez4YLhW8PlNvXyVn+Clr4c8UK+/ADbRhtI4bW2qQ9KLqcKJCnV8JkQKqlP\nm/yJUVMoz+nJPyubuRq6GM8IMxJqw40nkYnq5xGgrOwCppdwGHfpobhLDwXAMDQirXGGBzI4eRt9\n/Vr0Da+hb9mCvm0L2pbNJds6Pw5d7+0l/vVbif2fr2OfsZz8Re+jsPxsCIWQezGCOxgE3LvMsVOT\ngICA/Y1sFu691+TKK206OvYNjcC8eZIrr7T53e8M1q7VsW3BW29phEJKZ90ojjDpFfNoEx7hGdZJ\nuK56zXdn4jATLhi+NVzf/7zF2n9+giOuOxuWli/Xit4eIivuw/rQh5Gd85Rl3Jf/gdDIMDIcQYRC\nCEPfN6QkozvlE4WYVLIPBprMJCKTJnL/vWip/tJtsqMTp6MT57i3w/Awxvq1yv/ZshCOQ+i/Hyf0\n348jQyHchYtxjjmO9G3fRDbv256/e5K5MiDYcJF8+OGHjxnUG02gSQ4ICNhTeJ4azptqXaCim6vd\nImy7bMs23nNPllAIli93GBmBt97ScF1RTOBTQ28z5XDlOCALNk25QbLDHWih8nH4c2XZrDr23t7q\n3/XRqMSLxXlj4Ts4MDYDud+jqOWQIZPNOEtbeObkY1i61MarkNFogIwnkJ3z8Lq6lWVcOKK8j3Vd\nuWRoGrjqgNu0Qf4i9DJt2uCMH0tD5HLor61Hj0SQxW61KBTQBlKQNic21Z6rgSaTRORyaKl+vEgE\nojVcL9raKXTOw1zzCs6CAzC2bkHfsB4tk0EUChhvbMB4YwPmi3/C+siVWJdchrdw0Z4/kH2MuTIg\n2PCv4S984QtjiuShoSGeeeYZenp6+OhHPzptiwsICNi/2d0wn2lKDjvM4403Jq+9iEYlra0S11XD\n+b5nMKg6w683QqHa2Qb+wN1kSSYhkXDZtEnHslQIya5d0Nwsq6Srvp+yX9D69m9+UV9PpLXjwK5d\ngpZcig/lvs9jT95Af2heaVv/NRgaMnAcwe23h6rW0NbmcdVVTby5aDlnxqcQN10n0+GQAShnBt+A\nWnrK/xgwvQJxMpheRffVf6Gl11hO+HQSjeIeehheoqkclpLJYA4PI6MR0lqSP2cO4ej46yT0akeJ\nORFoMhNEYyWv69EIQIZCyAMOpHDY4XDOeWhbNmOueQX9tfUIx0HftJH4124h/rVbKJx+JtZll1O4\n4KIxBWCQ4Dc9zJbEvoaL5PGCRG688UZuvvlmhoaGat4fEBAQ0Ci1hvkqsW3B+vXabq9uTUQyCZ/6\nlEMmEyIW84jFyoVRJgNPP62TTgu6u2VNazbHkdj21Ib/QiHo6vLYtk3gugIpBYODyvs5ElFSWj9w\nRAj15fsk+w3DygJ6PFSwiEDT1D4iEYiGlTORTyKh9mlZ0NIiS69HLqe8ni1r78YIT0QmA71bNWIZ\niFLUMCeblSbZdcFRHsCi+EK5tsP8whZcw0GYxRfSdRHSA6mpcwAhYG8MTYVCymItUWGxZppghhih\nlf/KncFByX4Sof6x2wZyi6mhaXgHLSF/0BLEKadjvPI/CCilBoZW/oHQyj8gP/9Z8udfiHXpR7Df\ncRbo+h4L25ks+8wg4FQT+6aJaX2VLrroIm6++WY+85nPTOduAwICAiZFvYEWiQTEYqpzXVkkS1m2\nZDPN2l7LlYXqVNcajVL0TFYdbccR2LbyUh7PJ7nS0q3ejra/D9NUtVithmnRBrci9Vk2VCDXO+A3\n4Tob7MqppEPBoqxQRXKyGeuj1xB+diVeUxIRj6MZGp7jIZEMDB5AZHOOgY5DWNBSbJkXCujbtiGL\n3niikK9tXL03cF2wC+hYJNxB5dU82oZktFezJuoTke8P5C2EXSOesyitqOmWYtt43fPJfuGLyHCY\nyIMPEL7/pxhvvI7I5Yg8+ACRBx/A7Z5P/pLLKJz7zj1xJJMmGARsjGktkjdt2oQ3FZFeQEBAwBTo\n6xM8/LDBxRc7dHTI6btcv4fwu7uJhCSVAssS5ItmCLpe2yfZb6JXNtMHjQ5WdN5A//b2hgzudM8m\n6Q7QJ1uBqRWG9Q74TcS0dOV8M2jTUPpeU0dqruqem6Z64UxTxVkDSJCViXOiMS1NQsty5oINxEPT\n7GJh22r4zDBIkOPE9JMk2ISuj/Jcdl2EY2OueUWl4wkBVhYxMjx78tv3Bvk85p+eQ2RreFS7LsLK\nqU7xqDNq4diIQoHov/0rmX/4Mtn/9bdkP3MTxgt/IvLAvYR//jO0wUH0nW8Ru+N2YnfcjtvVBbqu\n7ORmQTd0NrKvDPY1XCTfddddY26zbZs33niD3/zmN1xwwQXTsrCAgICAWqTTsG6dxqWX2mOG2/yQ\nkX29aaZpkEz6nVuBZSnZRb24msmAOQ9HaDSiTG1x+njfrju5r/mufblOAAAgAElEQVQ6Bu0FZDLl\nLnMmozIw+vsFmYwYM9TnE43KSUdZ72la9BEWhFxa9PoT92xXY8Bpo0UWar62TXqWdxzwOjJUW/86\naUwTr60dGQ6RpovnWc6hnRYxc6DqYcIuICwL+8hlEIsjNIE5PIDs7WPGpkH3BRxHFciGgaxxSWg8\nvTK2rorogQFELqes4ITAOeFE0iecSPorXyP0u98SeeBeQv/1W6Vf3rWL+Df+idg3v0Hh3HdiXfoR\nCu98Dw39EM9xJjPYtzd0yg3/xHzjG98Yc1soFKK7u5uPfvSjfOpTn5qWhQUEBATUIpMRPPeczuGH\nT/9Vq2xWlCKa1XOV573Gk1Q4zvRpdKUsP59qZkpcV5DLCUxTTnlwrx48D3buFOxyBM8+q5fqKuX+\nIbjrLqVPvuOOUE35SVubx003FWbUBWM8GY3UdTKxTuViMRrfvsTTwPEQUmK4FiYGhmupy+0AdgHh\neUjXrSny7rMS/Ch1GddGfsX88Mi0H9uE6DqYIVwipPUWXFNlmI+4UV5IH87bE+tIMlQVGS00AU5+\nYkeM/Qjpa4waQZ8gbjscpnDBRRQuuAjR10f0nn8nctcP0HftRDgO4d8+Rvi3j+E1t5C/+ANYl34E\n58STxo/LHEUwCFhBpU55D6XvNVwkr1u3bibWERAQEDApQiE47jjlgJHJTK5gjcUkHR2wfTvkcuXL\n67mcKgxtW2lsE4natUY0KjGMqVWpnles4TxlBQdFt7Ki44SuiykP7tWDKtTVcF8korTYUH6ejg5J\nLFb7ifzhvlxOQHzmXDDGk9G4bZ08c/wNLG0rP6eMRJChMMJxIJcFQ0c46lKDlhO02jm0nERoxcvw\ntg2ug1BTe8o6bpZ3YNNujKeGj+fQ6BZVJAfsFWRHB9YVHwXHwT7jHYR+/1+EV9yH/tYOtKFBovf8\nO9F7/h1nycHkL/0I1oc+jLdo8YT7nO2DgOMx0wOCeyp9b3b/5AcEBASMotIWLpMRhEJw4okqtjqT\n2f32tUgm4R/+AXbssHHdcgHY2yv4+tdDbN2qYZp+MT52e8OQUx7e0zRV8IfDZRcNw1Ae0CAwTQ/X\nnZ7BvXoQQq2nsknjutAUsekQKXKRVjx9dAenseG+Sa+tke5aUxLnqGV4TU1oiQRGxMSxbDwpSW+0\niez8I+nDT6JlSfFYMhlCzz6DjEQAoQb3wjOdY9gYCT3LO5IvkmhAJhIwfYjhoVJS35j7ensQmTRe\nMknuuhvIffw6jOefI/yrXxD+3X8iclmMjW9ifOOfiH/jnyicejr5yy4nf+HFyKZ9RKdUB3NlQLCu\nIjmVStHT08Phhx9edfu6dev47ne/yxtvvEFHRwdXX30155xzzowsNCAgIACqbeEGB8tBZFOluRk8\nT+I41f2aaBSamjw8TxCLyZpFMkzPGoqpyaVudSwGg4MSKQW2Leoe3NsdKa2Du6KfpM1ob3iNCauP\n0zbcybPHXstIYn7D2zfCeA4ZDXfXQiGIFe3UoiGkUUB6kpzm4HkmmtaEjKs/h0KCNNQgnwBwZ9+w\nW5OeY3nzi41tVJykFOm0+n+tBD+7AJ4LrjZ222AoH1AFcuybt1Ul+FVRjEaP3fEv1WeY0Rj59/4l\n2rat6Nu3oe3YjpCS0KqVhFatJPGFm8iff0HRTu7s/Vs/zuwZ7KvrXfjWt77Fq6++ys9//vPSbdu3\nb+eKK67AsiwOO+wwNmzYwF//9V9z9913c+KJJ87YggMCAgIqmYpHcj1EInDYYR6vv77nNZ1CqCam\nZamv6ZLeOcKkT5tHs6ahMfkpx3y++uTAH+7zh/qmOuDXqEPGhJZ/uayyQ3NMsGyEJ5EFDYsI0UIB\nkbZKByEcWw1szfBna4/hOIiRYczX1iO3bwPGSfBzXUTOAr1Q7eohvXL05H6eUbLbBD/Amze+56HX\n1IS35GBy116P+eQTRO7/KcaG1xCWReShnxF56Ge487rIf/BSrMsuR7Y3fiI7F5gtiX11FckvvPAC\nl1xySdVtP/rRj8hms9x5552cccYZWJbFxz72Me68885JF8k/+clP+OEPf0hfXx+HH344X/ziFznm\nmGN2u90jjzzCTTfdxHnnnccdd9wxqecOCAjY9zBNpSeey+Fi0aiSMLiumLLueTopFGDVn3Sy2XIh\n6Q/33X57qCQV2d2A30SFcqPDf7W0yjIaxWtrR0v1I/IWhE20vI2UkHQ0ChGDpJNCGyh2SnO58hCf\naSKjMTD28Q+YYSCbktiHHgYdxcGnigQ/fPs7u4Cet9TxVp5puC7CdYLhv0omSPCbCAFgWXjd88nd\n+Flyn/4bjJdeKNvJpVLoPbuIfe87xL73HZzDj8Dtno+44GKYBu1tMAjYGHUVybt27WLp0qVVtz3x\nxBMcccQRnHHGGQBEIhGuvPJKbrvttkkt5NFHH+XrX/86t9xyC0cffTR333031157Lb/5zW9oa2sb\nd7vt27dz2223Bd3rgICAMTHWo32TJ4tlqWG6iTTPmUw5whqmz/Wi0jXKmUV1im0rNxDDKJ+k+Mfu\nJ/XNm1d728oBv2Ry/PfFm4bhP5lsJnvTzYhcDl3XCLfEyA1mcV0Pb9V62td/De/yy8icehigNKWx\n27+J19KiklQME9mAJtmWBj3ZBC0RDVOfRRIFXYdYrHaCn96s3DFCf6ZF21Gt+fGRs+hY5hJC4Bx/\nAunjTyD95a8Sevx3yk7uPx9D2DbGurUY69YSOu9MCue9G+vDV1A4712TDriZLYOA+0ryX11jHkKI\nqkuafX19bNu2bUxh2tXVxcDAwOjN6+JHP/oRl112Ge973/t429vexpe//GUikQgPPvjguNt4nsfn\nPvc5brzxRg488MBJPW9AQMC+RzoNK1fqY4pWX6/sN3im6pscjUra2jzyeYFlCYaGNAYGyl89PRrr\n1+v09GgMDWkUCupxlqWcKKbD9ULXIRSSxeMRZLNK0uC7W1R+2bbq8BaKoWv+FfJ6JaWlEBJRf4fJ\nd9Tyh/xMU9WWicT4X9Honv3zLJPNeF3dyO5umD8f2d2N19VNNtKGZetkI214Xeo22TlPCdFjykKt\nkQIZoM9p4c5Xz6Q/N/3Wd+Mx6UG+YoJfztJ4YWAJubwoapLH+Sp9uApBgt80IoaH0HbtRBtI4bz9\nBNJf/z8M/P5p0l/8R5wjjlSPcRzCv3mE5msup/3opSQ+eyPmU0+g7doJw/ueo4k/2NdIN1ukRzBX\n/gGR3nPWi3WV8EuWLOGZZ54pdY2feOIJhBCcfvrpVY/r7e2dsOs7HrZt8+qrr3L99deXbhNCcNpp\np/HSSy+Nu90dd9xBe3s7H/zgB/nTn/7U8PMGBATsm2QygpUrdc4/f2aLrWQSbrqpwJYtGitWmHzo\nQzadneXn7O0VpdsBbr89REtLebjPMOS0GCO0tUkGBiCfV04XjkNpwLBQUNJZKdUJwciIami4rurY\n+g1Bz5O7LZQrQ0imiubaRK2BcVwwZgeWJTDyAqcBR46OSJob2u6nxSgAs6OtXzXIV2/tWivBz906\nriZZeB5ab686a1MZ6dMzrbqfs7tBQOeIo/CakmiDA+hbtiCsHNrAANEf/4joj3+E19KKu+xouPsu\naJ1k/vs+QqVOeU9RV5F81VVX8fnPf57h4WE6Ojq49957WbRoEaeddlrV455++mkOPfTQhhcxMDCA\n67p0jDqjaG9vZ+PGjTW3Wb16NQ899BAPP/xww88XEBAwd/C7xW1tM6NNTiahu1uyaJFHd7ccI9uI\nx2WpcI5GmdABY7IYhiqU+/vLTb3iBXNcV5Yiq9vblcwBVP2Sz2ulIfnptojbHfFcH6e8/IMZccEY\n1/WiQb2l1HQsPYau1V/smrrHPCOFFFFmS5E8KWol+LUM0+QM1NQk49h4nZ3K9cMuKN32XB4G2EM0\nNAjoeWjbtmKsX4u+8U114jI4gPb0U3D44cTf/R5yl11J4Zzz5vx7s6fS9+oqki+66CJ27drFj3/8\nY4aHhznqqKP40pe+hFFhUdLf388TTzzBpz/96WlbnJSy5uR6JpPh5ptv5pZbbqG5uXlKz6FpAk1r\nXDuo61rV9/2B4Jj3D/aFY9Z19XOr64J8XvDAAyH++q9turvlOI/TJpQ97O6Yu7vh+utdVGEqKrYr\n7x8oWrSJuotRTfMNFERxe8FE2ltdL//tsyxZKpb9K9/btmksXuyRTI61k/MT+cq/UkXF/8vHNPpX\nrv87uGw1p+R3miaKFnRijA2dEAKt4nGjf8f6x+2/L8PDVA0A+qRSkM1qpFJaVc2Wyjbxp8RZnJht\nIpTVSsN/Ag9joB8XD2mMfRNGv8+io53XW0/k8I52jOLjha6p99HKIWv9bchl1RCbbY95sYTjFNch\nELX+thRfM13X0Gqsr7Sf4hqEpvZTuS1CYEuDAaeJVmMEUxvVOi6uSRMCOWoN/m2l/Rk6hMJ4REnr\nLXhmFKHrKrGwhiZZhMJKVyMEuO7Y/dVxbHuCyve56rUsvn4NuZaUXk+qfs6r3ptGGPU6ldbna5R2\ng2xpxl62DDuXQ1+3BuPll9B6esC2Cf36V4R+/Su8zk4KH/ow+cuvxDvyqOrD0bXS76yZfJ9EXy+h\nXzxE4X0fQPrDoo1sX2OdVbdFwxCd+c553Yrp6667juuuu27c+9vb23nmmWcmtYjW1lZ0Xaevr6/q\n9lQqRXsN+5OtW7eyY8cOPvnJTyKLv/m94nXEZcuW8dhjj7Fw4cK6nrutLT4lC6lkMjrpbfdVgmPe\nP5jNx2wY8N73wvz5odJgW0uLSWtr9eMsS3V3W1pCY+6rRaPHXLl/UHZtkYi6rR4cRx2LX5P4RXat\n4Twpyx7JfhpeLqf+XazNGBkRvPKKTjIJ8+f7+1P3aZp6Lr9A9Ytmw6h+Ms8rb2MY5aLc89T/nZb5\nvHTap3HsVgxDr/mYSEQnQgjT1IlEQjjR6iEjx1GvVUuLiabBd74Do379A6oO7e+Hf/s3s6oxls3G\neG1TF8/8OyxapIJgmpsBKwbRENGWGLSO38733+fFi2NkF2ksXhyj1X+81gEHzFcLygyP3XhoCEaG\nAalMlUdhNCUwwibRiEl01HHjmBA2Ce9mfVgxCJsQMcHfh2MqT2NDo4827uy9iOvn/5L5Zqp6W08D\nQ8eo3BZVlOlho+b+WvU857b/D62hPJqmMUKC1fbxnBD6M01aRg3tacVixdRrP0e9x7YHSSajkCm+\nlmGjdLyYDVwBKB4rIYNQS7HTO/q9aYTRr1Ot97oeoiE47VQ4ehm8/josWAA//zns2oXW20vku98h\n8t3vwAknwDXXwOWXQ1tb3T8jU8YahswwsUR4cs/jJGHRAUQ7kuXt99TaK5gVY4WmaXLUUUexatUq\nzj33XEB1kVetWsVVV1015vEHH3wwv/rVr6pu++d//mey2Sxf/OIXmT+//kt7qVRm0p3kZDLK8HCu\nKqFrLhMcc3DMs4ljj1WdxoMO0tiwQWdw0CESqS5aBgcFuZxR875KJjrmvj74xS8M3vc+h9FX8Cv3\nD5DPm6RSqstbD5kMWJZeknlKqeF5suZMlErYK/+u8otc01SFqe9a5nmC4WEYHgZdl8TjShetNMqy\nFErid8Udxy3tC1QB6z+P48hSwax00JC1oS/cQtaWOI6L4zDmMZblYVHAtl0sq0DOKFQdi2UpffXg\noM3gIGzfbhKJUJKKVDLe1VTT1BHCY/t2lZToeRIxmCWcK5AfzCIjY61IRr/Pw8NZbNtleDhLaMB/\nvAGf/iwiWztRTVu3hvjaddjHHAedYztkuUIb9hpBzrLHHDeWjZa3yY2zPh8xmCWat/EsG/x9WDam\n4yIdDxsP1/WwHQ97dCfZ8RCOi2PZSKOApgnCoB6fd5C5sfuLaGlOj6+GQgHPcRjB5I/WERwaX0tM\nt5UFnGPjZS2ko/LThWXh9A8iraIuOZNBG8ns9tj2BJXvs+e/luil42X0azYRxdfTKzhkB9Vg5Jj3\nphFGfQZqvtcN7k+PNxH63/+b4X+6De0/f0vonrswf/c75fe9ejWsXo387Gexzz4X+5xz0Xf2kt+w\nCTk4dtBTxqKQnNoVemC3P4u7xYjB5deofxd/Nqe8z1G01lFoz4oiGeCaa67hC1/4AsuWLStZwFmW\nxQc+8AEAbr75Zrq7u/nsZz9LKBTikEMOqdo+mUwihOBtb3tbQ8+rhlkmP/zjuh6OM3sLiZkgOOb9\ng33hmHM5wZo1WvHqrzcmLc91RbHoHHtfLWodcz4v6OmBfH5sGl/l/qNRSWurXrI2G41tK9/g1tay\ndjqXU/sPhSThsKQRm7NKRwtQ3eHWVoltS0ZGBJ6nvJWHhwVCqOfUdfWaqSJZ4rqimN4nq/ZbKb/w\n7/Nvl1KWhgDVGmSpyK56jJQVj60+LrWtKJ2QSAmRiEdslCRzvOE/FcctCYc9CgWt9P4O9kp2rdbo\n+ktJS8f4n13/fc7uGCC+ZS3ZHQM4R1T41cWa1FcN9JadSMPAi0SRNfybpRdSr0mN4xaeeq1c18Ob\n4GdLcz312npqP5XbSimR+O+JrHrvAIR/dVWWt/WpvK1yf6U30HUglyNBHyc6z5DI9iJEpjS4J3p7\nEMUzOuHY6K/+GVn0WBaFAuQt3HRmwmPbk7iuh1f5Wo4+3joov55UfV4r35tGGP0ZqPVeN76/ovuN\n0CiceAraU0/hXRBF37IJfeObaAMDCNsm9J+/IfSfv0HqOubDP8dbcABed7cK6yheUffa2snedDNy\nioWy5nql343T9XmYiX3ujllTJJ9//vkMDAzw7W9/m76+Po444gh+8IMflNwydu7ciT5bDEIDAgJm\nJbaturstLbJoRVbtmzyT+E4YtQpkqHbC8Af9entFyRGjUJDs2FG/RtCXVvoFt+tCZ6ca3PM86OkR\nvPWWhucJpFQ+zwMDyk4uEilrlmczjQ7/NZrQlzZaWceRHG7UocUZjZUrRzxXktFUwZjJIBh1f65B\ni7Y9jaYjI1HSooPnrdM4LLaTuC5qD+5ZFvaRy8A/Uchk0NIj9WuNAmaE0iBgczPeSadin3Qqor8P\nY/1ajNdeQ1g5hOui73wLfedbAHhNSdyFi/C6utBsG5HLTblInivMmiIZ4IorruCKK66oed8999wz\n4bZf+9rXZmJJAQEB+xCplODuu02uvtqmq0uWfJNnitExyMkkE4Zj+E4YXV3lx/iOGA00t0pUziD5\nBbOfMdDdLYvDfZJ0WuA45a9cTk76OecS/iBkIycLMhJBRmNo+TwMpMbcPy/fx42RPxMbiaMVxp70\neG3tyGkuJG1PZ8BtolUfYXIRExVoGp5mktaSqntfmvz0GNFbWJ07mhNCfyZp9kNceUlD8dpDIT/V\nZ9/jjLhRFaSSWEeTXltis09SkQgoEwkKiw+icO670LduQd/4JvrmTWh9vQBoI8Noa16BNa8ghUDf\n9CaFd72Xwtnn4hxz3IycTU8m+W9vBJDMqiI5ICAgYF+iVgzybEIIVYRHIpJsVuI4gmxWdZYzGcGO\nHVDnjPMeJ58HLUMp6bCyJ5sp3p7NqqsHvb3qTGGoX2DbgnQaxo58j6WlRdLd7dHSUv/ZQkZL0rvw\nHcQ/8X5ii8dqkkVvD00r7sP60IcpdI6NHJTR6LR36fqcFn6w62Ku7XqYBUy90EuIDMvDq0iIat1n\n2o3y1PDxHNb2OhOkie9TpN0YTw0fz6HRLXOrSK6FruMetAT3oCUAiJER9E0b1dfmjQjLQkiJ+cJq\nzBdWE//6rXhtbRTecRaFs8/DPuscvPkLpmUpk0n+8wNI9iRBkRwQELDPEo9LTjzR5eWXZ7luYDfk\ncoJsVlYl5I1GDfZVf+0Of3+ghvsWLPDYvl0Vyq4r2L5dDbxXuHmWkvqmSibawTPHXU8u0riUIZ+H\nVat0YkMGiwY0nh026DPLi3RdNfw3NGTgOEqyEo0CI61E+84idG8LNx9JyRpuOslmBVt2hlkUm0ek\na6wFlQYqqa9zHl5X9/QvYA/QpGU4y3x2by8jYIaRTU04Rx+Dc/Qx4HnoGzeib1gPIRPj5ZcQrouW\nShH5xUNEfvEQAM4RR1I461wKZ52DfcppSnqTG3tyIXp7EJk0orenZrSz6O1B5Cd/5UGkRzBefgnn\n2OOUpnqGCIrkgICAfZZEAt7zHpdTTlHdwFRq8naOE5HNwr33mlx5pT0mTGQq+LHXqZRWMWwnS5Zu\nnle2iassjuspYj1PFZK+e4/nKTcQxxGYpgoh8TzBhg0abW3lY1IFqBr2c93JZxJ4ukkmPraTWg+2\nrYrRpKG05ZGoJGqW16hLm4XhAVKylXReabpjMUkmFOfF5rNYnPHI5fITSl8A9MF+Fu78E/rghcDc\nTiubDhJ6TsVfa7n6k/1mA4UCOK76YI2yPNRti4Q7iG5bQA13if0lglvT8Lq6IGSS+eI/IqNRzD88\nReiJxwn99+PoWzYDYKxdg7F2DbHvfQcZDuPN68Jr78Drno/0DdpBJToOpIjd8S+1f4nkcug7tpP7\nyBUwiZPJyvS9oEgOCAgIGAfTpCoqeibwPOVMMd1/KyuH/dat01izRqepqZzYVygoKYF/fNu2lX2V\nXVf5Ild6Hlfieyn7ISqOo/TTjqP+jnmeKEkWFi8uO0vYNuRyfhjD9B5vo/jBb6EKrTVAe6GP96Xu\n5IG268ibC4jHqYoCr5fhlIcxkCOb8qg3t0vqOplYpwrc2Et0GINc3/0QrfrItOyvpGmW/RNmCDbp\nWZY3v6gGE2evyqiaXA79tfXouo42kIJ0tQg94Q6pSG42odeSW7iu0lr7Z677CTLZTOEvL6TwlxeC\nlOgb38B84nFVND/9B0Q2g8jnlcZ56xYAvHgCb+FC3AMX4R64sJwUWAuvDyOXRVjWHjqiyREUyQEB\nAfss6TS8/LLOsce69YRVTYqZlnT4w369vbIYzFG2iJNSpfqZxS6qHzRSb32madWJe6ZZDiNJJCSD\ng6p7vX27zpFHuqUm0J6Mr24Ux4GCXTJcwHaVRllK9d22VQfd1ylXohISy/93PRCu+l4vblsnzxx/\nA0vbbBqx7JsUuWzZjC+TUb63tk4I6CIHxbpNFLudwi6AaLx6LWma21Zw4HStfbYQjeIeehiepmPm\ncshoBMzyGVfablWR3J0WMXNgzObCLiAymWpN0v6GELgHH4J78CFYn7ge8nnM558j/OuHCT/0M7RB\n9bppmTTaurUY69YiAW/hIvLvPr9mdLTITOxzPJnBvplgP37XAwIC9nUyGcHKlTqHHOKRSMxMwZJI\nwEkneaxdO7UiebQTxt5G11VI17ZtMDwsSKUE7e2z2+7CcWDbNkE2rzGYE7yV09glBc8+q5L/3GLB\nPDiolXXKFQgBBxwAn/40qnMej9IbX0xrfHbZlsloFK+tHS3Vryp+gFxOdXChGOaRQ0aioOsI20I4\nthq8Mh1kNKba8AGKUAhCYXWWaIaqLku4REjrLbhmpPpyRSX67O527nHCYewz3oG79FBEJoMXjqD1\n9WAUhwBFVp3c6Vu3ELn/p1iXfQTZ0thswmQG+2aCoEgOCAiYs4z2Td6bzBYnjHIICHR0QE+PpFAQ\nbN6sEY+7uG5Z81wolKUctr3npZmDRgcPdd/AsN5aWrufGOh31HWpZCV+tz0cVnWlr1OuxLI0+vqU\n3jkWg9ZonqZoD0Z0dlmXyWQz2ZturhqIEr09xG7/Jl6xK2eueUX5FMfjFDJJ3DUHUTjyNArxYTBM\nZDi8t5Y/e3FdpTGuoC5NsuOUIy0DxhKL4R65DPfIZSAlWm8P+to1hJ5/Dm1kmMi9PyF/0fuQzRUd\n5WwWbAfR34e2a+fYfY7UiITfCwRFckBAwJyhrU3ysY/ZJUuv0b7J+zv+MJ+fqNfbq2QXqZQgnxe8\n+aZGLKYG9/z7dV3923VVrWDvwTrfFSYD5tjhP10vh6HoUjUAK0+CXJcqnbKPpkmqrvK6LiE7izeN\n1X/aMtg2NI8WyyC2+4ePi0w2V1nFaVA01VYHJc0QxIo+xTJe8f/ZkXY363Ac1Zn3Rf1F2rw+LrEH\naOvrQ9dq6I5dV2lvN76pIjKDsJSJEUIN8zU3o+18C2PrFrRMmsiK+3AWL1FnsYAo5BEjI0Tv+gE0\njbWh8cIRaN77gSZBkRwQELDPMjpRb08M8VXS1yd4+GHj/7H35kGOnGW67/N9maldKklV1Zvdbbfd\nbtrdxtjM4MDG25iJEwEXsPG9NswAxh5sMDDXcWY8w50/5sRcIuAGE2BwMMQ5g5eDFzxgPKyHMCc4\nMHhgTPcxixvbbbeXbvfitrtbKqkWrbl994+vUmtKJZVSUqrq/UUoqrSlMlNS1ZtvPu/z4NprTc9c\nL0yTQdflspzurVOYNlq6tVrC9YIzzMeYDBLZuFG6WFSrAsUiw9ISwxlnWLXBvdlZUevQGgag62zs\nHXkvWVwA1AJgLqDnwb2VZDNLoVl8c+pT+GjIQGQYJ4rLJcAWDal+wIxVwsd3/hwpqwRWaCmSOZPF\nXR8YQkXeSiPFF6CxNTKwpqoyyCUYaNIkqwCkVfiMq2EHM3SwQgHW9nOoQO4DZpgQ8QSsLWdAef0E\nmGlCPXYExs5dyxPFinTUmJmtpzY6lEvg+TzsaPNhZqNOeVRQkUwQxMQy7ES9lbAsYG7OG9eLUEgg\nEJDuE04n1zBk97ZUYqhU6gP2QrQXyYz1NnDnDO6J5Q4s58D27Raee06FbTO8/jqvJfm5dWj9jGIb\nSBl5ZEQacHVnbcayGZjFYNm9WweOSzbTpFMul8EqZfCFeUCvImgY2JLPwU6l2+y2GANgGbKD1+Pw\nWdZO457yTfh47BFsVk4PYWvGhKK0aZJ7QlX7fw4BALA2b4EIBqG+ehjMMKC9dBDGngvk+7B8ysdJ\nbXRgAJB3GaJs1CmPKH2PimSCICaaUTlcNHash0E8DuzZYzdZwJXLwKFDHJs32zh4UEEgIKO2AwEp\nkXQs4QD5/2a1A/jxODA7ayOT4Zif5wgExFC3dVgkzSzemxZKAPEAACAASURBVLkX/xL/OAAp06hW\n6534cllKITMZwLIY5ipRmNpZUCtRRE65F8rhsBhKKEm/NOqUWeY0QsupfmJ2Q9v1RhSFI1hdgvm5\n/08Orw2AYSvIGUmkxdzg8dfEusHetBkmUC+UDzwHc+ebBlrmqNL3qEgmCGKiGZXDxSg61oEAEInU\ni+RoFJiZsVAoyME0xw5O02Qn2LGEA3qXXHRi+3Yb1SrD4iKDrrPlZfqzUM7xGTwU+yRyItU11MJJ\n7iuVmnXVX/5yAKGQgHI6ibdZ2/Gb7ydhPeleQKbTNu68U/dNoSwSUygXgdO5BCKRDQhv3NQ15Y+r\nHKhEVp8K00DWTOLe3PW4Lf0YtjQFhU82S1YYvy/swltjB3uLpm6QuvSNk6m+zrA3bYbJGNTDh8AM\nA+qLB2GdfTZQrYK1/pkpFoFKBaxYbErsa03xG0bEeytUJBMEQXTBTw4Zw0RRgF27LDz/vIJCgS07\nXjDs2CFq/sl+wWQa5pQNK8o/nOQ+dTm5zzDkQUUyKRAO21BNG5GITD00U+0Db+UyQy7HUS6zWnqf\nH/xbSyWGY8cYtpUY+lLJdvBdnlVP4/b0o0iJOTDbBoQFCEcAbwG2z3U2A1KwIvjl4sXYGT62cpHs\nhJOEQhCrkGAwXQeqlb514msBe+Mm2VE+fAjMNKEcfhUBAYhgqOlxjp2hVVhqTuwrl6Eeehn8xAlg\nWX5UuvMzQy2UqUgmCILowqgdMsplhtaQCicko3GIzzDqg3xeFbGKAuzYYeHZZxVYFkM2K3s427bZ\nNWeL1uCORonHOGziekFbTuxztNbRqPRJVpdMRFFELGTCdJXqiJo+3MEP/q19p/5FIhDTM+DZrKvv\ncoDr2FQ5CaFqgGWCMRPMtmWxIuQHTqgawH1i8u0xMaUk47aV0soPdsJJYvF2+5ReKBbBC0vrdgjQ\n3rgJJmNQDr0CZltQDh+CdeY22BsaZEKG/JyZO85rHuoLFCFCYdhTSYAz8NwcWLlMRTJBEMSks5IT\nRjgsO5q5HG8rzKSWVkohOJczWI0FqaLIYpXzwcs2xqS0Q/opy0K5XGaIxwUsC3j+eQWaJqDrMqq7\nUKhLPsZhEzcIVrGC4GIGVnGywiL6Tv2bmkL5b/8f2Et1/ztX3+Wzz0Hgmf2wlC2w55OwZrfCCiw7\nDHAFwlqbRXJcKeOqqad7f0IgIAfOVjEEwQAZc72OsTdsBJxCWQiox4/ChIB9xpn1I36XoT4GyO69\nc3AygkhrKpIJgphoGofqWof4Wn2Tx8lKThiJBHDnnfpyJ7mZTIbhv/5XDb//vYKLLrIwOys7ufv2\nKQiFHJcKb9L8HJu4QEDAMGRnu1hkCIcFUimB3bstRCLSb3hxUd7unA31q02cZUkZqOMWUiwuB5Po\nMRxl25HTY9BcJLarkY/6LVmxRmIKdiReu+rquxyOQKia7BorCoQWkLc7+PAswaAYtoK8FUdKWYLG\n1+AG+hQxlYS1dRuUEyfALBPq8WOwKhVY286SAS7Lp62a9MrFYs36EIA8G9KgWQa81ylTkUwQxETT\nOFR36lTzEN+wfZO9dr1IJFDTvrYSichucTgsB/uEkNedQT4vcWzizjnHxssvcxSLsqMshI1IBDUX\nEU2rSxkc/Ca3sCzg9dcZbJvV0gb37VOgKByJooodBnDggIrFI+3/Dk1TNraWloCNG3t7vVlk8Gl8\nD1VcD4HRaJaLRSBznCNSRH8aZQJZM4n7Tl2LWzf+EJsDcwMvb0kP4OmTZ+DiTScQD6y/Ab2+CIVg\nbdsGfvIN8HIZSuY02MK8PHATNgL7fi0P2BwsC6xShvbUPjBhg+k6Inff1SRd8Vqn3IOrJkEQBOGG\nU6APy3rOwRk2G/UAnaoC559v1eKd5+Y4/vf/VgZ20hglti0DWjivh60FgwLhsIyt1jTpKBIOt18U\nRaBaZU3yl1yO4emnFeRy7m9Go2Z5VBSrKl7IbkCxuoq+V7lU79CVSmCmgVmRwe3pRzErToPpev1i\n6HVNDeFKUQ/iV8fPQVGnWPCe0DSYbzq/Jvvhug62HEktQiHZGXYusRjsmVmIWEzeFwjATiZhp9Ly\nEgrVdMpeQZ1kgiCIFXCkEun0eBwuZmYErrvOxM9/Pvo/2ZoG7N5t4bnnFFQqskAsl4GzzrJdB/ca\nh/s6MSwXrHl1Bo/N3o55M912nyN/aAxJCeoGIqKIoGq4ZkVIuUnzbZYlvZb91DHvW6OMDuEkS4tg\nuo6AvYhN5hxEKNwU4cyMihzmM02IRARQfaar8QHRQBVXbD2MaKAP3fF6t5RTFJi7dkN55WUo2QyY\nZQGL8rPYGjRSwzDAFhcBzmvacAZ4rlOmIpkgCGIFymXg0Uc1fOpT+kgcLhwah/0cKhWGQkFqgrsN\nyXnpfqFpwM6dFl58UUG1ynDwoIKDBxUAAoGAlIDIuGs0Dfd1QteBapWhXPZ2yN/iGvLaBpgWQy8C\n2ikzh4uM3+CXZg7z2ObdigwZL3TPbuEk1Wv+FHj4QdiBALQjh2HsvqDJwSFhcfxF9TgSwQthBBWI\nIHVLW4kHdFy57dXen+CBpRyrVuSRW8gHZt6rhTFY284CK5XAS0UwIaC89CLEeTsh0tMuTxDybI3d\nbt3oJVQkEwRB+JTGYb9QSEoAqlWGfF4WmE7oh67LBkooVG/8dXa/WF3FrGnA2WfbEAI4dsxx4GDQ\ndbkeCwtSHx2JCMRiNs45x+6Y5FssAoUCn0gXLDsSxaGtV+LMyCrsvzzCq2js1nCSaHgW4XAYCATl\nwF6k2V1ABTALAIiMzf5uzeGBpZxSXIIaiXi/bqOGMYhIBJaqgi8ugNm2DB0559y2kJxRQUUyQRBr\nhmHER6fTAh/8oIkf/Wi8fy7jceDSSy28//0mZmcFMhmGu+8O1Jw7nn9ewe7dVu3/rJv7xaASAVUF\nrrzSQjhs4vBhhv/4DxWlEqsl2hkGw8ICwxNPcPzylwJnnCGwfbuN7dttzMw0a6pHeYbY6ag7v+u6\nlIOYRv2n2/o43fimZUXjOLztKlwR7V3a4HeKVRUHsxtwvq7JIrhSrrkI9HxIVe7BY9inWIIha0xh\nRp0fj8PFoJZyRou0Y7XyDb9IN0IhCM6AQgHMNKEePgSrWoW1dZt3pvA9QkUyQRBrhmHER2uaPLXN\nBxxzHrSAVxRgyxaBTZtEzWc5HEZtqM7p4jpFspv7hVc6Ws6BTZsENmyQyXWMyVTCuTnp5WxZ0k3i\n+HGG48c5fvlLIB6vF8zT08M9RdqIZUm5TOPw3WuvMXDOYOlTeE7swSunp/DafPsbbC6fzS34LIHZ\n69S/mqZ505zUKZ94TWqUF+abPX0NAzyfg51Ku8Zc2+lpiAk8PVCyQ3g48y781ZZve+JwMVYGkG/4\nKg1Q02Du2gX15ZfBqlUoJ14DdB3WOedi4D/GfUBFMkEQa5ZW3+RxMmgB79Up9mHgWO1NTQmUywxv\nepONkycZXn2V4+RJKctYWmJ45hkFzzyjgHNZ6G/ZouHyyy1Uq3XrU8A9zQ9o1lkD8udKkkQhZCgK\n57IJ5Rw8KAowLZZwATuAaW0Jp1xm0GxbdserVX/lcg8t9S+eQOnOz4AfO4rQY99G5YYPQszWk9Ac\n7XLr7Q5ee9QSq2AQ+Ybf0gBDYRgXXAj14PPgxaK0iNN1mG/aNbJVoCKZIIg1S7HY7JvsNYYhO6jJ\n5HhcLwAZ9mHbAo0e+wBcB/sa5QPDOmvJmOwyn3uujXe8w0KxCBw9yvHqqxxHjvDl9WU4fZrhK18J\n4itfAVRVIJkUSKdloW3b7Wl+gNMVlrc5Ba9tSxnJSvufMdmAEkIWyM6FsfrvDo6fslw+kM9LD25A\nBrsUiwyZjPsOrGRieGnhT/BHlRjaPTaGg5cBJiIxBTG7ASIag5jd0KQF5YDr7ZPMjDqPj8w+ju/O\nXTPuVfGOLvKNbj7OvkwDDARg7rkA6osvgi/Mgy/MQz3wrAwdGQFUJBMEQaySXI7hwQc1fPSjxkhd\nL4DmGOtyWXr5LizwWrLcyZN1f1+n89o4zOcM+Q3b8zgaBXbvtrF7tw3blsXmwYOyaM7nGYRgME2G\nbJYhm5Xa6dlZASGAWMxGPF4v6A0DqFZ5rRNsWfLiZbqdbQOLi4BlsdryH3kkgJ//XNTWIZ9n+NrX\nAq6FeTCoYWrqKlwYGp1m2euzDOspnETjFma0RShsbejL1xzLmifz3HOhHDkCJTcHXiyCvfIyRCQq\nvb0dPVSx2JTC58WZDSqSCYJYswxjkG8c5HLAj3+s4dprzZoeuTHGOpNheOwxDTfcYNSG+h54QEMs\nJjXMbsN84bCUHXSykBsGnAObNwvE4xZ27BD41Keq+PWvVfzzPwdw6pQs6m2b1bq2c3McgYDsMieT\nUnPNeXPn1+siXwhZIDudZ9uWeupUqq7r2NCuNAAgu9z5PB/5581rjbIzyLerqq6dIrlSBjMNwGg/\nonJCUpihg6FlcM3s7wtiWBz5ShipUBmaMjrtfa/0bVG3Ep2GBGuaqQ5HsE4wTbcjXNMEP3UKzPkj\nxRjscAS8XJK3Lcwj8NReiJi0vmOm0ZTC50X6HhXJBEGsWbwa5EunBW65xag5SYwKp8gPButWcI00\nxlhHo7ID63S0o1HZLe40zKco49fZptPAe95jYv9+BVNTNopFqWN+5RWO06cdizkpzTh9GgBELZo7\nHh/89fM8jT8E3oY8bxdGMFa/hMPoUdMukM+Pfr96rVHuFE4yiR3mWmjKidfkYBrQPMFqWQgVdAT1\nJbBKBcxqH1prDVXpxlw5ivv/cAk+9pansCm2NPD6+7ro7jIkyHQdPJ8DCpr7vrMsQK9CpLqIkmxb\nFsPOkTEgU/Y0DWxxAQwAK5dhzy5nxi8fANnJJMBYLX2PimSCIIgh4gymjRqnyHc6q53wUpM6Lpwu\n8+bNFi680ML/+l/qcpNKOmaYpiyaTRNYWmIolwVSKalHdizdgGZJyUpYTEOJRWGx3gXl3DIQruRR\nDqVgK+MRoudyDKeeVrDxvQzJjYMvr9fPT6nEcOwYw7YSm5wieTk0hR87isjdd8kCqnGgrViEuv9l\nqNgA/aLLoEcX2xdSrYI3Cv5HiNdFt6d0GRIszht44eR2XJA8hlio/QvJDB2sWOzNqaJlaEAkEhCq\nAl4qSW18Y4FuWXJdBDxJ36MimSAIogt+csjohJ+dL1aDYQCLiwyqCkQisnNsGAKlkiyaHR3z/Lw8\ngMlkUOuMW1Z9YLHVHcMLouUs3v6H+7DvLbdiKbbZ+xfoAa+jsdfa56cVZxhReiY2B6QwAUALQEBb\nvq+9W8sEmqdiiTodhgRt3YCuViG0IBAw3Z+rDFDEBkMQiiJPlw0RKpIJgiC64JVDxricMMplBueU\neaPjBWNSb2uazbpeYzlgY8Se/U1ompS4BIPN+8owgOPH+XLmAYNhMIRCNmZnRS0G2zDkfZo2/KHE\nceF16l+vmmahKChGZmVxMqmUS8362WIREVHAh8/9DyQsDlZwkTRMcFDKuIgHqrgq+lsIJQyg/7ht\nv0BFMkEQxAgY1AmjVAK+9S0NH/6wURve64Zjq1ap8JrLhRNl7Tg4xGJOIVkvGxybuGDQibEeD4oi\ni+XWPARFAZJJgWwWsG1px6Yoou2May/k+Awein0SCzzV17pZ1nK0dsvtxaI8w1ssoqNFXDgskEj0\n9XJteJ3616umuZNWeRKoaZNzc82n4ctlqKUlbDyxH7a1uaOXoBOUwvwQtDEpWJYc0HPD0OURuvO7\n89O2lv8o+ePzRUUyQRBEF/zikOF4B/daAAaDwO23G00Dbk6UdSAgcOSIgre+FVBVG0I0D2ft26cg\nEvGnxtm2pYwxkRCYn5duGEeOMJxzTr2TbBhyO4Sod8odz+NGTKZhTulgVdEBXZfd7H15FVmt+V+o\naQJm2YSam8N/+2oSPNjeQUunbdx5pz5woUz0h6NNbi1yS0czqHz1AWyYtmDd9heuISlA3U6MiuQe\nMQx5QOL4NbZiWWBV6cnMyuWapyMrV5ZPY7l8YccAFckEQRBd6OaQMS7Xi5VwBrGSSbR1ncNhIBCQ\nnddYTHacbbv+mMZEOr9h27IJyLm0aFNVAdOUtmtHjshtczTJzz+vQAiBpSV5YNEoIRlEhuEU4aoq\nEA6LtvviZga36l/HvvjHsBht1iyXy6zma+24knjBuAb5Jg2RmGpzOihmGE7OhZHaJMDWUEhKJ0bm\nlqFpsvseDABa+8EiM/Sav7Edi8nHGDqUagVgHAxipPHTnaAimSAIYpWMyvUiGhV429ss/OEPvVUt\nKw1iVSoMui6HElW1uWHjltQHYNldYrxwLud0VFUWcNIaT8ZOLywwnHmmBSHk9u3ebUEIgdOnpSRD\nVetFshd6a9VFCgLI/bk8ywS7bdBT1KQvXmIEo3h2+kqkg95olNf6IN96ZqRuGYoii1+3LwpQn6xt\nfAxXlqMxx99FBqhIJgiCWJFxOVw0DvtdcomNF14YrLXnpPSdOMFRLsu4ZUWRbhHO67kl9TU+X1XH\n2zVvDROJx0XNIu74cY6zz7ahacsuUMtdccfv2ImlngQWF52hy3Zao7EzpQSenb4au0oG7FNiYN1z\np0G+tdhhFoqCUngags+1B2J0o3UAcJkZq4SP7/w5UlaJhgB7oVG33KhJFvbygIQFWC4dZcsaiRyD\nimSCIIgV8Mrhol8ah/28wEnpO3aM41//NYDbblMQDBqwLPnPplNSn4OqCgSDnqyKZwSDwMyMjWyW\nI5fjmJoSiETGvVaDsbgI3HVXALmc++nm1mjschk4dIjjxAmGcHhw3XOnQb612GG20rP47QU34Y/Z\nPT09vuMA4DJBw8CWfA52Kr3iEGAvTIeLuO2ifUiF1qAW2rbB5vNQSqU2TTKDAJ+bk9cVHWAt3wVh\nyyLZsoAhugVRkUwQBDHhZLMMP/yh2hRb3YlEQkpEYjGBjRuBUEjANOvPcUvq8ztbtwosLQlUqwzH\njnFs3Tq8DlMhNINvpz8JXU1iWA1VR7scCrXrnh0ao7EDASAUYpiassF5/7pnrzXNa5lOA4AOLHMa\noce+jcoNH1xxCLAXNMXGhujkeTQbFkfeTCMp9M41LOcQyRTsaLRNkwxhw56eBjcNqW1qPX1hWWCW\nOfThCSqSCYIgJhzLco+tXi8oCrBjh4UDBxRYFsORIxxPPy3wlrd4v0NsRUNO3YAwE0Mrkh3CYeEq\n73FL/XN00KvRPXutaZ40DAM4kWGY7jFu220A0IEDENEYxDoYAuxGthLDA7kP4NbQ/8DmYBftc6tu\nuaZJZrITz5W2xL0aI9Atj390kCAIYh3gOGGk06uTa3hpRaco8tT5MBLpxkUiAezcaS97OzPs26fi\nf/5PtRaO4ljAOWdou12cxzrP8xvRchaX7f86ouWsJ8tzfJftaLzr41g2i9D994BlvXldv1AxVbyY\n34BidQ19IQhPoE8EQRDECnhRoA7qhNHNiq5fZmYEbr3VRCoVRD7v/pjGpD433Fwwxu2AMT0tEAhY\neOUVBZUKw9GjCjgXtWLXcbUolVhHhwvHW5mxerFsdkjVHTXVqtzfvCj9mp1Ak2LDdUBqlJ2hPkVh\nqFTk/YNqtXsNHZkkFAXQtszgV9FP4oK0jrGFWHQYBOzleWuK2tFpD4N7liU/2M5bZujeZbUvQ0Uy\nQRDECnQqUMflejFM3JL6GnGGxsJhAV1vd8EYtwNGMAhs326DMemVbNuy2Je+yvIx3YJSpM8yqxXJ\npom+Ou7z6gz+fc8nwMLJgbelkWoV2LtXQanEMGOo2Jbn2LcoA00sS86QPfWUCiFkquLddwcQDsti\nPxgEYjENf/VXVQoxaWFmRuDP/9zEgw+OMCu+gZUGAWEY4CsMAoqZGXkE5A/XtJ4whIJ5M42UsliX\nLdkWWKUMoLfBPWbb4JlMXYrhmKQbyzpmD6AimSAIYpWMyvXCMGRnMJkUnf5PNtHPIF8rbkl9jWQy\nDI89puGaa0w8/LCMiG4c8PODAwbnwJVXWti0ycYvfqFCCLYct93b/hsEk2koRDYgqnj7eTAM2QFX\nVYGQKqAVgFBYIKwJKMLA1mAei2oKFVNuYDIpEIkIcC5jyOfmWM/DfDTINzq8GATk8ShCU1NAfuUB\nP7+4ZWTNJO6b/z9wW/JRbIRM3gNXIELLR3Y9DO7BNGDPzkIsh5UwQwfTdXkw4dHXj4pkgiAInzM/\nz/D44yo++lEDGzeu/Nd/tYN83ZL6GolGBaanBcJhf7tg7Nxp44UXbLzxBgfAYFlynzDGOnaH/Sy3\nAOT//wDkexVYDjSZ1rO4LncvfrDxNryhbYZlySG+aFQeMJgmMD/f+2us90G+QSgWgcxxjkiPQ4DA\n4IOAXO19vMz3bhmcA5zDsDVk2QZMszw0hXUe3Au0JPqR3IIgCMIfeDlM54Yz7FetDmXxbaxFH1yZ\n0AcIIWBZUh5SLqOjn/Kgcgu/out1nXIrK4WTAFJGY6/BDjPLZpH+1vcRLd0IYHCJTLGq4mB2A3ZV\n1Z6L5K7LW0XRvRbI2mn8c/YD+IT4Gjajw+DECFgDX32CIIjx4OUwnRvOsN+pU91HeoZdrHdjpQG/\nzs8ZHU5Kn21LL2VAxlgbhtRf85ZGnJPOZ9veRFiPm2oVOHCA13TKrawUTgLIgJK/eBdQKnnerBsr\nzDKh5rPgwpvTBVZ6Fr+++HaclzbgxTn/Uonh2DGGbSXWX5G8mkHAtTYE6AFUJBMEQUw4wy7W3QiF\nZMR1Ltd9wC+VctcBp9M2wmExsoKZLduuMgYYhuwql0oMur727PBaMQygWmUIhYBUqn26i1sGzo3n\nUQxI3+XGcJJotB5uIg8w1h6MAank2ojbHnQQsJ80wG7MhAq4Pf0okqoODN1RfHis4T8LBEEQ/mFQ\nJwxHZ5xOD3/4rBficRlx3anIdQb8brjBcLW+C4cFEgnZtRwliiKlFouLsvgzTYZCQQ66TQrz6gy+\nt+l2LCqpvp4XCrmHk8QLWbz9pfuw7y23Yim2GUA9nEQ+XgaUWOEoDm29EmdG1pZWORKRDhd2n0Ou\nfmTQQcB+0gC7oSk2Nqg5CBaGV0WyIVTk7Smk+AI0jKYpQEUyQRDECBjUCaNcBh59VMOnPqX3NLzX\njWyW4cc/VnHzzYPpbRMJdHVLiEYFZmfFwOs7KI1hIs7vU1MCuo7aMJ8jIZiEMBGLa8hzd6eDob5u\nRIaOXBH1RkrgG0olBL/1TVQ+fLO0U5tw1moiYNZO457Ch/Dx2CPYjDdG8ppUJBMEQawzLEsWyqsZ\nSnMcMCbl1LSTsmcY7WEiTgFsmkChIO/0u7uFl/QaTlIsyoO0ubn6gJ9zJmDSyeUYcs8AO3bkfRmS\nIhQFxcgsxKR84TyG2fUjWG4ZiNmL4JYBoEOYiGHID6yAvG9AqEgmCIIYAaMcrhvma02aA8ayoxRU\ntV74OmEi5bL0EFZV1Lr7a9XdopVew0kURe4DXWe4917gxAk50HfGGTbuvFOf+ELZsuQBgLCxusS7\nIeP1IOBQ3DLchgSLRTDTAAz34n4GWdye/BeklEUA7lGQmtARq86BmWWAccSEwNuMXyNWyoCh6Bom\nwkwD2vPPyV1VrQys51qDX32CIAj/MchwXTot8MEPmvjRj3r7kz2OQb5BaXTJcIu8BpZTau26NMLu\nMWGMsbpjhRDyf6qi1DvLrMWGddLcLZo0yj12vTuFkwS4ALcMbFbyWFRSMJkGIeT+0DQBRRGwbYET\nJziOHeNNevO10l0eBL+faVm1W4YLXYcElxbBFhbklyjY/rcoAGA2ZoLpdsegQIMFUAhOIxbIA4qC\ngjWD34jL8KbISURhu4eJVCowdl8ACIAXluBq59IHVCQTBEH4lMZhv+npdqsyrxkkqW+1hMPtLhnl\nsuxcOlKHUEgWH4ZRL5AdqYSqApx7u66tmuRyWb4XgCzgDcO9u9y4fqNkEI1yYzgJZ8CpUwzpag7v\nKt+Dh8Ifxym+uXZg8uKLCgwDOHhQgWmyNku5dHryust2JIqjW96OPdpvPekke32mxc9Fd7chQX7w\neaivvAL9wrcAs7PuC6hWoe3b63rXDM/h9plHMX1qoXZUa0NDgSdgKxoApXOYSDS6LLcY3GCeimSC\nIIgJxzBkKl+vsdWdWG1S3yAkEu0uGZmMLMACAYEjRxTs3m0hGpUF6r59CkIh+b8RkAWylwWEmyb5\n8GGOuTm5froure0KBeaelOvSAZ8UbAEYBqt11lUV0JR64R+JyG6yYcjGoRN9DdRt4nqNvvYLdjSO\no2dcCsGe9WR5LJtF8IffQ/Xa6z0ZAvS7vKnTkCDLnAY0FQhHIKLudj6sy8dEYyY2qHlwZgIYn50P\nFckEQRA+pVE2UeySJJvLMTz4oNZzbPUo6KcD5uaSEQ4DgYCApola9LUQy4WbNjwbPMaa9cumCZxz\njo0zz5QnhYtFYHFRDq61roNhyA64Hyz6BsGRojiyFEDui0Cgbq3bGH29/AhXv+z1BrNM8LmsL4cA\ngdENAhZLDPniLBIFG9FoocODWnTLhg5m2xAQvtE5UZFMEARBeI4XHbBKhbW5LKzUqTXNwf+5tmqS\nw2E0+Qtr2rJMIdD+3ElMo3M0zfN2d99lxTaQMnLIihSkSGNtUC4Dzx7i2JZbO3HbnfB6ELATRTuM\nE9XNOK8IxPO59gcYBvjJN8AcLbNlLeuVTDAoEMEQwMevMaEimSAIYgJIpwVuucXwJPQiGhW4/HIZ\nauJHezNHp3zihNQpLyxw6HpnrbLb81VV9Cx7cLTEvTbXnP/nbsupOVC5vE2OtZrfcDTN1grrljSz\nuD53D76Tvg1FbBnNynmAExzjRibDkNPjeCpyFbSlGKouEfA0kLgKYnHYW7ehfNu1KO6abrubZU4j\n/MD9sGNx2Js2wdFTBfb9GiIUAkJhiJYjzhmewydjDyHFF9Bx2s9jqEgmCIKYADQNrsl1qyEWAy6/\n3EY8DuTznizSUxyd8rFjvCm1r5NWuRVVFQgGV9YGN1r1ygAAIABJREFUBwJOYctw6pSUh6xk92YY\nUt6iqp01yc8/r0DT2t8rXZfx0KNOGVzPLC4Cd90VQC7nPvVqGMDJk0H8MncN9t1ju5ohTOJAoh8Q\nigIxPQN7Y3t7XoaaRMFCISAShYjGwAQgVE26VShK22kZjZnYoMyNaO0lVCQTBEGsMbwa5HNjVA4Y\niYQ8KGhN7XPTKq+WZFKAMRkkYtsMmQwQj4uuKXuaJrv6waC7JrlSYdi926oNtDVSLAKFAh/UlYro\nA2egMBQSCIfd39hoFKhWFUxN2W2fp3EPJHo9COgXt4xiEcic0DBrBL3zax4CVCQTBEH4nEYruJj7\noHgTwxzkG4cDxrBgTBbKgYBAPs8gBMPSEgPnAqFQ5+cpSndNcvNAWzN+lFusB8Jh0fW7EwjI96z9\nMeMdSPR6EHBUbhkrDQiWSgzHX1cRSQcRdsJIOg3yuf2xsUfzB4iKZIIgCJ9TLDI8+aSCHTvsWjLc\nMBhlKmAvdOp6tQ70daJYlEWr43fcqUPsWJvlclJ6YdsM5bJwLYLXAzk+g4din8QC7z7ItxbgloF4\nOQ/FnoEUAQxGLsdw6mkFG9+79ocAu9HTgCBXYCemwCtZ6SlYLoMtH0UulVUczm/ADuM04qhKT+QW\nhKoNfbiPimSCIAifM6ri1W9Jfa1dr04DfQ6GIT2MUykphSiXZdHr+B07tmZuoSyO5jufl6fYhWCo\nVsd/WnocmEzDnLK6cJJJI1rO4q3P3YcX8AkAg2+zEYzi2ekrkQ4OoANqYC0X3UJRULnpZhS3y/Y9\ny5xG5O67YCeTWCjFMf/LUyiktiKSrLadtjFsBXmRQpIVoWF4f7OoSCYIgvA5KxWvXjpf+JlOA30O\nmQxrG/T77GcDWFpSEAzK/7Oqyjp2lDmX8ou6zZyUlfzmNwq2bLFH6n/c2invlvTXyLhS/yaBarV9\nmJMv71cd7mcmikV5sLW0BLjMn7VhR+M4vO0qXBH1xmLNsoBSafLe0561z7F4bbCPA3LogLH2Xddy\nPWsmcW/m/bht9nvYrC0P85ney0ioSCYIgphwvHS+8IphDfh1GuhzaL09GGwOxuB85YJDVeVjq1UB\nIRiOHOH4l3/R8L73ma6uFV5TLgMvvcQRCrFaA61b0l8jk576NyyqVeC3v1VQKjXri2cMFVtzHLkQ\nw9Gn1LZ9a5rSdvDrXw/gv/yX6sQ7XHg9CNiJlbTPbpplEQ7DTk+D5+bAlyww0wQzdOmlbFmAZYFV\nyhChMJgdBTMNsEoFzCo3LCMCqJpnXwAqkgmCINYZUpbgNqTkHcMc8BvFhL6iyALbKZQzGY6HH9Zw\n9dXDN5YOh4GdO23EYnW3hW5Jf40MM/WvKXRkwjqbpimHxVS1ef+FVIGgZmH7VAZHQ9OwWPOOczrz\n+TybuMhtN/ySCOimWRaJKZTu/AxYuYzywTlYJx+FmdKgnxUGolEU5w0s/O4Ipi4+G7o2Dev5s6Hv\nvgx6dLG+YFWDCAbBPCqSB1epEwRBEBNFLsdw//0astlxr8nqcLpUvXaohag1omCa9d87XRqH/BQF\neMtbLDAmoOsMP/2phtOnh+920Oi2EIvJ39201G7YtmM3Jy9ena63uIa8tqGtkJwkHFeS2kUDoqyE\n6/IPYQPLNt+3HMO9HnXp40IkpmBv3AQxPSPfnGCw5qNcVJM4WtqAopqUt2mB2n21SzDo6fpQJ5kg\nCILoGb85YHRDJqXZEEKFZUmtsRM3DaCW3Keq9QK01Q2Dc+D88y2cf76FH/9YQ6HAkM1yhMMCZ545\nun3QLcSkkdZAE8YYKhWpqfVjuiLRHTsSxaGtV+LMiDeDgH7BL37NK0FFMkEQxBpjmIN8fnPA6EYi\nAdx0k4l9+zTE4zJ4RFUB05T7RdflsN/srGjS/r72mnycbUvpQiAAbNgg8JGP6HjkkQAWFxmOH+eI\nRGyk06MplLuFmDTSGmjCOcPiooJMZuWhP6I3Voq5LhYZMpnOZxv6ibn2ehDQL24Zo/JrHhT6yhAE\nQawxVjvIN8ykvnERi8niUNMEAgGp1eUcEEIm6ykKg6bVt1d2j+vdWtZQ60SjwLvfbeCxxzRYFsPL\nL3Ps2dNbwIsXdAsxaaQx0IRz2UH2e8duUugl5jqfZ/ja1wIdv0OtMdeDFt3xOJDq0dJ6VG4Zgw4I\n8oACpNNQ+KkhrF3vUJFMEARBABhuUt9q6Ncho9spXNOUASSOxEKI+lBW44yPYcjHWFZdltFIMimw\ndauNo0c5bJvh4EEFF1xgdU3o8wNOcVQoyOtulnKN2976XLd9sRaYV2fw+OxNuGbuX3t6/Eox19wy\ncG48j2IgBVtpr5JbY669KLpnZgQ+//meVn9kDDogmNo5g+m7/k9EP/f/YpwfPSqSCYIgCF/Sr0OG\n2yncUEjGTpumtFaTcgsAYKhWZeFYKjE48z6tPsOKItpkCpEIsH27jcOHFRhGvVD2K6YpNckvvaTg\nxIm61KTVUs6yZBGnKM0ddBnGImBZWDNnGBwsrmFBm4Fg/bXaO8VcxwtZvP2l+7DvLbdiKbbZ5ZnN\nMdcrFd0AsKFLxkm5zDA3x1AqwfcHal4yHS7itov2IRUqr/zgAaAimSAIgvAcvwz4xePAnj024nGB\nWIwhFFJQqdgQQiCTAZ58UsVFF1mYnZWPLxaBffuUWsGh64DbwHwqJXDWWRaOHlVQLstCeccOfxbK\nqir3w86dVq0j72YpZxhAtcprPtEOjusHSTaGR6eie2UEqtXe3VZGNQg4DO2z4AqK2hQEV6ApNjZE\nV8il9wBfWcA98sgjuOaaa3DhhRfixhtvxDPPPNPxsY899hg+9KEP4ZJLLsEll1yCW265pevjCYIg\niNHhDPiNSq/bjUAAiEQEYjGBeByIxWQYSTgspRnhsLwejQpEIqKmYda07tP3mzcLbNwoTwYvLcnQ\nkU5pfuNGUWQHvNFSTtOaLdEcvbYTvNJ46dV+jvA3ziCgHY0P9XVW0j6zbBah++8B68WHslwCKxTA\nYePQGVeAwwYrFLpeUC55sh2++dg//vjj+MIXvoA77rgD3//+97Fr1y7ceuutyOVyro9/6qmn8J73\nvAcPPfQQHn30UWzatAkf+9jHcPr06RGvOUEQxGSRTjs+w+Nek9WRzTo+z7130MplhkJByg5a/YMd\nrW6hIDusTmKdaXZfPmNSdpFKyUI5n+cj8VAmvKUWkqJO6BdiAmnULHeilsBXqYDnc9hYOYZPnvFD\nbKwcAz99CuqLL4CfPgWez7VfKhXY6WmIcHig9fSN3OKBBx7ABz7wAVx33XUAgM9+9rN44okn8N3v\nfhe33XZb2+O/+MUvNl3//Oc/j5/+9KfYu3cvrr322pGsM0EQxCQi3S9Wpy/1gwNGP1rlcFggnbaR\ny3FUq06KHoMQDPPzQKUCzM/zmu64XJa2b4DcP+GwgKp2bg8zBpx3no0DB6QLQTbL8bvfcVxyyWQM\n83UaWmx9nGVJ6UnjwONaweIa8ryL8HeMcMtAuJJHOeQ+COjGIG4Z/djTDZvGBL5WWOY0Qo99G5Ub\nPggx6/7eiXAYIjE10Dr4okg2DAMHDhzAJz7xidptjDFcdtll2L9/f0/LKJVKME0TyWRyWKtJEASx\n7vGbA8ZKJBLAnXfqywNpHMmkhvl5A5Zl4+BBjn/8R47bbzewa5fsBmcyDHffHUAy6fgqC1dNciOK\nAuzaZeHZZxXoOsNTT6n47W8VbN0qcN55FnbssH0hO2nELZyk++AekMlIyzwnsMSj5F+iC9FyFm//\nQ7dBwGYGdctotacbFr1qlkViyrXQ5YBM2JvdAHvjpqGtpy+K5Hw+D8uyMNNy7m96ehqvvvpqT8v4\n0pe+hI0bN+LSSy8dxioSBEEQE0oiASQSsiOcSknHC9MUyGSk7nh6WjQV/OGwLBKFEDCM5mKwUY7R\nyvbtNl59lUPXGWyb4ehRhqNHOX72M2DzZhvbttmYnvbHgYVbOIlhAOUyr+mQHZxOsjx74OwTaanX\naCmn66PfDqKZQdwyWu3pBmGlAcFR+TUPii+K5E4IISM1V+Kee+7BT37yE3zzm99EYCWX9RY4Z+C8\nfw2ZovCmn+sB2ub1AW3z+sBtmzdsAG67zUQyKTuM7s9jy2EbvKsMwQsSCeDKK20kEs3rs9p1aN1m\nRWFgjEFRGFRV3haPSyu5uTnm6hqwuAgsLDDYdrvrhaoCF15o47zzbBw5wvHyy1J+AQBvvMHxxhvy\n95dfVnDttSbe8x4Lb36zjdZ/c3K9nP9P8jbOZeHOGGt7fCPOfYzJ5zb+f3Nuc5anqkAgwGrhJDJh\nUD7HrZM8P9/cSX7+eaUpqbBSAXR9+J+LlWh8nxVF1PZlL/uvlcb96Sy39b1pRL4O61hbOO+j89l1\ne6/7Xx5r295oFIjF+qttOAeqVXjy3WaJKRw5+2pcnTBdl+X23Wsk/1IGh7/wQ5zzd9citXO2ffkK\nr/0N4C7P9wpfFMmpVAqKoiDbMuWYy+UwPT3d9bn3338/7rvvPjzwwAM477zz+n7tdDraUyHeiURi\nMFH4JELbvD6gbV4ftG5zN09WQBZC4TCQTAZ6TvlaLakUsG1b7+uQyQDf+Q5w442oWbq54WxzOg1M\nTQHpdKS2nFQK+PznZZfLjeeeA/7zfwbe+lb3faVpQCikYOdO4D/9J2BuDjh4UF5ee00+5uWXOb70\npQC+9CXg7LOB664Drr8euOwy2cGtVGQBHgrJ7QRkUaqqTnpg522zbfmYUEhB48ySonAEg7zr8mxb\nFldunWTTBDZvlgW1UxC/9a2oyUgKBXkAsXlzZOifi15JJMIoFuW+DAZ723+tOPszEACSSVkytb43\nTY8PbMH+y/5v2KEUwi4aYtOUz08mNaRS7u91IyEzAE1TEAoFYIbbm4CmWU9gbNzeTsvrRuu69cLC\ngvt3pVqVy6tWA6hU3O6PgDEFiUQEqVR7t1kPLkLN5xENBl3vL2QjOHUqgBk1gpjL/V7hiyJZ0zTs\n2bMHe/fuxTvf+U4Asou8d+9efOQjH+n4vPvuuw9f//rXcf/992P37t2reu1crrjqTnIiEcbiYhmW\ntUajiFqgbaZtXqvQNve+zfPzDOWyivl5E6FQ526THPADkknvAyg6rUM2y3DsmIpstlP3qnmbFYXh\nzW9WoSgm8vnmx3caugsGGRgLQlGstpARQHZdG+eMIhFZTL71rcCpU8Bzz8nu629+w2GaDEeOAHff\nLS8zMwLvepeJyy6zUCopiEbrQSaVCmCaCkyzux2bacpLpWJDVcXy/zcNlmWjWrVQLouOy3NCVmTH\ntb5M5zrnYrk7La+rql3bz3I9Gebnja6fi1HQ+D7PzwtUqxoA0dP+a8XZn7ouMD8v9STVqoZKpT1k\nxqHIk4AuALTrTyoVOTjq7Kf5edZ1eWpFh2FYqFR0lFX35ek6B6A2bW+n5XUbBGxdt5VYXAS++EUN\nc3PtNZSjeT961H3AN5Q3cNmrNmbeKCFwVrvf8eJiCYZhYXGxhEC+/f7sGyUcedmC8UYJMzOr80t2\nK75b8UWRDAA333wz/u7v/g4XXHAB3vzmN+PBBx9EpVLB9ddfDwD4zGc+g02bNuGv//qvAQD33nsv\nvvrVr+LLX/4ytmzZUutCRyIRRCKRnl/XtgVse/VfaMuyYZrr45+qA23z+oC2eX3Q7zZbFltOX7Nh\nmp3/dp4+PbwBv07r0Ou6Odvc6+ObnysrLPm/o7/1DoeBHTts/P3fVxEMCvz0pyoef1zFL36holxm\nyGYZHn5Yw8MPa1BVgbPOsnH++TbOOceGbcsCXAjR1YtZ3scgRPv/tsbb3JYnr3dvGtUfz1yWx/ra\nl8PGsmxYlqglBvay/1pp3FbnYNJZ3mqiulv3k2WxrsuT6y061ipyecJ1e92WFy1mOg4C9vseLi3J\nz2wn/XO3sznFShS/DlyFN9lR178/cjsELEvU7mfZLII//B6q117vev8w8E2R/O53vxv5fB5f/epX\nkc1mcf755+O+++5DOp0GAJw8eRJKw/mfb33rWzBNE3fccUfTcj796U/jL//yL0e67gRBEMTo8EOa\nX6XCUCj09/qNtlzJJHDjjSZuvNFEqQQ88YQsmH/6UxXz8wymyXDokIJDhxQoisAZZ9gwDAZVFehz\n9Gbdo+v1YctO3d9OrDW7u2GwmrTAYjyG30Svxk2RCoDeitx8xsKpn+Wx8TILQlFQjMxCDDkG0jdF\nMgB86EMfwoc+9CHX+x566KGm6//2b/82ilUiCIIgfIaT5jcoigJMT3dP1WvF6ZpVqwz5vPtp5nye\nIZVyP82cTtttXbdIBHj3u028+90mDAN4/HEV//iPAbz+OkepxGBZDMeOyZV84w2GeByYnraX3Sn6\n2uR1R7kMvPQSh6LI96tQYH29344/tNk584LoQLXa2SawVJL3zc0xnDrV/j2qFNqf0+iIYc3O4tcX\n347z0gaA4R0s+6pIJgiCIPxNOi1wyy0Gkkl/nFIfNfE4cOmlFt7/fhOzs+37IJNheOwxDTfcYLje\nv1JYg6YBb3+7hT/6IxvvfKeJQoHh5Zc5XnyRY2GBA2BYWgKWlhQcOSK76um0jVRK9D2otR4Ih4Gd\nO21wbqNcZgiH+wvBMQygWGR9d6C9ohiewa8v+gTKIZ9MQ/ZItQrs3augVHKX7+i6lGt84xsa4i4J\n2RssFe/yQQefimSCIAiiZ2Ra39ookPtJ7mskGJT7oJPWOhoVXe/vFcaAzZsFNm+2cPHFFn72MxXl\nMrCwwFEsyuKjWGQoFhUcPw4AsgBUVTmElUoJTE3Jjnm1Km8TAn1ZoK0FAgF50TR56VeuMuQz+l2x\nFQ3FqD/TALthVQyEFnOwg0mwQPtRiarKAcpEQnpvN1KpMGQyHJUKw9wcg7ncaV6YYzAMeZsOhmp1\n+NtBRTJBEAThS/wQgd3KaiQaXsCYY88lcNZZFqpV6R6Qy3EsLgIAA8Bq4SeHDrWuIMd3vhOAqgok\nEgKRiLRti0RktzUYlO4V/Qy1TRqtMdy9YBiOu8Vw1mmtEqtk8cHcf8ePttyGpYB7UqCuAy+8wGEY\nzUdtpgkopSlMT12N/EMpWBGpKQrlNVxylOGxezXkQwG8/jrDn/2ZgY1dEvsGhYpkgiAIwpf0G4E9\nioG+mRmBj31sNHnMctBPbktr0h9jslifnrZqkgDpXyw7bKGQ02VuLUDYcnEtr8/Pt78u5/IgQFXl\nQQHn9XWIRjGRhbRptsdw94JlyS78q69ylMv9ew8TnbFt+RkPhZoPgg0DqCCGpT+6AomIgDPYp5o2\nVBWIx21UVAHb5kOPRqcimSAIglgT9DvQl8sBTz/N8d73YqjdqH4Jh6XOOJeTp5wBOYCm6/J3J8wj\nFKpLAUIheUkk5GDhpZdaCAYB22Z4/fUAfvELGzt2yGJjcVEOsZ0+LTvPrbZvti0TBesFCFt+3vI1\nJouahQU5oBiPCwQCAgDDsWMMU1Oio8/0uFDV9hjuXjAMoFBg2L7dpgJ5SLhJYCxLHpBFG6yMeVF+\n3iMRIBUVOO88G8sGaEODimSCIAjCcyZhwM+yWM09YpgT8v2SSAB33qk3WcZlMgx33x2o7c/nn1ew\ne7fVVEQ4qGrd9UJV5fLCYeDcc21s2CCfXygAv/ylilBIBoTouuw8nzwpZRu2XU/as+3mIloI2bV+\n7TVWSxF0eOIJWVbMzto480xpXXfGGQJnnimvn3mmvD49LUaujVaU1WmSncS9tYBfBgEVYSBtzmNR\nSaGxFHXOlsizI81nLSwjhqciV0EYMVSK8sAxk2n+EK00GNsvVCQTBEEQnjPMAT8/apW9JpGQXeFG\nwmEps3ACJjoFYzhFBiCHoxoTAFthrD7QpmkCCwsMmtasuTZNAV2XUhPbljZc5TJDLCYLmcVF6evc\nSCbDkckATz/trm0IhQTOOEMW0U7h3Phzyxb/daMd5AHF6p5bLI5X3+yXQcCkmcV75u/Fo8mPo4JN\nAGSB/NprDNWqHKbdt09pchWxrBQq1asReloWz7ouDxwbO/zptI0779Q9K5SpSCYIgiAmin61yqNk\nWIN9jRKMcpmhUmFYWODQ9e7ezIzJjnAwKFyjunuBMbldiYQspB25x5VXSv23EMDcHPD66xzveY+0\nrXvtNY4TJ+o/T51iTbKOSoXh0CGGQ4c6Z0TPzNS70Y0/nWJ6Zmb03WjHdzkUYqvqLuu6jH7uduCy\nFqhqMfwmehXKvPeUESnxYbXY8FAIbc4XTmhJrJzBn8z/KzKh62GlZgDIAzfn+9F6gLlaqEgmCIIg\n1iXVqgwFqVa9K7SHNdjXKMFo9WLu5s2sKBzVqobPfc4emmSAMVnQpFLAn/yJ5XrgousyCOXECY7X\nXmv+eeIEw/HjvM1TN5vlyGaB/fvdjziCwcZudL0rvW0bsGcP+k6B6wXHdzkWs12lLitRLAKFAm/q\nfk5yZ7oT1UAcv4lejbAi0O/HjnP5mXJs+9wIGiZmRQblkAmr9j6LmobfK6hIJgiCINYlwSBDMCgQ\nDPpLk9yJRglGqxdzJ29mVRWoVDoXG6MiEADOOkva17khBLCwALz2WmMR3dyNPnmyuRtdrTIcPsxw\n+HCnbnQU6bQNIYBYTHpLRyJy8CsYFLUirN9udCAgB8pWW4Q3FrVedaZLJfhWnjLJUJFMEARBEOuA\nbpZygPzdGdhrxLaHv26MAckkkEzauOACAGgvpg1j5W50q+VdLicL6Hzeud76unLIMRAQTdps53fG\nBAyjfZ94hRed6WKRIxIZY+LJEFCFgZSRQ1lJwuLjO8KjIpkgCILwJf06ZIxioC+bZfjhD1Vce62J\nmRn/d58B2TmdnhbIZllXSzlVrReDrQOBMiFtvNuracC2bQLbtnXuRi8uAm+8oWJ+PoyDB6t44QWG\nn/9cJhXm8wymCTiWdvI5DJUKVjxN/+qrCp54QsX0tECxCCQSHIkEEIkIRCIC0ajzu+zqBwK9d6gH\n7UwP2yt4HKTtLP6v01/H/9hyG+Y6hJGMAiqSCYIgCF/Sr0NGvwN9kYjAtm2yyOmV1UZZe0m/w4FT\nU8Df/q2BpaX6drpZyp19toVnnlEQCrVbnjkBI36GMbmt09M2Uing8stNnDghUCoxBAI2fvc7aXkH\nyICQapXV5Aq6Lg8anHS9Vu9ooDmcZW6u+7ooiliWdjQX0aoqO/P79inYuVNKQUbRqV9rmAZQKskD\nnGH2malIJgiCINYl0SiwdevqTnOPk9UMBzpdz0bcLOUk7dZyllXvMrfavU0SzkCY9JGub28jQtQj\nrMtlaXE3MwNccYWJuTmOJ59UYJqy0JZJh+37w7IYlpaApSX3fbVvX738Ykza3UWjjR3pelfaKbad\n31c6WFntIOAohwDLXHoel3gMnf1NmlFsAwkrv+ytjJEcYFCRTBAEQRDrDDdLuaUlDl2XQSKm2Zzo\n5/b81VrK+R3GpLzEieUWAti+3cYnPykPTD73uSBSKbsmjzBN6R1dLMpwmlJJdjmLRSxfr/8urd/a\nw1nKZakZz2ZXXr9gsF4wBwKyw/+VrwCbN6swTRv793NEo6yngrqRUdrTlZQ4nopcDQCI9zg0mzSz\nuO7UvfjBxttQGuK6NUJFMkEQBDFRTEKa3yhZjTezm6XcNdeYePhhWXgdOdI50Q9oTvVb7ziphtJ5\npPtncnEROHmS46abDNg28MorHI8+qi0PCEo5R7nsFNztaYcAlm0LWdMQ4he/CADtb4iqCoTD8qAm\nEqn/Li/O7fKnacohQD/EbxdZDL+LX4Wy4i7ULvEYntSuwkYt5rLV3kFFMkEQBDFReJXmFwgI7Nlj\nIxDwrtgex2Dfar2ZWy3lpqdl4WTb6JroBzSn+gFoitAmOsO5lLm86U02Nm4UOP98G3/4g9LUmXYQ\noi7pcOtOl0pSzlEoSGu8kkt71TS7yz6a100e+Bw8yLFpk7QUnJ0VmJmxG34X2LBBflaAztKOYlF+\nPtQOVabjGNLpwK7I4/h94mpoivsHsKTE8evA1XiXZiIxRPtGKpIJgiCIdYmuMxw4wPHHf+ydT7If\nBvtWSygkJRgnTvCmRD+Hbsl+gIwEDoepu+8VTkhLKCQwPQ24fUYLBWB+nuPLX9ZgWUU8+yxw111B\nqKoTIc5aimtn4K29aLZt2cV+4QUFL7yw0roJTE1JzXYgUPecduzzGJMHjIEAc3X6sCxZYKdS/v68\nUJFMEARBEATicSnBOHaMuyb4dUv2A+Qp+0RilGtMNCIHUWW3160z3YhloaE7LYvnfJ4hn2fYudPG\n0pKU4WQyDHNzrE32IQTD/Lz8vVrtrUutabKzrGkCnDuWfVID7xxc2Xb/4S7DhIpkgiAIguiRaFTg\nHe+wEI36uwPWD42a5kRCSlk6Jfh1ut3vVCqsLTylFybZyaMbiiIPiuLxuo66UADyeY6///tq0/tr\n29JeMZNhyGbrxfPRoxw//7kKyxLQ9XqxbVnuXWppuwe0Di6ePt36aFlEF4sMmiaWC2vgFJ+GorwX\nC1asJtcoleR6A1LiUS7LgznAm4M2KpIJgiCINcFqwkcc7WSvxGLAO94xgVqKLqxW0zwJOC4eJ07w\nmlVboxTGsmSQSjcnj1DI/x7Rw4Rz+Rlp1difOsWwtMSautZCSBlFJsPw5JNKrWNsGAyG4aQ8spqm\n3c2PGmDLUhH5e50IDuOPkVwSYEy+zv79Ss3TW3pcS//vcFjKf+68Ux+oUKYimSAIglgT9DvQNz/P\nsH+/gvl5E2eeOTmd0UlM/RsXjovHsWO8Fp7S6NhRLMoglW5OHtWqQLHYq5vv+oYx6UEdjQpUKqxm\no+dcJAKWJbvKQshOMWOyaC4UZFEshFxGqcSWB0kdpw8Z/BKLyUI5EpHyDaB+sJtMyvsce0NnOHU1\nUJFMEARBEBPEsIcDV2Mp52ccCUk4jFr6nYMQsshqvb0RIVYXzrGe0TR5ZicYdB/ydApiy5LviabJ\n2954g9c0yZs2CZw6VferzuelbKZSkfprJxg+8q5QAAAcg0lEQVSmcfmWJe8TQqwYNd4LVCQTBEEQ\nBFFjLcsviNGhKLKAbY04d+AcWFiQiYWKguXuMqsVyXNz0lpQUWRB7Nxu2wylRRMzfA7MTALa8EpZ\nKpIJgiCIdYkzyGWa3i1zHIN9JL/oHennXN9HThRzt04xeUAPB86xLH+pd5KrVdlJFkKezTDN5uTD\nalUWyaow8Cn8N/ybfRsWsWlo60hFMkEQBLEukUEZrGNgxmoYx2DfqLyZJ1mG0RjD3Xga3km3O3RI\nwaZN7tIAoO4B7RTMrcV2r1DB3Uxrt5lz1Ib9NE3+3qhnDoflAc2iHkY1PPzIRyqSCYIgiHVJY/gB\nsTKTLMNojOFuJJNheOAB+QG4+WZ3/2eg0U7Mvdh2WClwBaDQlW44Q3rSEUNebzz4C4UEikUGAYZn\njPNhGKgF3ji2cF5CRTJBEARB9IhhSFeMZJKK60mjMYa7kUhEgDHWk/9zp2LbYaXAFcDdv5c607Ig\nrlQAx/atVZMMyOKZMQEhGH5vvQXxOYa5Jek8Yll1CVWnOOx+oSKZIAiCIHokl2N48EENH/2oMXGB\nGp1Yz5pmRZHRyAsLvRebnYpth34CVzrJQBx66UzPzAhEIrLInGQ4l37Vsghu1yQ3UigwHBbbcXFy\nERvjcsNlV5lB0+CZhIqKZIIgCGJdkkwKXHyx3XP4iF/wejhwVJpmPzIzI/Dnf27iwQfHc1rAi850\nPM4wNRVAPj/MNR0NK2mSAan7lyl7DJlSHFun60cHJLcgCIIgCA/QtLpH6ySxFlP/1jODdqZVde1I\nLnpBVYFAQEZhD/vAjiJkCIIgCIKokc0y3H+/hmx2fRVfxOSQSgkkEjY2bx7uWSAqkgmCIIh1yTA8\njQ1DniI3RmgCQfILYr3BuYy/5kOuYkluQRAEQaxLhiFbGMdgH8kvBmOS/Z87sRq3jLXklOEVVCQT\nBEEQBLEia9UFw0v/53EX3IO6ZZCHczNUJBMEQRBEj4wjdtovkAxjZcYduDKoW4abh/N6hopkgiAI\nguiRtShtWM+Fv99ZTWfaSx/nXnCTdhSL9WAPN0xzMqQdVCQTBEEQxAThderfWiz8e8XvEpJxd6a7\n0U3asbQELCww2LYcsHMjFJI2bn6GimSCIAiC8IhRdGXXYurfuCAJyerpJu04eJDjlVc4LrzQwuys\n+/OrVYF9+7qXobbtHhBiWfKi6/V0PcOQl2JR3qbr/W5RO1QkEwRBEIRHrIWuLMkviF7pJO3IZORZ\nDsYA0SEj2jCaJRmGUY/WZkz+XqkAnDOwljpcCHl/JgMoirzTsuTynn9egRAC1SpDuTzY9lGRTBAE\nQRATDMkvCL8RCgmEw7JQzefdXTZOnmQ1mYZlyducrnEwCKiqQCjEoKrtmmynIJ6dFdA0UVtmpcKw\ne7cFIQQKBY5weLDtoCKZIAiCICYYkl8QfiMeBy691ML732+6umhkMgwPPKAhFhNIJmVRXSoBv/+9\ngmAQCAZFravsBmNyqDEQQNOBoWUB0SjJLQiCIAhiXTIuOcRalWGUSsC3vqXhwx82fDm85yWj9HEO\nBtHVRWNqSgAQqFY5qlUGXQdsm8GyBCoVhkJBdouBuu64EVUFOB/u+0VFMkEQBEFMEOOSQ6xVGYZt\ny4ANL4b3yC2jd4JB4PbbDcTj8nomw3D33QGEQoBtCxw4oIBzgWgUrjIizkVtgA8Yjq0cFckEQRAE\nsY7xWtO8niG3jP6Ix1HrNIfDAmecIS3ldF3uQ6ezzLnct5UKEArJjrhlsTYf5nBYQFVFR3/mfqEi\nmSAIgiAmmEFlEOtZ0xyNCrztbRb+8Icx5UivgN87051YbQiKYynnaJZPnmTYtEl2k4tF6Vyxe7eF\naNR9GaoqEAx2DjHpFyqSCYIgCGKCGVQGsVa1xr0QiwGXXGLjhRf8WSRPamd6tbKORku5aFR2jSMR\nURvG0zRRuz4KqEgmCIIgiHVMa5FN8guCkPBxrwBBEARBEP4hl2P4xjc05HL+jgwmJpdRumwMAnWS\nCYIgCIKosZ7lF8Ro8JPLRjeok0wQBEEQRA1HfhGLjXtNRgMdFPgPRQFSKdEWRz1qqEgmCIIgCGLd\n4uVBgd8L7myW4f77NWSz/pbSzMwI/NmfGQiFxrseJLcgCIIgCILwAL8HrkyqWwYAcC6dLvgI27tU\nJBMEQRAEQfgQv3emR0G5zADI7T/vPBu2DRQKvTxncKhIJgiCIAiC8CF+70x3wosQlHBYIJ2WCXyV\nSnPRaxgySjyV6mxTmE7bCIcHO7igIpkgCIIgCILwDC9kHY0JfK1kMgyPPabhhhsMzM66F8LhsEAi\nsfrXB6hIJgiCIAiCIHxIYwJfK9GowOysGGqUOrlbEARBEARBECNjUlw2qEgmCIIgCIIgRsakuGxQ\nkUwQBEEQBLEOmBS3DL90mkmTTBAEQRAEsQ6YFLcMv3SaqZNMEARBEARB+JpxdJepSCYIgiAIgiA8\nYxiyjsbusqIA09MCiuLZ4l0huQVBEARBEAThGcOWdczMCHzsY8bQlu9AnWSCIAiCIAiCaIGKZIIg\nCIIgCGJkTIrLBsktCIIgCIIgiJGxkhzDrYgeR2FNRTJBEARBEAThG9yK6HHY15HcgiAIgiAIgiBa\noCKZIAiCIAiCIFqgIpkgCIIgCIIgWvBVkfzII4/gmmuuwYUXXogbb7wRzzzzTNfH/+QnP8G73vUu\nXHjhhXjf+96Hf//3fx/RmhIEQRAEQRDjYFTpe74pkh9//HF84QtfwB133IHvf//72LVrF2699Vbk\ncjnXxz/99NP4m7/5G9x44434wQ9+gD/90z/Fpz/9abzyyisjXnOCIAiCIAhiVDSm7w0T3xTJDzzw\nAD7wgQ/guuuuw7nnnovPfvazCIVC+O53v+v6+IceeghXXHEFbrnlFpxzzjm44447sGfPHnzzm98c\n8ZoTBEEQBEEQo2JUdnC+KJINw8CBAwdw6aWX1m5jjOGyyy7D/v37XZ+zf/9+XHbZZU23XX755R0f\nTxAEQRAEQUw+jh1cLDbc1/FFkZzP52FZFmZmZppun56eRjabdX1OJpPp6/EEQRAEQRAE0Su+DhMR\nQoCx3kXZQvTfduecgfP+hd+Kwpt+rgdom9cHtM3rA9rm9QFt89pnvW3vKPFFkZxKpaAoSlsXOJfL\nYXp62vU5s7Ozro9v7S6vxPT0YL36RCI80PMnEdrm9QFt8/qAtnl9QNu89llv2zsKfHHYoWka9uzZ\ng71799ZuE0Jg7969uPjii12fc9FFFzU9HgCefPJJXHTRRUNdV4IgCIIgCGLt44siGQBuvvlmfOc7\n38EPfvADHDp0CP/wD/+ASqWC66+/HgDwmc98Bl/+8pdrj7/pppvwq1/9Ct/4xjdw+PBh/NM//RMO\nHDiAD3/4w+PaBOL/b+/+w2q8/z+AP48fdaoRlR/RJhqdlChTi4v5sVm0/Igwll9ZY5nGNGt+jBi2\ncWUWthmF/EhR87NNfm2Na7bLOAwhK6FOilKHOh29v3+4dj46on3pnFun5+O6unTu+32O5+tKt9d9\n3+/7vomIiIhMxHMx3QIABg4ciNu3b2PlypXIz8+Hi4sLfvjhB9jY2AAAcnNzUb9+fd14Dw8PLF++\nHFFRUYiKikKbNm2wevVqvPzyy1KVQEREREQmQiae5mo3IiIiIiIT9txMtyAiIiIiel6wSSYiIiIi\n0sMmmYiIiIhID5tkIiIiIiI9bJKJiIiIiPSwSSYiIiIi0sMmmYiIiIhID5tkomoUFRVhyZIluHTp\nktRRiIiIyEiemyfuPe9UKhXOnz+PvLw8lJaWQi6Xo3nz5nBxcUGLFi2kjkcGVFJSgo0bN8Lb2xvt\n27eXOo5BXb16FX/99Rfu3LkDGxsbeHl5oVmzZlLHqlHFxcVo2LAh5HK5bllRURHOnTuH+/fvw9nZ\n2eRq1ldeXo6ysjKYm5ujYcOGUschAysvL0dGRgYcHBzwwgsvSB3H4IQQUKvVdaJWMiw+ca8aJ0+e\nxFdffYVTp04BePDL9zCZTIbOnTsjPDwcXbt2lSJijbt8+TK+//57ZGRkoGnTpvDz88OQIUMgk8kq\njdu1axdmzZqF8+fPS5S0Zvj7+z9xvVarxT///INWrVrBysoKMpkMu3btMlI6w4iLi0Nubi5mzpwJ\nANBoNIiIiMC+ffsq/Rtv0KABJk2ahA8//FCqqDWmtLQUH330EQ4dOoR69eph7NixmDVrFjZv3oxl\ny5ahtLQUAFCvXj0MGzYM8+fPR716pnGyTavVIikpCfv378e5c+dQVFSkW2dtbQ0XFxcMGDAAQ4cO\nNZmm+fjx47hy5QqaNm2KXr16VdkwnTp1CvHx8ViyZIkECY3n+vXreP3117Fq1Sr07dtX6jg14uLF\niygoKICPj49uWVpaGtasWQOlUgmtVgtzc3O8+uqrmDFjBjp06CBh2pqTmpqKpKQkyOVyjBs3Du7u\n7sjOzkZUVBROnjwJrVYLV1dXhISEmExPIiUeSX6CY8eOISQkBK1atcL06dPRqVMnNG/eHGZmZtBo\nNMjLy8Pp06eRlJSEcePG4fvvv0f37t2ljv1MMjMzERgYCK1Wi/bt2+PSpUuIiIhAQkICvv76a5M8\nwnbp0iVYWlrC1dW1yvUajQYAYGVlhSZNmhgzmsHEx8ejT58+uteLFy/G3r17MXLkSPj7+8PGxgZ5\neXlISEjAd999B1tbWwQFBUmY+NmtW7cOBw8exJAhQ2BnZ4dt27ZBLpfj22+/xZAhQ9CvXz+Ul5dj\nz549SEhIgIODA0JCQqSO/cxu3bqF4OBgnD9/Ho6OjujVqxeaNWsGc3NzlJWV4ebNm1AqlZg3bx62\nbNmC9evXw8bGRurYT02j0eDdd9/FiRMndDt8jRo1wsyZMzFy5MhKY69evYrk5ORa3yTHxMQ8cX1R\nURGEEEhNTUVWVhYAYMKECcaIZjCLFy+Gvb29rknev38/ZsyYgSZNmsDf3x+2trZQqVQ4dOgQRo4c\nibi4uMdu42uLo0ePYurUqbC0tISlpSUOHTqE2NhYhIaGory8HF27doVWq8Uff/yB3377DTExMejW\nrZvUsWs3QY8VGBgoRo0aJcrKyp44rqysTIwcOVIEBgYaKZnhhIWFiR49eojMzEzdsuTkZNG1a1fR\np08fkZGRoVv+448/CoVCIUXMGrVq1SrRpUsXMX78eJGenv7I+uzsbOHs7CxSU1MlSGcYXbp0Edu3\nbxdCCFFRUSG6dOkiFi1aVOXYadOmif79+xsznkH4+vqKiIgI3eu9e/cKhUIhZs+e/cjYSZMmCV9f\nX2PGM5jw8HDh5eUljh079sRxx44dE15eXuLjjz82UjLDWL16tXBxcRHR0dEiPT1dpKWlifHjxwuF\nQiHmzp0r7t+/rxtrKtswZ2dnoVAohLOz82O/Hl5vCjV7e3uLjRs36l6//vrrYsSIEUKtVlcaV1BQ\nIN58800xYcIEY0esce+8844YMmSIKC4uFkIIMX/+fOHj4yMGDRokCgsLdeNycnLEa6+9JsaPHy9V\nVJNhGucSDSQ9PR0BAQEwMzN74jgzMzMEBAQgPT3dSMkM5/Tp03jnnXfQpk0b3bLBgwcjPj4e9erV\nw+jRo6FUKiVMWPPef/99pKSkoEmTJggICMCCBQtQWFioW68/zcQUmJmZ4e7duwAeTEO4d+8evL29\nqxzr7e2NGzduGDOeQeTk5MDDw0P32tPTE0II9O7d+5Gxffr0wbVr14yYznCOHj2K4ODgSqelq+Lj\n44OJEyfiyJEjxglmIPv27cPQoUMRGhqKDh06oEePHoiJiUFYWBgSEhIwdepU3dkhU9GuXTvI5XKE\nhYUhNTUVBw8erPQVFxcHIQQWLlyIgwcPIjU1VerIz+zevXuwsLDQfZ+dnY2xY8fC0tKy0jgbGxuM\nGjUKf/31lxQxa9TFixcxdOhQ3dShoKAg3Lp1C+PHj4e1tbVuXMuWLfH222+b3P/VUmCT/ATW1ta6\nU1PVycrKQuPGjQ2cyPAKCwthZ2f3yHInJyfEx8ejZcuWGDduHH799VcJ0hlOixYtEBUVhZiYGJw8\neRL9+/dHbGwstFqt1NEMwsPDA/v37wcAWFhYwNHRESdOnKhy7B9//IHmzZsbM55BWFtbV9r5+ff7\nh5c9vM5UptZoNBpYWVn9p7FWVla1voG8du0aunTp8sjyyZMnY/ny5fj1118xYcIEFBcXS5DOMHbv\n3o1p06Zh/fr1mDlzJgoKCtC6dWvdl729PYAHDeO/y2q7tm3b6q4VksvlsLS0RElJSZVjS0pK0KBB\n7Z9dWlFRAXNzc93rf7+v6vebFy3WDDbJT+Dv74/Y2FjExsZCrVZXOUatViMmJgYbNmzAoEGDjJyw\n5rVu3fqxR8RtbW1187qmTJmClJQUI6czvG7duiEpKQlhYWFYs2YN/Pz8cOTIEZM7mvzBBx/g77//\nxrRp0/DPP//gs88+Q0JCAiIjI/Hnn38iMzMTv//+O8LDw5GSkoKAgACpIz8zT09PbNu2DRkZGSgs\nLMTKlSshl8vx008/IS8vTzcuKysLmzdvRseOHSVMW3M8PT2xceNGqFSqJ45TqVTYuHFjrb/Yx9ra\nGrdu3apy3cCBA/Htt9/i3LlzGDNmTKWfe21Wv359TJgwASkpKWjbti1GjRqF8PDwan/mtdmIESOQ\nnJyMgwcPQiaTISgoCN988w3OnDlTadzx48cRGxtb7ZmU2qBdu3aVzvQcPny40p8P+/nnnyudEaan\nw7tbPIFGo8GsWbOwf/9+NGjQAI6OjmjWrJnuwr2bN28iMzMTWq0Wvr6++PLLL6udmvG8i4yMxIED\nB3D48OHH7nlrNBqEhYXh8OHDkMlktf7uFo9TWFiIqKgoJCQkQAiB6Oho9OvXT+pYNSYtLQ2ffPIJ\nCgoK8MILL0Cr1eru8PAvIQSGDRuGyMhI1K9fX6KkNSMrKwvDhw/XHW0SQiAsLAytW7fGvHnz0LFj\nR1RUVODcuXOoqKjA1q1b0alTJ4lTP7uMjAyMGTMGZWVl6N27N9zc3B7Zjp09exZHjhyBXC5HXFwc\nnJycpI791KZMmYLbt29j27Ztjx2jVCoREhKC4uJiVFRUmNw2TKlUYuHChbh8+TKCg4MxYMAA+Pn5\nYdWqVSazDRNCICIiAsnJyejcuTM6deqEPXv2oKioCA4ODrC1tUVeXh5ycnJgZ2eHrVu3wsHBQerY\nz2Tfvn2YMWMG3N3dYWNjg7S0NHTr1g1t27ZFTk4O+vbti4qKCuzbtw8nTpzAnDlzMGbMGKlj12ps\nkv8DpVKJlJQUXLhwATdv3tTdJ7lZs2ZQKBTw9fWFu7u71DFrxJkzZ7B27VpMnDixylOW/6qoqMCS\nJUtw4cIFbNq0yYgJjS8rKwsqlQrt27dH06ZNpY5To0pKSrB7924cP34cWVlZuHv3ru4e4K6urhgw\nYABcXFykjlljcnNzkZycDLVaDS8vL/Ts2RMAsHfvXmzduhX5+flwdHTEpEmT8Morr0ictuaoVCqs\nWbMGBw4cQEFBwSPrbWxs0L9/f0yePBktW7aUIGHN2blzJz799FNs27btiduwjIwMBAcH6+6Bb4p2\n7NiBqKgolJeX486dOya3ow88aBw3bNgApVL5yC1a7ezsMHDgQLz33nuwtbWVKGHN2rRpE+Li4nTb\nsDlz5kAul2PatGlIS0sD8L/bWC5YsMBkbmMpFTbJRER1iEqlemRn35QeiCSEwL1799CwYcNq7/ms\nVqtRWFhoEnN0H6ekpATr1q1Dbm4uxo4da1I7vQ8rKSlBdnY21Gq1bkffFK6l+P/Izs5GQUEBXnrp\npVp9G8fnCZtkIiIC8KDRuHPnDlq1aiV1FKOoa/UCrLmuqIs1GwKPwxMREYAHp3JN7XT8k9S1egHW\nXFfUxZoNgU0yEREREZGe2n/jQCIieqzk5OT/PNYULmCra/UCrLk6rJmeFuckExGZMIVCAZlM9siV\n/49T22/rWNfqBVjzf8Ga6WnwSDIRkQmztraGQqFAeHh4tWMTExMRHx9vhFSGU9fqBVhzdVgzPS02\nyUREJqxTp064cuUK3Nzcqh1rCo+br2v1Aqy5OqyZnhYv3CMiMmHu7u64ceNGlQ8R0de4cWPY29sb\nIZXh1LV6AdZcHdZMT4tzkomITNjdu3dx+/ZtNG/evNqHa5iCulYvwJpZMxkKm2QiIiIiIj2cbkFE\nREREpIdNMhERERGRHjbJRERERER62CQTEREREelhk0xEREREpIcPEyEiqmWio6MRHR0N4MGjZ62s\nrGBvbw8vLy+MHj0aTk5OEickIqr92CQTEdVCFhYW2LBhAwBArVYjPT0d27dvx/bt27F48WL4+/tL\nnJCIqHZjk0xEVAvJZDK4u7vrXvv4+GD06NEICQnB7Nmz4eHhAQcHBwkTEhHVbpyTTERkIszMzDB3\n7lxoNBokJCQAAJKTkzF69Gh4e3vDy8sLQUFBUCqVuvekp6dDoVDg+PHjlT6roqICPXv2xLJlywAA\nKpUKYWFh6NGjB9zd3dGvXz8sXbrUeMURERkZjyQTEZkQJycntGjRAqdOnQIAXL9+HUOHDsWLL76I\n8vJy7NmzB0FBQdi1axfatGkDZ2dndO7cGYmJifDx8dF9zi+//IL8/HwMHz4cABAeHo78/HzMnTsX\ntra2uHHjBs6ePStJjURExsAmmYjIxNjb2yM/Px8AEBoaqlsuhED37t2hVCqxc+dOTJ8+HQAQGBiI\nRYsWobi4GI0aNQIA7Ny5Ex4eHnB0dAQAnDlzBjNnzoSvr6/u8wYPHmykioiIjI/TLYiITIwQAjKZ\nDACQkZGB0NBQ9OjRAy4uLnB1dUVmZiYyMzN14/38/FC/fn3s3r0bAHD79m0cPnwYgYGBujGurq5Y\nt24dtm7diqtXrxq1HiIiKbBJJiIyMbm5ubCzs4NarcbEiRORk5ODiIgIbNmyBTt27ICzszPKysp0\n4y0sLODn54fExEQAwI8//ggzM7NKR41XrFgBHx8frFixAv3798eAAQNw4MABo9dGRGQsbJKJiEzI\npUuXoFKp4OnpiVOnTiEvLw9Lly7FW2+9BU9PT7i6uqK4uPiR940YMQLnz5/HhQsXkJSUhIEDB8LC\nwkK33s7ODp9//jl+//13JCYmol27dpg+fTquXbtmzPKIiIyGTTIRkYnQaDRYuHAhzM3NMXz4cJSW\nlgIAGjT43+UnJ0+exPXr1x95r5ubGxQKBT7//HNcvHgRAQEBj/173NzcEBYWBq1Wy6kXRGSyeOEe\nEVEtJITA6dOnAQB3797VPUzk2rVrWLp0KVq1agVzc3NYWFhgwYIFCAkJQW5uLqKjo9GyZcsqPzMw\nMBCRkZFwcnKCh4eHbnlJSQmCg4MxaNAgtGvXDhqNBps2bYK1tTU6duxolHqJiIyNTTIRUS1UWlqK\nUaNGAQAsLS3RunVrdO/eHWPGjEHbtm0BALa2tli5ciW++OILhIaGwtHREZGRkVi7dm2Vn/nGG28g\nMjISw4YNq7TczMwMzs7O2Lx5M3JycmBubg43NzesW7cOTZo0MWyhREQSkQkhhNQhiIhIeomJiZg/\nfz6OHj0KW1tbqeMQEUmKR5KJiOq469evIzMzE2vWrIGfnx8bZCIisEkmIqrzoqOjsWfPHnh6emLW\nrFlSxyEiei5wugURERERkR7eAo6IiIiISA+bZCIiIiIiPWySiYiIiIj0sEkmIiIiItLDJpmIiIiI\nSA+bZCIiIiIiPWySiYiIiIj0sEkmIiIiItLDJpmIiIiISM//ARWTdrr6yKh1AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8VNW5///ec08ykAkEEiGERCoCgQK1F2spCHhKc2xrfm2tDbaI4AU9RHqgRkuoAU8ThVPsBY9QlWs1qbU9TfuzpVoltEV78xSLBChYCSFAgkAmySSZ617fP9bsnZnJJEySScJlPq/Xeu3L7L322ntm9rOe2+dRhBAkkEACCSSQQG9hGOoBJJBAAgkkcHkiIUASSCCBBBLoExICJIEEEkgggT4hIUASSCCBBBLoExICJIEEEkgggT4hIUASSCCBBBLoEwZMgCiKsk1RlLOKohzs5nNFUZQfKorynqIoBxRF+chAjSWBBBJIIIH4YyA1kB3AZ3v4PB+4LtjuAzYP4FgSSCCBBBKIMwZMgAgh/gBc6OGQ24BdQuLPgENRlGsGajwJJJBAAgnEF0PpAxkLnAzZrg/uSyCBBBJI4DKAaagHEAsURbkPaeYiKSnphnHjxumfGY7Wo0Q5x4RPX/dhxou58xwECpLCZZihDSEUFKESCO4zYgCjgjCZcHs8Yf2aAR+gAElIFet4HO4xVkycOJGjR492+7nRaCQQCHT7uclkwu/3c91116EoCu3t7dTX15OZmUlDQ4P+uclkQgjB6NGjGTZsWJd+jh49SlZWFsnJyfo+ra+JEycCoKoqBsPQxmkkxpAYQ2IMvcfRo0fPCSFGXfRAIcSANSAHONjNZz8CCkO2/wlcc7E+b7jhBtETqqr+KL76VSFAiBtuEAKmCCCsbWe6KOU28YvppeIX00vF5oxS8eOU+0Upt4lSbhN/SF4gqueUCiEHFtZKg8t0EALEuYjPox0br6YoStQxhbb77rvvov3k5eWJPXv2CCGEeO211+T9pKcLg8EgcnJyhKIo+rZ2fEVFRdhzBsRrr70Wtk/rS0N1dXWP39VgIDGGxBgSY+g9gLdFDO/4oRSDvwIWBaOxbgSahRBn+ttpaqqfykp4+WU4cQLg70Axoda6GVzgZt5hhnMvM5x7+axtLx/1/5mbeYebeYfR7Yc4fPg3KEo03UbiHNABHOhhLOv6ezMREDEQX27duvWix9TU1DBv3jwUReHWW28lPT2dc+fOYbfb2bZtGzt37sTv9+vHt7W1sWLFCiorK/V9WVlZLFq0iOrqanw+H9XV1SxatIisrKwu16usrGTq1KkYjUamTp0a1k8CCSRw+WIgw3grgT8B1yuKUq8oylJFUZYpirIseMhvgPeB94DngAfjef0vfxlqagBeAdYD+4BpALxDNgoCm9upt2TVhQM3Dtwk4WbK2b9123dpcFkPNMZz0HFAT+araPD5fLS2tgKQl5dHfn4+ixYtwul0YjZ3mv28Xi/FxcX69oYNG2hvb2fBggVYLBYWLFhAe3s7GzZsCOu/srKSFStW0NbWBkQXRgkBk0AClycGMgqrUAhxjRDCLITIEkJsFUJsEUJsCX4uhBD/IYSYIISYJoR4O95jGD0a4MvAV5HRwn8HvgcopOLBbXPgtjmwuZuw4+JDKZCJi1TamAZsB3YZDIhvfztq/yeBgngPegjgCfp5/vSnP7FkyRJA+lK0/adOncLn81FfXx92ntfrxeeTviafz4fX6+3Sd3FxMSaTiW3btuF2u9m2bRsmk0kXRpWVlZSUlLBp0ybcbjebNm2ipKQkIUQSSOAywKXtyYkbXgImIhWdh4DxgA3NImTye/AabPhNNmyp6fiMw7CkZLC4tJSvf/vbUFcXtddTgLGHq5b28Nmlih/96EdAuCYzcuRIOjo6wo5bvnw5Ho+HjIwMFEUhIyMDj8fD8uXLw46rr69n586dzJ07F7PZzNy5c9m5c6cujMrKyti6dWvY51u3bqW4uDihlSSQwCWOq0SAADQhrWQfYydf5wyTOVRn50i9nb+05VHjmcDfm6/l783X8o/AFJLaz0FVFWzZAj//OfuRGklBsG0HZiDD2OLt6xhKqKraZd8HH3yg+18MBgOKonDhwgWMRiOVlZV4PB4qKytxOBxcuNBT6k9XHD58mFmzZoXtq6+vp76+flC0koT5LIEE+o7LIow3vvg7eznDXdg4wXREAJaxGTttBIKPQwBuYaPjPSd2twvNl14bbDcHl5lIr8qHBmnkkbP7wUKo815RFH3b7/czf/58hBBYrVZmzpzJn//857Bzs7KyuP3220lLS6Ouro7s7Gyampp0Z/vkyZPZt28fc+fO1c957LHHyMnJ0fdpWklRURGFhYVxuy/NfLZ161ZmzZrFvn37WLp0KUBcr5NAAlcqriINJBIBsrIgOQkauIZ2xU6r0SGbwUGbYseVnoPfZsdtsjNj+vQu+SatweVYBk4Sh15z06ZNA3SVnhGqlURqKJow8Xg8XYQHQEFBAS0tLZw8eRJVVTl58iQtLS0UFEjvUUlJCXfccQe5ubkYjUZyc3Opra0lPz8/TDOor6/n8OHDcb2v7sxnZWVlcb1OAglcqbiKBQgYjZCScvHjrD4X1NVROn06yzKmMwlpxpqK1FbmAGeBSuBOYEQcx/hYHPsaLISagaqqqkhKSuqSOPX0008zdepU3nrrLX1fqJlsx44dYZFbRUVFjBkzJq7jjGY+mzVrVtwF1UAjYYZLYKhwlQqQOsCE2w1aukOycGEPOLEHnAxTnSQLF5bTtRjaXZgCbjytXmhqwu5qAKT5Kg1QgXZkXshtwAtIYfJHYBZSyESDFiBrAx6JcdSXy4shdAZfX18fZgILBAL6dltbG5s3b+ZTn/oUKSkpKIpCSkoKFouFjo4OioqKaG1tpaioCJfLRXt7e1zHqZnPQrFv3z4mT54c1+sMJBJRbAkMJa5SAVIKnGXSJLj2WrmnDTsuo0Nv7Yqds8k5Mt0cKWjcp85jazvHaBRGAaOQJiYbMBJIcjjAbmcfkubkFuBdpL9EPPggnw0eC/D54NKNzFKJBaF5GEMFo7GnuDOJyBm82+1m5MiRUY8NBAJUVVVx9OhRVFXl6NGjuN1uALZt28awYcP43ve+R1paGhcuXIjrDLukpISlS5eGJUMuXbqUkpKSuPQ/GEiY4RIYSlyFTnSJnfwH1x9JQlXBRhpJdKAGOh+HHyN38UvaFDsGEaDDaMdmA3O7Gz8WNIuMLwBm/IwYnwVOJ3g8fHzMGJL+7d84++u/Mfq6VMbX18OPfsRupLbyOlLw/BnJq3UeqcmMAj7oYcyReRhDgVgSFSNNTUIIGhoauhy3bds25s2bB8CTTz7JsmXL2LJlC6tWrQo7t7Gxkdtvv52Kigo2bdoUN0d3YWEhTzzxhD4GgGnTpl1WDvQrxQyXwOWJq0YD0WhJtOVePGQuK2DMgwUcYQodJOPCTptip51kPEoS29q/ykbxn/wXa2K7iN8PRiOBpCTIyeFQ3u3wmc/AkiXw6KP8DtiKjNz6PDKP5BXgjeDpnw4uk7v2fFkhVlNTUVGRvj5z5kzMZjMzZ87U9y1ZsoRJkyZxzz338NJLLzFixIi4zrAXLFjAu+++S1paGgBpaWm8++67LFiwoN99DxauBDNcApcvrhoNRLO7h9rj161bG1wr4E52cJzrSLKCVbjxm2ykp8NH66vIDbyHooLJC4pQMeJHCQYjmQCFrrkTXWAy8W933cVndu7kIeBpYApwAzI/HqRg+V8gBWnaisx/N5kuj68r1lyQGsk1A0B+fj4ejwer1YrNZsPtduuayOHDh7FYLDrzb7xm2K+99hp2u52f//znehjvF77wBV577bV+9z1Y0MxwkaHICRNWAoOBK14DURQljNMJ6LINYMQP+OhwC3yB8MfSpthpN9jxWuwIxUBAMaEaZPNjIiZOyupq2LcPcdddbAc+BQwPtsnIxEQtE+JBOrWSUPSW5+pyQlpaGgaDgbS0NN0HEupv8Xq91NfXYzAYuOmmm+I2w549ezb5+flYLBby8/OZPXt2XPodLBQWFlJWVkZRURE2m42ioiLKysouSTPcG2+8kYgWu8JwxQuQKVOmUFxcTF5eHgaDgby8vKjO6JOMJYd/ksNxMvz1jHMfI9NdS4pwYRJe2lUrhnYXilAxCD8EZDPhlxqI0wleL/h8UUYBNDeD3Q45OdQCVYBW1SOAdLSn9uH+hvfhnEsRDQ0NqKoa5isJrfuimR4///nP8/bbb8etnsLu3bspLy+nra2N8vJydu/eHZd+BxOFhYUcPHiQQCDAwYMHL0nhUVlZydatWxPRYlcYLg+bSD9QUlLSTbZxeIZFKY/jw4+Mn7KQrPgYZbNg5DjpnEUVRubxBp9lNyJKCasb2/dj8RO1uFV30Bzm1hiPj0bn/p9IKpVSrixKFYDa2lp9Xbv3V199lby8PA4ePBiXawghWLVqVZjjHmDq1KkcPnyYyZMnU1JSckm+lC8nlJWV8fDDDw84u0ACg4srXoBoP86ioiL9hVBWVsbChceQ9a4A7Bjx4sOLVMqspCV1kJNj4Yg7l7UfrKMxKYfPuquYFDioU56ADPE1oKIakjGIACBIOnUK9u4lpxbYGzxQm1lXV/NVq1WvdKgiQ4BXB/v6BZLj/mqDVknxYhUVPR5PmO9koLBp06aY6U0qKyspKytLCJwecPjwYaZNmxa2LxEtdvnjijdhQXcqfilwd7BVkMQFoAFNL7CZ/LpVKrSulA8THdj05saGFwsXVAduJQkvVjrGjoWbb6Y252a4OdgyM2X75z+Z5HCQiUxGPAf4kWYsMzLDfSXwceBWpH+kP5ntpVwerMCa0LiYn+eee+7R10OjuOKNWPMqQuudCCGi1jtJQEaLvfvuu2H7EtFilz+uCgFycZSSzT6kZ+IXKKh80JbCxIkwbhxE8bl3QSCAnnR4/ryl+wO9XnC7GWFOYQQym12hUxX0BpsBmAncgRRp/wdsAPjtby/7MN/+4Pnnn9fXn3vuuQG7ztSpUykqKmLq1Knccsst1NTURBUKxcXFeh0UzU8TWXwrAWlK/u///u/LOmkzga5ICJAg/qGvufhsxjskmX28/DL8618QheG8CxRFCg8Al8tEVRUcOSIZ4auqZEmRM1rBXr8f1WDCYjajGK0IjJgNBgRSmBiQWkkL0tH+++D6QwD5+TQBf0BqFtl00qJEw5Ubt9VZCGsgUFBQwJYtWygoKOC3v/0tOTk5UZ2+9fX1JCUlhRXMSkpKimvS55XAdVVYWMjSpUsvi2ixBGJHQoBEwe7GX3F921PAr+nogGPebDI6agGBET9W3FjxBJsbEFiFGyMBAhhQFIHDAZMmgcMh2whvA8ktDdDRAV4vJr8bAgEMqh8DAVBVDHR+IRakO384MA4pMNIAXnuNp5CUKI8BS4ALyJqL0agGY80GuBzMXJEYyLyYDRs2cPvtt/Piiy9y//33U15e3q0pa+7cuWEvxlBq+v7iSuK6mj9//pBEi4UK4LvvvvuyfHaXKq54J3pfoSCAv6Gq2Txhexy3W2oZR5nAabI6HSNCIFCwmiHXc4SucVISLnsmXi+k4gWvF7/fhElVUVUDSkBAMBlREyCaWWskUnB8A/gCwB//yLeCxziAzUgT131IapRbkfxbGrpj89WitqJFb41GEkJe6hg+fOCCmH0+n/6iqaiooLCwEJ/PF9XpW1lZSWZmJgDnz5/Xz4uHcz2U6woS0Uu9RWTNl6efflo3myWeX/+RECA66uiMygKnvpYESNr39nb4Lt+Uu4XmWZeGp4fULZjx0sqwfo1C0XuUSxnlFWyKAr/8JdtDjp+EzFo/jtRU/ooUNL/rxxge4PIICW5qahrwayghERTRnL5a1JgQQm/aeStWrCAlJSXMuQ69e3EluK76h0gBPHPmzIQAjiMSAkRHuBGnAM0vso6xYx/DbofDh+Gf3kmk4kTRMz5UBAbWspaRnMGMjwd4DoezVobuBmemFq8Lp3kstHRAIIBJ9YMIYBAqRKFCUZFCREUKDyPBxLq2NhaXlrJ2nXzF1waPzwF+AywGfg3cD2GCpj9PZWdOTlhOxqUCi6WHYIV+Qqu8KITgoYceoqamhoqKii4mrEAggKIoNDY2AtDY2KifazQa2bZtmx6evHDhQoqLi3v14opWsTERvRQ7EgJ4YJEQIN2gcwZeyqxZj5GTI6Os9h64GZNBJWVYkGajpQV/8nDS0+HcORmN9ZuxS/hagR327pUhvMAnNi/mmC+HrMC7mFQvPmEiSagEhAETAtFFiGg6iFwzm0wkpaWBywXA2hAhoqEF2A2kA9uAXOLjRI8UHpdK0qIW/TQQEELoguDcuXOsX7+eXbt2RX35RyZ4atuLFy8Oyz9avHgxTz75ZK/GkeC66h8SAnhgkXCix4CXX36ZdevWceDAO4DAryo0N7txu8EtrHi9F2cy8fnAYgGr2oEl0EGKcGEUPsx4MUTRQBQMKBgwGa2YzeaYHcY+4HPA80gyxiv5bzJlypQB7T9UMPi1ymO9wObNm8OqKm7evLnbY7uLtOov15XW7/z58y/bCK7+ILLmy/79+xPhw3FEQgOJAe3tbXQG6QqkQcmMx+MlmhHlwoXuTSt+cxLCYJRhvJ7WIC1KoAsFioIadOR3g+pqCkI2M5FOdTvwHLLGCEhm38HGiBHxLOrbPeIZ7RQLeuvDaGlpwWazoaoqHR0dtLS0ROXwinT0Rma/a623CO1XM6PFq5bK5YJIJors7GzKy8sH/f5DAyqGagwDgYQG0mt4MdKBNCxZ8GJGCMmTGIq9e2FvbY5c7oXKjgJecd0cdowwGAkoPctwg+qXdrFINDejOBw4kQ7/I8GlHZgBfDF42HSkP2d7sA2E6cnB0PyQKioqBvV658+f71WCoFYMC6RvRAiBGiWpSFLrLAzTMhYuXNhvM1WoA9lkMsVUS+VKyDmJRCgTxfbt24dEeISGYj/00EOXbSh2JBICpA8w4UF6HFwYCeD3w6lT8j1vMEBamlcymOTU6kwmhUlVfM6+N2p/MdHBR7GNTZ8+HZvVEbYv2WjECbQFtzuQgqU22LJjuL/eIjKRMdZ6IP3FYF1Hg6qqA1IV8tChQ/zwhz/Uy/rW1NRQVlbWbfZ7JLp76ffWgXwl5ZxcSogsO6xFgl0JfqyEAOkX/NiVDpKSYPhwmbHu88GJE8n88Y/g8naass5YshnjrUX1+lB9AVSPF6GqIFQIMVV1GsoMCAyoBhMYjd3yqWRmTufmOXPIGT+Hm+fM6ZIb0Rt24L6iu/olkbgaf2yh1Q67g6IotLa24osySbgYr1ZPL/3Jkyezbt26MB/IunXrunUgD3R99au1Hkg0QV5fX09NTc1l/ywSPpCYoOWI2JHcuyG104WC2QxpabKirc8HRqPKnj0Gfq/cyCeNMGsWbM58HIAZh/ZhEy48wsIILuDHRBLtKPjCXvaGYPyUMeCFgJCdv/ee9MRfBB8dORLv+fP4gAnIqCxNT7EjTVm5DFwkVUpKdM/LG3QWzbqUw4PjCS1XpaeclWhmLQ0+n6/H0N+ysjKmT58eVtExPz+fsrIy5s6dy/r161m/fj1Tpkzh0KFDPPLIIyxbtixqXwMZ8lpZWcnTTz+Nw+HoV17M5YjISLA33niDrVu3kpOTw9GjR2NifL5UcTVOCvsAjbl3H9BGMucg2NKNTWiTS0WRysLYsW6WL4cpo86ybx9s2gQXLsgw4EAAVIHuItc0jkhNQWifKwZpFzMY4EMfkh/u3StzTGprZb5JyJKODuwmE17gbWRUVhrwIaSjfQTSRzINKUg0/0g83dGx1kTPz8+P41WvTFzMbFZTU8Mrr7wSVhTrlVdeoaamhurqah555BG2bdvGrbfeyrZt23jkkUeorq6O2tdA1lcvLi7WNayrjXQyMhLs+eefRwhBeXn5gGh6g4mEAOkV6gATfmwQbC0BEydONHDiRKPuAwEYORK+OPkIS5dKLqyTJ+HoUWnmUogmMMKhdmfCGjGikx4+JwenIydsSVKS3ocHSVDfjtQ8UpECxRm8k1o6/SN9qYbYHaIVvoqGnsJaE5BoaWkB6NbEoSgK9957LytXriQ5OZmVK1dy7733oigKhw8f5vrrrw87/vrrr+9Wo4h80cWTMbe+vh6r1TqgpJOXKiJDsRsaGtiwYUOYtnG5JjcmTFi9QimwkDY6f/TZgGaccLshIyMj7IysLFi6FL7/fWhthf+ihGs4g4oBMz4ECkYCesju2jgZlkakpUFTEwLp7m9H8mpZkUHIBqT2oYX/ZiM1kTqi5cUPDEKLRxmNRtYEAnznIgWlrlZoZqdIE4cQgu3bt4cJY5vNhhCCsWPHUlxcTEVFhR7Ge+utt6KqKoqiYLVauffee9m0aVNY35HF1+JlVrn99tvDOL1WrlwZdw3kUi3uFRqKnZubS1ZWVtjnl2tyY0KA9BouOj0KcqsTZqxR6tMqCuTmSvPVT47dzRbPYmoZTwG/pIVUJnKEkZzHSCCYF9I5gw8EABVMxt6P9OY5c3C+U4vJ78aebqP57FmGdXQwEsngq4UAgxQktUhPT23vL9UnhGoqsRaUulrR0tLCwoULWbhwIdOmTePAgQOA1EDcbjdpaWk0NzeTmppKU1OTbiZqaWlhwYIF+Hw+PbN++PDhnDlzhi1btvDII48AhAmRgXrh/vSnP+WOO+7Qc12eeuqpuPZ/sXyaSwVf+9rXrhh2gYQJq9f4FfCO3j4Usg4XSEuDlJToWctGIyQnw2ljNjnUAoKx1JNMOwbUoFlLoy8Ruo9EFVGieHvwgeByYezoAKRWpCF19GgCBpn37kASMU4CPop0tD+EzB95CNhPp49kMGhL7MFEGntEQk0MtbyuKiiKwrvvvsuHP/xhoJNyZc2aNbS2trJmzRpdUNTX1+N2uxkxYoS+D6RQ0cxd69evH9DCXBqysrLwer0sWbIEm83GkiVL6Ojo6DIT7w8GOoosXpg/f36/2AWiYajyd65aAWKNpirEhNBSuHfzyZB1qGDGDLjmGje1tfDnIw5qa+V73eWC1KCjodz2OMuMzzOTfzDZ8E9+wAraSCGAAT9m/JgIYETFKOuto3TNJezOBxKK2lrsficWr0tyrTidmBUFVVEwIoWTJl/cdJq6DminIzWUgcgdgfDoI83BGhrKmpSUxOoBuvblCk0IhJaHHTNmDKtWrSIlJYVVq1YxZoysDKMoCvfffz8NDQ3s2bMHkCWBQxmGly1bNqCFuTRs2LABc9CPp92DxWJhw4YNcbvG5UScGL3Mdt8wlPk7AypAFEX5rKIo/1QU5T1FUR6N8nm2oijViqLsVxTlgKIo/z6Q4wlFvP40a8O2StmxA/bsyWbnToVXG2eyc6fCT35iY9YsCGXesBqlRPCpRkpZx1ky8GGmneQuzU0SgpCKhj1BC/UKBMDtxij8KGpAhgEH+ZzMSbI/R889DTiGDeukvteESahQ6QhqURoiAw8GizLlUsepU6eibgshePnll8nNzWX+/PmAzN4PNR1u2bKlH5Op2FFYWMjNN9/MmTNnEEJw5swZ7rjjjh5fnL2dVYfmvWjn9JT3MpSIp8YwpJpXaB2DeDakr/ZfwLXIAnv/AKZEHPMs8EBwfQpQe7F+b7jhBtETqqure/xcg6IowmQyaVaiPrfiiG2r1Rr1OINhlygtFSItTYiUFCFSrR3CYBAi+MYX+/mwcGMWraSIVpKDLSWkJYsa83Rx0jpB/GJ6qTiRNl0czpgj/pYyJ2zpM5iFSEkRfptNiPHjxRnreOExpwiRmiqbwSBESoo8DkQjiNZgOx5cngFxHsT+4PoxENuDbR2I0oh7KwVRHbFP+y5C91VHnBP+fAyiNLiM7Fs/JuRYQFRUVFz0e+7p96D1m5GR0avvPFoffT2/t3088MADYf30dKzJZBKKonT7udFoFIqiiOXLl+tjqaioEHl5ecJgMIi8vLyYnnEsqKioEMnJycJsNgtAmM1mMWzYsG77r6ioELm5uWLPnj3C6/WKPXv2iNzc3B7Hs3z5cmEymcTGjRtFW1ub2LhxozCZTGH3F+v7YSCxZs2aXt9bTzAYDMLr9Ybt83q9wmAw9HmMwNsihvf8QGogHwfeE0K8L4TwAj8Bbos4RiCrtoKMJD09gOMJv7AQ+P1+5s2b168ZSqQC3p1mo6pS4whWtMXtNyHlpgAU1rKOEspYy1pc2IMtRV/3YqXdkorfL8OCLRaw2SA9XS5NJrmMMYIW1WAGg4HRyBDfZAykIqMq3ICXTo4tFwNLhQLRNRCjMTxyYCRBkvvgTcbLMXru3Lm49DMY+PGPfxzzsdqfvDtohbA0VFZWsmLFijAG4YtlwseK5cuX43a7efLJJ2lra+PJJ5+kvb2d5cuXRz2+L7Pq0LyXYcOG6XkvVVVVl1RJ2xdeeCGuGkOs+TsD4ieJRcr0pQFfBp4P2f468HTEMdcgK7DWI6Nhb7hYv/HUQAAxfvz4LrPegWnbRWmpEDabVAKMSiCofagChBjP++IG/io+zp/Fx/mTOMa14hjXive4VhxjgvgHHxa/TLtL/MX6abF/+l3ifNoEcSZjujiTIpfHUqaLMxnThcdgFcJsFgGjUYjUVNFqTBV+g1kIq1U2EMJslvuysoQraaQQRqNQ5WCEAOEH0QHiKIi/ILWQ/cF2LLjcHtL2xkEDiWVfKYgnbTYBCEVRYvqeY9FA0tLSLhsNJLKf/vwmjUajvhRCiKysLGGxWMKOsVgsIisrK6Zn3RMAMX/+/DDtprCwMOrzEKJvs+po5+zatUsA+mz/qaee6tdsPx6It8ZQUVEhRo0aJXJycoSiKCInJ0eMGjUq7B57q9ERowYy1GG8hcAOIcRGRVE+CfxYUZSpQoiwVARFUe5Dlv0mIyODvXv3dtuhy+Xq8XMNIjjzOnv2LOXl5Tz6aBcXTdxRW1uLyTQWMGAOeHD5k1CEioqBE+RwIqSk7nUcAxQsBj8BxYjBIMge0UFHkpF/m9HIPa5vcs6eha2hAXdmJg0NNjIz3eSfPaLP4v1+P0IYUVQ/wtfpQRCqihAK/qYmFL+MylIVE/6RDixNTfiwYA4BIffKAAAgAElEQVR0cF3weK0qYhMyEbEq4r5mEFoCWGLv3r24XC7ijY5gWJkQIqbvOZbfQ29L48Zy3YE8Px79GAwGhg8fTlNTE4FAgL179+pJfVrElqIoeL1e6uvr4zLm6upq/bdZU1OjO7ej9Z2dnc2SJUvYt28fdXV1ZGdnM2vWLLKzs7sdS3Z2Nk8//TQzZ87U9xUXF5ORkYGiKLz55ptcd911FBUVsXr1aq655pp+31OseOONN3jhhReoq6vDaDSyZMkSPcQYYP/+/T3eW084dOgQPp8Pt9uth3X7fD4OHTqk97d69Woeeugh/TkoihKf5xCLlOlLAz4JvBqy/S3gWxHH1ADjQrbfB0b31G+8NJC8vDzx0Y9+dBA0j3ANJNQHYjYLYTX6hEK4NgKqMOIXBgLCavQJs1lqLtOnCzFhghClpULsn36XqJ5TKqrHy+X28aWiek6paDWnxeQD8ZhThBg/XjSljg/bFjab3JeRIcTHPy4+GDFRCLNZuOnUUDqQPpITIGqC62cI95No30XoM4iHBhK6HS8fCCDMfdQg+vJb6Gkcve0nluO684OYzWZdC7lYX/1F5FhCxxQNsfgzIhFtlg3Sb6RpPjk5OWLXrl398g/0FpHj+trXviZMJpMoKSmJiw8kLy9P7NmzJ2zfnj17RF5enr7dW62HS8AH8jfgOkVRchVFsQBfRSZRhKIOmA+gKMpkJD/IBwM4Jh0lJSWcP3+ekpKSAa9sJ1FHbS00NbXQ1tZBs8ePz+fDFxisvO8gVBW8XknS6HRiczvDtsMSTpKScA27Bux2rLNns99s5iSSIt6O9IdMCa4bGXg/SSTiGWVyJYcLiyh+EC0TPVriZnc5OfEcS7QxhaK6uprPfe5zrF69mpSUFFavXs3nPvc5nccrmj0/WvXGESNGUFVVFVaL45FHHtFDnQcDkf6cpUuX8sgjj/Dd7343LnkgsYQvDxTP2YCZsIQQfkVRlgOvIt8v24QQNYqiPI6Ubr8CVgHPKYryn8jZyGJxsV9WnKB9WWVlZRw5cmQQrljKz362AZlwaEe6qtMx48eLFs7aaWaSZIsKftWAEDIJMS4wGMBiIeAFo8OB2wk2v1/fprvwZkVh5k03gdNJQwMojf/QTVtmpIP7oeChJoDZs8nJyWF7SBeTQN+eETy3tB+3cujQoX6cfXnCZrPhDs0O7SOEEN2SXmqmx4EwQUaDzWbTmYQ1apVDhw7R1tbG7t279WztJUuWcOLECT3vYeHChQghOHz4MHfddRdvvfUWmzZtCnsRjxs3jtbWVpYsWUJdXR2jR4+mo6MjLIR8oBHtBV9aWsoTTzwRF+aFWOq+azxn8c5+H1AfiBDiN8BvIvY9FrJ+CPjUQI6hJ4TSNoQmVw0UtOiWSBgIENBT+6KPIzIT/R9N2aTV1cqwrpZahrV00NKSBD4f3kAAv8FEcncD8XoxBghqIIDauY3Ph0049ZyR7mClMwnRDgSQiYgg1cjhp09jS04Oo0U5QidNSg7911QsMVDb9wW5wPEo+0eNGsXo0aPD9mVlZQ0qIWA8hIeGnmjkBxMOh4OzZ8/icDh45plnAPndfupTnwrj5frUpz7FmTNnKCsrY+TIkfrLz2Kx8LGPfYwf/ehH3HTTTWEC5NSpU6SnpwPoZheLxdIld2YgEcsLvj+IRTgMGM9ZLHauS6nFywcSCfpoh+59OybgjIDjAlqFlSZhxCPopQ9k+nQh5swRYs7442HL95ggGsgQtWSLk8bxopbxopUU0aykimYlVfiJ4gPRorJSU4UwGkWHNVU6arTPbbbgxeYIMV1GewmbTTSBaALhBeFD5pEcR/pDxIQJ4syCBbrfohTpAwld3x7xbEqjPK/SiPXIYy6GWH0gof1WIyOTtH3vFBR0a6cGxLe+9S2Rl5cn1oLIy8sT3/rWt3rlT+jrbymev9uL9dVf9NR3qM9ixIgRen6WoihhkWKR/pMHHnhA949ox4Xa/YUQwmq1io0bN+rb1dXVYuPGjcJqtfb7nmJFZJRURkZGlyipeFwjnvk7XCZRWAl0g0DQPeUNGBHBRPKGhq611yPhIoWRiiw+YjYoIAKY1AAiqNioQtKYhCHEpIXHg9vqwGZzS4qUWnC0tESeEQbBlcfKuWHDBlpXrQKgqqqKl48d63bGtn37dioqKpi9Zw+z581j4cKFgz3cyxqhDL0vvPAC//7v/47BYEAIQXp6OmfPntWX2n6A3//+9wwbNozJkyczd+5cXn/9dQ4dOsTUqVP1WbbX62Xt2rU8+uij+Hw+TCYTSUlJeL3eIblXRVEGxNoxkCSYPeGq5cK6VNDpcQg3JxiCFUEsxgBmM1itkv7qYviHMpPTpmyOGa+nLnkSdeYJtBpSaTan02xOJ3AxekKfTzrWXa5OksaODnRSr4aGLqcIpOFtHDAaSAFoa8N+5AgFSELGZcAnkH6Sh4LrX6STtHEwCBt7g9WrO93qX/ziF7vlKzKZTDQ1NbFgwQL+6zvfYcGCBT2GBRsMib9cJEKd4VqipKqqOBwOKisr8Xg8VFZW4nA4UFVVFyBnzpxBVVXOnTunc32ZTKYwTiiA1tbWsERVl8vVY4nheKOsrIzx48dz4sQJVFWloaGB8ePHxzUIJEGmOAQIfehDia5uNAU1yM/rVw0EAtIH0tAAp06FFSSk1ukIW/5CFPRvMGYzbptDqjoaSWNSkiRqzMkJk2LaPMoHnEcSMZqQPhEaGrCfOMH1yGzRZGSuSCvSV9IYPB4GN3IrVpSXl+uleffs2dPtH9Lv9+PxeMLIIDU2gsjfldFovCR5mYYas2fP5sKFC8yePZvKykr9ud9zzz1hEVX33HOPfo6iKLqgbmxs1AVEcXFxWIa3NtvfsGEDbW1t3H///SiKQnNz86DdX01NDW+//TYOhwODwcCwYcN4++2341YTPVYyxcsqE32gWrx8IJGx2QyIvyNa2y/gvJB+kHYBrQK8QhY+V8NaX3wg3zF8Wxw3ThAHDNPEsZTp4phhomhS0sR5c4Y4b84QLpJjzwOZM0ccHz9HXnz8eNkyMkRrSoYQRqMQVqvoAOGh0/9xQlGEGDVKiDFjhGfYMHFOUUQHCBFsKgg3iBZkPomT7jPcI3m3BtMHkpOTI56wWkVWVpZ4f9GiLrb1yD4yMjLEWsJ5tbS4++N33SWE6D7ufty4cVe1DySUHys5OVlkZWV1y1MXut9isXR5drt27Yp63dA8kIcffjgu99Sbe09OTg7LA9H8OIOVBzJQmehXrQYSGZs9ePgVMv3FhZy7e4lnDcB1xsf5qWkh+8UM/i8wg/8TH+GCcHBazeS0mokHK96OAN5AL7SuCA3EZc+UJXZtNmypqWBOwWYdT8748WRnZ8tQ4aQkAsOG4b/+ev7PZOKcotAINAfvNgUZrZWKrM+eCbQhNZUmLg2txGg0smHDBrKzs3ukBDeZTDQ2NiKQs2GTSXqEvvKVr2Cz2dixcyc2m42vfOUrUTWQ9evXD7kWPJQI1d6uvfZaTp8+3S1DsLbfZDLh9Xo5efJk2OdLly7FYDCgKIpuLszIyNCp07dv386oUaMG8G6iw2QysWTJEqxWK5WVlSQFS09rmtLChQu5++67+6QdxJIHMlCMvVea7zNmRHvog4NSOrMf1iFfk7OQHgQznR6FvjvaHjc9TkAJkJFhhIYGHvT/kDFBnkobLoxcwKOaCDS68fvAKwJ4sTAQQbF6id9jx+gIBAglaM9EhgK7gDSkX0T7QfqQ/qFzoBO8zEAKoMHwl6SkpPDZz36WaYWFHL/rrh5NT/6IkGdtu6qqStraPR6Sk5OpqqriM5/5TJfzy8rK+N3vfseKFSvC6nxcLUhLS6OpqYm0tDQOHjxISkoKbW1tYUWwQJqttFB4v9/P8OHDaWlp0c8HKYRsNhter5eUlBRaW1tpbGzkqaeeYtmyZfz0pz/l2WefHfRSAC6XS69vHwgEwkoVVFZWUlFRgdfrxePx9LqSYixhwgNVK+Wq1UAiMzOHprZEKbIQ1T7k/DuAfHVKjcRsjI9m8rhhLcvtO1hu38GfDLP4ICmbOvOHaMqYRL19Et6kVFqMsTsV7a4G6ZRxu2XNkYAXu9+pF60iIgEtIyMjGIsf/nMTSAHyHnAMeAL4J3AU6VMxA+ODZ9UifSipfXsEvcbRo0f5+f/+LxaLhZ/85CeUlJT0ePywYcNQCK9xYrFYwpLyLBaL7uwNhfbnPnDgANMi8kyuBlgsFhRF0fN6NCEhhNA1M6PRGCZMAP2FHBm0oLEMjxw5UrcuaAW3Nm/ejMVi4emnnx7Qe4pEZM5N6L2UlZVx0003YbFYdH/PwoULY9YOtDyQ6upqfD4f1dXVLF26NOw3O1CZ6FetAIl86L4uNWOHHv5Az8l8fcFJJZukgIthajM2t5MR7fUYA14sqhQGxBAl5LLHEA524UKXXTbrOIw99B9A0qScRiYdHkHy2nwJGLy8YQnt96CqKh6vl+XLl/doVmhtbUUElxpsNhtjx45FAcaOHYvNZuuirUD4n/vAAw9QUVHBd+12ciIrTF6haGxsRAhBY2NjF3Oylqkda8Z2fn4+gUAAVVU5fvw4Dz0k+RFycnIwGAxkZmYOCEVLX6GRHv7kJz/hm9/8pu4Ef/HFF2NmWohG4RIZch6LkOkLrloTVmRmpqqqXVTm1NTUQYrWqEN+FQqdMl1GYvkCKqY4mscf43EmUEctY0nFjBcXC3idD3CQDoxlYGldxo0bB0hFJcnTSHMPmdUZSE1kJJKKuQ1ZmWx78PO6AR2phPbiunDhAitWrABir0PS3t5OR0cHApkRHTmD1lBSUsIdd9xBSkoKi2trKTObedxgoLy8nG9+/eucjvLyHIwqgoOFjIwMzp49y+jRo2lsbOxXX7/97W+xWCx6xFttbS2AHtlls9m4884745OF3UtkZmZy9uxZUlNTda3JZrMBcOONN1JVVcUTTzwRlnXfHxQVFfHcc8/pNDFz5syJeyb6VauBQHhdYkBPXMrJyUFRFP3LHXiUAmeR5qt2CHoKjMEit0F/Wxi6C+MNBGTBKp8vug9FCGiwZpNDLTnUMtFSi9EoyArUMtpbj8nTRoqrUR6okS1GCzIIOtGx2QgYLbhMDlnpyhEMAR4xAlNLC6FF4UPNXDa3pE0x9eA8TkX6RlqRGogdSEL6QmYACwEee6y703vGY4+xHfRWELI+ieh+lubmZoqLi6N2p4WLhiaJ+f1+8vPz+eodd5Cfnx9V+4gGn8+nO4DvCwSYOnVq2OdTp069JDXmviJUA+kvhBB4PB5UVeXw4cO6OaympgZVVamtrWXjxo2DzqNmNpv194nVatU1Lc3c9pe//IUlS5bovF0vvfRSzGW3o4Xx3n///TzzzDOUl5fT1tZGeXk5r7/+er+FUiSuWg0kEhqnUXZ2ts6rf/78eSwWyyBlrbqQ8lz7SgR+LPgReJpdWCxWCEkCPH++Br8/SFzcDNcajIyb8WlOn5bVCgOB6LNdgFIex4OPVMzyunY7be4OJmQn8e1/LaZD2Bg7KZO5c+HIXsh0RlYAiQ3+4cMxa2YYtxuX34Y9WIjd7QSbx0N6aiopra0QhdjPgPSRuJFsnHakiE1HChU/SOHUF9TVhfF0ha67kaENkT1rtTGiQdMuQrUMk8nE7t27menzsdtsxmQyRRUiZWVl3HfffVRVyedstVpJT0/n7rvv5lGk/6SkpIQxzz7Lg2fPUl1dTVFREQB5eXnU1NR06bO7/VcTQv0OBoNBtzJo/+/BhM/no7m5WU9kDJ0AWK1WvvzlL7Nt2zYefvhhJk+ezB133MHPfvazmPoOjbACmdHvdrsZNWoUK1euBOCaa67B4XDQ2tqK2+3utaO+O1zVGkgoNmyQxWn//ve/c+jQIcaOHauHCg4OfoWMO3IFmwdQSA5u+3wNutr7ve99D78/fAYaUAP86U9/CtNAnE5w+u14A0bN342qSloUo0FIBcLkx+0GPyYaGiQZ7wWvnXffhaoqOHIE4jxp6YKPfexjzJg+nZvnlDJj+vSox1xARmCBjN6ajNQUqKiAWbPgG9+AF16QAx4gksDQQkWxIBAIhIWodmfHP3ToEC+++CKbNm1izZo15OfnU3fyJB6Ph4LbbqOlpYUnnniC8ePHd7Fdl5SUkJuby549e/CvWcOePXvIzc3tt237SsP999+P0+nk85//PEC35sSBhPb/jWQ59nq9vPnmm2EaxJtvvhnzu+fw4cPU19eHJQn6fL4wjU5z1Pt8PiwWC/n5+UyfPj0RxhsvFBYWsmjRIhRFwefz6fHlEydO5OjRo4MwglLgCyHbAriGdhoBgRDwwQcNjBnzMVpaovtlvF4PZnOnBuJwAG4XftWCySZNRdEsH6ECpcGSzRQO4cVONpDuasCguDpLDqamQkMf/EIuF3a/W+/H5gb8Pp0yBbcbgtrJzXPmsPf3vw87XSBPdSOd68lIH8n4iRPlAc89Bz/4gVy32+EjH4GPfpTRyckwdixMmBBTgEBP2L9/f6+Oj3xJdffSslgsNDU1MW/ePEqRFR9nKgoIQdUvf0mLyURKSgp/e/ttfhbhIA315d1eU8PLv/iF/vnVzsllNBp1of2HP/yBESNGkJ2dzac//Wn++Mc/DvHoOjFlyhQKCgrC/BN33nmnrpFeDGPGjKG4uJiKigqdjXfevHkMHz5cP0arAGk0GmlpaWHLli088sgjMZtVu0NCAwmBLAEr2LhxI21tbWzcuJH3339/EEfwK2S9kHeAEwBM4rC+r6OjBlkHJwdp0HHozR1cButFdWogOLpoID1hg/1xnkz/Lo9l76CqYAfPpz/KsYxZUFAgW0is+cUQ5gPpCREUKSCFiLWHBM92ZMIhH/847NsHLS1w8CDs2AGLF8uH8MwzTPnOd2DiREhLg3nzoLgYfvpTCImWGmp4PB6am5vD6OnVoLD5/woKeO211xg5ciQKROXk0nx5paWlYZ9nZWUN2j1cStAIC0NfoKEFpXo7EYjHeHraX1JSwrPPPktbWxtCCNra2nj22Wd7pUVGXiM5OZmWlhaeeuopve6Lqqo88MADJCcns3LlSu69995+m/ISGkgIurNFvvjii4M0gtKQ9YXAjRyhFJkZIX8kf/jDYhTlbqS7t1Y/ehKSX2r48Bl4vSEaiNONXzX0qIGEwuWCI650vC3ShOU6N4kbzNnwgrxWSgpMaq6T3vrg7EVVojvCY/GBXIxeODlpJO0d56N+Niz0XKMR8vJku+sutJv9265dfExR4O23ZfvBD6RwAR5BhgyfRj7hkwwtopksflFVxda332bOnDkYT0YfYWVlJWVlZVID+dnPKCkpobCwkNOnT7Nr1y7Wr1/P4UOHMFssUR2z06ZNi/u9DCU0TS80P2TevHlhxwymD6Q7zVPLcxkzZgytra04nU6EEJw6dapXATynT59mx44dYRrMli1bWLRoEatXr2ZVkFXaarXyyiuv8Mwzz5CdnY3L5eq3Ke+q10BCCcY8Hg+vvvpqF1vk0ED78efoewbDbhsISL+IxSIDqrLS3Wwd/zivf20Hr39tBz+YuYPm1Gz54k9Ph/R03El9ZDb1hZiwGhrIqd0bEl5WC4EAFoud9ODsOxRpDgcTJkzouX+zmbYJE2DJEnjmGfjrX6Xm8fe/wyc/SQ0yqusmZDrnyL7dRdwQ7aWWEpxJvvTSS/ij+FAqKytZsWKFHm3U1tbGihUrqKysZPLkyWRlZXHw4EH+tWgRbreb3NzcsPOnTZvGgQMHgM4Q60h0t/9yRmRk21DizJkzeDweiouL8Xq9vPrqq9jt9m4j/iIR+j0HAgEOHjxIVlYWeXl5uN1uWbfDZNIpdrT3SEdHh76vr7iqBUhk+FtOTg4+n49FixbpCTl33nnnEI3uIDLz4dfAC0jGqNgQZsJy27qYsLxeesWF1dAgtZGqKmkterc5G5cLzp2TraPj4n1Ehdmss/6SmUltzs3SlKXxbgVDfO12O+PHj8eROh57SgY3z5nD9G6c7ReFxQIzZ8LEibwCPAs8hYzomt3H24gXok0Q2tvbaWlp0SOKtN+lBu2lEwqv10txcXFY8piqqno98YqKCkRpKUIIXXgA1NXV6fkSGlJSUqirG4yMm8HFwYMHh3oIgPzOA4EAFouF9evX69/v4sWLY650WVJSwm233RaW0X/bbbdRUlKiJxf6/X7a2toYO3YsLpeLoqIi3G53mJmvL7iqBUgkwVh5eTnJycmYTCZdA6moqBgioruTwETg+0jn+gHg1/zhDxc/02IBRfHR1naKZk8DATUQNQJIFzAXESheb3iKh2W0AzM+bLix4cbqa+3MZHe7ZfGSviJCA7G5w3NHLN741eleW1rKXODryCz4DwPfAMYia5U8hKRYWRy3K/YemkjRTBrl5eVs2bJFFyL19fUkJSWxbds21qxZw7Zt20hKSqK+vp7CwkJuvfVW8vPz2fXjH5Ofn8+tt97abdhmUVERHo+HjRs34l29mo0bN+LxeMIE1pWCoYjCigbNpOjxePD7/aiqytGjR/n+978fcx9vvfVWWGiwz+fD5XLxxBNPsGXLFsrLyzEYDHzyk5/kzTffJCUlhdWrV3PffffhdDov0nvPuKoFSCTBWGFhIevXr6e2tjaMEuCBBx4YohGeBh5GZiWUAB9lzhyAt5Dki50mDy1mqanpAj6fD7/fL6NOhqdiNaoEAm0YDF4MBilgLMaAFAo2t74dK6pzl9Bmz+Bc+iTOpU+i3pRLXfIkmBRsEWaSXiFCA3HbOhMU3TYHXkt8aSjmTJ9OZkYG2hw+BRlAbUZmvduR9Uy2M/RFr4YPG8bKlStZv349zz33nL5/7ty5FBUV8Z3vfIeioiI9H6CyspJf//rX7N69m0Vf/zq7d+/m17/+dbeULM899xzr169n5cqVmM3mqNe6XKElZl5qBb0ifR1Op5N77rmHjo6OmP00mzdvRghBZmamTtcihODdd9/Vv08t83zjxo1YrVbcbje33357ggurP4hGMKbZDjVbYmFhoV7ZbOjgBMpJS5vJ//wPyEyI+cCDyJzscO3B6/UAgrNnG6lracYf8COEirsH2pDeoPp4Dh90pOBpdOJpdGL0uUlpOUPdASd1B5ycOeyU3vbLCEak4DABVjqjS+zBz7TM9+3Q9+z3fqC9vZ2W1lamTp3KiBEjwpzhlZWV1NTUIJDhmpqA0GL8582bx64f/1h3JHcX++/xeEhLS2Pq1KmsW7eOqVOnkpaWFnNGdE/Iy8vrdx/9QWhFwksJrRHRgA6Hg+effx6LxRKzlqSZwM6fP4+qqnoCNMCyZcsAaeYqKCjg0UcfxePxYLFYKCgoSHBh9QeajXjr1q16/PTSpUu7/MFCZ2yhseWDDafzDA8+CP/xH9cBbwDXI0k4bgH+Crzd4/lCqAgRDEIKGHE6AbcNr9q57fMh36A9oNlj43jqTBpsOQC4z7lw+M+R+eGc4DihYEYt/O53fb1VCd2EJTdtbjCo/s6w4DgJRA0epLDQgocNyMx3P51pMLUAmk8gSIeiYQahIQ+Sqys0rq4/MBqNEAiwadMmvvzlL+vOT42/zWAwgKqGZVxrmehf+MIX+GpSEvs7OvjVr34FwLqIiC2QmfOrVq3i5z//uV7f/Utf+lK/Ha0gtf3f/e533HLLLbB2LaxdO+jZ4JciIn1OGnqrKYX6wUKz3K+99lo++OADHA4HLS0ter9CCFpbW3nrrbf6lYl+VQuQSELF7gjGNIFSWFjIgQMHhowiotMXE0AarY4jDSx5wDykG1gNtugvV82EhTeAw2GUYb5+m74d62Sz0ZpNprsWAG+gg1G+UyQF37ImF5CdTcBmk9IEwOsl1ecCtzRBmfz0O7EPgHfe6X8fQQg6i1oZgttWpKHw40j6lDEgecKgRzoUCBcm/YU2adm/fz9OpxOHQ8ZDa7PUUaNGQWMjo0aN0rmlAD70oQ/xr3/9i5dqavh7VlbYBEiL2AL52x4+fDjNzc3s37+fWarK/v37aWlpITW1/yT6kydPZufOnXzjG9/Qw40TiI4RI0bEhRcM0Pu5EGTH1jSwrKwszp07x5YtW/plYbmqBQjIP87FJLBWdOU3v/mNLBA0RAjPGo2c204GVgD3IK33ClKQePGFmLjiNenbnvu4vu480sCNzt+SWbAYkArCrMfB9de/Yr/xRnlQVRXNR5wkTcoB4Fwt2N0XYf4N+kBsIbkjJr8bi5Zb4nTCjBl9u4F33tHDh3G5sND5Z9Celgv5FJOQ4ng0khWYn/8cRo6Es2dR6HR0DwZWrVrF1KlTw8gAP/GJT/BOUJA6nU4+8YlP8Je//AWA9957j4yMDAQyX0B7gaxZs4bZ8+axcOFCiouLKSwsxOl0Mm/ePL75zW/SIgSPKwrz58+PWsOkt5g7dy7PPPMMo0aNQgDnzp3rd59XKuIlPAAKCgrYvXt3FzNkbW2trq32B1e9AIkFkydPpq6ujpaWlkFk6O0tDgPLkPPku4HhwAgks28A+ToEMOH12no0YTmFjYsxHOzfr+fjEfCm8776RUw/lNs+H7z/PpSdsvPnBrnvI3Vw3peOMygzXC4YKWDYYBf60DBjhnTUO53Q0IC3rQ3tlkP1IoF8egeQeSL/AgocDvif/wGvl/9EPvlDaNwBA4uNGzfy8MMP6xoIoAsLkH6M0G2j0UhSUpKcToSULDAajcydO5ddu3bpVRLHjBnDwYMHeeONN5i9Zw9zggJmjKQ/6Beqqqowm836TPhClHoxVyNCtcmBQDThYTAY9GqN/cVV7USPFSUlJbS3t5OcnHwJCxANDwP/P/Ak8AskBaFGe9JMIODE53PhUztobq5F8XQ/29Fo4qPleXi9MlrXagWLUWWEtZ3hw2H4cOk/P30a3G6jHv6rDktlpNGJA9lGe+tRfF7ZkdMpObYucQSQpDLccgucPQuzZnEK+AhSZM9WciUAACAASURBVN+B9EYVBNssulLF99cJv2rVKp3PKKYxBwKcO3dO15I005bmJNdyQzRE+iXi5aeor68nOTmZV199lW+vWcOrr74al34vd0QTHvEseBUtAEJV1bgID0hoIDGhsLCQO++8E4fDwYkTgzHPjI7ecRsFgH8E29eBUUinuz+kgUDg87lIMVt0H4jD6sZts5GTA9Q6aWnp2wzprG0sec5aAJxpuXjPBLBkfggAl6sBq/Ie9mljO/m19vbpMkOD1FSYMIGX9u3DAnwUGRfnA95F+lJA+kVqI8/tZ2Jeb2qBGI3GLuyvgB6xVVNTo5dzDqXE0IgZ169fz+LFi/s1Xg1f+cpXZIjx73/P3Llzuy3YNm7cOOrq6qIKLyHEFeV8j2ZG6uhzZm5X2O12jh8/Ln1kA4CEAIkRU6ZMYdOmTcydOzfqLG2gE5MMBoNOOd97tCITE0cgWbNsSP+IHUH4yyXUhFVbCzgddHjCA59iKGgLwI+vK+bGGzuPdtbuwKH5SXbs5R7TDjLm5vTxni4deJGZOfVIUf0RZG33mMi4u4nk0pa59D3/JNboKY0GJZQSg7VrKV27lurq6n7nCmh44YUXePXVV1lcW8uOnTujzoJzc3NJTk6msrKS3Nxctm7dyuw9e/jDvHksXbq0x7LClyMGOqzY5XIxevToAes/IUBiRGjIbyQGI6v1lltuiUMJzgvBlop0tKfTQiqg1a2wYDZH10BC/dY09HMYQZxPyQ5j6p105B2whwi0QUz6MihGEBcPz/7SF7/Y7Wd1SMGRBUxB1nM3InXB7k+KHsmVE1yPNUTAbrdLyny7Xdc4tKALJUgN3x00M4eWK9DR0cFqn4/y8nKSkpLYsmVLjKPoHiNGjKCpqUnPRXK73aiqSlpamvSHBEN7fT4fNpstvEhSUGPZunUrRUVFWK3WLqaZNcB3+j3KSwPxThMYyPdTQoDEiNCQX+ikjFZVFbPZjNls1mmTBwKnTp3qxdF1hAeRhtpUNcrwVmTmgwOw4cNLQ0MDihKrfnFxHDtmpyFE2HjbZ2EJljhwnZvEPtPN/F82PB4M6Dpy81oyc2rRpdUPfygVpUGAyWQDvHi7MQ8ZFIXx48aRNm1aj/T0fqTRMBfJH3A30jL3PgN7K5rQiDRXdacdl6xezfCRI3WmVpCUGKG+FZ/Ph8/n63euAHTSizc0NCCAhuAPI5ImaN++fUyePLkLSwTArFmzOHz4MIFAoIsV4EoRHpcbEk70XkCru2AymUhLS+P111/X2TNtNluYySB+1Any/N7VcC5Fvrq0VkFnnZELyMgsN9IS3gT4EVjweAxRs9U7OjrpqRoaoMFlx+frpL7qjkcr1Ine1AQXGCHPb5BVDy9ckAUFFy8O8StnZ3dezOcjuf2cfiGT343f2A+erYsgOTkZR1RnvonZs2fHHMItkALjONJo+DVgJZCP1E560gbije5mn+Xl5WzatCnsN/vMM88AnS91bant7w9OnTpFIBAgIyMDBcjIyABkOG91dTWBQCCs2mI0lghNuGj3daXR0F+OSGggfUAgEMDr9bJgwQJ8Ph9msxmr1UogEMBqtTJq1ChdYxBCMHHiRE6cONFHSgip4fRPEIXmjGxHGkZCSdQmITWRdMBLS0sLFlun4zwpiQgTlovmgF3nTPSrF1e5PR6wGbzS/QLYkv24LZ1kvPqk/vHO/BL27aP9nB9LSO4I6IUL44NgHogx4AW3NPkYMWA0gEExYzJBwNt9TPPa0lLWrovupWhG8ihfh+RSvgH4BMD//q8UlFEqBs5FGhgzkfeZDbqPZAZyOtHb7Pa0tDQpwSNw/vz5sNyi7uzx8bLTf/7zn+eXv/yl7l958MEH2bx5c9RqigB33HEHKSkpus+kra2NHwSrTlZWVqKqKmuRSZSf/vSn+abLxWuvvRaXsQ4VFEXB4XCE1TK5lJEQIH3A2LFjOX8+vMhRIBBg7Nix1NfXc/r0aUaPHk1jYyOjR/8/9s49PIrybv+f2VM25xASswKGxWMCWMBiq7yoCUqphxd5bX9asFoOtWIrWqUGS6wCFQQ8tH2hFbVQ1ALa1jYvbcUjCUqpVRRQIEFQNiHgAgnshk2y5/n98ezMzh6SbJJNOOW+rrmyOzM7M7uZeb7P93Tf57Bv375uPYQ+n68XKk+OIvqsTRyXZThsx+M5zIgeLK91uURBUkWFeG13TWL11PD2pxujWb56ABaLMCKtHfQlKLK7cTDvMTGkV1XBSEcF5OSokrwBhARvDaKrvQj4n8xMWLQIHn8c+vXjDoQ/6EMYDC8i6HghglZlIuGE/JTQPkDC5cDxBiOZWB4mBUoMPpmxeFmWef3115EkiccQZcTGkOKkNmmfCBQZBiXBXldXx/r169mdkRHROJeSkkIwGIxbtaZUnp1qkGX5tDEe0BfC6hJaWlrwer0sXryY5uZmFi9ejNfrpaWlBYPBgMlkIjU1FZ1OR2pqKqmpqd0XbunxhHIAOILovc4DwOE4zqZaG8ePH2PHjh3JP2MAVbgqIwOuKHKoRLxWKzSTjsHvVunc8xpqIujdk9k7EtCbwGwWS3uoquoyfYoH0ZDIt74FBw/Cr38NOh0XIJLugxEG0wsofdo+QMlK1CDaQW1EcXKdJojW326vHHnhwoW8+uqr7N+/n8cee4z9+/fz6quvsnDhwogEu16vZ8iQIUycOJH6+npuueUWLrzwQuYhaFziFb3k5ubGTAD70DX0eSBdwLFjx5g4caIqF5mSksKNN96oEtWlROlh6PX6bojXXwW8HzEb7F7ZcB2ixU0Lk+a1F0FqHjn7dDiOs2PHDgYPHqHmQJRLCAb0OIIZalTM7+9QqTaxK+0/iqDfRsakEgAaVldhs5ZgKdHs1JHeeiKICmHFhdK1XlKS0DlLrrmG7Zs2RayTgMcee0x83mKB+++HbdvY/eKLpAIFCB6uTIQ8cYfYtq3XyByTBaUirKN7uL0kuvJai8JC4ZfNmTOHNWvWqGSQt99+O4MGDeLAgQMwbx5VJSWUlJQk90udxeiUAZEk6VrEPf6GLMsddjNJkvRt4DeIidXvZVleHGefW4F5CK96hyzLsYHhUxD/+c9/2LBhg8riG69KRXlAuhd+2hJ3bbxSxsTwGCIIYtOsm0Q4J1KEoEHJRARSwlU9DsdxHA5l9n0JECAjIwN/MECOzgU5wmp0hyS3shKU3rL+jYW0uo9RH9Jjbz2chfnoB2DVVIoVFsYepLPIyCDgdaE3i8ch6Ami14NfZ8ZghqDfEz+UpvBphWC1AW67SiA5sqCAkTNnUlHhYNKktjM3XoTvVwsMR+Q+chHeR7tobu4WmWMyuJA6C+WZ6GgCpCTRFW0TiEyiR2+rq6vDYDDEHPdUEY46U5GwAZEk6WlEXjAI3APc0MH+euC3wHhEj9VHkiStl2V5t2afi4CfA/8ly/JxSZJ6ruMliTAYDDHut8/nU8NUOp2OVatWqcZFod/umhdiJtzXLDB06NBuMgJ3VOZ7IvR3KPBxG8cwEAhINDV5MUixHojXK5LvnYXTKUJaACtZwKScKjHrRzQf2t05vLG6iwSKWijVXi4XeL3o/W7wi/CVRBCkBLIvCp9WCLYqsDoc4S/QBbU3P6IuLh8xo+qq35oIToY2RqIeiLbv6upAgPdCFVoKM/aMGTOYMmUK5z73HA0NDeh0OgKyzPDhw7n22mt5VJZZsHBh0sggu4MzrXteizYNSMhg/FKWZeUpKARuDb3+LIFjfwPYJ8vyl6HjvQLcjOCdU3AX8FtZlo8DyLJ8pHOXf3IQCATQ6/VMnz6d2tpaBg8eHEGT7ff741ZodQ3NMWu6TycfHdj4A+H5q+KNZCOCIpfSHt+sLCc42J5qUKq9pk6F7dsJuPahzxO5H19rA4ZUQ1uM+D2OZoQPaKLrBqQUIc2rreCyarYPARb0AoNCNOJ5IMOHD1cp3hV9Em3fVbwKrS1btrB06VLKfT7y8vKEZ7J5M++++y5PPfUUsxobyerfn7KyMlJTU9VzrH7xRRYtWpSEptzEEd1Vb3j8zOlaac8D+SvwiiRJryM8iZeASsSUOBGNy4EI/gwF9YSqGDW4GECSpH8hwlzzZFl+I/pAkiT9iBCTdkFBAVVVVW2e1OVytbs9GRg8eLDqXSgziwkTJrB582aam5tpbm6mf//+HDlyhP79+3PixAny8vI4duxYtypbLr/8cp588slkfQ0NtB6J1hupRcwbZERIS1u140ekhcEX9OOkAb3LQXp6OiZTOqmpAZxOPTU1YhR2Oo20+tIJNIghUec14Q0E8Xr9OBwtuFwGHDhCjXBiH2WdIxQmcrvdeL3eTv1/O7ofiux2MlwuDMGwYqMsyyF9ah1+fxBZDuJwODC4XDTYbJjtdmqqqiiy2yNsjMORg8vlUgd9Zf9AIBObJtSlfF45fzwcQyi9mGi7Eq09zqRswgl3iA1vjSRyEO/oN+3JZ0qhdm9oaODHP/4xu3fv5tprr2X37t0qzUpzczO7d+9Wr+PVV18VlVSHD6vRAOVZlCSJAwcOIOXlYTQaaW5uZsaMGdy8bRvGoiJmz56tnqM3MHfuXAYOHMiECROY2wkeM+jZ3z0Z52jTgMiy/C/g25IkfR94E/hfWZZLunymts9/EVCC6LF6T5KkSzVej3ItzwPPA4wePVpuLwlWVVXV40myRYsWUV5eHhGmmjFjBosWLaKsrIxAIMDatWvVbbfffrvqoXRe0bAMEBxYW7du7fC7dS1UFt0nYtO8tyCaEUcBn9PetDwQ8NPU1ERWlpnU1FSglYsuEnGsmhowO5ohL8Tf7nDh86RhMpnIyRFJ/JycHDLIUCNA+/bBS4EJUCeO4WsqICDr+OEPRZFCejrcfHNk60g0OrwfVq8WdO46HaZQBVar5Ar9jmAw6PBJAZU1NSMUsrKUlIjPakNYNsiwu1C58N1uMmw23EfdWG2a6i6HQ3w+dP54JsSDyIGYgPMQJQ360Dor8BWEfuPkoKP7qiefqXXr1qlJ7ylTprB69WqGDh3KmjVrWLVqlbptxowZDB06FICjR4/y1ltvMe6999QyXiUkt3LlSpp27eLPn3xC//79OXjwIA888ADMm8eYMWO48sormTVrFr/85S977DtpUVtbS21trWiibGPC0BZ6I+HfnXO0F8IyABMQ+b1JwAOSJP0Q+IUsy4nUdB5E3PsKBoXWaVEP/CeUkN8vSdLnCIPyUeJfoffRnpLh97//febMmROxTctoeuutt3aSEK5zBIpdr/ZqC3aE4RiISLAfBQ7F3VOn0xMMBmhqaiI/v/uDm9cLeWkeyAodK+jB7TcwaJAwIA7HKVjJarFE5kBKSqhxOCgq0STRo6q4Ro4YQVWcMmnFiLQiKlfSQ3+nEgoq1tVxM+Khqkc8qG1lNZQGRQXaBkXgpOi8K7j++ut52ONh8ZNPMmHCBNavX98uFxaA1WrFYDBElPH+9KWXKCgoiOgr0el0qj64Am01V29AlmUyMzNZu3YtV2/cyLyzJIRVAfwbcc/eLsvyDyRJGgAskCRJlmX5rg6O/RFwkSRJQxD3+PcQfVDR55gM/EGSpDxESOvLLnyPXkdbSobFxcXk5+eLmzgEhdF0165dvPLKKz16Xddddx3vvPNON44QnWAHoclXhxjOCognmn4OcCQYQJJ0p0Xly6OPCuPzw81QeAwy/CkEQ80XqUFB39Irec/t28Fup2TwYABaD3yFOSjaBrWsZT5EH0h/BCHNIKDUYOBin49Rof18CM/kIKKSS8vMlk0k9wBEhbVOoiXu168fkt1Ov379+Pvf/w50XMZ79913M2HCBDUHcskllwDCM3nmmWeY5fOx7JlnkGWZr33taxE5kNtvvz1pDMOJQqt93vkoxKmL9gzIYFmWb5IkyQR8ACDL8iHgh5IkdVgGI8uyX5KkexHhLz2wSpblXZIkLQC2yrK8PrTtW5Ik7UZ46Q/Jsnxad/iUl5cze/ZsRo4cGRHeWrhwId///vd7sPJF8L7u3bu3m8eJ1zmgDWuNRNRCBFFyIGheyXL4+zU1GdTJtssFbn+4Ugu3GZ9frD8ZqKsT0aeM7WBygckg49c8DbLcSwZk5EhhREJeS6DBjdvvwO3xxH04AwhVxC+A0gEDePKLL8hBGJSBoWU0ooMdhLzYQUQGS0IYo7g+agc9JUydKirX2osXdhGyLCMTmZNpr4zX6XRSUVFBWVkZeaEqrMbGRnJzc5kyZQpz586lyeNhcUoKl156Kdu3b2fJkiXMamzk8PHjLFmyhJkzZyb9e7SHzMxMtTrszDAdAu0ZkOckSfp36PUz2g2yLCfUiivL8uvA61HrHtW8lhE8cw8mdLWnASZPnszu3bvjhremhLiPekY/RNyWY8eOxW63x/SI5Ofnc/To0S4eW+uVOBDBknMQCXc34CdWFgiysvxYrUbef/99gsGLyMaN09kASAzOzsbjMSel4fBMg8Viob7eDoHE+nwcoUXxeXUIdcQ0REf7QERZ8Lmh7S2I3pPrEMn6RgCns92ekkjCsuRC0QDXaoGXl5e3yYVVVlaGLMtce+21XC1J1NXV8dprr5GWlsaYMWOorKxE2rWLCy+8kOPHjzNnzhxWrVrFiV272GC1MmfOHCoqKnrku8RDSkoKe/fuVSn3zWYzbreblJQU3A8/zIR//zsuh5ciNXwqo70k+nJgeS9eyxmDa6+9ts0EXXv8PN2DEfDx6quvMm7cOPWGNBhS8fvd3TAeEL/s97uIqLye0BAUF8J4BIAM3IQTyXYn+PXCA1FppnpOGrpNOLMLKazbjD7oA78oEDDgRQ6GeH78IEu9z/iTkWEhw9+Aqzm2jBsgtR3KlSAib9IK/F9o3S2h9UqLaCZwBZoBoLaWnxM2KMqiGpgehF6vhzgFJg6Hg6NHjyIDNptN5c6KVk7Mz89n/PjxlP3f/0VwZF09bhzjxo2L0V+/5JJLejUHouQlFap9pdpPWf/mm28yYcIE3n77bbVnZPz48aeF7G8flUkvw+/38/bbbzNu3LgkH9mnHl+rHeL3J08eMxJehPeRh5jbNiE6GCI9q6DK1OvCo6ngMgOuKItRZbNid4f773ojTFxZuoBsZx2WfZtx5wnJ4OzmTwmYszAYwJQD3gY3pg6O0y3Yw93rJq8LHG7MbiDoJVVnpF/QF1HKm2o2M2fOHPjjHxM+RZCwpwLCVv8fIjfSH7ijf3+2NTbSH0GpOZQoorwlSwQ/zZ13wkUXwcUXi78XXQSZme2fvA3VRQVHDAZaAwGysrJUIsG77rorbrPuXXfdRXFxMXv27InY1tjYiMlkikm85+Xl8cILL/DWW29x9caNZOXmMmfOHAYMGNDhb5YsBAIBMjMz6d+/P5LNhsViobm5OYLMUjUWIWGtzuBkNir2GZBeRiAQ4O677+7Rc3S/0TBRuBBDk0IFnxtal5CYK0ZjmM7d4YCSHBsOh1UtYjoUv9jrzIO2cutQQ3h9IIAUhOyUFAgGuUKXhtngZ+To0YLU8VgHDMIdQEZjVHJyeENDMKhH/Ff7h5YJw4YJAsiqKnj55djr1xoU5fUFFwg6gjZUFxUM8XjYDxFiVkr/xz333MPDWVkcaWri2Wefpbm5mdLSUp544glVqrWlpYX3338fryTFJN5TUlJiKhNPRpHHN77xDVVEy2w2M2zYMN59992kHFtb1fkD4NKsLH6m+S17En0GpJeh0+mSkOjuPvR6M4FAV1ut6xC3jqKtfgwRQlOoACUOHIDUVD1iHisS61mEmWVPNbgN6YLpFwAZs7eJFHcr6FIxt7qgvl40nthsyeHfagNeUwamHDNuB5gNfvxeMFnywO3Gbi7CmuNQqV2or8fkcsVVUdRJEsFuDJQBwmEsgAk33SS+++rV0NICX3wBe/fC55+H//7jH6DJYyBJcN554PVyo+Z4h4jkV1CuMroy6bzzzmPVqlWc4/GwKiWF8847jwMHDlBRUUFWVhZ+vx8ZcDU3IyGerfnz51NRUaF2th86dIh+/fqppcKLjEZ++MMf8txzz3X5t+kK3n33Xe655x7m3HQTn1RXq8SryUBZWZn6+o30dF7qJeMB7feBtJvYlmX5mfa29yEWgwYNwuVy4QiFK04GmZ2CrhsPEDmRKYjug2gYAAvB4IU4nSbgSkQvif6UNR7O7EIw28VMGmg9mkGg8EIudG3H8u2R1Ffux7pvU+wHFT6tEGI03XtQSwWAY8eYO2YM77//PgHNfaTX6fhafj72wwlx+nYeaWlw6aViiUZTkzAoWuOyYQPDEcXgIAKfL9FWN1EYBw6EiSw8Ho/6vr6+nssuu4xPPvkEEN93wIABBOrrWbRokeqZNDQ0IMsyTqdTfc58Ph8rV67s1RCW0tz77LPPcg6wXrM+Gaivr8dqtWKz2Tja3NwO8VDy0d436CCw2YfOYunSpdx///3q+5MRt+yZCjAt/EA9hYUX4nR6aGx0IuqAdIjbTdRrOQHcrQQCrYjQl4AmHUAgAA63OaL01x9MbkK7shIqnAsQRi5kQNhHgAu5kO1YGEmQTbwU78NRJa0xmu49jdxcKCnhqpBHUlUVdk6oqOg5A9IesrLg618Xi4KpU1ny4oukIarBJgF3IIzIV108jWI8AALBIAfqxWRGlmWOHTuGDGryPBgMkpGRgeRykZqaSmtrazeLSjqHtpp7/X4/8+fPj+AA6yq+973v8atf/Sqm+lKv15MbCNBT37a9Kqz4Op196DKUG0TpB8nLy8NgMJCTk9NreQtZlsnNzeX4cUdEz0ayIUmQkhJEcGcagcsRVVuRBb8+n5ePPvqIQCCT+Z5NpKRYGDKkHwUFBRw6BDlmN+SEKo4cbtx+AyQxpa2y/zrcahWY2ejCnQEWvxC4+sDTw55ED+FU439tQbCrrQZmAjMQ/Sx6kqtlUlZWxi8kiWtCVVggPBgZ8Hq9GAyGLkohdB06nY7CwkIkm42srCw13/PII4+oNC0guqo7i9zcXJ588kmWLl3KrMZGtm7dyphQFeZ5551HXQ+VX0MCORBJksyI//UwCNdhyrI8vceu6gzG5MmTKSsrwxWaDdlstoRdWW03a+dwJ4Tm0Hq9PqassSP069cvjszmQUT7WnwMGCDC5AK+0BKf3qSlpRlhZGQ8Hjc1NUqJZUGnrrM72O/IwVMjXgd8hQTqwOUtYnsFHHUW9mQfXY9hxIgR/H3nTvynWNezE9gPnB9avkRQUmhh7cTxJCJr/5566imMHg9//tvf1HUDBw5EstnIy8vjxIkTPUD50z50Oh02mw0ZUSyghK/1en0ETcvk736308dOS0sjEAiwbNkyTthsZGdnYzQa8fl8tLa2tklvkwwkMnK9jGBRmAAsAG4Heq+I+gyEUsc+d+5cQJCtdQRJkujXr18XzxgOwChCVJ2hUojmEhIoafcz770nc8EFASKbO3QII6KmTdv8fE1NNTpdQdwQljKh6o5wlRb798MRVzr60JgSDKYit4JLn4HLDp6AqSf76HoGoYqfR0JVSc7/7OK4O1zhpe0iORmeihdByTISuCD0twaRH+mIij7aO4kOyCrehcLyC6iD9+GTEdYjNowVnfvsDj+XMp4sWbIEEM/rymXLuPPOO9V8a1vorlR2IgbkQlmW/58kSTfLsvyiJElrgfe7ddazHMXFxfz1r39Vb2aj0UhBQQH19eGkdHZ2Nk5nONwjyzKHklDX2tLS0vFOUegq6+tFF7n48ktlbvkDhApFPWFa+KJ2Px8MenB67CGeFNG97vYbsFqFQeuCXlNceDyg18kojqBb0uH3gStgAhe4fWYqKkTTY4eeSFRiHeCyug/B9o3IfXoaoYIAJSni/PQI1m8Ooyoks6uYdVVmtxM9JcmCm7ARmYSYTnyJYFpz0jYVvbWD4+r1euSoCZLBYAC//6QWrsSDkgOZNGlSl/m5iouLGTRokEoiCVA5aBDDhg0T60pKoKQE/S9/GfHddTpdtzm5EjEgSo2gQ5Kk4Yhs42mhHHiqorS0lOXLl3PPPffw1FNP8aMf/Yg1a9ZE7KM1HgoUSvHeRl1SiPaaEUPEeURqirUHpRtBwO4Eg9EU4YFsT4hUp3MIyjp0OjDogmAAo15W2zQ69ETiWJZPRv6UwtW/Tv6FdgLZrUfB1qKSNroa3MwbHTLgSegp6SrcCM/jQ0Tz4jCgH8KrSEPcKTXEk1VrG0qRiDZUq3gAp5LxAPE9GxoaeOKJJ/jxj3/cpWNEqzfW1dUx46WXVPVGBaqx6EKzYltIxIA8L0lSP+AXiAq0jNDrPnQB69at44UXhB7XypUrWbFiBUOHDqW8vDzmHy5JEkajEa9XNOZ15I72FLQP3caNG9m4cSyPP97ZRLYfoS9mRXghiRT1BtByyJoBsynSAxnZRXVbRc7cbg+p2gb0CpMJAXTi1B149wqjrwJ7zSRWTw2/TyhnUlgImzerb1PcTnCDwQ8EAgSl5BQMOFPzybaG530ut4MMrQ5EfT3z7ruPefNja2fmPdbVdHbiOBRa3kEkknNCy38DNyKS77sQ9XrnEBneUmBFhLce1+shylDodDoIBnuhCrHzOHbsGJIksXz5cvoDixcv5q677mLZsmUJfX7y5Mls2bJF7XUx6PXceM89MVVds2bN4oUXXhDU+Z08R1tIxID8QZblALAJkfPqQxexbt06ysvL8fl8FBcX88Mf/pDly5dTWlrK3zQJP4D+/fvT2NioGg/lfU9j3LhxMRrSWo6izlCwnHOOm0ilwyaEQ3sJsBdRTZV4d4gT8De72LRpK9dcU5Lw5+JBkTN3OEJGxBvAYBaEIUFPEPQdy/QqjL4KrEWOiPhKQjmTBQsiDuTZtwJjURENNshw1+B2m2mb9SqJOHYMqqqYd801gLh29bspinW9NIFReLwqEGUUimdyE2LG7gX+B9GeKhMuzShEDGg3+3w4gMc1RkSrVngqGZBfPPIIO3buIy3b2AAAIABJREFUVMkdy+fOJat/f0FVAwkN8OvWrePVV1/l3HPPRbLZyMjI4H9ffZUxY8aoRuT111/ndx9/TH5+Phw+TE5ODr/73e8SPkdbSCSDsl+SpOclSbpWOlOV4XsJikhOcXExt9xyC8uXL2fMmDE899xzXBN6cJV8Q0tLC5IkCaI5eoeZMz09nU2hGHleXh7ZoUa4oqIi9To6g+nTbQg1w2nAZoRK8uuIct6DiPmirVPHVEIZmzZVdfp6+tAOQj0lymKzlkS8p6Sk6+5eN3AYoaO9HKGrLVpSBYdXDmI6chiRJjMhavnOAy4Ffh8I8AeEt6I4gl25j3sSv3z8cSoqKrCGrLXRaOTBBx9kyZIlaqSiI5SVlakTTQVerzeiQ33r1q1kZ2ezbt06fvHII6xbt47s7GxWrFjRretPxIAUITzLnwA2SZKWS5I0toPP9CEOFJGc8vJynn/+eU6cOMGaNWvw+Xw8//zz5ObmMmHCBEDoXcuyTFpaGpIk8corrwgN6B5Ec3Oz6mk0NjbS1NTE5Zffy86dO9X1FosFqUvstAolvANhPG4EBhMOVsQjhG8fNTU1XbiOPpyuOIowFk2h1wEEPQ4Iz8MfWuclPDVRlgGh+9fn85GSEiuIdrJhC7mr8+bPx2w2s2fPnoR7Verr60lNTWXVqlU88sgj3HzzzaSmpkYU5QRlmTVr1lBaWqqWDq9Zs6bb5cwdhrBkWW4B/gT8KZQL+Q0inHVqmfLTAIpIDghKZ7emDjUtLY0pU6bw3HPPMXnyZNatW4der+fEiRNqqd3y5b3Hrq+4+cFggMrKSkB4KP379+fw4SNdOKI2jm5A3EY/RgwFr6EVp0oUHk/363h37NiO6EDPAKeoUDPS1X4b0dmu1D8oVVt1dVOomBreJyY3El25VV9PweFjYPCR3uoEXSoYjYKrq6fpUXoC27cz75pr1AowEL+4Uh7RlRBdAOGNZtH2LFgr45uBphxYGZgfffSkN/bEC+l4PB6ef/75TnlLpaWlEfT2pdddx7p16xg+fDjLQ03K999/P//zP/+j5kAuu+yybl9/Qh1skiRdg9Co+TawFbi122c+C6FUS5w4cYL09HTmzZvHww8/zK233srGjRupqKjA7/ezZcsWQJQeBoNBioqKqK6u7hbVQVfx8cfPMn36BgAGhyp4ug8/wqEdDFwP3AO8iyjv1SpMxVbMpBEp1dodzJ8/D1FAGokgckKueTyone0hWK2QU3iIHGt4XUxuRDOIbbXNo6RqHv8pmUeJ1cbBKhvWqSUA1FSBpaSLF3YyEUo4WUNLVRVYHBWqDnxXawubEQYirY3t0TK+2mZFCU6qjK+C6GzM7Acf5O0PPmDLli2dKrFVGHm/Cxw5elR936zRk9m7dy+jRo2i7Lrr2LZnD+vXr++2N9bhcyJJkg34KaL341JZlm+VZfm1bp31LMXkyZNZuHAhDQ0N2O12Vq1axd13382WLVt44IEHqK+vZ/DgwXg8HtauXYvb7SYYDLJ8+XKGDh0acayMXpTy++qrr9Dr9ezevZsLLriABx9MVjPWTcC1iPlkKSLa/S/Eo16BSKVGIlnG47RAYaHwOmw2sNkoqqlQX2OzCXbgsxheRA6kK7/CqZNGj8TTzzzDxx9/nDTN9uYoQbJt27ax9MknWb9+fa/1gXxNluVTlUj1tIMibfvWW28xfvx4AMaMGcPPf/5zQNSrBwIBLBYLPp8vQlNdQUpKCjfffHNM70hPYcOGDYwfPx6DwRCioc5P4tGrEDxZrwIvIqjhdyNYkhTKeC2S1H5+OmDBAmre02FZPQ8IkTWGXgMiBBPNBmwNJbpdLhg4sNcu9WTBhegb8dCG1vvJRgdiWlOuvJL5//430cjsSKQrQcQjjZSAgoICjhw50nM5EEmSymRZXgoslCQpxmDLsnxft858FmPQoEHceeedrF27lrFjx2KxWPB4POTm5pKdnc3u3bu5/vrr8Xq9DB06VNVUV3DXXXd1u3qiM1BKdwcOHEhOTg67d1dHEDFKkh5R6d05hMuD9wPfACYiciVjEbp4rcAeena+GMp/YEJ5HILokQPgDhrATdIZgLVoq5dE+RvcX9o2aUw8NmDFwEyd2nuswCcRTkTlVQbiLjnljEgHYlq74xgPn8/Hhx9+mLRLuGrsWKo0vUYgqiwHDBjAtm3bunXs9p4MhZhlK/BxnKUPXcTSpUsJBAJMnz6dlJQUpk+fTnNzM3q9nmXLluHxeNiwYQNWqzUuzfOyZcuYOXNmr1/3wYMH2blzJ48+GmksumI8IFZASPSpfh3RPtaI6AL4JkIyt6cqyO2EVRTdgBsdAfR6IehkNoNR13Pdy0oLiLJcUSQYgC1m8ffIacoE3JtoQPz3zAgalNMdXe2WN5vNSAjJYwVGozFGNkJG8Gd113hA+3Tufw+9/EyW5U/a2q8PnYdiEBYuXIgkSaSnp+P3+3nppZew2+2MGjWK6upqCgsLKSsri5s8HzNmTNyqLG3TX0+gsrKSQGAseXl5NDQ0RDRmKTfqwARDJ203df0jtBxEzC0vQSTcDyNSpy3Ey490HRloSR4D6Aj4wCWZwA/BgB6bLXnkjb2CqMquXNdBcIS72t0pJ9kw2e2cH1JNNBNJzXkunfc5vYhMWioiKX+4C8c4Gbh0+HDYuTMpx3K73chAq+ZG9fl8vPd+LHWhy+VSGXu7g0RyIE9LkmQB/gK8Kstycr7tWY7JkydHGAa9Xk99fT2PPfYYU6ZMQZZlampqCAaDzJo1K6JbVOloV6DQrWt1BnoK0Z3o0QYkPT2dpUuXJnSsjjuCW4DPEVHuwYheY+1systbb8H990NRUXixWIQeSeJQVARFAERPGjqjiTSdF8xmPK4AVquutxqxk4Oo8Nax9R+SMSlccWar6hxletJhsVBYVMTmzZvJCASoCq1ONZspueQStocqtDoDDyKkYkZQZuxP2sX2HD7TGA+TycTDDzyg6r/3FCQIleN3vxgmkT6Q0pABuRV4TpKkLIQhebzbZ++DiuLiYh599FFuv/121q5dy8qVK/H7/dxxxx0899xzEbQESke7djDX6XS4XK62Dt9j0LrbAwYMYOnSpQmXG3c8A3Ih5pMyInosIXIVSrBCh8djYdUqkTNWkJ0dNiYmUyFOp3h9/vlgNCbwneLkQBQPpKoq+Ywe2t4R7EXgAFdDrBZJ4iQypw/Gjh0LDgeOnElhNcUVKxggSZTEmWAMkCRSZRlvzBYBH8I3zQYuRLD9trXvqQav18uSJUv4m8KknASYTCaI6lKXAbvdnpRoRUJ9ILIs24H/lSSpEigDHgX6DEgSUV5ezpQpU/jjH/+oUhjcfffdPPnkk/zgBz+ISKQrHe0gekW0Yk+K/jII9t7W1tYeV1/Lzx/G0aPVKvVJonjzzTc74NZaj/A62sZPfjKV+fPh0CGoroaaGrFUV8Pbb8OhQ+ejMEIYjXDhhcKY7N0LMAIR9Ih0VyQCBIMB9DoPRnMmHn8Qq1WPwyEYPZKtC6LtHdlvM+OxAwgtkmZfKtu3C77FD12T2NjF3rcWU2bbFVtwapUEWyycY7GwZv9+nBqPOjsri5IhQzjWgXfiRmTQrMAo4NMevNTOQtvcCGFWOAUZwOCQlgvQ7WbHtiZoSglvd9mpElEkLEY0EX4H8X95FZjdrbP2IQaKUmFtbS0TJkxQq68sFgvFxcURYjPajvZAIKCW5EXXdfcWe6/PJ2rNm5ubVc33RLyQP//5zx3s0TEL7IIFUwFRsTpwIFx3XeT2f/7zfc4556oY47JnDwhKPgVBdQkiAQFaggFwOoAU3nvv3+Tmno9WhVFh9FVhs2J3hz2UruRMPH4DZjPg9uNwgx8DdruYRO7zWti3Nly11RmFxBrLlRRpKOU7VRKsoDd0TDR44IEHgCit9xUrSCXshypQauiUqqATwD6EAs1lnDrhrOjmxlYEN7WCHKIqtbrZ7NhRmLi7xJKJeCCrgFeACbIsd1/RqA9tYtKkSSxfvhxZlpFlmV27dqmeicLWCcJbue222wBxAzQ0NKha5y0tLTHNQz0Nh6OW1NR/cfvt/2TVqlVtJv6j0d04byJqaunpAS6/HC6/PHK9zwcm0yXAswi6t36I4UdI60YrUMhykMbGBl5//VOGDr0BCDP6qqiy4XBYVW+iu/bb7xdCV0pRzaAsN46M8DmT6gm1VxJ8KsFiIdXrxX78eERHkMKFpR3QWoFPgK8hwlnDEd1FySy/6AlES/S2izh9JhDOb7VlfpKli9KuAZEkSQ/sl2X5N0k5Wx/axLp16/jnP//JpEmT+Oc//0l1dTWff/45N910E2vXro3RCtGGpbReR2pqaq8bEJBpbfWwcOFCHn74YRYvXhyxVZKkuF2vVqtVJZHrCrrjfotcyOeIRywXYTzcQCbQH0H1Fhsf/uijD1UDomDBggWavhhBDKmwK/cktm0T7R4KuqRHcjqitRVLejqO0H0uIWFCVj0QLUeDG9iGGFi/q1nnAHj3XVGBoa2jtlqhy9LRyUGnfII4fSYlhL2YkdnZpHm90NozZrNdAyLLckCSpPMkSTLJsny65KJOSyiJ8dLSUtatW8fChQuprq5mw4YN/OEPf4iY0ZeVlZGWlkZubi7f+973eOWVV7DZbBw/fpw5c+aoxqY3qrLCqAKIMR7Dhg3joosuYsOGDaoBSUtLi5HWzczMxOVqJiMjnRMnTpAIeqZc2YUwKCkkQpwSaTwUyGzatIkRI3rWiDQ3J0GP5HREaiqYTAQkiRMuFxISqVHDrpKGVni2TgB/R/iZCv+zxeUipgIDRBVGtFHRLidJGbQrcDidXeYaSwSJhLD2A/+SJGk9Gr9eluVneuyqzkJoE+NKia/P58NsNseEg+rr63nrrbdoaGigvLycVatW4Xa7ueGGG1i7dq26n9Z49LyQTngwT9ckZMvLy7n//vs599xzsdnqyMvLDSX9JXW/lJQU+vfvz4kTrtDfxAxIz8jTyIhaHiOJBBNijUeYZ9ZuF/F7t70Ic1V4j9OqHDgZCPWkmEPJ4aKa7ZARVTbXWbhc9DcYMOmMBILhRLEE6CQJZBmDXg+aSYZiVBTBqksGDxZu3LFjkRxjyvLFF/DOO8JSa5GT076B6WXG5OjEvJbpOIMEK6W6iESO/UVo0SH8+z70AJTEeGlpqbpu8+bNbZKqVVZWsn79emw2m0p7AsKTmTZtmhriWrBgAR988AGvv/56D3+DcFFe2yE0mYyMDCRJ4qqrfsNrr01GkiSuvPJKjh49qvaRKLBYLNi1FSnRR+sxg6gYEDOdj5jbUdKkFouVkhJwOGrIKSlS9+gNz6CyEg4eDIe4oinl26VISTZCcbSaqiosJSUiv2K1RbpPVZ08ZkYGmM0ElKGypQFzmgH8fowZGTRhIc8Cx48e5eChQ+REneIbl18OQ4eKhqH+/cXy9a/HnkeWhYHZvz/WwOzdC2+9BVHeNP36hY1JTQ3fRNwRDhITYOostIl5a+ivYixNiDrDSZptQ4BY4eKuIZE+kGSdqw/tQKF6X7lyJWPHjo1LoqggNzeXpUuXsnTpUmbOnMmKFSsoKysjOzubyZMnc+edd6r7Pvroo735NWKwcOFCjh49GiJ1k9Scx/vvL0SoX0NVVRX33HMPN974L06c+Dm7QvoFZrM5/kFD6DlhIBnRlpZCd7oIvvjiC+bP/6M43o4dnH/++dxxxx1Jusb24XSKMVYZo6Mp5T84SyhSLrroIgBaDon6H71Ox9e//nVuuOGGxCy51sCMHh27XZahsTG+gdmzBz7/nOujPuJDIc0Rg3suQiQrGTxe5tBxcxCDu6IoYiGcYC9EqDTWkUidY/tIpIy3kjh+vCzLZ2Jf00mDEqaaNWsW1dXVFBcXx5AoKkhLSyMQCLBs2TJ+9rOfYTAYCAQCNDU1sW7dOrUPxGQyqZ6Jtj+kN6EYA4FyFE/l6NFdEVVUzz33HMHgsx1WVul0Js4771xqa2tjZDyTCzfh+VvX6B5crhOEHx2ZL7/8gpdffpmrruodI9IHgYsuugjy8zmeMwmr1abKxyYFkgR5eWKJLvUDGDGCf336KWbE4F6IuCMMCM/BiKgSA5FxcyNoResRdCxdhVKVpkCr3WlBJNmt3Ti+9jwd4Wea12ZEP8gpR3p5JiCa3qQtHDp0iNWrVzN37lxkWWbgwIE8+uijzJgxg/LyclWIyuv1MnHiRFauXElJSUnUYH4ysDbi3cyZM3n22WeRJEktK9SWF2rDWVarlQMHviIQ8FJbWwsQo5GSfLQi1CZkhGxR93MuX375BVddFX6/fbvIlSh5EZfXhNsBuM14g0AgOcKf/7YX4dEoKikd7grO2Iqtk41Ro3j703Ar4yQi+0C+BtQilBWzEJ6DUuPnA3j9dfjZz+Cb34QrroBBgzrk6clB+M4mwndskWZ7NiJvkozemA5DcrIsf6xZ/iXL8oOQWPhUkqRvS5K0R5KkfZIkPdzOft+RJEmWJCmOj9iHaBQXFzNo0CCys7PZuHEj+/fvx2q1MnToUFauXElWVpY6EK9fv578/PxTwHgAfBnx7ne/+x3p6enIsowxxDFiNBoxmUwqMzEInjCbzUYg4CErq1DQM0AEH1jXUUeYzl2ZJ+oRcyuFINyImBd+DZjFO+/AAw+IpkQRUc6Kc9zEMHKk4O46cOB9amuraPYdw+m0gceOyQQmfXIqzU5408jJQV3ys70Red9TQJzvjEV2Vvv3hxM4AOwKLb8C/oygQQdg+XK49VZh5QcNgu98B5YuhffeEw1NUVDu3CDhYKxbswSITLp3B4mEsHI1b3UIvu0Ozx/qIfktMB7hkX0kSdJ6WZZ3R+2XCdwP/KcT131WQ8mX1NbWUltby5AhQ7DZbAwaNIj6+voIahMFPV+F1XkMHz5cfa1orSskb2lpacyaNQsQ5bqpqam0trbS1FSrfiY5Er+PIQILIwnPDYuIFK7KBI4gikAbaWnpz3PPKaX1Pwjt40UQNZgRc8BWhCEy05EI1qeffhqXEr+52UW60RTnE2cAotiCz2QxrAceeIBf/epXEbQs7cEZWnYBV95wAzz/POzYAR98IJb//Af++ld1/4uB44g8Sjx/1Qjkad6nIO74DEQuRCVb64ILmkgI62OEIZMQ07H9wIwEPvcNYJ8sy18CSJL0CnAzQm5Oi18CS4CHErzmsx7KwHnnnXcybdo0rFYrL730EoMGDeL2229Hrxe30ZIlS3jwwQcBUbXVPu9Ub2MSy5bdp15TY2NjqNu7EbPZTHNzMzt37uScc4bzX/8l+kgA9PoU/vu/r2fv3r3tHbyTqEMYEIWmJA3hkSjwIuZxe4BKJk4cxqpVcNtt8Je/vIhoPOyPeExzEQZECR48jKh+b0AYmEbq6mD3brjgArFHbClw76OjpkRIcpjrLBPDUmhZ7CsqcBzuJNOwyYRKpxCaVHH0qDAkc+cS+OwzCgDF5PoR3ocCHbE5By+i48kG4rfuYmlgIlVYQ7p0ZPF9Dmje1yPUgVRIknQZcJ4sy/+UJKnPgHQCCneW3+9n1apVauWWLMv4/X4kSWL58uWMGjWKsWPHnpQEevuoYNy4cFD+zTffZOPGsYwbt5nvfOc7tIY6Z6+6qpxt28rZsGEDGzeOpa5uM++/H786ret4jMh6lPm0TeJopbAQdDqFf3A/kdHkSYj5YyrCoOwjbFwuBjKorIRhw8QxUlNBkI83IdKoRk6GbG9HTYnQi42JHXkniVAqn+nIz4ebboK//IUvPvsMB2LaU4zwlwNEGpGeQnuStpcDB0JMvEiSdCcigV4LzJNl+Vh3TixJkg54BpiawL4/An4EQsu3qqqqzX1dLle723sDvXUNhw4dYs6cOUyfPp26ujoKCwuZNm0aTzzxBPn5+RiNxqR4HV0Jf1VVVXWKXn7y5MkcPnyEF144RzUe2kbBG264AY/HS3b2hdx77+2ce+65Cf3GifwvlPBYGO0XN44bZ6WqCuz2ojb2kBHGoAnYErUthSuuuItx445QX5/GW28V0NyciggoKCnJHE6EmJ1afBKHDgUJBmGfOYOWJi82myhJbW0twGYL1+rkOBw4QgOvyyWCFjZbAwDBYCS5ptfrjaCRae9YCux2M1VVNXQVyv/C4XDE/E8i1kXds47tFeRMFVomRXY7Gfv2YTp2jCDg94dkiINBMXEKBAh4vXjx4nJ51Zm3weXCgSPie5vtdmp6+DktstsjpgP9nAcj7HIm4fJaEANyiea9a/NmtrZzjUWaPqkWhK+rJNATzZ7ZQk2eXfkt2vNAngOuA5Ak6WpgMTAL8X2fJ0wt0xYOAudp3g8KrVOQieA3qwoNFBZgvSRJE2VZ3qrZD1mWnw+dk9GjR8slKjVnLKqqqmhve2+gt66huLiY8ePHs2jRInVdZWUlL7/8MkeOHOHIkSP86Ec/4qabbmLKlCm4XC7MZjPuTtLEdiV3UlJS0ikjqojbaEVuhFCWg/T0NLU50Wg0MnTo0IR/30T+F539PZTjbdwIb75pjdqqZWJyEgsPl1ySx8KFYoCfOhVefHE7Iv9iQjwSGQQxAUH0kkxamh6/X5Rim0wmbDZxztZWIktSbTZyQu+3bxerrFZxPR/q6sjRUHA47G6s1rDuRGpq28eK/O6d16pQdN/tdnuoOTQHy+rwsFlYCONy2v4/VWm3bdwI+/ap23ReB15TBvoQFxYmE3qTCRMmMjJMEbQjOTk5mEyOiO9p6enndPXqCNfOnj0Qm7tBfZ9FJN18dMNjydix7d+/q1cT3WrrRQzsRhIrQFd+j678Fu1VYek1XsZtwPOyLL8my/IvEOSWHeEj4CJJkoZIkmQCvocQeABAlmWnLMt5sixbZVm2Ah8AMcajD21DSaZXVlbi8/morKxkxowZquZ6VlYWzz//PBMnTgw9PCZ1sFTyJCBm4O3BYOhJMoS28dprrzFp0otkZWWp13j99csoLy9n3bp1STmHXq/vcnGBCONPi1o2AxWhpbKTR/Qi5pH1iAi1Dr+sw+lsxOs9hjXHgcUiqM1LSiA3t71jnTpQdN8tFneE7nuXKsAWLICxY4XVKSqiJS2PhrwiPOZs0YtxkokQTxWonlcPn6e94+slSTLIsuwHriUUQkrgcwDIsuyXJOle4E1EccAqWZZ3SZK0ANgqy/L69o/Qh47QXvPhlClT+Oqrr0hLS1P3X716NdOmTQMiiQjT09MjwkbRA+rJyp9ow29KOGvDhln86EdT2myy7CwMBgM6na7b2tDJRRCRcNcjAhL98fl8fHnoMLkaZrxjxwTXlgqbVZ2+tsMAc/qjsFAobAEGv5u8hhr0AW84dZSSImoezgZs3x7DfWVC3DlBhIeQnE6i+GjPEKwDNkmS1ICoSXwfQJKkC4nvm8dAluXXgdej1sXl1pBluSSRY/YhEm01HxqNRlasWKFWYQEcO3Ysbkd6Q0PYpT7VSn0VKNd1/fXLWLNmutpM2B2kp6fT3NysasqfeggiHr0WoD8HfMUc2NHEzp1/5pFHZpCbqxFaAqiyQYkVOMMJG5UKrro6XHYRq8t21omGmhDcx7NJcJjqdSSq99FR/wgAI0di37FDLUA3EzYiQcJ0JhmI/Eiyn+42DYgsywslSXoXOBd4Sw6PLDpELqQPpzBuvPFG5syZA6DyZc2ZM4eZM2dSUVFBY2Mjbrf7lDUY8aFnyJBSRoyYxdy5c7t9tH79+uHz+ZJsPOroiCSi88J+LYjhoBkYTCAwgwULdjNokOjEf/nll/nyyy8BGTZt4vzzzycz8wynS1EIGkvmAWDdX4l1ZLhg1PzGdsFTVR/S+0tPp6imAsyaHE4vKywqGDFiBJ9++inBdp697KwsUfqbQOnbyBEjqGpD5lepxFKMSOJlLYmhIz2QD+Ks+zzJ19CHHsDw4cN57733mD17NrNnz8ZgMDBz5kyWLVtGRUUFKSkpeL3eGE2NU7HhMIwAv/71EEym5qTwYB08eJC8vDzS09MTErb6f//v/yVVhrfzOIAwIseR5Ss5cACeeWYvJ04cJZpzy2g8Rm5urhriOtqaTYstfCS3S5vsP/1hG1KKVaOgWFMyD0vVvIh9akrmwcMlPZ84TwBXX301AK3/+ZSSb35NXW+vcTBv5qQuHTMrMxPiSCHICMORgahcSqa01MnJjvahR7Fu3TpWrlzJX/7ylwhm3zFjxgBi4MzIyFCNh16vV1/HUw48leB0CmLsQYMGdbhvRzCZTHzrW99iu1Ky1AH+/ve/d/uc3UcQkZz/kKysh2hqGgLcB3yISOALanGfrw6LJZdNm+aFPjeJhloR6LjmmhIcbmVIOTmorBSMwSBaO+yus0RNsSdgt3O+JBE8cYL+6NAjEx2sMiJKNEyIfpFkGZGeoKfvw0nGwoULeeihhygtLcVoNFJaWsrKlSvV5ju9Xq9yTz3xxBO8/fbbapL6+usjyaezs7O555571PfGk97ENREQRrC78Hq9rFmzhpqaxHob3G53D1LIdxbN5OcDLAM+A65ARJa/jtIFv2NHfMO4aVNVb1xgu3A6w7xcGRndrMw622GxkHLJJRzQ6WgkSAtyBBdW2DcVRkRGtLl2viA7Fn0eyBmI6upqLr300oh1Y8eOpbq6WqV7P3ZMVGgvXrw4QjMkWnjK6XTy+9//Xn1/8quV1gDJSfZ3NlxnMpnIF6N20iDC8FpPQEuhoqfjciIn8H+IhsUbgP9GtGo1czI62vsQhaiu+mxnHYGMcP11QJecCVlBQYF4UbMXUzsthAo9qAwx/SNdQZ8BOQNRXFzMZ599xnXXXaeu27x5MwMGDFAZbB966CGeeeYZnE4nZWVl6kCqpVPPzMzkxIkTDBw4UM0RZGRkdNhhru0xST6SF14LBoPodDqWLl3Kz372UIecVL///e+ZqiWMSgIWLIBf/nIzIVYiIgm/o0kd28NR4EUEY/AERN/uUYRB8hIX3Wh8AAAgAElEQVQpdAo7DsOO+VWkpaVz+eWXc6xbvBLJRbSaYjQv12kV3oq6UOcbI3GPHUlGqHnPtaIiaYHEgoICXAeOg9dFwNeslvFKRN5FBpKXTO8zIGcgysvLmT17NiNHjozIgQCsXLmSO++8k5dffpmHH36Y5cuXRxiE7Oxs3G43Ho9H1Sav08QT8vLyaGlpiTA00cjuJU3oWbNmqZTvXUUwGGT27Nkx6zMzM2lpCRAIiJxCeno6gwYNalNiWPFmor0aQZPiJjXVHEWX0lP4FNiL4Ds9B/gJsAGt1K6A6HluaYHq6q3APVRVwaZNm1CDHpuqAIlrrrkG6L3S4Gg1xWherl7j5DpDoEOU92rfZyCmFCUgmom6+M/tMyBnICZPnszu3btjGgy///3vM3bsWJYuXcr999/PmjVrcDrDtfKSJGEymSLWQdgrKSws5KuvvooxHikpKaoGO0RyLvUkfvvb33bbgLSFE5pqFp0uhZ/+9KdtSgyLfUTxQXQRgmI0esd4qGdFdLMfQygvfA8xBz2MYAWOrNQ5cuQwF1wA7723gHgUfO+9t4lHH330lBi443knClZPPc28kx6EXqcLi7QR3wOxI/pOS0pKumyV+5LoZyiuvfZadu7cSSAQYOfOnUyePJni4mI2b97M5MmT+c1vfkN6ejqSJKkJdJ1Op86es7Ky1FDUsGHDAOGJxOtK93g8GI1GlW6krVl6stFz5cYpEXxJwaCXioqKNrvfzWazKsWr0+k61HKPhdI7YkXMDXNCi1bkqiv5jBYEpd16BCtSISLJfgWCLHswWpXFtkJ4pwLdvAKtd6LQoljMYulLvoeh1+sxGgxJ0NBsH30eyFkEhTtr5cqVfPe732XXrl3s2bOHOXPm8NRTTzF9+nTeeOMNGhsbWb58OWVlZdhDnBi60IymrRLfYDBIa2srOp0uSUqBJxMeDhwQSgS5ubkcP962R6V09iuG1efzRRi2MWPGMHDg0xw8OJstW6KZeRW0RSUf3fqVQ+e7q4PAJ6FjuhDU8vmhv9MQyfYaBFelnmTmmHoKdjtUKEoA9iJcLmj0ZiD9rxDo27YNzj0cmzc5FdRw3CnZmDU8MxkuO9SH/8cZJ05EegPdaHbU6/XoJQm/L4g5JQO3J/bemfdYx31L7aHPgJxFiObOMhqNzJkzh8cff5xFixaxYcMGZs2axZw5c/jpT3+qluwuW7asQ1p4xbAYjcYkKQWeXGj7YmRZprm5mfvvvx+IVEJUCha0ORCtlyaMxpWdOHMiuiRWQNEj6Qz8iDDWYYTwVQ1CQWJ4iDvrIUT+pBqhY9L9Zk0QzMA2GzgcOWJstFmxu8Nhd7cbbX6/Q3i9cPw4eDxAqCGy2Z+CyQuBABw4ADmZORH6JqdC+A1Ew6O2mXGrbR4lmobHrSXzKNE0RCYTOaHcpLfFjyU3A4ul+4W8fQbkLIOWO0uv1/NYaAYydOhQJk2axMqVK/H7/TQ1NXHbbbexbds29bNZWVlqfkSSJAYMGMChQ0KbwmQyMXr0aLZs2cK6detijIhS0XW6QDRXitDNI494GDduM1OmTKGsrCziu1VXV5OSkkIwGMTn86nkjB6Ph5tuuom3334bj8dDSkoK48eP5x//+EcnrqL92eGoUVP59NN2d2kHQYQ46G5Aj8XyC+z23cAlwKUIT6QJ4fE42LgR/H546y0xKS4sBA1PZ7sYOVKEm+bP/7Vmrag2u+aaki7lbz0eMJsBtzDWJoMJhTTaZAKnxxy3WZHFFlavFuv68iXdR18O5CyGkhMBEd5au3atWq310EMP8ac//Ynq6mpVm7ypqUmljgdU4zF06FD8fj8ffvghQNxE8+lkPATfVICUlGwaGhrQ60Uz5ksvvUS9wq0Ugt/v57777uPiiy9GknRcfPHF3HfffYDwPjZs2MAdd3zOhg0b2LJlS1Kp8UV0w9rGkkHi4a5AyJtZDzyNUMr+F4I6RQKG8P778O9/w4QJUFwsvJ/8fPj61+GWW+CnP4VnnoHXXoOPPoLDhwUVlYL58+fFPXNPNjXGa1ZUKOXPmHxJYaGwjg4HOBykuJ1IwYBQEAsGQerZLEifB3IWI15O5OGHHwbghRdeoKCgQDUSihDVlClTOHLkSMRxfv1rMbO85ZZbcLlc7N4dlr1XcidGo/EUaEJMFHcAj2OxjKK2tpIFC/T85S/FTJw4Me7ev//973nttdciJHkBjh8/zvjx4wkEAqxdqycYDPKTn/wkaVcpekimtbH1D4R7SzqDIEJ0NJLt+Be/mMfu3XD//WLgra0Vf+vqYM8e4ZmENL9UpKSI8U3MHSYiDJqymEicl7YPbWLBgrDgCuDZtwIAIy5Ul8ybbArFMPoMyFmMeHoiL774Ilu2bGHFihUsWbJEZfJ96KGHMBqNNDY2RpTxpqWlMWHCBAYPHozZbMblcmEyhbupFQMSz3joNKWGXUHPCV1dQ2bmb6itFYJQDz98gry8FZSVlZEbpeKk0+lwOp1s27aNQOCbbNu2DafTiSRJGAwG9XsHAgGMRqPKR3a6QacTs/irroq/XZbFJFhrWJTXGzcCXISg8ouGh88/hz+lDyXHC9nZwnMwGqGlRSgl9nQlUU9CUWNUYK+JDKMF95dGSNiebugzIGc54umJLFy4kDlz5rBq1SoeeughiouL+fnPf86LL75Idna2moD3eDzqAJmWlsZ//dd/8ac//SmCKdfv96PT6cjPz4+QqwW6ZTyAHiR9HB9BavrEEyJbbTQaIwS6QJQSGwyGUDPibHU/n89HIBDg6aef5pNPvs1ll73BQw89xL333ttLRQbRtPLR/c7J1cqQJCEG2K+fyHloIWR7n0ZUeWUhelMmIbwPA62tUN2aAQ0BtPJHTz4pDMn5WcO4cshJY1/vFjTOASCaIm2WcIL/A09ym279hhRSPCfQVtPpCKAL+lWZwqCUPKaIPgPShxhUV1ezbds2Hn/8cXWdz+dj0aJFapd5fn4+Bw8exO/3I8syu3fvpqamhokTJ7J3796I440YMQKv18vhw4fJy8vD5XLhdrsZNmwYu3bt6vJ1Dhw4sMuf7SxSU1Nxu90xJI6KGJXFYuHw4SMUFJyjGsrFixfz4IMPMnWqjQcffJBAIEBZWVkvXXF0Ar6rIa1kIgAcDy02wp3xOQgJYBBcsZMYPPhiioqgsRF2bs9hz2oYMEBEZU5ZtYGTBQ3fltvcTxiQ1FRRTQAEmj20pOVhClW6uR1gThJPWl8SvQ8x0CbXFcyfPx+DwcCyZctwu92MHj1a7XeQJImCggJkWWbjxo0xfSDbtm3j6quvZsCAAbS0tKi67N3tIm9paenW5xPHY7S2tjJz5syYLU1NTfTr14+1a9dSXu5m7dq19Avpcg8fPjxi3+j3XYHRaFSbFs9MtAAt5OTAtm3PsnXrPNz+pcA/sNsd1NWJEFdzs8gR9wGRB1m9GlavpqZoEofPuRRyc4VCo8WChIzB7xb10m63eJ0kVuk+D6QPMdAm1xUuraVLl3LjjTeq+RJZlrn22mvZs2ePGtYqKCigoaEhIkQjSRIDBw5kxYoVqsFR9EemT5/eres81msMgPMBePbZZ2O2+P1+nn76aWbNmsXu3dX87W/FPP3000ybNo1bb72VvLw8bLZaNm0aTENDQ5fzNtnZ2TidTgYOHMhXX30VQR0DYU+obXne9pUSO99T0pOwsHNnA4FAMaJPRSAY3I5OdxmynIXLJYqPMk1mslLOFgH0xGAbUor16qCafAl8ukdsCPV9uOyQ0Q+RcOom+gxIH2IQL7nu8/nYsWOHalRMJhP79u3j4MGDatd2S0sL6VEjkSzL1NfXqwObokMOxOx7OiIlJYVp08KVULt27WLatGlIkoTL5cJoNCJJEk6nE5fLxbe+9a0unUfxOpxOZ4zxANTCBW0BQyR6sqck2bAj0ltVMVuCwRz69RNJFo8HTrSkcMKbgoSMvjkc3mrUpWJwgl4vIjlnXdhL0+DSvPYNmvKKyJhUAkBNFVhKknOaPgPSh7iITq6bzWbuvfdeSktLATFwjhgxQqU6AVixYkWM4JLBYECWZXVW3Bxd69kNRFdEnQzEG8xBGM7Ro0fz8ccfI8syDoeD0aNHd0EISwcE1d9P+RttiJS8S3ShQqII95TEh812qiSxLbS2gtvtQmSFJXSkEMSEQgDQ3AzNZEMUK8gXxjGYPpXp319UlAUC8NvfwrnnisViEX87TWV2isOrS8Hsdqg/RlHNdrBGVTp08Z/bZ0D6kBC8Xi/Lli1j1KhRjB07luuvv56KECFRS0sLK1asYM6cOTF5Ar/fj16v5+mnnyY3N5fZs2fjcDgIBoMqRcoNN9xAbW2t6u0kmlhva/A+VdDQ0MC7777LH/4wiGnT6pk+fTq1tbVx9w136uu47rpxvPPOuxBHmlSSJMaPH8+bb76Z1Gttv6cEVmuJpU4q7LjdisaJyKVlAi3k4cNPenoO6enQP3gEX845pKQIT6WpCQbqGjiizxFd6XYRArv33tgz5OSEjUp7S2Zm5/v0KvdbOVifh6KifNRZiFZipifKeu3mITiKSrCEKFJqSuapr7uLPgPSh4SgUJ1ow1qjR49m69ataigqNzc3bp/DN7/5TebOnauy9l5xxRVs2bJF9WYqKys5//zzO31NyfRmegKzZs2itLSUF1+0UVpayqxZs5g7d24HnwryzjvvaN4LA6KQOg4dWpx0UavTD6mEmYqVgmQToiRYlAKfmxHElC6MAYgcz8Scz7FZrSrT8pdfilLhr75qe/nXv8TfeHOVtLRIzyXe4naL8JliaJweMxn9/Op12fUm1ZgAHD1yaYRBOdXpVvoMSB8SQnl5OeXl5RGJ9dtuu438/HxeffXVGOEqbfhry5YtFBQUcPjwYfr16xfBSpuSkkJraysXXHABVVVVzJgxo1ulvacSli9fzqhRowgGB1FZWcny5csjemQUGAyGiPVaYkaTKQuf7wQmk4mbb17NffcNivmNi4uL+fLLL1XOrfPPP5/q6ure+ZIJIH54TNuX0tmelFa0HoiA6M8JBgM0N7eyoxk47EKSgqHiDT07ADbZ0OvrGTt2LA4HFBSIJbp3RQulSVIxKnZ7rKH57DPRjd/UFPt5SRIhs8xMCLjSyfOHy8e8Ab1qTADI9naKBDJuoyKoTMSFhXBL+4foFvoMSB8SQrzEekpKCi+99JLqSZSWlrJy5UpmzZoVQdgYCARUzRGl8VDRGsnMzMTj8bB+/foYvXHls9FQ1p/q5az79///9s49vqky2/vfJ72E3otQQIlQHFRoUYRxvOE5x3IRGbUw4/hqwRmwKAOO9Z0zjAKtDOIRERDmaBGQm4pSvI0H8T0wgLTgMB4vcxQdLgoqKFWhlHsLbZpmvX/s7E3SJqWXJA3l+X4++9Nk751nr+xAVp5nrfVbey0V45dfNvaZvVW8sdvtVFZWMnjwYP7+921UVx+xMtaczgry86cwaNAg7rorj//6r+317nHHjh2x2Wzs3LmLnj17+sSG4uLicLlcAWVkwiEx4395rKV1KYn49tnzx1eIeNeabAaM2MeHH/6du+6a1KgreRdJZmQ0fO6pU76OZc4cI4hfUQFHjsAPlUmU7RQcDnA4GnX5BvFbqLjvzL5QqxBrB6JpNHUD61FRUdx4440+59x4440+v35ra2tJTU21miydPHnSysQqKSmhvLycCRMm8N577zU6BmI6FbOB1bmEv/dWWVlJdnY269ev94nrGE7EbSkml5cb97XuPf7b3/5GdnY2t9yymT17xrJmzRrrmMPh4KuvvrKem5pmStnIyOhN586dKTa0RiySkpKoqKgkMTEhgkUwK6jfZ8+Fb7+9wFRVhaZDZHw8/OQnxgbw3//t+wW/qrCcg7XJ7N8fS2kpxKhoqqpaFrj3Vh0+8NXVVFZFEfOs8bymBt4/tZRLvqiwZiXBjLNoB6JpNmbBoTkDAdi6dWu9joQTJkxgzZo12Gw2unTpQlVVFZWVleTl5eFwOLjzzjtZsGCBdX6PHj04fPgwTqezQbmSSI+BNIXi4mIf52GzDcPtXkdaWoZV1Nmxo3Ffve+x6YwNp3FmBpeQkIDL5WLPnj1kZ2cTFzeV1177GVVVVdhsNv74xyOcPDnFb22L6TQi13mcu8TFuEi/+BSxsbHs3w8HDkTz4YfGMlpzs9xM1WEw3GZUtKKiwii0FIG97m78WF5LjOd3RdXx6/isLwwf3vL4inYgmmbjr+Cwbt9wh8PBggULrOpsU2DQ4XCwfft2Vq1aVW+MyspKlFJceOGF7KszBzfjA2YnwLaAWTPijdv9VwAGDJjEqFGjEBEGDJhNSUmJzz0+ffo0gwcPZtOmTVbcZNCgQRQXF2Oz2YiOjvY4lzVeY7uZPTuVmJgY7HZ7CDXFGqKhwsZEoKnpzpGJ2UzrjGx9Lzh4DDhG9+7pxNpcpF0Yww8/GBL4SbGp/O//wiWXGEtmzcHlNpZ2o6MNJxJLLR0SqyHZM2OvqEEpe1Dk7LUD0TQbf3GRun3DR4wYwYIFC2jXrp3V9vbkyZP8+te/DjjGXXfdxUsvveS3ZsKMnbhcLhzBWESOAPz3drcBtbz99hi6dr0IgLffHsOePb73uHfv3lx77bX8+OOP7Ny5i4yMM8937NhBUlISVVVVAeMcsbGxlvPyLvL0JjQFnw0VNkaCbldwuOoqeOmlx7z2pGJqgH377T7at7uWnj1j6NYNSkvhx9IYzJ5jqalGz5XXXoOBA43HkUZkRyE1EU9OTg7bt2+ntraW7du311OaLSkpYcqUKVagt2PHjkyZMoWSkpKAY6xevZqEhASr1sF7iczlclkqvrNnzw7DO2wtjFnBL37xCvv372f//v386U/173FWVhazZs0iNzeXyZNPkpuby6xZs6x7VlNT4xGdVJbzBVDKRteuXbHZbJYopaktZiYnmH/Dpzl2/hIba8w6MtIO8cADMGyYsay1bx/cfTd06mQ4o4kTYd06IygfCWgHogkpu3btYtq0aT4OYtq0aQ2mmZaWlnLvvfdanRA3b95sVbibS1jnC2+9NRKlFB06dPB7vKSkxJLef+qpJJYvX86kSZMsB11VVcWwYcPIyfnUSmQAKCioYvny5T7y9CJCfHw83bp1Qykb3bp1Iz4+/ry6362NUsZM45prDMdx993wwQcwY4ahjzh/Pvz858by1r/+q7FEZsY7WgPtQDQhxZ+yr79Ae10WLFhgLaeIiBVg7tSpE2BkCvlrndtWOXLkCLNmzaq339tBmzMUbwd9ww03sHz5clatuorKykp69uwJwIwZ7cjLy2PWrFlW10mAkSNHsnfvXv70p1r27t3LyJEjw/MGfTDjI/62RIwakLbB0arTbNmymffee48tWzbz2cEDTJ/+mJXcYLPBtddCfr7RmOvoUaPeZOJEI2X4s8/g66+NgsfPP4dqV/1eH053NOWn4ikvh/JyqHAZ8Y+tW41eLWPGGPUkzUE7EE1IMQPtZi91MwhcV/Ldm6ioKE6ePEleXh4vvPCCz7EjR46QmJjIc889F7Riublz5wZlnFBTVTWFPn36sGrVKmtf7969mT59On369OHxx6Po06cP06dPtxz0N998Y/VlT09P5/DhwwCWs3E4HD7OfOnSpURHRzN9utFRcenSpeF9k4ARH7k3wFaEkaZrVqKbWxRnUnkjmS74OsQ4IB2Rbp7nhmJuWdlBvxly8fEwZAg89RT84x/GDKV7d2O5q7ISjlW3o9oV5SMe6UYRbXMTHW0E1mOjhdhYo7ixpf3hdRBdE1IaE2hftWoVM2bMsI7X1taSnJxMYWEh3333nU/r25qaGpKSkvjyyy/POotpLEY3wXMBYceOHdasICcnx4qBzJo1i/Ly8XTseEaTzFQANjS4vqNDhws4fvw4HTt2pLa2hpIS36w5u91OdXW1da/Nv3UFMluXaUA34CrONKQC6MWZupBIVkM8gK/dnf2ccxMAZWX4yJz4w243gu2pqUaB5D/+x0VVbQy4mq7T1RxCOgNRSt2ilPpSKfWVUmqyn+N/UErtVEp9rpTapJTqHkp7NK1DQ4H2VatWUVBQYDWqMptM3XTTTSQkJCAiVnoqwNq1axERZs6c6RNcby4xMTHExMS0eJxwM2rUKMCIgYgIEydOZObMBCZOnIiIUFJSwuzZs33eW2JiIgkJCbRr185awvJ25rW1tdjtdqtnSXR0dCum+Z4vnMbIODO3AxgV88bWkMSKN1u2bGbr1s1U1R72jCnU1Aih/uhC5kCUUlHAc8AwIAPIUUrVFQL4FLhaRK4E3gTaclqNxg8zZsxg2bJlZGVlERMTQ1ZWFh07dmTt2rUUFhbSu7dRLR0fH090dDS33XYbKSkpXHDBBT6ZXM0hISGBmpoa7rvvPsCQBGmI5OTkFl0vmJiB7R07dtT7gq+trWXHjh3k5OTwzDPPWGm4CQkJPP/88wEzulwuF6NHj/bJwho9enSr1tt07twZUJ6/Jt9hxEJSvTYw+q2bn1FinXOC2wM+Uti2DT777AC+MaIowA0IbjfUYgtZP5RQzkCuAb4SkW9ExAm8Cgz3PkFESkTEzBH8AGgbif2aRrNr1656cijz5s3D5XKRm5vLzp07OXDgAHFxcaxYsYLa2lp2797N4cOHWxwDOX36NH369LHWmsvLyxs8/4Q/pbwIZ+TIkezYsQMRt7X85R0v8Y6nREdH8+abb7Ju3ToefdTJunXrePPNN5vdRdEfdVOEweimqJTNKjb1RillbWeYhhEL2ea1/RWjWHKN53FRnXP2UjcgHxn9TVqGMUM5wJkZTAVGkkGt11+bVVwYbEIZA+kK7Pd6Xgpc28D5Y4F1IbRHE4H4k0NxOBw4HA7rl3NMTAy//e1vrV/LW7dupXv37i0ucLvooos4fPgwxcXFDBw4MCzCguFEBVgE37FjB48+6mTgQF/15OTkZI4ePcrIkSM5eLCMpUs7WW1yg0H37t05cOCAJetvZtadOHECETcnTpyol6ZtNizzblxm0HCHxcbw+ONjWjxGZNCFM7OwRIwEgyjOzA+EKpebU8ePkxKENrbeREQQXSl1D3A18G8Bjo8DxoExpd28eXPAsSoqKho8Hg60DY234Re/+AWjRo3i4Ycf5oorruCf//wnc+bMYezYsQwaNIhNmzYxf/58Fi5cSKpH8GfmzJm43W7uueees47fkA3V1dXU1taybds2S2TQH3FxcSilqKqqwu12t/i+Butzack4TzwRyxNPGM45Pz+fCy+8kKNHjxIXF8ehQ4cQcXPo0CHi4uI4evRoUGz+9ttvad++PU5nDfHx8ZYDMZfgamtr6dixI+Xl5QHrfYJZBxSO/x8HDvRq4esPsHnzF2cZ3zsw3xHDeSjPZuDGDkRz/LgLRTS1x2tJTDzNvn3lnnHaNXidgJhBymBvwPXAeq/nU4Apfs4bDOwCOjVm3J/+9KfSECUlJQ0eDwfahqbZUFRUJJmZmWKz2SQzM1OKiorqHXc4HGZ7PnE4HPXOaY4NNptNVqxYIZmZmQJIQkKCdY26m8PhkIEDB4rxX+YMgc5vaKtLc8Ywx2nua/2NZbfbZe7cuSIiMm2aYdvcuXPFbrc36l43REP3Njs7WyZOPCTZ2dn1jtlsNp+/zd2SkpJEKZvExcUF/BxCwdSpIvCC17ZH4FOv7UeBEq/tU4Fp1jZ6dMPjjx4tnteYr/9R4KRAtcBpz1+XgFvgmMBRsatK6dxZpG9f43OeNk3qXQf4hzTi+ziUM5CPgUuVUj0wlNHuBnyqkpRS/YDngVtEpCyEtmgimLoy8U093lx69+7NW2+9ZcmdV1VVebWW9aWmpqae7Lk3Zo+SQD1MzgWcTicTJ0600pqnTzf2B1oKawpmzxN/98lbSdg7ZfuXv/wlX375JTt3Gundl19+OW+99Vajr+k9lvmZnj4dGhn3QNTvhfICvjpfI0J0ZXMJS3ltCYCLGrFZbX1bSsiC6CLiAh4E1mPMMF4XkR1KqceVUtme0+ZgLNq9oZTappRaE2A4jSbodO3aldWrV5Obm8v9999PbW1tPedhfnmayyrezZq8SU5OxmazRVSmVlORAEtDgfY3hSNHjjBy5Eh69eqFUjZ69TqztGNqdEVFRflcq6qqyqfCPtASYyDcAfQ9Ir0RWXCoxSiqrPVs1ZiFlm6cVFYe4ODBsxSZNIKQ3kkRWSsil4nIT0Rkhmffn0RkjefxYBHpLCJXebbshkfUaILHli1bGDVqFO+99x5LliwB8NGLAqwalIsvvpiUlBQf7Shvjh49itvt5ujRoyG3+1ylX79+Pg7B5OKLL0YpGxdffLFP0eLatWsZPnw4FRXlDB8+nLVr1zbqOmbQ3zv47z2LcrvdEVYcGQ5OYziSeLxjI9OnP9aiUSMiiN5SampqKC0tpaqqipSUlFbvBx0pNuzduxeHw3FOFsqFg+rqahYvXkx8fDxKKWbPnk1aWhr33nsvNpuNO+64gzfeeAMRweVy8eyzzzJmzJjWNvucxOFw8PDDD/Pwww8DZ5bHwFApMKvoH3nkEQAefPBB5s+fX69Rlrm/IUwn7u3MbTab1QbZ7Xa3mV4yjcOGUZ3vwsjQisMIA3UBbmLzZqPne3NoEw6ktLSUpKQk0tPTqaioICkpqVXtOXnyZKvbcOLECZxOJ6WlpfTo0aNVbYlU7HY7ixYt4g9/+AMAffr0ITc3l5iYGC677DL69+/PG2+8QXFxsdU9MZB8SlJSEpWVlSQkRHIb2Nbj0KFDfvcrpcjPz6e6eiJ2u51bb72VNWvWUFhYyO7du9m4caM1CxwyZAiFhYVndSDt27fn2LHjpKamWE6kV69e7Ny5i27dunHnnXcyZ86coL/HxuGvkZZ3+VuFz/Hg1Kq4OSPzUovhQJyYVe833XRTs3untwkHUlVVRXp6elCCfW0FUwI80H9cDdx///1MmjQJMIrofmsBVPYAABshSURBVPWrX3Hq1CnGjRtHWloa+fn5AAwePBi3281dd93FM888U2+czMxMvvrqK9xuN06nk8zMTHbs2IFSRgV1WVkZnTp14uDBg+etNLp3u15vRIR169ZRXHwjAwduZeTIkTgcDlatWsWePXvYtGmTdWzs2LGsWrUKu91O+/bt/dSGGHjXlZhs376dxx6Dm27azMcffxyKt9hImla/EvxaFWedvy2jTTgQCE6mSFtD35OGMXW38vPzcblcuFwulFIsWbKE5ORkRISkpCQqKioaXAYsLy9n3bp1Vkte726BX3/9tRUb6d27Nzt37gyK7YGC+eciQ4cOpaamhlmzYoiLi2PRokU+EjdbthiNs5YtW0ZeXh5Op5PKykpPW+NaUlK6cfr0UZzOwEoB8+bNw+kcz+uvv87ixYsj+v61b98+xLG04DUPOR/SEcLCs88+S+/evS2Ru2Dz2GOP8fTTT4dk7PMZU8RRRHjwwQetTKDjx4+TnZ3N22+/TXp6Oi+99BKvvfZavR4k0dHRHD16lKFDhxIbG8vQoUOt//w7d+4kNzeXd955x5JlCQbt2rVrU8F6s/q/pqbGmjX4k7i58cYb2bVrF127dqWystKryZbyyaxKS0tDKRtpXj1gJ0+ezMyZCSxZsoT4+PizLoO1Jk35bI0lLm/NL7MKXWF8vYe205R2IEFiwYIFbNy4kZUrV7a2KZpmUlhYSE1NDUVFRQC88847Poq15heYNwMHDsTpdJKYmAgYirdOpxOljC+1hQsXcvvtt7Nw4UJsNluLdKXi4+MpLi4mPj7epz1tW2PkyJFn7XPidrt5+eWXefTRaoYPX05U1JnsOaPIze2j4mwGzV0uF9dff31I6oqaR8tWCR5/HHw1v45gZFy5MJapXBgB89CgHUgQGD9+PN988w3Dhg1jxowZPPDAA1xzzTX069ePt99+G4AXX3yRESNGMGTIENLT05k/fz7z5s2jX79+XHfddRw5cgSAJUuW8LOf/Yy+fftyxx13+O1H/fXXX3PLLbfw05/+lH/5l3/hiy+aIUGgCUhOTg6ZmZls2rTJR7HWXyfF77//nhEjRlif06lTpxgxYgQigtvt9kkpbSj7x3Q4DXHq1CmGDh3K6dOn23wWUVZWFjNmzPARgpwxYwZZWVn88MMPdO3alXHjxvHEE3ZWrhxGZeVBwLiP5v+lI0eOWPf06aefZsqUSiZMmGAlRUQGwfhyn4Zvw63vgBoMB+L0XMPutcGZoHoLaUy5eiRt/qRMdu7caT0+ceJEvePhoHv37nLo0CGZMmWKLF68WEREjh49KpdeeqlUVFTICy+8ID/5yU/kxIkTUlZWJsnJybJw4UIREfn9738vf/7zn0VEpLy83BqzoKBAnn32WRERmTZtmsyZM0dERAYOHCi7d+8WEZEPPvhAsrKy6tlj3gfvexNuziU5lboUFRVJjx49pLi4WJxOpxQXF0uPHj3qSajYbDZxOp0++5xOpwCSmZkpdrtdALHb7ZKZmSlKqXrXAuS6666T6Ojos0pyREVFhUzK5GzHW0JT7VFKBdxvSs+c2e4RGFzvHsXExAggycnJImJIdpSUlARNniVU7937/Td//Be8JFG8pU7qy6ZEqpRJq2CfNAmCtNZscdVV8J//2ahTN2zYwKlTp3juuecAI0PsO0+/yKysLJKSkkhKSiIlJYXbb78dgCuuuILPP/8cMLJFHn30UY4dO0ZFRQVDhw71Gb+iooL333+fO++809oXKMNF03wa00kR/KsJmz3gv/zyS2bNmkVGRgY7d+5k0qRJfrOwoqKi+OCDD+jSpctZM7XOVZmUphLoHogYXRl9WYm5FKSUsu6RWYl+9913+5w9fvz4sHahjI6Opra29qwZeGlpafz2t98zcOBWsrOzqaioaMFVvdOFEwOc0/IeKW3OgbQ2IsIrr7xC//79ffZ/+OGHPtWvNpvNem6z2awliTFjxrB69Wr69u3Liy++WE8x1O12k5qayraz9brUtJjGaHCZPd+XLVtmZWGZEumXX365p8ahGrvdzuWXX+43kD5o0CA2bNhQLy3Vn0JwMNVo2w6CIeb9McnJyRw/fhww1AP27dvHq6++yvPPP2+dvWjRorBWopv/t8+WXVVeXs4TT8SyZElnKisrW3hV73ThuvpbwaPNOZDqWbOIbcUivqFDh7Jo0SKef/55lFJ8+umn9OvXr9GvP3nyJBdeeCE1NTWsXLmSrl27+hxPTk6mR48evPHGG9x5552ICJ9//jl9+/YN9lvRNIJAMxWzkdOECRP4+c9/ztq1a63GVXXZuXMn8fHx1NTU+PQj8XYeycnJnDhxgu7du/Pdd98F1Hk6fzFqOwznASDs27eP6OhoTpw44ZPGu2TJEsaPHx82y5RSZGRkWKKdcObzVMpGVJQNEbFmTkeOHKFdu3ZeWWaRiw6iB5mpU6ficrm48soryczMZOrUqU16/X/8x39w7bXXMmDAAB/BOW9WrlzJsmXL6Nu3L5mZmVagXtM6+Ov5brfbGTBgAMuXL+f2229n+fLlDBgwwO8v39LSUh566CGftq11Nblqamqw2Wzk5eX5OA+zb7lZpxITE+PT17whzgdRQfPXf35+PjNnJrB06VLGjx9v1QCFAxHhiy++4Mknn2TKFGNmYaYrFxRUMWnSJK/PVNG1a1cSExOZPbtpHb47d+7Mb3+7i/j4znWOmMtZ/rd9+1pQ8d6YQEkkbZEaRPcmkmzQQfTWsUEpZQXhN27caAXhAwXRu3TpIunp6TJ58mRJSkpqMMBq9sYwX2uz2aRz586ilJLOnTvX653Rvn37cy6I3vTNf9A9VO+nKSilZNCgQZ4kCt/+Jo8+aiRomMkWSvnvidMQLb13AcZsVBC97f8E0WhagYyMDEaOHEleXh5Dhw4lLy+PkSNHkpGRUe/c6Ohoqqur+fbbb3n11Vd57LHHiI2N9TuuUgq3223NMOx2Oz179qSsrAwRoaysjJ49e2K3263ZTqB190C1JGbtxLmlZNC0uFA435uIsGnTJislGc4E+J94IpacnByczpZLi5yZUYbva73NxUA0mkigoKCAgoICli1bZjVQGjt2bL1KdjAyq6KjoxEx1u0LCwtJSUmhvNxoNypeQXPzsfm3urqa3bt3WwHa1NRUdu/eDUBRURGjRo0KGHQPFEepew1NaDl8+DBxcXF06tSJe+7ZXa9XfWM583mGLz6mZyAaTQjIyclhxowZPjMQf2nAYMxWxo0b57Nv7NixdO/e3foSz8zMxGazkZmZySOPPOKTztuuXTtSUlKw2WykpKRY8ZP3338fIGA8xBw7knWh2jqPPurE4XCQnJzMk08+SVRUjKX75e/HRnOIimp/9pOaiXYgGk2IMIPrdSva61JQUEBRURHp6elMmTIFgKeeesoKAHfu3NknSN+xY0ef19dd7jKfL1q0iPbt27NhwwY2btyIzWbzOddutzNhwgSO1WkGcW4uYZ2bPPFELPv27ePgwYM+/z78yeY0RN2kC5NRo0Zht1/UYjsDoR2IRtPKmLMVl8vFzJkzAVixYgUrVqxAKUVZWRnz5s3j1KlTzJs3jylTpvjMGszZiDmjMJ+7XC5eeeUVsrKyiI6Opnfv3vXqk3788UcfeRZThdgc71xu0XsuIWLodk2frlBKcfnllwfsPeOPqqoq+vfvT4cOvpmbixcv5mc/2x7gVS1HOxCNJgLIyclh//79FBUVkZCQwJgxY8jLy+N3v/sdiYmJTJ48mYSEBCZPnuyjJmuz2Th9+jR5eXlUVFSQl5fH6dOnrYCqd+vYrl278sEHHwBw7NgxcnNzWb16tU+tUUVFBXPnzqWyspK5c+e2sBpa01z27t3r08+kMXzyySccPvwF3l/r2dnZuN01gV/UUhqTqhVJW1tM4y0pKZFbb701JDboNN5z34aioiLJzMwUm61+iqdSSpKSkizdp5iYGElKShKllFxwwQVis9lk7ty5sm7dOr9aW126dLF0oczUUvM886/NZmuR/SLhSOMNTvpqKAi1jaG4D+g0Xo2mbeCvUNEkIyODhx56iMsuuwybzcZll13GQw89REZGBvPnz7dmL8OGDbNiKoMGDeLYsWNMmDCBAwcOWFpqZhaPt/S5936Npi7agQSJffv20atXL8aMGUO/fv0YNWoU7777LgMGDODSSy/lo48+4qOPPuL666+nX79+3HDDDXz55Zf1xqmsrCQ3N7eeHLxG4w8zAG82xiosLKSoqIiCggJycnJYtGiR5VwAevbsybvvvktKSgoLFizghhtusMay2WxWG17vv8GqWI+LiwvKOJoIojHTlEjaInUJa+/evRIVFSWff/65HDt2TPr37y/33nuvuN1uWb16tQwfPlyOHz8uNTU1IiKyceNG+eUvfykivktYU6ZMkZdffllEfOXgm4pewjp/bGhoicvbBjzLUnPnzpXKykqZO3eutUwlYiyFtG/f3kfC3qxibyk0YUnFrMoO9RYuQm1jKO4D56uc+6RJ9lZTc+/RowdXXHEFJ0+eJDMzk0GDBqGU4oorrmDfvn0cP36c0aNHs2fPHpRSPsJ5Jhs2bGDNmjVW+1pTDr4pGRma84vGqAaDkZbbq1cv8vPzmThxIna7nV69evnIo993330+wpD33Xcfc+bMCZqtpsKwP6VhMFKQ09LSKC0tDdo1NXVRtG+fGpS2yHoJK4icTa596tSpZGVlsX37dt555x2//4FEhL/85S9s27aNbdu2aeehCRpDhgxh+/bt5ObmWllY27dvZ8iQIYBRcLhs2TKf5bBly5a1qA1vXUzJDm/pDu8iyaVLl/LDDz8AhrNJT09HKUV6erpV6xBOKfa2iQTFeUAblDKZNauapCT/OkKtzfHjx62UyRdffNHvOUOHDqWwsJDCwsJmycFrNIFYv3691W5g4cKFKKW4+eabWb9+PWA0WlqwYAE5OTmUlZXRqVMnjh07xgMPPBCU63fv3p1vv/0WMALzdrud6upqn1TjkpISevfuzY4dO3A6neTl5TF+/HgWLVrEww8/DMD9999vpTFrWhc9AwkjjzzyCFOmTKFfv34Be1pPnTqVmpqaZsvBazQNsX79etxuNyJGz3bTeQAUFhbywAMPcOzYMUTEch7Bkj4vKyujuLgYp9NJcXGxVeleUlJCTU0NJSUljB07loKCAgBuu+028vPzSUhIID8/n9tuu806/3yQoj8naEygJJK2SA2iexNJNuggurYhEmxISEgQQCZMmCDHjh2TCRMmWAFzfwkADodDunTp4hPQ79KlizgcDp9+6ePGjZO1a9f6SNZHRUWJzWaTLl26WPvMxIEJEyY0qd94MCDIAe5gjh/oGjQyiN7qDqGpm3YgTbNBOxBtQyTYYLPZpH///taXt1JKBg8eHLBIsaioSNLS0iQ9PV2UUpKeni5paWlSVFQkdrtdoqOjZcCAARITE2P1QTG/EM3MMu9sLrNfirejCRdt2YHoeaBGowk5vXv35p577vFZPsvPzw+YIJKTk8MzzzxDQkICSikSEhJ45plnrN4ZLpeLr7/+mj/+8Y9069aNgwcPWq+dNWsWlZWVPPnkk9a+8vJyRMSr5a0mGLS5ILpGo4k8CgoKmDhxIldddRU33ngjW7duDdgfxSRQenJGRgZlZWU+4pNpaWkcOnSIuLg4nzTl2NhYnE4nNpuN2tpaKzsynP3GlVLGck8bpM3MQNrqB9QS9D3RRAo5OTmMHTuWvLw82rVr12B/lLNhBtljYmLYsGEDGzZssLorVlVVkZqailKK1NRUq9aqa9euKKXo0KFDs/qNtwQRITY21upb701dKX0w3legjpSRRptwIO3atePw4cP6C9MLEeHw4cMB+wRoNOFm0KBBATW9moK5vBUVFcXNN9/MzTffTHR0NFFRUcTHx1uSKXFxccTHx2Oz2aylsLi4OGspLJz85je/wel01vuOSk1N9Xlus9no0KEDNTU150SjrzaxhOVwOCgtLeXQoUNWlWtrEik2pKam4nA4WtUOjSYU+FveUkqRmJjI8uXLrWWynJwcKisrW8nKMyxfvpzevXszfvz4eseSk5Mt6Xa3283hw4dJSko6N2pdGhNpb+4G3AJ8CXwFTPZz3A685jn+IZB+tjH9ZWF509rZJtoGbYO2oXVsAGTy5Mk+acHZ2dkCWOnA8+bNkx49evjVCwsVF1xwgZVejJ8sKKWU9OjRQ+x2e4N6ZoHwN2ZTtgBjtm4WllIqCngOGAZkADlKqYw6p40FjopIT+DPwKxQ2aPRaNo2DoeDl156yUeKZe3atXTs2JGsrCxiYmLo169fUPuNN4b58+eTnJxcr/hx1KhRVFZW8vTTT7N//37uv//+Zi3vmQWZ/fv3p1evXmc5O7iEMgZyDfCViHwjIk7gVWB4nXOGAy95Hr8JDFK6EbNGo2kGs2fPxuVykZubS7t27cjNzcXlcjFv3jyf85rab7yl1JXVj4mJYcSIEWzbto2kpCSWL1/OpEmTKCkpadb44gnSf/LJJ3zxxRdBtr5hQulAugL7vZ6Xevb5PUdEXMBxIHz5dRqNps3gXTsCkJCQgMPhqBcH3Lp1a9gFSr2bgtXW1vL666/7JBRMmzatRU5t4sSJPqKUJmZPl1ChJESZS0qpXwG3iMh9nue/Bq4VkQe9ztnuOafU8/xrzznldcYaB4zzPL0cI64SiI5AeQPHw4G2QdugbYgMGy7A+KG6D6jwPG4PfA8cCbMtJlcCe4GTXvuSgG7ADr+vOPt4eMasABKBSwEFVAFny+j5Xz/7uotI2tkuHMosrO+Bi72eOzz7/J1TqpSKBlKAw3UHEpHFwOLGXFQp9Q8RubpZFgcJbYO2QdsQ0TZ0iQAbWvU+BItQLmF9DFyqlOqhlIoF7gbW1DlnDTDa8/hXQLGEakqk0Wg0mqASshmIiLiUUg8C64EoYLmI7FBKPY6RIrYGWAa8rJT6CmM6eXeo7NFoNBpNcAlpIaGIrAXW1tn3J6/HVcCdQb5so5a6Qoy2wUDbYKBtMNA2GESCDUEhZEF0jUaj0bRt2oQWlkaj0WjCj3YgGo1Go2kW57yYolKqF0ZFu1mk+D2wRkTCV2oagSilVojIb1rbjnDile33g4i8q5QaCdwA7AIWi0hNqxqo0bQxzukYiFJqEpCDIZNS6tntwPgSeVVEngqTHb0wHNiHIlLhtf8WEflrGK5fNz1aAVlAMYCIZIfBhmuBXSJyQikVB0wG+gM7gSdFJOSt4JRSKzF+FMUDxzAKqt4CBmH8Wx/dwMs1Gk0TOdcdyG4gs+4vS88v0R0icmkYbHgI+B3Gr9yrgP8rIm97jn0iIv3DYMMnGF/USzEUNhWwCk9atIhsCYMNO4C+nvTtxcApPPpmnv2/DIMNn4vIlZ6i1O+Bi0Sk1qOv9pmIXHmWITQhRCnVSUTKWtmGDiJSr1hZ0zzO9RiIG7jIz/4LPcfCwf3AT0VkBHATMFUp9X89x8IlDHk1hhxBAXBcRDYDp0VkSzichwebR88M4GoR+b2IbBWR6cAl4bLB8+MhCWMWkuLZbwfqt4MLAUqpFKXUU0qpL5RSR5RSh5VSuzz7Us8+QlBsSFZKzVRKvexZxvM+tiBMNlxQZ+sAfKSUaq+UCkunJM897+h5fLVS6hvgQ6XUt0qpfwuTDVcrpUqUUq8opS5WSm1USh1XSn2slOoXDhtCybkeA/k9sEkptYczwo3dgJ7AgwFfFVxs5rKViOxTSt0EvKmU6k6YHIiIuIE/K6Xe8Pw9SPg/2+1KqXtF5AXgM6XU1SLyD6XUZUC4Yg/LgC8wClcLgDc8XxrXYSxzhoPXMZYObxKRAwBKqS4YiguvAzeHwYYXgD3AX4BcpdQdwEgRqca4F+GgHPi2zr6uwCcYs+Rw/Ki4VUQmex7PAe4SkY89/yaLMH54hZoFwDQgFXgf+HcRGaKUGuQ5dn0YbAgdjWkaEskbxizqOuAOz3YdEBXG6xcDV9XZFw2sAGpb6Z7cihF3COc1U4AXga8xmoPVAN8AWzCWsMJlx0UYS1dg/Kf9FXBNGK//ZXOOBdmGbXWeFwB/x1C6/iRMNkwE/gpc4bVvb7g+B8/1dgHRnscf1Dn2zzDZ8KnX4+8CHTtXt3M6BhIJKKUcgEs8vzbrHBsgIn9vBbNaDaVUMtADw4mWisjBVjYprCilNgDvAi+Z710p1RkYAwwRkcFhsGEXRmzQ7bVvDPAwkCgi3UNtg+eaDoxGcfsxfoV/JiLhWs5EKZUH3A48BfwrhgrvW8BA4BIR+XUYbPgfjPeeAjyNESNd7VlCmyvnuKiidiAaTRBRSrXHyEAbDnTy7D6IIRz6lIgcDYMNs4ENIvJunf23AIUShuSSOtfNBvIxWlaHVQnXs6Q8AbgM40fNfmA1hjafq4GXBuv6fYHZGDHZf/fYMhojyeN+EXk/1DaEEu1ANJow4RUjOu9s8KR2/0REtp/P9yHSbGgp2oFoNGFCKfWdiHTTNmgbIsWGlnKuZ2FpNBGFUurzQIeAztoGbUO4bQgl2oFoNMGlMzAUqBvrUBhpnNoGbUO4bQgZ2oFoNMHl/2FkOm2re0AptVnboG1oBRtCho6BaDQajaZZnOtSJhqNRqNpJbQD0Wg0Gk2z0DEQjaaJKKVqgX9iCDS6MGRr/uxd+a3RnA9oB6LRNJ3TInIVGBLlGMJ8yRiSFRrNeYNewtJoWoAY/S3GAQ8qg3Sl1N+UUp94thvA6BCplBphvk4ptVIpNVwplamU+kgptU0p9blSKqwyIxpNS9BZWBpNE1FKVYhIYp19x4DLgZOAW0SqPM5glYhc7RHP+3cRGaGUSgG2AZdiiA1+ICIrPb1MokTkdHjfkUbTPPQSlkYTXGKA+Uqpq4BaDBE/RGSLUmqBUioNo+3AX8To3vg/QIFHufYtEdnTapZrNE1EL2FpNC1EKXUJhrMow1BcPQj0xWhYFOt16grgHuBeYDmAiBQB2cBpYK1SamD4LNdoWoaegWg0LcAzo1gEzBcR8SxPlYqIWyk1GqM7osmLwEfAARHZ6Xn9JcA3IvKsUqobcCVGkzKNJuLRDkSjaTpxSqltnEnjfRmY5zm2APiLUuo3GB35Ks0XichBT7On1V5j/R/g10qpGuAA8GQY7NdogoIOoms0YUIpFY9RP9JfRI63tj0aTUvRMRCNJgwopQZj9Ogu1M5D01bQMxCNRqPRNAs9A9FoNBpNs9AORKPRaDTNQjsQjUaj0TQL7UA0Go1G0yy0A9FoNBpNs9AORKPRaDTN4v8DeKoIj3eRq7QAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -2211,203 +1697,6 @@ " color='blue', label='male')\n", "plt.legend()" ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Use plotly to summarize posterior predicted values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, we will precompute 50th and 95th posterior intervals for each observed timepoint, by group." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "ppsummary = ppsurv.groupby(['sex','event_time'])['survival'].agg({\n", - " '95_lower': lambda x: np.percentile(x, 2.5),\n", - " '95_upper': lambda x: np.percentile(x, 97.5),\n", - " '50_lower': lambda x: np.percentile(x, 25),\n", - " '50_upper': lambda x: np.percentile(x, 75),\n", - " 'median': lambda x: np.percentile(x, 50),\n", - " }).reset_index()\n", - "shade_colors = dict(male='rgba(0, 128, 128, {})', female='rgba(214, 12, 140, {})')\n", - "line_colors = dict(male='rgb(0, 128, 128)', female='rgb(214, 12, 140)')\n", - "ppsummary.sort_values(['sex', 'event_time'], inplace=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we construct our graph \"traces\", consisting of 3 elements (solid line and two shaded areas) per observed group." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:requests.packages.urllib3.connectionpool:Starting new HTTPS connection (1): api.plot.ly\n" - ] - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import plotly\n", - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "plotly.offline.init_notebook_mode(connected=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "data5 = list()\n", - "for grp, grp_df in ppsummary.groupby('sex'):\n", - " x = list(grp_df['event_time'].values)\n", - " x_rev = x[::-1]\n", - " y_upper = list(grp_df['50_upper'].values)\n", - " y_lower = list(grp_df['50_lower'].values)\n", - " y_lower = y_lower[::-1]\n", - " y2_upper = list(grp_df['95_upper'].values)\n", - " y2_lower = list(grp_df['95_lower'].values)\n", - " y2_lower = y2_lower[::-1]\n", - " y = list(grp_df['median'].values)\n", - " my_shading50 = go.Scatter(\n", - " x = x + x_rev,\n", - " y = y_upper + y_lower,\n", - " fill = 'tozerox',\n", - " fillcolor = shade_colors[grp].format(0.3),\n", - " line = go.Line(color = 'transparent'),\n", - " showlegend = True,\n", - " name = '{} - 50% CI'.format(grp),\n", - " )\n", - " my_shading95 = go.Scatter(\n", - " x = x + x_rev,\n", - " y = y2_upper + y2_lower,\n", - " fill = 'tozerox',\n", - " fillcolor = shade_colors[grp].format(0.1),\n", - " line = go.Line(color = 'transparent'),\n", - " showlegend = True,\n", - " name = '{} - 95% CI'.format(grp),\n", - " )\n", - " my_line = go.Scatter(\n", - " x = x,\n", - " y = y,\n", - " line = go.Line(color=line_colors[grp]),\n", - " mode = 'lines',\n", - " name = grp,\n", - " )\n", - " data5.append(my_line) \n", - " data5.append(my_shading50)\n", - " data5.append(my_shading95)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we build a minimal layout structure to house our graph:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "layout5 = go.Layout(\n", - " yaxis=dict(\n", - " title='Survival (%)',\n", - " #zeroline=False,\n", - " tickformat='.0%',\n", - " ),\n", - " xaxis=dict(title='Days since enrollment')\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is our plot:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:requests.packages.urllib3.connectionpool:Starting new HTTPS connection (1): plot.ly\n" - ] - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.iplot(go.Figure(data=data5, layout=layout5), filename='survivalstan/pem_survival_model_ppsummary')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Note: this plot will not render in github, since github disables iframes. You can however view it in nbviewer or on plotly's website directly*" - ] } ], "metadata": { @@ -2427,9 +1716,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 2 } diff --git a/example-notebooks/Test pem_survival_model_gamma with simulated data.ipynb b/example-notebooks/Test pem_survival_model_gamma with simulated data.ipynb deleted file mode 100644 index 3a0554d..0000000 --- a/example-notebooks/Test pem_survival_model_gamma with simulated data.ipynb +++ /dev/null @@ -1,977 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/Cython/Distutils/old_build_ext.py:30: UserWarning: Cython.Distutils.old_build_ext does not properly handle dependencies and is deprecated.\n", - " \"Cython.Distutils.old_build_ext does not properly handle dependencies \"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/.local/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.\n", - " \"`IPython.html.widgets` has moved to `ipywidgets`.\", ShimWarning)\n", - "INFO:stancache.seed:Setting seed to 1245502385\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "%matplotlib inline\n", - "import random\n", - "random.seed(1100038344)\n", - "import survivalstan\n", - "import numpy as np\n", - "import pandas as pd\n", - "from stancache import stancache\n", - "from matplotlib import pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/* Variable naming:\n", - " // dimensions\n", - " N = total number of observations (length of data)\n", - " S = number of sample ids\n", - " T = max timepoint (number of timepoint ids)\n", - " M = number of covariates\n", - " \n", - " // data\n", - " s = sample id for each obs\n", - " t = timepoint id for each obs\n", - " event = integer indicating if there was an event at time t for sample s\n", - " x = matrix of real-valued covariates at time t for sample n [N, X]\n", - " obs_t = observed end time for interval for timepoint for that obs\n", - " \n", - "*/\n", - "// Jacqueline Buros Novik \n", - "\n", - "\n", - "data {\n", - " int N;\n", - " int S;\n", - " int T;\n", - " int M;\n", - " int s[N]; // sample id\n", - " int t[N]; // timepoint id\n", - " int event[N]; // 1: event, 0:censor\n", - " matrix[N, M] x; // explanatory vars\n", - " real obs_t[N]; // observed end time for each obs\n", - " real t_dur[T];\n", - " real t_obs[T];\n", - "}\n", - "transformed data {\n", - " real c_unit;\n", - " real r_unit;\n", - " int n_trans[S, T]; \n", - " \n", - " // scale for baseline hazard params (fixed)\n", - " c_unit = 0.001; \n", - " r_unit = 0.1;\n", - " \n", - " // n_trans used to map each sample*timepoint to n (used in gen quantities)\n", - " // map each patient/timepoint combination to n values\n", - " for (n in 1:N) {\n", - " n_trans[s[n], t[n]] = n;\n", - " }\n", - "\n", - " // fill in missing values with n for max t for that patient\n", - " // ie assume \"last observed\" state applies forward (may be problematic for TVC)\n", - " // this allows us to predict failure times >= observed survival times\n", - " for (samp in 1:S) {\n", - " int last_value;\n", - " last_value = 0;\n", - " for (tp in 1:T) {\n", - " // manual says ints are initialized to neg values\n", - " // so <=0 is a shorthand for \"unassigned\"\n", - " if (n_trans[samp, tp] <= 0 && last_value != 0) {\n", - " n_trans[samp, tp] = last_value;\n", - " } else {\n", - " last_value = n_trans[samp, tp];\n", - " }\n", - " }\n", - " }\n", - "}\n", - "parameters {\n", - " vector[T] baseline; // unstructured baseline hazard for each timepoint t\n", - " vector[M] beta; // beta for each covariate\n", - " real c_raw;\n", - " real r_raw;\n", - "}\n", - "transformed parameters {\n", - " vector[N] log_hazard;\n", - " vector[T] log_baseline;\n", - " real c;\n", - " real r;\n", - " \n", - " \n", - " log_baseline = log(baseline);\n", - " \n", - " r = r_unit*r_raw;\n", - " c = c_unit*c_raw;\n", - " \n", - " for (n in 1:N) {\n", - " log_hazard[n] = x[n,]*beta + log_baseline[t[n]];\n", - " }\n", - "}\n", - "model {\n", - " for (i in 1:T) {\n", - " baseline[i] ~ gamma(r * t_dur[i] * c, c);\n", - " }\n", - " beta ~ cauchy(0, 2);\n", - " event ~ poisson_log(log_hazard);\n", - " c_raw ~ normal(0, 1);\n", - " r_raw ~ normal(0, 1);\n", - "}\n", - "generated quantities {\n", - " real log_lik[N];\n", - " int y_hat_mat[S, T]; // ppcheck for each S*T combination\n", - " real y_hat_time[S]; // predicted failure time for each sample\n", - " int y_hat_event[S]; // predicted event (0:censor, 1:event)\n", - " \n", - " // log-likelihood, for loo\n", - " for (n in 1:N) {\n", - " log_lik[n] = poisson_log_lpmf(event[n] | log_hazard[n]);\n", - " }\n", - " \n", - " // posterior predicted values\n", - " for (samp in 1:S) {\n", - " int sample_alive;\n", - " sample_alive = 1;\n", - " for (tp in 1:T) {\n", - " if (sample_alive == 1) {\n", - " real log_haz;\n", - " int n;\n", - " int pred_y;\n", - " \n", - " // determine predicted value of y\n", - " n = n_trans[samp, tp];\n", - " log_haz = x[n,]*beta + log_baseline[tp];\n", - " if (log_haz < log(pow(2, 30))) \n", - " pred_y = poisson_log_rng(log_haz);\n", - " else\n", - " pred_y = 9; \n", - " \n", - " // mark this patient as ineligible for future tps\n", - " // note: deliberately make 9s ineligible \n", - " if (pred_y >= 1) {\n", - " sample_alive = 0;\n", - " y_hat_time[samp] = t_obs[tp];\n", - " y_hat_event[samp] = 1;\n", - " }\n", - " \n", - " // save predicted value of y to matrix\n", - " y_hat_mat[samp, tp] = pred_y;\n", - " }\n", - " else if (sample_alive == 0) {\n", - " y_hat_mat[samp, tp] = 9;\n", - " } \n", - " } // end per-timepoint loop\n", - " \n", - " // if patient still alive at max\n", - " // \n", - " if (sample_alive == 1) {\n", - " y_hat_time[samp] = t_obs[T];\n", - " y_hat_event[samp] = 0;\n", - " }\n", - " } // end per-sample loop\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "print(survivalstan.models.pem_survival_model_gamma)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sim_data_exp_correlated: cache_filename set to sim_data_exp_correlated.cached.N_100.censor_time_20.rate_coefs_54462717316.rate_form_1 + sex.pkl\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sim_data_exp_correlated: Loading result from cache\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
agesexratetrue_tteventindexage_centered
059male0.08208520.94877120.000000False04.18
158male0.08208512.82751912.827519True13.18
261female0.04978727.01888620.000000False26.18
357female0.04978762.22029620.000000False32.18
455male0.08208510.46204510.462045True40.18
\n", - "
" - ], - "text/plain": [ - " age sex rate true_t t event index age_centered\n", - "0 59 male 0.082085 20.948771 20.000000 False 0 4.18\n", - "1 58 male 0.082085 12.827519 12.827519 True 1 3.18\n", - "2 61 female 0.049787 27.018886 20.000000 False 2 6.18\n", - "3 57 female 0.049787 62.220296 20.000000 False 3 2.18\n", - "4 55 male 0.082085 10.462045 10.462045 True 4 0.18" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d = stancache.cached(\n", - " survivalstan.sim.sim_data_exp_correlated,\n", - " N=100,\n", - " censor_time=20,\n", - " rate_form='1 + sex',\n", - " rate_coefs=[-3, 0.5],\n", - ")\n", - "d['age_centered'] = d['age'] - d['age'].mean()\n", - "d.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAHcCAYAAAAa41gWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4VOX9///nzGSyk30lYQsJBhKSgKiAiAq2UlfEqtWK\nK9qKXaz2g/5arfLVtlZbq9S9LtBKXSqKG6LWXQgoS9gDhEDIvsBk3yYz8/sjEEsJSGByTiZ5Pa6r\n14Vnzpl5T3jn9MU597lvi8fj8SAiIiIi0kdYzS5AREREROS/KaCKiIiISJ+igCoiIiIifYoCqoiI\niIj0KQqoIiIiItKnKKCKiIiISJ+igCoiIiIifYoCqoiIiIj0KQqoIiIiItKnKKCKiIiISJ/S44C6\nZs0afvrTn3LGGWeQnp7Oxx9//J3HrF69mlmzZjF27FjOPfdc3nzzzeMqVkRERET6vx4H1ObmZkaP\nHs29996LxWL5zv1LSkr46U9/ysSJE3nrrbe45ppruPvuu1mxYsVxFSwiIiIi/ZtfTw+YOnUqU6dO\nBcDj8Xzn/i+//DLJycnMmzcPgJSUFNauXcvChQs5/fTTe/rxIiIiItLP9foY1A0bNjB58uRDtk2Z\nMoW8vLze/mgRERER8UG9HlCrq6uJjo4+ZFt0dDSNjY20t7f39seLiIiIiI/p8S1+s1z+6i1HfO2X\nOb/i9JNGGViNiIiIiPSWXg+osbGx7Nu375Bt+/btIzQ0FH9//2N+n2tPupHW1nbcbiiraSI3vwj3\nsLUAPPz6J3wUW8OlZ44kOS7Uq/XLwGKzWQkLC6K+vgWXy212OdKPqdfEKOo1McrBXvOGXg+oOTk5\nfPHFF4dsW7FiBTk5OT16n/NzJuBwNNHR4YY0uHjceH6zchMdtGMJrmft9mrWba9mYkY8F08ZQVxk\nsDe/hgwwLpe7s9dEepl6TYyiXhNfclzTTOXn57Nt2zYAiouLyc/Pp7y8HIC//OUv3HnnnV37/+hH\nP6K4uJiHH36YwsJCFi9ezAcffMD1119/QoWHBPozLDwJgLjBHdj9rHiA3C2V/Pbvq/nH8nwcDW0n\n9BkiIiIiYrweB9TNmzczc+ZMZs2ahcVi4U9/+hOXXHIJCxYsAKCmpqYrrAIkJyfzzDPPkJuby8yZ\nM1m0aBEPPPDAYU/2H4/kQYMBcPnX8uBPJnH2+CRsVgsut4fP8sq48+lcXvl4J/XNehhLRERExFdY\nPMcymWkf0XWL/4CVZd+wOP/fAPzh9HsIDxhEVW0Lb3+1m9wtFRz8ZgH+Nr4/YQjnnjqU4ECfeS5M\nTODnZyUyMuSwXhPxNvWaGEW9JkY52Gve0OvTTPWm5EGJXX8ubSwDIC4iiDkXjOH/3XgaJ58UC0Bb\nu4t3Vu7hzqdX8v6qItqcLlPqFREREZHv5tMBNTE4Hqul8yuUHAioByXFhHDrJWO559oJZI6IAqCp\ntYN/f7aLu57OZU1+leH1ioiIiMh38+mAarfZSQiOA6CkoazbfUYkhnH7FTncedU40pLDAahraufJ\npZv58Jtiw2oVERERkWPj0wEVvn1QqrixlKMNpz1paCR3/Xg8t12WRVhI5/yrr3y8k9c+LcDtO8Nw\nRURERPo93w+ooZ0Btaq5hvtX/4VPi7+i2dnS7b4Wi4WskTH8ZvbJxEV2TiS7fPVenn93Gx2avFhE\nRESkT/D5gJodm0mY/yAAKpureH3n2/xmxQMs3vZv9taXdHtMXEQQv7n6ZEYkdh6Xu6WCBa9vpLW9\nw7C6RURERKR7Pj3N1EHtLifrqjbwRWkuRfWHjisdFjaEM5ImcXJcNv42+yGvtbZ38OSbm9m8ez8A\nwxMGcdtl2V1DAGTg0XQsYhT1mhhFvSZG8eY0U/0ioP63vfUlfFmayzeVeTjdzq7twX5BTEycwBlJ\nE4kLju3a3uFy8+KyfHK3VAAQFxnE7VfkEBfhnbVkxbfoRC5GUa+JUdRrYhQF1GPQ7GxhdcVavizN\npbK5+pDX0iPTOCN5EmOjR2Oz2vB4PLz+2S7eX70XgLAQf351WTbDEgZ5/TtI36YTuRhFvSZGUa/1\nDX/60+/5/PNPaGxs4IUXFpOammZ4DRUV5Vx22UW8+OK/euXzvRlQ++2ySsH2IM4eMoWzkk9nZ+0u\nvijJZUPNFtweN/mOneQ7dhIREM7pg0/l9MGncdnZqYSHBnQujdrUzp/+tY5bLxlLxoE5VEVERESO\nx6pVK/ngg/f429+eZfDgwYSHR5hWi8ViMe2ze6LfBtSDLBYLoyJTGRWZSm1bHSvLvmZF2dfUttVR\n21bHe7s/4v09H5Mdk8HU1EncHDyG59/bRmu7i7+8mkf2yGh+MHEYo4aY10wiIiLiu0pLi4mOjiEj\nI9PsUo46JWdf0u8D6n+LCAjnvBHf49xh09i0bxtfluSS79iJ2+NmffUm1ldvIj44jmnnZvHVZ1Za\nWqxs2LWPDbv2kZocznmnDSMrNRqrj/zrQ0REpD9rbu2gfH+ToZ+ZGBVCcOCxx6c//GE+77//LhaL\nhTPOOIWEhMH8+99v8c9/vsjbby9l//4ahg4dxrXX3shZZ00HYP36tfziFz/lL3/5G08//TeKivaQ\nmZnNfff9nvz8rTzxxKNUV1cxefIZ3HXXPQQEBACwenUuixY9T2HhLmw2KxkZWfzyl3eQlJR8xPoK\nCwt48skFbNiQR1BQEKecchq/+MXtpl7lhX48BvVYVTVX82XpKlaVr6G549v5U+1WO7GekZRtj6Wl\n9tvxFINjQvjBaUM5bUw8fjafn6VL/ofGaolR1GtilP7aa82tHcx7aiXNbcZOERkc4MdDt0w+5pDa\n3NzEa6+9zDvvLOW55/6J1Wph6dIlfPTRB/zyl3eQnDyEvLx1/PnPf+SRRx4nO3tcV0DNzBzLrbf+\nioCAAO655y5iY2Px9w/gllt+TnNzE7/5za+56qpruOqqawD4/PNPsFisjByZSktLC88//zRlZWUs\nWvQycPgY1MbGRq68chYXXXQJM2acT2trK0899TdcLhePPfZkj382GoPqRXHBsVyadiEXpsxgbdUG\nvjwwVZXT7aSMfBiVT6I1nsbiRBrKYimraeL597bxxheFnHvKEKbmDCbQf8D/GEVERKQbwcEhBAeH\nYLXaiIyMxOl08tJLC3n00ae6bvknJg5m48Y83nrrDbKzxwGdQxRvumkumZljAbjggot49tknee21\nt0hISATgrLOms27dmq6AeuaZ0w757Hnz7uaii77P7t2FjBiRclhtS5a8yqhR6dx00y1d2+66624u\nvfQCSkqKSU4e4v0fyDFSsjrA32ZnUuIEJiVOOGyqqlp3JSRVEp4ciGXfcGoLhuFoaOOVTwp4Z+Ue\npo1PZvqEZMKCNX+qiIiIEYIDO69k9vVb/P+rpKSY1tZWfvWrWw8ZD+pydTBqVPoh+44cmdr156io\naAICArvCKUBkZBTbtm095L2fe+5ptm7dTF1dLW63B4vFQmVlRbcBtaBgJ+vWfcP3vjf1kO0Wi4XS\n0hIF1L5maFgyPw67jEtSz2d1xbquqaraPa0Qlc9p08Op2TaMXWX1NLV28M7KPXzw9V6mZCVy7qlD\nidUcqiIiIr0uONCPkYPDzS6jR1pamgF4+OHHiImJOeQ1f/9DL3T5+X0b0ywWyyH/fXCbx/PtsI15\n824jMTGJu+66h5iYGNxuD7NnX05Hh5PutLQ0c/rpU5k79xeHPTz1v7UZTQH1KILtwV1TVe1w7OLN\nXe9R3FDKxobVXH3OUH7YMY5lq/ayqXAf7R1uPllXymfryzh1dBwzThvK0HjNoyoiIiLfGj48Bbvd\nn8rKcrKzc7z2vvX1dRQX7+Wuu+4hK6vzfTdsyDvqMaNGpfPFF5+SkJCI1dq3nqvpW9X0URaLhZOi\nUpmbfQORAZ1Ptb28/Q1sYbX86vJs5t9wKhMz4rFaLLg9HlZtreS+F7/hkdfyyC9y+MyUDiIiItK7\ngoODufLKq1mw4BHef/9dSktL2LEjnyVLXmX58ve69utpdhg0KIzw8HDefvtNSktLWLv2Gx5//K9H\nnfd01qzLqa+v5957f0N+/lZKS0tYvTqXP/xhvunZRQG1B8L8B3FL9vUE2PxxeVw8u2kR1c37GBIX\nys0XZvDgTyYyfXwy/n6dP9bNhft56OX1zH/xG177pIC126upa2o3+VuIiIiImW666Rauv34Oixcv\nYvbsy/n1r39Jbu4KEhOTuvbp6YT6FouF+fP/yPbt27jmmit4/PG/8rOf3dbtfgfFxMTw1FPP4/G4\nuf32n3PddVfyt7/9lUGDwkyf0H/ATzN1PDbVbOWZjYvw4CEhOI47Tr6VYPu3407rm9v5ZG0JH68t\noan18Okv4iKCSE0OJzUpnNTkcAbHhGhu1T6iv07HIn2Pek2Mol4To3hzmikF1OP0yd4vWFLwLgCj\no0ZxS9b12Ky2Q/Zpbe/gq43lbCioYVdZPa3trm7fKyjAj5FJYZ2BNSmclMFhmrrKJDqRi1HUa2IU\n9ZoYRQG1D/B4PLy8fQkryr4GYGrSZK44aeYR93e7PZRUN7KrtI6dpXUUlNRRU9fa7b4WCwyJCyUt\nKYKRyWGkJUUQFRZg+uX2gUAncjGKek2Mol4Toyig9hEut4vHNzzPDkcBAJeNupizkk8/5uNrG9so\nKKmjoLTzf0UVDbjc3f91RA4K6LrCmpoczpC4UK1k1Qt0IhejqNfEKOo1MYoCah/S5Gzmz2sep6ql\nBgsWbsm+gYzok47rvdqdLvZUNHQG1gPBtbGl+7nL/O1WUhLDGJkUTlpyOCmDwwkNsp/IVxF0Ihfj\nqNfEKOo1MYoCah9T2VzNn9c8TnNHC4G2QH494VYSQ+JP+H09Hg8V+5spKK3rHBpQUkf5vuYj7p8Y\nHUxacviB0BpBfGSQhgX0kE7kYhT1mhhFvSZGUUDtg3Y4Cvhb3nO4PW6iA6P47Wm3E2Dz/tKnjS1O\ndh0YElBQUsfu8nraj/AzCQ2ydw0JSE0KZ0TiIOx+tm73lU46kYtR1GtiFPWaGEUBtY/6qnQVL29/\nA4AbM69mfFxWr39mh8tNcVXjIWNZHQ1t3e5rs1oYnjCIkUnhjB0ZzZhhkbrC+j90IhejqNfEKOo1\nMYoCah/l9ri588v5NHe0cPaQKfww7SLDa/B4POyvb2NnaS27SurZWVpLcVUj3f0t33ZZNlkjow2v\nsS/TiVyMol4To6jXxCjeDKiabNOLrBYrI8KHsWVfPoV1RabUYLFYiA4PJDo8gYljEoDO+Vh3l9V3\nTm9VWsfmwv0AlNU0KaCKiIj4mD/8YT6NjY384Q8Pm11Kr9E8RV6WEj4MgOKGUtpdfWNZ00B/P0YP\nj+Ki00dw++U5XU/7N7V2P0OAiIiIiJkUUL3sYEB1e9wU1ZeYXE33QgI7L5x3twyriIiIiNl0i9/L\nhoUNxWqx4va42V1XRFpkitklHSYkyA6OFpp1BVVERKRX/fznP2HkyFSsVivvv/8edrudm2++hXPO\nmcEjj/yJzz77hKioKG677f+YOHEybrebhx76PWvXrmH//hri4xO45JLLuOyyHx3xMzweDy+9tJC3\n317K/v01DB06jGuvvZGzzppu4Df1LgVULwuw+ZMcmsjehlIK6/eYXU63gg9eQT3CIgAiIiK+oKWj\nhYqmakM/MyEkliC/oB4ds3z5e1x11TU899w/+PjjD3n44T/y+eefcuaZZ3PttTfyyiuLeeCB37Fk\nyXvYbDbi4uJ54IE/ER4ezqZNG3jooT8QExPD2Wef0+37/+MfL/DRRx8wb95vSE4eQl7eOu6//3dE\nRkaRnT3OG1/bcAqovWBE+PDOgFpXhMfj6XNTOYUGHhyDqlv8IiLim1o6Wrhn5YO0dLQY+rlBfkHc\nP/muHoXU1NRRXHPNDQBcffV1/POfC4mIiOSCC2YCcP31c1i69HV27drJmDGZ3HDDzV3HJiQksnnz\nRj755D/dBlSn08lLLy3k0UefIiMjE4DExMFs3JjHW2+9oYAq30oJH8bnJStocjZT1VxNfEic2SUd\n4uAV1GYFVBERkV43cmRq15+tVivh4eGkpHy7LSqqc0Ydh8MBwJIlr7Fs2TtUVlbQ1tZGR4eTtLTu\nl1EvKSmmtbWVX/3qVv575lCXq+OIx/gCBdReMDJ8eNefC+uK+lxADTlwBdXR2MZHa4rJSY0hNqJn\ntytERETMdPBKpi/c4vfzOzRuWSyWw7YBeDxuPv74Q5588jF+/vPbycgYS3BwMP/61z/Ytm1Lt+/d\n0tK5BPrDDz9GTEzMIa/5+3t/RUujHFdAXbx4Mc8//zw1NTWkp6dz9913k5XV/apJHR0dPP3007z1\n1ltUVlaSkpLCHXfcwRlnnHFChfdlkYERRASEU9tWx6clX5EYGs/wsKFml9UlJjwQAGeHm5f/s5OX\n/7OT5NgQctJiyEmNZXjiIKx9bFiCiIjI/wryC2JEeN/5/1dv2LRpA2PHZjNz5qVd20pLjzwr0PDh\nKdjt/lRWlpOdnWNEiYbocUBdtmwZDz74IPfffz9jx45l0aJFzJkzh+XLlxMVFXXY/n/961959913\neeCBBxgxYgRffvklP/vZz3j11VdJT0/3ypfoi06Oy+bj4i8obSzn4TWPc3JcNhemzCA22PyJ8Sdm\nJFDf3M43+VXsrWwEoKS6iZLqJt5dWUR4iD/ZqTHkpMUwZlgk/nabyRWLiIgMDMnJQ1i+fBlff72K\nxMTBfPDBMvLztzJ4cFK3+wcHB3PllVezYMEjuFwusrJyaGpqZNOmDYSEhDJjxvkGfwPv6HFAXbhw\nIVdccQUzZ3YO7J0/fz6fffYZS5Ys4aabbjps/7fffpu5c+d2XTG98soryc3N5YUXXuChhx46wfL7\nrotGziDUHsIHRZ/S6mplbdUG8qo3MzVpEjOGTyfU3ztLgR0Pu5+V8ycN5/xJw9lX10peQQ15BTXk\nFzlwuT3UNbXzxYYyvthQhr/dSsbwKHLSYsgeGUNYiO/eLhARETFa9w9KH76tcz8LM2f+kJ07d3Dv\nvb/BYrFwzjnf55JLLmP16pVH/IybbrqFqKgoFi9exMMP/4HQ0EGMGnUSs2ff4L0vYjCLx9PdKu3d\nczqd5OTksGDBAqZP/3ZurbvuuouGhgaeeOKJw4457bTTmDdvHpde+u2l6v/7v/9j3bp1fPzxxz0q\n1hfXEW5sb2L5no/5ojQXl8cFQKAtkHOHnc1ZQ6bgb7ObXOG3Wto62Lx7P3k7q9m4a99hT/lbgJFJ\n4QeGAsSQGB3c52YoOFFas1qMol4To6jXxCgHe80r79WTnR0OBy6X67BBuNHR0ezevbvbY6ZMmcLC\nhQuZMGECQ4cOZeXKlXz00Ue43T3/JbHZfG/hqwi/QfxozEymD5/C0oLlrKnIo9XVyluF7/NF6Uou\nSp3BxMEnY7WY/90G+fkzKTOBSZkJuNxudhbXsW5HNet2VFPlaMEDFJTWUVBax+uf7SI+Mohxo2IZ\nPyqWtCHh2Kzmf4cTdbDHfLHXxLeo18Qo6jUxijd7rEdXUKuqqpg6dSqvvvoq2dnZXdsfeugh1q1b\nxyuvvHLYMfv37+d3v/sdn3zyCVarlSFDhjB58mTeeOMN1q9f751v4UMK9u3hnxveYFv1zq5tQ8OT\nuDr7ErITxvTJK5Iej4eSqkZWb6lg9eZytu918L9dExpkZ8KYeE7LSGD8SXEEB/adK8MiIiLiW3r9\nFv9B7e3t1NbWEhcXx5///Gc+//xz3nnnnR4VW1/fgsvl+7cnPB4Pm2q28caOdylvquranh6VxqWj\nzmdoWLKJ1X23usY28gpqWL+jhs2F+2j/n1tGNquF0cMjGT8qlnFpsUQfmDXAF9hsVsLCgvpNr0nf\npV4To6jXxCgHe80behRQAS6//HKysrK4++67gc6wddZZZzF79mzmzJnzncc7nU7OP/98zjvvPG67\n7bYeFdvfxs+43C5WVazhvcIPqWtv6No+IT6Hi1JmEB10+KwIfU2708XWIgd5O2vYUFBDXVP7YfsM\njQ8lJzWGs8YlEREaYEKVx05jtcQo6jUxinpNjOLNMai2++67776eHBASEsJjjz1GYmIidrudRx99\nlO3bt/P73/+eoKAg5s2bx6ZNm5g0aRIAGzduZOPGjfj7+7Nz507uuece6uvreeihh3o8gWxrqxO3\nu0d5uk+zWqwMHZTMlKRJ2K12ihqKcXlclDVV8GVpLs0dLQwLG9KnHqT6XzablYSoYHLSYvj+qUPI\nGhlDWIid5tYO6pudANQ1tbO9uJbP88qw26wMSxiE1dr3hjIAWK0WgoL8+12vSd+jXhOjqNfEKAd7\nzRt6PM3Ueeedh8PhYMGCBdTU1DB69Giee+65rjlQKyoqsNm+nTezra2NRx99lJKSEoKDgznrrLN4\n+OGHCQ0N9coX6A8CbP78YMR0piSdxrLd/+GrslV0eFx8UvwlueVrmDF8GmcmTcbeh4MqgNViIWVw\nGCmDw5g1dSTVtS2dU1jt7JzCqrXdxSufFPDlpnKu/t4oThoaaXbJIiIi0gf1+Ba/mQbK7YnK5mre\n3rWcvOpNXdsiAyK4eOQPOCVhnImVHb/d5fW89OF2dpd/O5RhUkY8l5+dSngfuu2vW2FiFPWaGEW9\nJkbx5i1+BdQ+rLBuD28WvEdhXVHXth+nX8bkwaeYWNXxc3s8fLmhjNc/29U1x2pQgI2ZZ6QwbXxS\nn5imSidyMYp6TYyiXhOjKKAOIB6Ph401W/j3jrdxtNUS5BfE7yb+mjD/QWaXdtwaW5ws+XwXX+SV\ncbD5kmNDmX3uKNKSI0ytTSdyMYp6TYyiXhOjeDOgmn/JSo7KYrGQHZvJDZlXAdDS0cLrO942uaoT\nExpk59oZ6fz2mgkMS+gM2iXVjfzxpXU8/+7WbmcCEBERkYFDAdVHpIQP54ykzpkR1lZtYHPNNpMr\nOnEpg8O455oJzD73JEICO5/XW7G5gt88u4qP15bgOo7VxkRERMT3KaD6kItHziD8wK39V3cspbWj\nzeSKTpzVauHscUn8/uaJnJGVCEBLWweLP9rB/QvXUFBaZ3KFIiIiYrQez4NqpoE+h5vdaic6MIp1\nVRtp6Wilw93BmOiTzC7LKwLsNsalxZIxIoqiygbqmtqpa2rny43l7Cqrw2qxEBcR1OtrSWu+QDGK\nek2Mol4To3hzHlQFVB8THxxHcWMZVc3V7KkvJjN6NOEBYWaX5TVRYYFMzR5MWIg/BSV1OF1uqhwt\nrN1ezcfrSqiubSE40E5UWAAWi/cn+9eJXIyiXhOjqNfEKN4MqHqK3wc5Wmu5f/WfaXO1MyR0MP83\n4efYrLbvPtDH1De18/HaElZurmBffeshr8VGBDI5M5FJmQnERXhn3V/Q065iHPWaGEW9JkYxdalT\nM+lff52C/AIJsAWwdf926tsbCPQLJCV8uNlleV2Av43RwyI5Z0Iyo4dFYsFCZW0LLpeH5tYOtu+t\n5T9rSti2Zz9uD8RGBGH3O7EhALrSIEZRr4lR1GtiFF1BFdweN39e+wRF9cX4W+389rQ7iAmKMrus\nXtfmdLFuRzUrN5WzdY+D/25eu5+V8aNimZyZQMbwKKzWng8B0JUGMYp6TYyiXhOjaKJ+AaC0sZwH\nv3kMt8fN6KhR3Jp9Y6+My+yrHA1t5G6pYMWmcsr3NR/yWnioP5MyEpicmUBybOgxv6dO5GIU9ZoY\nRb0mRlFAlS5v7XqfD4s+BeCe0+4gISTe5IqM5/F42FPRwMpNFazeVklji/OQ14fFD2Ly2AROGxNP\nWPDRbz3oRC5GUa+JUdRrYhRvBlQ/r7yLmOaU+HFdAdXRVjcgA6rFYmFEYhgjEsO4YnoqG3ftY8Wm\ncjbu2ofL7aGosoGiygZe+6SAsSnRTM5MIDs15oTHq4qIiEjvUED1cSH2b/+l0tTeZGIlfYOfrXMc\n6vhRsTQ0t/P1tipWbCpnT0UDLreHvIIa8gpqCAn047Qx8cw8I4XQILvZZYuIiMh/UUD1caH24K4/\nNzqbj7LnwDMo2J/pJycz/eRkSmuaWLm5nNzNFdQ2ttPU2sEn60opqW5i3lXjsA6gsbsiIiJ9ne5x\n+jib1UaQXyAATU5dQT2SpJgQLjsrlT/PPZ07rsghe2Q0ADuKa/l8fanJ1YmIiMh/U0DtB0L8Oq+i\n6grqd7NaLWSMiOLWWWNJju0cHvHaZ7uoqWsxuTIRERE5SAG1Hwjx7wxauoJ67PxsVm44fzRWi4W2\ndheLlm/Hhya0EBER6dcUUPuBUPvBgKorqD0xPCGMGacNBWDL7v18tanc5IpEREQEFFD7hYMBtVFX\nUHvs4inDSYjqHCLxyscF7K9vNbkiERERUUDtB0LsB8egKqD2lN3Pxg3njcYCtLR1sPD9fN3qFxER\nMZkCaj8QYv92DKrCVc+lJodzzoQhAOTtrNFT/SIiIiZTQO0HogMjAXC6O/ig6BOTq/FNs6amEBvR\nOV3XM29sZPveWpMrEhERGbgUUPuB7NhMhoQOBuDdwg/ZVLPV5Ip8T4C/jet/0Hmrv7HFyYMvreXD\nb4p1RVpERMQECqj9gL/Nzs1Z1xJqD8GDh4VbXqaiqdLssnxO+rBIfv7DLIIC/HC5Pbzy8U6efmsL\nLW0dZpcmIiIyoCig9hNRgZHMyZyN1WKl1dXGMxsX0ezU5PM9NSE9jr/+6syuSfy/ya/igX+soaxG\nD6CJiIgYRQG1H0mLTOGytIsBqGqp4cWt/8LtcZtcle9Jig3l3utPZeKYeADK9zVz/z/W8PU2XZUW\nERExggJqP3NG0kROH3wqAFv3beftXctNrsg3BfjbuOnCMfz4e6OwWTtXm3r6rS28/J+ddLgU+kVE\nRHqTAmo/Y7FYuHzUTFLChwPw0d7PWFOZZ25RPspisTD95GTu/PF4IgcFAPDRmmIeenk9joY2k6sT\nERHpvxRQ+yE/qx9zMmcTERAOwEvb/k1xg+b2PF6pSeHce90pjB7WOZ1XQUkd8xd+w/a9DpMrExER\n6Z8UUPup8IBB3Dz2GuxWP5xuJ89sXERDe6PZZfmssBB/7rgih/MnDQOgvqmdh1/O47VPCti+14Gz\nQ7f9RUQIQ+sEAAAgAElEQVREvMXi8aGJHh2OJjoUBHrk64p1LNr6CgCpESP4Rc7N2Kw2k6vqu/z8\nrERGhhy119bvqOa597YdMv2U3c9KalI46UMjSB8WyYjEMPxs+vefHNmx9JqIN6jXxCgHe80bFFAH\ngCU73+GT4i8BODVhPFenX6aQegTHeiKvdDSz+MMdbCty4HIf/ivkb7eSlhzRFViHJwzCZlVglW8p\nNIhR1GtiFAVU6RGX28WTG14g37ETgKyYDG7IuAq7zW5yZX1PT0/kbU4XBaV15Bc5yN/rYE95Q7eB\nNdDfxqghEaQPjSR9WARD4wZhtVp64yuIj1BoEKOo18QoCqjSY60drTy76R9sdxQAkBaRwk+yriXI\nL8jkyvqWEz2Rt7Z3sLPkvwJrRQPd/YYFB/h1BtZhkaQPjSA5LhSrRYF1IFFoEKOo18QoCqhyXJzu\nDhZu+Rd51ZsBGBI6mFtz5jDIP9TkyvoOb5/Im1s72FFS2xVYiysb6e4XLjTIzkn/FVgHx4RgUWDt\n1xQaxCjqNTGKAqocN7fHzcv5b7Cy/GsA4oJi+FnOHKKDokyurG/o7RN5Y4uT7Xtryd/bGVhLq7tf\nQjUs2M5JQyO7AmtCVLACaz+j0CBGUa+JUUwPqIsXL+b555+npqaG9PR07r77brKyso64/8KFC3nl\nlVcoLy8nMjKSc889lzvuuAN/f/8efa5+ubzD4/HwduFyPiz6FICIgHBuzb6RwaEJJldmPqNP5PXN\n7ezYW8u2vQ7yixyU72vudr+IUP8D41c7A2tsRJACq49TaBCjqNfEKKYG1GXLlnHnnXdy//33M3bs\nWBYtWsTy5ctZvnw5UVGHX4V75513+O1vf8uDDz5ITk4Oe/bs4c477+SCCy7gzjvv7FGx+uXyrv/s\n/Zw3C94DINgviLnZNzAifJjJVZnL7BN5XWMb+QevsBY5qHS0dLtfVFhAZ2AdGknGiKiula7Ed5jd\nazJwqNfEKKYG1Msvv5ysrCzuvvtuoPNq3Jlnnsns2bO56aabDtv//vvvp7CwkBdffLFr25/+9Cc2\nbtzI4sWLe1Ssfrm8L7fsGxbnv44HD/5WOzePvZbR0aPMLss0fe1Evr++le3/dYW1pq71sH38bBbm\nXDCGU0fHm1ChHK++1mvSf6nXxCjeDKg9mpjR6XSyZcsWJk2a1LXNYrEwefJk8vK6X+993LhxbNmy\nhY0bNwJQXFzM559/zplnnnkCZYu3TBp8CjeNnY2f1Y92t5OnNr7I2soNZpclB0SFBTIpM4EbzhvN\nQ7dM5qGfTuL689KZlJHQddW0w+Xh7+9sZVPhPpOrFRER8Q6/nuzscDhwuVzExMQcsj06Oprdu3d3\ne8wFF1yAw+HgqquuAsDlcvGjH/2Im2++ucfF2rQyT684OTGL0IBgnlz/Iq2uNl7c8i9a3S2cOWSy\n2aUZ7mCP9dVeS4gJISEmhLPHJ+PxeCgoqePhl9fT2u7iiTc2Me/H4xk1JMLsMuUY9PVek/5DvSZG\n8WaP9SigHonH4zniAxurV6/mmWeeYf78+WRlZVFUVMTvf/97YmNjmTt3bo8+JyxMc3b2lomR2cRF\n/orff/E4DW2N/GvbG7hsTmaN+cGAfBjHV3rt1KhQ7g0J4N5nc2nvcPPXV/P4461TGDE43OzS5Bj5\nSq+J71OviS/pUUCNjIzEZrNRU1NzyPb9+/cTHR3d7TELFizg4osv5tJLLwUgLS2N5uZm7r333h4H\n1Pr6FlwujZ/pLZGWGH49YS6PrX2W/a21vLr5HWLtsYyNHWN2aYax2ayEhQX5VK8lRQXxs0uzeOzf\nG2hq7eCep1fy22snkBAVbHZpchS+2Gvim9RrYpSDveYNPQqodrudjIwMcnNzmT59OtB59TQ3N5fZ\ns2d3e0xLSwvW/1mD3Gq14vF4jnrltTsul1sDvHtZTEAMt4+fyx+/fpSmjmbyqrYyOjLd7LIM52u9\nljkiihvPH83f39lKXVM7f3ppHb+ZfbKe7vcBvtZr4rvUa+JLejxY4LrrruO1115j6dKl7Nq1i3vv\nvZfW1lZmzZoFwLx583jkkUe69p82bRovv/wyy5Yto6SkhBUrVrBgwQKmT58+IG8d+4LIwAjSIlMA\nKKzdY24xcswmZiTw4+93zsCwr76VP7+ynobmdpOrEhER6bkej0E977zzcDgcLFiwgJqaGkaPHs1z\nzz3XNQdqRUUFNputa/+5c+disVh47LHHqKysJCoqimnTpnHbbbd571uI16WEDyevejPlTZU0O1sI\ntmvski+YNj6ZptYO3vyikPJ9zTz67w38+kfjCArwynBzERERQ2ipU+nW7rq9/Hnt4wDMzb6BjOiB\ncZu/P8wX6PF4ePWTAj78phiA9KER/PpH47BadceiL+kPvSa+Qb0mRjFtHlQZOIYMGozd2nnVTbf5\nfYvFYuGKaalMGZsIQP6Bif5FRER8hQKqdMvP6sewsCEA7KrbY24x0mMWi4Uff+/bFcEq9jWbWI2I\niEjPKKDKEaWEDwdgT30xLrfL3GKkxwL8bUSE+gNQ6VBAFRER36GAKkc08kBAdbqdlDSWmVuMHJf4\nyM65UKscLSZXIiIicuwUUOWIUsKHdf15V233S9lK3xYX2Tn7QqUCqoiI+BAFVDmiYHswiSHxAOyq\nKzK5GjkeBwNqTW0LLree3hUREd+ggCpHdXAc6qaarayr2mhuMdJjB2/xu9we9te3mVyNiIjIsVFA\nlaM6M3kygbYAXB4XL2xezFelq8wuSXrg4BVU0DhUERHxHQqoclRJoYn8ctxPCLWH4MHDy9vf4IM9\nn+BD6zsMaLER3wbUnSW1JlYiIiJy7BRQ5TsNDUvm9vG3EBkQAcDbhct5s+A9hVQfEBTgx4jEMADe\nyy1iR7FCqoiI9H0KqHJM4kPiuOPkucQHxwHwcfEXvJT/b82P6gPmXDCaQH8bLreHp5ZuprZRY1FF\nRKRvU0CVYxYZGMHt429h6KBkAFaVr+H5zS/hdDlNrkyOJjE6hBvPHwNAXVM7Ty7dTIdLT/SLiEjf\npYAqPRLqH8Ivx93MqMhUADbUbOHJDS/Q0tFqcmVyNCefFMv5kzrntS0oqePVjwtMrkhEROTIFFCl\nxwL9ApmbdT3ZsZkA7KjdxYL1z9DQ3mhyZXI0l5yRQsbwSAA+XlfCys3lJlckIiLSPQVUOS52m50b\nM37M5MRTANjbUMpf1z3F/laHyZXJkVitFn5ycSbRYYEALFq+naKKBpOrEhEROZwCqhw3m9XGVek/\n5JyhZwJQ2VzNX9Y+SUVTlcmVyZGEBtn52ayx2P2sODvcPPHmJhpbNIZYRET6FgVUOSEWi4VLUs/n\n4pE/AKC2rY5H1j1JcUOZyZXJkQxLGMQ1554EQE1dK8++vQW3W1OGiYhI36GAKl7x/WFnc9VJl2LB\nQpOzmSfynqOqudrssuQITh+byNnjkgDYvHs/S78qNLkiERGRbymgitecnnQa1435ERYsNDgb+Vve\nczhaNTF8X3XlOWmMTOqcxP/dlUWs26F/UIiISN+ggCpeNSFhHJePmgnA/lYHj294nkZnk8lVSXf8\nbFbmzhxLWIg/AM+9u5Xyffq7EhER8ymgitdNTZ7EBSPOBaCiqZInN7xAa4dWL+qLIgcFMHdmJjar\nhdZ2F4+/sYmWtg6zyxIRkQFOAVV6xYzh0zh7yBQAiuqL+fumf+B0K/j0RaOGRHDFtM6FF8r3NfPC\nsm14PHpoSkREzKOAKr3CYrEwK/UCTks4GYB8x04WbXkZt0dLbPZF009OZlJGAgBrt1fz/uq9Jlck\nIiIDmQKq9BqrxcqP03/I2JjOdeDXV2/i5fw3dHWuD7JYLFwz4ySGxoUCsOTzXWzZvd/kqkREZKBS\nQJVeZbPauCHjx6RGjABgZfnXvF243OSqpDsBdhu3zhpLSKAfHg88/dZmampbzC5LREQGIAVU6XX+\nNjs/zbqOIaGDAfiw6FP+s/dzk6uS7sRGBPGTizOwAE2tHTzz9hbcuuItIiIGU0AVQwT5BXFrzhzi\ngmIAeLPgPVaWfWNyVdKdzBHRzDyj84r3rrJ6PltfanJFIiIy0CigimEG+Yfys5ybiAgIB+Bf+a/z\nz22vUdygANTX/GDiMIYcGI/6+me7cDRomjARETGOAqoYKjookp/lzCHELxgPHlaVr+HBbx7jL2uf\nYE3Fejo0FVWf4Gezcu2MdCxAa7uLf320w+ySRERkALHdd99995ldxLFqbXXidms8nK8b5B9KTuxY\nnG4nFU1VuD1uHG115FVvZmXZ17R1tBEXHEOgX6DhtVmtFoKC/NVrdE7i39jiZHd5PeX7mhkaH0pi\ndIjZZfUb6jUxinpNjHKw17zB4vGhOX8cjiY6OjSPZn/S7Gwmt3wNX5SspKb122mNrBYr42LHMjV5\nMiPDh2OxWAypx8/PSmRkiHrtgJa2Du5+bjWOhjYiBwXwwJzTCArwM7usfkG9JkZRr4lRDvaaN+gK\nqpjKbrOTEj6MM5MnMzxsCM3OFqpb9uHBQ3lTJavK17CxZis2i5X44FhsVluv1qMrDYey+1mJiwji\n621VtLa7aO9wMTYl2uyy+gX1mhhFvSZG0RVU6deqmqv5oiSX3PI1tLpau7YH+wUxafApTE2aTExQ\nVK98tq40dO/xNzaxbkc1FuDuaycwIjHM7JJ8nnpNjKJeE6N48wqqAqr0Wa0dbXxTuY7PS1ZS3lTZ\ntd2ChcyYdM5MOp2TolKxWrz3rJ9O5N1zNLTx27+vorXdxdC4UH533SlYrcYMu+iv1GtiFPWaGEW3\n+GVA8LP6MSxsCGckTSItciRtrjYqm6vx4KGquYavK9extioPPBAfEofdeuJjI3UrrHtBAX4E+vux\nqXAfdU3tDE8IIyE62OyyfJp6TYyiXhOj6Ba/DFj7Wx18VbqaFWWraXQ2dW0PsPlzWsLJTE2eTGJI\n/HG/v640HFmHy83/PbWSusZ2MlOiuP3yHLNL8mnqNTGKek2MYvot/sWLF/P8889TU1NDeno6d999\nN1lZWd3uO3v2bL755vAVg8466yyefvrpHn2ufrnkIKfLybqqjXxWsoK9DSWHvDYqMpWzkieTGT26\nxw9V6UR+dEu/LOTtFXsAePAnE4mL1FXU46VeE6Oo18Qo3gyoPb4numzZMh588EHuv/9+xo4dy6JF\ni5gzZw7Lly8nKurwB1eeeOIJnE5n1387HA4uvvhiZsyYcWKVy4Bmt9k5LfFkTks8mT31e/m8ZCXr\nKjfQ4XGxw1HADkcBkQERTE2axJSkiQTbg8wuuV84MyeJd1cW4fZ4+Gx9GZdPSzW7JBER6Yd6/HTJ\nwoULueKKK5g5cyYjR45k/vz5BAYGsmTJkm73DwsLIzo6uut/X331FUFBQQqo4jXDw4Zy7Zgf8cDp\nv+XClHO7llJ1tNXyVuH7PLz2b7R2tH7Hu8ixiBwUwLhRMQB8ubGMdqfL5IpERKQ/6lFAdTqdbNmy\nhUmTJnVts1gsTJ48mby8vGN6jyVLlnD++ecTGGj8KkHSvw3yD2XG8On8v0l3MSdzNmkRKQBUNdfw\n+s53TK6u/5g2LgmAptYOvt5WZXI1IiLSH/XoFr/D4cDlchETE3PI9ujoaHbv3v2dx2/cuJGCggL+\n+Mc/9qzKA2w2700nJP2XH1ZOGZzNhMQsntu0mDUVeeSWf0NOfAY5cZlHPfZgj6nXjixzZDSJ0cGU\n72vms7xSzhqfZHZJPkm9JkZRr4lRvNljXlmz0OPxHNNSlK+//jppaWlkZh49JBxJWJjGEUrPzJ10\nNb9evof9LbW8tO11xg1NJyIo/DuPU68d3YVnjOTZpZsoLKunuqGdUUMjzS7JZ6nXxCjqNfElPQqo\nkZGR2Gw2ampqDtm+f/9+oqOPvvxha2sry5Yt47bbbut5lQfU17fgcukJROmZa8ZcwaNrn6GhrZEF\nKxfys3E3HvEfVDablbCwIPXadxifGo2/3Uq7082bn+7k5osyzC7J56jXxCjqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzj3rssmXLcDqdXHjhhcddrMvl1hQZ0mNp4SM5e8gUPi3+is01\n+XxatJKpyZOOeox67ej8/axMzkzks/WlrNpSwaVTUwgPDTC7LJ+kXhOjqNfEl/R4sMB1113Ha6+9\nxtKlS9m1axf33nsvra2tzJo1C4B58+bxyCOPHHbc66+/zjnnnEN4+HffXhXxtotTftA1gf8bBe9S\n2aSHe07UOScnA9Dh8vDp+lKTqxERkf6kxwH1vPPO484772TBggVccsklbN++neeee65rDtSKigqq\nq6sPOWbPnj2sX7+eH/7wh96pWqSH7DY71425EpvFhtPtZOHWV3C5NUXSiRgcE0JmSufv/WfrS3F2\n6OcpIiLeoaVOZUD5qOgzlu5aBsCM4dO5MOXcQ17Xiis9s7lwH4+8tgGAG84bzZSsRJMr8h3qNTGK\nek2M4s2VpDTnhAwo04dO7Zof9YM9n1BYt8fcgnxcxogoEqM7lzv9aE0xPvTvXRER6cMUUGVAsVqs\nzB59BYG2QDx4WLTlFa0ydQIsFgvfmzAEgOKqRvL31ppckYiI9AcKqDLgRAdFcsVJMwGoad3PmwXv\nmVyRb5uUmUBIYOeEIB99U2xyNSIi0h8ooMqAdEr8OMbFjgXgq7LV7HAUmFyR7wqw2zjrwPKnGwpq\nWPL5LqoczSZXJSIivkwBVQYki8XC5SfNJMTeOX5y8bbXaXO1m1yV75o2Phl/Pyse4L3cIu56ZhUP\nv7yeVVsq9HS/iIj0mO2+++67z+wijlVrqxO3Ww9hiHcE2AKICAgnr3ozzR0ttLvbyYxNJyjIX73W\nQ0EBfqQPi6SuqZ2q2hYAaupaWbujmk/XleKobyMi1F+T+f8Xq9WiXhNDqNfEKAd7zRs0zZQMaB6P\nh2c2LWJTzVYsWPj1KXM5JSVTvXYC9te3smJTOV9uLKem7tAH0IYlDGJq9mBOGx1PcGCPFrLrdzT1\njxhFvSZG8eY0UwqoMuDVttXxwOq/0NLRSnxwLH/5wd00NTjVayfI7fGQX+Tgy43lrN1eRYfr21ON\nv5+VCelxTM0eTFpyOBaLxcRKzaHQIEZRr4lRFFBFvCy37Bteyv83ABenf5/zhn5fveZFjS1OVm2p\n4IsNZZRUNx3yWnxUMFOzEpmcmTCghgAoNIhR1GtiFAVUES/zeDw8seF5tu3fgcVi4a5Tf05ySLLZ\nZfU7Ho+HPRUNfLmhjFVbK2lt//YBKqvFQnZqNFOzB5OZEoXN2r+f4VRoEKOo18QoCqgivWBfi4Pf\nf/0Iba42BocmcOeEX+BnHdjjJHtTW7uLNdur+HJDGTtK6g55LSLUnylZiUzJGkxcRJBJFfYuhQYx\ninpNjKKAKtJLVpSv4l/b3gDgvOHncH7K902uaGAo39fEVxvLWbGpnPpm5yGvpQ+N4PxJw8kYEWVS\ndb1DoUGMol4To3gzoGqaKZH/MjwimT2NRVQ37WNX3R48eLAAYf6DsFltZpfXbw0K9idjRBTnTBjC\n0PhBtDldh0xXtWpLBelDI4gJ7z9XUzX1jxhFvSZG0TRTIr3Ez89Km72ZO96/H6f72yt5fhYbw8KG\nkhYxgtSIFEaEDyPQb+A80GMGR0MbX20qZ/nqIlraXESHBTD/hlMJDrSbXZpX6KqWGEW9JkbRLX6R\nXnLwl2tlwXre2vkBRQ3FuD2H95zVYmXIoCRSI0aQFpHCyPDhBB9YlUq86+ttlTz91hYAJo6J5+aL\nMkyuyDsUGsQo6jUxigKqSC/53xN5u6ud3XV7KagtZGdtIXvq9+J0dxx2nAULg0MTSI1IIS0ihdSI\nEQzyDzXhG/RPz727lZWbKwC46cIxTMpIMLmiE6fQIEZRr4lRFFBFesl3ncid7g721pews7aQgtpC\nCuv20OZq7/a94oPjuoYEpEaMIDIworfL77da2jq494WvqalrJSjAxvzrTyXGx5/uV2gQo6jXxCgK\nqCK9pKcncpfbRUlj2YHAuptdtbtp7mjpdt/owKiuq6upESnEBEUNyBWUjtfOkloeXLwOjwdGJYcz\n76rxWK2++/NTaBCjqNfEKAqoIr3kRE/kbo+b8qbKrsBaUFtIQ3tjt/tGBIQfCKudgTUhOE6B9Tss\n/bKQt1fsAWDW1BQumDzc1HpOhEKDGEW9JkZRQBXpJd4+kXs8Hqqaqymo3c3OA4HV0Vbb7b6h9pCu\nsJoaMYKk0ESslv69mlJPudxu/vjSOgrL6rFZLfxm9smMSAwzu6zjotAgRlGviVEUUEV6iREn8n0t\n+7uurhbU7qaqpabb/YL8AhkZPvxAYE1h6KAkzcUKVDqaue+Fb2hzuggJ9OPkk2LJSYtlzLBI/O2+\n8/NRaBCjqNfEKAqoIr3EjBN5bVsdu2p3Hwituylrquh2P3+rnZTw4V1XWYeHDcFu6x9zgvbUlxvL\neHFZ/iHb/O1WMkdEk5MaQ3ZqNIOCvTNZdG9RaBCjqNfEKAqoIr2kL5zIG9ub2FW3+8CwgEJKGsrw\ncPivadfiAZGdQwJGhA2sxQM2795H7uYKNu7aR1ProVN/WSyQlhROTlos49JiiI/qe3PU9oVek4FB\nvSZGUUAV6SV98UTe0tFCYV1RZ2B1FB518YBpQ87g4pE/GFBjV11uNzuL61i/s4b1O6upqWs9bJ/E\n6GBy0mIYlxZLyuAwrH3gYbS+2GvSP6nXxCgKqCK9xBdO5N+1eMAp8eOYPfryATle1ePxUFrTxPqd\nNeTtrGF3ef1h+4QF28lO7QyrY4abN27VF3pN+gf1mhhFAVWkl/jiifzg4gFvFrzH7voiADKj07kx\n82r8bX17HGZvczS0saGghryCGrbucdDhOvTv1N/PSsaIKHLSYsgeGUNYiHE/L1/sNfFN6jUxigKq\nSC/x5RN5m6udv2/6B9v27wBgZPhwfpp1PcF2315xyVta2zvYXLifvIIaNhTUHD5uFRiZHM64tBhy\nUmNIjPbOSfZIfLnXxLeo18QoCqgivcTXT+Qd7g7+sfVV1lZtACApNJFbs+cQHjDI5Mr6FpfbTUHJ\nt+NWq2sPH7eaEBXcGVbTYhg5ONzrq1b5eq+J71CviVEUUEV6SX84kbs9bl7dsZSvSlcBEBMUzc9z\nbiImKMrkyvomj8dD2cFxqwU1FJYdPm51ULCdcWkxXDwlhchB3pkpoT/0mvgG9ZoYRQFVpJf0lxO5\nx+Ph3d0fsnzPxwCE+4fxs5w5DA5NMLmyvq+2sY28gs6HrP533Gp8VDD/39XjCfPCHKv9pdek71Ov\niVEUUEV6SX87kX+y9wuWFLwLQLBfEHOzb2BE+DCTq/Idre0dbNnt4Jv8Sr7eVgXAiMQw5l05jgD/\nE3v6v7/1mvRd6jUxijcD6sCZLFFkAJo2dCqzR1+O1WKluaOFBeufZdu+HWaX5TMC/TuXUv3pxZl8\n/5QhAOwur+fJpZsPmxFARES8RwFVpJ+bmDiBOZmz8bP60e528tTGF1lXtdHssnzO5dNSmZgRD8Cm\nwn0sej8fH7oBJSLiUxRQRQaA7NgMbs2+kUBbAC6Pixc2L+56iEqOjdVi4YbzRpMxovNhsxWbK1jy\neaHJVYmI9E8KqCIDxKjIkfxy3E8ItYfgwcPL299gy77tZpflU/xsVubOzGRYQue0XctWFfHRmmKT\nqxIR6X8UUEUGkKFhydw+/hZC7Z2D2FeWfW1yRb4nKMCPX12WTVxE5wIIr/xnJ19vqzS5KhGR/uW4\nAurixYuZNm0aWVlZXH755WzcePTxbA0NDcyfP58pU6aQlZXFjBkz+OKLL46rYBE5MfEhcZySMA6A\nLfvyaXO1m1yR7wkL8ef2K7IJC7bjAf7+zla27tlvdlkiIv1GjwPqsmXLePDBB/nFL37Bm2++SXp6\nOnPmzGH//u5Pzk6nk+uuu47y8nIef/xxli9fzgMPPEB8fPwJFy8ix2dcbBYATreTLfvyTa7GN8VF\nBvOry3MI8Lfhcnt4/I1N1NS1mF2WiEi/0OOAunDhQq644gpmzpzJyJEjmT9/PoGBgSxZsqTb/V9/\n/XUaGhp44oknyMnJYfDgwUyYMIGTTjrphIsXkeMzInwo4f6d4yjzqjaZXI3vGpYwiJ/PGovVYqG1\n3cU7K/aYXZKISL/Qo4DqdDrZsmULkyZN6tpmsViYPHkyeXl53R7z6aefkpOTw/z58zn99NO58MIL\neeaZZ3C7NYegiFmsFis5cWMB2LRvG+0up8kV+a4xw6M4fWznCl0rNlVQub/Z5IpERHyfX092djgc\nuFwuYmJiDtkeHR3N7t27uz2muLiYVatWcdFFF/H3v/+dPXv2MH/+fFwuF3Pnzu1RsTabnumS3nWw\nxwZCr01IyObzkpW0u9rZXruDcfFjzS7JZ10yNYWVmytwuT28s3IPP52Z+Z3HDKReE3Op18Qo3uyx\nHgXUI/F4PFgslm5fc7vdxMTEcP/992OxWBgzZgxVVVU8//zzPQ6oYWFB3ihX5DsNhF47JTyT8M1h\n1LXWs9mxlWnpE80uyWdFRoYwY9Jw3luxm9wtFVz1g9EMSwg7pmMHQq9J36BeE1/So4AaGRmJzWaj\npqbmkO379+8nOjq622Pi4uKw2+2HBNiUlBRqamro6OjAz+/YS6ivb8Gl5QWlF9lsVsLCggZMr+XE\nZPB5SS5rSjdSVVOL3WY3uySf9f0JyXy4ughnh5tF72zh5z/MOur+A63XxDzqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzuz1m/PjxvPvuu4ds2717N7GxsT0KpwAul5uODv1ySe8bKL2W\nHTOWz0tyaXW1sbl6O2Njxphdks8aFGRn2vgkPvi6mG/yq9hVUtc1of/RDJReE/Op18SX9HiwwHXX\nXcdrr73G0qVL2bVrF/feey+tra3MmjULgHnz5vHII4907X/llVdSW1vLAw88wJ49e/jss8949tln\nuVM8GY4AACAASURBVPrqq733LUTkuKRGjOiatH+9nuY/YT+YOIwAuw2AN7/UMqgiIserx2NQzzvv\nPBwOBwsWLKCmpobRo0fz3HPPERXVuT51RUUFNputa/+EhAReeOEF/vjHP3LxxRcTHx/Ptddey003\n3eS9byEix8VmtZEdm8mKstWsq9rAqQnjSY9KM7ssnxUW7M/3Tknm3ZVFbNy1j2WrishOjWFwdPAR\nx+mLiMjhLB6Px2N2EcfK4WjS7QnpVX5+ViIjQwZUr5U2lvPwmr/hdHdgt/rx06zrFVJPQFOrk3lP\n5dLS1tG1LSzEn9HDIhk9LJL0YZHERQQNyF4Tc6jXxCgHe80bFFBF/stAPZHn79/J0xsX4nQ7sVv9\n+EnWdYyOGmV2WT5r6579vPyfnZTWNHX7ekx4IGOGR3FKRgJDY0MYFKSH06T3DNTzmhhPAVWklwzk\nE/kORwFPbngRp9uJn9WPn4y9ljHRWvHtRNQ1tpG/t5ZtRQ7yixxU1Xa/FGpidDDpwyIZPbTzCmuo\nAqt40UA+r4mxFFBFeslAP5HvcOziqQ0v0H4gpN489hoyotPNLqvfqKlr6Qqr24oc1Da2H7aPBRgS\nH9o1JCAtOYKgAK9MWS0D1EA/r4lxFFBFeolO5LDTUciTG1+g3dWOn8XG/9/encdHWd77/3/NTCb7\nPtlD2JcgSSBhR0HBHW2larGnirVHrd0O7c/Teuw5nlbbY7Wtx1alp18tWrWl1VpqtYpaN7RiEBFC\n2NcAScieyTpJZv39EQhEQBiYmXsyvJ+PRx/gzD33fCgfLt5c931d9+3FN1OUMdHosiKOxWLC4fax\ntvIQW/a1sOOAne5e93HHmU0mRuUlHQ6s6YzNT8YaZTnBGUVOTOOahIoCqkiQaCDvt6etil9venIg\npN5WvER7pAbYp3vN6/NR09jF9sOzqzur2+hzeo7/nMXMuGEp/bcEjEhjZE4SUXqEpXwGjWsSKgqo\nIkGigfyoPW1V/N+mJ+nzOLGYLNyukBpQp+o1t8fL/vrOgVsCdte04z7BU4Bioy2ML0gduCVgWFYi\nZm1pJcfQuCahooAqEiQayAfb176fX1c8Sa+nD4vJwq1FNzE5c5LRZUUEf3vN5fawp7ZjILDuO9SB\n9wTDd0Js1MDsatGodLLS4oNRvgwhGtckVBRQRYJEA/nx9rUf4NcVy+n19GE2mbm16CamZBYZXdaQ\nd7a91tPnZndN28AtAdUNXZxoMJ8yNoMrZw1n3LDUsy9ahiSNaxIqCqgiQaKB/MSq2g+wrOJJej29\nmE1mvlZ8sy73n6VA91pXj4udB+1sOzzDWtfiGPT+uGEpLJw1gpIxNj3V6hyjcU1CRQFVJEg0kJ/c\n/o6DLKtYTo+7l7yEHP5r5p1GlzSkBbvXWjt6eXdjLe9sqB30VKv8zAQWzhzB9IlZWlx1jtC4JqES\nyICq0UlETsvI5OFcNnw+APWORjze41eYS/hIT47lugvH8NA35/DF+WNISYwGoLapm9++so0fPF7O\nW+ur6XPp91FEwo8CqoictpyELAC8Pi9NPS0GVyOnIy4miitnjuDnX5/DLVcWkp0WB0BLRx9/fGs3\n3/+/D3n5gyq6elwGVyoicpQeTyIipy37cEAFaHA0DgRWCX/WKDPzJudxQXEuG3Y1sWrtAfbXd9LV\n4+JvH1Tx2kcHmTc5j8tnFJCeHGt0uSJyjlNAFZHTlhGbjsVkwePz0NDdBJlGVyT+MptNTCvMYuqE\nTHYcsLNq7QG27rfT5/Lw5vpq3tlQw6zzsrli1gjyMwJzL5mIiL8UUEXktFnMFjLjbNQ7Gql3NBpd\njpwFk8nExJHpTByZzoH6TlatPcD6nY14vD7WbKlnzZZ6SsdlsHDWCMbkpxhdroicYxRQRcQv2QlZ\n1DsaaXA0GV2KBMiInCS+saiIBruDNz46yAeb63F7vGzc3czG3c2MH5bC+SW5TB2fRXys/toQkeDT\nSCMifsmO77+u3+BoxOfzaU/NCJKdFs/NVxRyzQWjeHN9De9urKGnz8OumnZ21bTz+zd2MXmMjVmT\nsikZY8MaZTG6ZBGJUAqoIuKXnPj+hVE97l46nF2kxCQZXJEEWkpiDNdfNIaFs0bwXkUt71fW0dDq\nwO3x8smuJj7Z1URcjIWp47OYOSmbicPTMJv1DxURCRwFVBHxS3bC0ZVRDY5GBdQIFh8bxZWzRnDF\nzOEcaOhk7dYGPtreQHuXk54+Dx9sruODzXWkJEQzY2I2syZlMzInSbPqInLWFFBFxC9HLvFDf0Ad\nnzbGwGokFEwmEyNzkhmZk8zi+WPZedDO2m0NrN/ZRE+fm/ZuJ2+ur+bN9dVkpcUx67xsZp6XTa5N\nuwCIyJlRQBURv8RFxZFgjafb5aC1t83ociTEzOajq/9vumwCm/e1sHZrPRV7WnB7vDTae3h5zX5e\nXrOfETlJzDovmxkTs0lLijG6dBEZQhRQRcRv0eZounHg8urpQ+cya5SZsvGZlI3PpKfPzYZdTazd\n1sC2/a34fHCgvpMD9Z38+Z09FI5IY+Z52UybkEl8rNXo0kUkzCmgiojfoi39AcPldRtciYSLuJgo\nzi/O5fziXNq7nazb3sBH2xrYd6gDH7D9gJ3tB+z84R87KRmTwazz+ncCiLZqJwAROZ4Cqoj4zWo+\nHFA9mkGV46UkRHPptAIunVZAo93BR9saWLutgboWB26Pjw27mtiwq4nYaAtTx2cyrTCLUbnJJCdE\nG126iIQJBVQR8ZvV3D906BK/nEpWWjyfO38UV88ZycGGLj7a1r8TgL2zj16nZ+CpVdAfbIdlJVKQ\nlUhBZv+PObZ4oixmg38VIhJqCqgi4reBGVRd4pfTZDKZGJGTxIicJK6fP4bd1W2Ub21g/Y5GHH39\nfdTe7aS9qpWtVa0Dn7OYTeRlJDDscGAtyEpkWFYiKZptFYloCqgi4jerRZf45cyZTSYmDE9jwvA0\nbrpsPNWNXdQ0dvX/2NT/Y3dvf2j1eH1UH36vfOvRcyQnRFOQmUBBVhLDsvp/zNVsq0jEUEAVEb/p\nEr8ESpTFzKjcZEblJg+85vP5sHf2DQqs1Y1d1Lc68Pn6j+nodrK128nW/faBz1nMJnJtCRRkHRNc\nMxNJSdQWVyJDjQKqiPhNl/glmEwmE+nJsaQnxzJ5bMbA606Xh0Mt3QOB9cis67GzrTVN/aG2fGvD\nwOeS460D97YeuVUgLyNBs60iYUwBVUT8phlUMUK01TLwRKsjfD4fbV1Oqhs7jwbXpm7qWxx4D0+3\ndjhcbNtvZ9txs63xxy3KSk6I1qNaRcKAAqqI+O3IPagOlwOP14PFrL0sxRgmk4m0pBjSkmIoGXN0\nttXl9nCo2cHBxk5qGrsHAuzg2dZuapq6WXvMbGtSvHXQTGtBViK5tgSsUZptFQklBVQR8VtuQg4A\n7c5OVu1/i8+NvtzgikQGs0ZZBnYNOOLobGsX1Y2d1DT13y5w7Gxr50lmW3Ns8QOzrEdmXVM02yoS\nNAqoIuK3ObnTWVe/gX3t+3lj/zuMTRnFRNt4o8sS+UyDZ1ttA68fmW2t/tROAl09/beweLw+apu6\nqW3qZu22o7OtiXFWJo1KZ35pPuOGpSisigSQyec7siYy/Nnt3bjdXqPLkAgWFWUmLS1BvXYa7L1t\nPPjxI3S5ukm0JvCDGd8lNSbF6LKGDPVaeDt2tvVIYK1p7KLumNnWY+VnJDC/LJ/Zk3KIiwmvuR/1\nmoTKkV4LBAVUkWNoIPfP1pad/GbTU/jwMSZlJN8pvUP3o54m9drQ5HJ7OdTcTU1TF3sPdfDRtgZ6\n+o7uZhETbWH2pBzml+ZTkJVoYKVHqdckVBRQRYJEA7n//r73dV4/8A4Alw6/iEVjFxpc0dCgXosM\nfU4PH21v4J0NNRxs6Br03thhKcwvzWfahCxDF1mp1yRUFFBFgkQDuf88Xg+PVfyW3W37APhGyVcp\nyphocFXhT70WWXw+H/vqOli9oZaPtjfi9hz9PU2Kt3JBSS4XTcknMzUu5LWp1yRUDA+oK1as4Mkn\nn6S5uZnCwkLuueceSkpKTnjsiy++yA9+8ANMJhNHviomJoZNmzb5Xaz+cEmwaSA/M+19HTyw7ld0\nurpIiIrn7hnfIT02zeiywpp6LXJ19bj4oLKO1RtraWzrGXjdBBSPsTG/NJ/i0TbM5tAsqlKvSagE\nMqD6fSf3qlWrePDBB/nJT35CcXExzzzzDLfddhuvv/466enpJ/xMUlISb7zxxkBA1UpHkciSEpPM\nLZP+hWUVy+l2O3hqywq+W/Z1oszhtVhEJBQS46xcMXM4l80oYNv+Vt7dUEvFnmZ8Pqjc20Ll3hZs\nybFcVJrH3JI8khOijS5ZJOz4fVPM008/zQ033MCiRYsYM2YM9913H7GxsaxcufKknzGZTKSnp2Oz\n2bDZbCcNsiIydBWmj+PKUZcAUNVxkJf2vmZwRSLGMptMFI2y8W/XlfCLb8zh6jkjSTkcRls6eln5\n3j7+/ddreOLlreyqbmMI3XEnEnR+TW+4XC62bt3KHXfcMfCayWRizpw5VFRUnPRzDoeDBQsW4PV6\nOe+887jzzjsZO3bsmVctImHpypEXs69tPzvsu3mn+p+MTR3F5Mwio8sSMVx6cizXzhvN588fycbd\nzby7oYYdB9vweH2s3dbA2m0NDMtMYMHUYcybnIdZVxrlHOdXQLXb7Xg8HjIyMga9brPZqKqqOuFn\nRo0axf3338+ECRPo6upi+fLlfOlLX+LVV18lOzvbr2ItFj1qToLrSI+p186UmVtLvsxPyh+mw9nJ\n8i1/4LKRF3HV6EuJPvx4VOmnXjs3RUWZmV2Uw+yiHGqbunhnQy0fVB6ip89DTVM3z76+k06Hiy/M\nGx2w71SvSagEssf8WiTV2NjIvHnzeP7555k8efLA6z//+c/ZsGEDzz333CnP4Xa7WbhwIVdffTVL\nly49s6pFJKxtb9rNT99bRp/HCUBOYia3T/syxdmFBlcmEn56+ty8v7GGle/uoa65m9hoC8v/61JS\nEmOMLk3EMH7NoKalpWGxWGhubh70emtrKzab7SSf+tQXRkUxceJEDhw44M9XA9DR0YPHoxWIEjwW\ni5nk5Dj12lnKicrjh7P/nRXb/8q2lp3UdzXxk9WPMDtvGteP/xyJ0YFZ5TmUqdfkWDMmZJKVHMMP\nn1xHr9PDite28S+XBObxweo1CZUjvRYIfgVUq9XKpEmTKC8v5+KLLwb6934rLy9nyZIlp3UOr9fL\n7t27ufDCC/0u1uPxaosMCQn12tlLjU7jmyX/yvqGCv6y+2W6XN2UH1rP5qbtXDfuc0zPLtWOHqjX\n5KhhmYlMHZ/JJ7uaeGt9DZdOKyA1gLOo6jUZSiz33nvvvf58ICEhgUceeYTc3FysViu/+tWv2Llz\nJ/fffz9xcXHcddddbN68mdmzZwPw61//GpfLhclkora2lgcffJDKykruu+8+v1fz9/a68Hq1ylGC\nx2w2ERcXrV4LEJPJRH5iLrPzptPl7Kam6xBOr4tNTVuo6jjI6JQRxFvjjS7TEOo1OZG8jARWb6zF\n4/XhdvsoGXN6Vyc/i3pNQuVIrwWC35sULly4ELvdzqOPPkpzczMTJ05k+fLlA2Gzvr4ei+Xos7g7\nOjr47//+b5qbm0lOTqaoqIjnnnuOMWPGBOQXICLhL9GawJLzFjMjp4w/7VxJU08L21t38T8fPcxV\noy5lQcFcLGbLqU8kEuGGZSYy87xs1m5rYHVFLZfPLCAjJfRPnxIxmh51KnIMPXEl+JweF6/vf5s3\nD67G6+v//zg/MZcbC69nRHKBwdWFjnpNTqa+1cF//XYtPh/Mm5zLLVee3aOD1WsSKoF8kpT2nBCR\nkIq2WPn8mCu4e/p3GJk8HIDarjp+sX4Zf9n9Mr3uPoMrFDFWTno85xflAvBBZT0NdofBFYmEngKq\niBgiPzGXf5/6TRaPX0SsJQYfPt6t/oD/+eh/2dK83ejyRAz1+fNHYjGb8Pp8vPTPE+8zLhLJFFBF\nxDBmk5kLh83hnpn/TknGJADsfW38pvJ3PLnlD7T3dRpcoYgxMlLjmDc5D4C12xrYUtVicEUioaWA\nKiKGS4tN5Y6Sr3B78c2kRCcBsKGxkp989Av+Wbt24F5VkXPJF+aNJjm+/wlsT7+2g54+t8EViYSO\nAqqIhI0pmUX896zvMS9/NiZM9Lh7eW7nX/n5+sfY177f6PJEQioxzsqSyycA0NrRxwvv7jG4IpHQ\nUUAVkbASFxXHDRO+wJ1Tv0FeQg4A1Z21/O8n/8cz256jva/D4ApFQmfqhCymF2YBsLriENv2txpc\nkUhoKKCKSFganTKSu6d/hy+Ou4a4qP59INfVb+DHa3/BWwffw+3V5U45N9x42XgS4/ov9f9ulS71\ny7lBAVVEwpbFbOGigvP50azvMyd3BiZM9Hr6eHHPq/x03S/Z3rLL6BJFgi45PpqbLhsPQEtHL395\nb6/BFYkEnwKqiIS9pOhEbpx4Pd+f9u2BvVMbHE0s27ScxyufoblHlz0lsk0vzGLqhEwA3t1Qy44D\ndoMrEgkuy7333nuv0UWcLj1HWIJNz6wOb6kxKczOnYYtLp2q9gM4vU4aHE18cGgtHq+bkcnDh8wj\nU9Vr4g+TycSE4Wms2VyH0+1lZ3UbWWlxmE0QFxOFyWQ66WfVaxIqR3otEPSoU5Fj6JGAQ0ePu4dV\nVW+xumbNwDZUaTGpXDvuakoziz/zL+xwoF6TM7F2Wz1PvLxt0GtRFhPZ6fHkpseTY0sg1xZPri2e\nnPR4YqOj1GsSMoF81KkCqsgxNJAPPXXdDfxl18vssO8eeG182li+OO7z5CXmGFjZZ1OvyZnw+Xy8\n8O5e3vj4IKfzt3daUgx5GQmMykshPSmarNQ4cm0JpCZGh/0/4mToUUAVCRKFhqHJ5/OxqWkLK/e8\nQmtv/715R55SddWoSwd2AQgn6jU5Gy63l0a7g7oWB3WtDupbugd+3uf0nPLzsdGWw7Osx8y42hLI\nTosjyqLlKXJmFFBFgkShYWhzepy8eWA1bx5cjevwNlRJ1kSuGXMlM3OnYjaFz1+86jUJBp/PR1uX\nk7rDgbW+xUG93UF9q4OW9t5Tft5sMpGZGkuuLYEcW/9tA0d+fmSrK5GTUUAVCRKFhsjQ0tPKyj2v\nsKlpy8Bro5KH89VJN2KLSzOwsqPUaxIqR3rtUH07NY1d1Lc4qGs9GmAb7A7cnlNHgaR46/H3udoS\nyEiOxWzW7QKigGp0GRLBFBoiy/bWXbyw62UaHI0AJFoTuK1oCePSRhtcmXpNQudUvebxemlu7x0I\nrHUt3dS1Oqhr7qa799QPBYiymMlJj+sPrunxh8NrAjnp8cRED41dNSQwFFBFgkShIfJ4vB7eOPAO\nq6rewocPs8nM4vHXMDd/tqF1qdckVM6m1zodzv7g2uoYdNtAU3vPaS3SSk+OIfeY4Hpk9jUlQYu0\nIpECqkiQKDRErs3N23h665/o9fQBcEHeTL44/hqizFGG1KNek1AJRq+53B4a7D2DZ1wPh9c+16kX\nacXFWAYv0Dr88ywt0hrSFFBFgkShIbLVdTfweOXTNPW0ADAmZRS3Fy8hKTox5LWo1yRUQtlrPp8P\ne2ff4Z0Fjpl1bXVg7+w7da0WM9MLM5lfNowxecmaZR1iFFBFgkShIfI5XA6e2vpHtrfuAvo397+j\n5CsUJOWHtA71moRKuPRaT5/7uFsF6lodNLQ68JzgCVfDsxNZUDaMmedlE2PVvaxDgQKqSJCEy0Au\nweXxenhp32u8ffB9AKxmKzdN/CLTsqeErAb1moRKuPeax+ulua1/kdbmqhY+3FI/aC/X+Jgozi/O\nZX5ZPjnp8QZWKqeigCoSJOE+kEtgfVT3CX/cuRL34T1TLxsxn8+Nvjwk+6Wq1yRUhlqv9fS5Kd9a\nzzsbajnU3D3ovUkj05hfNozJY21YzLpXNdwooIoEyVAbyOXsHeio5vHKZ2h3dgBQZCvklkn/EvSn\nT6nXJFSGaq/5fD52VbfxzoZaNuxqGnQbQHpyDBdOyWfe5DxSEqINrFKOpYAqEiRDdSCXs9Pe18Fv\nN/+eqo4DAGTHZ3JHyS1kx2cG7TvVaxIqkdBr9s4+/rnpEKsramnrcg68bjGbmFaYxYKyfMbmp2hR\nlcEUUEWCJBIGcjkzLq+b53e+SHndxwDERcXy1UlfZpKtMCjfp16TUImkXnN7vFTsbubdjbVsP2Af\n9N6wzEQWlOUza1I2sdHGbB93rlNAFQmSSBrIxX8+n4/3aj5k5Z6/4/V5MWHi36bczoT0sQH/LvWa\nhEqk9tqh5m7e3VjLh1vq6Ok7uqgqLsbCnKJcFpTlk2sLTFiS06OAKhIkkTqQi392tu7hic3P0uvp\nZVr2FL466csB/w71moRKpPdar9PN2q0NvLOhhpqmwYuqJo5IY35pPqXjM7SoKgQCGVA1By4i8ikT\n0sdSllXCh3Xr2Nm6B5/Pp3vbRMJUbHQUF5Xmc+GUPHbXtPPuxlrW72jE4/Wx/YCd7QfspCXFcOHk\nPOZNySM1McbokuU0KKCKiJxAYfpYPqxbR6eri0Pd9eQn5hpdkoh8BpPJxPiCVMYXpPKlBWN5v7KO\n1RtrsXf2Ye/s428fVPH3D/dTNj6TBWX5jC9I1T88w5gCqojICYxPO3rf6c7W3QqoIkNISmIMn5sz\nkoWzhrNpTwvvbqhh6347Hq+Pj3c08vGORvIzEphfls/sSTnExSgOhRv9joiInEBSdCL5ibnUdtWx\nw76HBcPnGV2SiPjJYjZTNj6TsvGZ1LV0s3rjIT7YXEdPn5va5m7+8I9dvLB6L3OKcphfms+wzESj\nS5bDFFBFRE6iMG0ctV117G7bh9vrJsqsIVNkqMq1JfAvl4zj2nmj+Wh7/6Kqgw1d9Dk9vLuhlnc3\n1DK+IJUFZfmUjc8kyqJFVUbSaCsichIT0sfxdvX7OD1O9ndUMzZ1lNElichZiom2MG9yHnNLctl3\nqIN3NtTy8Y4G3J7+J1ftqm4jJSGaeZPzuHBKHunJsUaXfE5SQBUROYmxqaOwmCx4fB52tu5WQBWJ\nICaTiTH5KYzJT+GGi8fyQWUd726opaWjl/ZuJ3//cD+vlh+gdFwG88vymTgiTYuqQkgBVUTkJGIs\n0YxOGcHutn3ssO/hKi4zuiQRCYLk+GgWzhrBFTOGU7mvhXc31LJlXwten49PdjXxya4mctLjmV+W\nz/lFOcTHWo0uOeIpoIqIfIYJaePY3baP/R0H6XH3Ehely30ikcpsNjFlbAZTxmbQaHeweuMh/ll5\niO5eN/WtDv701m5WvreXOZNyWDB1mBZVBdEZ3QG8YsUKFixYQElJCYsXL6aysvK0Pvfqq69SWFjI\nt7/97TP5WhGRkCs8/JhTr8/L/216kj1tVQZXJCKhkJUWz+IFY/nfb53PrVdNZFRuEgBOl5fVFYf4\n4ZPr+PkfN/DJzkY83sh7QpfR/H7U6apVq/iP//gPfvKTn1BcXMwzzzzD66+/zuuvv056evpJP1db\nW8uXv/xlhg8fTkpKCsuWLfO72Eh9TJuEj0h/JKD4z+P18MsN/4+qjgMDrxVnTOTzo68kLzHnjM+r\nXpNQUa8FTlVdB29/UsO67f2Lqo6wJcdwUWk+8ybnkRQfbWCFxgrko079DqiLFy+mpKSEe+65BwCf\nz8eFF17IkiVLuP3220/4Ga/Xy0033cR1113H+vXr6ezsVECVsKSBXE7E6XHxXs0a3jjwLj3uHgBM\nmJiZM5WrRl9Kemya3+dUr0moqNcCr8Ph5P2KQ7x7+ElVR0RZzMw8L4tLphYwIifJwAqNEciA6tc9\nqC6Xi61bt3LHHXcMvGYymZgzZw4VFRUn/dyyZcuw2WwDAVVEZCiJtli5dMRFnJ83g38cWM3qmg9w\ned2srV/P+sYK5uXP5vKRC0i0BmZgFpHwlhwfzdVzRnLlrOFs3NXM25/UsLO6DbfHy5rN9azZXM/Y\n/BQWTM1n2oQs7al6BvwKqHa7HY/HQ0ZGxqDXbTYbVVUnvi/rk08+4a9//SsvvfTSmVd5mEW/wRJk\nR3pMvSYnkhyVyPWFV3PxyLm8svcffHjoY9xeN+9U/5MP6z7m8pEXcfHwucRExZzyXOo1CRX1WvBE\nYWZWUQ6zinI42NDJW+tr+HBzHU63lz217eypbef5xD0sKBvG/NJ8UpNOPTYMZYHssYCs4vf5fCfc\nG6y7u5u77rqLn/zkJ6SkpJz19yQnx531OUROh3pNPksaCSzNvYXrOq7guc0v81HNRnrdvby053Xe\nq/mQ6yctZMHoC4gyW055LvWahIp6LbjS0hKYXJjDHQ4nb647yKtrqmhoddDe5eTF9/fx9zVVzCnJ\n43MXjGaC9lQ9Jb/uQXW5XEyZMoVHH32Uiy++eOD1u+++m87OTn79618POn7Hjh184QtfwGKxcORr\nvIdXulksFl577TUKCgpOu9iOjh48Ht0/I8FjsZhJTo5Tr4lfqtoO8Nfdq9hl3zvwWlZ8Bp8fewVT\ns0swm46fVVCvSaio14zh9frYtLeZNz+uZsu+1kHvjcxJ4tLpBcyclE101Kn/ITtUHOm1QAjIIqmL\nLrqIJUuWcNtttw061ul0cvDgwUGv/fKXv8ThcHDPPfcwYsQIoqJOfxJXN3hLsGkxgZwpn8/HttZd\nvLR3FbVddQOvD0/K55oxCylMHzfoePWahIp6zXh1Ld28s6GWNZvr6HV6Bl5PjLNyfnEOUydkMTov\nGfMQn1UN5CIpy7333nuvPx9ISEjgkUceITc3F6vVyq9+9St27tzJ/fffT1xcHHfddRebN29m9uzZ\nWCwW0tPTB/3vgw8+wOfzcdNNN2E2+3evQm+vC6/Xrzwt4hez2URcXLR6TfxmMpnIis/g/LyZZMdn\nUt15iB53D+3OTtbVb2Bf235yE7JJiUkG1GsSOuo14yXFR1MyxsaCsmGkJcXQ1NZDV48Lp9vL4ViX\nOQAAIABJREFU3toO/llZx+qKQzTYHZhNJtKTY7GYh15YPdJrgeD3PagLFy7Ebrfz6KOP0tzczMSJ\nE1m+fPnAHqj19fVYLJEzXS0i4g+zycz0nFJKs4r5oPYjXtv/Fl2ubnbYd7Nj/W7Kskr43OjLyUvO\nNrpUEQmxuJgoLp46jAVl+Wzbb+edDTVs3teK2+Olo9vJexWHeK/iEDHRFkpG2ygdl0HJGNs5+WhV\nvy/xG0mXJyTYdClMAq3X3cvb1f/k7YPv0edxAv0hdt6wWdw+80t0dTjVaxJUGtfCW6/TzZZ9rWzc\n3cSmPS04+tyD3reYTRQOT6V0fCal4zJJC+OdAAzdqN9I+sMlwaaBXIKl09nF6/vf5p+1a/H4+u9B\nWzTxcq4suFS9JkGlcW3ocHu87KpuY+OuZjbsbhr0EIAjRuUmUTouk9LxmeTZ4sNqNwAFVJEg0UAu\nwdbc08rTW/9EVccBYqNiuP+C/yTWrO1/JHg0rg1NPp+PAw2dbNjVzMbdTdQ2dR93THZaHKXjMykb\nl8nofOMXWSmgigSJBnIJhYMdNfxs/aMAXD5yPp8ffaXBFUkk07gWGRrtDjbubmbjriZ217Tz6fCW\nnBDNlLEZlI3PYOKINKwGbF+lgCoSJBrIJVSe2PwMm5q2EmOJ5r7Zd5MUnWh0SRKhNK5Fno5uJ5v2\nNLNxdzNbqvoXWR0rJtpC8WgbZSFeZKWAKhIkGsglVA456rh/7S8BuGT4hXxh7FUGVySRSuNaZOt1\nutla1cqGXc1U7m2mu/fEi6ymjMtk6oRMUhODt8hKAVUkSDSQS6hERZlZvvX3fFy7iWizlR/P+YFm\nUSUoNK6dO9weL7ur29iwu/++1daOwYusYqwWvvvFEiYMTwvK9yugigSJBnIJlagoM+3Yuesf9wNw\nccE8rh13tcFVSSTSuHZu8vl8HGzoYuPuJjbsaqamqQvo34v1BzeVMSwz8P8gDmRA9e9RTiIiEjAj\n04ZRmlUMwPu15bT3dRpckYhECpPJxIicJBbNHc2Pb53Bd79YgsVsoqfPzS//vInWjl6jS/xMCqgi\nIga6esylALi8Lt46uNrYYkQkYpWMyeCWKwsBsHf28cs/b6K712VwVSengCoiYqBhSXmUZvbPov6z\ntpz2vg6DKxKRSHV+cS7XzhsNQG1zN4+t3IzL7TG4qhNTQBURMdjCUZdiwoTL6+aNA+8YXY6IRLCr\nZo9gflk+ALuq2/jt37fh9YbfciQFVBERg+Ul5gzci/pezYd8XL/R4IpEJFKZTCZuvGQ8ZeMzAVi/\ns4k/vb2bcFszr4AqIhIGrhv3OVKikwH4w/Y/s9u+1+CKRCRSmc0mvva58xg7LAWAtz+p4fWPDhpc\n1WAKqCIiYSA1JoVvTP5XYizRuH0eHt/8LPXdDUaXJSIRKtpqYel1JeTa4gF4YfVe1myuM7iqoxRQ\nRUTCREFSHrcVLcFsMtPj7uH/Nj1Fh1NbT4lIcCTGWblz8RRSE6MBeOrV7XxQGR4hVQFVRCSMnGeb\nwJcmfAGAll47v9n0O/o8ToOrEpFIZUuJ5c4bppAYZ8UHPLVqO6srao0uSwFVRCTcnJ83k8tHLADg\nYGcNv9u6Aq9PTwASkeAYlpnIf3y5lOSE/pnUZ1/fyduf1BhakwKqiEgY+tzoy5mWPQWAzc3b+cvu\nl8Nula2IRI78wyH1yOX+FW/u4o11xi2cUkAVEQlDJpOJmyYuZlxq/6ba79V8yDvV/zS4KhGJZLm2\nBO6+sQxbcgwAz7+zh1fL9xtSiwKqiEiYspqj+FrxzWTHZwHw1z2vsKGx0uCqRCSSZaXF8x9fLiMj\nJRaAle/t46UPqkJ+BUcBVUQkjMVb4/nm5H8lyZoIwDPbnmNf+35jixKRiJaRGsfdN5aRnRYHwEsf\nVPHX9/eFNKQqoIqIhLmMuHS+MfmrRJutuL1ullUs59ltz1PZtBWnx2V0eSISgdKTY/mPG8sG9kl9\ntfwAf353T8hCqsk3hO66t9u7cbu1klWCJyrKTFpagnpNgu5Meq2yaStPbH4WH0eH7WhLNJNshZRm\nFjHJVkhsVGywSpYhSuOanI32bicPPbeR2qZuAC6ZNox/uXgcJpPpuGOP9FogKKCKHEMDuYTKmfZa\nVftByuvWsalpK12u7sHnNEcxMX0ckzOLKc6YSKI1MH9RyNCmcU3OVqfDyf8+V8HBxi4ALp1WwJcu\nHntcSFVAFQkSDeQSKmfba16fl71tVVQ0baGiaQttfe2D3jebzIxPHcPkzCImZ04iJSY5UKXLEKNx\nTQKhq8fFQ3/aOBBSL5tewA0LBodUBVSRINFALqESyF7z+rwc7KyhonELFU2baeppGfS+CROjUkYw\nJbOIKZlF2OLSz+r7ZGjRuCaBcqqQqoAqEiQayCVUgtVrPp+PQ931VDRupqJpC4e66487piAp/3BY\nLSYnIStg3y3hSeOaBFJXj4tf/Gkj1YdD6uUzClg8vz+kKqCKBIkGcgmVUPVao6Np4DaAAx3Vx72f\nE5/FlKxipmQWMSwx74QLH2Ro07gmgdbpcPLQcxUDIfWKGcP54vwxWK0WBVSRYNBALqFiRK/Ze9uo\naNrCpqYt7GmrGrQbAIAtNr1/ZjWriJHJwzGbtBNhJNC4JsHQ6XDyiz9VUNN0OKTOHM6/XDKO9PTE\ngJxfAVXkGBrIJVSM7rVOZxeVTVupaNrCTvsePD7PoPdTopMOL7AqYlzqaCxmS8hrlMAwutckcn06\npF41ewRfv35KQM6tgCpyDA3kEirh1GsOVw9bWrZT0biZba07cXndg95PiIqnOPM8pmQWUZg+Hqs5\nyqBK5UyEU69J5OkPqRupObxP6t//95qAnFcBVeQYGsglVMK11/o8Tra17KSiaTNbmrfT6+kb9H6s\nJYZJtsKB+1Z1G0D4C9dek8jR4XDy0OGQqoAqEgQayCVUhkKvubxudrbupqJpC5XNW+l2OQa9Pyd3\nOjdO/KJB1cnpGgq9JkNfp8PJuxtruXVRSUDOp4AqcgwN5BIqQ63XPF4Pew4/GGBT02banZ0AfKf0\nDsanjTG4OvksQ63XZOgK5DZTujYjIiKnZDFbmJA+lhsmLOK/Zv77wGNUn9/5Iu5P3bMqInK2FFBF\nRMQvCdZ4rhmzEIB6RyPvVn9gcEUiEmkUUEVExG+zcqcyOmUEAKuq3qS1125wRSISSc4ooK5YsYIF\nCxZQUlLC4sWLqaysPOmxb775Jtdddx3Tp0+ntLSURYsW8dJLL51xwSIiYjyzycwN47+ACRNOr4uV\nu/9udEkiEkH8DqirVq3iwQcfZOnSpbz44osUFhZy22230draesLjU1NT+cY3vsHzzz/Pyy+/zLXX\nXst//ud/smbNmrMuXkREjDMsKY+Lhp0PQEXTFra27DC4IhGJFH4H1KeffpobbriBRYsWMWbMGO67\n7z5iY2NZuXLlCY+fPn06l1xyCaNHj6agoICbb76ZCRMm8Mknn5x18SIiYqyrRl9KcnQSAH/e9RIu\nj8vgikQkEvgVUF0uF1u3bmX27NkDr5lMJubMmUNFRcVpnaO8vJyqqiqmT5/uX6UiIhJ24qLiuG7s\n1QA097Twj4OrjS1IRCKCX8+rs9vteDweMjIyBr1us9moqqo66ee6urqYO3cuLpcLi8XCj370o0Eh\n93RZLFrTJcF1pMfUaxJskdRrM/PL+LBuHTvte/nHgXeZkz+VzPiMU39QQiKSek3CWyB7LCAPVPb5\nfJhMppO+n5CQwMsvv0x3dzdr167lgQceoKCgwO9Z1OTkuLMtVeS0qNckVCKl1+6YdSPff+N+3F43\nf9nzMj+Y9+3P/HtBQi9Sek3ODX4F1LS0NCwWC83NzYNeb21txWaznfRzJpOJgoICAAoLC9mzZw+P\nP/643wG1o6MHj0dPwZDgsVjMJCfHqdck6CKt1xJI5tIRF/J61TtU1G/jVx88xU3nXU+UOSDzIHIW\nIq3XJHwd6bVA8GvksFqtTJo0ifLyci6++GKgf/a0vLycJUuWnPZ5vF4vTqfTv0oBj8erx7RJSKjX\nJFQiqdcuG76ArU07qO46RPmh9TQ7Wrm9+GYSrPFGlyZEVq9J5PP7ZoFbbrmFP//5z/ztb39j7969\n/OhHP6K3t5drr70WgLvuuouHH3544PgnnniCDz/8kOrqavbu3ctTTz3Fyy+/zDXXXBO4X4WIiBgu\nxhLNd8u+ziRbIQC72/bx0CfLaHK0GFyZiAw1fl97WbhwIXa7nUcffZTm5mYmTpzI8uXLSU9PB6C+\nvh6LxTJwvMPh4L777qOhoYGYmBhGjx7NQw89xBVXXBG4X4WIiISF2KhY7ij+Cn/Z/Xfer/2QRkcz\nD32yjK8Vf4UxqSONLk9EhgiTz+fzGV3E6bLbu3V5QoIqKspMWlqCek2CLtJ7zefzsbpmDSt3/x0f\nPqLMUSwp/CLTckqNLu2cE+m9JuHjSK8FgvacEBGRgDOZTMwvuICvFd9MtNmK2+vmd9v+xOv732YI\nzYuIiEEUUEVEJGhKMifx/039BimHnzb1931v8Pvtf8btdRtcmYiEMwVUEREJquFJw/j+tH8jPzEX\ngI/qP2FZxXIcLofBlYlIuFJAFRGRoEuLTeXOsm98aoX/r7XCX0ROSAFVRERC4sgK/3n5cwBocDTx\n0CfL2Ne+39jCRCTsKKCKiEjIWMwWFo+/huvHfR4TJrpc3Tyy8Qm2t+wyujQRCSMKqCIiElInWuH/\njwPvGl2WiIQRBVQRETFESeYkJmcWAdDr6TO4GhEJJwqoIiJiINPhH7U3qogcpYAqIiKGMR3Op4qn\nInIsBVQRERERCSsKqCIiYhjTkUv8evypiBxDAVVEREREwooCqoiIGE7zpyJyLAVUERExzJFL/D5F\nVBE5hgKqiIiIiIQVBVQRETHO4TVSfR4nHq/H2FpEJGwooIqIiGEyYm0ANPe08P8qn6bX3WtwRSIS\nDhRQRUTEMBcVnM/4tLEAbGvdycMbfoO9t83gqkTEaAqoIiJimLioWL41+V+ZlTMNgNquOn6xfhnV\nnYcMrkxEjKSAKiIihooyR3HTxC9y9ajLAWh3dvDLDf/HlubtBlcmIkZRQBUREcOZTCauHHUxXznv\nS0SZLPR5nPy/yqd5v6bc6NJExAAKqCIiEjZm5JTx7Sm3ER8Vhw8fz+96kb/ueQWvz2t0aSISQgqo\nIiISVsaljeF7U79FRmw6AG8ffJ8nt6zA6XEZXJmIhIoCqoiIhJ3shCy+N+3bjEoeDkBF02Ye3fg4\nnc4ugysTkVBQQBURkbCUFJ3I0tI7mJJZDEBVx0F+sX4Z9d2NBlcmIsGmgCoiImEr2mLl1qIbuWT4\nhQC09Lbyv5/8mt32vQZXJiLBpIAqIiJhzWwy84WxV/GlCddiNplxuHtYVrGcfe0HjC5NRIJEAVVE\nRIaEufmz+HrJV4m2ROP2eXhyyx90T6pIhFJAFRGRIWOSbQJLJi4GoK2vnae2/lFbUIlEIAVUEREZ\nUsqySlhQMBeAXfY9vLLvHwZXJCKBpoAqIiJDzqIxCxmdMhKANw68w+bmbcYWJCIBpYAqIiJDjsVs\n4daiG0myJgLwzLbnaO5pMbgqEQkUBVQRERmSUmNS+NeiGzFhosfdy283/15PmxKJEAqoIiIyZI1P\nG8M1Y64EoKbrEH/e9TeDKxKRQFBAFRGRIe2S4RcyOWMSAOV1H/PhoXUGVyQiZ+uMAuqKFStYsGAB\nJSUlLF68mMrKypMe+8ILL3DjjTcyY8YMZsyYwVe/+tXPPF5ERMQfJpOJJectJjPOBsDzu/7Gwc4a\ng6sSkbPhd0BdtWoVDz74IEuXLuXFF1+ksLCQ2267jdbW1hMev27dOq6++mqeffZZnn/+eXJycrj1\n1ltpbNSzlEVEJDDiouK4vfhmrGYrbq+b5Zt/T6Oj2eiyROQMmXw+n8+fDyxevJiSkhLuueceAHw+\nHxdeeCFLlizh9ttvP+XnvV4v06dP54c//CHXXHONX8Xa7d243dqQWYInKspMWlqCek2CTr0WHB/V\nfcKz258f+O/RKSOYnl1KWdZkEqMTDKzMOOo1CZUjvRaQc/lzsMvlYuvWrdxxxx0Dr5lMJubMmUNF\nRcVpncPhcOB2u0lNTfWvUhERkVOYmTuVekcjbx5YjQ8f+9oPsK/9AC/sfplJtglMzy6lOOM8oi3R\nRpcqIp/Br4Bqt9vxeDxkZGQMet1ms1FVVXVa53jooYfIzs5m9uzZ/nw1ABaL1nRJcB3pMfWaBJt6\nLXium3AVC0acz8f1FXxUt4GazkN4fV42N29nc/N2Yi0xlGYXMzO3jAnpYzGbIvv3QL0moRLIHvMr\noJ6Mz+fDZDKd8rgnnniC1157jT/84Q9ER/v/r9fk5LgzKU/Eb+o1CRX1WnCkkcDo3HxuKL2Kg221\nfHDwY/55YB0tDju9nj7KD62n/NB60mJTOH/4NOaOnMnI1GGn9XfZUKVek6HEr4CalpaGxWKhuXnw\njeetra3YbLbP/OyTTz7J8uXLefrppxk3bpz/lQIdHT14PLp/RoLHYjGTnBynXpOgU6+FThKpXFlw\nKZcPu5g99io+qtvAhoZKHO4e7L3tvLLrbV7Z9Ta5CVnMyJ3KjNxSMuLSjS47YNRrEipHei0Q/Aqo\nVquVSZMmUV5ezsUXXwz0z56Wl5ezZMmSk35u+fLlPP744zz55JOcd955Z1ysx+PVDd4SEuo1CRX1\nWmiNTh7F6ORRXD/uGra27ODj+g1sad6O2+ehrruRl/a8xkt7XmNMykim55RRllVCgjXe6LIDQr0m\nQ4nfl/hvueUW7r77boqKiiguLuaZZ56ht7eXa6+9FoC77rqLnJwc7rzzTgB++9vf8uijj/Lwww+T\nl5c3MPsaHx9PfHxk/KEXEZGhxWqOYkpmEVMyi3C4HGxs2szH9RvZ3bYPgL3t+9nbvp8Xdr3EJFsh\n03NKKbJNJNpiNbhykXOD3wF14cKF2O12Hn30UZqbm5k4cSLLly8nPb3/ckh9fT0Wi2Xg+D/96U+4\n3W6WLl066Dzf+ta3+Pa3v32W5YuIiJydeGs85+fN5Py8mbT22lnfUMHH9Rs51F2Px+ehsnkrlc1b\nibXEUppVzPTsUsaljY74xVUiRvJ7H1QjaQ83CTbtFyihol4Lf7Vddayr38D6hgra+toHvZcak8LU\n7MnMyC4jPzE3rBdXqdckVAK5D6oCqsgxNJBLqKjXhg6vz8uetn18XL+RDY2b6fX0Dno/NyGbGdll\nTMuZQnpsmkFVnpx6TUJFAVUkSDSQS6io14Yml8fFliOLq1p24PF5Br0/JmUkw5OGYYtLJyMunYw4\nG7bYNEMfDKBek1Ax7ElSIiIi5zKrxUppVjGlWcV0uxxsbKxkXf1G9rb3P6zmyOKqT0uJTsIWl44t\n1nY4uPaH14y4dJKjk3Q/q8inaAZV5BiaaZBQUa9FlpYeO+sbNrKtdSfNPa3H3bP6WaLMUdhi048G\n19h0bIfDqy02ndiomLOqTb0moaJL/CJBooFcQkW9FtlcHhctvXaae1po7m2lpaeV5p7Wgf92epyn\nfa4ka+LRWwaOCa8ZcemkxqSccvZVvSahokv8IiIiYcxqsZKTkEVOQtZx7/l8Prpc3TT3tNJyOLAO\nhNfDs68+js4ddbq66HR1sb/j4HHnspgs2GLTDgdY26dCbBpxUXq8qQxNCqgiIiIhZDKZSIpOJCk6\nkVEpw4973+V1Y++1Hw6trTT3thwzA9s6aBcBj89DY08zjT3Nx50HIMEaT2acjdyULFKiUkiPPhpm\n02JSsJgtJ/yciNEUUEVERMKI1RxFVnwmWfGZx73n8/lwuHsGZltbDgfYI+HV3teG13f0Mn63y0G3\ny8H+jurjzmU2mUmPSe3faeDYhVuH74eNj5BHvMrQpIAqIiIyRJhMJhKs8SRY4xmRXHDc+x6vB3tf\n28AtAy29dlp6W2lztlHf1US3yzFwrNfn7b+9oLcV7Md/V1xU3MBCraMLuPrDbHpsKlFmRQgJHnWX\niIhIhLCYLYfvRbUB44DBi6Q6erpp6R28YKvlmDB77Oxrj7uH6s5aqjtrj/seEybSYlMHZluPXbiV\nEWsjwRof1k/XkvCngCoiInKOiLfGEW/NpyAp/7j3vD4v9t52WnqPvX3gaJjtcnUPHOvDR2uvndZe\nO7va9h53rlhLzMC9rrbYtEELuNLj0rFq9lVOQR0iIiIimE1mbHFp2OLSGH+CJ7b2unuPbp31qQVc\nLT2tuI95qlavp4/arjpqu+qOO48JEykxyQOzrf0zsEd3IUiyJmr2VRRQRURE5NRio2LJT8wlPzH3\nuPe8Pi8dzs5B22U197QOzMZ2ODsHjvXho62vnba+dvZQddy5os1WUmNTSIlOJiUmmZToZJJjkkiN\nTiY55uhrZ/sAAwlvCqgiIiJyVswmM6kxKaTGpDA2ddRx7/d5nP0zrZ/a8/XIf7u8roFjnV4XjY5m\nGh0n3jrriBhL9EBY/XSQTYk5HGYVZIcsBVQREREJqhhLNHmJOeQl5hz3ns/no8PZNTDb2tzTQntf\nB+3ODtr7Omnv66DD2Tno4QXQH3oVZCOXAqqIiIgYxmQykRKTREpMEqNTRp7wGK/PS6ezm3Zne39g\n7eukzdlBx0CQ7Q+zZxNkYy0xJMckDQqy/T8mKcgaQAFVREREwprZZB4IsSSd/LizCbK9nj56HX0K\nsmFCAVVEREQiwlAKsikxySQryJ6UAqqIiIicU/wLsl0DofVIkO2/LzZwQbY/rCYNDrLHzsqeg0FW\nAVVERETkBPqDbH9YDG6QbaLB0fSZtZxrQVYBVUREROQshHWQPdF9skMgyCqgioiIiITAmQbZ/m23\nOj8VZDvocHYFNcimxKQQY4kOxC/dbwqoIiIiImEkHIPskf1jP72nbFZ8Rn+dAaaAKiIiIjIEhUOQ\nNWHiG5P/lUm2CYH8pSmgioiIiEQyv4PssdttHQ6yx4bZY4OsDx9ratcqoIqIiIhI4A0Ksp/hSJB9\nteofrDm0jm2tO+nzOImKig1cLQE7k4iIiIhEvCNBdlbuNABcXjfbWnYG9jsCejYREREROSeMTB5O\ncnT/PQMVTZsDem4FVBERERHxm9lkZnJmEQBbmnfg8roDd+6AnUlEREREzilTDgfUXk8vO1p2B+y8\nCqgiIiIickbGpY4mISoegI2NgbvMr4AqIiIiImfEYrZQnHEeABWNWwJ2XgVUERERETljU7L6L/N3\nuxwBO6cCqoiIiIicscK0ccRYogN6TgVUERERETljVouVItvEgJ5TAVVEREREzsolwy8kyZoQsPOd\nUUBdsWIFCxYsoKSkhMWLF1NZWXnSY/fs2cPSpUtZsGABhYWFPPvss2dcrIiIiIiEn+HJw3ho/n0B\nO5/fAXXVqlU8+OCDLF26lBdffJHCwkJuu+02WltbT3h8T08PBQUFfO973yMzM/OsCxYRERGRyOZ3\nQH366ae54YYbWLRoEWPGjOG+++4jNjaWlStXnvD44uJivv/977Nw4UKsVutZFywiIiIikc2vgOpy\nudi6dSuzZ88eeM1kMjFnzhwqKioCXpyIiIiInHui/DnYbrfj8XjIyMgY9LrNZqOqqiqghZ2IxaI1\nXRJcR3pMvSbBpl6TUFGvSagEssf8Cqgn4/P5MJlMgTjVZ0pOjgv6d4iAek1CR70moaJek6HEr6ib\nlpaGxWKhubl50Outra3YbLaAFiYiIiIi5ya/AqrVamXSpEmUl5cPvObz+SgvL6e0tDTgxYmIiIjI\nucfvS/y33HILd999N0VFRRQXF/PMM8/Q29vLtddeC8Bdd91FTk4Od955J9C/sGrv3r34fD5cLhcN\nDQ3s2LGD+Ph4hg8fHthfjYiIiIgMeX4H1IULF2K323n00Udpbm5m4sSJLF++nPT0dADq6+uxWCwD\nxzc2NrJo0aKBe1SfeuopnnrqKaZPn65N+0VERETkOCafz+czuggRERERkSO054SIiIiIhBUFVBER\nEREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwEvYBdcWKFSxYsICSkhIWL15MZWWl\n0SVJhFm2bBmFhYWD/rdw4UKjy5IIsH79er7+9a8zd+5cCgsLefvtt4875pFHHuGCCy5g8uTJfPWr\nX+XAgQMGVCpD3al67Qc/+MFx49ztt99uULUylD3++ONcf/31lJWVMWfOHL71rW9RVVU16Bin08l9\n993HzJkzKS0tZenSpbS0tPj1PWEdUFetWsWDDz7I0qVLefHFFyksLOS2226jtbXV6NIkwowbN44P\nP/yQNWvWsGbNGv74xz8aXZJEAIfDwcSJE/nRj3408LCSYz3xxBOsWLGCH//4x7zwwgvExcVx6623\n4nQ6DahWhrJT9RrAvHnzBo1zDz/8cIirlEiwfv16brrpJl544QV+97vf4Xa7ufXWW+nt7R045v77\n7+e9997jscceY8WKFTQ2NvJv//Zvfn2P30+SCqWnn36aG264gUWLFgFw3333sXr1alauXKl/+UlA\nRUVFDTwNTSRQ5s2bx7x58wA40TNRnn32Wb75zW+yYMECAH7+858zZ84c3nrrLc3ii19O1WsA0dHR\nGufkrP32t78d9N8PPPAAc+bMYcuWLUybNo2uri5WrlzJL3/5S2bMmAHAT3/6UxYuXEhlZSUlJSWn\n9T1hO4PqcrnYunUrs2fPHnjNZDIxZ84cKioqDKxMItH+/fuZO3cul1xyCd/73veoq6szuiSJcNXV\n1TQ3NzNr1qyB1xITE5k8ebLGOAmKdevWMWfOHK644gruvfde2trajC5JIkBnZycmk4nU1FQAtmzZ\ngsfjGZTfRo8eTV5eHhs3bjzt84btDKrdbsfj8ZCRkTHodZvNdty9DiJnY/LkyTz44IOMGjWKpqYm\nHnvsMW688UZeeeUV4uPjjS5PIlRzczMmk+mEY1xzc7NBVUmkmjt3LpdddhnDhg3j4MEHMJdqAAAD\nQklEQVSDPPzww3zta1/j+eefP+ktASKn4vP5+OlPf8rUqVMZO3Ys0D+2Wa1WEhMTBx3r79gWtgH1\nZHw+n/4wSUDNnTt34Ofjx4+npKSE+fPn89prr3HdddcZWJmcizTGSTAce8vIuHHjGD9+PJdeeikf\nffTRoFl8EX/ce++97Nmz57TWbfg7toXtJf60tDQsFstxabu1tRWbzWZQVXIuSEpKYuTIkRw8eNDo\nUiSCZWRk4PP5NMaJIQoKCkhLS9M4J2fsxz/+Me+//z6///3vyc7OHng9IyMDl8tFV1fXoOP9HdvC\nNqBarVYmTZpEeXn5wGs+n4/y8nJKS0sNrEwiXXd3N9XV1WRmZhpdikSwgoICMjIyWLt27cBrXV1d\nbNq0SWOcBF19fT1tbW0a5+SM/PjHP+btt9/m2WefJS8vb9B7RUVFWCyWQfmtqqqKQ4cO+TW2hfUl\n/ltuuYW7776boqIiiouLeeaZZ+jt7eXaa681ujSJID/72c9YsGABeXl5NDQ08Nhjj2GxWLjqqquM\nLk2GOIfDwcGDBwdWVVdXV7Njxw5SUlLIzc3lK1/5Cr/5zW8YPnw4+fn5PPLII+Tk5HDxxRcbXLkM\nNZ/VaykpKSxbtozLL7+cjIwMDh48yC9+8QtGjhzJBRdcYHDlMtTce++9vPrqq/zmN78hLi5u4CpQ\nUlISMTExJCYmcv311/PAAw+QnJxMQkIC//M//0NZWdlpr+AHMPlOth9FmFixYgVPPvkkzc3NTJw4\nkXvuuYfi4mKjy5IIcuedd7J+/Xra2tpIT09n6tSpfPe736WgoMDo0mSIW7duHTfffPNx910tWrSI\nBx54AIDHHnuM559/ns7OTqZNm8YPf/hDRowYYUS5MoR9Vq/de++9fPOb32THjh10dHSQlZXFBRdc\nwHe+8x1tOyV+KywsPOG9pA888MDAtqBOp5Of/exnvPLKKzidTubOncuPfvQjvy7xh31AFREREZFz\nS9jegyoiIiIi5yYFVBEREREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwooAqIiIi\nImFFAVVEREREwooCqoiIiIiEFQVUEREREQkrCqgiIiIiElb+fyq5ocPMu4sBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "survivalstan.utils.plot_observed_survival(df=d[d['sex']=='female'], event_col='event', time_col='t', label='female')\n", - "survivalstan.utils.plot_observed_survival(df=d[d['sex']=='male'], event_col='event', time_col='t', label='male')\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_33772694934.event_col_event.time_col_t.pkl\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:prep_data_long_surv: Loading result from cache\n" - ] - } - ], - "source": [ - "dlong = stancache.cached(\n", - " survivalstan.prep_data_long_surv,\n", - " df=d, event_col='event', time_col='t'\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
agesexratetrue_tteventindexage_centeredkeyend_timeend_failure
059male0.08208520.94877120.0False04.18120.000000False
159male0.08208520.94877120.0False04.18112.827519False
259male0.08208520.94877120.0False04.18110.462045False
359male0.08208520.94877120.0False04.1810.196923False
459male0.08208520.94877120.0False04.1819.244121False
\n", - "
" - ], - "text/plain": [ - " age sex rate true_t t event index age_centered key \\\n", - "0 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "1 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "2 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "3 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "4 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "\n", - " end_time end_failure \n", - "0 20.000000 False \n", - "1 12.827519 False \n", - "2 10.462045 False \n", - "3 0.196923 False \n", - "4 9.244121 False " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dlong.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_72990130769.pystan_2_12_0_0.stanmodel.pkl\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:StanModel: Loading result from cache\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_72990130769.pystan_2_12_0_0.stanfit.chains_4.data_64545635565.iter_5000.seed_9001.pkl\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Starting execution\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Execution completed (0:02:26.153391 elapsed)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Saving results to cache\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stancache/stancache.py:251: UserWarning: Pickling fit objects is an experimental feature!\n", - "The relevant StanModel instance must be pickled along with this fit object.\n", - "When unpickling the StanModel must be unpickled first.\n", - " pickle.dump(res, open(cache_filepath, 'wb'), pickle.HIGHEST_PROTOCOL)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:228: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", - " elif sort == 'in-place':\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:246: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", - " bs /= 3 * x[sort[np.floor(n/4 + 0.5) - 1]]\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:262: RuntimeWarning: overflow encountered in exp\n", - " np.exp(temp, out=temp)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:246: RuntimeWarning: divide by zero encountered in true_divide\n", - " bs /= 3 * x[sort[np.floor(n/4 + 0.5) - 1]]\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:250: RuntimeWarning: invalid value encountered in multiply\n", - " temp = ks[:,None] * x\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:267: RuntimeWarning: invalid value encountered in greater_equal\n", - " dii = w >= 10 * np.finfo(float).eps\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:282: RuntimeWarning: invalid value encountered in double_scalars\n", - " sigma = -k / b\n" - ] - } - ], - "source": [ - "testfit = survivalstan.fit_stan_survival_model(\n", - " model_cohort = 'test model',\n", - " model_code = survivalstan.models.pem_survival_model_gamma,\n", - " df = dlong,\n", - " sample_col = 'index',\n", - " timepoint_end_col = 'end_time',\n", - " event_col = 'end_failure',\n", - " formula = '~ age_centered + sex',\n", - " iter = 5000,\n", - " chains = 4,\n", - " seed = 9001,\n", - " FIT_FUN = stancache.cached_stan_fit,\n", - " )\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -1034.96497 0.18312 7.354494 -1050.563484 -1034.543604 -1021.53023 1.000819\n" - ] - } - ], - "source": [ - "survivalstan.utils.print_stan_summary([testfit], pars='lp__')" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "log_baseline[0] -5.540533 0.026349 1.317162 -8.741271 -5.317482 -3.605955 1.000660\n", - "log_baseline[1] -5.540373 0.026410 1.312295 -8.765512 -5.305697 -3.661229 1.000160\n", - "log_baseline[2] -5.533987 0.025182 1.277367 -8.563403 -5.341926 -3.613802 1.000899\n", - "log_baseline[3] -5.499061 0.023197 1.266738 -8.526801 -5.300919 -3.598318 1.000996\n", - "log_baseline[4] -5.529027 0.029142 1.376488 -8.883094 -5.280803 -3.553426 1.001002\n", - "log_baseline[5] -5.471047 0.025521 1.260655 -8.429872 -5.272214 -3.596805 1.002028\n", - "log_baseline[6] -5.499416 0.034998 1.321609 -8.548750 -5.291451 -3.584369 1.003210\n", - "log_baseline[7] -5.464198 0.024734 1.288292 -8.466082 -5.228081 -3.575405 1.000619\n", - "log_baseline[8] -5.466310 0.027385 1.284197 -8.583571 -5.262634 -3.536853 1.001117\n", - "log_baseline[9] -5.416356 0.024357 1.279819 -8.469762 -5.221550 -3.528211 1.001357\n", - "log_baseline[10] -5.440701 0.027773 1.306535 -8.676018 -5.228972 -3.541475 1.001608\n", - "log_baseline[11] -5.434051 0.027698 1.305317 -8.664646 -5.225114 -3.512998 0.999949\n", - "log_baseline[12] -5.370823 0.028533 1.284318 -8.459077 -5.161179 -3.454565 1.001136\n", - "log_baseline[13] -5.393917 0.024404 1.280480 -8.626593 -5.192589 -3.486274 1.000423\n", - "log_baseline[14] -5.364330 0.025443 1.273700 -8.327442 -5.166064 -3.490194 1.002779\n", - "log_baseline[15] -5.357747 0.025662 1.282847 -8.510490 -5.145634 -3.463617 1.002548\n", - "log_baseline[16] -5.378575 0.027974 1.302219 -8.521636 -5.152384 -3.489239 1.003528\n", - "log_baseline[17] -5.295181 0.026170 1.249062 -8.246395 -5.115480 -3.442103 1.004022\n", - "log_baseline[18] -5.346658 0.027128 1.301594 -8.462238 -5.129009 -3.403453 1.002558\n", - "log_baseline[19] -5.293308 0.027616 1.280204 -8.270132 -5.103891 -3.405552 1.000711\n", - "log_baseline[20] -5.312085 0.024626 1.318119 -8.478142 -5.086743 -3.394770 1.000745\n", - "log_baseline[21] -5.277845 0.026557 1.264723 -8.303782 -5.068627 -3.349496 1.000715\n", - "log_baseline[22] -5.306103 0.027747 1.309989 -8.480791 -5.098819 -3.372876 1.002474\n", - "log_baseline[23] -5.240126 0.024418 1.274211 -8.374662 -5.031179 -3.368183 1.002631\n", - "log_baseline[24] -5.180366 0.023456 1.229393 -8.199401 -4.991827 -3.339248 1.002037\n", - "log_baseline[25] -5.220781 0.025189 1.279213 -8.155421 -5.026628 -3.347359 0.999862\n", - "log_baseline[26] -5.198388 0.027133 1.293306 -8.334439 -4.988685 -3.310959 1.002848\n", - "log_baseline[27] -5.145882 0.024486 1.269478 -8.201074 -4.960108 -3.261169 1.000358\n", - "log_baseline[28] -5.112184 0.023308 1.235079 -8.159944 -4.913842 -3.245869 1.001038\n", - "log_baseline[29] -5.130311 0.028653 1.303939 -8.381742 -4.914959 -3.271805 1.001287\n", - "log_baseline[30] -5.197454 0.026676 1.342558 -8.362530 -4.956216 -3.213312 1.000961\n", - "log_baseline[31] -5.188365 0.027795 1.344816 -8.474813 -4.969168 -3.277665 1.002005\n", - "log_baseline[32] -5.102617 0.024780 1.260118 -8.178528 -4.901117 -3.213594 1.000780\n", - "log_baseline[33] -5.075221 0.024387 1.227845 -7.991722 -4.885576 -3.214388 1.000436\n", - "log_baseline[34] -5.110409 0.029528 1.336298 -8.447845 -4.872393 -3.193095 1.001111\n", - "log_baseline[35] -5.031990 0.024814 1.248103 -8.051273 -4.841412 -3.165030 1.000698\n", - "log_baseline[36] -5.050843 0.025298 1.288200 -8.189802 -4.835042 -3.140867 1.002413\n", - "log_baseline[37] -5.027862 0.025181 1.274591 -7.993631 -4.829429 -3.130617 1.002734\n", - "log_baseline[38] -5.043253 0.031843 1.332076 -8.392334 -4.800582 -3.117772 1.001792\n", - "log_baseline[39] -5.009148 0.027024 1.286125 -8.114673 -4.801411 -3.083061 1.001948\n", - "log_baseline[40] -4.977261 0.022727 1.253310 -8.021432 -4.786938 -3.099191 1.000618\n", - "log_baseline[41] -4.973488 0.026404 1.297564 -8.165326 -4.762586 -3.063354 1.000620\n", - "log_baseline[42] -4.976570 0.026160 1.289808 -8.134780 -4.785349 -3.061472 1.000685\n", - "log_baseline[43] -4.919019 0.025599 1.277389 -8.050034 -4.700221 -3.016657 1.001715\n", - "log_baseline[44] -4.900334 0.025927 1.293227 -8.049396 -4.679596 -2.980225 1.000656\n", - "log_baseline[45] -4.907134 0.025745 1.276647 -8.046290 -4.690973 -3.021486 1.001499\n", - "log_baseline[46] -4.855415 0.023345 1.255215 -7.826891 -4.654950 -2.972896 1.001151\n", - "log_baseline[47] -4.832234 0.021958 1.254851 -7.809152 -4.639160 -2.926565 1.001058\n", - "log_baseline[48] -4.798222 0.024395 1.255120 -7.870438 -4.580276 -2.924569 1.000580\n", - "log_baseline[49] -4.838834 0.029046 1.346472 -8.135627 -4.612250 -2.866454 1.001520\n", - "log_baseline[50] -4.760367 0.024182 1.265330 -7.845615 -4.552539 -2.875869 1.000354\n", - "log_baseline[51] -4.737922 0.024380 1.249825 -7.791359 -4.524863 -2.860117 1.000065\n", - "log_baseline[52] -4.751358 0.028862 1.327670 -8.044268 -4.540209 -2.862803 1.000918\n", - "log_baseline[53] -4.685420 0.023722 1.284065 -7.852333 -4.469523 -2.795754 1.001032\n", - "log_baseline[54] -4.695464 0.025316 1.294588 -7.810316 -4.503222 -2.782197 1.000505\n", - "log_baseline[55] -4.662545 0.027774 1.317164 -7.848580 -4.440736 -2.771303 1.000641\n", - "log_baseline[56] -4.669330 0.030262 1.321870 -7.914412 -4.434960 -2.743924 1.000618\n", - "log_baseline[57] -4.620962 0.025575 1.282324 -7.585949 -4.400851 -2.737336 1.003473\n", - "log_baseline[58] -4.564812 0.025214 1.287904 -7.671804 -4.338766 -2.704413 1.001306\n", - "log_baseline[59] -4.562128 0.030414 1.350609 -7.910983 -4.324704 -2.648129 1.000886\n", - "log_baseline[60] -4.542367 0.032122 1.338757 -7.768437 -4.320009 -2.624694 1.002409\n", - "log_baseline[61] -4.480764 0.025349 1.287803 -7.550987 -4.280852 -2.593134 1.001754\n", - "log_baseline[62] -4.430831 0.024307 1.228657 -7.382741 -4.239083 -2.589439 1.001206\n", - "log_baseline[63] -4.395725 0.023673 1.273268 -7.384986 -4.209973 -2.479231 1.000442\n", - "log_baseline[64] -4.346682 0.025621 1.266635 -7.426116 -4.141308 -2.442702 1.002046\n", - "log_baseline[65] -4.312951 0.024879 1.298957 -7.481565 -4.094432 -2.411871 1.001782\n", - "log_baseline[66] -4.272058 0.023535 1.271993 -7.300271 -4.066569 -2.414926 1.001380\n", - "log_baseline[67] -4.278248 0.024941 1.301696 -7.406780 -4.063855 -2.381025 1.001246\n", - "log_baseline[68] -4.239232 0.022731 1.255980 -7.282352 -4.042431 -2.363243 1.000641\n", - "log_baseline[69] -4.220383 0.023864 1.257355 -7.227408 -4.033891 -2.300163 1.000607\n", - "log_baseline[70] -4.174461 0.033438 1.387179 -7.389505 -3.925402 -2.265936 1.002038\n", - "log_baseline[71] -4.090127 0.022568 1.252697 -7.085192 -3.892866 -2.207512 1.002348\n", - "log_baseline[72] -4.110447 0.027878 1.315899 -7.399702 -3.860361 -2.205056 1.001732\n", - "log_baseline[73] -4.056023 0.027877 1.311094 -7.247058 -3.837001 -2.137026 1.001115\n", - "log_baseline[74] -4.023769 0.024615 1.255600 -7.067530 -3.820071 -2.142365 1.001948\n", - "log_baseline[75] -4.049963 0.026498 1.295967 -7.201009 -3.854413 -2.140042 1.000684\n", - "log_baseline[76] -4.047071 0.028314 1.357597 -7.297987 -3.803428 -2.082792 1.001065\n", - "log_baseline[77] -322.669893 5.131864 200.339993 -685.976286 -304.462026 -18.223910 1.002720\n" - ] - } - ], - "source": [ - "survivalstan.utils.print_stan_summary([testfit], pars='log_baseline')" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:survivalstan.utils:Warning - 1 rows removed due to NaN values for Rhat. This may indicate a problem in your model estimation.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAHyCAYAAAAurpwqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4m+Wd//vPI8my5X2R1+xxFidkXyANCQykhWkZCj1t\n5/yALpNDCx2mQM+VgbaEraFAB8qc5uo2gXbK0EKnw1B+vzKlC1vD0rAkEGd1yOKsdmzLsi3bsi1L\nj84fskUMWbzIfh7J79d1ccVYj+SvndvSJ7e+930b0Wg0KgAAAMCmHFYXAAAAAJwNgRUAAAC2RmAF\nAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANgagRUAAAC2NuTAunXr\nVn3ta1/T6tWrVVVVpZdeeil+Wzgc1sMPP6wrr7xSixcv1urVq/XNb35TjY2NAx6jra1N69at09Kl\nS7V8+XKtX79ewWBwwDU1NTW67rrrtGDBAl1yySX62c9+NsxvEQAAAMlsyIE1GAxqzpw5uueee2QY\nxoDburu7VVNTo69//et69tln9eMf/1i1tbW66aabBly3bt06HTp0SI8//rg2bdqkrVu36u67747f\n3tHRoa985SuaOHGinn32Wd1222360Y9+pKeffnqY3yYAAACSlRGNRqPDvXNVVZV+/OMfa82aNWe8\nZufOnfr7v/97vfLKKyorK9PBgwd1xRVX6Le//a3mzp0rSXrttdd04403avPmzSouLtZTTz2ljRs3\n6o033pDL5ZIkPfLII3rppZf0/PPPD7dcAAAAJKFR72Ftb2+XYRjKycmRJG3fvl15eXnxsCpJK1eu\nlGEYqq6uliRVV1dr+fLl8bAqSatWrVJtba3a29tHu2QAAADYyKgG1lAopO9///v6u7/7O2VlZUmS\nfD6fCgsLB1zndDqVl5cnn88Xv6aoqGjANV6vV5LU1NQ0miUDAADAZkYtsIbDYd1yyy0yDEP33HPP\nOa+PRqMf6Yn98O2SznrNme4DAACA5OU69yVDFw6Hdeutt+rkyZP6j//4j/jsqhSbKfX7/QOuj0Qi\nCgQC8VlUr9er5ubmAdf0/3//NYNhGIYCgS5FIuZwvxWkOKfTodxcD+MEZ8QYwWAwTjAYjJPTKyjI\nOuc1CQ+s/WH12LFjeuKJJ5SXlzfg9kWLFikQCGjPnj3xPtYtW7YoGo1qwYIF8Wt+8IMfKBKJyOl0\nSpLeeOMNTZs2Ld4LO1iRiKlwmEGBs2Oc4FwYIxgMxgkGg3EydMPa1qqmpkZ79+6VJB07dkw1NTWq\nr69XJBLRzTffrD179ujhhx9WOByWz+eTz+dTb2+vJKmyslKrVq3SnXfeqR07dmjbtm267777dMUV\nV6i4uFiSdOWVVyotLU133HGHDhw4oOeff16//OUvtXbt2gR+6wAAAEgGQ97W6u2339aXvvSlj/SS\nXn311fr617+uNWvWDLitvzf1iSee0PLlyyVJgUBAGzZs0CuvvCKHw6HLL79c69evl8fjid9v3759\nuu+++7Rz504VFBToi1/8oq6//vohf4MtLZ38KwZn5HI5VFCQxTjBGTFGMBiMEwwG4+T0iovP/e75\niPZhTQYMCpwNTx44F8YIBoNxgsFgnJzeYALrqO/DCgAAAIwEgRUAAAC2RmAFAACArRFYAQAAYGsE\nVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAA\nANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANga\ngRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANiay+oCgGRmmqb8fr/VZQxQWFgoh4N/iwIAUgeBFRgB\nv9+vP79Zo+zsPKtLkSR1dLTpshVV8nq9VpcCAEDCEFiBEcrOzlNufqHVZQAAkLJ43xAAAAC2RmAF\nAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACA\nrRFYAQAAYGsEVgAAANgagRUAAAC2RmAFAACArRFYAQAAYGsuqwsAhioYDGrPvgMJeSyX01B2jkcd\n7V0KR6JDvn9ba4vaAi7l5hcmpB4AAPBRBFYkHX9Lixo605SVnTvix3LKUCSSrqAyFTGGHlg7DUPN\nrcc1acqISwEAAGdASwAAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAA\nwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNYIrAAAALA1AisAAABsjcAKAAAAWyOwAgAAwNaG\nHFi3bt2qr33ta1q9erWqqqr00ksvfeSajRs3atWqVVq4cKHWrl2rI0eODLi9ra1N69at09KlS7V8\n+XKtX79ewWBwwDU1NTW67rrrtGDBAl1yySX62c9+NtRSAQAAkAKGHFiDwaDmzJmje+65R4ZhfOT2\nRx99VE8++aQ2bNigp59+Wh6PR9dff71CoVD8mnXr1unQoUN6/PHHtWnTJm3dulV33313/PaOjg59\n5Stf0cSJE/Xss8/qtttu049+9CM9/fTTw/w2AQAAkKxcQ73DRRddpIsuukiSFI1GP3L7E088oZtu\nukmXXnqpJOmhhx7SypUr9eKLL+pTn/qUDh48qNdff12//e1vNXfuXEnSnXfeqRtvvFHf/OY3VVxc\nrN/97nfq7e3V/fffL5fLpcrKSu3du1e/+MUv9PnPf34k3y8AAACSTEJ7WI8dOyafz6cVK1bEP5ed\nna2FCxdq+/btkqTt27crLy8vHlYlaeXKlTIMQ9XV1ZKk6upqLV++XC7XB3l61apVqq2tVXt7eyJL\nBgAAgM0NeYb1bHw+nwzDkNfrHfD5oqIi+Xy++DWFhYUDbnc6ncrLyxtwzcSJEwdc0/+YTU1NysnJ\nGXRNTifrylKNy+WQ02HI6fhoS8pQORyOU/40h3F/Q44E1ZIIDochl8uQy8W4T5T+5xCeS3A2jBMM\nBuNk+BIaWM8kGo2ett91KNf0tx+c63E+LDfXM6TrYX/tHZnyeLqVmZmesMfMyEgb1v1CPW6lu9MS\nWstIhHrcys/PUkFBltWlpByeSzAYjBMMBuNk6BIaWL1er6LRqHw+34BZVr/frzlz5sSv8fv9A+4X\niUQUCATi9/F6vWpubh5wTf//f3j29lwCgS5FIkOfOYN9tbUF1dXVI4ezZ8SP5XA4lJGRpu7uXpnm\n0MdJV1dIPaFeBYMjryURurpCam3tlMuVaXUpKcPpdCg318NzCc6KcYLBYJyc3mAmWRIaWCdNmiSv\n16s333xTVVVVkmIr/qurq3XttddKkhYtWqRAIKA9e/bE+1i3bNmiaDSqBQsWxK/5wQ9+oEgkIqfT\nKUl64403NG3atCG1A0hSJGIqHGZQpJJw2FTEjCpifnTR39DFxoZpmsN6PNOMykxYLSNnmlGFw1HG\n/CjguQSDwTjBYDBOhm5Y21rV1NRo7969kmILrWpqalRfXy9J+vKXv6yf/vSnevnll7Vv3z7dfvvt\nKisr05o1ayRJlZWVWrVqle68807t2LFD27Zt03333acrrrhCxcXFkqQrr7xSaWlpuuOOO3TgwAE9\n//zz+uUvf6m1a9cm6vsGAABAkhjyDOuuXbv0pS99SYZhyDAM/cu//Isk6eqrr9aDDz6or371q+ru\n7tbdd9+t9vZ2LVu2TI899pjcbnf8MR555BFt2LBBa9eulcPh0OWXX67169fHb8/OztbPf/5z3Xff\nffrsZz+rgoICff3rX2dLKwAAgHHIiJ5uM9UU0tLSybR7ijl+4oSqawPKys4d8WM5HYYyM9MVDPYM\n6239QKtfh44c16KFC0ZcSyIEWv1aOa98yL3eODOXy6GCgiyeS3BWjBMMBuPk9IqLz93uyb4KAAAA\nsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUC\nKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAA\nAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyN\nwAoAAABbI7ACAADA1gisAAAAsDUCKwAAAGyNwAoAAABbI7ACAADA1lxWFwCkolBvREcaOhTs7lVO\nZppyM93KzXLLnea0ujQAAJIOgRVIkGg0qpP+oA4cb9PRhg5FzOhHrslwO5Wfna6qKfmaXJpjQZUA\nACQfAiswQmZU2nGwWfuPtaqzOzzgNofDkHlKcO0ORXTSH9RJf1CTS7N1/pwSZWakjXXJAAAkFQIr\nMAIRM6ojLS61n/TFP+d2OTStIleVE3JVlJuhrp6IAsGQAp2x/w6fbFewO6yjDR2qbw5qySyvZk3K\nl2EYFn4nAADYF4EVGKbesKktNW1q74n1pRbnZ6hqSoEml2TL6fxgPWNmhkuZGS6VFWZKkhbMKNL2\n932qOdqq3rCpt/Y06lBdQB+bV6b87HRLvhcAAOyMXQKAYejpjeiFd47JF+iVJE0py9Fl50/WtPLc\nAWH1dNwup86fW6pPrpis/Gy3JKmptVt/fPOoWtq7R712AACSDYEVGKLuUFh/fvuYfG2xcFngiWj1\ngnI5HUN7S78436O/WzlVi2d5ZRhSKGzqhXeOK9AZGo2yAQBIWgRWYAiC3WH96a1jamnvkSRNK83Q\nxLywHEMMq/0cDkPzpxfpwvllkmKLsl5455g6u3sTVjMAAMmOwAoMUjQa1WvVdWrrmwE9b1qBFkzN\nViLWSk2vyNP5c0okSZ3dYb34znF1h8LnuBcAAOMDgRUYpAMn2tTQ0iVJmju1QEtmFSd0ZX/VlAIt\nnumVJLV1hvTi1uMK9UYS9vgAACQrAiswCF09YW2raZIk5WW5+/pOE78N1bzphZo7tUCS5A/06JV3\nTyhimgn/OgAAJBMCKzAI7+xtVCgcC44r5pXK6RidXx3DMLR0drFmTMyTJDW0dKn6QPOofC0AAJIF\ngRU4h+ONHTp8sl2SNGtSnkoLMkf16xmGoRXnlaq8KPZ1dh/yq6mvFQEAgPGIwAqcRW/Y1Jt7GiRJ\nnnSnlswqHpOv6zAMrZxXpjSXQ1FJr++sV2+Y1gAAwPhEYAXOYvt+n4LdsdX6588plTvNOWZfO8uT\nFt85oD3Yq3ffbxqzrw0AgJ0QWIEz8LV2ae+RFknSpJJsTS7NHvMaplfkxr/uvqOtqvN1jnkNAABY\njcAKnEY0Go23AqQ5HTp/bsmo7ApwLv39rBnu2MzuX3eeVA9bXQEAxhkCK3Aadb6g/IHYaVaLZnqV\nlZFmWS0ZbpdWnFcqSQr2hPXO3kbLagEAwAoEVuA09hz2S5Iy3E7NmpRncTXS5NIcVVbkSpIO1QV0\ntKHd4ooAABg7BFbgQ1rae1TfHJQkzZ6cL6fTHr8my+eUKDPDJUnaWtOkiBm1uCIAAMaGPV6JARvp\nn111OgzNnpxvcTUfcKc5tXR2bFutjq5e7TvaYnFFAACMDQIrcIpgd1i1dQFJsRX6GW6XxRUNNLUs\nR968DEnSjoPN6gmxAAsAkPoIrMAp9h1tUf877XOnFlhbzGkYhqFlVbFZ1lCvqZ2HOLYVAJD6CKxA\nn96wqX3HWiVJE4qzlJedbnFFp1dSkBnfm7XmSIvagyGLKwIAYHQRWIE+B+vaFOqNHX963tRCi6s5\nuyWziuUwJDMqvfu+z+pyAAAYVQRWQJIZjWrv4dgipsLcdJUWeiyu6Oxys9yaPTnWsnDkZLuaWros\nrggAgNFDYAUkHWvoUHuwV5I0d2qhJadaDdX8yiK5XbFf4a37GhWNss0VACA1EVgBSbtrY1tZZaa7\nNLUsx+JqBifD7dT8yiJJUlNrt440dFhcEQAAoyPhgdU0Tf3gBz/QmjVrtHDhQn3iE5/QT37yk49c\nt3HjRq1atUoLFy7U2rVrdeTIkQG3t7W1ad26dVq6dKmWL1+u9evXKxgMJrpcQE0tQTX0vaVeNSVf\nDof9Z1f7VU3JV7Yndmzse+83McsKAEhJCQ+sjz76qH7zm9/onnvu0R/+8Afddttt+tnPfqZf/epX\nA6558skntWHDBj399NPyeDy6/vrrFQp9sNp53bp1OnTokB5//HFt2rRJW7du1d13353ocgG937cz\ngMMwNHOSfQ4KGAynw6FFM2OzrO3BXp1o7rG4IgAAEi/hgXX79u1as2aNLrroIlVUVOiyyy7TqlWr\ntGPHjvg1TzzxhG666SZdeumlmjVrlh566CE1NjbqxRdflCQdPHhQr7/+uu6//37Nnz9fS5Ys0Z13\n3qnnn39eTU1NiS4Z41g0GtWBU7aySk9zWlzR0E0ty43Psr5fF2SWFQCQchIeWBcvXqwtW7bo8OHD\nkqSamhq9++67uvjiiyVJx44dk8/n04oVK+L3yc7O1sKFC7V9+3ZJsdCbl5enuXPnxq9ZuXKlDMNQ\ndXV1okvGONbY0qWOrthiq6nlydG7+mEOh6F502PbcAWCEe092m5xRQAAJFbCz5284YYb1NHRoU9+\n8pNyOp0yTVPf+MY3dMUVV0iSfD6fDMOQ1+sdcL+ioiL5fL74NYWFA/fBdDqdysvLi18zWE4n68pS\njcvlkNNhyJmAXtPa+li4czkNTSnNGfJjOhyGHAmqZSRmTczTjoPNCnaH9XJ1oy45vzIpdjpIBv3P\nITyX4GwYJxgMxsnwJTywPv/88/qf//kf/eu//qtmzJihvXv36v7771dJSYmuvvrqM94vGo2e8wV2\nMNd8WG6uvffTxNC1d2TK4+lWZubITqIyzagOn4wF1mkVecobxlgJ9biV7k4bcS2JsGR2iV6vrtPR\nxqCONXdp4cxiq0tKKTyXYDAYJxgMxsnQJTywPvzww7rxxhv1yU9+UpI0c+ZMnThxQo8++qiuvvpq\neb1eRaNR+Xy+AbOsfr9fc+bMkSR5vV75/f4BjxuJRBQIBFRUVDSkegKBLkUi5gi/K9hJW1tQXV09\ncjhHtsDoRFOnunrCkqSpZTkKBof+eF1dIfWEeod130SbWpqtt12GQuGonvrjXk32ZlpdUkpwOh3K\nzfXwXIKzYpxgMBgnp1dQkHXOaxIeWLu6uj4yC+pwOGSasb+YSZMmyev16s0331RVVZUkqaOjQ9XV\n1br22mslSYsWLVIgENCePXvifaxbtmxRNBrVwoULh1RPJGIqHGZQpJJw2FTEjCpijmxx0cG6NklS\neppT5YWeYT2eaUZlJqCWRHA4DFWWe7T3WFB7Drdo35EWVU7Is7qslMFzCQaDcYLBYJwMXcKbKC69\n9FL927/9mzZv3qwTJ07ohRde0OOPP67LLrssfs2Xv/xl/fSnP9XLL7+sffv26fbbb1dZWZnWrFkj\nSaqsrNSqVat05513aseOHdq2bZvuu+8+XXHFFSou5m1OjFzENHW0b6P96RPyUqafaFqpRxlpse/l\n91uOnONqAACSQ8JnWO+66y5t3LhR3/nOd+T3+1VSUqJrrrlGN910U/yar371q+ru7tbdd9+t9vZ2\nLVu2TI899pjcbnf8mkceeUQbNmzQ2rVr5XA4dPnll2v9+vWJLhfjVJ0vqN6+f90m296rZ+N2ObRy\nrlcvVzdq+wGfjjV2aFJJttVlAQAwIkY0xTdtbGnpZNo9xRw/cULVtQFlZecO+zFe3V6nwyfb5XE7\n9Q9XnqfurtCw3tYPtPp16MhxLVq4YNi1JFKg1a8FlcX63m9qFAqbOn9Oib521Tyry0pqLpdDBQVZ\nPJfgrBgnGAzGyekVF597W8nUeB8UGILesKnjTbF2gKnlOXKk2PZP2R6XLlpUIUl6Z2+jGls40hgA\nkNwIrBh3jjd1KByJzaZOqxj+LK2d/e35k+UwDEUlvbTthNXlAAAwIgRWjDuH+w4LyMpwqSQ/NffC\nK8zN0NLZsQWKr++si2/fBQBAMiKwYlwJ9UZ0oqlTUqwdIJVPg/rEskmSpK6eiN7YWW9xNQAADB+B\nFePK0YYOmX3rDKeWp2Y7QL/KCbmaWhZrZH9p2/H49w0AQLIhsGJcOdYYW2yVk5mmwhzrj1MdTYZh\nxGdZG1q6tOtQs8UVAQAwPARWjBsRM6qTzbEV8xOLs1O6HaDf8jklysuK7W/8wtbjFlcDAMDwEFgx\nbjS1dqm37+zmCu+5zy1OBS6nQ5csniBJ2l3rV52v0+KKAAAYOgIrxo3+xVZOh6GywtTcHeB0Ll48\nQS5nbDb5xW3MsgIAkg+BFeNG/+xiWWGmnM7xM/Tzstw6f06pJOmvu+rV2d1rcUUAAAzN+HnVxrgW\n7A6rpb1H0vhpBzhV/+KrUK+pV6vrLK4GAIChIbBiXDi1d3NC8fgLrFPKcjRzYp4k6eVtxxUxOcMa\nAJA8CKwYF070BdZsT5pyMtMsrsYa/bOszYEebd/vs7gaAAAGj8CKlGeaUdX3BdYJxVnjYjur01k8\ny6vC3Njes39574TF1QAAMHgEVqQ8X1u3QuHYW+ATxmH/aj+nw6GLFlZIknYfblFDS9DiigAAGBwC\nK1JefzuAwzBUWphpcTXWWr2gQo6+GebN21l8BQBIDgRWpLy6vv1XSwo9SnON7yFfkJOuxTO9kqTX\nd9SrN8ziKwCA/Y3vV2+kvK6esJoD3ZLGdzvAqf6m7+Srjq5ebdvXaHE1AACcG4EVKa2++ZTtrAis\nkqQ5UwtUkh876YvFVwCAZEBgRUrrP441M8OlvGy3xdXYg8MwdPGi2OKr94+36URTh8UVAQBwdgRW\npCwzGlWdL7YSfoJ3/G5ndToXLiiX0xH7efyFxVcAAJsjsCJl+QPd6umNSBqfx7GeTW6mW8uqSiRJ\nf911Uj2hiMUVAQBwZgRWpKz+dgDDkMqLxvd2VqfzN31tAV09Yb29t8HiagAAODMCK1JWXd/+qyX5\nHrnTnBZXYz+zJuXHg/xftrP4CgBgXwRWpKTesClfW2w7q3LaAU7LMIz4Fle19e06fDJgcUUAAJwe\ngRUpqam1S9Fo7OPSAo+1xdjYynllcvcdpvCX91h8BQCwJwIrUlJjS5ckyeEw5M3LsLga+8rKSNPy\nObHFV2/tbVB3KGxxRQAAfBSBFSmpwR/bzqo4L0NOJ8P8bC5eGGsL6AlF9PZeTr4CANgPr+RIOZGI\nqaa+/tXSQnYHOJfKCbnxbb9eraYtAABgPwRWpBxfW7dMM9bAWkL/6jkZhqGLFpRLkg7VBXS8kZOv\nAAD2QmBFymno6181DKk4n8A6GB+bVyaXM3byFbOsAAC7IbAi5fT3rxblZijNxRAfjJxMt5bMKpYk\nbdl9Ur1hTr4CANgHr+ZIKaYZVVNrbIaV/tWhuWhh7OSrzu6wtu1rsrgaAAA+QGBFSmkOdCscifWv\nlhbSDjAUVVMKVJwf2wKMtgAAgJ0QWJFS4v2rih3JisFzGEZ8lrXmaGu8tQIAAKsRWJFSGvtCVkFu\nutxpTourST4Xzi+Xw+hbfLWDWVYAgD0QWJEyzGg0PsNaWkD/6nDkZ6dr4YwiSdIbO08qHDEtrggA\nAAIrUkhre496w7GARf/q8PW3BQQ6Q6o+4LO4GgAACKxIIQ3+rvjHHBgwfPOmF6ogJ12S9Gp1vcXV\nAABAYEUKaWiJ9a/mZ7uV4XZZXE3ycjocWjU/dvLVrkPNau475hYAAKsQWJESotFofIa1hP7VEVu9\noFyGpKik13cyywoAsBaBFSmhrTOknt7Y6Uz0r46cN9+judMKJUmv7aiTaUYtrggAMJ4RWJESTu1f\nZYeAxOhffOUP9Gj3Yb/F1QAAxjMCK1JCf/9qTmaaMjPoX02ExTO9yvakSZJe3c6erAAA6xBYkfSi\n0aga+2ZYSwuZXU0Ul9OhC+eXSZK2H/CprTNkcUUAgPGKwIqk19HVq2BPWJJUynZWCdXfFhAxo/or\ni68AABYhsCLpNbV+sO0S+68mVnlRlmZOzJMkvVpdp2iUxVcAgLFHYEXS87XG2gHS05zxnkskTv8s\na0NLl94/1mpxNQCA8YjAiqTX1LexfXF+hgzDsLia1LOsqkSedKek2CwrAABjjcCKpBaOmPIH+gMr\n7QCjIT3NqRVzY4uvtu5rUmd3r8UVAQDGGwIrkpo/0K3+tkpvfoa1xaSw/raA3rCpN3c3WFwNAGC8\nIbAiqZ264MqbxwzraJlSlqMppTmSpM3bWXwFABhbBFYktf4FV/nZbqW5GM6j6aJFsVnW400dqq1v\nt7gaAMB4wis8ktoHC66YXR1tF8wplTst9pSxefsJi6sBAIwnBFYkrc7uXgW7YwcGeAmsoy4zw6Xz\n55RKkt7a2xD/2QMAMNoIrEhavlP6V4tZcDUm/mbRBElSqNfUm3tOWlwNAGC8ILAiaTX19a+muRzK\ny3JbXM34MK08R5NLsiVJf3nvBIuvAABjgsCKpNW/Q4A3jwMDxophGLp4cWyW9XhTpw7WBSyuCAAw\nHhBYkZRMM8qBARZZMbdU6Wmxk682v8fiKwDA6COwIim1dfYqYsbejqZ/dWx50l26YG5s8dXbNY2c\nfAUAGHWjElgbGhp022236YILLtDChQv16U9/Wrt37x5wzcaNG7Vq1SotXLhQa9eu1ZEjRwbc3tbW\npnXr1mnp0qVavny51q9fr2AwOBrlIgk1t38Qkoo4MGDM/c3iD06++usuFl8BAEZXwgNrIBDQNddc\nI7fbrZ///Od6/vnn9a1vfUu5ubnxax599FE9+eST2rBhg55++ml5PB5df/31CoVC8WvWrVunQ4cO\n6fHHH9emTZu0detW3X333YkuF0nK3x4bK7mZacpwOy2uZvyZWparqWWcfAUAGBuuRD/go48+qoqK\nCt1///3xz02YMGHANU888YRuuukmXXrppZKkhx56SCtXrtSLL76oT33qUzp48KBef/11/fa3v9Xc\nuXMlSXfeeaduvPFGffOb31RxcXGiy0aS8ffNsLL/6kCmacrvbx6Tr7V0Rq4On2xXna9TW3cf1bSy\nrI9cU1iOJcVdAAAgAElEQVRYKIeDziMAwMgkPLC+8sorWr16tW699Va98847Ki0t1bXXXqvPf/7z\nkqRjx47J5/NpxYoV8ftkZ2dr4cKF2r59uz71qU9p+/btysvLi4dVSVq5cqUMw1B1dbU+/vGPJ7ps\nJJGOrrA6uyOS6F/9sM6ONr26vUElJaFzXzxC4UhULqehcCSq5948rmUzcgfc3tHRpstWVMnr9Y56\nLQCA1JbwwHrs2DH9+te/1tq1a/WP//iPqq6u1ne/+1253W5dddVV8vl8MgzjIy9iRUVF8vl8kiSf\nz6fCwsIBtzudTuXl5cWvGSynk9mdVFPf0hP/uLQgU07H8Le06p/9i/1pDuP+hhwOY0Q1JJJhGMrJ\nyVNBYdGYfL0ZE8KqOdqqen9Inuz8Ae0ZDochl8uQy5Xcv4P9zyE8l+BsGCcYDMbJ8CU8sJqmqQUL\nFugb3/iGJKmqqkr79+/Xr3/9a1111VVnvF80Gj3nXpqDuebDcnN5yzjVNAZiR4K6nIYmlObKkYCw\nmJGRNqz7hXrcSnenKTMzfcQ1JILH45bTNXb1LJxVopqjrYqYUR1t7NSiWR+064R63MrPz1JBwUdb\nBZIRzyUYDMYJBoNxMnQJD6wlJSWqrKwc8LnKykq98MILkiSv16toNCqfzzdgltXv92vOnDnxa/x+\n/4DHiEQiCgQCKioa2sxRINClSGToM2ewr/3HY5vVF+VlqLt7ZG99OxwOZWSkqbu7V6Y59HHS1RVS\nT6hXwWDPuS8eA11dITldGrN6Mt0OFednqKm1WzsONGnmhJz4Pyq7ukJqbe2Uy5U5JrWMFqfTodxc\nD88lOCvGCQaDcXJ6g5nYSHhgXbx4sWprawd8rra2VhUVsW1wJk2aJK/XqzfffFNVVVWSpI6ODlVX\nV+vaa6+VJC1atEiBQEB79uyJ97Fu2bJF0WhUCxcuHFI9kYipcJhBkSpMM6rjTbEjWb15nvherCN4\nxL7HNYf1WKYZlWlGE1BHYkSjsVrGsp7Zk/PV1HpS7cFeHWvs0ITi2NGtphlVOBxNmd8/nkswGIwT\nDAbjZOgS3kTxD//wD9q+fbs2bdqko0eP6rnnntPTTz+tL3zhC/FrvvzlL+unP/2pXn75Ze3bt0+3\n3367ysrKtGbNGkmxGdlVq1bpzjvv1I4dO7Rt2zbdd999uuKKK9ghYJyr83UqFObAADuZUpYT712t\nOdJqcTUAgFSU8BnW+fPn68c//rG+//3v6yc/+YkmTpyo9evX64orrohf89WvflXd3d26++671d7e\nrmXLlumxxx6T2+2OX/PII49ow4YNWrt2rRwOhy6//HKtX78+0eUiyRysa4t/7OXAAFtwOhyaNSlf\nOw4264SvU4HOkHKz3Oe+IwAAg5TwwCpJF198sS6++OKzXnPzzTfr5ptvPuPtubm5+v73v5/o0pDk\nautj/auedIcyM0Zl+GIYZk3K085DzYpGpX1HW7V8TonVJQEAUgj7KiCpHK5vlyQVZDODZyeZGWma\nXBo7+erAiTb10psFAEggAiuSRqg3ouNNnZKkwuzhbUOF0VM1JV+S1Bs2daguYHE1AIBUQmBF0jja\n2CGz78z6/BwCq92U5HtUkBPb/3Xf0RZFo/bYOQEAkPwIrEgah+s/mLUrYIbVdgzDiM+ytnaE5Av0\nWlwRACBVEFiRNGr7+leLctLkTvLjPlPVtPJcudNifzeHTnZZXA0AIFXwqo+kcfhkbIa1ooj9V+3K\n5XRo5sQ8SVJ9S0gt7SM7iQwAAInAiiTR1RPWyeagJGkCgdXWZk8qkNH38Za9zZbWAgBIDQRWJIUj\nJ9vVv4RngpfAamfZmWmaWBI7nvXtfX71hCIWVwQASHYEViSF2r52AMOQygsIrHY3Z0qBJCnYE9Fr\nO+osrgYAkOwIrEgK/QuuKrxZ8UU9sK/SQo/ys2Inkf35nWOKmBwkAAAYPl75kRT6t7SaVpZrcSUY\nDMMwNLMiU5Lka+vW1pomiysCACQzAitsrz0Ykq+tW5I0rTzH4mowWBWFbhXmxI7Q/cNbRzhIAAAw\nbARW2N7hk+3xj6eWM8OaLAzD0EXzvZKkow0d2nOkxeKKAADJisAK2+tvB3A6DE0szra4GgzFslmF\nyvbETiX745tHLK4GAJCsCKywvf4FV5NKspXGCVdJxe1y6ONLJ0qSdh9u0dGG9nPcAwCAj+LVH7bX\nv6XVNNoBktIlSybEj9L941tHLa4GAJCMCKywtZb2HrV1xI73nFrGgqtklJPp1uoFFZKkt/c2ytfW\nZXFFAIBkQ2CFrfX3r0rMsCazy86fJMOQzGhUf37nmNXlAACSDIEVttbfDuBOc6jcm2lxNRiu4nyP\nlleVSJJera5TR1evxRUBAJIJgRW21r/ganJpjpwOhmsy++QFUyRJoV5Tf3qbXlYAwOCRAGBb0WiU\nE65SyJSyHC2aEduX9cWtxxUIhiyuCACQLAissK2mtm51doclccJVqrhq1TRJUk9vhB0DAACDRmCF\nbZ264IoTrlLDlLIcLZlVLEl6edtxtXUyywoAODcCK2zrcF//qifdpZICj8XVIFH6Z1lDYVN/4PQr\nAMAgEFhhW7V9M6xTy3LkMAyLq0GiTCrJ1rK+HQNeee+EWtp7LK4IAGB3BFbYkhmN6kjfMZ5T6V9N\nOVddOFWGpN6wqeeZZQUAnAOBFbbU4A+qOxSRJE1lh4CUM6E4W+fPLZUkbd5+Qv5At8UVAQDsjMAK\nWzpysj3+MUeypqZPXzhVhiGFI1H9fguzrACAMyOwwpYO9wXWrAyXvHkZFleD0VBelKUVc8skxU6/\n8rV1WVwRAMCuCKywpcOnLLgyWHCVsj69aqochqGIGdWzrx6yuhwAgE0RWGE7phnVkcYOSey/mupK\nCzJ10cJySdKW3Q06WNdmcUUAADsisMJ2TvqD6ulbcDWllP7VVHf16unypDslSf/54n5Fo1GLKwIA\n2A2BFbYzYMEVW1qlvNwst65cGTtM4GBdQG/tbbC4IgCA3RBYYTu1J2P9q9meNBXlsuBqPPj4sonx\n08z++y8H1dMbsbgiAICdEFhhO/0zrCy4Gj9cTof+70tmSJL8gR796e2jFlcEALATAitsxTQ54Wq8\nWjTTqzlTCiRJz795hCNbAQBxBFbYSr0/qFCvKUmaUsoOAeOJYRj6X2tmyjCkUK+pZzYftLokAIBN\nEFhhK/37r0rSNGZYx51JJdm6aGGFJOmvu06q9pTxAAAYvwissJX+E65yMtNUkJNucTWwwmdO2ebq\nV39+X6bJNlcAMN4RWGErHyy4ymXB1TiVm+XWpy+MbXNVWx/QS9uOW1wRAMBqBFbYRsQ0dbRvwdWU\nMtoBxrOPL5sYHwPPvHpQvtYuiysCAFiJwArbqG8OKhSOLbiaRmAd15wOh9Z+skoOw1Co19QTf9rH\nCVgAMI4RWGEbh+s/OOGKGVZMLs3R314wWZK0q9avLbtPWlwRAMAqBFbYRn//am6WmwVXkCR9+sKp\nKu07AevXL+5XoDNkcUUAACsQWGEbh/uOZOWEK/Rzpzn1D5+skiR1dof165f2W1wRAMAKLqsLAKS+\nBVeNHZJigRXoN3tygS5eVKHN2+v01p4GrZhbqoUzvEN+HNM05ff7h3w/l8tQOBxUa2unwuHE9dEW\nFhbK4WDOAAAGg8AKW6jzBdXbt+BqahknXGGgz/9NpbYf8KmtI6Qn/rRP903MU2ZG2pAew+/3689v\n1ig7O29I93M4DHk8bnV1hRK2J2xHR5suW1Elr3fowRsAxiMCK2zh1BOuWHCFD8vMSNMXL5utH/12\np1rae/TEn/bpxk+fN+TWkezsPOXmFw7pPk6HoczMdLnTexThEAMAsATvR8EWDvftv5qXzYIrnN6S\nWcW6cH6ZJOntvY366y52DQCA8YLAClvo39Jqaimzqzizaz8+SyX5sV0DfvXC+2psCVpcEQBgLBBY\nYblwxNSx/gVX5fSv4sw86S599dNz5TAM9YQieuy5PQpHTKvLAgCMMgIrLHeiqTMeOuhfxblUVuTp\nqtXTJEkH6wJ67o3D1hYEABh1BFZYrn//VUmaxgwrBuGKFVM0a2Jstf//bDms94+1WlsQAGBUEVhh\nudq+/tXC3HTlZbktrgbJwOEw9JUr58qT7lI0Kj323B4Fu3utLgsAMEoIrLDcBydcMbuKwfPmefSl\ny2dLkpoD3fr352sUjbLtFACkIgIrLNUbjuhEU6ckaVo5/asYmgvmlmrV/HJJ0rvvN+nP7xyzuCIA\nwGggsMJSRxs74puxM8OK4bjuslmaWJwtSfrvvxzU/uP0swJAqiGwwlL9+69K7BCA4UlPc+qfPjNP\nGW6nImZU//Z/disQDFldFgAggQissFT/kawl+R5le4Z2NjzQr7QwU//Pp+ZIklrae/TY73bL5BhV\nAEgZBFZY6vDJvhOu6F/FCC2rKtHHl02UJO0+3KLn/nrY2oIAAAkz6oF106ZNqqqq0oMPPhj/XCgU\n0ne+8x1dcMEFWrx4sW655RY1NzcPuF99fb1uuOEGLVq0SBdeeKEeeughmSYn2qSS7lBYdc2xBVf0\nryIR/v6SGaqsiI2l371eq121zee4BwAgGYxqYN2xY4f+67/+S1VVVQM+f//992vz5s364Q9/qCef\nfFKNjY26+eab47ebpqkbbrhBkUhEv/nNb/S9731Pzz77rDZu3Dia5WKMHW3oUP8uROwQgERwOR36\nx6vnKduTpqikR3+3R81t3VaXBQAYoVELrJ2dnbrtttv03e9+Vzk5H4SRjo4OPfPMM/r2t7+t888/\nX3PnztUDDzygd999Vzt27JAkvfbaazp06JAefvhhzZ49W6tXr9att96qp556SuFweLRKxhjr7181\nJE0uJbAiMQpzM3TDp+fKkNTR1auf/O+d6g3z7gwAJLNRC6wbNmzQpZdeqo997GMDPr9z505FIpEB\nn58+fboqKir03nvvSZKqq6s1a9YsFRYWxq9ZtWqV2tvbdeDAgdEqGWOstq9/tawoU550l8XVIJXM\nm1akq1ZPkxQ7Se3XL75vcUUAgJEYlZTw+9//Xnv37tUzzzzzkduam5uVlpam7OzsAZ8vKiqSz+eT\nJPl8PhUVFQ243ev1SpKampo+0mJwNk4n68rsqn/B1fSKPLlcg/97crkccjoMOR3GiGtwOByn/Dn0\nWTiHw5AjQbUkgmEYCfvZjJTDYcjlMob0d5tIV180XbX17ao+4NNfttepLN85rL+rkY6R0z+mtT8b\nJF7/aw2vOTgbxsnwJTywnjx5Ug888ID+/d//XWlpg9+mKBqNyjDO/UIymGtOlZvrGdL1GBsdXb1q\n8AclSedVelVQkDXo+7Z3ZMrj6VZmZnrC6snIGN6WWqEet9LdaQmtZSQ8HrecLnvUE+pxKz8/a0h/\nt4n2rS8v1//7g8062RzUM6+f0MeXeFU+zJ/NcMfI6djhZ4PRwWsOBoNxMnQJD6y7du2S3+/XZz/7\n2fi53pFIRFu3btWTTz6pxx57TKFQSB0dHQNmWf1+f3xW1ev1aufOnQMet3/2tX+mdbACgS5FIvSv\n2c3uWn/849L8dLW0dA76vm1tQXV19cjh7BlxHQ6HQxkZaeru7h3WLhRdXSH1hHoVDI68lkTo6grJ\n6ZIt6unqCqm1tVMuV6aldfzTZ+Zrw+PvqDdsanO1TwV5eUpPcw76/iMdI6djl58NEsfpdCg318Nr\nDs6KcXJ6g/nHe8ID68qVK/Xcc88N+Ny3vvUtVVZW6oYbblBpaalcLpe2bNmiT3ziE5Kk2tpa1dXV\nafHixZKkRYsWadOmTfL7/fE+1jfeeEM5OTmqrKwcUj2RiKkwCy5s50Df8ZkOw9CEoqwh/R2Fw6Yi\nZjR+pOvIxL6uaZrDejzTjMpMWC0jF41GE/izGRnTjCocjlr++zfBm6UvXT5bP//9XgV7TG3eXqdL\nl0wYwrs1Ixsjp31Em/xskHi85mAwGCdDl/DAmpmZqRkzZgz4nMfjUX5+fjxsfu5zn9ODDz6o3Nxc\nZWVl6bvf/a6WLFmiBQsWSIotsKqsrNTtt9+uf/7nf1ZTU5M2btyo6667bkhtBrCv/v7VCcVZcg9h\ntgsYjgvnl2vXwQa9VePXiaZO7a71a970onPfEQBgC2OyNPvDMxl33HGHnE6nbrnlFoVCIa1evVr3\n3HNP/HaHw6FNmzbp3nvv1TXXXCOPx6PPfOYzuuWWW8aiXIyB/i2t2H8VY+Wqj1Vo37GAWjvDem+/\nT8X5HpUW8pY8ACSDMQmsTzzxxID/d7vduuuuu3TXXXed8T7l5eXatGnTaJcGCwQ6Q2oOxHosOeEK\nY8XldGj5zFz9ZVeresOmXq2u09+tnMqWagCQBNhXAWOuvx1AkqaVE1gxdrIynLpwfpkkqasnotd3\n1MuMWt/vCwA4OwIrxlx/O4DLaWhCMdv6YGxNLs3RnCkFkqT65qB2Hmy2uCIAwLkQWDHm+mdYJ5Xk\nyMXmybDAktnF8uZlSJKqDzSrvnnw26oBAMYeaQFjKhqNqrZvhnUqC65gEafD0EWLKuROiz0FvlZd\nr66esMVVAQDOhMCKMdXaEVJbZ0iSNLWMwArrZHvStGp+uSSpOxTRGzvr44edAADshcCKMdU/uypJ\n09ghABabWJId72et8wVVc6TV4ooAAKdDYMWYOlQXC6zpbqcqvCy4gvWWzPaqICddkrTt/Sa1tFt/\nrC0AYCACK8bUobo2SdK0shw5HIM9GhMYPU6HQ6sXlMvpMGSaUb1WXccZ3wBgMwRWjBnTjKq2PrZD\nwPSKPIurAT6Qn5OupbOLJcX6rN9932dxRQCAUxFYMWZO+DrV0xuRJFVW0L8Ke5k9OT++L/DeIy06\n0cRWVwBgF5xJiDHT3w4gSdMJrCnPNE35/fbZlN/vb1bUPPMuAIZhaOW8Mj33xuH4rgGfXjVVWRlp\nY1glAOB0CKwYMwf7FlwV5WYoLzvd4mow2jo72vTq9gaVlISsLkWSdLLuqLLzipSnojNe40l3aeX8\nMr287YS6QxG9ubtBly6ZMIZVAgBOh8CKMVPbF1iZXR0/MrNylZtfaHUZkqT2QMugrptYnK1Zk/L1\n/rFWHW3o0OGT7TqvMmOUqwMAnA09rBgTXT1h1fliPYH0r8Luls4uVrYn1gqwZXcDp2ABgMUIrBgT\ntfUB9XcPskMA7C7N5dDH5pVKknpCEb363nGLKwKA8Y3AijHR37/qdBiaXJptcTXAuZUXZWnWpNg/\nrg4cb9PhU05pAwCMLQIrxkR//+qkkmy505wWVwMMzpLZxcrKiLX6b9ndoO4QrQEAYAUCK0ZdNBrV\nwb4trSppB0AScbucunB+uSSpOxTR23sbLa4IAMYnAitGXVNbt9qDvZLYIQDJZ0JxluZMje10cLi+\nXUcb2i2uCADGHwIrRt2AAwMmEFiRfC5cWKHMvtaAt/Y0KNR3YhsAYGwQWDHqDp2I9a9me9JUku+x\nuBpg6NLTnFo5r0yS1NUT0Xv7fRZXBADjC4EVo+5Q/QcHBhiGYXE1wPBMKsmO73Cx72irfG3dFlcE\nAOMHgRWjqjdsxnv+ppfTDoDkdv6cEqU5Y0+bb+4+KdOMnuMeAIBEILBiVB1tbFc4EntRp38VyS4z\nI02LZnolSf5Aj/YdbbW4IgAYHwisGFX9/asSM6xIDbOn5KsoN12S9N7+JnV291pcEQCkPgIrRlV/\n/2p5UaYyM9IsrgYYOYdh6ILzymRICkeieoe9WQFg1BFYMaoOnohtacXsKlKJNy9DsyfnS5KONnTo\neGOHxRUBQGojsGLUBDpD8ZXU0ydwwhVSy6JZXnnSP9ibNRwxLa4IAFIXgRWj5lAd/atIXW6XU+fP\nKZEkdXaHtfOQ3+KKACB1EVgxag7Vx9oB3C6HJpZkWVwNkHiTS7NVXpQpSdp9yK9AZ8jiigAgNRFY\nMWr2H4sF1qnluXI6GGpIPYZh6Pw5pXIYkhmN6p2aRkWj7M0KAIlGisCo6A2b8R0CZk2ifxWpKy/b\nrTlTCyVJJ5o6dbyp0+KKACD1EFgxKo6cbFdvOLYIZdbEfIurAUbXgsoiZfYtwHpnbyMLsAAgwQis\nGBXvH4+dAGQYUiU7BCDFpbkcWlpVLEnq6OrV7loWYAFAIhFYMSrePxYLrJNLcuJb/wCpbGpZjsoK\nYwuwdh3yqz3IAiwASBQCKxLOjEZ14HhswdVM+lcxTsQWYJXIMKSIGdXWmiarSwKAlEFgRcLVNXUq\n2BOWRP8qxpf8nHTNmVIgSTrW2KETTZyABQCJQGBFwvX3r0rSzEkEVowvC2YUyZPulBRbgBUx2eYK\nAEaKwIqE6+9fLS3MVF6W2+JqgLHldjm1ZFZsAVYg2Ku9h1mABQAjRWBFQkWjUe3v61+dNZH+VYxP\n0ytyVZyfIUnacbBZwe6wxRUBQHIjsCKhfG3damnvkSTNoh0A41T/CViSFI5EtW1fo8UVAUByI7Ai\nofrbAST6VzG+FeVlaGbfuwy19e1qaAlaXBEAJC8CKxJqf9+Cq/xst4rzMiyuBrDW4lleudNiT7Nv\n72mUGWUBFgAMB4EVCfX+sb7+1Un5MgzD4moAa2W4XVo0wytJamnv0f5T3oEAAAwegRUJE+gM6aQ/\n9rbnTPZfBSTF/vFWkJMuSXpvv0/doYjFFQFA8iGwImH2n7L/KguugBiHI3YCliSFek1t388JWAAw\nVARWJEx/O0BmuksTirMsrgawj9LCTE0tz5EU+z1p6ei1uCIASC4EViRM/wlXMybmyUH/KjDAstkl\nSnPGnnKraztkcgIWAAwagRUJ0dUT1tGGdkm0AwCnk5nh0sKZRZKk1s6w3t7HCVgAMFgEViTEwbo2\n9e/YM4sFV8BpVU0uUH527LjiP2w9qfZgyOKKACA5EFiREP39q2kuR7xXD8BADoehC+bGTsDq6ono\nv/9y0OKKACA5EFiREP37S04vz5XLybACzqS0MFOTvLFtrl7bUa8DJ9osrggA7I9kgRHr6Y3oYF1A\nEsexAoNx3uRsZbhjT7+/+tM+FmABwDkQWDFi+4+1KhwxJUnnTS2wuBrA/jLcDl2+tEySdLSxQ6+8\nd8LiigDA3gisGLFdtbHVzulpTlVOyLO4GiA5fGxOkSaXZkuSfvvqQbW091hcEQDYF4EVI7bncCyw\nVk3Op38VGCSHw9AXL58tQ7EFWE+98L7VJQGAbZEuMCKtHT063tQpSTpvWqHF1QDJpbIiT5cunShJ\n2vZ+k7bta7S4IgCwJwIrRmR37QebnxNYgaH7vy6arqLc2K4Bv/rz+wp2c2wrAHwYgRUjsruvHaAw\nN11lhZkWVwMkH0+6S1+8vEqS1NYZ0n+9wt6sAPBhBFYMmxmNas/hFknSeVMLZRiGxRUByWlBZZFW\n9B0o8Gp1nWqOtFhcEQDYS8ID66ZNm/S5z31OS5Ys0cqVK/VP//RPqq2tHXBNKBTSd77zHV1wwQVa\nvHixbrnlFjU3Nw+4pr6+XjfccIMWLVqkCy+8UA899JBM00x0uRiB440dCnTGjpakHQAYmf/18ZnK\n9qRJkh7/Y41CvRGLKwIA+0h4YN26dau+8IUv6Omnn9YvfvELhcNhXX/99eru7o5fc//992vz5s36\n4Q9/qCeffFKNjY26+eab47ebpqkbbrhBkUhEv/nNb/S9731Pzz77rDZu3JjocjEC/e0AhqS5Uwms\nwEjkZrp1zZqZkqTGli797o3D1hYEADaS8MD62GOP6eqrr1ZlZaVmz56tBx98UHV1ddq1a5ckqaOj\nQ88884y+/e1v6/zzz9fcuXP1wAMP6N1339WOHTskSa+99poOHTqkhx9+WLNnz9bq1at166236qmn\nnlI4HE50yRim/gVXU8py4jNDAIZvxXmlmtf3bsUf3zqqwycDFlcEAPYw6j2s7e3tMgxD+fmxIzt3\n7dqlSCSij33sY/Frpk+froqKCr333nuSpOrqas2aNUuFhR/M2q1atUrt7e06cODAaJeMQQj1RvT+\nsdgZ6LQDAIlhGIa+dPlspac5ZUajeuy5PeqhNQAA5BrNB49Go3rggQe0dOlSzZgxQ5Lk8/mUlpam\n7OzsAdcWFRXJ5/PFrykqKhpwu9frlSQ1NTWpqqpq0DU42ch+VOw90hI/jnXhDK9crrH7ObtcDjkd\nhpyOkS/ycjgcp/w59B5ph8OQI0G1JIJhGAn72aRSLdLw6xnpGDn9YxpyuYzT/t6UebN07Sdm6RfP\n71V9c1DPbD6oL/3t4J/zYI3+1xpec3A2jJPhG9XAeu+99+rAgQN66qmnznltNBod1Crzoa5Ez831\nDOl6DM7+uthCugy3U8vmVShtDANre0emPJ5uZWamJ+wxMzKG19IQ6nEr3Z2W0FpGwuNxy+myRz12\nqkUaeT3DHSOnE+pxKz8/SwUFWae9/TOXztSeIy16a/dJvbj1uC5cNFHL5pQm7Otj9PCag8FgnAzd\nqAXWDRs26NVXX9WTTz6p0tIPnmi9Xq96e3vV0dExYJbV7/fHZ1W9Xq927tw54PH6Z1/7Z1oHKxDo\nUiTC7gKJtm1vgyRp9uQCdbR3jenXbmsLqqurRw7nyM9edzgcyshIU3d377B2oejqCqkn1Ktg0B7n\nwHd1heR0yRb12KkWafj1jHSMnKmW1tZOuVxn3rv4i5fNUs1hv9o6Q/r/fv2uHrhhhXKz3An5+kg8\np9Oh3FwPrzk4K8bJ6Z3pH++nGpXAumHDBr300kv61a9+pYqKigG3zZs3T06nU1u2bNEnPvEJSVJt\nba3q6uq0ePFiSdKiRYu0adMm+f3+eB/rG2+8oZycHFVWVg6plkjEVDjMoEik1o4eHWvskCTNnVow\n5j/fcNhUxIwqYkYT8Gix2k3THNbjmWZUZsJqGbloNJrAn03q1CKNpJ6RjZHTPqIZVTgcPevvTma6\nS2s/NUc/eLpagc6QfvbcHt382fnsd2xzvOZgMBgnQ5fw93HvvfdePffcc3rkkUfk8Xjk8/nk8/nU\n0zfCUsAAACAASURBVBOb1cjOztbnPvc5Pfjgg3rrrbe0a9cuffvb39aSJUu0YMECSbEFVpWVlbr9\n9ttVU1Oj1157TRs3btR1112ntDRWo1ttz+EPjmOdx4IrYNQsqCzSpUsmSJK2H/Dp1eo6iysCAGsk\nfIb1P//zP2UYhr74xS8O+PyDDz6oq6++WpJ0xx13yOl06pZbblEoFNLq1at1zz33xK91OBzatGmT\n7r33Xl1zzTXyeDz6zGc+o1tuuSXR5WIY+rez4jhWYPR9/pIZ2nukRfXNQf36pf2aPbmA3zsA407C\nA2tNTc05r3G73brrrrt01113nfGa8vJybdq0KZGlIQHM/7+9O4+Pqr73P/46sySTfU8Ia1iEQBaI\niCxiLXVrQa16Fb39FR/air1Y23rtVfG6gMWN64aIrYoo2Jvq1bZqFcStFVvElU2QfQkhhCSThCST\nSTKTmfP7Y2AkssiS5EzI+/l45CEzc87J5zt+M/Oe73zP95gm6/dfjnWYLscq0uGinXZuuDiP+178\nAp8/yO9fW8edU0YSHWW3ujQRkU6jdRXkuJRWfHM5Vk0HEOkc/Xok8G/nhObv767y8MLbGzDNyJgb\nLCLSGRRY5bh8ubkKALvN0OVYRTrRhWf2YVRuJgCfbajk3c9LLa5IRKTzKLDKcflyUyUAuX2TdTlW\nkU5kGAbXTcylV0Zo+ZdX/7GNDQedACkicipTYJVjtsfdSHm1F4CRQzItrkak+3FFObjp8gJiox0E\nTZM/vLGe6rpmq8sSEelwCqxyzA5MBzCAosEZ1hYj0k1lpcRywyXDMABPk595r32Fzx+wuiwRkQ6l\nwCrH7MB0gNP6JJOkK+6IWKZwYDqXnt0fgJK9DSxaulEnYYnIKU2BVY5J5b4mdlWErm41UqOrIpab\nNC6HotNCl6pesb6CVz/cZnFFIiIdR4FVjsnKTVXhf48cosAqYjWbYXD9RcPI6ZEAwNJPd/H2pyUW\nVyUi0jEUWOWYfLk5NB2gf3YiqYkui6sREYCYaAc3Tx4evvLVq//Yxj/X6vKtInLqUWCV71Tb0MK2\nsnoAztDoqkhESYyN4rdXjSAlIRqAhW9vZNXmqu/YS0Ska1Fgle+08qA3v9MVWEUiTlqSi1uuGkGc\ny4Fpwh/eWM+mXbVWlyUi0m4UWOU7HVgdoHdGPFkpsRZXIyKH0ys9jpuvHE6U00ZrIMgTf17L5tJ9\nVpclItIuFFjlqOq9Pjbtf9PTdACRyDawVxI3XVaA3WbQ7Avw6P+tZu02t9VliYicNAVWOarVW9wc\nWN5RqwOIRL78AWn86t8KiXLY8LcGefIvX/HJ13utLktE5KQosMpRfbF/OkCP1Fh6psdZXI2IHIvC\ngWncctUIYqIdBIIm8//2Nf9YudvqskRETpgCqxyRt9nPhp2hEzdGDsnAMAyLKxKRYzW4TzK3/6SI\nxFgnJvDHdzfz5sc7dUUsEemSFFjliFZvdRMIht7cNB1ApOvpm5XAHT8dSdr+tZNf+2g7i5ZuxN8a\ntLgyEZHjo8AqR7T8q9C8t/QkF/2yEiyuRkRORFZqLHf89HSy00IrfHy0ppzZf1pJTX2zxZWJiBw7\nBVY5rIoaLxtKQtMBzh7eU9MBRLqw1EQXd04ZSeHANAC276nndws/11qtItJlKLDKYX20JnR5R5th\nML4g2+JqRORkxbqc/PqKQi45KweAeq+fR15ezXtflGpeq4hEPAVWOURrIMi/vioHYPigtPAlH0Wk\na7MZBpeePYBf/VsBMdF2AkGTl97fwtNvrMfT5Le6PBGRI1JglUOs2uKmwRt68zpnRC+LqxGR9lZ0\nWgZ3XXNGeF7r5xsruXvBp6zdVm1xZSIih6fAKof4cFUZAGmJ0eT3T7W4GhHpCNlpcdx1zRmcXRia\n8lPn8THn1TUsfHsjTS2tFlcnItKWAqu0UVH7zclW3xveE5tNJ1uJnKpioh1cN3Eov76ikMS4KCA0\nf33G85/phCwRiSgKrNJGm5OtCntaXI2IdIYRg9KZ9fMzOWP/esvuumZm/2kVzy/eQL3XZ3F1IiIK\nrHKQ1kCQ5Wt1spVId5QQG8W0S/O54eJhxLkcAPzrq3LufPYTPlxVRjColQRExDoKrBK2eoub+vDJ\nVhpdFeluDMNgTF4P7p86hrMKegDQ2NzKi+9s4v4/fsGO8nqLKxSR7kqBVcKWrQ6dbJWaGE1+/zSL\nqxERqyTGRfHzScOY/v9Op3dGHAA7yhu4b9EXPL94A7UNLRZXKCLdjcPqAiQyVO5rYv3O/SdbFepk\nK5GOFAwGqamJnCWkgsEgADZb2zGM1Bj45cUDWL7ezbsrK/D5Q2s0f7phL+cUZHBOYQbRTnu715Oa\nmnpILSLSvSmwCgD/3H+ylWHA+EJd2UqkIzV66vhodQWZmZFxQtPePbuwOZxkZh7+b99hwA8KktlQ\n6qWkqhl/q8n7qyr55zo3Q/vE0i/D1W6Xb/Z46rhgTC7p6entcjwROTUosAre5tbw2quFA9JITXRZ\nXJHIqS82LpHE5MhY57ihvhbDHnXUehKBzEyobWjmi41VlFd7afEHWb3dw44KH0WD0+mTGd9uwVVE\n5GD6zkV474tSGptDC4X/aEw/i6sRkUiWkuDi/FF9OHdkb5LjQ2u31jX6+HDVHt7+ZBfl1Y0WVygi\npyKNsHZzjc1+3v18FwB5OSkM7pNscUUi0hX0yogjOy2H7XvqWbPVTWNzK+66Zt77fDfZabEUDU4n\nPSnG6jJF5BShwNrNvfPZLppaAgBcevYAi6sRka7EZjMY1DuJ/j0T2Lyrjq+2V9PsC1Be7aV8xS76\nZMYz4rQ0UhI0zUhETo4CazfW4PXx3he7ASgcmMbAXkkWVyQiXZHdZmNoTgqDeiexYWcN63fU4g8E\nKa30UFrpIadHAsMHpZEUr4uRiMiJUWDtxpZ+uosW34HR1f4WVyMiXZ3TYaNwUDqD+6awfkcNG0tq\nCQRNdu5toGRvAwN6JlI4KI2E2CirSxWRLkaBtZuqa/TxwcrQ6GrRaenk9Ei0uCIROVW4ouyMHJLB\nsJwU1m2vYdOufQRNk2176tleXs9pvZMoGJBGXIzT6lJFpItQYO2m3v6kBJ8/tFj4j8drdFVE2l9M\ntINRQzMZlpPC2m3VbC2rwzRhc2kdW3fXM7hvKLjGROutSESOTq8S3VBtQwv/2L/u6hlDMuiblWBx\nRSJyKouLcTI2vwf5A1JZu7Wa7XvqCZomG0v2saW0jtx+yeT1T8MV1f5XzRKRU4MCaze05JMS/K1B\nDDS6KiKdJyE2irMKs8kfkMqardXs3NtAIGiyfkctm3fVMTQnhd4pVlcpIpFIgbWbKXM3smx1aHT1\nzGFZ9MqIt7giEelukuKj+d6InhQ0NLN6SzWllR78gSBrt1WzwW4QxMkl30vGFaW3KBEJ0atBNxII\nBlnw1te0BkwcdhuXanRVRCyUkuBiwum9cNc1sXpLNXvcjfgDJku/2Mvyr6uZOKYfE4p6EeXUVAGR\n7k6XZu1GlqwoYefeBgAu/94AslJjLa5IRATSk2I474zeXDi6D2kJoZUDGrx+/u/vW7n9mRV88OVu\n/K1Bi6sUESspsHYTuyoa+NvynQAM6p3EBaP6WFuQiMi3ZKXEMn5YElN/1J+BvUJL7dV5fBS/t5n/\nfnYFy1aX0RpQcBXpjjQloBtoDQR57q0NBIImUU4bP580FJvNsLosEZFDGIbBab0SGFOYw1fbq3nt\nox2UVDRQXd/CoqWbWLyihEvO6s/Y/CzsNo25iHQXCqzdwN+W72B3lQeAK78/iKwUTQUQkchmGAaF\nA9MpGJDGys1uXv/XdsqqGnHXNfP8kg28tWInl5yVw5hhPfQBXKQbUGA9xW3fU8/iFSUADO2XwoTT\ne1lckYjIkQWDQWpqqtvc1y/N4FeXDOCrHXW8t7KCyn0tVNY28dxbG3jjn9s5d0QmwwcmY++g4Jqa\nmootAkZzQ89NjdVlhEXK8yLdgwLrKcznD7Bg8deYZuhSiddNzMVmaCRCRCJXo6eOj1ZXkJnpO+zj\nY4cksLs6ik27vXiaA1TVtfDyslLe/KSMwb3i6JMe3a4jrh5PHReMySU9Pb3djnmiampqePeTjcTH\nJ1ldSkQ9L9I9KLCeogLBIE+/sZ7yai8AV597GulJMRZXJSLy3WLjEklMTj3i40kpMHSAyY7yetZu\nq6bB66exJciq7Q1sKW8mv38qA3snnpJzXOPjk4763IicqhRYT0FB0+T5xRtZvdUNhC6/enZhtsVV\niYi0H5vNYGCvJPr3TKSkvIG126qpa/ThafLzydcVrNlWzdCcFAb3TtI6riKnAAXWU4xpmrz0/hZW\nrN8LwLCcFKZenIehqQAicgqyGQb9eyaSk51ASYWHr7ZVU9vQQlNLKys3VfHVtmoG90lmaL8UYl16\nyxPpqvTXe4p54187+ODL3QAM7JnITZcX4HScel+LiYgczDAMcnok0C8rnrKqRtbtqKGytgl/a5D1\nO2rYsLOW/j0TyO2XQlqiy+pyReQ4KbCeQt79vDR8cYBeGXH85srhuha3iHQrhmHQOzOe3pnxVNY2\nsX5HDaWVHoKmybayeraV1ZORHENuv2T6ZSVoSSyRLkJp5hRgmibvfV7Ky3/fCkBGsovfXjWC+Bin\nxZWJiFgnMyWGzJRe1HlaWL+zlh176gkETar2NVG1r4kvoisZ3CeZgb2S9HopEuEUWLs4b7OfF5Zs\n5MvNVQAkxUfx26uLSI6PtrgyEZHIkBQfzbj8HowcnMHWsjo27dqHp8lPU0uANVurWbO1mh6psQzs\nlUjfrARNoxKJQAqsXdiO8nr+8Po63HXNAPRKj+PGy/LJTNbyVSIi3xYdZSevfypDc1Ioq2pkY0lt\neOm/vTVe9tZ4+fTrCvplJdCvRwLZad3nqoCmadLU0kpjUytNvlZafAGa/QFafAFa/AH8rUECQZPg\n/h+f38/nWz24onfitNtwOuw4HTaiHDZiXA4SY6NIjHWSEBtFYlwUSXFRpCW5cNj1YUBOjAJrF2Sa\nJn9fWcb//X0LrQETgPGF2fy/8wcTreVbRESOymYY9MmMp09mPJ4mP9v31LOtrI4Gr5/WgMm2PfVs\n21OPw26QmRRFTIyLs+KTu/wqA/7WIA1eH/VeP/WNPhoafXia/TQ2teJt9hM0j+94tZ5WoOmYtzeA\nlMRoMpJiyEiOISPZRXZaHD3T48hMiVGYlaPq2n993VDJ3gb++tF2vtoeunRhlNPGlAuGcFaB1lkV\nETle8TFOCgemUTAglap9zWwrq6OkogGfP0hrwGRPTQsv/aOUV5btZmCvJIb0SSa3bzIDeiVF5ABB\naKQ0QH2jj32NLdR5fNQ1+qhv9OFtbj2uY9kMg+goO64oO1EOGzabgd1mYLMZBFr9ZKXE4HBG4fMH\n8QeC+P0BfK1BvM2t1Ht9NPsCbWsDaupbqKlvYVPpvjaP2W0GWamx9EyLpXdGfPgDRVqSS8syCqDA\n2mWUVnp44187WLl/ripAz/Q4pl2aT6/0OAsrExHp+gzD2H+SVgyjh2VRUeultMJDyd56mnyhr8M3\nl+5jc+k+3vw4FLD690xkUK8k+mTE0y87gfiEzlsuy+cP0NDkp2F/GK33+sPB1N8a/M79bYZBQqyT\n+FgncS4n8TEO4lxO4mKcxETbcUU5cNiNI4bF+n01jMvPPuqlWX3+AA1eP/VeH7UNLbj3NVFV1xw+\n6a1qXzOtgVCtgaDJHncje9yNfLHpm/e5mGgHfTLi6JOVQN/MePpmJdAzPU7zjLshBdYIt6uigbc+\n3tnmDzjaaee8M3pz0dgcoqMi7xO+iEhXZrMZZKfFkZ0Wx5BsB/2yk9lZ1crGXfvYvqee1kAowG7d\nXcfW3XVt9uuxf5QwNdFFcnw0yfFRpCREkxQfHR6pdDpsOOy2cBg0TZNA0MTfGsTfGqTZ10qD1x8O\new3e0ChpeVU9pVWNNPmqjymUAsS6HCTFfTOPNDEuioTYUDC1dfDIZZTTTlqSnbQkF/0P8yVgMGji\nrmuibH9Q3eP2ssfdSJm7MRxkm1pa2by7js0HPc/2/f9/+mZ9MxLbOzOexNioDm2PWCuiA2txcTEL\nFizA7XaTm5vLXXfdRWFhodVldSjTDH3K/HxjJV9uqqLM3Rh+LMpp49zTe3Ph6L76wxQR6QSGYdA7\nPZYRuaGRRH9rgO176tm0ax+bSvdRsrcBb0voq/bgQaOE33lcwOmwYcIxh88jsdtCo6UHAmliXBRJ\n8VEkxUVH9EikzWaQmRJLZkosRadlhO8PBIPsrWmitKKB0koPpZUedlV6qG/07X/cZHeVh91VnjbH\nS4qLok9mPD3T4775SYsl1qUly04FERtYlyxZwkMPPcSsWbMoKChg0aJFXH/99SxdupTU1FSry2tX\nDV4fO/c2sGX3Pr7cVBU+a/UAp8PGhKJe/GhMP5LiFFRFRKzidNgZ0jeFIX1TgNAgQ21DC+U1Xmo8\nPjaX1LDH7WWfJzR/NGge/kwmE/AdY1B12G2hQBprpzUQICUpPvwVfmJsFHExjlNqnqfdZqNXehy9\n0uMYk/fN/XWeFnZVethV0cCuilCIrazxcuAZrmv0UbejhnU7atocLzk+iuy0uPCUj8zkWLJSQid+\n6VvKriNiA+vChQu56qqruPTSSwG49957+fDDD/nLX/7C1KlTLa7uxDS1tFJd14y7rpnymkZ2lDew\ns7w+vCzVwQwDcvumMCo3k9OHZGhEVUQkAhmGQWqii8zUWFJS4qitbaR1fxANBk0avD5qPS3s8/jw\n+QOHnKBkGISXhHLYDZwOG9FOe2g5qP3LQrmi7BiGgdvt5uN15SQmn1qDNscqKT6agvhoCgakhe9r\n8QfY424Mj8TurvSwp7qRBq8/vM0+j499Hh8bSmoPOWZ8jJPUxGhSE1ykJbpITYxuM33iwBQKuy1y\nR6q7i4gMrH6/n/Xr1/OLX/wifJ9hGIwbN47Vq1dbWNnxe/PjnazcXEV1XTOeJv9Rt3XYDYb0SeaM\n3EyKBiukioh0ZTabQVJ8aP6qdIxop53+2Yn0z05sc3+910e5u5E91V72VDVSUeulsrYJd11zm1Fv\nT5MfT5OfXRWebx86zCA0FzjWtf/ENJeDWJeTWJeDaGdoFQVXlCO0ooIz9OHjwJq0Tqcdp92Gw2HD\nYQutumDa7Xi8Pswg+1ddCPUVm3Hkk9wkQgNrbW0tgUDgkLMP09LS2LFjx3Edy27hum6eJj+vfbT9\nsI8ZRmih//49ExnQM4n+2Yn0yYyP6PlGkcLhsGHfv7zKybLt/9Qc+u/xzyOz2Qxamhvx1B/6yd0K\nTd4G7PaoiKgnkmqBE6/HZrPha3HQ0tJKMHhycw1PtpaOEkn1RFItAE3eeurro3E4jv56Y7fbaG31\n0tDQRCDQPv3k2+rra2jy1mNrh9e+k9Xkrcfh6IkjQt+zUhNdpCa6yDtoNBagNRCkuq45HGBr6luo\nrmumpr6Z6vpmahtaCHxrQVoTaGxupbG5lSoO/Ua0PaUkRHPz5OGHBHCJ0MB6JKZpHvenj8RE6676\nlJICbz76Y8t+/6kqJWUwBflWV3GwsVYXcBDVcmSRVE8k1QKRVU8k1XL8MjK+e5sTl8Po0R15/O4h\nIz2BXKuLkOMWkR+NUlJSsNvtuN3uNvfX1NSQlpZ2hL1ERERE5FQUkYHV6XSSl5fHihUrwveZpsmK\nFSsoKiqysDIRERER6WwROyXg2muvZfr06eTn54eXtWpububyyy+3ujQRERER6UQRG1gnTpxIbW0t\nc+fOxe12M3ToUJ577rlTbg1WERERETk6wzSPsKqxiIiIiEgEiMg5rCIiIiIiByiwioiIiEhEU2AV\nERERkYimwCoiIiIiEU2BVUREREQimgKriIiIiES0iA2sxcXF/OAHP6CwsJDJkyezdu3ao27/9ttv\n86Mf/YjCwkIuueQSli1bdsg2TzzxBOPHj2f48OFcd911lJSUtHn86aef5uqrr2bEiBGceeaZ7doe\n6Rid3U/Kysq48847Offccxk+fDgXXHABTz75JH6/v93bJu3HiteTadOmMWHCBAoLCxk/fjy33XYb\nlZWV7douaT9W9JEDfD4fP/7xj8nNzWXjxo3t0h7pGFb0kx/84Afk5uaGf4YOHcr8+fPbtV1dghmB\nFi9ebObn55uvvfaauXXrVvPuu+82R40aZVZXVx92+5UrV5rDhg0zn3/+eXPbtm3mE088Yebl5Zlb\ntmwJb/PMM8+Yo0aNMj/44ANz06ZN5rRp08xzzz3XbGlpCW/z5JNPmgsXLjQfeughc9SoUR3eTjk5\nVvSTjz76yLzjjjvMjz/+2CwtLTX//ve/m+PGjTNnz57dKW2W42fV68nChQvNNWvWmHv27DFXrVpl\nXnXVVebVV1/d4e2V42dVHzngvvvuM2+44QYzNzfX3LBhQ4e1U06OVf1kwoQJ5h/+8AezurradLvd\nptvtNpuamjq8vZEmIgPrlVdeac6aNSt8OxgMmmeffbb57LPPHnb7m2++2fzFL37R5r7JkyebM2bM\nCN8+66yzzBdeeCF8u6GhwSwoKDAXL158yPH++te/KrB2AVb3kwOee+4587zzzjuxRkiHi5R+8sEH\nH5hDhw41W1tbT6wh0mGs7CMffvihOXHiRHPr1q3mkCFDFFgjmFX9ZMKECeaiRYvapxFdWMRNCfD7\n/axfv56xY8eG7zMMg3HjxrF69erD7rN69WrGjRvX5r7x48eHty8tLcXtdjNmzJjw4/Hx8QwfPvyI\nx5TIFkn9pL6+nqSkpJNpjnSQSOkn+/bt48033+T000/HbrefbLOkHVnZR9xuN/fccw8PP/wwLper\nPZsl7czq15Jnn32W0aNHc9lll7FgwQICgUB7Na3LcFhdwLfV1tYSCARIT09vc39aWho7duw47D5V\nVVWH3d7tdgOhFwXDMI66jXQtkdJPSkpKKC4uZvr06SfaFOlAVveTRx55hOLiYpqamhgxYgTPPPPM\nyTZJ2pmVfeSOO+7gJz/5CcOGDaOsrKw9miMdxMp+cs0115CXl0dSUhKrVq3i0Ucfxe12c/vtt7dH\n07qMiBthPRLTNDEM47i2b+9jSuTrzH5SUVHB1KlTmThxIldcccVx1SnW6qx+cv311/P666/zwgsv\nYLfbue222467VrFGR/eRF198kcbGRqZOnXrM+0vk6YzXkmuvvZZRo0YxePBgrrrqKm6//Xb++Mc/\ndruTfSMusKakpGC32w8ZqaipqSEtLe2w+2RkZBx2+wOfWtLT0zFN87iOKZHN6n5SUVHBNddcw8iR\nI/nd7353ss2RDmJ1P0lOTqZfv36MHTuWxx57jGXLlrFmzZqTbZa0I6v6yKeffsqaNWsoKCggLy+P\nCy+8EIArrriCO+64o13aJu3H6teSgw0fPpxAINDtRuUjLrA6nU7y8vJYsWJF+D7TNFmxYgVFRUWH\n3WfEiBFttgdYvnw5I0aMAKBPnz6kp6fzySefhB/3eDysWbPmiMeUyGZlPzkQVgsKCnjggQfas1nS\nziLp9eTAnDOfz3fC7ZH2Z1Ufufvuu3njjTfCP/Pnz8cwDObMmcPNN9/c3s2UkxRJryVff/01Nput\n2w242WfOnDnT6iK+LS4ujieeeILs7GycTidz5sxh06ZN3H///cTExHDbbbfx1VdfhSc/Z2VlMWfO\nHGJiYkhKSuJ///d/Wbp0KQ888ACpqalA6M3i2WefZeDAgfh8Pu677z58Ph933XVX+CSI8vJyysrK\nWLNmDStXruScc87B7XYTGxuL0+m07PmQw7Oin1RWVjJlyhR69erFjBkzaG5uxuv14vV6iY2NtfLp\nkCOwop+sXbuW999/n6ioKHw+H+vWrWPWrFlER0dzyy236MSrCGNFH4mPjyc1NTX8Y7PZWLRoETfc\ncAM5OTkWPhtyJFb0k9WrV/POO+/gcrloampi2bJlPPTQQ1x44YVMnDjRyqej00XcSVcAEydOpLa2\nlrlz5+J2uxk6dCjPPfdc+H/w3r1727zgFxUV8eijj/L444/z+OOP069fP37/+98zaNCg8DZTp06l\nubmZe+65h4aGBs444wzmz59PVFRUeJu5c+fy+uuvh29fdtllQGiu0ahRozq62XKcrOgny5cvp7S0\nlNLSUr7//e8D38w32rBhQ+c1Xo6ZFf3E5XLx7rvv8uSTT9LU1ERGRgbf+973+I//+A99+I1AVr3n\nfJvOqYhsVvSTqKgolixZwlNPPYXP56N3795cd911XHvttZ3a9khgmJrpLSIiIiIRLOLmsIqIiIiI\nHEyBVUREREQimgKriIiIiEQ0BVYRERERiWgKrCIiIiIS0RRYRURERCSiKbCKiIiISERTYBURERGJ\nMOvXr+dnP/sZo0aNYsyYMdxzzz14vd6j7lNdXc306dM5++yzGTFiBFOnTqWkpKTNNm63m1tvvZXx\n48dTVFTE5ZdfzrvvvtuRTeGVV15hypQpjBw5ktzcXDwez3EfQ4FVRERExAJTpkxpc4XNAyorK/nZ\nz35GTk4Or776Ks899xxbtmxh+vTpRz3ejTfeSFlZGU8//TSvv/462dnZXHfddTQ3N4e3ue222ygp\nKeHpp5/mzTff5Pzzz+fmm29m48aN7d6+A5qbm8NX+zvRK7opsIqIdKJ58+aRm5sb/hk9ejQ/+clP\nWLZsWZvtcnNzeeGFF9rtd65evbpdjiUiHe/DDz/E6XRyzz33kJOTQ35+Pvfeey/vvvsupaWlh91n\n586drFmzhpkzZ5KXl0dOTg733nsvzc3NvPXWW+HtVq1axU9/+lPy8/Pp3bs306ZNIyEhgXXr1oW3\n2bt3LzfffDOjRo1i9OjR4SB8oq655hqmTp3K8OHDT/gYCqwiIp0sJiaGV155hVdeeYX777+flpYW\npk2b1mGhct68eaxatapDji0i7c/n8+F0OtvcFx0dDcCXX355xH0MwyAqKip834HbB+9z+umnwgRi\n4QAABsxJREFUs2TJEurq6jBNk8WLF+Pz+Rg9ejQAra2t/PznPychIYGXXnqJl156ibi4OK6//npa\nW1vbu6nHTIFVRKSTGYZBYWEhhYWFnHfeefz+97/HNE1ee+01q0sTkQgwZswYqqqqWLBgAX6/n7q6\nOh599FEMw6CysvKw+wwYMIDs7Gwee+wx6uvr8fl8PPvss+zdu5eqqqrwdnPmzMHv9zN69GgKCgqY\nOXMmTz31FH369AFgyZIlmKbJrFmzGDRoEAMGDOD++++nvLyczz77rFPafzgOy36ziIgAkJWVRWpq\nKuXl5W3uDwaDzJs3j5deeolAIMCECROYMWMGLpcLgKqqKh5//HE+++wzqqqq6NGjBz/84Q/55S9/\nGR5lyc3NxTAMZs+ezezZszEMgxdffJFRo0Z1ejtFurtnnnmGp59+Ony7paWFNWvWcO+99wKhD7NL\nlixh0KBBzJ49mwcffJDHHnsMu93OlClTSEtLw263H/bYDoeDefPmceedd3LmmWficDgYO3Ys55xz\nTpvt5syZg8fjYdGiRSQnJ/P+++/zm9/8hj/96U+cdtppbNy4kZKSEoqKitrs5/P52LVrF+PGjePl\nl19m5syZR2ynYRjMnz+f8ePHn+AzdZj2tduRRETkhDQ2NlJXVxce4TiguLiYkSNHMnv2bHbu3Mns\n2bPJyMjglltuAaC2tpbk5GT++7//m8TERHbs2MG8efNwu93cf//9QOjs3MmTJzNlyhQuvvhiAAYO\nHNi5DRQRAP793/+diRMnhm//9re/5cILL+SCCy4I35eZmQnApEmTmDRpEjU1NcTExADwwgsv0Lt3\n7yMef9iwYbz22mt4PB78fj8pKSlMnjyZgoICAEpLSykuLmbx4sXh14EhQ4bwxRdfUFxczMyZM/F6\nveTn5/PII48ccvyUlBQALrroovAUgiPJzs4+lqfkmCmwiohYIBAIAFBRUcHDDz9MXFwcU6ZMabNN\nRkYGDz/8MADjx49n/fr1vPPOO+HAOnjwYG677bbw9kVFRcTExDB9+nTuueceoqOjKSwsBKBnz57h\nf4uINRITE0lMTAzfjo6OJi0t7ZAPqwdLTU0F4M9//jPR0dGcddZZ3/l74uPjgdCJWOvWreM///M/\nAWhqasIwjEPO1LfZbASDQQDy8vJ4++23SU1NJS4u7ojHP/A7OosCq4hIJ/N6veTl5YVvOxwOnnrq\nKXJyctpsN27cuDa3Bw4cyJIlS9rct3DhQl599VV2795NS0sLEPo6rrS0lEGDBnVMA0SkwxUXF1NU\nVERsbCzLly/n4Ycf5tZbb20TFH/4wx/yX//1X5x33nkALF26lNTUVLKzs9m0aRMPPPAA559/PmPH\njgVC81z79u3LjBkzuPXWW0lJSeG9995jxYoVPPPMMwBcfPHFLFiwgBtvvJFf/epX9OjRg7KyMt57\n7z2mTp1KVlbWcbfF7XbjdrspKSnBNE02btxIfHw82dnZJCUlHdMxFFhFRDpZTEwMxcXFBAIBSkpK\nePTRR7n99tt56623SE9PD2938EgMgNPpxOfzhW8vXLiQ//mf/2Hq1KmMHj2axMRE1q5dy6xZs8Lh\nVUQi19HWJF27di1PPvkkXq+XAQMGMGvWrPC0ngNKSkraLMJfVVXFQw89RHV1NRkZGVx22WVMmzYt\n/LjD4WD+/Pk88sgj3HjjjTQ2NtKvXz9mz57N2WefDYDL5aK4uJhHHnmEX//61zQ2NpKVlcWYMWNO\neFT15ZdfZt68eeHR3QPfJj344INceumlx3QMBVYRkU5mGAbDhg0DoKCggJycHCZPnsxTTz3FjBkz\njvk4S5cu5dxzzw1/3QewdevWdq9XRDrGiy++eMTHZs+e/Z37b9iwoc3tKVOmHDK16Nv69u3L3Llz\nj7pNWloaDz744Hf+/mN10003cdNNN53UMbSslYiIxfLz85k0aRJ//etfqa6uPub9WlpaDlmr8W9/\n+9sh2zkcDo24ikiXpsAqIhIBbrzxRvx+P4sWLTrmfcaNG8f7779PcXExy5cv5/bbb2fXrl2HbDdw\n4EA++OADPv/8c9atW0djY2N7li4i0uEUWEVEOtnh5q3179+fSZMm8fLLL+PxeA57Ju+3/fKXv+Si\niy5i7ty53HLLLbhcLu6+++5DtpsxYwbBYJAbbriBK6+8kq+//rrd2iIi0hkM0zRNq4sQERERETkS\njbCKiIiISERTYBURERGRiKbAKiIiIiIRTYFVRERERCKaAquIiIiIRDQFVhERERGJaAqsIiIiIhLR\nFFhFREREJKIpsIqIiIhIRFNgFREREZGIpsAqIiIiIhHt/wOuUIQIx7GljgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "survivalstan.utils.plot_stan_summary([testfit], pars='baseline')" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAH0CAYAAABiuKiqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VNXdP/DPnSwsQSEJDBEEkc0EIvRB4ZFNEVxoYkIC\nglVMxEDsgxTQaAFtX33U1ooLKKDlJ0SEAAoFzGYCT3drgSo2LmUVEBWFMMQEhATMMvP7Yzp35ubc\nmXNnSTKT+bxfL16vuefMvXNuEtvvPfM936PYbDYbiIiIiIgoqJnaegBERERERCTHwJ2IiIiIKAQw\ncCciIiIiCgEM3ImIiIiIQgADdyIiIiKiEMDAnYiIiIgoBDBwJyIiIiIKAQzciYiIiIhCAAN3IiIi\nIqIQwMCdiIiIiCgEBF3gvnnzZkycOBHDhg3DjBkz8Nlnn7l97x//+EdMmzYNI0eOxH/9138hIyMD\nxcXFwvtWrFiBcePGYfjw4XjwwQfx1VdfteQtEBEREREFXFAF7uXl5Vi6dCkWLFiAwsJCJCYmYs6c\nOaiurtZ9f7du3TB37lxs3boVJSUlmDp1Kp588kns3r1bfc+aNWuwefNmPPPMM9i2bRs6deqE2bNn\no76+vrVui4iIiIjIb4rNZrO19SAcZsyYgWHDhuGXv/wlAMBms+GWW25BVlYWcnNzDV1j6tSpmDBh\nAhYsWAAAGDduHObMmYNZs2YBAC5evIgxY8Zg6dKlSElJaZH7ICIiIiIKtKCZcW9oaMCBAwcwevRo\ntU1RFIwZMwaffPKJoWvs3bsXJ06cwMiRIwEAJ0+eRFVVFW666Sb1PV26dMHw4cMNX5OIiIiIKBhE\ntvUAHGpqatDU1ITu3btr2uPj43HixAm35128eBHjx49HQ0MDIiIi8L//+79q8F9VVQVFUXSvWVVV\nFfibICIiIiJqIUETuLtjs9mgKIrb/piYGJSUlKC2thb//Oc/8dxzz6FPnz7qrLsv1yQiIiIiCjZB\nE7jHxsYiIiJCmAmvrq5GfHy82/MURUGfPn0AAImJiTh27Bhef/11jBw5Et27d4fNZkNVVZVm1r26\nuhpJSUlejY/BPhERERG1paAJ3KOiojB06FDs3bsXkyZNAmAPlvfu3YusrCzD17FarWrFmD59+qB7\n9+745z//icTERAD21JpPP/0U9913n1fjq66uhcnEwJ2IiIgoWMXGxrT1EFpU0ATuADBr1iwsWbIE\nycnJuP7667FhwwZcvnwZU6dOBQAsWrQICQkJyMvLA2Av9ZicnIw+ffqgvr4e7733HkpKSvD000+r\n13zggQewevVq9O3bF71798aKFSuQkJCgPhwYZbXaYLUGTQEeIiIiIgozQRW4p6SkoKamBitXrkRV\nVRWSkpKQn5+PuLg4AEBlZSUiIiLU99fV1eHpp5/GmTNn0KFDB/Tv3x8vvfQSJk+erL4nNzcXly9f\nxq9+9StcuHABN954I9auXYvo6OhWvz8iIiIiMqaiYh8ABSNG3NjWQwkaQVXHPZidPXuhrYdARERE\nFBbq6+uxaNFCKIqC559/xfCEa48eV7TwyNpW0NRxJyIiIiICgNLSQpw9a4HFcgalpUVtPZygwcCd\niIiIiIKGxVKpCdZLSwthsZxpwxEFDwbuRERERBQ0CgrWoaGhXj1uaKhHQcEbbTii4MHAnYiIiIgo\nBDBwJyIiIqKgkZ2dg6go52LUqKhoZGfPbsMRBQ8G7kREREQUNMzmBKSlZajHaWmZMJt7tuGIggcD\ndyIiIiIKKmlpmejRwwyzuacmiA93QbUBExERERFRdHQ0srNzACjcNNMFN2AyiBswEREREQU3bsBE\nRERERERtjoE7EREREVEIYOBORERERBQCGLgTEREREYUABu5ERERERCGAgTsRERERUQhg4E5ERERE\nFAIYuBMRERERhQAG7kREREREIYCBOxERERFRCGDgTkREREQUAhi4ExERERGFAAbuREREREQhgIE7\nEREREVEIYOBORERERBQCGLgTEREREYUABu5ERERERCGAgTsRERERUQhg4E5EREREFAIYuBMRERER\nhQAG7kREREREIYCBOxERERFRCGDgTkREREQUAhi4ExERERGFAAbuREREREQhgIE7EREREVEIYOBO\nRERERBQCGLgTERERhZmKin2oqPiorYdBXops6wEQERERUeupr69HQcE6KIqC5ORhiI6ObushkUGc\ncSciIiIKI6WlhTh71gKL5QxKS4vaejjkBQbuRERERO2Mu1QYi6VSE6yXlhbCYjnTmkMjPzBwJyIi\nImpHHKkwGzeuQ319vaavoGAdGhqcbQ0N9SgoeKO1h0g+YuBORERE1I4wFab9YuBORERE1E7IUmGy\ns3MQFeVcjBoVFY3s7NmtOkbyHQN3IiIionZClgpjNicgLS1DPU5Ly4TZ3LNVx0i+Y+BOREREFEYm\nT06FyWSCyRSByZNT2no45AUG7kRERETthJFUmF27ymC1WmG1NmHXrnKfPocbOLUNBu5ERERE7YQs\nFSYQ5SA9Va2hlsXAnYiIiKgdSUvLRI8eZpjNPTVBPBCYcpCsWtN2Itt6AEREREQUONHR0cjOzgGg\nIDo6Wvp+b+jN2I8ffwsXuLYSzrgTERERtTMjRozEiBE3Cu3+loM0OmPPHPiWwcCdiIiIKEy0RjlI\n5sC3HAbuRERERGHEUw68THZ2DkymCPXYZIoQZuyZA99ymONOREREFEb8z4G3ue1hDnzL4ow7ERER\nUZhxlwMvU1CwDlarVT22Wps0Oe6BqFpD7jFwJyIiIiIKAQzciYiIiMgQWVUaf6vWkGcM3ImIiIjI\nEFlVmtaoWhPOGLgTERERkWGyqjT+VK0hz1hVhoiIiCjAKir2AVB8WgAa7GRVaaKjozF27Hi3/UD7\n/vm0JAbuRERERAHk2IBIURQkJw/zseRi6Kqvr8fu3e9DURRMmTJNuP9w//n4I+hSZTZv3oyJEydi\n2LBhmDFjBj777DO37922bRtmzpyJUaNGYdSoUXjwwQeF9z/xxBNITEzU/MvNzW3p2yAiIqIw1d43\nIJLtjCq7//b+82lJQRW4l5eXY+nSpViwYAEKCwuRmJiIOXPmoLq6Wvf9H374Ie666y4UFBRg69at\nSEhIwOzZs2GxWDTvu/nmm7Fnzx7s3r0bu3fvxvLly1vjdoiIiCjM6G1AZLGcacMRBZ6nwFt2/+Hw\n82lJQRW4r1+/Hvfccw8yMjIwYMAAPP300+jYsSN27Nih+/4XX3wR9957LxITE3Httdfi2WefhdVq\nxd69ezXvi46ORlxcHOLj4xEfH48rrriiNW6HiIiIwkx734BIFnjL7r+9/3xaWtAE7g0NDThw4ABG\njx6ttimKgjFjxuCTTz4xdI26ujo0NjaiW7dumvYPP/wQY8aMweTJk/HUU0/h3LlzAR07ERERUThg\n4N22giZwr6mpQVNTE7p3765pj4+PR1VVlaFrvPTSS+jZs6cm+B8/fjyef/55bNiwAT//+c+xb98+\nPPTQQ7DZbAEdPxEREVGwbEBUUbEPFRUftfrnGtugKcqlP4obNHkh6KvK2Gw2KIoifd+aNWuwc+dO\nbNq0SbM6OSUlRX09aNAgDB48GLfffjs++OAD3HTTTYbHYTIpMJnk4yAiIqLw1atXL0yZkont27cC\nAKZMmYpeva5q1THU19dj48Y3oSjAj370o4BWbXnwwTnYv//f6qx7VFQ0cnJyERlpnwuW3X+vXr0w\ncOBgHDp0AAAwaNB1rf7zCWVBE7jHxsYiIiJCmF2vrq5GfHy8x3PfeOMN5OfnY/369Rg0aJDH9/bp\n0wexsbH4+uuvvQrc4+JiDD1AEBERUXibNSsL//jHe1AUBbNm3d/q5Q4LCnaoeed/+MO7yMrKCti1\nY2MH4J57ZmDTpk0AgJ/85B5cd11/zXs83f/p06dx7Njn6vHRo0dw+fL3uOoqBu9GBE3gHhUVhaFD\nh2Lv3r2YNGkSAPts+969ez3+weXn5+P111/HG2+8gSFDhkg/p7KyEufOnUOPHj28Gl91dS1n3ImI\niMgQ+wZFQG1tA2prG1rtc8+cqcTWrb9Xj7ds2YpRo8bCbO4ZsM+48840/OEPf4SiAHfccRdqamqF\n97i7/xUrVqGhwXnc0NCAFStWYfHiXwjX+Ne/9gEAbrhhpOGxxcbGGH5vKAqawB0AZs2ahSVLliA5\nORnXX389NmzYgMuXL2Pq1KkAgEWLFiEhIQF5eXkAgLVr12LlypVYvnw5evXqpc7Wd+7cGZ07d0Zd\nXR1effVV3HnnnejevTu+/vprvPjii+jXrx/GjRvn1disVhusVubFExERkdzw4TcAABobra36uW++\nmS8sHl23bi0ef/zJgH2GyRSJrKwHASgwmSJ179Hd/eutMbTZbML76uvr8eab+VAUBUlJ13OTpv8I\nqsA9JSUFNTU1WLlyJaqqqpCUlIT8/HzExcUBsM+WR0REqO9/++230djYiAULFmiuM2/ePPzsZz9D\nREQEjhw5guLiYnz//fcwm80YN24cFi5cqFkYQURERETGjRhhfBbcVXZ2jpAjr7c41VEr3v66CNOm\nzfB9sO2IYmN5FUPOnr3Q1kMgIiIi8shiqcSiRY9qAuMXXngloKky/vr9799CcbF9j54pU+7GjBn3\navr9uYcePdr3Xj1BUw6SiIiIiPxjNicgLS1DPU5LywyqoF0kzh+zVrx7DNyJiIiI2pG0tExceWVX\ndO3aTRPEBwOLpRLl5aXqcXl5qWbnVfKMgTsRERFROxOsFayNzKZnZ+cgMtK5FjEykps0OTBwJyIi\nImpHSksLcf78eZw/fw6lpUVtPRyvmc0JGDjQuS/PoEGDgzzdp/UwcCciIiJqJyyWSk2wXlpaGFSp\nKNnZOYiKcpZ21KsqY7FU4vjxo+rxsWOfB9U9tCUG7kRERETtRLAv7DSyeNZ+D9pNmoLpHtoSA3ci\nIiIiajVpaZno0cMMs7ln0C2eDXZBtQETEREREfnO6AZHLa2iYh8ABSNG3Cj0RUdHIzs7B4CiuyNq\nsNxDMOKMOxEREVE7EQx13Ovr61FQsA4bN65DfX297ntGjBipG9QDwXEPwYqBOxEREVE70tapKKWl\nhTh71gKL5YzPVW3a+h6CFVNliIiIiNoRWSpKS9KrajN+/C1ez5i35T0EM8Vms4l7zZLg7NkLbT0E\nIiIioqD20ku/xccf/0vT9l//dQMef/zJVvn8Hj2uaJXPaStMlSEiIqJWV1GxDxUVH7X1MIhCClNl\niIiIqFU5Fi8qioLk5GFMhWhHWBGmZXHGnYiIiFpVIBYvUnBiRZiWxcCdiIiIWo3e4kVuZ9++sCJM\ny2HgTkRERK3Gvp29s7Z3Q0M9t7NvZxwVYbKycpgGFWDMcSciIiKigBoxYmRbD6Fd4ow7ERERtZrs\n7BxERTlnYbl4MTxt2/YWtm17u62HEXIYuBMREVGr4eJFqq29iJKSQpSUFKK29mJbDyekMHAnIiKi\nVsXFi+Ft+fLnYbVaYbU24eWXX2jr4YQU5rgTERFRq+J29sGvomIfAAUjRtwY0PMPHtyPw4cPqseH\nDh3AoUMHkJQ01I/Rhg8G7kRERNTquHgxePm7QZan81etWi68f+XKZVi9ep3f4w4HTJUhIiIiIpW/\nG2Rxg62Ww8CdiIiIiAD4v0GW7Pz58/OEcxYseMzH0YYfBu5EREREBMD/DbJk53fv3h2KoqjHiqIg\nPr67n6MOHwzciYiIiKhVFBSsg81mU49tNht3zvUCA3ciIiIiAuD/BlnZ2TmIjIxSjyMjo7jBVgAx\ncCciIiIiAP5vkGU2J2DgwEHq8aBBgzXnc+dc/zBwJyIiIiKVPxtkWSyVOH78qHp87NjnmsWp3jwY\nVFTsQ0XFR16Ovn1j4E5EREREqujoaIwdOx5jxoz3uoa7fXFqg3rc0NAg5LAbeTBw1ILfuHEd6uvr\ndd8TjrgBExERERGp6uvrsXv3+1AUBVOmTAv47rZGds511IK3vy7CtGkzAjqGUMUZdyIiIiJSGdlA\nyV0ai9Ec9hEjRmLEiBt1r+1vLfn2jIE7EREREQEwFjR7SmPxd3Er4H8t+faMgTsRERFRmHE3Y24k\naJbNyPuzuJU8Y447ERERkZcqKvYBUNymewQzx4y5oihITh7mVQ673oz8+PG3aGbVjeSwe5KdnYNP\nP/0YVqsVAGAymVgy8j84405ERETkhVCveOJpxlyWo240jcVTDrsRVqt2d1WyY+BORERE5AUjizeD\nlSyHPRA56v5au3Y1AG3gvnbt71p1DMGKgTsRERGRQaFe8cTIjLmnHPXW2Pn0m29OGmoLRwzciYiI\niAwKh4onjhz1rKwcIUe9NWbkr766j6G2cMTAnYiIiChMBGLGvKWrxuTmzoXJ5AxRTaYI5OY+HPDP\nCUUM3ImIiIgMao1UkZZkZMZctvjW04x84MaY6XGM4YqBOxEREZFBZnMCUlLS1OOUlLSQCyplM+ZG\nFt/6WzVGJjU1HYqiwGQyITU1TX5CmGDgTkREROQzpa0H4DVPM+bBsvh2164y2Gw2WK1W7NpV3uqf\nH6wYuBMREREZZLFUory8VD0uLy8JqaoyMq21+Nbdzq1A8Dw8BCMG7kREREQGtYeqMoHYQMpT4O3v\n57eHn3FLYeBOREREFEb82TkV8D/wD+UNrNoaA3ciIiIig0K9qkwgdk71J/C2f36hy7XeEdJgQv1n\n3JIYuBMREREZ1BobELUkf3dO9Tf/3P75DS6f3yB8fqj/jFsSA3ciIiIiL7T0BkRtzVPVGX/zzy9c\nuCC0XbwotrX3n7GvItt6AEREREShxBHYAkqLbEDUklJS0vHxx//StKWmThHeN2LEyBb5/MrK00Lb\n6dNiWyj/jFsSZ9yJiIiIwkR5eYnQVlZWbPj87OwcREY6530jIyNbLP+8pTd5CkWccSciIiLygqOq\niqIoSE4eFlIzwj/88IOhNnfM5gR07doN331XBQDo1i3Wq/zz+Ph4ITWme/fuhs8Pd5xxJyIiIvJC\nOJczPHhwvxq0A0BV1VkcOnTA8Pk1NTVCW3V1dUDGFg4YuBMREREZFKhdPf3ZwMgfHTp0MNTmzqpV\ny4W2lSuXGT7/6qv7GGojfQzciYiIiAwKxK6ebblzqT1HPUo9joyMapEcdXfjy82dC5MpQj02mSKQ\nm/uw7jV+/vMFWLRoYcDHFsoYuBMRERG1In9TbfwJ/M3mBKSnZ6rH6elTvcpRnz8/T2hbsOAxw+MT\na7Rn6H7+qVPf4NSpb/Htt9/g1KlvDI+vvWPgTkRERGSQv7t6BiLVxt/A358a6UOGJCMxcYh6nJQ0\nFElJQ70aX0bG3ejcuTM6d45BRsbdup/zxBPOh4Enn3zcqzG2ZwzciYiIiAzyd1dPf1NtAhH4e9pg\nyYi8vMUwmUwwmSLw6KOLfBpfVFQUoqKihHYA2Lr1LTQ2NqrHDQ0N2LZti9fjbI8YuBMRERF5oS13\n9QxEjj3gX430mJguSE/PRHp6JmJiung9vtLSQpw/fx7nz5/TnZEvKdkhtBUVbfNprO1N0AXumzdv\nxsSJEzFs2DDMmDEDn332mdv3btu2DTNnzsSoUaMwatQoPPjgg7rvX7FiBcaNG4fhw4fjwQcfxFdf\nfdWSt0BERETtmD8z1v6m2hglW7zqb1Wb6dPvw/Tp93p9XqCq8oSroArcy8vLsXTpUixYsACFhYVI\nTEzEnDlz3Nb3/PDDD3HXXXehoKAAW7duRUJCAmbPng2LxaK+Z82aNdi8eTOeeeYZbNu2DZ06dcLs\n2bN9XsVNRERE5OuMtb+pNkYCf9ni1fr6evzudyuxevXKgMdDo0ePE9rGjLlZfW1kRj4+Pl64Rnw8\nN2kCgixwX79+Pe655x5kZGRgwIABePrpp9GxY0fs2CF+ZQIAL774Iu69914kJibi2muvxbPPPgur\n1Yq9e/eq7ykoKMDDDz+MiRMnYvDgwXjhhRdgsVjwpz/9qbVui4iIKOy0VZ3yUOBPqo3ZnICUlDT1\nOCUlTQj8ZYtDd+zYikuX6lBXV4sdO37v2024sWnTeqFt48Z1Xl2joaFRp63B1yG1K0ETuDc0NODA\ngQMYPXq02qYoCsaMGYNPPvnE0DXq6urQ2NiIbt26AQBOnjyJqqoq3HTTTep7unTpguHDhxu+JhER\nEXknEHXK2zN/F4dqKZojWSqKxVKJd9919r/7bmBTVaxWq8c2+zcGzkWpUVFiHXm9byC8+VaiPQua\nwL2mpgZNTU3o3l37VUh8fDyqqqrcnKX10ksvoWfPnmrwX1VVBUVR/LomERERecffcoXhwNdUG4ul\nEuXlpepxeXmJJvCWpaK89toK4ZqvvfaK1+NwJyHhKo9tZnMCBgwYpB4PHDhYCMr1Hmb8f8BpHyLb\negAyNpsNiqJI37dmzRrs3LkTmzZtkv5yjV7TlcmkwGTy7hwiIqJwc+aMOON76623csY0QDZufFMI\nzDduXIfFi38BALrxjaIoiIy0z9WeOHFc6D9x4rja7/Cvf+0DANxww0ivxnfllVfqtjmuf+ZMJY4d\n+1ztO3r0CKqrz2r+Pjp27Chco2PHjsIYw1HQBO6xsbGIiIgQZsKrq6t1Fym4euONN5Cfn4/169dj\n0CDnU1z37t1hs9lQVVWlmXWvrq5GUlKSV+OLi4vxOtgnIiIKN8uXrxcCy02b3sSvf/3rNhxV+xEV\nFaHbFhsbAwBYuHA+cnNz1RSl6OhoLFw4X+13F9g7+gFnqpOiKLj55jFezXYvXDgfc+bMUXPSo6Ki\nNJ+/fPl6TY32xsZG4e9Ddg/hLGgC96ioKAwdOhR79+7FpEmTANhnxvfu3YusrCy35+Xn5+P111/H\nG2+8gSFDhmj6+vTpg+7du+Of//wnEhMTAQAXL17Ep59+ivvuu8+r8VVX13LGnYiISKKhoUm3raam\ntg1G0/7MnDkLFRUfqw9HUVHRuP/+B9Wfb8eOVyI9PRPbt28FAKSnT0XHjleq/dde2x9Hj36uuWb/\n/gM0v59t27agsrISALB+/SZMn36P4fF17HglpkyZqn7+lCnTNJ9/8WKdcE5tbZ3m8zt2vBKpqeko\nLNwOAEhNTddcw5P2HtwHTeAOALNmzcKSJUuQnJyM66+/Hhs2bMDly5cxdepUAMCiRYuQkJCAvLw8\nAMDatWuxcuVKLF++HL169VJn6+3b6HYGADzwwANYvXo1+vbti969e2PFihVISEhQHw6MslptsFpt\nAbxbIiKi9icr60H8+9+faQLLrKwcNDaKixbJe/HxZqSlZeCdd+zVYNLSMhEX10Pz873jjhS88842\nAAruuOPHmr6HH16IRx+dp7nm3LkL1fdYLJUoLi5U+4qL38HYsTd7leqUmpqB9977KxRFQWrqFM3n\n22xiLGW12oS/D9eYy2oF/37+I6gC95SUFNTU1GDlypWoqqpCUlIS8vPzERcXBwCorKxERITzK6K3\n334bjY2NWLBggeY68+bNw89+9jMAQG5uLi5fvoxf/epXuHDhAm688UasXbuWixyIiIhagKNOuWtg\nGY757RUV+wAoPu9O6klaWibef/9vUBRFt5zkrl1laiWXXbvKMW3aDLVPrzjHd99Vqb8jd4tbH3/8\nSc05nu7PUTUHUIR4q0OHDsL7m7fpLcCdMGFiWP4dNRdUgTsAzJw5EzNnztTtKygo0Bz/5S9/MXTN\n+fPnY/78+X6PjYiIiORkgWV755ojnpw8THey0J/A3lNgrFcOcvz4W9Sgd9Wq5cL1Vq5chtWrjdda\nN3J/7qSkpOPjj/+laUtNnaI5NvrwEI64PJeIiIgCKrB1yvUF8wZPsnKYgahz766cpKwcpOvCUL22\n7OwcREY666xHRop11o3c3+rV+juzlpeXCO8vKyvWu0XSwcCdiIiIAs7XOuVGBPMGT7INkBxtwVrn\n3mxOwMCBzgp9gwZp66wbub8dO7airs6xM+tWr8dg36TJ+cAXFRUtPDyEKwbuREREFFKCOfCVzXhb\nLJUoKXEu/iwpeSegO5fKdiaNjBSzpF3bLJZKHD9+VD0+duxzrzZ4su/M6pxBLysr1pxvJCh3rJNw\nCNd1EnoYuBMREVHIMDLjG8wKCtahsbFBPW5sbNAEvv6S7Uw6f36ecM6CBY9pxueowQ4ADQ3ejc++\nM6uzIozNZtPszGo2JyAlJU09TklJ0w3K09Iy/1MlMCYs10m4w8CdiIiIQoZsxretyWaUf/jhB+Ec\nvTZfWSyVOHbMOWN+9Kh2xnzIkGQkJjr3vUlKGoqkpKGGx5ednQOTyVnhz2SK0Nzfl19+IZyv1+ak\nv0dOQ0M9Ll26hMuXL2l+3+GOgTsRERFRgLR1moeRGf28vMUwmUwwmSLw6KOLfPgU9/vaREeL5R5d\n2/RKPep9Y7J8+fOw2WywWq14+eUXfBhj+8TAnYiIiEJGKCxcTEvLRI8eZpjNPYU0DyN1zFtaTEwX\npKdnIj09EzExXaRjcW0rKFin1ogHAKu1SfNg0KtXb+F81zYj35gcPLgfhw8fVI8PHTqAQ4cOGLm1\ndo+BOxEREYWMtp7RNsJTOUzZ4lEHX8tdGn2wmT79Pkyffq/u+YriDA9NJpNXD0ZXXHGFoTZP3NWa\nJwbuREREFGI8zWgHC3flMGWLRwH/yl0G4sFGUVzzzrU56Ckp6cL7XTdQsteBd1apiYyM1AT+ofCN\nSTBj4E5EREQhpTU2eGopssWjgP/lLidPTlVz2CdPTvHqXHsqTJN63DwVZuvWzcI5W7ZsUl+bzQlI\nT5+qHqenT9M8OBipKiOrfBPOGLgTERFRyGnJDZ4CwV2qi2zxaCDKXe7aVQar1QqrtQm7dpX7MHr3\nTpw4Lm3z7hsRsarMkCHJ6NSpk3rcuXNnTeWbcMbAnYiIiCiA/El18bfcpb+Bv9EcfE88fSNipKrM\nwYP7cenSJfW4rq6Oi1P/g4E7ERERUQB5SnUJVI63pxl9fwJ/szkB/fsPVI/79x+oSWW5+uo+wjlX\nX93X8PWNjI+LU91j4E5EREQUILIZbzHHO10TGBsJ7P2Z0Tcy/s8/P6wef/75Yc34m5ePtLfFtNr4\nwh0DdyIDIKJ3AAAgAElEQVQiIqIA8X7GW7uZkZGqMLIZ/YgIZ1WXiIhIr2b0165dDZvNOSabzYa1\na3+nHusF4s3bPI1PVpUG4OJUTxi4ExEREbUSe453iXqsl+PtaXGnxVKJkpJC9bik5B1hRr9bt27q\ncWxsrG45SHepNl9//ZXHtlOnvhX6T592tsm+cXC9d4eysmLN8ZAhyYiP764ex8d35+LU/2DgTkRE\nRNRMS22AZJ+Rd1aVaWhoEGbkPS3ulFWlOXhwP777rko9rqo6KyzsrK+vx+rVK7F69UqvU1nq638Q\n2n74wdnmb449YA/+q6u/U4+rq7/zurJOe8XAnYiIiMhFS26A5BrkempzV+5Sdr6RhZ07dmxFXV0d\n6upqsWPHVk1f377XCOe7tvXr11/o12tzx75Bk7NqTWSkWLVGlq4Tzhi4ExEREbkwsgGSpxn5YN7Z\n1WKpxLvvOu+prKxYM5udmzsXiuIMDxXFhNzch9XjefMWCtecN+8R9XV2dg5MJuf5JpNJE5ibzQkY\nONC5c+ygQeLOsd98c1L4DL22cMTAnYiIiOg/jNRBl83IR0dHY+zY8RgzZryQ6tKhQwfh/XptvpIt\n7HzttRWaPpvNhtdee0U9tu98mqkep6eLi2NlrFary2vt4luLpRLHjzt3jj12TNw5Vu/zvB1De8XA\nnYiIiOg/jORoy2bk6+vrsXv3+9iz530hsPe36ovMkCHJSEwcoh4nJQ3VLOw0svNpamo6FEWBoihI\nTdVWgVm7drVwvmsai9ivTXMxkuNP7jFwJyIiIjLIyIy8p8DebE7AoEGD1ePBg6/zajbZyIx9Xt5i\nmEwmmEwRePTRRYav7VBWVgKbzQabzYayMm0VGFkai6wqjRGVlacNtYUjBu5EREQUcnyt+iIjqzMu\nm5GXBfZGUkU8sVetcS7ujIoSF3fGxHRBenom0tMzhQ2Trr12gHBN1zZx/EWa8envnCq2uWOkjruR\nWvHhioE7ERERhRQjVV98DeyN1Bn3RBbYG00VcTd+e9UaZw56WtpU3Rn76dPvw/Tp9wrtssWla9eu\nhtXapB5brU2aVJfc3LkwmSLUY5MpQrN4NSHhKuH6V13lbNu6dbPQv2XLJs2xXslJvbZwxMCdiIiI\nQoqRHHNfyznKGCln6C/Z+NPSMtG1a1d07drNbdUad4F/VVWV0OZa912WCiOWu8yQpvq4VHbEl19+\nIfQ3b3N9MPDUFo4YuBMREVHI8DfHXEa2gZKsnKG9HKJ2Rtr1fNn1jY6/oaFBM3Pvqr6+Hvn5q5Gf\nv1oI/GV13o2kwmRk3K0+OGRk3K3p00v7cW3r2LGT0N+8LSEhQXiP66x9OGPgTkRERCHD3xxzGdkG\nSsZy1G1wx2xOQEpKmnqckpImXF82/qKi7eoGSkVF24XPKCrajvPnz+P8+XNCv2upRr02eyqMax12\nbSoMYC93OWfOXMyZM1codykL/BcufFzof+SRn2uOL168KLznwoULQls4YuBOREREra6lFpcaKeco\n42kDJVmOekHBumZ1zJuEz29qanJ5rQ2kjT2YFKrHeotfPfXr5aC7ttkfLJwLSFNS0r2qejNhwiSh\n7dZbb1dfd+/eXeiPj9e2+bsAtj3zKnA/deqUV/+IiIiImvMnB91Iqom/oqOjkZ2dg6ysHGFG2V8W\nS6VmAWx5eYlX3wjYF4+6PhhYhTrqnvpdHwqcbdqUm4iICJfXYqjo6fe3fn2+8P7169eor5tvAAUA\nv/vdK5pjI7P+4SpS/haniRMnQlEUw+8/dOiQ1wMiIiKi9s2Rw21/XYRp02YYPteRyvLOO78HIKay\nZGfn4N///gyNjfZg1NfFoyNGjNRtz87Owf79/1YD4OYPDrJ+MbC2V235xS+eNnS+rE66rF9/8enX\n6muLpVJTu72srAQTJkzS/Iw9/f7q6mqF69fWOtv0NoD64gttm9mcgDvvTMXOnaUAgDvvTOXOqf/h\n1Yz7q6++ilWrVmHVqlV4/vnnYTabceONN+LJJ5/EsmXL8MQTT+CGG26A2WzGCy+80FJjJiIiohDl\nbw464DmVxWxOQP/+zrrkAwYM9Cno81yO0X0OvKzf+6otma0atBYUrFMfegCgsbHBqzUEehO83kz6\nOhw79rnL6yNen99eeRW433bbbeq/Dz/8EGPGjMHGjRuRlZWFlJQUZGdnY9OmTRgzZgz27NnTUmMm\nIiKiEBWIHPTo6GiMHTseY8aMF1JZLJZKTdB39OgRrx8M6uvrsXatflUWwB5MX3ml+3KMnh4sjORv\nezq/b99rhPNd22T9+p/fV339ww9ivXTXNtnvr2PHjsL5rm2yDaAA4ODB/Th61BmsHz16BIcOHRDO\nC0c+L07dtWsX7rrrLt2+1NRU/OlPf/J5UERERETu1NfXY/fu97Fnz/tCYC3L8TaiqGg7vv/eUZVl\nh+57PE0ie8qRF/O3TbpVW9w9mGRmThc+b+pUZ6pKbu7c5iPVXL/5Tqr2thj1tb+7liqKGFq6tt1x\nx4+F/jvvTNUcr1jxkvCeV1550fAY2jOfA/eIiAgcPHhQt+/gwYOaP0oiIiIiIDCLSz3VOZeloji4\nS4WRVWVxtDnKLXpbJ95sTsCAAc468AMGDBZSYTw9mBjZ2VX7YOBdmkpl5WmPba4VZxxSU6fofrZe\n26ZN64X+jRvXaY718uT12sKRz9F1eno6Vq5ciVdffRWHDx+GxWLB4cOH1Rz49HTxF0tEREThzd8c\nblmOtZFUFE9VUdwtHjX6+bLr21N5nHXgjx8X68D7s4GUWI7S6nUqkieyBwdZqo6sjrz9WKyDb7O5\nr40fTnwO3BcvXoz7778f+fn5yMzMxC233ILMzEy88cYbmDlzJhYtWhTIcRIREVE74SmHW0aWY21P\nRdHuXNo8FcWfGXsjOfqerr927WrYbO5TeWQPBrIZb3/JAm9ZDnxu7lzNYlRF0aYCXXnllcL5V17Z\ntVkLA3d3fA7cIyMjsXjxYrz33nsoKCjAsmXLUFBQgPfeew9LlixBVFRUIMdJRERE7URL1kkXZ/Qz\nhJ1JS0qcqTAlJe94PWPviSzw9vfBoLBwm3C+ozQmAIwePU7oHzPmZsPjl+XQy3LgzeYEpKdPVY/T\n06dqfv5nzlQK5585o03PkS1wDWc+Be4//PAD/ud//gf79u1D165dMXLkSKSkpGDkyJHo2rX5UxMR\nERGR1ogRIzFixI1en5ednSPMqDfPkc/IuBtdu9qrvmRk3K3pk5U7lM3Yyz5fFnjrpQV5kyokC/yN\n5JB7IkuF0avQ07wtNTUdiqJAURSkpqZp+vRmzsU2vbx870tKtkc+Be4dOnTAvn37NFv2EhEREQWK\nu8Wjdp7TJqKjozFnzlzMmTNXmNGXpXrIZuyNfL5sbJ7asrNzEBnpzFpovoGUv98IyMh/PuJDRs+e\n2rayshLYbDbYbDbNZk5GuT5YeWoLRz6nyowdOxa7d+8O5FiIiIiIPC7uFBdfNukuvvR1Rh+Qz9h7\n+nx71Rxn4B0VpQ28O3ToIHyea5vZnICBA51VZwYN0ladkX0jcP/9s4TrZ2XlqK9ddzF1cK3YopcK\n0/wbhObq651Btawqj5HFqb17Xy28p3fvwD2chDKfA/dp06ahtLQUzzzzDN577z3s378fBw4c0Pwj\nIiIi8pY/VVVkZIEz4HnGXqZ5uceBA7WBd3Z2TrPFm4omsLdYKnH8uLPqzLFj2qozsm8E9u79hzCm\nPXv+rr7+9lvPqTZ6qTBnzjjbvv32G6Hf9ZqBqKPf0CDOruu1hSOfA/ef/vSnqKysxFtvvYWf/vSn\nmD59Ou6++27cfffdmDZtGu6++275RYiIiIhcyBZ3+lsHXjYjbux895/fvNzj0aPawLuqqkqT022z\n2fDdd1XqsT1H3hmkNjQ0CN8oePpGQJbqEh0tPri4tnXpIm7Q1KXLFeprveIjrm1ff/2V0O/a1rlz\njNDfvO306VPCe06f/lZoC0eRvp5YUFAQyHEQERERuV3c+fjjTwKwzzinpKShuNi+o2lKSppu3nVF\nxT4AipAuYz8/3eX8dN0NkPLzVwNQ8MorqzWz7o4Zb0cll+Z16N0tfnWM392uoK+/vl72o1FFR0cj\nMXEIFEXx+huBHj3M+OqrE5o2s9msvpZVfdGryuhNpcbMzOnYvHm9pm3atHs0x4pigs2mXUfJjT3t\nfA7cR40aFchxEBEREflArDbiyJFXFAXJycOE4Na1uEZTk5hzXVS0HefPn1dfz5hxn6Z/0qTb1cB9\n0qTbvBrt5cuXPLZlZ+dg//5/qw8vet8o1NZexAcf7AUA5OT8FDExzllyWSrQ2bMWod9icba5pvHo\ntckWjvbtew0OHtyv6XetA++a/+5QXLwDkyenqsd9+vTBV199qXnP1Vf3Fc4LR3x8ISIioqAhK7do\nsVSivLxUPS4vL/Fq51H7+SVuz5ctrgSAVateVl+/+uorwvg9pdL069dfuGfXNsc3Cg563wg8//yv\n1dcvvPAbnc93nwr0ww+Xhc93bXvooXlC/09/Ot/j+K+91tk2YcIkof/WW28X2jyJi4vXaYvz6hrt\nlV+Be3FxMe69916MHj0aI0aMEP4RERERec997oWsTrosR15cPNmkWTwpW1x58OB+HD58UD0+dOgA\nDh1yFuQQF49qU2nmzVso3NO8eY+4vd/mP4uDB/fj+PFj6vGxY0eFz3fdXTUlZYrm8zt0EDcycm0b\nO/ZmxMd3V4+7d++BMWOcmzrpjf/hh53jl9WRnz8/T+hfsOAxzXGnTp2F98TEXCG0hSOfA/fi4mL8\n8pe/xKBBg1BTU4Mf//jHuPPOOxEVFYX4+Hjk5OTIL0JERETkwmi5R0/newrsZRsYyRZXrlq1XOhf\nuXKZ5jgtLRM9ephhNvfUBPGAPbAeNOg69Xjw4ERhZ1dP3wgsW/ac8PkvvfRbzbFrSceGBu1i1V69\negvn9+6tbXvmGednPP30b5u/XZNv3jz3XFbucciQZAwenKgeX3ddEpKShmrev2fP+8I1/vGPvwlt\n4cjnwP3NN9/Eww8/jP/93/8FANx333147rnn8Oc//xlxcXGIiRFXDRMRERH5w9+qMi29gRFgXzya\nnZ2DrKwcIb/eYqnEl19+oR6fOHFcE5jLqspcviymuri2WSyV2LnzXfV45853NdfXW8zq+vMEgM6d\nuyAyMhKRkZHo3FlbZUZ8sLJqxhcfL6a5dO/eXXN8zTX91Neu+e8k53Pg/tVXX2HEiBGIiIhAREQE\nLl68CMBeRig3NxcbN24M2CCJiIgoPLimeTikpk5RX8tSUWSBfWbmdOH6U6fOUF/rBZKubUZSPQD3\nG0DJAnNZOUeZ115bAdf0GpvNhtdee8X9CTqKirajsbERjY2NKCra4dW5NTU1Qlt1dbX62mKpxB//\nuEs9/uMfd+nWjid9PgfuXbp0Ub+K6dmzJ44dc+ZbNTU16f7iiIiISK6iYh8qKj5q62G0Cdc0EYey\nsmLNsSwVxVNgL7t+bu7cZhskmTQ7kw4ZkozExCHqcVLSUCHVoyXJdhV1nc3Xa5NVnZEtzpUtHo6N\njRWuHxvrXFj6yitiOcwVK17UHOuVfmQ5SDuffwrJyck4cuQIAGDixIl47bXXsGnTJmzZsgXPP/88\nhg8fHrBBEhERhQtHKcONG9fpbj9PnlNRAM+BvYzZnIDJk+9SjydPvkuo6pKXtxgmkwkmUwQefXSR\nV9eXfSMgC6z1ata71mHv2LGT0O/aJvtGQ7Z4187m5jVw9uxZ4fquJSib15AHgC+/1LbZdArD67WF\nI792Tu3VqxcAYMGCBRg+fDiee+45PPXUU4iPj8czzzwTsEESERGFC0+lDAMlmGf0jeawu0tFATwH\n9rIZYwD44otjLq+PormYmC5IT89Eenqmpoa6EbJvBGSBdXZ2TrNvBBTN+BcufFw4/5FHfq6+ln3j\nIFu8K8txr6urFc7Xa/OEgbt7PgfuP/rRj5CSkgIAuPLKK7F69Wp8/PHH+Oijj7Bt2zb07ctC+URE\nRN6QlTIMhNaa0ff14UAW2BrlLrA3mxPQoYMzmO/YsYPm+gcP7seRI4fU4yNHDmnKLTpMn34fpk+/\n1+txAcDkyanqjP3kySmavq1bNwvv37p1k+bYUxDbfCEoAE15RxnZ4l1/c/CZBuMfn39SRUVFqKio\n0LRFR0ejS5cuqK6uRlFRy8wSEBERtVeyUoaB0Boz+v4+HPiT6iKze/ffcemSc6fSuro67NnzD/XY\nSLlHf+3aVQar1QqrtQm7dpVr+vRy1E+ccLatXbta02ez2TSpLAUF69Cc69+Q7BsNMcdf0eT46/0+\nvfkdy1KByDOfA/clS5YgKysLa9asEfpOnjyJJ554wq+BERERUWC1xoy+47r+PBzIctj9sWbNa0Lb\n66+vCuhneCL7Hchy1GWpLLIZcWPfaGgDd+34xb8X17bmpSWbtymKGHrqtZE+v35S06dPx6pVq/DI\nI49onl6JiIjIe/7WKJdpjRn9QD0ceMph94csf9pouUdfU4FkvwNZjroslcXIjPjkyalQFAWKYhJS\ndQoK1sFmc5/DrpfWEhHhXDPQ1NQo9Lu2RUZGCv3N25hO455fP4WpU6diw4YN+Oijj/CTn/wE33zz\nTaDGRUREFHYCld/dllrj4cAfeoFvnz7OdXn2HHHtjHPzHHEjqUC+BvZDhiRrdlYdNOg6TbnJCRMm\nCefceuvt6mvZjDgAlJWVwGazwWazoqys1KvxnTsnlvuuqXHWaZftnJqWlin0T5kyTXMs+9YhnPn9\n+DJixAhs374dERERmDZtGvbu3RuIcREREYWllszvbukZ/WDiLnCOixN39nStM27PEdduYNT8wUOW\nCuQpsDfyO7juuiSX10M0fZs2rRc+b+NGZ167Xh31uDjn/Yl12t/RBPayqjb+KizcJrTt2LFVc9yt\nm14teLEtHAXke4eEhAS8/fbbGDduHHJzc7Fp0yb5SURERCRoyfzu1pjRb+nAz4j6+nrk569Gfv5q\n3cDZNTUjMjLSq4cXWeBrb3Mf2JvNCUhJSVOPU1LSNL8Di6USO3e+qx7v3FnqVarRd999J7RVVVWp\nr8U67VbN4lYjVW08aZ4T37zt0qU6ob9525kzp4X3VFaKbeEoYAlDHTp0wLJly7BgwQKUlZUF6rJE\nRERhp6Xyu4GWndEHjO182tKKirbj/PnzOH/+HIqKtmv6zOYEDBgwSD0eMGCwJnCWzYjbU4Ea1OOG\nhgbNjLzFUomSEmdgX1IiBvZNTU0ur7WpJQUF6zQ54U1NjZrr33//LOF+s7JyhDZ3vv76K49tsqo2\nZnOC0N+zp7NNtoYgKipK6G/exjru7vkcuP/5z39GYmKi0P7QQw9h48aN+O1vf+vTdTdv3oyJEydi\n2LBhmDFjBj777DO37z127BgWLFiAiRMnIjExEQUFBcJ7Xn31VSQmJmr+OerPExERhZuWnNEH/K/z\n7S9xcWyRJnC2WCrx+eeH1ePPPz+s6Zd9KyG7v4KCdWhsdAb2jY1iYO/6cFNeXqL5/AsXLgjXd23b\nu/cfQv+ePX9XX8fHi6lArjn6rg8dem3R0WJpRte2Tp06Cv3e5J83NIiLV5u3RUSIC1j12sKRz4F7\n79693f4Hf8MNNyAzU1x8IFNeXo6lS5diwYIFKCwsRGJiIubMmYPq6mrd91+6dAl9+vTB448/jh49\neri97qBBg7Bnzx7s3r0bu3fvxltvveX12IiIiNqLlpzRb2v2VBDnjLbV2qRJBVm7drVm9tZm06aK\nAJ43SJKRBfZiqop2fKdOfSuc79omu35NjefFoz/8cFnnfGdbr169hf7evZ1t+uUovxba3HGtWOOu\nzXVxs6e2cOTX48v333+P//u//8OJEyd0V1X/8pe/9Op669evxz333IOMDPuT7tNPP42//e1v2LFj\nB3Jzc4X3X3/99bj++usBAC+99JLb60ZGRmoWZhAREVHLaK0Ndioq9gFQhAcQWZ1zWT/g3CDJ/roc\n06bNUPv8vT/Z59fXi4G5a5us3OPVV/fBwYPnNf2ulXRMJpNQ+cW11KLepKxr6pAsY6VTp05CifBO\nnVgRJlB8nnH/8ssvcccdd+C5557Dm2++iZ07d2LLli3YtGkTSktL8de//tWr6zU0NODAgQMYPXq0\n2qYoCsaMGYNPPvnE12GqYx0/fjxuu+02PP744zh9mgsciIiIWoJ98aczZzkyMkp38aev5RIBz1Vb\nZHXOZf2yOvTZ2TlwLRcJKJr7kwX2ss/v16+/0H/ttc42WeCfmztX09d859M+fa4Rzu/bV2xzRxbY\nu1bocbaJ6TueP8Nzuk448zlwX7p0KYYPH449e/bAZrNhzZo1+PTTT/Hiiy8iJiYGK1as8Op6NTU1\naGpq+k/9VKf4+HjNamhvDR8+HEuXLsUbb7yBp59+Gt988w1mzpyJujpxVTMRERH5x2xOQHq6M102\nPX2qULnGSB10TzxVbcnNnauZQTaZIjSBa2bmdOF6U6c6Z9SN1aF3Tjs3L6Iiq6rTPLC2tznHN2/e\nQk0VFkVR8PDDj6jHly+LG142b9PuRKodoF4Ggmuw7e83CmfOVOq0eTdh2jwWtLe5T4kOJz6nynz2\n2Wd49tln1SevhoYGREREIC0tDTU1NfjNb36DLVu2+D1Am82mW1rIqPHjx6uvBw8ejGHDhuHWW2/F\nzp07MW3aNA9naplMCkwm38dBREQULjIzp+HPf/4DFAXIzJyKyEjtPGFhYRHOnrUAsFecmT79HsPX\nPnNGnBG/9dZb1YeDXr16YcqUqSgstFeTmTJlKnr1ukp9/86d4oZD5eUlauqtu3KGjnvIz/9/mj6b\nzYb8/NX41a+eAQChio39frep16+pEcs1njtXrY6xV69eSEvLUCvTpKVlaMYfERGhqUrjaHOMb+PG\nNzU54zabFRs3rsPixb8AAIwbNx4ff/wvzfnjx9+inp+WNkXoT0/PVPvd5Z87+vVSaWw2CH8Dzbn2\nuwv+ZdcIBz4H7vX19ejSpQtMJhO6du0Ki8Wi9g0aNAiHDx/2cLYoNjYWERERwux6dXW17gppX11x\nxRXo168fvv7a+EIKAIiLi/HrAYKIiChc1NdHqZVVYmNjNOkVp0+fFsolpqX9GFdddZVwHT3Ll68X\nZsQ3bXoTv/71r9W22bNn4a9//RMURcHs2Q9oPj8qKkK4ZlRUBGJjYwAACxfOR25urvpNQHR0NBYu\nnK/2f/utmKry7bcnDfe/8oq4Ju/ll1/A9u3OgH/WrCz14WTWrCx06RKj9vXu3VuIYXr37q1eX3Z/\na9f+P6F/zZrf4a67JgMAiot3CP1FRdswduwoAEBMTAy+//57TX9MTIx6fZNJQfPNU00mRe3v27ev\nMP5rrrlG7ffEyHvaO58D9379+uHbb7/FyJEjMWTIELz11lsYM2YMIiMjsXXrVpjNZq+uFxUVhaFD\nh2Lv3r2YNMm+na/NZsPevXuRlZXl6zAFtbW1OHnypMcqNHqqq2s5405ERGTAli2bUVtbCwB44431\n+MlPZqp9K1as0qTH1NfXY8WKVeqMsExDQ5NuW01NrabtoYfs6Se1tQ2orXWWO5w5cxYqKj5Wg/+o\nqGjcf/+D6vkdO16J1NR0dcY+NTUdHTteqfb37t0H586d03zW1Vf3Mdzv+Lm4qq2t1Yx/27atauWb\nt976veYbiaoqvQ2WvlPPv/POVHzwwQea/smT09T+y5fFqjKXL19W+0+c+FLoP3HiS7U/I2MaCgre\n1PRnZk5X+xsbxXKPjY2Nav+ECZOE8ydMuE1z/5GRkcK3CpGRkcLvWE97D+59DtxTU1PVWfWFCxdi\n9uzZGDVqFBRFgc1mw3PPPef1NWfNmoUlS5YgOTkZ119/PTZs2IDLly9j6tSpAIBFixYhISEBeXl5\nAOzpOcePH4fNZkNDQwPOnDmDw4cPo3Pnzujbty8A4Pnnn8fEiRPRq1cvnDlzBqtWrUJERARSU1O9\nGpvVaoPVyuL/REQUHtxVbZGxWCpRXOycUS8uLsTNN09UU1ncba7T2CiWCdSTlfUg/v3vzzSBd1ZW\njnD+8OE3AIDQHh9vRlpaBt555/cA7HXa4+J6aN7n+v/3Vqv2GhkZd+PAgX9rrpmRMV19z5w5/4NH\nH/0ZHHnw9ln/uWq/u6DU0S/+/N7B2LE3qz8/d+UcHeevXLlc6F+5chlefTVfaHflON9s7onvv9dW\npenZs6fav33774Vzt23bgjvu8Fw203H+xo3rhb6CgnWa892VvDT6N9Ke+Ry4P/jgg+rrH/3oR3j3\n3Xfx97//HT/88ANuuukmDB482OtrpqSkoKamBitXrkRVVRWSkpKQn5+vLqSorKxERITzKyCLxYKM\njAw1hWXdunVYt24dRo4cqW7GdObMGTz22GM4d+4c4uLicMMNN2Dr1q2IjY319daJiIjaNcfiUUVR\nkJw8zKuNmtzVUf/FL54GYK/Ksn//vzWBt17VGXccGyS5Bt7NF7/KpKVl4v33/wZFUYTdY+0bJDnz\n4MvLSzBhgvPBo7Bwm3C9d975vXp/gCNdxBm4u9LbgMh1ltrd4tjHH38SgD1DoXng77rzaPPZfkBb\n271fv2vx5ZcnNP2uVWv0uD5r1dWJs96ube5y8J3X4q6o/gjYNlRXXXUV7rnH+OISd2bOnImZM2fq\n9jXfGbV3797SXPrly8UnTyIiCm2+zgaTMY6qLfbXRZo65jKycoVGA29Pv+NJk25Xz5806TbDY3OI\njo7G2LHjASjCQ4kscP7666+E67m2FRSsa7bBklVzvr/L5fzdmbZ50A4AJ058ob4+eVJcA+i6wZIj\ns8KV68NJ8xrx7trIN34F7k1NTfj0009RWVmpW87JsZESERFRoPgzG0xyenXMx4+/xfCstmwDIMDz\njDcg/x2vWvWy+vrVV1/BL3/5jKGxuV7/r3/9EwAFU6ZMa9W/oWuvHYBjxz4X2hxGjx4nVHUZM+Zm\nw+B1Jh4AACAASURBVNePiYkR8ui7dOli+Hy9VBzXvHjZjHmHDh2F8pQdOnQ0/Pnkmc91dQ4cOIDb\nb78dM2fORF5eHpYsWaL598QTTwRynERERAA81/Am/xmrY+6erE46YJ/xzs7OQVZWjm7Q7Ol3fPDg\nfhw+fFA9PnToAA4dOmB4fIC9ZOP58+dx/vw5oXzj6NHjhPe7Bs4JCWL1G9c2WR33e+4Rswp+8pP7\n1dcFBeuE/g0bnPnpV13VS+i/6qre6uuGhgah35da+b7q2TNBaEtIcLbpPQCazdpztHXo3beFI59/\nCk899RS6dOmCDRs2YM+ePdi3b5/m34cffhjIcRIREUl3taS2V15eIrSVlRULbSNGjNRNg5H9jlet\n0l98aZR4/SLN9WWBsx7X9BfZ/bvLkXeQbbDkrs68g16Q3pqBe2WluNmS6471ehspNd9wSa+KHyv7\n2fkcuB87dgyPPfYYRo0ahbi4OFxxxRXCPyIiokDydzY4WFRU7ENFxUdtPQxd2dk5mi3svV086q9A\n/Y63bXsL27a9LbS7WzzrIAucZYGpjHwNgDgj7TqL/e233wj9erXjW4rswcFd1RsHvc2Vmj98u6YO\neWoLRz4H7v369dOtRUpERO1fMAeewc6Rv71x47pWnQk1yrF41MHbqi3Z2TkwmZzhhckUEdDAf/78\nPKFtwYLHNMe1tRdRUlKIkpJC1NZe1PTJAud+/cQKK65tssWX9vt3VlFpfv/N8/2bt1VXVwv9330n\n1m53Jzq6g6G2tvLdd1VCW1XVWc2xLJ0onPkcuD/xxBN4/fXXcfz48UCOh4iIglxbBp5tPRscCMGQ\noy978EpLy0SPHmaYzT11F4/K+Z7WIMsR7969u2aGV1EUxMdrUy2WL38eVqsVVmsTXn75BU2ffo61\ns00WNLo+lLhr0y7g1C7mzM2dKwT2ubkPq8eyGWtZ/vfAgYOEfr02X7VGOcf169cKbW++KbaFI68C\n97S0NPXfr3/9a5w5cwZpaWmYMGGCpi8tLQ3p6eJ/eEREFPraMvD0dza4rQVDjr6RBy/Z4lHAffBv\nL4eoTUXxJtVFliNeULBOEyjabDbN9WWLV/Xux7VNloMeHx8v9LvmaNvHJ5aDdBD/hjM0f8OdOnUW\nrq9t0wuSnW0TJkwSem+99Xb19TXX9BP6r7nmWp1rtp22TgcKZl4F7kOHDkVycrL679Zbb8WUKVMw\nevRoTXtycjKGDh3aUmMmIqI2EgyBp/+zwW0nGHL0jT54uVs8CgTmW5eWSreSLV6VLd6U1WnXS1up\nqnKmfxips56aap/cVBRFfe3w6KOLhPPz8harr2Uz3rLFtePGTRD6b775VqHNHVmOO7Usr+q4L126\n1OcPOnXqFMxmMyIjA7bnExERtTLZ5jStwTEbrLd5Dnnmb4121/PcbdBkZGfU+vp65OevBqDglVdW\na36PKSnpQh1z11QZWb+M3syta5ssh91IqoxMWZn9WwWbzYayslLMmHGv2udIBXIE43qpQJ5culTn\nse2ttzYI/Zs2vYnJk1MNXZ87n7atVimK2dTUhEmTJuHIkSOt8XFERNTOeZoNDmZtnaMfiBl/2bcu\nRtKZPNVRl6XKyPrvv3+W0J+VlaO+vnRJrBrj2iYLzI0sjvXEYqlEcfEO9bi4eLtQjtJTKpBMZGSU\nx7ZQCLxd1wB4agtHrVbNPtj+KIiIyHttHXiGulDP0QeMBf+e0plkddRlqSYXLlwQ+l3b9u79h9C/\nZ8/f1deyoLBv32uEftc22eJYWSrO2rWrhX7XcpT+0tuASa8tmOllZ0RFMWMDaMXAnYiIQl97CDzb\nmpEc/ZbK/87OztHMvkZGRrl98PJnDJ4Wt8rqqMucOvWtxzZZ4N+nT1+hv29fZ5u96otrOUuTpuqL\nbEZcr867a9vx40eFftc2WVUdGdmMeiBSfVpafb18nUC4Cq7fFBERBb1QXhzaWjwFvbKKLS1ZbtNs\nTtCUBhw0aLDug5cjBz0/f7UwBqOBpbt0Jlkd9Q4dxJrjrm16QZ1emztRUZ5TSewPp5nqcVraVM3P\nyMjiU09k52/dulno37Jlk+Hr660TdW2T5fC3NL2fv14b6WPgTkREXjFSKjCcGQm8PeXot2S5TYul\nUjO7e+zY57pVgfzJQZeR1VGXPRjINkiSBf5699u8LSPjbnTq1BmdO8cgI2Oa8H5PEhKuMtTmzpdf\nfmGozZ2OHTsZanNHliPvr/aQytOWGLgTEZHXQnVxaGvwJ/Bu6XKb9vx0Z5DU0NAg5KfLctCN2rbt\nLWzb9rbQ7pof7zoOB9mM87x5C+G6wZOiKJg37xH1WJYOFBsbK1w/NjZOaIuOjtKdCW6+E6u9zbmT\nvF4Q2thoPDD1d+fTK664QqftSvW1LLDXG6s349fffIvlIgOFgTsREVGA+Bt4B0Odd1kOupEFyrW1\nF1FSUoiSkkIh0JVtriObcTabE3DLLc6647fcMlEzY282J2hqo6empmv6z549K1zfUdrSobS0UP3G\nofnD18mTXwvnnzzprPOuV25SLz3InV69egttvXuLbe6cOVOp0+bMsdfbQMqbcpMynTuLG0jptZFv\nWiVwVxQFI0eORExMTGt8HBERUZsIhsDbEyNBtywH3cgC5eXLn4fVaoXV2oSXX35B0yeb8TWS6vGP\nf7yn+1qfdrb3hx8uC+9wbbM/fBWqx6Wl72gevmQ54v7OmLd0Ksnp06d02sQFv77q0aOHTpvZq2uE\nwu6ubaVVAneTyYSNGzeiX79+rfFxREREfmmpqi4y9sDamZ4RFeW+6osvjATdV1/dRziveZunBcoH\nD+7H4cMH1eNDhw7g0KED6vHChY8L13/kkZ8b7t+69S00NTm/EWhsbMS2bVvUY4ulUpOHX15erAm8\n9dZluLbJ04k8p4L4O2PuOnvvoLebq69aenGqflUd8WHBk/Pnzwtt339/zucxtSc+B+6JiYlISkrS\n/TdkyBD893//Nx544AH85S9/CeR4iYiIWpQ/VV38rXNvNidgwABn1ZeBA/WrvvhDVhVILIcYoSmH\nCHheoLxq1XLhmitXLlNfDxmSjLg4Z7pGfHx3JCUN1fRfd12SenzddUma/pIS5+ZFDkVF29TXssA7\nIkKsB+7aJqv6IksF0csx79JFbHPH38C6c2cxu0GvraXIfn6KIoaezdvOnasR3lNTI7aFI58D90WL\nFiEhIQF9+/bFrFmzkJeXhwceeAB9+/aF2WzGfffdh8bGRsybNw9lZWWBHDMREbWxtpqRbg3+LC71\nt869xVKJY8ecVV+OHtWv+uIPWVUgszlBU9klJSVN9x58XaBssVTi3Dnn7GlNTY1wj489tgSKosBk\nMuGxx5Z4dX1Z4CjbYEmmW7duOm3OBa+yqjh6QbRrKrEs1UZWh72urlbod21zfbD01NZSZOUqyTOf\nA/fz588jOTkZu3btwuLFi5Gbm4slS5Zg165dSE5OxuXLl7F582ZMnjwZa9euDeSYiYioDdXX12Pt\nWv0a3w7uKooEu0BUdfGnzn1BwTpNBY/GRrHqSyDIgu6IiAiX197tWHn//bOEtqysHPV1QcE6YfFr\n83uMiemCUaNuwqhRNyEmpoumr2fPBOH6PXs6yy3Kdi7NzZ3bbOdT7QZLsnKSssWfsnKZevnerm0R\nEWJo5tp2112ZQn96uvGSlfpVfQK7X4Anik6UrtdG+nwO3Ldv347p06cLP2xFUTBjxgwUFdn/h++u\nu+7CF18Yrz9KREQtz58Z86Ki7fj+e0eNbzFtwVNFkWAXiMWloV7n3mKpRFmZM/gsKyvWfXhx9ze0\nd+8/hLY9e/6uvjaygVF9fT2++OI4vvjiuBCI6+WQ9+rVS30t21nVbE5A//4D1eMBAwZ6VUfe38BT\nL/CvrHS2yX4+f/nLH4T+P/1pl/q6peuwy+h9luu6Db0KNvHx4oJW0udz4H7p0iWcPi0uQACAU6dO\nqX9knTt35o5YRERBxJ8cbrHihjgj7amiiFGyB4tgT9XxNY3EaI58S96/kVn/ltzdFfCcriQLrI1U\njfG0CZVsxvyee+4X+u+9Nztg45PluNfV1Qn9rm2u32Z4amspTU2NQltjo7NNfwMs8WGG9PkcuE+c\nOBHLli1DaWkpLl60z6hcvHgRxcXFWLZsGW677TYAwJEjR3DNNcZzx4go9AV7UBXu/Mnhttf4dgYR\nzWt8yyqKGCELClsyaPR3cam/jOTIB+L+Pf03amRG3NPfkOxnKN/ZtBIlJe+oxyUlO7wKrDt1EheP\nura99toKof93v3tFaHPngw/2CG2u3zLobSC1datzAyl/y0XabDZJm+eqN3rrFfTSj3wlHx/5w+fA\n/amnnsKoUaPw85//HCNHjsT111+PkSNHYvHixbjpppvwq1/9CoD966u8vLyADZiIgltLz8SRf/zN\n4ZbV+JZVFDFC9mDhz4OHjL+LSx38eXiV5cj7e//+/jdqD6yd37qUlGjrnMt+hrKSl/YZf+cMbWNj\no2bGX/ZgISsneezY50L/0aPOtj59+gn911zT3+P5rm1ffHFc6Hdtc10/oNcWGSmuKXBts9nEGXnX\ntg4dxPQs1zbHZKurCxcuCG2+8vfBhDzzOXDv0qULXn31VZSVleG3v/0t5s+fj+eeew5lZWVYtWoV\nunSxLya54447MG7cuIANmIiCW0sGVeQ/f3O4jdT49ofswSIQi0dl/FlcCvgfGHvKkQ/E/cv+G5XN\niBtJpZk06XaX17dp+uyBvXOBZVraVE1grxdEBjKwlCktfUdoKy7ebvh8vbQU17rzsqowrg8tntrc\naWoSA3vXtsuXLwn9em2+0kuVcb1/8o/fGzANGDAAmZmZeOihh5CRkYEBAwYEYlxEFIJaI6giY1oq\nXcle49s5O9i8xvf8+eI3rAsWPGb4+rIHi9bYmdTfxaVGHl5lvx93OfL+3r9sV1BAPiNuJJXmlVde\n0n3t4OnhSLa4VPZgEYhvffwh2+ApIeEqoV+vzZ0OHTp6bKuvF38/em0tRS9I1wvmyTd+Be51dXXY\nvHkz8vLyMHv2bOTl5WHz5s26CyeIqP0L9u3ew4WnGd9AbBCkTYPI0MyWDhmSjMTEIepxUtJQzeY5\nocKfGuWyh9fWSCdz92Ag3xVUPiMuc/Dgfhw9ekQ9Pnr0iLDOITo6GmPHjseYMeOFQFcWePq7u6ze\n7/XGG/9bfT1x4h1C/223/djw9WXlKF1//g6u32DIyFJtZPTSzZmCHjp8DtxPnz6N9PR0/OY3v8GJ\nEyegKApOnDiBZ599FlOmTHFbcYaIiFqWpxnfQORwZ2Tcja5du6Jr127IyLhb6M/LWwyTyQSTKQKP\nPrrIq2vLHizaevGog+fA2PPDqz/pZEbu39ODgZHZcsDzjLhsxluvktDy5c8LY9y9+33s2fO+MMZ+\n/fqjOdc22YOF7FufTz6pEPorKvapr99//29C/3vv/Vl9LUt1kTl58iuh7euvxTZ3/E2lkeXIU3Dz\nOXB/7rnnAABlZWUoLCxEfn4+CgsL8e6770JRFCxdujRggySi0BAsQVU4MzLj628Od3R0NObMmYs5\nc+bqpgXExHRBenom0tMzhc1zZGQPFkYfPFqyspH/5TR9Tyczcv+eHgxks8EOntKFsrNzmm3QFKH5\n7/zSJfFb9+ZtnsY4b95C4fx58x7RHHv6Gx4yJBlxcfHqcVxcvOZbH1m5RXmqieeqLYriObCXfX6n\nTp2Efte2tk6Fobblc+C+Z88e5OXloX9/7ZNx//79sXDhQuzevdvvwRFRaAmGihyB0Naf7w8jM76B\n2CBIlkoyffp9mD79Xp+uPXlyqjpjP3lyitAve/Cor69Hfr7nnV394U8pxECkk3m6f9mDgSx/3JW7\n37HZnIBu3WLV49jYOM1/57JyjEYeXlwDXb3Z7OjoaPTvPwD9+w/QXcBbXf2delxTUx3QtTayHHa9\nvWtc22Q56r17i4u99dooPPkcuDc1Nel+XQbYvzLjCmKi8NTWFTn81daf31p8zeFuDbt2lakbOO3a\nVS70yx48ioq24/x5x86uxquBGCELOgP18OqJp/uXPRjINv8x4uDB/fjuuyr1uKrqrCaHXS89Ki9v\nseExFhSsa7ZXgFV4uKmtvYh9+z7Ahx9+IOzO27xOu81mw2uvOeu0y8otyug9SEREeK4K09DgbDOZ\nxBl71zb9bywCV/VF9o0BBTefA/cRI0Zg9erV+P77/8/emYdHVSX9v7qzkHQSstIJkLAmLCGguLwq\nsouCYYIBF1QgAiaOiCwqKjozzozv/FxeQQQF1CBLBBURE4IgOo474DLvOyoQ9n1LmpAAgSSELL8/\n2r73nD6nb93O7U53kvo8j89zblXf7tsLsU7db1Vd4OwVFRXw5ptvwjXXXGP44giCaH40RUcOb+Lr\n1zdKc5cr6ZWSuNp4iOcXNCrbakTDrrV59dT309iNF5bt1QPWtSU1NQ1SUnoqxz169HKrQFmPDl9r\nOu+RI4eE81mbUY24TOrCtls0SWJg1obJlU6ePCH4T54U5ye4IiRElNrwNlklKlWnNhcaHbg//fTT\ncOzYMRg6dCg88sgj8Nxzz8H06dNhyJAhcPz4cXj66afxJyEIokXizY4c3sTXr+8JmiLj602MSkns\nk13VO77Ok1314M0+7FZrAtx660jl+NZbR3r0+8nKmgqBgaosIzCQ77jSoUNH4ZyOHUWbUWbPVocg\nzZrFtwNNTx8jPH706Dt0Pzc2ndfbA4CwjYV81kEnZY1JiYzi7VkLhG9pdODeo0cP2LBhA9x9991g\ns9nghx9+AJvNBvfccw9s2LABevTo4cnrJAiiFeDrdpK+fn1PYVSu1JzBJrvqwYiG3cHBg/vh4MH9\n0uf/4YdtyvrHH7dLH9PYOgurNQGSk1OU45SUHtzGICIiQjgnPFy0aTFx4mTBNmnSVO74X//6J7P+\ngvOtXbtGOP+DD1brfn0s4y/bnLC2CRMmC372+mXFpawN68pSXS1Kj1hbVtZUwf/AA9mCzRUmSUqf\ntVVWXhL81Ka75WCoj3v79u3hmWeegY8++gg+//xzWLduHcydOxcSEhI8dX0EQRCEm3ii+NRXGM3G\nGs02ekLDfunSRSgszIfCwnxBf71167dc4eTZs6Wwbdv33GOMFNfabMXchuHAgX3c9WdlTRUKP92V\n6mzf/r1g27btW+4atD7Dw4cPCueztnPnygX/uXPndF8fVjx63XXXC372DmFYWJjgl9lcUVJSLLGp\nLbI3bSoU/Js26ZflBQSIenzWJi9AFuU3RPPErcA9IyND939jxoh/fAmCILTwtT7bHtTwU0Gbkz6c\nxZ+LT7XYvFkW1GzQfb59sisbmPKTXTGMatgBtPXXb7+9WHj8W2+9zh0bKa7VM2CJL0T0fFEi9hli\nA4BOnz4l+E+fVoNRLOOPachzc5cKflZOdccddwr+sWPvVtZG+7gfPXpYsB05ItpcIRvW5M4AJ6J5\n41bg3qdPH0hLS9P1X58+zW9SHkEQvsU/9NlUpNWcEYfzeL7Pu9YdDUx/jaG3uLax12/v2MLXALgr\nBzO6wQ4JEYthWRsWGOMZf/HzYm2YnGrjxnzBv2HDeuZatYs/jQb2BKGF/v5HADRUiSAIr5ORMRa+\n++5rMJlMTa7PFtvQ2YOaOXOebdLraM1kZU2FnTt3KBnbxtx1ycy8C7766gswmUyQmSlmTx3FpyaT\nCdLS+nHBt97Xv+YaUW4B4Fp/vXTpcgAAGD9+IqxZs5Lz33dflrJ2VVz7pz/9Xff1//rrL8pzGLlr\nZJ8mahLu3Dg22B9//CEAiJsj7DPs0KEjHDiwj3tOtkC2V69U2LVrB+dPTU1T1nqKQ4uKznN+Vi5l\ntcbDhQu8Pz5evX5sQFJUVLSgI4+OVvva33dflvAdy3T1BNEYaAtIEIRf0Zz12Z6iOQ+AMoon7roE\nBwdDTo7rya5axafevutTVLRDsO3c+auy1lNci7csbXCx1p8tx3T2WnIh7DNkZTTq66lSD+egHQBg\nxw71M3KuG7Db1EB66NBbBP+wYbcqa9lvgv1M2rZtK/jbto1U1sXFMimPavvxx22C/4cfxLsEBNEY\nKHAnCMLv8JU+29cae4DWMwBKC090xdHq815YqEohCgs/FqQVGRljITIyEiIjo9x+/RkzHhdsM2eq\n7RCxbLFsk8DasOvHhhfp3ZhgOntsg52RMRbatpV/hvLNyTHB5opjx8THHjt2VFmvXLlM8K9Y8bbu\n58eKS7GMvKz49tAh0eYKWWtIi0V/cSzRsqHAnSAI4nf8QWPf3AdAeQI9d12wuxJaA5TYQr7aWlnx\npryAkmXduvdg3br3BXtqahr06pWqHPfu3cet4UNYRxTs+vUML8I2RuLmoHHzDGSDiPQQFBSkacPa\nMcrbIaq20tJSwc9Ogm2QfPmsDW8XqX0+hmxyquw9Ea0TCtwJgiAYfNkD3ZMDoJq73Ebrrgt2V0LL\nryew3bgxHy5csGebZZsnrXaPAACPP/40mEwmMJvN8NhjT3G+Nm3EQUCsDfPruX4MbGOUm7uUC4Qb\nGuqFIVbYd7BxY76SsXf+DNlhRA6SklRb585dBb/M1lhsNllGXbVhgXdgYIDgZ23eHgBFtG4ocCcI\notWhFdT6UmPvqQFQnpDbeDvwN/L82F0JI3ct9GyetNo9AtglVqGhoRASEspJrwDwyaay4TysX/Z9\nyjTjGFobI1Z24sqm9Rljch5ZT3RWCoLddcC6ushkJe5ITbDAnW23KbNhUhqCMAIF7gRBtCr0BLXN\ntQe6A6NyG2/r7I08PxZYY34so41tnvS0e9y4MR8qKyuhsvKStPh1zBi1XeWYMeM4Odb+/Xy3FQCA\nAwfUgUqyOzAlJaoN62HuCfTo7LXkPNh3cP68OGzp/Hm1C8wTT8wV/HPmPKOs2Z7rDu68c7z0vXiD\nmhrxDojMRhCNgQJ3giBaFf6sIfdEcawn5Dbe/oyMPD8WWGN++2esZryDgoLc+oxdtXt0oOfz15Jj\nYQOasOLVkyfFwk+ZTYtOnTpr2ozq7LG7CidPilM+2fcQFxcn+GNjVRvbc91Bfv46weYKbGNhkoj3\nZTaC8AYUuBME0WrwpIbcG7hTHKtVfGlEbuPtz8jX34E4oGmc0INca/OEySD0fP5G5FiYjKSqqkrw\ny2xaUiVx+qyZmz5rVGf/1VdfCrZvvvlK9/mLFy+U2F5T1lhxKkZAgDjihrUZLT7FwIpfidYN/RII\ngmh2GJka6QkNuTfRUxyL9dg2grc/I73P7+o7xgJrPXctjPQgT0hoL1xT+/aiDcOVHOuhh6YLtj/+\ncYay9kQ2uKamBnJzXf9+rNYESE8foxyPHj2G+wzOnSsXzmHlLdg1FhaKGfGCAjUjHhoqathZ25Ej\nhwQ/b5Nlv/VnxGtra3XZvIdsE0ATnQk7FLgTrY7m3m2jtdPS+5zrycZq9dhmAy4Ho0ff4ZVr9RZa\n3zEWWOu5a6GnB7mrwD4iIkJ4fHi4ajMqd0pJ6SHYkpNTuOfXKm4NCQkRzne2FRR8pHTNKSgQg2hn\nGhr4oPfUqZPCY1h5i9HfoNWaINji41Ub1i5S5g8OFm2u8LVGXZa892BCn2jmUOBOtCpaetDXGjCi\nj/aHAUsA+OZRqzhWlJoUcFKTzZsLhXM2bdqg+9q8/RnpeX7sO8buSugZoKT1GWsF9phG3p6tzlCO\n09PHuDULIC9vucTGD1DSKm7FZB72349aWCqTKtlsxdzvaPPmQrfkTNhvMDBQvEbWduaMTfDbbKqt\nrk5briT72375cnP6e08Zd8I1FLgTrQp/LkwkcIzqo/1hwJLRzWNu7lKor69Tjuvr64Qe20bw9meE\nPb+e71jPXYmqqiqorha13XpxFdg7y0hkgXldXR2zlkssjNz5GzVqtNInftSodM4XGxsrPJ4t3LT/\nftjJquLvB3+MthQF08Czn4/MVl1dLfhZm6z9JftvCRvQRBpyojlDv1Si1eDrojjCOJ7QX48aNRrM\nZjOYzQFC0NMUGN08ysfFqzZPZMy9PYRK6/n1fsdaGfP169dCTU0NXL58Gdav/1D6GM9J5vgg1mYr\nhk2btLPVWpu3rKypYDarw3zM5gDh+9u0qRAaGhqgvr6eey0AgPJyUX9eXl6mrLHfj57HYAWyWK95\n5972ok074xwaahG8rA3T+csHKIl3AQjCH6HAnWg1NIfCRML7bNmySRmes2XL5iZ9bU9sHrF2gJ7I\nmHt7CFVwcDDcfPMgGDBgkMef32Yrhk8+UT/jTZsK3AqcHbgK7O0yko3KsXNg7jx1tL5enDqKb95c\nyyIwqUtiYpJwDmuLjo4W/DExMdyx7PcSH6/aZBlv1ob1msekMhjO02gB7NNqHTRugJJ6/Vjgz97B\ncBAX107jignCc1DgThB+CBXQyjGaTfb1XRdPbB6xbCeAZzLm3hxCVVNTA1u3fgfbtn0nzTgb+Y6d\nWwU2NDRwrQIB8MBZK7DHvkNs6qgYeIvDi5xlKuzzizIWfmOQkzONCzJNJr6V49mzZ4XrKy0tFWzO\nsLEwFhhjmwcMbDJqamoadOuWrBx3754CvXv30X0+Bvb+ZAOiZJ12CMIbUOBOtBr8pTARgwpoXWM0\nm9wS7rpgrfYA9GXMjW4O1617D9ate79R52oFzka/48OHD2ra9GzejMiZ9PV5VzO+V65cces3iG0M\nrNYESE5WO9OkpPTgPj+2P7srm2wz684GVza5dNy4e3Sf36VLV9TGZ8X5DDl7d0C1iZ1qGovv20US\nrRkK3IlWgz8UJuqBCmi18bb+2pt4YvOItQN0oJUxN7o5vHTpIhQW5kNhYT5cunRR+hgtqYmeyaJt\n22p3hXEF1jYP27xh14e1OsQCYz1TRbW61mBBo81WDAcP7leODxzYx13/jBmPC+fPnPkEdyyT00RH\nq3KaCRMmC/5Jk9RpqGvXrhH8H3ywWlljUpmhQ28R/MOG3aqsi4p2cu/x4MF9sHv3LuVYdlfhnFYO\nhgAAIABJREFU7Fn8rgJBNAcocCdaFf4e9PlaytEcMKK/9vVdF09sHrF2gHowujl89dWXlTqBBQv+\nR/BrDYjSe9ejsRPkZX3M27QRba7Arg9rddipU2fBz9pkGyXWZrUmQPfuat/25GQ+Y46dj0lpUlPT\noGfP3spxz56pnMwEAODMmTPCa7AtGq+77nrBz24S2aBaZsM2D6tXrxT8776rtslcuHCe4H/ttVeU\nNXbXQ67hVzPy7MZYy0YQvoACd6JV4e2iO6O0BClHU9BY/bU/3HXxxObRyHMY3RwWFe2EPXuKlOPd\nu3dx2U4A7QFReti4MV8539XGwlVGH5NZeHvzhslEMBmKzVYM+/fvU4737dvr1vdz5Mhh1JaS0pNZ\niwOfZG00WZtzHYHdptYRYBrxuDixuJMt+MTuKlRVVQp+mc0V586JGnW2Gw/bblXLRhC+gAJ3otXh\nzaI7wv/x9V0XT2wejTyH3s2hq8D49ddfFWyLFs1X1tiAKCxwxoo3AbSlPjk505yuzsQVZ2IDkrDr\nu+mmgcL7HzBgsLLGMvJY4WZe3nKu93tdXS33/WCTUS9fFnugszabrRg++0ztpvTZZ5uFzxcLvLE6\nAgxsyBQGVqCNZdyxyaj19drvnyB8CQXuBOFH+FrK0VwwUljpD3ddsM2jnvfn7a4vjdXAYwOisMBZ\nT/EmVtx6xx13Ksd33HEncleFD8is1gQYOVLt7z9yZLpwfc6sWrVM4/l5cnKmCX3a2Y0FpoHH7ihg\nQa2ejRsWuMsCW9aG9WkvKxM16GVlaq95TAOPxdCYnAiHAnfCf/G7wH3NmjUwfPhw6NevH9xzzz3w\n22+/uXzsgQMHYObMmTB8+HDo1asX5OXlGX5OgvAl/iDl8Hc80XXHn++6eLurkJ7NoVZgjOmT9Qz4\n4eEDIixw1SP1ycy8Syluzcy8k/OJfdg3Cufv3btbWe/bt4fzYTKNrKypgp/9fMV/45luadgxKY4/\nTAXFOh8dPy7+Ho4fP6assd+YLGPO/kawyal6OusQhL/iV7/UzZs3w0svvQQzZ86E/Px86NWrF2Rn\nZ3M7cZaqqipISkqCOXPmQLt28uEH7j4nQfgaX0s5/J2W3nXHU+/PVdYe2xxigTGmT8akIHoCZy30\nZIyDg4MhJ2caZGdPEzLQ2PlFRTth//69yvG+fXs4Db+s0JW1yXqiO3c0GT16DJhMJjCbzTB6NN+l\nBtPAY1IcTCaCdcUBAOjcuYvwmM6d1ay+2SxWDrO2hIT2gr99e9WGacix3xgGdsfAuX2kaxtB+B9+\nFbivXLkSxo8fD5mZmdC9e3f4+9//DiEhIbB+/Xrp4/v27QtPPvkkpKenc+2zjDwnQfgaf5By+Cst\nveuOp94flrXX2hxigW1u7lLh+ZwHALHZS2cpCPb8evrU6+Hgwf3S7iYYWMcSTKqCnQ9gn97b0NAA\n9fX1wvReo8OLMP12fv46wf/xxx9yxxMnThEeM2mSauvatbvg79ZNtcn+brF3ebDv+JVXXhD88+ap\nNplqhbWxUiSZjTLuRHPGb36pV65cgV27dsFNN92k2EwmEwwYMAB++eUXv3lOgmgK/FnK4Utaetcd\nT70/LGtvZHOISWHsGX21XaW7ci+sT72ejLFWn3lMKoR1VMF6jGPn22zFUFioFt8WFvLFt+LGh598\nmpraV3j+tLSrlDWWbdYjZcKC+/HjJwj+8eMnCjZXYHKeU6dOCv6TJ08oa0wKg2X8a2uvCH6ZjSD8\nEb8J3MvLy6Gurk64RRYbG6trHHNTPSdBEP6P0amgvj7fCEaz9lhgrCcjrKUxx54f61OPSUUAtPvM\nY1IhrMc3VpzasSPeNYYNEmtr+eJbqzUBoqLUAUjR0THcNX3wwbvC87/33iplHRkZKfijoqKY5xOH\nK8XExHDHWHCPfQeyoVyVlZeUtfHiUW0uXDgv2M6fF22NRXaH39Vdf4LwNGLptp/R0NDgNNrYN89p\nNpukur6WyP/+788AAHDtteKQDYLwJVOmZMPOnTuUrHRQUDBMnZoDgYFqDqKmpgbefXcFmEwAV199\ntdsZZU+cv2zZm7+f/5Zb50+Zkg07dvymBHaBgUHC+8N4990VQtb+3XeXw9NP/4m7RlfvUdZ3vaBg\nHfTta8/0PvzwdJg9e7qimzabA2DatEe5awwMDIGHH54OAAAWC68J//TTjeDM5s2FyvMDAIwdeyd8\n//03YDIBjB07jntu2d9uk8mkPGbXrh1Cn/l9+3ZDaqo6ZEjr+S9cuCA8//nz55XHuMqoO/zh4eGC\nPywsXPG7ClrZ62e7rpw9W8pdf12dqA+vq6tTznfVo9zhd5XNZj+DpKROsGvXDu4xSUmdlMdg34Es\n8D9+/BjzGrIOLQ3o71yvn22n6aCurlbxBwUFcZ2LAOx3ofQ+v/O5Dpunrp/8xh7T0vGbwD06OhoC\nAgKETHhZWRnExsb6/DljYsI8voHwRxzaWJPJBIMHD2iVGuvt27eDyWSCG2+80deXQjgRHd0dxo+/\nB1avto9Pv/fe8dCzZzfuMXl565UM8+effwKTJk1y6zWMnr9ixYdw/rw9ePr00w0wefJk3edGR3eH\n3r17wY4d9qApNbW38P4wgoJEfW9QUABER4cpx1rv8eRJebbVcX50dHcYO3asUic0btxY6TWOGDG0\n0dcHEAbTpz8CJpMJ4uP5DPGsWTPggQceEGyO8xctEvvML1w4Dz78kNVxu37+wEDx+gID1etLTk6G\nPXv4TjPJycmKXxZYBAaaFT/2/rHrN5vNQgGq2Wx2+vxEHH5XQSd7fkbGaCFwHzPmD8pjZs2aAZMn\nT1YkOCaTifsOXBXIOvyu5Dx63wPmd9WZyOGXbX5qa2s99vrk945f72NaOn4TuAcFBUGfPn1g+/bt\ncMstdg1hQ0MDbN++3e3/cXrjOcvKLrWKjPu6dR9AcXExAACsXLka7r57vI+vSMSbdwRqampg8eIl\nYDIBdO3as1VuXPydkSMz4PPP/wkmE8Btt/0BysvVW/AlJcWwdq0aoH3wwVr4r/+6WbfG2hvn33TT\nYLfOZ4PC3bt3w969h6Tnu/p3MGHCZPi///sPd1di4sQpyueEvceOHZOErG3Hjknc57xrl5rR3rmz\niPNh1zdy5Gj48ccfOduoURnCc/Tq1Q8AQLD/+9//kbzWr3DzzW0BwHWPcb3PP3Pm4/D8889xtlmz\n5iiPe+SRWTBzJj/kafr02YpfJsm4cOGC4r9yRQwar1ypU/zY9YeEhHKyEwCA0NBQxW8ymYTA2GQy\nSb8jFtb/xhuLBf/rr78BV1/9XwAAcPDgUe41Ghoa4NCh4xAS0tbxiuCcVWevwVVxqTvXqOV3tXHQ\n6zf6+uT3jl/vY1p6cO9X9xwmT54MH374IRQUFMDBgwfhr3/9K1RXV8O4ceMAAOCpp56CV19VsxFX\nrlyBPXv2wO7du+HKlStQUlICe/bsgWPHjul+Tr3U1zdAbW19i/7v1KlTsGGDWjS1YcPHcOrUaZ9f\nF/tfZWU1rFixDFaufAcqK6s9/vz5+fZMZElJCeTnf+zz99tS//vppx/hp59+apTfbA6EAQMGwk03\nDQKzOZDzrVixTJCJLF+eq/u6jJ7/5puLheFDS5e+4ebr88OHZK+v9e8gNtYqaLhjYtrpfo/Z2Q9z\ndxdNJjNkZ09T/L/99hvs2aP2Od+zpwh27Nih+/o2buT16AAAhYX5wnt8//3V8P77awT7kiWvC+cv\nXrxQ8Q8dOkLwDx9+m+7voGfPPtCrV6pybu/efaBHj96Kv6TEJjx/SYlN8ct6lB87dkzxy7LBNTWX\nFb+rHuYOf4cOHQV/hw4dFX9YmFyq4/Czen0H8fHtnb4/ea96h/+11+YL/gULXlH8rgYYafkBWL8c\n8rcOv97HuPqvpeNXgXt6ejo8/fTTsGjRIhg7dizs3bsXli1bphTOFBcXw5kzZ5TH22w2yMzMhHHj\nxkFpaSksX74cxo4dC3/+8591Pyeh0hw6dnizh3dLbzXoL2CtCvX4t279DrZt+84rA4qM4P7wocaB\n/TvIyBgLkZH24lB3ZwFYrQnQo0cv5bhHj15cxv/110Upx6JFfCCndX3YgCUA7a4wWJ/yTZvEz2Pj\nxo8F27p178G6de8LdgCAGTMeU9aPPjqb82HtHrGuLrK/KSUlqi01NQ1iYlQpZ2xsHPTu3Uc4xxWz\nZs0RbLNnP6msQ0JCBX9oKF+HIOvaIvvcXYH3UScIorH4VeAOADBhwgT48ssv4bfffoO1a9dyBUt5\neXnw4osvKscdO3ZUMu7sf84TVLWek2g+eDuwbg4bFwe+7FpiFCzoNOLXMxVUC6PnyyQt7rZCZLtT\nBAUFCa+v99+BqzgJe482WzEcOnRAOT50aL9b/86wdod60OoK06lTF+Hx7MAgLLAH0N4YAAD861//\nZNZfcD5scqosMGZt2G/EZiuGc+fKlePy8jLu8ysuPi2cf/q0aHPF8eNHBduxY7wN63OeltZP8Pfr\n11/3NRCEFs5SMILH7wJ3wncYDVq8TXMKrL0JlpH2Z7Cg06gfa/WHYfR8WU2EO3USVmsCdO+eohwn\nJ/cQXl/Pv4ONG/PhwoXzcP78OWFzg71H+/Pzch32+bFx9Fi7Q4yiop1CVxh2cuns2WJGedYsNaPc\nqVNnwe88CVRrY4D9xti/kTKbTMrSsaNqw34jublLuY1GfX09N+AK25gYvSMAIO+DnpDQQVlv2/ad\n4P/++68FG0EQnocCd0LBaNDS3PH3jYsDb8qFvA0WdBr1A9h/t44e4u7KRBznYzITV3c8jE79tNmK\n4cABddrn/v373M5W68nIG5HSpKamCRpwVsqBSWGwHt6YFMdqTYDk5B7KsfPmhpWFOGADe2xjYDRB\ngE0NxcDkVljgLruDwNratbMK/nbt+L/z5eXlwmPKy8tcXDFBeBaLJQyuuuoawX7ddTf44Gr8Dwrc\nCQ6tUei+xtuBdXPYuJAOXx9GO7dqyXFramogN3cpLFu2VAhC9UhdtNCTrcb+HegNPKuqqqQ9ybOy\npjqNhw8Q3sPjjz8NZrMZzOYAeOyxp3S/PwC5xpu11daKPbhZm81WDEeOHFaOjxw5LNx1uf32DOU4\nPT3DbY2+FkaHB7EyGAeO9qEArgZAqTZs6ieWUZcVnjpLEy5frhYeI7MRhCdhf4dPPfUnwe/u35qW\nCgXuBIeRUejepikCa3/euAA0f7kQFnTq8TuPg3cOKjduzIfz5+UyET1oyUwA7AOKHP6CgvWcz/4b\nVad+ZmSM8/hv1BP/DtavXws1NTVw+fJl+PjjtYKfD/7EQDAsLBySk1MgJSVF2sVECz2TV7XQs7n5\nwx/U6ayjR4uTWrXIypoqsam/Mdmm0J2N4unTpwSbbCgSC/t1YJNdMfTUABiVfLV0MLkU4RkmT86R\nrls7FLgTAtdccz1cc811vr4MKd4OrJtq49Kci0uNgI+bx4NSts+1c3bR6B0JfRr7fJd+xzU39jeq\n966SlhwoK2uqUztHk1B8yo6n/+STDdx7yMtbznUVqa+vFwLjS5cuwv79+2D//n1SaYYWOTnThOvL\nyXlEOQ4MFMeLyGxaLFyoZtCdBxphGn3ngX0A9umlDrp27S74WRsml8IKP7E7EuxUVdn1jRlzp+DP\nzLxbsGkRECB+3qyNvaukZWupsMkTLRvB48io33LLSME3bNitYLHw/de7du0mXbd2KHAnmhVNEVh7\ne+NipLg0PV3MHo4efYenLq1JwAJbLX9u7lJgM8ANDQ1c4Z7ROxLY+WLhYB33+gD23+jNNw+CAQMG\nuf0bdSeb7irLW1paKgzHYQO7xYsXCv4lS15TjvW0a5w//yVoaGiA+vp6mD//Jc6nT+fPB+4s7B0L\nB3fcoQaj2OamqGgn7NunDrHau3c3p2FPTU3jXtNsNnMafay487bbbhf8I0eO5q6P3WgEBgZy13fv\nveLwv/vvVyfBRkeLrYrZ9sXV1aJkhbUdOLBX8O/bt1uwadG2baRgi4xUbbW1ssmjqk0W+Lu7+SKa\nL0lJXTT9U6c+JNiysx/20tW0PChwJ5od/nxHQA9Giks3by4UbGz2tKkwcscA23xp+ZuqT7or9Ly+\nnj7zWp/fqFGjFf34qFHp0sdoyYEwDfeRI4cE/+HDqg3TcBcV7YS9e9VA0Dkwtmf8XcuZsIx+fv46\n4fXXr1flPNjmBgu8N2/eyG1c6uvrYcuWTcqxTPfP2vLylgv+VauWcdfHZuC7du3OXd/XX/PtJQEA\nvvxSbT/JbrIcyO4CuILV/8tsdXViDYGzraREbC/JtqGU9XlnbbLXkNUuEC0LR0b9pZfEmpHc3Dwu\no/7wwzOkawKHAneixeHPMpSWUFzqiXaUjd18YfpovVITV78R7Hw9+mxsY4Z9flu2bFJaFW7Zslnw\nG/0NBQeLGXHWhkk1sMAYwDmL7l6lMNYnHUB7c4MF3mvWrBT8776rBuOuJovqfX6brRj271ez3vv3\n7+U+v5MnTwjnnzypf/PpfIfC2SYvPlVteu6oYAWuRqUyAQEBumyEf6Lnu7rnnvu5tbMMpn37DtI1\ngUOBO9Gi8Pce50alHP7QstLb7Si1vsOcnGlOxakBnD5aj9RE6/mx83NypoGzzIN9fT1Btdbnp+d8\n7Dc0ceJkcGbSJLXgUtZnnLVhmxM9Gen6elU2UV9fx10fJvcKDbUIfmeb1uamY8dEzevHwFohduki\nam1Z2+LFCwX/4sWvCTZXhISESGzqACc86JW1RHJvailWwMr2+deyuaKuTpTasDZsY9ClS1fBTxro\npmPu3OcE25w5z3LBeZ8+faVrwjgUuBMtiubc41wPvm5Z2RR3DLS+Q7Fri/j+MQ099hvBzjebXeuz\nsaAamyrqia5B27d/L9i2bftWWWMdQ8aOFQsZx427R1ljgSuGTArz8ccfKmtZy7fHH39aWWO/QVmX\nG+dsnxaYhnz8+AmC/957JyrrgwcPCH7WFhgoBqWsrbT0jOAvLbUxrz9R8N93X5Zgc43sDojB/qke\nBts4yORArNyL8C6pqWncnamEhPbQv/+1Pryi1gUF7kSLoTnIUIxKOQB827LSU+0oXb0/Pd9hZuZd\nSkeVzEyxg4aWRl7P82udb88ma3dc0cLoVFEA7991wQLr6dNncT6TyQTTp89WjrGMOqbBTk1N4zLM\noaEWrngU+w3iXV3EjDVrw2Qi2OeD6b+DgsQiTZnNFbIJpd9++5Xu8z0BJtcxCtZ5h/A9U6awrRqz\nfXglrQ/6l0C0GJpDj3OjUg4A/+61rwet96fnOwwODobhw0fAsGEj3H7/en8jBw/uh4MH9wt2DHtH\nETV7GhjID2DC9MV6hh9hvyGsHSQW2GIFuNjkUiywxYb7FBXt5KQ3VVWVXPErxk03DRRsAwYMVtYW\niyjFYW1Yn/Zjx44KfpnNFZjMBAuK5a9/RPfre0JK4+3A3agUh/A+rHxNJm8jvAcF7gTRxBiVcgAY\n76zT2AJeT2R7jcqZsK4tWpNN9XDp0kUoLMyHwsJ8oUc51jHFHtSmKMcpKT0aIWXCgyit3xDWDhIb\nYoVp3G22Yk6WcOjQQe6uBRb4Yxp2rCuOrNVc586qVGf16pWCny0+lQ1YeuABNWOIFe9ik12xPuqY\n1KhNG1HjLrPxqEEze7dCy2YM/5fbEJ7HecIu4RsocCdaDP5QuKkHo1IOoxgp4DWqscfen57vEAv8\ntSab2p9fzYgHBQUJz//qqy8rhY8LFvyP5F1oD4BiM/UHDuzj3h+W7RalOHXSOwJavyEs8BXhAy5M\n456Xt5xr91dXV8tdIxb4sz3ZtV7TFRs3fizYNmz4SFljgTVWAyCTZAQEqDasXSbWRx3rA48NoJJL\nedTfjKxH9oMPerZHNiZlwXT8hH/iCMyvuuoaiZc2Zv4CBe5Ei8HXhZvu4Cpj7m0NOYDxjLcejb2r\n18fen9WaACNHqu39Ro1K575De3GnGrgVFq5HJpvyxZ9WawJ07qx2pOjSpRv3/EVFO2HPniLlePfu\nXZxMIzd3qZDNFgdAqbf0r1y54lZHFXdo7F0XbHOAzQrA5D5i5x8z13lnwwZ+MwXAy2uwyaaYBh3r\nU15RUSH4WZssKGXvsmCvj2n4V6x4W/AvX/6msu7UqbPgl9lc8fnnnwq2zz5T+9TraeWISWHYOg2Z\nDfMT/s1TT/1JsOXmrnKryJvwHhS4Ey0KXxZu+gtaGXVPZPQxjb3Rlpzs1Mt9+/jspb24Uw3Camv5\nbK842bSeC6xttmI4cGCfcuycEcey1UYHQGFBcVbWVG7qZEBAoMu7Rq42R1jgaxQs42y1JkBKSk/l\nOCWlJ7c5wtpJpqamQWioKu2wWPjiVAxsY3Hq1EnBz9qwwBkL3GVyAtZWVSW+f9bWv7+4Gbv22v9S\n1lg7SNmALdamRz+OvUeiefOnP/1dsDm3c5w8OYdbU9DuP1DgTrQomnvhpie6zmhl1D2V0dfK9mq9\nPqavxsbVY9lSrHDQucd2Q0MD12Mba0NndAAUFlRarQnQtm1b5TgyMlJ610hrc5Samga9eqUqx717\n9+ECXyzrj8mJsAFNdrmQ2v7w4MEDnF+m8WZ7cBcV7eQC2cpK94pTMRkHVhxr79XPw94x8ERxpxbv\nvbdKsK1evUJZYz3QMY0+0XpxbCBTU9MgJiZWscfGxgntHNl/k9Qj37+gwJ1ocRgt3MTw5mRWo11n\nfN0SU8/rO2fEWbCMNzt2XcvmCiwbmZDQXvC3b6/aMP231ZoA6ekZynF6egb3/WHZ6qKindywn7Ky\ns9KgFZM7Pf7408pkUee+6FjXF6s1Abp3VwtsnbvGyDYS8fGqDWt5KeuDzvYmx34DsbFxgj8uTrS5\nQtYO0p2pnUY7qsgHLKk2o9nudu3aCTar1aqsvd0RhvA9vXrhd6geekjdjMo2q4T/QoF7C8SbgWVr\npykmsxrpOoNl1PVqrBv7G8JeXzZVcskS/VMlsWwqJnPA9L0RERGCPzxctWFSFxE+IMKy1a+++pLg\nnz//RafHa+v4AexDiJKTUyAlJUUYSITJfWy2Yti7Vy2m3LOniHt+2Z0s9i4DBrZxwJBJPWpqVJvs\nlj5rY3+f6vmq7bXXXhH8vM1YRxXsrg6GXCqjyquKi4sFP7u5JRlMy+cvf3lesOXm5nH/DqidY/OF\nAvcWRlMElv4OFnQa2dg0xWRWb3ad0RN4evM3JMt4s60FMX02OzXVAdulRMwcmTiZA1tkKLPp6Tqj\nhc1WDJs2qZ/xpk0buO8Hk9pg+mcAvAAWwN7Scv/+fbB//z6hpaUsY87a8vKWCwW47gw4wvqoHz58\nUPCztokTJwv+SZPUFo7e7lpz9OgRiY0tODUmlcHuumDIpTJq3YdMCiSbBku0bCZOnMKtSaPecqDA\nvRnizY4hzR0s6KypqYElSxbB0qWL3A5Km1KG0tiuM77us469PtZjGtNns5lmB85dSpyHD7Fgrfbs\nUhf1rkR6+hguqMXuWGAykaFDbxHOHzbsVsGmBaaTBwCYP/8laGhogPr6epg//2XOJ8tYs9dcUiJm\nbEtK+JadzrDfMdZHHducfP31vwT/V1/9U1ljciXsN2J0Kmf79h0kto66zyeIpiAlpYd0TTR/KHD3\nQ7QCc3/WN+vFm1IeLOhcv34tVFVVQmXlJVi/Xn57vrGtDP0BPVM1tQJro78h7PVnzZojnDN79pPc\n8YwZjynrRx+drfu1AWTZ4nruO3K/4wof+K9du0Z4xAcfrFbWWFCNBbWeGJ5TVLSTk7rs3VvE6eRP\nnDgmnHP8uGqTd105oaxLS0sFPzvgySiYlAe7a4RJUTApDUZUVLTEFqWsjW4MmgOkkycI39Gy/pq0\nALCMcVN0DPGm1MSbMgws6LTZiuGTT1T/pk0FQlDq71IjPRl1LY08Flh74jeUkTEWIiMjITIySnh9\nWRGhc7Hh559vYdafcT5MRoGRmprGvV5cXDsuo49JXbDiVozGdK1JSuJtmFRl4cJ5gl+m23YFFpRh\nz49tjjp0ELPTHTsmKmu2FaRqUzW42OZI9vmEhKg2bHKqUYxq2JsDpJMnCN9BgbufoRWY+8NUTaPj\n5L0p5XG3MNK5FSB2fZ6czLpu3Xuwbt37bp+np+sM1hKzKXrdu/p/eF7ecolN/Y7Ewkv+Ny4rBGU3\nY3ruKDh3bWGfH5O6YBlxLKiOjY0V/OxmRk/hZ1bWVC6Qdm6pifVJl2vEOynr4cNvE/wjRqjTPquq\nKgU/a0tNTeMKKAMDA7nNkaxAmJ2qKZfqqMWVmEZclv1n7xJgUhyM0tIzms9PEAThTShw9yOwwNwf\n9M1a4+QxPLXxaGzGH8uWYtfnqcmsly5dhMLCfCgszBcKB/WgJ/DWaompFdh76jfk+I24uzkTByjV\ncQOU5H3ajyhrPXcUnNtRsv+GsGwuJvXJyprKaeYDA/kBSuXl5cL5ZWVlgs0dnDOdsj7pMpsrvv/+\na8H27bdqsCvrIMPatm79liugrK2thW3bvleO5VIYUb7jCmyAEobRIVryzkDiZsMV7CZFy0YQBCGD\nAnc/wqhMwWhgqUdqgrWh08ITMgytOwJGCyP1XF9GxliwWCxgsYQ1Olv96qsvQ319PdTX18GCBf/j\n9vneHDKl9zfkavOE/Yaw7wgLqvToh7W+o7Kys8L5bAZels1lfxOpqWnQs2dv5bhnz1Qum2y1JkBk\npKp3joyM4j4/rCOKbCN36RI/iTM3d6nQ9YXd3Nx22+3gzMiRo5U1FjhjmxfsO3jrrTcE/5tvLlLW\n9fXaMgvs+bE7CrJ/E6wN66rjbdg7Olo2f4Y07gThOyhwb0boaVWnJxvb2OJLbJx8U6B1R8AThZEY\nV67UQFVVFVRVVUn7QWMUFe2EPXuKlOPdu3e5NRXSgZEhU5gcatSo0WAymcBkMsOoUelunY/9hrDv\nKDpaLPyLjo5R1n/846OC/+GHZ3LH6ndUKXxHsqCVLcyUbUTZjioAAE88Mff3z8cETzzO+7yjAAAg\nAElEQVTxNOcrKtrJSTXOni3lvl+sq4yebDS2uZHJkVatWqasZTImd+TJtbW1mjZM493QoO3Heu1j\nz9+unVXwt2un/sZk/25lnXYI15DG3Tc4Jp8SrRsK3H2AK30zlo20WhOgW7dk5bhbtxS39c01NTWw\nbFnjNOrYOHkMT/TIxqQ2WhsXMVvam8uW2mUO6vUFBorX9+qrL0NDQwM0NNQ3KluOTYX0FEZahm7a\nVKi8x02bNrp9PkZGxlho21ZevHr2rJgRZwPhm28ezAXyMTGxMGAA3zfc0QqxoaEB5s/nBxphmUJ2\n2JID56FMQUHBEBQUBMHBwYJsBCvcXLlymeBfseJtwaYFljHGNOht2oh/F1ibfDKpOo2zpkbMyLO2\nTp26CP7OnUWbK/S0u9Ti1KlTEpsqpWE3aqpN/98xb4O1LCUIV1Bg3zqgwL2J0dI3Y9lIm60Y9u3b\noxzv27dHmiHUysYWFHwE5887NOofcT5PFl/KwEapY+iRsgQHB0O3bt2hW7fu0o2LI1tqNpvhiSfm\nCteXnKxeX0oKf32eypZ7Am+1DMWKQzG5lN7JrLW1V6RZTj1SGLYdX2Qkn6EXWyHu5r6j8eMnCs9/\n331Zyrq4WAz6Tp/mbQUFH0FNTQ1cvnxZqPPAgmbMjxWOAuBSEMzPTtmU2Yzq8EePlv0G1L9rwcFi\nAa/M5gpsiJYso8/avN/1xdhkVeyOBtHymTBhsmAbP36i0raU5ga0bihwb2IwfbNWxljUtronVRGD\ntgK3ii+xcfJ6Xv/Agf3K8f79+6QbDyPtJi9dugg///wj/PTTj1K9cFhYONxxxzgYM2acMAreZiuG\ngwfV6ztwgL8+T2TL3e8jLuLNlqFYcSg2tVPPZNaCgo+gstLeS99583j99TcK599ww83KuqhoJzdl\n8/DhA1xgjmW8i4p2CP6dO39V1pgEANvYtGkTIpzP2rCuM86/SbvNvYmHWGCL/Tuurxcnc7I27K4F\n1qtelj0OCtKfUcY2Jr7H2GRVgkhPzxBsY8aoU6PnzVsk+HNz82g6aiuBAvcmRE/GVkvqYrQbgj0o\nU/8H7ByUAWhvHHJypnEBgNls5sbJY2Ct9gC0203quSOgp/Dz7rvvh7vvvk96fdgoeaNgk0EdNFbq\nYrRzD/Ybw2QMmN9mK4bCQjXwLSzkr+/LLz8Xzv/ii0+VNRaYY4WLFRUVgp+1YVMxsY1Nly5dhfN5\nm7FsLIC8gJW9RY7dtcAmj2LX6A19M3s6dv1yjbr/zVxoLLKNmmxDR7Rs2PorWS3WnXeO59YUtLce\nKHBvQvRmbF1JXbCOFBh6An+tjYPVmsDt+jMyxnm8G4NWu0nsjoBeKUtjM/pGh/84ePzxp8FsNoPZ\nHACPPfaU4DcidTHaMtTobwzDfteIL1R0564RFpiHh4sBDqtbx1oJYlMxsX9DWPGpJzqKyOpKjh49\noqyxjDp2V0TWHMSdhiEZGWMF2x133KmsMakKdlfCaHGtv+PcRchuc79tLOGfaOnQWR9by8OuHfTr\nd7V0TbR8KHD3Aq4CQ6PaypycaWA2q4NNzOYAacbb1evrDcq0NPKZmXcphYWZmXdKH+MKPcNxtGQI\nANp3BPRsjLB2klrFqUYHtzgICwuHMWPGwpgxY6WZNG9Ox7VaE7jbsOnpY7jND5aNPXdO1D+fO3dO\nWWNBF1bgjA3/wXqUs9ciu2assBJrB4kVhmIykY4djW+MsIx3//7iv91rr/0vZS1riclq2LHnx7q+\n5OevE/zr169V1tgAJSwwxzTsBOFL9AbmBNFYKHD3MFqBYUJCe+Hx7duLNleIGedMIZDQen174M9K\nXeSBvxbBwcEwfPgIGDZshEtdqauuOVjGHJMhOF7fSA9zrJ2kVnGqO1IlLKvfvXsKV6jrwKjU5aab\nBgq2AQMGa5zBR0myoOvjjz9U1vKM9Qllrbc41RXbt38v2LZu/UZZjx8/QfDfe69YcOoKWeDftatq\nKy4+LfhPn1ZtsoJaXv6lXVgok0G4e4ub3bzLbGvXrhb877+fp6yPHtXO2GPIPgPWJgtO3AlYLl+u\n1mUjiOaIxRIG99xzv2Bni08JQgsK3D2MVmDo3FYOQN5+TovMzLsgMtKR8b7Lrde3B86s1MX9yZ81\nNTWwdet3sG3bd9LMGTYVdNSo0YpMxLlHuN7A2NUdAazwU09HFa3iVL13LLDiUSN90LG7AljG12Yr\nhs2b1RaPmzdv5N4j9h1ghYmYDAPbvGJdV/QUv2oxffos7npNJhM88shs5RjTV8smfLLtBWV30Nhs\nMHZHAvMDADz8sNjLfto0tZc9rkHXLp709nCdgADxM2Zt1COcaM5YLGGQm5sn2NniUVY65oCVoRKE\nFhS4exB9UyMb38ccwJ5xzs6eBtnZ04SMs55s7ejRY5ThOqNHi5XrAMZ6gGPFoVu2bFL8W7Zs5nxG\n9dVY4ScWFGPFqXrvWGCfkZE+6PaWmmov/+7dkz3aUhP7Du6//wHBP3HiFGWNFadiw29CQy2CX2Zz\nBdtvXLWpA3ms1gROxx4dHcN9ftjmTzb1k7XJpDjs+09K6iL4O3dWM/6pqX0Ff1raVdzxzTcP5qaz\nRkVFc73sZZujhASx6NY1xgtotcAy9hhY1xyC8DUWSxgMHjxcOR48eLiQTceKTwnCFfTXzoPomxpp\nvLjTVcZZj/55y5ZNynAd58AZQHtAE7YxwIpDsfONavgB8MJPI+i5Y6GvTzq2udOuA9i/f69yvH//\nXu58owW0OTnTJDb1O0hPz+Da+QUFBcGoUaOVY0y/fPLkCcHPZvQnT84W/FOmPKSsscC2vFzsN15e\nrmq6i4p2co8pKzvL/UZTU9O49o0hIaFOXX+MtforLFwv2AoKVHnSBx+8K/jfe2+V7ucHADh//rzE\nJmr/XeHvGnJ/vz6MgABR6iSzEf6JXg37LbfcKl07wIpPCcIVFLg3MVrFld5GT0Zea0ATtjHAikP1\nbWwar+EH0C78xPTXetpNYsW5+rL67nwGWB0A35VFphHftu1b7j3ydw3M3HssLS0FZ9jJpTZbMdTV\nqa9fW1vH/YZkGnHWFhISKvhZG3b9778vBrZr1qiBLSbzwH6jRUU7OT11dXUVF9jjMg5j2eq6OrGH\nurNt69ZvuUD83Lly2LZN/dywzZO3M+qENnq+Y4IgCFdQ4O5B9AR+Rosrjbw+FjTq6eribTIz7wKL\nxQIWS5jbGn4Hrvq0Y/poLGgG0Feca5SMjLHK5sB5c2e0lz8ACIE/i57Nl3M7R/Y3hAWNs2bNEfzs\nbWJMaoMNB0pPFwth//CHscxjtTs7yeRdr776smBzBabf7tBBnHjYoUOissY2NgAAb775uvCYpUsX\nKmusc46vBwTpmY5LEP6KHg07QXgT+mvpQfQEfgDa7Rab4vVdgWVzsY0Bpg+2Z3t5KYxM419bWwt1\ndWJ3DqMdV/SgVTwLYA9Cv/zyC/jqqy+kQSpWPIplvB3U1l6R6n4xDTr2HS1evBCcWbz4NcHWWPCg\nURtZQTPb1xrLqH/+uSj/2rLlE2WNFcca7YiC6bdZ2Y+DqVNVW7du3QW/sw3bfBiVYshalLpbRK8F\nFZ8S/oweKYzFEkYDkAifQYG7h/GlFAZ7fSyoO3LksPB8R4+qNmxjoG8qqPb/oNevXws1NTVw+fJl\nrvczgPEe5noK/7SKZwG0B0QByIpHU4TNk1bG2/EalZWVUFl5SXgNrEc39h0dOXJIOJ+1YRp5PXeV\ntJg370XB9sorLyhrmQb+5En1joJsuFDnzl2UNTagSYY7MWPHjokSm/4CalnXn9WrVyhrrMZADzfc\nMECw3XTTIN3nywIXTw4A8k3gTlIgwrPQACTCV1Dg7mGCg4OhW7fu0K1bd69JKbDX15p8qhXUyXol\nV1fzNmxj8vjjT4PJZAKz2SwUh+blLRf6tDtLdT75RJWubNq0oVEZdVfFq1h/a32FpdpSIrF4dA/3\nmNzcpcI1sHc1xNf4mDsfew8AwBWLOt81MKoxx35DbBCt2roqa6xHNzbch900OGDvcGBgGnwM+fAi\ntQYgOFhs58ja2I2wA3bD/O9//yz43Z3yi/XCx8ACa7Y42YHse/MvKKNP6IOkMIS/Q4G7h7l06SL8\n/POP8NNPP/psTLWWFEcr8NbTig/T6AcFBUNISCiEhIRKgywt7DIO9X+wDQ0NnIxDTztNreJVLCDB\nMvp6BkRhciPZXQ3Whp2vhw8/fE+6BrB/hs488IDYyUWLjIyxSh2C829I1tbMnVZnWKs/LPCW/eZY\nG6avlgWl7MagqkrM3rM2+fmizRVr1qwUbGwffj14O6MtGzLlTjtHgvB39LRzJAhfQYG7h8H6mDcF\nWu0Ste4IYIWDDrQ2Bhs35kNVlV3m4Vw8ium/MRmH1ZoA3bqpMpRu3UQZilbxanx8gvD88fH6J9fq\nKQzFHuN8B8PZduyYONWStT300HTB/8c/zlDWNlsxfPHFZ8rxF198xmXs9XSdwTZHV67UQGVlJVRV\nVUr7smsRGxsrscUpa6OFi7I5QawNkwLJJ5/qD0qxyalNgWxDzd8JoK4yROtFb80K1s6RIHwFBe6N\nwFVgjPUxbwqwdomXLl2En376AX788QfhjkBqahr06NFLOe7Zs7dEo+4aTGpitSZAcnKKcpyS0oML\nvGWSB9ZmsxXDvn17lON9+/a41SP94kXxDsjFixXKGiuelfXajYnhbVjxKBZYYtx882Au0I2La8cN\n33nxxf8WznnppeeVNda1xWpNgC5d1IFAXbp0EzZHDp16Q0MDzJ//EufDpEDnzon9xM+dK1fWWGCP\n+bGuNp9//qng/+yzTYKtsRgtzvUEtbVi5x128yAP7Jte1td4aONBEETrhQJ3N9EKjLFWek0B1i5x\n3rwXlQFMzkEXAMCsWWoXmJkzxS4xWuhpN3nw4H7l+MCBfVxgLcussq30cnOXcrf8Gxp4GQneI13s\nsONs41sd8vICtp+5A+e+59h0VVlgn5TUSVnLii+dbXPn/kVZP/30nzmfzVYsnF9SItpcgQ14Kira\nyW2e9u7dzW1OsTsGWA/rkhKxpoG9/jNnzgj+M2ds0vci4/Dhg5o2rGtNcwAbUCTr2MTa2AFUWjZf\nERoqXktoqFi7QRAyLJYwaQH3wIFDm/5iCKIRUODuJkbG1TvQkrIYQc9kU62gCwDgX//6J7P+Qvo6\nixbNg9dfd39DYg+sVdnBlStXuMBaFriz+majPcyxTKO9Rzm/McCuz9lmtSZwg57S08dwmwNZqz1W\nOyl2FTEJXUXeemuxsn77bff0723aiMWTrA1rF7lw4TzB/9prryhrecZZv5wG6wqDZbSNB97Gsrls\nT3YHbCeapgiKMY27TO7O2vzhroEW8jqDSh9cCdFcYdsUO5g2bYbkkQThf1Dg7gZYYIz1MQfApSxG\nwDLOWNClp0/6uXNl8OOP2+GHH7bBuXP8eHlsMimGrMc2a5NlzOPjVZvYI13eJ94VFRUVmjY9368z\nJhMfJWGB8+9nuXy+oqKdcODAPuV4//693OYLC1yxlpiHDmlnpGUBEmuTS1U8F/TJ75qotQtYcWrX\nrmKfdN6mPZwI6xojOx8Pij37dwADG2JFfdaJ1kB29jTpmiD8HQrc3QALjOPi4rggyWQycfpbAM9k\n7Bub8caymXr6pD/33DPK+q9/fZbzrV27Rnh+tn0h1gMcy4jLCiHFbhaug15suA/WsSQ1NY27JW+x\nWIQaAJutGDZv3qgcb9q0kdv83HTTQHBmwIDByjovbznwwV8D9x1gkz1lnYEsFtWGtZOUBXWslMXo\ncB+j55eXl0lsaotGWSEpaxs/foLgv/feicoa2/jIf4Oq7dSpk4L/1Cm1N708KBalLQRBeBdWosiu\nCcLfocDdg4hSiwZB463Vo9uBlpTGSMZbNihGprl2xdat33I679LSM7Btm9qlRKYfZjO4WA9wNoh2\nwHYAkA3nYaUy9j7xapDp3CceG+6DSWGKinZyt+krKysFqZG9nSN/Dc46fGdWrVqmrLHiUWyyZ3i4\nKMUJC1OnXhrNpmLFn9gdBUzjjhWfYu0YMdhhRzIbNpW0JWSjW4KOn2i9YF1h3Jl0TBDNEQrc3UBP\nqzwtMI03AC6l0cp4b95cKDx+0yZ1oFFYmNiHltVXYxnxt99eDM689dbrgk2LUaNGg9lsBrM5QBgO\nxAbRDtjAHBsehCGTObBBJSaF0VN8jLeDxDTc2oExFnTJNoJswarzHSC7rZ2yZrvqaNlckZDQQbC1\nby/a3Dm/Q4eOus/HAu+jR48IfraPvtHfWHOgJWw+CMJd3JmnQBD+DAXubmC1JkDbtpHKcWRkFJcx\nxgJfLJsKoC2lwTLeGFg2FMuIY//Dl+mHu3XjbVu2bFL63G/ZspnzYfphbHgQdsehXbt2gj8uzqqs\nU1PToGfP3spxz56pnBRGT49urB0k22pRZsPkOkazpaWlYleW0lK1K0tcnPgZsZ8b9vqyDi82m2qL\niooW/GybzV27dgj+HTt+FWzeom3btoItMjJS8kiCIHyBxRIm/VufmXm34pdNPl21aq3Xr40gmgIK\n3N2gqGinEDizUgks8MXAikOxjDd2RyArayoEBKhZh4CAQOGOgdZkVWyAkUw/PH68qh/G3p8ss9qx\no2rDhgfl568T/B9//KGy1tNKkL0G9rUB5NlcZ32y2A7SzHWFmT59lvAc06fPFmyuwDZPstHzrA3L\nSMsCe/ZzwwJ3TMrD9mx3INOtuwJ7fcyPFa/K7li4006TIAjvM2HCA4Lt7rvvVdYWSxjceOPNyjG7\nJojmDgXubqBHKpGRMRYiIyMhMjJKCHwx9BSHauE8PKdr1+7cxsFqTYCUlB7KcY8ePYWNRXBwMNx8\n8yAYMGCQUCyKDc+RFad+8IFaDIm9v4iICHAmPFy0uQLrIY7JVGy2YvjqK7UF5pdf/pML5GSFj87F\nseIAI/47cO77DsD3h8c662CBu2z0PGvDAlus4wgW+Hob7PXxz0e7uJQgCN+iV6P+6KOPSdcObr/9\nD9I1QTR3KHD3Aq7koph+GYPNXju4774sZe08PEc2WdS5laBzhrGmpga2bv0Otm37Tri26upq4fUv\nX1ZtR44cEvwymyswqQt2RwHLJmP+V155UfDPm/eCsmb7cas2XhpjsxXDoUMHlONDh/ZznzHWktPb\nUy3btbNKbPrvCmFdWzDYOz4O3NGeUuBNEM0bTxWPsn/LZH/XCKKlQoG7G+jp471xYz5cuHAezp8/\nJ2jU5YWDqg0LXIuKRP3vzp2q/lc2PGfJEnV4Tl7eck6TXVtbK2T0tdtVamczscI+rM86lrG3WhM4\nHX23bslcNhubCMkOc5LZ2LZ9DthONPJsLy9NYYNwma0xxalsYIpJYTBk01/PnhXlMa4wmnGXfUey\n2gFXUGElQbRsLJYw6d1Xtr6MIFozFLi7QWpqGsTEqO3qYmPjuOJFTMONFS5iXWEwsHaMWHGszVYM\nGzZ8rBxv2LBeutlwxaxZcwTb7NlPOllcF1Ji4+id7yg43zHA3l9AgPhzl9lcgRWOAriS6xxR1lhx\nqqwrzfHjqq2uTvuuAYbRwFdWB8vasMmhBEG0biyWMBd3FtVGBG++uVLwL10qttIliNYIBe5uYLMV\nc5ru8vIyLnDENNziOHsQxtlrgWWssVHmGHl5y7mMaF0dn5HHMupxcbJWg6oN67OOkZu7lAsy6+vr\nuR7pGFhXGKyrDZbRB5Bn9dnvrHPnroK/a9dkZc1Kj2Q2WZBdX6/asLsKmFwIQyaX4m3ak0MJgmjZ\n6JHCrFjxvsT2Hnc8cuRo6ZogWjsUuLuBfbgOr5l2J3B0xrlQMCmpi/CYzp3FDK0KHxHJshht2uiX\nMVRUVGjaZF1fWJtsuJA7gbn8joQ60Q4rPjUqI5FprVkbHrQCtG0r3uKNiFBbDP7rX58J/n/+U22L\nGRISIvhZm2zKJmuTaT2tVtVmdHIplrHHJocahYYHEUTLYODAIdK1gwEDBkrXBNHaocDdDbDAEevj\nnpu7lDu3oaGBC/wLC9cLz19QoLY4tGes+Y0DGxjLAk+2GBArjpUFXadPqzaZ7pC1YVIVrLhUppUO\nDlYfj2XMsY4qRtEjM8E672DI2odarWIbTleww5YcsO0M7713kuC//361tZo8MPafPxOkcScI/8Zi\nCYMbbhgg2AcOHMod33rrKOmaIAht/Of/yL+zZs0aGD58OPTr1w/uuece+O233zQf/+mnn8Ltt98O\n/fr1gzFjxsA333zD+Z955hno1asX919OTk6jrq2mRgxMWZvVmgAjRoxUjkeMGMkFYthUTQxZRvzi\nRdWGtRLENNqy9+cceLObg8BAvg+8vPDxrLK2WhOge/cU5Tg5uQf3+cg2DidPqjZvdxRhJS1aNiOM\nGXOnYHMMDgEAKCnxbh9xrMBZHri78wqUESeIloweKYxz0wYAgGnTZnjjcgii1eFXgfvmzZvhpZde\ngpkzZ0J+fj706tULsrOzoaxMPqDlP//5D8yZMwfuueceKCgogBEjRsD06dPhwIED3OMGDx4M27Zt\ng61bt8LWrVvh1VfFfux60NPO8aeftjPrHzhfdLQ4NTImRp0aKR9ApBb2YYGtDHdiJqzdodWaAGPG\njFOOx4y5kwu8ZQFmSYm6McDaUWIdV9q0EWUkrA3Td2OBeadOnQW/zGaEYcOGC7YhQ4Ypa+wzMAp2\nV8RonYTsM/anjD1BEE1DdvY06ZogCGP41f9RV65cCePHj4fMzEzo3r07/P3vf4eQkBBYv16UkAAA\n5OXlwaBBg2DKlCnQrVs3mDlzJvTp0wdWr17NPS44OBhiYmIgNjYWYmNjpZIPT7B167dc1vns2TOw\nbZs67VM2uZMdB//kk88K/jlzVBtWuCjLqJ8+rdpkGfn27VVbWFi44A8LC+OOR40azazThcdrgbWj\nxPTLmMY+NFQsnrVYVJushzhrGzv2bsE/btw9gs0I8+bJesWLNm+BtZvENPQYWJ0AQRDNG4slDNq3\nF/8WO9coJSV1kq4JgjCG3wTuV65cgV27dsFNN92k2EwmEwwYMAB++eUX6Tm//PILDBjAa+kGDhwo\nPP6nn36CAQMGwKhRo+Bvf/ubVIesB0x//PbbiwX/W2+9rqyx4karNQGiotSsfHR0DPeaWMYZk5LI\nildZXXmbNmJXFWfb2rVq5f+HH77n/HBNsGwv26PdQbduqk2mV2eH/7Rr107wx8WphZnY54P1kfcE\nbF941aZfLmW0APf48WO6bI3F6IAmgiB8g0MCo0cKM2/eIsH28suvSR5JEISn8ZvAvby8HOrq6oSW\ngrGxsdIx8QD2DDb2+EGDBsHLL78Mq1atgieffBJ+/vlneOihhxpV0CYPvFUZA144J3tN1VZUtFNo\nN7l79y7luEsXsZUga8MCY4ysrKkSm6pht9mKua4oX3zxGSd1wTLmly5dFPyXLqn/k5g+fZbgf+SR\n2cr6+HHt4uDycrEItLxcLrOSgfWRZzdVDmTyJyPExsZKbOpv3GgBruyujex33ViMtpskCKJ5cOed\n46VrgiC8i9/fw25oaHCruM05eE5PV+UcKSkp0KNHD7j11lvhxx9/hBtvvFH385rNJoiPj4cLF85z\n9oSEBAgMtO9/kpI6wZEjhzl/UlInxd+mTRuoquL1ym3atFH8r78uau8XLZoPubkrAQDguuuuh6Ki\nnZz/+utvUM53hcMv+xzNZpPiLy8/K/jPnSuDDh3scpqXXnpe8L/88vOwcKG9W47FYuECcYfN8fzy\nbO9R3a/vKih0nB8TEy18P7GxMbo/H1cbL4df1h2mvLwcfX72NTB/VZV8c6j3fPK3Tr8/XAP5feuv\nqakCiyUM9VssFqisrOR8FotFaWXbtm0E9O7dh0saAQD063cVdw39+18D69evVdbO18cOtwsIMJOf\n/G759T6mNeI3gXt0dDQEBAQI2fWysjJpFhLALo2QPV42CMhBUlISREdHw7Fjx9wK3GNiwji9tIPQ\n0BCIjrb/sQwJEaUmISFtFH9dXZ3gr6urU/zscCIH9fWqf/XqVYL/3XdXwIQJ9mxHcHCwoGEODg5W\nzq+urhTOr6qqVPzz578s+OfNexHy8/MBQN7xpLi4WDk/KSkJ9uzZw/ntn7fj/ckDb4d/0SJx47Jw\n4Tz48MMPBTuL43y2XsBBSUmJ4sfOx64PO9/IYxx+2W3qS5cuGb4G8rdsvz9cA/l964+KChNqkmT+\ngoICuO222zhfQUEBd7xw4QLhMfPmvcIdR0SEcGvn6yM/+Y349T6mNeI3gXtQUBD06dMHtm/fDrfc\ncgsA2LOd27dvh0mTxN7TAABXX301bN++HbKyshTb1q1b4eqrr3b5OsXFxXDu3DmpHlqLsrJLUFsr\nBnZ1dfVQXm4PttjR9A6OHz+u+F11pVH9ouShpuaK4ncVWDr8robrOPyHDx8R/IcPH1H8ztlyh83h\nd4XDX14u1g6Ul5/Xfb4rGYje852zSA6b3vO95W+K1yB/6/b7wzWQv2n8zz33PDz//HOcb+7cP0FN\nDUBNzSWYMWM2vP46rzd/+OHpih/A3qr4iy8+U9ay137ggQdh1ap3lLXzYyoqqrk1+cnvSb/ex8ho\n6QG+3wTuAACTJ0+GuXPnQlpaGvTt2xdWrVoF1dXVMG6cvQXhU089BQkJCfD4448DAEBWVhZMmjQJ\nVqxYAUOGDIFNmzbBrl274B//+AcA2IO2N954A0aOHAlxcXFw7NgxeOWVV6BLly4wcKB7k9jq6xuk\nevHq6stKQO8sg3HYZAE/i8Pvqk+83vNdadwdflcZfYffZDILHURMJrPu13fVDtJT14+d769+f7gG\n8rdsvz9cA/m9679woQIsljDo2bMPhIZaoKrKnqiwWMKgb99rlPNvvHEQLFnyBtTV2Tt4BQYGwqBB\nw7nnHzRoqBK4Dxo0VPra3bolc2vnx9TV1XNr8pPfk369j2mN+FXgnp6eDuXl5R3G3dIAACAASURB\nVLBo0SIoLS2F3r17w7Jly5Re58XFxVxWuX///jB//nxYsGABLFiwADp37gxLliyB5GT7H5yAgADY\nu3cvbNiwAS5cuABWqxUGDhwIs2bNcqsThwO2EFPL5i06d+4KR4/yGnpZwaorQkJChZ7gISGq/Mdo\nK0CjYJNRCYIgWjqyBIozs2Y9AS+99N8AADBz5uOC/7HHnlTazM6e/aTnL5IgCJ/hV4E7AMCECRNg\nwoQJUl9eXp5gGzlyJIwcOVLyaHvh5zvvvCP1NQarVSxOZds1erujxsSJk+H//b+/OtmmMEeyIl7V\n1q1bd6G4lW23aBSTySQUeLIFsUFBQYIcpjEbKG+BXT9BEIS3efXV1+Gxx6ZzthdemM8VnoaGWqRr\nBxERbaVrgiCaP1Si60GwdohGyc9fJ9g+/lgt3AwKEvdhrC05uafg79Gjt+7XxyaThoeLA5zCw9Vh\nV0ZbGWKYzXKNv4OoqCjBz7Z4xL4/2fPLbARBEI3Fak2ATp26KMedO3eFzp27uHw8QRCtCwrc3eDU\nqZOC7fRp1Yb3cTeGc6tJZ5ur4lYHhYXiBNqCAnEz4IqYGLFnuUPGBABQUVEh+CsqLuh+fqPINPxs\nJ5/z588L/vPn1YJa7PtzVSNAEAThSdiZGpMmTdF4JEEQrQ2/k8r4M7JBNbK+266wWMKEdn9afXed\nkQ3PYW3e1qifPSv2WT97Vj4cyx/BAnNvb7wIgmi9VFZe0vx7z/pZCaE/yQkJwptUV1fBiRNqd74T\nJ45J14mJSVx9XmuDAnc3kKle3FHCtGtnFYpLrVar7vPbtAkRAv82bUJcPJogCIIgCKJpYANvWdB9\n+fJlOHOmBKzWeK6xh8N/4sQxyM1dKn1u1v73v78Iyck9PH79zQUK3N0gMbGTEHgnJXXSff7p06cE\n26lTos0V7dq1g6NHLznZ9Af+BEEQrRnZgDM9PodfT8Z8wIBBsG3bd5zvxhsHKufGxycIrXOt1gS3\n7r4ShC/AAnNXgberYFyvn+ChwN0NZFPp3Plj66pPu17Ky8sltjLd53uboKBguHJFnNxKEATRWpg+\nfbYQuM+Y8ZiyfvXVxTBhwp2cf8GCxU1ybQRhhBMnjsNf//qMYPdG4J199VBIjIiF6lp7nV5p1QVY\n9svXHn+d5ggF7m5w7pw4GZQtbvQ24eERQjvKiAi1a4uv2y3K9PT19aQRJwiiacAy6hZLGISFhQlT\nosPCwpUkzJw5zyg90B3MmfOs4n/kkVmwZMlCzp+d/QiXxMnOngbLli1V1s5kZt4FBQUfKWuCaGlk\nXzUS4kLtrUhDAoPhREUpLPv1M8Y/AuIsEar/wllY9usXij8xIhaSY9R22wfKmm5mjr9DgbsbnDp1\nQrCdPCnafPX6vh5gJH99z7V7JAiCMMrbb+cJGe+3316lrPv3v44bVhcSEgr9+1+r+G++ebBT4G6C\nYcNu4Z6PlVDK5JT9+1+rBO7scxOEL9EjhXHwYL90iAuNBABHYH4G3vlts+JPjIiD5OgOLl8rsW0s\nJEe39+j1txYocG9CzOYAoX2gJ/uAywcIUcdPgiBaB3oy6gAAI0aMgi++2KKsnZk9e44ymXT27DmC\nn83Kz5kz12PXTxDexJMa9cSIdpAc3dFLV0poQYF7ExIYGAA1NXWCzVPIJ7dSn3GCIJoHegpEtXwW\nSxiaUQcAGDRoiBK4Dxo0RHgumkxKNEe8VTxK+BcUuDchNTU1umwEQRBE48Ey6gTREvFk8eiD/TIg\nLtQ+bdwuhbHBO79tNHyNhHEocCcIgiA8gpGMOYBd6hIZGSUU/UdHxyj+iIgIYUpzRERbTgqDZdQJ\norXzYN9MJjBvAycqSuCdHQWKPzHCCsnRib66PEIDCtwJgiAIXWCBd2Mxm9VanCVL3hGkLm+8kaus\n33xzpeB/880VXrkugmiuPJh2J8SFRgMAQGlVObyzcz3nT4yIh+SoJF9cGmEQqlwkCIIgAMB4YG6x\nhEFoqDiK3JENt1jCIDc3T/C/++467jg9fYx07WDkyNHSNUEQdhIjEiAtLgXS4lIgMSLB15dDeBAK\n3AmCIAhd6Bk4t2zZasHGBusWSxhcd90NyjG7dnDDDTdJ1w4GDBgoXRNEc6a6ugoOHNgHBw7sE4pL\nDxzYB7t27YCioh0u/ayNaLmQVIYgCKKVoEdjnp4+BjZvLuTsmZl3K+s1a9YLUpU1a/jb8MOG3Qpf\nffVPZe1MRkYm/PvfPyprgiAaX1xKXWFaFxS4EwRB+BhHK0PMb7T4Uw8TJjwgBO53330vd9yrVx/Y\ns2eXsnZm6NDhSuA+dOhww9dEEM0BrB3j5cuXwWQCCA5ugw44IghXUOBOEAThJwQGBnp12rHFEgbZ\n2Q/DsmVvcvbp0x/jjh999DF4440FytqZ++6bqGQG77tvopeuliCaF57MmD/YZwLEhdi7KZVWl8E7\nu9bw/rTxvH/n2sZeNtHMII07QRCEl3FkwmXDethWhqtWif/zzc3N44o727WLFx6TkNBe8b/wwjzB\nv2DBEmVtl66YlGOTySzoxNu1s0rXBNGawTTonsyYJ4a3hz5xvaBPXC9IDG/vwt8D+sT1kPqJlgtl\n3AmCIAyCSV0cvPnmCrSV4Y033gw//LBVWTs/72uvLRGeY/78N5R1585dwWpNAJutGAAA4uMTwGrl\ng/05c+bCvHkvAgDAE088jV43QRDuZdSnpE6F2JA4AAA4W10KK4qWc/4HU7MgLiQWAABKq8/CO0Vi\ntyWCkEEZd4IgCAS92vExY+4UbKNHZ3LBN9bK8Pbb/yBds2Rm3iVdO3jooUeUdU7OI4KfzfzL7gIQ\nRGvEkxn1juGJ0Ce2D/SJ7QMdw8VBRonhHaFPbCr0iU2FxPCOHrl+onVAGXeCIJoFWsGz3uLOxvox\nHOeOH38/FBbyHVbuv38SdzxgwED47LNNyrox9O9/LRQUfKSsnQkKCpKuCYJwjTsZ9Ul9H4TY0N8z\n6lWl8O6Od7x+fQQBQBl3giA8BBZYG/X7Ekdg7tz2UGZjizllhZ0EQfgGj2bUIxKhd7s+0LtdH+gY\nIWbUCcJbUMadIAgA8H1wjOEozDxzpoSzW60JSmDdp09f2LVrB+fv3bsvF3g768PZ4k89Pcqvvvpa\n+OWX/1XWzlBhJ0H4J+5k1O+7+kGIsdgz6mWVpfD+L5RRJ/wDyrgTBKELI1IViyVMaUXoTHb2I4p/\nzhzxf6pz5jyrPPdrry0R/AsWLFbWzz77N8H/5z/zti5dunNr5+tmg3FZYD527F3SNUEQ3qUpJ4u2\nb5sIPa1p0NOaBu3bUkad8B8o404QBADoG2ePgWWshw27VeghPmzYLcq6f//rhOd01nBnZt6l6Ltl\nhZkTJ06B1atXKGtnpkzJVrJuU6ZkC/6xY+9SMuoUmBOE/+DJPul3X5cN0b9n1MsrS2Hdv5d55iIJ\nwstQxp0g/ARvT8XUc76WhttiCQOTyST4TSYTF/T369dfunbAZtVlGfa5c/8iXTtgA3lZYWZKSg/p\nmiAI/4XNpjdFn/SEtonQIz4NesSnQQJl1IlmBGXcCcIgejuSeFtD7qnn1xpnv3r1R0JGffXqj7jj\nO++8B3777T/K2hmsFWFoqEW6Jgii+VJdXQUnThxXjp0D8xMnjrnMnMvsGTfmQFSYPWN+7lIpbPwh\nl/OPvT6b8+f/TBl1omVAgTtBeAijgbPFEsYFzQ769r1K8Rt9/tzcPMjJyeLszll2bJz9NddcD//3\nfz8ra4IgCE8H5hjWqERIjEu2P3/pAcEfH5UISbF2//Gzop8gmisUuBOtHr0Z8zZtQuDy5WrBpjeg\n1vO4v/zleSGjPXfuc8paS0Ou5/ktljCIj28PJSWnAQAgPt79Udl33DFOCdzvuGOc2+cTBNHycKU/\nB3A/ME8fkANxUYlQc8X+9/bCpVLYvC0XOYsgWgekcSf8Hm9rv/W+/vLlawQfa7NYwuCFF+YJj1mw\nQO2EoqcPOFtQKSuudO6KovVcMtsjj8yUrgmCIFyBadDd0Z/fNjAH7v/D83DXyGfhrpHPwm0Dczh/\nXFQidGyXDF07pEHXDmkQF0UadIJwQBl3wucYnVqp9/kXLFgMjz02nfO98MJ8t1578ODh8O23Xypr\nZzp37gpRUTFw7lwZAABER8eA1RrPPaZbtxQ4dGi/snYGK67EuqKkpvaFoqIdypogCIKVsjgH3QAA\nly9fhjNnSsBqjYfg4DaGpC7DB+VATEwSXPk9Y15RcQa+/E7NmMdFJUF7a7JyfNpGUhaC0AsF7q0E\nIz24jZ7vKSlKcHAw1NTUcP7g4GDdgbfVmiAE1Z07d1H82HAeAIBbbrlVCdxvueVW6es8+uhs+Mc/\n7PKW6dNnC/4HHpiqBN4PPDBV17W7w/jx9yvPP378/R5/foIgmh53Am+brUTwuwq89chY3JW6xMQk\nQQITmBdTYE4QHoMCdz/B11MrfTlu3hEYL1++RgicWSnKihXvC/4VK95X1ikpPWH//r2cv3v3nlzg\njQXVVmsC2GzFyroxdwKCgoKka4IgCFdggXljA+/GFH5iDBqSA9HRakb94sUz8N03pEEnVE5UlGoe\no+dfKNM8bs1Q4K4Tf9FZN8bvyHjPmfMMzJv3IudzTKXEnh+biqnnXD3j5DEpysCBQ+D7779R1ix/\n+9sLwvM///wL3DEWVE+fPkvJVk+fPsv1myIIgvAgjR0u1BiuHvogWCLsrRIDg0LgQtkJ+OXrdxT/\nDUNyIComUQnML1WUwo9MYB4dnQTWeDWjbiuhjHpr40TFGc3jZb9+pn3+hbOax8t+/crludXV1S59\nrQEK3JsII4Gxp9CaSukYR+881dIxjh4AD7z1BOZxcVYoLbUpa2cwKcqtt45SAvdbbx0l+O+7bxK8\n//67ypogCKIp0CNlMZlAqh93Pgejy9ApEBwRCwAAAUEhUFV2Eo58vULx9x46FUKYwPxi2QnY/fVy\nxd82JhFimMDbmaiYRIhj/KUUmLc4TlSUIMc2zeN3ftts6PWX/fqFofNbMxS460RvVtkIWKu/sLAw\nuHSJ3wCEh0coflkP8N69+3LXNnfuX+Cll/5bWbNg4+gBAHr06A379u1W1s7069dfGb4jm5o5Y8Zj\nSlZpxozHBL9RevVKla4JgmjdGA2s9QTenpKyxA55AAJ/D8zNQSFQU3YSzn6zSvGHxnSE8PjuwnkO\nwmMSIVLDT7R8TlQUS9cO3tlRoHn+O79tNPT62VeNhMTfN4/2ayhFs/D8+cMgsW2Mev6FMiULHxIS\nYujamjsUuLuBkYyzo1Xgs8/O4fxsq0AAgKSkznD8+FFlzfL223nC87/11kplLesB/uc//407xqZS\nsnIa2Tj6CROylMB7woQswY9NzSQIgvAGvtKIe0PKEhzTEdrEd/P48xKth3d2iq2BPcmD/dIhMaKd\ncnyi4gyXhU+MiIPk6A4uz8++agQkto1Vz79wlsvCJ7aNgeSYeNmprR4K3N2kY8ckOHnyuLJ2JjGx\nk/I/isTETpyvc+euEBwcAjU1dn1WmzYhQqvA7OyHlcA4O/th4flHjBgFX3yxRVk7M3HiFFi9eoWy\ndhdsHD1BEIQ3wAJvAIDExCQICQmVnt+UGnGM0CH3gCncni1suFgGVd98yPktQyaA+feMen3FWaj8\nRpwRQRDe5MG+mZAYocYfJypKuCz8g/0yIDHCyvhtXBY+MaIdJEd3bPTrJ7aNheRo9wcAEhS4u81D\nDz2i/M/hoYceEfw5OdMUf07ONMH/1FPPKl1NnnzyWbdff9CgIUrgPmjQEMGP9QAnCILwBZ7IiOfk\nTOOSI87n6yV4yB/AFB4FAAANF89BzTefcP42Q+7g/Je/2cD5Q4aM4/zV33zM+c3R7SEw3n7HtLbk\nqPD6ATEdIDC+6+/+w7qvm2g9nLh4WrpWbBWnpWsHD6bdCYkRCb/7i4UMfGJEPCRHiclH1W+F5Gga\nfOWPUODexFCrQIIg/A02qAbwLw049liZLXjw7QARkfaDivNQ8+2nnN8cbYWAeHu2sK7kpHC+3Z/0\nu/+4xB8PgfH2O6q1Jfo3DETr4eTFE9K1gxMXT0rXDt7ZpX0X5p1dazX9iREJkBzVSfMxRPOEAneC\nIIhmDhZ4e3Iqpqf9MgIH3wKm36V6DRUXoPbbf7l1vimmHQRY7fraOtspt1+fIDBOVZyQrh2sKFou\n2FjeKcrz+DURrQMK3AmCILyM0amXvgy8vUHg4GFgirB3xGqoqIDab/mezeaYODBb7bf5621iR4yg\nwbdxgf2Vbz/38hUTrY3TF05I1w7ydrwj2DzJg30mQGK4XQN+4uJpIQP/YJ/xkBjxu7/iNJqBJ1oO\nFLgTBEEg+GrcvDfG0WMEDL4ZTDHR0HDlit1QcRHqvt3q9JhBABHhjP87zh84eAjA74E5VFRA7bff\ncH5zTIxmYI5hD+zb/36+qO8lCIzi8yekawfv/2IsMJ+SOhU6hts14icvnhAy8A+mZkFiuF2udeLi\nSSEDnxjeHrpHdXX5/IkR7aF7VGeXfqLlQoE7QRBex9s9tL3t96dx8xgBQ24AU3SkGnhfrIS6b35U\n/YNvAlNMFBOYX4K6b7crflNMNJitapu3ehs/EVF9jPV3v03ijwHz7x2z6m0lgp8gvE0JE4yXSALz\ndf+7zNDzZ/V9EDpE2APzUxUnhAx8x/BE6B7pupd+YnhH6B5JLT8J96HAnSCIZjWcxp/8jSFgyNXQ\nEGFvaWgKCgQoq4C6b35h/NdAQ3iY6i8/D3Xf/B/jvx4gOhIartTaH3PxEtR987PiN0VHgjleHXxS\nX1LKvb4pJgoNzAnCm5SWH9c8PnPuhOYxAICNsdkk/vyfjAXm9139ILRvaw/MT184IWTgO0QkQtdo\nGnJFND0UuBOEjzFaWOhAq8d1SxpO42sChqZCQ4R9cp898L4IdV8Xqf4hfSWB+Q71CWIiICBenQhY\n7/wC0ZGo3xyvDi6pLzlr5O0QhMc5W3Zc8/jzrbma53+6TdsPALDxB/wxWtx9bTYkRNoD8+LzJ4QM\nfPu2idAlJtnQaxCEN6DAnSAQ3NE3ywLrpiosxHpcG23F5ynCh5rA3LYBAADqL5jg4tcNnN80LAQg\nwmQ/qGj4/+2deXgUVdr27+ot+9bZQ0LCnrDvAioBVBAVBRH9ZBQGFVleFPcRh3fEZRCZUQFRGTQK\njsy4jB/oOIiMEEAZFpVFzSB8rJKQvTtJp7P0Vt8f3ae6tq7ukCBJfH7XxUW6nlOnTp06deo+z9nA\nFzbJ7ElAjK/qsrnAF0o9yrpxmUCsb6nVOic8u4pl9u5AjMl3vgOeXadl9t6AT5jD1gTPrhPSGzBH\nQ58aJ/xUCGtzDPSp8YHtBHGZqbMUa/6uCfLbKhPi8t+FX7VOVLcF00beh1SfMC+vLVZ44NPiMpGd\nSMKc6HiQcCcuO7/E+OdQV+xoy4mFoYRpS+HcVsK859VAmG/eYXM9cFI67xBdx3IwxXjFtsPG4ec9\nUuGdms/B4LO7bBzKd0vt+kTAmKoDADjLpTYA4Mw6cGneqokvc0EegjObwKWF++xNSntiOLjUSK+9\nvEEl/ghwqb4VTcptKvYocKm+FUvK6xR2grjcNFpKNH/Xy4S2/PeRXdoTLw/s1hbeX+1pnTCfeOVc\nJCX4N/+psp6XeOEnj5mL5Hj/5j+VNcUKL/yUUXOR4gtTUVOs8MCnxmUii4Q50Qkh4f4roL1PDOyo\n458vBcNGAbHxgMs3b7DBDny3328fPBqIEdkb7cCRfcp4tMi7CgjzDqFGsx049rXUHpkAxKR4Pd62\nCqWwjjADUSle4W1XsZvMQIRPmDeqCHOC6Oy4LWWqf/uPXVD9m+GQCXH577O73tG8/rFd2muIX2rG\nXz0XiWa/MK+2nJd44ZMSspCeElhUJ8dnokuytuhOic9EZhIJc+LXBwn3EDl50ttdfjHjj0kYX5y9\nPXLVSA7RkV4xajRysNYCXx/0i9PRVwDxcQBbsMPeAOzzL+iBkVcAcfF+e4MdOCiyx8YDicmc8Lu6\nUip8Y+IBs8huqVQK4/5jgAifx7yxHvjxP1J7VDwQ5xPmtSrCmyA6Ox5LherfodrdlnLVvxlNe7TX\n1G7Yrb0rZvXujZr21jJ43L2INfs92nWWYokX/or8uYgX2WssxRIv/NVj5yJBJMytlvMSL3yiOQtp\nGsKcIIiLh4R7iDz99BLFscstbDujML5puB7x3lEOqGkAPvvWLbFPHq5HXJRXbNbaOXwus08coUOs\nz5tsMnCoquWx/Rv/KONrRnCIYXYjh+oaHju+8YvX/JEcYkTC3FIL7BYJ84Q4ICVJJ7qiVPjGxwHJ\nSX5hXVkltcfFA0n+BT9QJR2e3SbEJADxPnFfoyLsCeJy47FYVP/2H6tW/dt/rEr1b/+xStW/GY49\nn2mmr3nPJ0Hs/1fTfqnJGTcHEeYuwu9GS4nEC5837h5Ei4R3vaVY4oWPNWfCnBpYWMebM5GkYU8w\nZyFFw050foptlWhyOQAA4QYTim2VMnuVzH4JPna/Uki4/8r47aA4JEboAQDVjW5sOForsd81yIjE\nCM5n5/HeUafE/n8GG5AQ6bVbG3i8f8QlsU8fakCCT3hbG4CPD0ntU4fqEe8TzjV2YMshqfBOieXQ\nJdErjEuqldP6kuOAjERv+i+o2JPiOKQncorjjMR4DmkKu1/cmuOAVA1hThDtHd5SI5kQy1tqWni+\nVXa+VTOMmj2YMJfvlKq0f6lpD7ZTqnPP55r2S0342DugN3s3mHJbyhQe+Mj830BvzvDZLyg88In5\ns2ESCXOHpUTihY8wd0F0auClCKPNmYjTsBNEsa0cTa5mAEC4IQzFtnKZvUImvKU9TwXfb9WM/62j\nX2hfv65aGn+dtIFebPP+bvKNC61qpPlGDBLuLWDukNHIjI33F6QGO9487B9gPHfoCKX90DfSOIYO\nQVJkpM/egDcPHZbY7xvaD0mR4T57E946VCSx3zukp8RecPikxD5ncCaSIrwralQ1OvHOEemkpC4x\nRnRP8K6ocdrqUNxjRowO3RK8wvWMVSmM02J1yDF77WctanYOXX32n1XsKXEcsnz28yp2gmjv8JZ6\nmbCtl9ltMrtNZq+T2etk9lqZvbZFdveeg0HSry3s5bukqiHfKVVp3w23ZojLi2nsTdCZfRtIWSoU\nHviwsbdI7HIPfNjYW6E3ezeYclvKFR54vTkNhtTAu1rqzRkwpAbeFdNk7oKwVNqchwhMcX2pILyr\nmpSN42Jbmd/eqGxcF/ywRTP+gu//2QapDMxbR7Ub528d2XVJr9+RIeHeAjJj49HT7N+45KSsC9Zr\nTxTZlV28mbGx6Gk2++zKly0zNho9zfE+u9JTlhkbhR5m74oYpyzKFTEyY8LRwxzpsytX1CCIS02z\nhVf9m+ESHXOp2HmLW/Vv/zGH6t/+Y02qf/uPNaj+7T9mV/2b4RGt2a6GR7xmu6r9qLZ9z6Eg9m80\n7cEQ75J6uTCMHQ+drx70WCwKD7xh7LXQ+epSj6Va4YE3jp0InTnJZ69SeOCNYydD56urPZZKhQde\nZ06BPrULAuG1ZwW0682pMKR21bpFopNTYitGk8tbv1Q3KoeBlNSL7E1Ke3F9iWCvalJqhWDCvOBH\n7XkUBT9+HOQOLp65cxcA8A/HZUsRy1dok9u1lj6+WNas+TM4jsMDDzzapvG2Z0i4E0Q7orYGEA/P\nqZW13epk9jqVURA2qz+MTeloQb3IXq9ibxDZG1TsjSKx3agivCt2S9Mox16obecLmzUHKPGFVZp2\nT6FyF0WJfdeZIPYTmvb2jn7sSHBm/zryvKUmqBdeev6V4MwJovOtCi+8fuzVQhiv/SuZPV8izN17\ndkvsOrMZupS0gGnQmROD2JOgS0nXsCdDn5IR0E50fspritHs9ArjGrtSOJfVFaPZJ5ytDUp7qchu\nUbH/9QftJTXf+a/2yj4F/31X216kPYH5YlET0aEKb0ZmZpZk08DMzK7o2bO379cAAN7FMuT2zMws\nIZ5g12eLbailITPT26iuqbHgwAGvI+Luu+cgPt6/cV1nhoQ70SJK6zyqf7cVFbU82JY13r+lVIrs\nlSr2Ktkx+e/qIL8tQX5bg/yukQnrGpmwlgtx+e9D+6HJ0RCcpfJVZOT8FGQkhHzddjk/7wF+zWP/\ndeP6gjNHC795S73EC6/LHwDO1yvmtdskXnhd/iBw5liRvU7ihdeNHQrOHCey10q88LqxI1Tsfi88\nZ46HLtU/A1r+lurHjlYR9v6CxZkToEvx9yyqveXeMCkB7V5hnir8bs/DZoj2R1WNt/Ht8AnvOhXh\nXVFTLNjVhPnmb95SHBPz0bfa9r8f0Rbml4tgwlu8wlwg0SvfYTtU4d1awsMjVONRu752GC9Ll/5O\n+Pt///dJvPrq+lansSNAwr0FFMvcm8rftZq/vcfqVP/2H6tX/dt/zK76N6Okrkn1b+GYzan6N+OC\nzaP6N+MD2WRUOWUiMV+mIuyDCfPPvtP+xH/+rXZjQbyCjBo7DvLQEp27D0LT/nUQ+74gjk3x0o+d\nlZR8IMzsnQDcbOF9Hng/UeMBg8/usvA+D7wfbnwYOLN3AjJvcYMvbJbZk8CZTT67Q7lz6vhMcGbf\nBk2WJoUHXjeuGzjfcDLe0qDwwOvG9QZnjvLZ7QoPPGeOhk5j51TOHAOdxs6pnDkWulSzhj0uBHti\nQHswOHN8UGFOdG7qLMVw+USvwRgecOdUpy+MXbYiiNV6XmKvr5cOG7VYpHabbMWRqhqv3S/Mpfat\n/wm+wZN8w6VfitYI59bagVCEt5K2Et7tib1798Bq9Q8hsliq8Z//fI0xY666jKn6ZSDh3gLEE1FV\n7YeCd0fLJ6PKkU9GlSOfjCrn7aPawwTkq8jIka8i01I+PuSGln9NvooMIWXoKO+SkYzaGqkXftBo\n71rvjLoapRe+/xjvkpCAd6iM3AOfeyUQ7bPXW5Ue+J5XezdhArxDZZQ7Gngt4AAAIABJREFUpwIR\nPuHdaOF9Hng/YWYOEanilXukDR2DmYNRw86Z9cLOqUqrdOdUdbt/51Q1OHOksHOqut2/cyrROfFY\nK8A7vfMj+HrleLPg9nI4nc0a9lKRXTk+2W25AN5n99iU45sdlhJ4fKJWZwxXbMDUaCmB22fXG8NV\nd04VC/M23zk1iH3nV9r27V9fOtF9KYU1cGmE869ReLeWdeteVRx7443VJNwJQs4dgw1Ij/WuClNa\n5wnqgW8pNw3TIyXOK+oqanmFB37ycB2SffbKWl7hgZ84QoekOL8oVKzjPpJDosheXcv7vPBe8kcC\nZpHdUsv7vPBerhoJJIjs1lre54X3MnokEC8S1jU1Ui8824CJUVsj9cLHyTZgksvSWNkGTGref/E6\n7mr26AT/BkxqdvHOqWr2CDOHqBTtNBAaWGxwO73vDWc0ACqTzDWxeleV4Vkc9dKeN16w+xrh9dIJ\nuGxVGcFuk53vW+rRb1f2/PEWK9yadovIrrw/j8UixM+r2qv8wtmm7JkMZuctlXD57LApnRWO3UHW\ncd+tvY57027tddwbd3+oaW/tBkztfefU1nDph4IoIeHc8fB4lH2Fasc6I+1OuG/atAkFBQWoqqpC\nbm4uli5dioEDBwYM//nnn2PNmjUoKSlBTk4OHn30UeTn50vCrF69Gh999BFsNhuGDh2KZcuWITs7\n8FJdgWDLQTKK62pky0GORGZsnMheq/DCzx06BJmxsT57nepykJmx0T57vepykJm+HYaK6+wKD/w9\ngzLRJdbrjSypa1J44H87KA5dYrzLRZbYnKrruGfEeIX5BZtH4YFPFy0Hqcb0oXqk+YR9WZ3H54H3\nM3WoVJgr1nGP86/jrtaJnxzHIUPDHnQd97hg67hzSE0KbE+I45CiYY+Pl27AFEjUOi+yY8PmG0Pv\nW3EUjcrRUrBZAZfTe91GpaaCvcZvb1Y5v8EKuJld5fxGC+B2evPeYVPmtcMCeHx2l4rdXQ3wPrun\nTmnnLR6RaFRbdcYhnA+bsuHIVzeBd/rKVZ0yo3lLo99uU1uVxi6yK4ebwVIvE96yTAoizN27jyjj\nFGOtlZ5vlS33uFt7VRn3bu3xWMFWlWmL5SBdssmoSnuwddx3aNqDrePuuMzruLdnQlkRRE0YJyen\nXlI7DQUhiNBoV8J969atWLFiBZ577jkMGDAAGzduxH333Ydt27bBbFbOFj58+DAee+wxPPbYY8jP\nz8dnn32G//mf/8GWLVvQs6d3V7f169dj06ZNWLFiBTIzM7Fq1Srce++92Lp1K0wm00Wlk63TroSX\n2dVFW5NL20sd3B54uAnP+e18AP3a5NJulTa7AntQy+o8gt3aoBaOE52vngCHRvwVdTwcvvTXqKxm\nWVkLwV5rV8ZfVcsL8bOdU8VU1/Bw+EQp2zlVjKUWcPpEIds5VYxVZpdpKtTUAgAvCHO77B6CjXGv\nkwnzBpmwPtIGk1OPfa1tDz45VZxnymdZvlvbXr9L284XqohliV17Bz7PrmCrypwOYtdeVcYdZDlI\nd5DlIIPh3q29HCRx8VzO8cltYdda8aMtVwSR4w9zqe0EQQSjXQn3DRs24I477sDUqVMBAM888wx2\n7dqFjz/+GHPnzlWEf/fdd3H11Vdjzpw5AIAHH3wQe/fuxXvvvYdly5YJYRYuXIgJEyYAAFauXIkx\nY8bgyy+/xA033NCi9AUf4x58feVLPcZdvuGSnNaOcZfvlCpHvlOqnGBj3D/7NtjkVG170Mmp32iL\nxt0Hte1fB7Hva+Xk0++CrCpDdGwCeTtDXd84kPD8Jbyh7UG4dsbxyS2zB1vx49KtCEIQRPug3Qh3\np9OJoqIizJs3TzjGcRzGjBmDI0fUu5aPHDkiiHbGVVddhR07vN2s58+fR1VVFUaNGiXYo6OjMWjQ\nIBw5cqTFwp0gWkMg0QWgVaKtPYgisrfO2xlsfWPx+YGF5+XxhnZ0O0EQREei3Qh3q9UKt9uNpKQk\nyfHExEScOaO+YUplZaVq+Koqb1d6VVUVOI7TDBMqzzzzApqamvDf//6ATz7xTkyaPfsedOnSVfhg\nezy8wt69ey/ho/9L22+55Vb07TsAHMf9InaTKQynT/8/bNz4druzs2dUXPzzJbUHekaAV3R5PB4U\nF/8slKukpBT07NlLEGdqZSz4+X5R0tBg/0XtAJCR0QWRkVHtwg548/Dy2L3C1+PhA9iV5xcX/yzY\nWT4Hu748D+Thf212cR7+EnZ5mjqjvb0948ttpzLWfspgQ4MdBw8GHv3Q0GAHEHjVsM4Ax/N8u1gS\noqKiAmPHjsUHH3yAQYMGCcdXrlyJQ4cO4f3331ec079/f6xcuVLiOd+0aRPeeOMNfP311zh8+DBm\nzpyJr776SiLeFy9eDIPBgJdeeink9J0/X44HH5wPu90/6Dg8PAJvvPEmIiOj0NBgx6JF89qVHQCi\noqKwdu1fAOCS2lkaFiyYi6amxl+tvb2Vgc5UxoLZ20sZoDLWectgeykDVMaojHV2u9ozeuml1Xji\niYcVeSfPx82bNwe0dwbajXB3Op0YPHgw1qxZg2uuuUY4/uSTT8Jms+G1115TnDN+/HjMmTMHs2bN\nEo69+uqr2LFjB7Zs2YLz58/juuuuw5YtW5CbmyuEufvuu5GXl4ennnrq0t4UQRAEQRAE0aZMnDhR\n9fj27dorTnUG2s1QGaPRiH79+mHfvn2CcOd5Hvv27cPdd9+tes7gwYOxb98+iXDfu3cvBg8eDADI\nyspCUlIS9u/fLwj3+vp6HD16FDNnzrzEd0QQBEEQBEG0Nb8GgR4I/TK2/Eo7ICoqCqtXr0Z6ejqM\nRiNWrVqF48eP449//CMiIiLwxBNP4IcffsDo0aMBAKmpqVi1ahUiIiIQFxeH9957D9u2bcPy5cuF\n5SPdbjfWr1+PHj16wOFw4Pnnn4fD4cDSpUuh1+sv5+0SBEEQBEEQRMi0G487ANxwww2wWq1Ys2YN\nqqqqkJeXh7feeksQ4WVlZRKxPWTIELz00kt45ZVX8MorryA7Oxuvv/66sIY7AMydOxdNTU34wx/+\nAJvNhuHDh+PNN9+86DXcCYIgCIIgCOJy0G7GuBMEQRAEQRAEEZjAe9cTBEEQBEEQBNFuIOFOEARB\nEARBEB0AEu4EQRAEQRAE0QEg4U4QBEEQBEEQHQAS7gRBEARBEATRASDhThAEQRAEQRAdgEuyjvum\nTZtQUFCAqqoq5ObmYunSpRg4cKBq2JMnT+Kxxx7DiRMn4Ha7kZGRgcmTJ2Pbtm3C+dOnT0dhYSGK\niopQUVGBzMxMlJaWwu12Iz4+Hunp6SgpKUFTUxMA746rkZGR4DgOTU1N6NOnD2w2G06fPi25dnh4\nOAwGAxobG+F2uwEAHMeBrZDJcZwQnxwWTq/Xg+M4uFyuNsu/YIjTqIbRaITL5dIMQxAEQRCEF71e\nL+iAiyHYd7kz0No8iomJgV6vR01Njao9NjYWer0edrsdDocjYDyxsbGIjo7GhQsXFLakpCS8/PLL\nePHFF/HTTz8p0tujRw9s2bIFq1evxmeffYby8nLFczMYDLj//vvRtWtXLFmyBIBSB0ZFRWH27Nk4\nfvw4vv/+e9TV1QEAnE4nPB4PDAYDhg0bhoKCAhiNRgBAdXU1/vSnP2Hv3r2w2WwYMWIEli5diuzs\n7CA5J6XNPe5bt27FihUr8OCDD2Lz5s3Izc3FfffdB4vFohr+yy+/xIkTJ3DHHXfAbDbDZDKhoKAA\n99xzj3D+ihUrkJOTg6effhoAcOHCBSE8x3E4c+YMhg4diuTkZIwePRo8z8NgMMBms+HJJ5/EqVOn\ncPr0aXTv3h0mkwldu3aFyWSCXq9Hz549cc0116Bv374AAJPJhLCwMADeB9WvXz8MHz4cOp03q8LD\nwwF4xXF6ejoSEhLgcrkQHh6O5ORkSZiuXbti1KhRqvcdFhaGxMRExXGO44SHnJqaqmqXbx7FwjOc\nTmfQCqRr166adq34GXl5eUHPjYyMDPk6rYHjOGGjLgZ7ZvJwLYkzLCxMcU5L4tBKT1JSUovONxgM\nMBhCa2tfbBrF12oNannfWuTPN9hxcVrk7wx7x+WEhYXBZDIhOjpaOFeN2NhY1eMtzXd5+OnTp7fo\n/FBgzoWWpiUQrD5geRNoB+qLLQNq9WJL4TgOUVFRIYVtbR2llW/h4eFB8/Wqq64KaBs+fLjkGoHi\nEr+vbb25IPuetQb2vhiNRqG8aOW7WtkJVM7U8iRQPsXFxSmOsXddTZDqdLqQ34ukpCRFGoM9i1B3\nb29tfd5WhCLaWVlk9YS8/NTX1wesG2w2G2prayXPKTIyUhJer9cjMzNT8SxZHlVVVWHp0qX473//\nK9hYvQ4Ap06dwiOPPIIDBw6goqICSUlJQhp1Oh169+6NYcOGYePGjbDb7YiJicEtt9wixL9w4UK8\n/fbbyM3NxQcffIDc3FysXbsW+fn5cLvd4Hkejz/+OO69914cPHgQc+fOFdKxcOFClJSUYN26ddiy\nZQvS09MxZ84cwekcKm3+dd2wYQPuuOMOTJ06FT169MAzzzyD8PBwfPzxx6rhd+7ciZkzZ+Lpp59G\nREQEHA4HIiIi0NjYKJwfExODxMREXHvttQCAsWPHCuEXLFiAuLg4/Pjjj5gxYwZWr14Nl8uFqVOn\nIjc3Fzt37kRDQwNMJhPsdjvuv/9+bN++HTqdDjk5Ofjggw/w6quv4r333gMAzJ8/Hx6PBwkJCQCA\njRs3YtOmTbjuuusAQMjgrKwsdOnSBQ6HA7Nnz4bT6cTkyZMBAC6XCxzHoU+fPliyZIlE+LKHHxcX\nB51OB51Oh4iICOHYrbfeCqfTCcBbiBctWoSsrCzhXJ7n0dzcjJycHHAcB71ej7CwMMyYMQNA4Mqw\nS5cukt8lJSVChRWMm2++GQBw5ZVXSo5nZGSA4zghfSxfxOTn56vGKa6wxH+LKyh5gyFQ5cVearvd\nLvnN87zinMmTJ6tWlmpxL168GDfeeCPGjh2rel3G7bffrmlnsGeQnZ0Ng8GA2267LWBY8YeYpS0t\nLU1Scep0OvTt21fxzKdNmxaS8FYTNunp6QCAQYMGKWxqHyG1vIyKioLH40FaWhoAadmTC2Z2b927\nd1eUUfl1k5OTJbsiA15BwNIsh8VtMBiEd4oxZswYQUywd5uxd+9ehIeHw2g0Cu+IyWQSylV8fHxA\n4R4o38UfGZYHah+vf//735Lf7PrsWen1esV5YnHIGoNi8WsymVTFl7jBYzQawfM8MjIyAHjzTi19\nJpMJ/fv3h06ng8fjQWRkpOJjztLq8XgU5wNej5c8PSNGjADgLeOBPshAaA3KsLAwzJ49G/v27VO9\nVzGpqamKd0oOq59ZWZc7cVg5V6O5uVmSfnm+6vV6HD16VLAB0novKytL4smNj4+XxJ+ZmQkAkh5f\n9jfLq2DiUP4sunXrJvktFh7iuNh7KY9freFls9nAcRx+85vfCM9C/j1haY6Li5M8Z7Fw69q1q8Lp\nJL9+ampqQMeV/F51Oh26d+8u/C3/5ng8HknDiqWPwXGcEGd1dTXcbjdGjhwp1A8OhwNmsxkxMTFC\n+qOiooTruN3uoA0/QFpXZ2RkSOoftTLL8m/06NEAlE6i1joYGFdffbXC7nK5EB8fjwMHDoDjOKxb\nt04oK/X19RgxYoRQN7B7YeWa53ksWrQIlZWVALzv1rvvvit5nm63G7/73e9w7NgxmEwmIT/Zc8nI\nyEBZWRn69u0rnPfcc8/hd7/7neAY3blzJ66//nrEx8eD4zg4nU5cd9114HkeNTU12LhxI6Kjo/Ht\nt9/C5XKhsLBQiGvSpEm48sorsX79elitVowYMQKDBw+G0+nEtGnTkJ+fjzNnzuCRRx5Br169hPf7\n7NmzOHr0KJYtW4Z+/fohJycHzzzzDJqamvDZZ5+16Hm0qXB3Op0oKioSCgvgfaBjxozBkSNHgobn\neR5lZWUYNGiQEF58Pvv45ubmKuIPCwvDzp07heEwdXV1OHfuHGpra4VCUl5ejtdeew0DBgxAU1MT\nTp06hRkzZmDMmDG45pprAAB9+vQBz/PCOewjKxccBoMBZ8+eRVZWFmbNmgW32y10/3g8HnAcB7fb\njUWLFoHneaEhwHA4HKiqqoLH40FjYyMAb0VotVqFMA0NDSgoKMD58+eF/ImNjQXHcSgtLQXP83C7\n3aivr8dHH30EwPuhUKOkpETy2+12o6GhIaA3XQxrdIk/hCaTCefOnYPBYJB0e1VUVEjOVevKYvfC\nEFe84uPyPFcT4oA3v1mDhv1m4eUV+FdffaVaqasdW7duHfbv3y80CAKFZXkfLC/Zczx//jxcLhfO\nnj0LQF2MiMUEu15xcbHk2h6PB6NGjUJDQ4Pk3M2bN8PpdCoEgxidTqe4LwAoLS0FAMX7Gmg4mJoH\nxm63IysrS/hYyMueGHY/p0+flpR9cZpZhXz8+HGcPHlSEqZXr144duyYZtwOh0PxzAoLC4WuzZ07\ndwrHPR4Pxo4di6qqKjidTiGMw+EQypXD4UBJSYnqc5M3EABv9zAry4mJiUI5VetaZ9dj1NfXA/A3\nSt1ut0IQNzU1CfHU1tYC8IoIhl6vV210sfeWfbjE1xfXgWIcDgcOHz4s2NSef2Njo+a7cOrUKYWH\niXWL22w2/PzzzxKbOI9CGZLY3NyMDRs2SIZn2mw2AFA4K8rLyyV1pto9s/qZ3SsLwxrMgZwlzFsr\nj1P82+12C2lj9ykuQ//6178EURMXF6d4R+Q92Xq9Xohf/owCOWrk6WP1EuP1119XrXfZM5OXAbXe\ndVYXb9iwQRBl8kYq4H2+tbW1kmESDQ0N8Hg8cLvd+PnnnxXlQ3599g6oUV5eLvmt0+mEa3k8HtX3\n99ChQ4r0ie+LleWIiAgYjUZ88803kvfYYrEI77FOp0NDQ4PkOlq94yxudj7g/aaK41crs+w9YXUj\nCy92aqnBvsWh9tIxTSCPr6amBsOGDQPHcdi8ebOQxj59+uDw4cNCuNraWrjdbsn9iPPGbrcLz5ul\nJz09HZ9++in0ej0SEhJgt9vhcrmEOrK0tBTx8fGoq6sT6ujo6GiEhYWB53k4nU643W4kJCQI75Pb\n7RbEeU1NDVauXIkrrrgCp06dQkNDg+Rbedddd2HKlCl49913wXEcvvvuOwDAkCFDsG/fPlRWViIu\nLg4//fQTiouLhYasw+FQjJhgv1kcodKmwt1qtcLtditad4mJiaiqqgoa3uPxwOPxICUlRRKenc8y\nmbVexfbExET06NEDt956KwCvmHrooYeEeNjLKRaDTU1NKCoqkngoT548iZiYGKEgrVy5EoWFhdi+\nfbvkmnV1dbDb7Rg2bJiQfvaxZB+9nTt3ori4GB6PR+gtYAW8pqZG4UWprKwURARLD/toiK+bnZ2N\n8ePHK/IT8BbAULt+1Soqra49cQXhcDhw+vRpOJ1O4cMDSBsOOp0OP/30U0hxqaEmLFs7htBmswnX\nlnuG5PfudrtRWVkZ9KVS++Cq0aNHDwD+e9+2bRsAdTES6n2yRoNWutTiC+QNZcg/hoGEXCBKS0sl\nXZWMQA1LAIoGCEsz+9Cr8d1338Hj8YQ0LIJ5TuWI79XpdCreOTE6nQ6NjY3geT7keS02m024B7Gg\nDaXb2Ww2qw6ZC4S8DLIGmlrZFDdwAa93TywQQqG5uVmRr4EEkBbMKxUWFtZm84XEnkiWHrG31Gg0\nhiROApUbJlDlzgoG+56JrxHKe52TkyP87XA4hHpQTZDK3xmxR17+vga6D3n9K/fgsvG6QGhlFlDv\nzQOUDoS2GAIiz9NAdUwgpw9zqARC7TsUKFygYarsWHJycsAekMjIyJCHzoTC1KlTBeEvbpyIkQ8F\nYs+XDfmQp1+O1rvKvhmffPKJEO7EiRMwGAzCfdrtdtjtdkm6xN7n6OhoPPLIIxInXLdu3bBt2zak\np6eD4zgkJSUJghzw1iEPPPAALly4IHzTjxw5gnfeeUeSPja8mb2/LpcL0dHRMBgM+Mc//iEI7+uv\nvx4pKSnCeQ6HA7fddhvWrVsHj8cj1O33338/+vTpg6KiImzcuBHTpk2Dy+XC/PnzAXh7ldPT0/Hy\nyy+jrq4ODocD69evR1lZmeY3To1fZFWZQJ7SUMMHO5/neVRVVWH37t2IiorCsmXLkJ2djeeff17w\n9rEKbc6cOZg3bx4Ar1DLzs4WJtMCwK5du9Dc3CxUVO+++y7mz58vFHzWdVVRUYGePXtKKjnWMmdp\nDQ8Px/jx4xUf+YSEBKEg6HQ6icc6IiICy5cvFxon7EMjvs65c+cEzyPHcYquZbfbHdL48/j4eIXI\nF1fiGRkZ6NGjh2pl0q1bN6GRJYZ13QLebi55Jar2HNXGHQItE+k5OTktHtsp9koCykooOTlZURGz\nyTUXg7z3gc2JaA3yoUmAt7IL5v0PNGaWiRm1oRUsbCj373K5Agr9lg59YGXsnnvuUYgK1o0dysdV\n7HHs1atX0OupkZaWJikPodZrauHMZrNkmI/BYFCUYYvFgvLyciHP5c+FHReLPcBftjweD/r166cQ\neCxN4g93KOMsk5OT0b9/f8kxrYZOqLByHGguFJvPJEcr/9WEqvgdnDt3riKMWtkOlC/s2mLHhRyd\nTid8v4LNxWDIe6gcDkfQ+QIsLWr5x8pUIHGQkpIiOLQ4jhO+lVqLM2iRmZmp+j7GxsYq7kM+PI45\nuNQQ1xVypwsbdqqVXrXjHo9HSKtWWWLznUJFLa6IiAg8/PDDcLlcqs+zoaEhaO9IoGupDTfdsmVL\n0Hea9VbLz9XyuIuHe4WHh6veS2RkJEaNGqWo3/V6PXie13S0iIdCVVRUIDs7W1LnsFEaNpsNiYmJ\nqK6uRkREBB566CEA3vd1x44dSE9PF57t+vXrcebMGcl1KioqUF1dLeRdamoq0tPT0atXL3AchxMn\nTgAAXnnlFZhMJmHURHNzM1asWIFevXpBr9cL569evRo7d+7EXXfdhYKCAiE8ywODwYC1a9fi7Nmz\nGDlyJIYOHYpvvvkG+fn5LdYUbSrcExISoNfrFd51i8WiOu5NHp69fJWVlZLw7HyWEfKKsrKyEhcu\nXEBTUxPee+893Hnnndi+fTtuvfVWyRhVwOv1ZIWA4zgkJCSgsbFRmBR26NAhNDQ0CCJuz549OHDg\nAO6++24AfnHndrvx448/YuPGjRg6dCgA/wcsIiICHMehubkZO3fuBM/z2Lx5s5Beq9UqVKLyl2PK\nlCmYPn260EpjXhaO44SwI0aMwF/+8hfhHDZenuF0OlXH/ckJJhwvXLiA+vp6YdyrGNadKp8dXlxc\nLDmfXYc1RNQqT62uzVA5e/as5iz0UJALTbVhPjab7aJn1csFjvg9YR91+RjWYJw6dUrym+M45Ofn\nKxoh8jkF7DnInwdrqIgrfPkHvDWrCsivGYp3lXlE3nnnHdXx3fIeuECIhYt8yE2gcKzSZXkgb+yF\nKmpY2SorKxOOWSwWYWgS4M2LQGWY5bn8Q8yOy4c3iO9BbahSWloaFi9ejLCwMMnHNZhgqKysVPSk\niMd+X+yk5uLiYk1xarVaQx7ixgjWY/f6668rGjRqjX/5NVhZCEXIiXs1AjVK5Kj1VmgJHXHPgVp+\nBKsX2bAwdj7r2RbH1ZIelLq6OlUh0tzcLIlTPjQU8DqL5I0pjuMQExMjOS5/D1nvRmsIVJbYAgXi\nfNSaQG00GhUNacBb///mN78R0stQE8gtaQyzeSZMbLNV9VjaW4K4jtdqALH0NzU1Se6F1cV5eXlY\ns2aN4lvBejTZiAZxI4Dlg/g5G41GfPTRR4Ku4DgOtbW1KCwsRG1tLYqKisDzPBobG7Fq1SrhvF27\ndmHYsGHCc1i9ejVefPFFSVr2798vrGIDAI8//jieeeYZfP/994ImaWhowIABA3D27FnU1NRI5pst\nXrwYLpcLGRkZOHjwINatW4cpU6bg/vvvx9NPP438/HwsXLgQ69evF67Zt29fbN68Gd9++y2++uor\nvPnmm7BarRKHZyi0qXA3Go3o16+fZCw0z/PYt28fhgwZEjQ8x3FIS0vD999/L4QXn8+8iOLhFzzP\nC8NLHn74YWF1GBY/m3xQVVWF2NhYnDlzBufOnQPg/ejb7Xbcfvvt+Nvf/gbAW0H2798fQ4YMQXR0\nNFJTUxEVFYVdu3YB8AuNrKws9O/fHxMnTkR0dDQ4jsPNN98sdN0A3sLLcZxkzD/gnQAbHh6OhQsX\nYtKkSRIb8yCyOFhBcbvdwkc1LS1N8pErKyuDx+MRCiDP8xIBDSgruujoaIwcOVLVE8euy3EcysvL\nVT/G4pc6JSUFCQkJMJlMqmFffvlloQtebdIbG0IC+BsTN998s8RrrLa6izytEydOVLWLPyJikSeO\nLysrS+H5VxMxd911l6KhpIa8C1ItvDgPrVYrTCaTZPwz+58tFaXWzdzc3CyJm+M41clZ4gqU5WtU\nVFTAZyH2BGutzqM2STPQhOSIiAih8a0m8gI9XyZaoqOjFfd17NgxjBs3TnFOt27dNEWk1gdN7NVW\nG2LExN0VV1wRMA55Y1dNyOh0OkX+iXtQwsLCMHz4cElcBoMhaLkCvD0KzCYXR4DX06nT6eByuSSi\nTDzMUa38GwwGRZpnzpwJwCsgWP3I7lc+2dxoNKqmefjw4UhMTJTYxJ6qG2+8EXl5eQGfG7sOm+yv\nNmE0ISFBWECAXVOOmkCV90qyNLJGlFZdIJ4g3bVrV0WPCZvgz+jWrZvqSmQsj9V6wsTj2sWYTCYk\nJycLky/V0Ol0WLZsWVDRq/Yu9e7dGz169JB8cwGvQFeLTy0OcY8sx3HYsWOHYmk8vV4Pp9MplC21\n1VvE897k9Tj7zd5beTpYmcrNzVUV3GyyvbguYCJe7Z6ys7MVY+lZvcreHfH7odbjrOUcEa/MA/gb\nqOLhJCz/5emLiopCjx49kJ2djYSEBEXPrFpZFpe5YD2M7PolJSVjFZRLAAAMDUlEQVTCZE+5Y2XC\nhAnC32PGjMGoUaOQkpKimKcDeB2OP/30k+Ag5Hkeffr0wfPPPy+kt3///sjKysK0adMk1xk0aJDg\n9GlubsbXX38tTO5neehwOOB2u6HT6fDdd98J98/SPHv2bHzyySe4/fbbkZSUJGjUsWPHorCwEIBX\ns8ybNw/h4eHo1asXZs2ahQEDBmD58uXCJH450dHRSEhIwNmzZ/Hjjz9q9jSpwfFtvPDo1q1b8eST\nT+LZZ5/FgAEDsHHjRnzxxRf4/PPPYTab8cQTTyAtLQ2PPPIIAOCf//wnnnrqKSxYsAB//etfER4e\njgsXLmDRokW44YYbsGDBApSVleHNN99EbGwspk6dCo7jcOedd2Lr1q0wGo2orKxEZmYmTCYTkpKS\nYDAY0L17d3z44YeYMmWKMLmyT58+OHPmjNCNz7qY8vLycPLkSTQ2NuL6668XxluydeRPnz4NjuME\n7/OFCxeg1+thNptRXV0Nj8eDuLg4DBo0CHv27EFaWhrKyspgNBqF1WzE5OTk4Ny5c7jtttskY5QT\nEhJw/fXX48SJEzh+/LhivClrTefl5QWckAd4KwWDwaA5njgrKwvJycmSiTdy1CbPiTEYDDAajWhs\nbAxYQMPDwyUT+9TiVDsWGRmpaFTIw4l/swl4Yk9FoDSJzzUYDHC5XDAajYqPNrOJz+nbty+OHz+u\n6ikOCwvTzPNgaKWXYTKZgnrQoqKiQh6XeSmQ5xs7BvhXXNLr9W0yltlgMCA1NVXwKgcrs2qEku9i\nOI6DwWAIOs49lLT07NkT586dE8qe+JzExETccsstePvtt1uV3lDSp1b+2cSpYGU6NjZWMalWC/l7\nEiyf4uLi0NjYiNjYWNW5UgytfGENRY/H0+Z7bgR638TpSUlJgc1mU3hS4+LiJPNu1DCZTIIoC5T2\nQYMGCd8tMREREfB4PK2ql4DAz6hr166KyaKAeh0gR/681MqgVnjxtQwGg6Qh1dL3mee9e7IMHDhQ\nMnlSfN/B6t7w8PCAQ1N0Oh0yMzMVeaV1zqWErdwXiJbWo1rhxbaoqCg0NTUJopmNspCXFXEdkZSU\nJLz3HMdh1qxZKCwshNVqFe6B9Tqw97Bbt26YMGEC3n//fdjtdoSHh0t6fG644QYcP34cp06dEpwh\nLpdLqMtYg2bWrFkYM2YMIiIiMGvWLDidThiNRtx0003YsmULevfujfPnz2PWrFk4ceIEdu/ejW7d\nuuH3v/89SktLsXLlSkyZMgVLly4F4J3XxoZIHj9+HMuXL8eAAQOwevXqkPMauATCHZBuwJSXl4el\nS5diwIABQkZ06dIFL7zwAgBvy0zcAmOYTCZwnHfpnl69euHIkSOqM/QDwQqE2WzG0KFDsX//fsmw\nDoPBgC5dusBms4XchUn4ae1GDAQRChcjxDsDnem+Q72XtmqQtDc607MkiMuJ3OOv9l4NGzYMd999\ntzDmPVA8bO6JWhzJyclYs2YNvvjiC/z73/9GVVUVeJ6X9LRcffXViI+PxyeffAIg8IIPHMcJo0T+\n+te/oqCgANXV1UhOTsa0adOwYMGCFg8xvCTCnSAIgiAIgiCItuUXWVWGIAiCIAiCIIjWQcKdIAiC\nIAiCIDoAJNwJgiAIgiAIogNAwp0gCIIgCIIgOgAk3AmCIAiCIAiiA0DCnSAIgiAIgiA6ACTcCYIg\nCIIgCKIDQMKdIAiCIAiCIDoAJNwJgiAIgiAIogNAwp0gCKIDMGLECKxduzaksDabDWvXrsWpU6ck\nx0tKSpCbm4vt27dfiiReFBMmTMDzzz+vGcZmsyE3Nxdbtmz5hVJFEATRPjFc7gQQBEEQbUtdXR3W\nrl2L3r17o0ePHsLx5ORkfPjhh8jJybl8iZPx+uuvIzY29nIngyAIokNAwp0gCKKTwfO86nGTyYSB\nAwf+wqnRJjc393IngSAIosNAQ2UIgiDaiMOHD2P27NkYMmQIhg8fjkcffRQWiwWAf5jKp59+iuee\new4jR47EVVddhRdffBEej0cSz5dffonJkydj4MCBuP322/HDDz+EnIaSkhJce+214DgODz74IHJz\nc5GXl4cLFy6oDpWZMGECnnvuOWzcuBHjxo3D0KFDsWTJEjgcDhw7dgx33nknhgwZghkzZuDEiROK\n6xUUFGDSpEkYMGAArr32WmzYsKFFeaY2VObDDz/EhAkTMHjwYMyZMwfnzp1rUZwEQRCdFfK4EwRB\ntAGHDx/GrFmzMH78eKxatQoNDQ1YtWoVFi5ciPfff18It2rVKlxzzTVYvXo1Dh06hFdffRU5OTm4\n4447AADHjh3D4sWLkZ+fjyVLlqC4uBgPPfQQnE5nSOlISUnB2rVrsWjRIjz66KO44oorAHiHyVRU\nVKies2PHDvTu3RvPPvsszp8/jxUrVsBoNOLIkSO45557YDab8ac//QkPPfQQtm7dKpz3/PPP4+OP\nP8aCBQswYMAAHD58GH/+858REREh3E9LKSwsxB/+8AdMnz4dN9xwA4qKirB48WJwHHdR8REEQXQm\nSLgTBEG0AS+99BIGDhyINWvWCMd69+6Nm266CXv27BHGmg8ePBi///3vAQCjR4/G/v378cUXXwhC\nd/369cjIyMBrr70miNWwsDDhnGAYjUbk5eUBALKzs0MaGsNxHF5//XUYDN5PwoEDB/DRRx/hrbfe\nwpVXXgkA8Hg8WLBgAY4fP44+ffrg/Pnz2LRpE5599lnMmDFDuJ/GxkasXbv2ooX7unXrMGLECPzx\nj38EAFx55ZVoamrCG2+8cVHxEQRBdCZoqAxBEEQraWpqwuHDhzFp0iS43W7hX3Z2NtLT0yVDXcaM\nGSM5t2fPnigrKxN+f//99xg/frzEwzxp0qRLmv4RI0YIoh0AunXrBp1OJ3jrASAnJwc8zwtp3bt3\nLziOw8SJEyX3PHr0aFRVVaG0tLTF6fB4PCgqKsK1114rOT5p0qSA4/YJgiB+TZDHnSAIopXU1tbC\n7XbjhRdewPLlyyU2juMkwly+gorRaERzc7Pwu7KyEomJiZIw0dHRCAsLuwQpD5ymsLAwiZg3Go0A\nIKS1pqYGHo9HIu4ZHMehtLQU6enpLUqHxWKBy+VS3H9SUlKL4iEIguiskHAnCIJoJbGxseA4DvPn\nz1d4iwEgISEhZI9xcnIyqqurJcfq6+sl4r49EBcXB51Oh7///e8Sgc/o1q1bi+M0m80wGAyK+6+q\nqrrodBIEQXQmSLgTBEG0koiICAwePBinTp3C4sWLVcOUlJSEFNfAgQNRWFiIJUuWCMNltm3b1qL0\nyL3jl4LRo0cDAKxWK8aNG9cmcep0OvTt2xdffvklZs+eLRzftm0bTU4lCIIACXeCIIg24YknnsBv\nf/tbPPzww7jxxhsRGxuL0tJS7Nu3D9OnT0dGRkZI8dx///247bbbsGDBAsycORPnz5/H22+/jfDw\n8JDTkpycjNjYWPzrX/9Cly5dYDKZ2ny99JycHMycOROPP/447r33XgwaNAhOpxNnzpzBwYMH8dpr\nr11UvPPnz8fChQuxZMkS3HjjjSgqKsKnn37apmknCILoqNDkVIIgiDZgyJAh+Nvf/obGxkY89dRT\nmDdvHt544w1ERESga9euABDQayw+npeXh9WrV+PcuXN44IEHsHnzZrzyyiswmUwhp4XjOCxfvhzF\nxcWYM2cOZsyYISwFKU9DKGkKdGzp0qXCEpHz5s3D448/js8//xwjR45sUVrFTJgwAc8++ywOHDiA\nRYsW4T//+Q9WrVoVcnwEQRCdGY6nqfoEQRAEQRAE0e4hjztBEARBEARBdABojDtBEEQHw+12B7Tp\ndLp2M5FTK50cx0GnI98RQRBES6ChMgRBEB2IgwcPYtasWao2juMwdepUvPDCC79wqtTJzc0Fx3Gq\nS2F26dIFO3bsuAypIgiC6LiQcCcIguhANDQ04MyZMwHtCQkJIa9gc6kpKioKaDOZTOjVq9cvmBqC\nIIiODwl3giAIgiAIgugA0ABDgiAIgiAIgugAkHAnCIIgCIIgiA4ACXeCIAiCIAiC6ACQcCcIgiAI\ngiCIDgAJd4IgCIIgCILoAJBwJwiCIAiCIIgOAAl3giAIgiAIgugAkHAnCIIgCIIgiA7A/wezi5i7\nw0oVaAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "survivalstan.utils.plot_coefs([testfit], element='baseline')" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAAHrCAYAAACEiNEsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18zfX/x/HnZzvbbMaaXbiur1Q215QS9i0rrSYXlXz7\nVqTRlyjxIyXLXFNI3+nCVYiEfL8NNbpQ31sXkkjkqwiFmWGbJTba1fn9Iefr3S7ssO1sO4/77eZ2\nO+fz/rw/53X2dj6f8zyfK8tut9sFAAAAAH/wcHUBAAAAACoWQgIAAAAAAyEBAAAAgIGQAAAAAMBA\nSAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMNlcXgIrPbrfrxIlM5edz372qzsPDUq1a1RlvN8F4\nuxfG270w3u7Fw8NSUJB/6S6zVJeGKsmyLHl4WK4uA+XAw8NivN0I4+1eGG/3wni7l7IYZ0ICAAAA\nAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAAD\nIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAg83V\nBQAAyt/Zs2d17FiyatTw1alTZ5Sba3d1SYU6e/asJKlatWourqR49es3qPA1AoAzCAkA4IaSkw9r\n8uSxri6jyhgzZoIaN77G1WUAQKnhcCMAAAAABvYkAICb86nbTp4+V7i6jALyfj+p31O+kST51L1R\nnj4BLq7IlPf7r/o9ZYurywCAMkFIAAA35+lzhTx9g1xdRrE8fQIqfI0AUJVwuBEAAAAAAyEBAAAA\ngIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICB\nkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAA\nAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAA\nAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADA\nQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkACpWVlaWsrCxXlwEALsW6EO6KkACggKysLI0aNVSjRg1l\n4wjAbbEuhDsjJAAoICUl2fHrWUrKEVeXAwAukZJyhHUh3BYhAQAAAICBkAAAAADAQEgAAAAAYCAk\nAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAA\nAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAA\nMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQ\nEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIK\nERkZqbCwMIWHh+v06dOuLqeAVatWqX379k71ueWWWxzv6cyZM2VUGQAAAKoCm6sLqKiGDRum3r17\ny9/fX6NHj1ZCQoIsy5Ldbi8wb/369fXJJ5+Ua32WZTk1/+rVq7V582YNHz68jCqqOrZv/1aSpdat\n2xbZ/ssv+9Wo0TWFzlNc/6LanO1z4bR3331HlmXpnnvuL9Au2fXzzz9Lkq6+urEkuzF9z54fdOjQ\nQWVnZ8vPz0//+Mfj8vevpjfffLOYvxAAuJ8331wgX19fjR4d59gO2O2WY926fv37CgwMVGhoHR07\ndlQ339xJP/+8z1g/n19f2+12HTt2VIcPJ0mS7r//72rduu1F1/eF+XP7+ec33HCDJOm7777Vvn17\ni9xmleR1LlYDqiZCQhH8/PxUq1YtSdKYMWM0cuRIR1vHjh01bdo0RURESJI8PCr+DpnAwEAFBAS4\nuowKLycnW2+/vUSWZalZs+by8vIutP3EiXTVqhVUYJ7i+hfV5myfC6c1atRI69atlSRFRd0lPz9/\nR7sk2e12nTiRLsuyVKtWLdnt5wJmfn6+TpxIN95bZuZpLVq0QJ6eHkpPN9sAwN0dPnxIkpSSkuzY\nDtjtdtWqFaT8/HxlZJww5t+37yedPPmrpHPrZ0mO9XV+fr4x79KlC3XdddcVu74vbpt0vl2S43nL\nli2Vne2lpUsXF7nNKmo5Jd2uoWqr+N9ui/DBBx+oW7duatWqlW666SbFxMTo7Nmzks4djhMdHa2W\nLVsqOjpab7/9tqPf6tWr1aZNGx06dMgxLS4uTtHR0crOzi70tfz9/RUUFOT4J0k1atRwPA8MDCy0\n38svv6z77rtPq1at0q233qq2bdtq0qRJys/P17x589SpUyd17NhR8+fPN/q98cYb6tatm1q3bq1b\nb71VEydOvOghQh999JHuuecetWzZUnfccYdee+21AishXFxi4lqlpaUqNfW41q17r8j2/Px8paWl\nFpinuP5FtTnb58JpkybFKT8/X/n5+Zo9e5bRnpaWqvT0NNnt9j/qTVN6eprS0lILBITzfv01g4AA\nAMWIixvt2A7Y7Xalp6cVCAiSlJFxwlg/x8e/5Hhe2LyzZ88qdn1f3DbpfPuFzxMT1+pf//pXsdus\nopZT0jZUbZVyT0JqaqpGjhypUaNG6fbbb1dmZqa2bt0qu92utWvXavbs2Ro7dqzCw8P1448/KjY2\nVn5+furZs6d69uypzz77TCNGjNDKlSv1+eefKyEhQStXrpS3d+mn419++UVff/213njjDR08eFBD\nhw7VgQMHdM011+itt97Sli1b9Pzzz6tjx45q2rSpJMlmsykuLk716tXToUOHNG7cOHl4eGjMmDGF\nvsbmzZsVGxur2NhYXX/99Tp48KBiY2Pl6empgQMHlvp7qqqOHz+m9ev/twJct26tOnSIUEhIqKO9\n4MpzjWOe4voX1Wa3253q06RJuDEtPT3N8XjPnh/19dcbjfbS8MUX/ynV5aFiSE5OcnUJVUpl+Hva\nbJZq1PDVqVNnlJtb8NBZFFTYuObm5jq9nD17fnRqnsLW94Vtky5sT0xcq3OHlJ7z3ntrjOfn5llj\nLKOw5ZRk23Vhf1RdlTYk5OXlqUuXLqpbt64k6dprr5UkvfLKK3r22Wd1++23Szp3vsDevXu1YsUK\n9ezZU5I0fvx49ejRQxMnTtTHH3+sJ554QuHh4WVSq2VZmjJlinx8fNS4cWO1a9dOSUlJWrBggSTp\nL3/5i+bPn6/Nmzc7QsIjjzzi6F+vXj0NHTpUU6ZMKTIkvPLKKxo0aJC6d+/ueM9PPvmk4uPjCQlO\nWL58iXJychzPc3Jy9Pbbb+qpp552tOfm5hh9cnNzHfMU17+otvOPS9pnzpx4Y9qfLVw495I2YMX5\n/PP/6PPPCQpVmT2/6P9TKNqFf7fFi+cXMyfgnMLW94Vtky5sL7h9Kvi5vnCbdd6lbLsu7I+qq1KG\nhLCwMN188826++671alTJ3Xq1ElRUVHy8vLSoUOHNGbMGOMLdX5+vmrUqOF4XrNmTU2aNEn9+/dX\n27Zt9Y9//KPMam3YsKF8fHwcz4OCguTn52fMExQUZBzi8eWXX2r+/Pn65ZdfdOrUKeXn5ys7O1s5\nOTny8vIq8Bo//fSTdu7cqdmzZzum5efnKzc3t8g+AAAAQFEqZUjw8PDQwoUL9d1332njxo1aunSp\nXn75Zb3++uuSpEmTJqlly5YF+lzom2++kc1m0/Hjx5WZmanq1auXSa02m/kntiyr0Gnnj1FMSkrS\n448/rj59+mjEiBEKCAjQN998o7Fjxyo3N7fQL/yZmZkaOXKkbrvttgJtBISS+/vf++qHH/7r+NXE\ny8tLDz74iNG+a9d/jV9nbDabY57i+hfVZrfbneozaNBQzZr1QpF7E2JiBmrRonnF7m1w1l//2lkR\nEZ1LbXmoGJKTkxy/flserCcuxYV/t379HlP9+g1dWM3FcbiR8y78nJSnwtb3hW2TLtxG2GxekuyO\nvcl/fn5ums1YRmHLKcm2C+6hUoaE89q0aaM2bdpo8ODB6ty5s7Zt26Y6dero0KFD6tq1a5H9tm3b\npoULF+r111/XjBkzNHHiRE2bNq0cKy/azp075eHhoVGjRjmmrV27ttg+TZs21S+//KKGDSv2Bqqi\nCw2trbvu6qa1a9+VJEVHdzeOuwwNra3o6P+1S1LXrj0c8xTXv7g2Z/qEhTU1pgUFBTvOS2jSJFzt\n23fU0aMpRo2XKyKisxo3vqbUlgdURfXrN6zwnxObzUOBgdWVkZGp3FwubHGpbDab04d1NmkSLrvd\nrp9+2l3sPOfPSyhsfV/YNunC9q5du/9xbua559269VC1al5avny5o8+F26yillPSbReqvkp5daPv\nv/9ec+fO1X//+1+lpKToww8/VEZGhho3bqwhQ4Zo3rx5Wrp0qQ4cOKCffvpJ7777rhYvXixJOn36\ntJ555hn16dNHERERmj59utavX68PPvjgsuuaPn26nnvuuctaxlVXXaXs7GwtW7ZMSUlJSkhI0Dvv\nvFNsnyFDhujf//63XnvtNe3fv1/79+9XYmKi4uPjL6sWd9S1a3cFB4coJCRU0dHdimz38PBQcHBI\ngXmK619Um7N9LpwWGzteHh4e8vDw0JNPDjfag4NDFBQULMuy/qg3WEFBwQoODlGtWkGFvv8rrgh0\nXMELAFDQ+PFTHdsBy7IUFBSswMBaBeYLDKxlrJ+HDv0/x/PC5n3yyeHFru+L2yadb7/wedeu3dWr\nV69it1lFLaekbajaKuWehOrVq2vLli1asmSJTp8+rXr16unZZ5913LfAz89PCxYs0PTp0+Xr66vr\nrrvOcTLwlClTVL16dcdNxa677joNHz5c48aNU9u2bRUaevGEXNSNzI4fP35Jl4+8cHnNmjXTqFGj\nNGfOHM2YMUM33nijRowYodGjRxfZ/5ZbbtHrr7+uV199VfPmzZOXl5euvvpq/e1vf3O6Fnfn5eWt\nBx/sK8kq9FrQ59vP30ztz/MU17+oNmf7XDgtICBQ0dHdZVmW/Pz8C7Q7ezO1Rx8d4LiZ2oWXCQYA\nd9egwZXy9fVV3br1HduBkt5M7fz6+fz6urCbqfn5+Re7vi9um3Rh+/nn3t7e8vb2Vp8+/Rw3Uyvq\nHgeXsu1C1WfZC7uFsJuLjIxUv3791LdvX1eXUqq++uor9e/fX9u2bZOvr69Tfdk97R7OH46wdet2\njR//vCRpzJgJFf4wCjhv//59mjx5rCTJ7y9d5Olb8fYg5Z1JV9aBjyVVzBovrK8yfE443Mh5F35O\nKsMYX4jxdi/nx7s0VcrDjcrDjBkz1LZtW50+fdrVpZSKO++8U48//niRe0EAAACA8yrl4UZlbdmy\nZY6Tkvz9/V1cTelYuHCh8vLyJMnpvQgAAABwL4SEQpy/QVtVUq9ePVeXAAAAgEqCw40AAAAAGAgJ\nAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAA\nAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAA\nDIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyE\nBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABhsri4AQMVTt259\n+fn5/fG4nourAQDXqFu3HutCuC1CAoAC/Pz89OKL8Y7HAOCOWBfCnRESABSKDSIAsC6E++KcBAAA\nAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAA\nBkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZC\nAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIA\nAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAA\nAMMlhYS9e/dq+PDhuv3229W8eXPt2rVLkjRr1ix99tlnpVogAAAAgPLldEjYuHGj7rnnHh05ckTd\nunVTbm6uo81ms2n58uWlWiAAAACA8uV0SJg5c6aio6O1cuVKDRkyxGgLDw/XDz/8UGrFAQAAACh/\nToeEvXv3qkePHpIky7KMtpo1ayojI6N0KgMAAADgEjZnOwQEBOj48eOFth04cEAhISGXXRQAoPzk\n/f6rq0soVN7vJwt9XFFU1L8bAJQGp0PC7bffrtmzZ6tVq1a66qqrJJ3bo5Camqo33nhDUVFRpV4k\nAKDs/J6yxdUlXNTvKd+4ugQAcCtOh4QRI0Zo586d6t69u6677jpJ0nPPPaekpCQ1atRITzzxRKkX\nCQAAAKD8WHa73e5sp5ycHK1du1ZfffWVMjIyFBAQoA4dOqhHjx7y9vYuizrhYhkZmcrNzXd1GShj\nNpuHAgOrM95u4OzZszp2LFk1avjq1Kkzys11elNQLs6ePStJqlatmosrKV79+g0qfI18vt0L4+1e\nzo93abqkkAD3w0rGPbBRcS+Mt3thvN0L4+1eyiIkcMdlAAAAAIYSnZPQpk2bApc7LYplWfr2228v\nqygAAAAArlOikBATE1PikAAAAACgcitRSHjyySfLug4AAAAAFYTTl0C90NGjR3X8+HGFhoaqTp06\npVUTAAAAABe6pJCwcuVKzZkzR0ePHnVMCw0N1eOPP64HHnig1IoDAAAAUP6cDglz587VrFmz1KNH\nD0VFRSk4OFhpaWn64IMPNH78eJ08eVIDBw4si1oBAAAAlAOnQ8LSpUvVv39/Pf3008b0yMhIBQUF\naenSpYQEAAAAoBJz+j4JmZmZ6tChQ6FtnTp1UmZm5mUXBQAAAMB1nA4JnTp10ldffVVo28aNG9W+\nffvLLgoAAACA65TocKNdu3Y5Hvfq1UtxcXE6ceKEbrvtNgUFBSk9PV0bNmzQ119/rfHjx5dZsQAA\nAADKnmW32+0XmyksLMy4mdqFXSzLKvD8xx9/LOUy4WoZGZnKzc13dRkoYzabhwIDqzPeboLxdi+M\nt3thvN3L+fEu1WWWZKYlS5aU6osCAAAAqLhKFBJuvPHGsq4DAAAAQAXh9InLAAAAAKq2S7rj8po1\na7RixQodOHBAv//+e4H2bdu2XXZhAAAAAFzD6T0Ja9asUWxsrK699lplZGTorrvuUlRUlLy8vBQU\nFKSYmJiyqBMAAABAOXE6JCxatEiDBw9WXFycJOnBBx/U1KlT9cknn6hWrVqqXr10z6wGAAAAUL6c\nDgkHDx5U27Zt5enpKU9PT50+fVqS5O/vr8cee0xLly4t9SIBAAAAlB+nQ4K/v7+ys7MlSbVr19a+\nffscbXl5ecrIyCi96gAAAACUO6dPXG7evLn27NmjiIgIRUZG6tVXX5XdbpfNZtO8efPUqlWrsqgT\nAAAAQDlxOiQMHDhQR44ckSQNHTpUycnJmjp1qvLy8tSiRQtNnDix1IsEAAAAUH4su91uv9yFZGdn\nKzs7W/7+/qVREyogbuvuHs7f1p3xdg+Mt3thvN0L4+1ezo93qS6zNBbi7e0tb2/v0lgUAAAAABcr\nUUiYNGmSYmJiVK9ePU2aNOmi88fGxl52YQAAAABco0Qh4dNPP1WvXr1Ur149ffrpp8XOa1kWIQEA\nAACoxEocEgp7DAAAAKDqceo+Cb///rsGDRqkLVu2lFU9AAAAAFzMqZDg4+OjLVu2KC8vr6zqAQAA\nAOBiTt9xuWPHjtq4cWNZ1AIAAACgAnD6Eqj33Xef4uLilJmZqVtuuUVBQUGyLMuYp1mzZqVWIAAA\nAIDy5fTN1MLCwswFXBAQ7Ha7LMvSjz/+WDrVocLgZizugZvvuBfG270w3u6F8XYvFeJmakuWLCnV\nAgAAAABULE6HhBtvvLEs6gAAAABQQTh94jIAAACAqs3pPQmStGbNGq1YsUIHDhzQ77//XqB927Zt\nl10YAAAAANdwek/CmjVrFBsbq2uvvVYZGRm66667FBUVJS8vLwUFBSkmJqYs6gQAAABQTpwOCYsW\nLdLgwYMVFxcnSXrwwQc1depUffLJJ6pVq5aqVy/dM6sBAAAAlC+nDzc6ePCg2rZtK09PT3l6eur0\n6dOSJH9/fz322GOaMmWKHn300VIvFEDZOXv2rJKTD8tms1Sjhq9SUzOUm2tXtWrVJEn16zdwPAYA\nAFWf0yHB399f2dnZkqTatWtr3759uummmyRJeXl5ysjIKN0KAZS55OTDmjx5bJHtY8ZMUOPG15Rj\nRQAAwJWcDgnNmzfXnj17FBERocjISL366quy2+2y2WyaN2+eWrVqVRZ1AgAAACgnToeEgQMH6siR\nI5KkoUOHKjk5WVOnTlVeXp5atGihiRMnlnqRAMpPtSYBOrvnpKvLAAAALuR0SNi7d6/uuOMOSVLN\nmjX1+uuvKzs7W9nZ2fL39y/1AgGUL4/qXq4uAQAAuJjTVzcaP368OnXqpEGDBmndunU6c+aMvL29\nCQgAAABAFeH0noSNGzfqww8/VGJiokaOHCkfHx9FRkaqW7du6tSpk2y2S7o/GwAAAIAKwulv9AEB\nAerdu7d69+6ttLQ0JSYmav369Ro0aJACAgIUFRWlCRMmlEWtAAAAAMqB04cbXSg4OFiPPPKIVqxY\noQULFsjHx0erVq0qrdoAAAAAuMBlHRt09OhRJSYmKjExUT/++KNjLwMAAACAysvpkHDixAmtX79e\niYmJ2r59u3x9fXXbbbfpqaeeUseOHTknAQAAAKjknP5GHxERIU9PT91yyy166aWX1LlzZ/n4+JRF\nbQAAAABcwOmQMGnSJHXp0oVLngIAAABVlNMh4Z577imLOgAAAABUEJd1dSMAAAAAVQ8hAQAAAICB\nkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAA\nAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAA\nAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADA\nQEgAAAAAYCAkAG4gKytLWVlZlW7ZAADANQgJQBWXlZWlUaOGatSooaX+Zb4slw0AAFyHkABUcSkp\nRxy/9qekHKk0ywYAAK5DSAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMh\nAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEA\nAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAA\ngIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICB\nkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQENzN69Gg98cQTri4DAAAAFZjN1QW4\nk8jISPXr1099+/Z1dSlwA9u3f6tVq1YoJSW5XF5v8uSxstm8FBISqhtuuFGNGl0tyZJkl2Spdeu2\n5VIHAAC4fISESignJ0deXl6uLgMVWE5OtpYsWahff80wpm/dulmNG19Taq+zfv17xvPc3BylpCTr\nvfcSFBQULMuyJEmWZalZs+by8vIutdcGAABlp8IcbvTFF1/owQcfVLt27XTTTTdp0KBBSkpKcrRv\n27ZNPXv2VMuWLdWrVy9t2LBBYWFh2r17t2Oen376SY899pjatGmjjh07atSoUcrIyCjs5Qqw2+2a\nP3++7rjjDrVo0UKRkZGaO3euo/3o0aMaNmyYo77BgwcrOfl/v9COHj1aQ4YM0cKFC9WpUyfddNNN\nmjBhgvLy8iRJffr00ZEjRzR16lSFhYUpPDzc0Xfr1q166KGH1KpVK3Xu3FmTJk3SmTNnHO2RkZF6\n7bXX9Mwzz+iGG27Q2LFjS1RTfn6+pk6dqnbt2ql9+/aaPn267HZ7SYcElVhi4toCAUGSPvwwsVRf\nZ9u2LUW2paenKS0tVWlpqUpNPa51694rcl4AAFCxVJiQcObMGcXExOjdd9/Vm2++KQ8PDw0ZMkSS\nlJmZqccff1xhYWFKSEjQU089pRkzZjh+pZSkU6dOqV+/fmrWrJkSEhL0xhtvKD09XcOHDy/R68+Y\nMUMLFizQkCFDtG7dOs2YMUNBQUGSpNzcXPXv3181atTQ8uXLtXz5clWvXl0DBgxQbm6uYxmbN29W\nUlKSli5dqhdffFEJCQl69913JUmvvPKK6tSpo6eeekobN27Ul19+KUk6dOiQHnvsMd155516//33\nNWvWLG3btk0TJ0406lu0aJHCw8OVkJCgwYMHl6imN954Q6tXr9bUqVP19ttv6+TJk/r4448vcYRQ\nWRw/fkzvvZdQZPvQoQO1f/8+419yclKR80tScnJSgT4xMQ86Vde6dWuVmnrcqT4AAMA1LHsF/Wn5\nxIkT6tChg95//31t2bJF8fHx+uyzz+Ttfe5whVWrVmns2LFKSEhQWFiYXn/9dX377bdasGCBYxlH\njx7Vrbfeqg8//FBXXXVVka+VmZmpm2++WXFxcbrvvvsKtK9du1Zz5szRunXrHNOys7N144036rXX\nXlOHDh00evRoffPNN9qwYYMjvAwbNkyenp6aOXOmpMLPSYiNjZWnp6fGjx/vmLZ161b17dtX27dv\nl7e3tyIZZb3rAAAUtElEQVQjI9W8eXPFx8c7VVNERIRiYmL06KOPSpLy8vJ02223qXnz5nrllVdK\nNhB/yMjIVG5uvlN94Br//Od07djx3SX392tVS1k7TpRiRf/TqlUbPfXU02WybDjPZvNQYGB1Pt9u\ngvF2L4y3ezk/3qW6zFJd2mU4ePCg4uPjtWPHDmVkZCg/P1+WZenIkSM6cOCAmjRp4ggIktSyZUvj\n0Jndu3fr66+/Vps2bYzlWpalQ4cOFRsS9u/fr5ycHLVv377Q9t27d+vgwYMFlp2dna1Dhw6pQ4cO\nkqRrr73W2LsREhKivXv3Fvu+d+/erZ9++klr164t0Hb48GFdffXVkqRmzZo5VVPLli2VmpqqFi1a\nONo8PT3VvHnzYusBAAAAKkxIGDhwoBo0aKBJkyYpNDRU+fn5uvvuu5WTkyO73W58+ZZU4Nj6rKws\nRUZG6umnC/5KGRISUuxrV6tWrdj2rKwsNW/eXDNmzCjQFhgY6Hhss5l/TsuylJ9ffHrPysrS3/72\nt0KveFS3bl3HY19f30uq6c9/N1R9f/97X33//fYizz/x969R4Nf85OQkLV48/9wTz4JHIfbr95jq\n129oTJs8eaxTdXl5eenBBx9xqg8AAHCNChESfv31Vx04cECTJ0/W9ddfL+ncITfnv+BeffXVev/9\n942r+uzcudP4Aty0aVN9/PHHql+/vjw8nDvV4i9/+Yt8fHy0adMm9erVq0B7s2bNtH79etWqVUvV\nq1/6rhwvL68CoaFp06bat2+fGjZsWESvwpWkppCQEO3YscPxN83Ly9OuXbsK7JVA1RIaWlvdut2j\ntWvfLbQ9Pn5uodOLU79+wwJXRVq48G2nzkuIju6ukJBQp18bAACUvwpx4nJAQICuuOIKvfPOOzp0\n6JA2bdqkF154wdF+9913Ky8vT88//7z279+vL774QosWLZL0v1/KH3roIZ08eVLDhw/Xzp07lZSU\npC+++EKjR4++6BV9vL29NWDAAE2fPl2rV69WUlKSduzYoX/961+SpG7duikwMFCDBw/W1q1bdfjw\nYW3evFmTJk3SsWPHSvw+GzRooC1btujYsWOOqy499thj2r59uyZOnOg4hGjDhg0FTlz+s5LU1Ldv\nX82bN08bNmzQzz//rPHjx+u3334rcb2ovLp27a4rrggsMD0qqmupvk7btu2KbAsKClZwcIiCg0MU\nEhKq6OhupfraAACg7FSIPQmWZWnWrFmaPHmyunXrpkaNGik2NlZ9+vSRJPn7+2vu3LkaN26c7rnn\nHl133XV64oknNGLECPn4+EiSQkNDtXz5cs2YMUMDBgxQdna26tWrp4iIiBIdcvPEE0/Iy8tLs2fP\n1vHjxxUSEqIHHnhA0rnDkZYtW6YZM2Zo6NChyszMVO3atdW+fXv5+/uX+H0OHTpUcXFx6tKli3Jy\ncvTjjz+qSZMmWrp0qWbNmqWHHnpIdrtdV155paKjo42/z5+VpKaYmBilpaVp9OjR8vDw0L333qs7\n7rhDp06dKnHNqJy8vLzVt29MgZup3XDDTaX6Onfd1c24DGpxN1PjHgkAAFQeFfbqRhezdu1ajRkz\nRt9++61xQjPKBldHqLz279/nOH9gzJgJhd5M7cJ5/NoGK2tbmtFekn5FzYOKi6ufuBfG270w3u6l\nSl/d6GJWr16thg0bqnbt2tq9e7dmzpyp6OhoAgIAAABQyipNSEhLS1N8fLzS09MVEhKi6OhoDRs2\nrER9U1JSFB0dLcuyCpyfYFmW1q1bpzp16pRF2QAAAEClU2lCwoABAzRgwIBL6hsaGlrofQgubAcA\nAABwTqUJCZfD09PT6UuMAgAAAO6qQlwCFQAAAEDFQUgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAA\nDIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyE\nBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQA\nAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAA\nAAZCAgAAAAADIQEAAACAwebqAgCUrbp168nPz8/xuLIsGwAAuA4hAaji/Pz89OKL8Y7HlWXZAADA\ndQgJgBsoyy/whAMAAKoezkkAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAAD\nIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEB\nAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAA\nAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACA\ngZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBgCE/M8fV\nJQAAABcjJAAwnN1z0tUlAAAAFyMkAAAAADDYXF0AANerX7+BxoyZIJvNUo0avkpNzVBurl3VqlVz\ntAMAAPdBSACgatWqqXHja2SzeSgwsLpCQzOVm5vv6rIAAICLcLgRAAAAAAMhAQAAAICBkAAAAADA\nQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBI\nAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgMGy2+12VxcBAAAA\noOJgTwIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAA\nBkICAAAAAAMhAQAAAICBkAAAAADAQEiA4eTJkxoxYoSuv/56tWvXTmPGjFFWVlaxffr06aOwsDDH\nv/DwcI0bN658CobTli1bpsjISLVs2VK9e/fW999/X+z869ev11133aWWLVuqe/fu+uyzz8qpUpQG\nZ8Y7ISHB8Rk+/3lu1apVOVaLS7V161YNGjRIERERCgsL0yeffHLRPps3b9a9996rFi1aKCoqSgkJ\nCeVQKUqDs+P9zTffGNvp85/z9PT0cqoYl2Pu3Lnq1auX2rZtqw4dOmjIkCH65ZdfLtrvcrffhAQY\nRowYoZ9//lmLFy/W3LlztXXrVo0dO/ai/Xr37q2vvvpKGzdu1Jdffqmnn366HKqFs9atW6dp06Zp\n6NChji+EAwYM0IkTJwqd/7vvvtPIkSPVu3dvrV69WrfffruGDBmiffv2lXPluBTOjrck1ahRQxs3\nbnT8+89//lOOFeNSZWVlKTw8XHFxcbIs66LzHz58WIMGDVL79u21Zs0a9e3bV7Gxsdq4cWM5VIvL\n5ex4S5JlWfroo48cn+0vv/xSQUFBZVwpSsPWrVv18MMPa9WqVVq0aJFyc3PVv39/nT17tsg+pbL9\ntgN/2Ldvn71Jkyb2Xbt2OaZ9/vnn9vDwcPvx48eL7Pfwww/bp0yZUh4l4jLdf//99okTJzqe5+fn\n2yMiIuzz5s0rdP5hw4bZBw4caEzr3bu3PS4urizLRClxdrzfffdde7t27cqrPJSRJk2a2Dds2FDs\nPC+++KL97rvvNqYNHz7cPmDAgLIsDWWgJOO9efNme1hYmP3UqVPlVBXKUnp6ur1Jkyb2LVu2FDlP\naWy/2ZMAh+3btysgIEBNmzZ1TOvQoYMsy9KOHTuK7fvee++pffv26tatm1566aVi0y1cIycnR7t2\n7dLNN9/smGZZljp06KDt27cX2mf79u3q0KGDMa1Tp05Fzo+K41LGWzr3C2VkZKRuvfVWDR48mL1G\nVdSOHTv4bLsZu92uHj16qFOnToqJidG2bdtcXRIu0alTp2RZlq644ooi5ymN7bftkitElZOWlqZa\ntWoZ0zw9PRUQEKC0tLQi+3Xv3l316tVTaGio9uzZo+nTp+vAgQOKj48v65LhhIyMDOXl5Sk4ONiY\nHhQUVOSxjampqYXOX9z/B1QMlzLejRo10uTJk9WkSROdPn1aCxYs0AMPPKDExETVrl27PMpGOUlN\nTS1wqElQUJBOnz6t7OxseXt7u6gylIWQkBBNmDBBzZs3V3Z2tt555x317dtXq1atUnh4uKvLgxPs\ndrumTJmi66+/Xtdcc02R85XG9puQ4AZmzpyp+fPnF9luWZbWrVtXZLvdbi/2mMf777/f8fjaa69V\ncHCwHn30USUlJalhw4aXVjTKzcXGt7D5UXkVN96tW7dW69atjefR0dFauXKlhg4dWl4lAihljRo1\nUqNGjRzPW7duraSkJC1evFgvvPCCCyuDs8aNG6d9+/Zp+fLlTvd1dvtNSHADMTExuvfee4udp2HD\nhgoODi5wQmNeXp5+++03p05uatWqlex2uw4dOkRIqEACAwPl6elZ4FeEEydOFDm+ISEhhc7/518n\nUPFcynj/mc1mU3h4uA4ePFgWJcKFQkJCClzZJj09Xf7+/uxFcBMtWrTgkKNKZsKECfr888+1bNky\nhYaGFjtvaWy/OSfBDQQGBjp+RSjqn81mU+vWrfXbb7/phx9+cPTdtGmT7Ha7U5dB/OGHH2RZlkJC\nQsri7eASeXl5qVmzZtq0aZNjmt1u16ZNm9SmTZtC+7Ru3dqYX5I2btxo/NqMiulSxvvP8vPztXfv\n3otujFD58NnG7t27+WxXIhMmTNAnn3yiJUuWqF69ehedvzQ+457juKA9/lCrVi3t2LFDiYmJCg8P\n1+HDhxUXF6eIiAj17NlTknTs2DHdf//9atWqlWrXrq2kpCQtW7ZMfn5+ysnJ0ZYtWzRu3Dg1adJE\nAwYMcPE7wp9Vr15d//znP1W3bl15eXnp5Zdf1p49ezR58mT5+vpq1KhR2rlzp+Nk19q1a+vll1+W\nr6+vAgIC9NZbb+mDDz7QlClTCpy/gorH2fF+9dVXlZOTI8uylJycrGnTpun777/X+PHjGe8KLisr\nS/v371dqaqpWrlypli1bqlq1asrJyVGNGjU0c+ZMrVmzRl26dJEkXXnllZozZ45OnTqlunXrat26\ndVq8eLHGjh3LHuBKwNnxfvPNN5Weni6bzabjx49rzpw5+uCDD/T888+rQYMGLn43uJhx48bp/fff\nV3x8vEJCQpSVlaWsrCx5enrKZjt3UNAzzzxT6ttvDjeCYebMmZowYYIeffRReXh4KCoqSmPGjHG0\n5+bm6sCBA46rF3l5eWnTpk1asmSJzpw5ozp16ujOO+/UoEGDXPUWUIzo6GhlZGQoPj5eaWlpCg8P\n14IFCxwrjKNHj8rT09Mxf5s2bTRz5kzNmjVLs2bN0lVXXaXXXnut2JOlUHE4O96//fabnn/+eaWl\npalmzZpq3ry5VqxYocaNG7vqLaCE/vvf/6pv376yLEuWZTmOM+/Zs6emTp2qtLQ0paSkOOZv0KCB\n5s6dq2nTpmnp0qWqU6eOJk2aVOBqKKiYnB3vnJwcvfDCCzp+/LiqVaumJk2aaPHixWrXrp2r3gKc\nsGLFClmWpT59+hjTp06d6vgRNyUlRR4e/ztAqDS235adsxABAAAAXIBzEgAAAAAYCAkAAAAADIQE\nAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAC38M033ygs\nLEy7du1ydSkAUOEREgAAbsOyLFeXAACVAiEBAAAAgIGQAACo0BISEtSsWTOdOHHCmH7y5Ek1b95c\nq1at0vbt2/X4448rIiJCbdq0Uc+ePbVmzZpil5ucnKywsDB99NFHxvTJkycrMjLSmHbs2DGNHDlS\n7du3V6tWrfTwww9z2BKAKo2QAACo0Lp06SJPT0+tX7/emP7hhx/KsizdcccdOnLkiK6//npNmTJF\nc+bMUVRUlGJjYy8aFApjWZZxWNJvv/2mv//979qzZ4/Gjh2r2bNny9fXV/369SsQXACgqrC5ugAA\nAIrj7++vW265RYmJiXrooYcc0xMTE9WxY0cFBAQoOjra6HPDDTcoJSVFK1asUI8ePS7r9RcvXqzT\np0/r3//+twIDAyVJN998s6KiorRw4UKNHDnyspYPABURIQEAUOF17dpV//d//6ejR4+qTp06SktL\n05YtWzRjxgxJ537tj4+P16effqpjx44pLy9Pkhxf6i/HV199pZtuukk1a9Z0LNeyLLVr1047d+68\n7OUDQEVESAAAVHidO3eWr6+vEhMT1b9/fyUmJsrHx0edO3eWJD3zzDPasWOHhgwZomuuuUb+/v56\n++23CxyidCkyMjK0Y8cONWvWzJhuWZauvPLKy14+AFREhAQAQIXn4+Oj2267zRES1q9fr8jISPn6\n+io7O1uff/65Ro8ebRyOlJ+ff9FlSlJOTo4x/eTJk8bzgIAARUREaNiwYbLb7Uabt7f35bwtAKiw\nCAkAgEqha9euGjRokL788ktt375dgwYNkiRlZ2crLy9PNtv/NmmnT5/Wp59+WuzygoKC5OXlpf37\n9zumZWdna8uWLcaJyzfffLPee+89XX311apWrVopvysAqJgICQCASuH8ScrPPfecAgIC1KlTJ0nn\nTmxu0aKF5s2bp8DAQHl6emr+/PmqWbOm0tPTjWVcuCfAsix16dJFy5Yt05VXXqnAwEC99dZbBV73\n0Ucf1fvvv6+HHnpIffv2Vb169XTixAnt2LFDtWvX1iOPPFK2bxwAXIBLoAIAKgWbzaaoqCilpqYq\nKirK2HPw0ksv6corr9Szzz6rKVOm6M477yz0qkZ/vuNybGysbrzxRk2ePFlxcXH661//qi5duhjz\nXHHFFXrnnXfUtGlTzZw5U/3799e0adN05MgRtWrVqmzeLAC4mGX/8wGWAAAAANwaexIAAAAAGAgJ\nAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAA\nAAAMhAQAAAAAhv8HLKJuJ19Q/lkAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "survivalstan.utils.plot_coefs([testfit])" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4XHXZ//H3mTNrlsneNm26b+le7AKUsiMIVCmtAor4\n+FNRBMEdN4QHFRVRkKooCloUUORhk132raUbXem+J2mSZpt9OefMnN8f05nMJJO1SZq29+u6uGjP\nnJk5J2mZO18+3/tWTNM0EUIIIYQQQqRYjvUFCCGEEEIIMdhIkSyEEEIIIUQbUiQLIYQQQgjRhhTJ\nQgghhBBCtCFFshBCCCGEEG1IkSyEEEIIIUQbUiQLIYQQQgjRhhTJQgghhBBCtCFFshBCCCGEEG1I\nkSyEEEIIIUQbg6ZIXrt2Lddddx1nnnkmlZWVvPbaa10+Z9WqVSxZsoQZM2Zw0UUX8dRTTw3AlQoh\nhBBCiBPdoCmSQ6EQU6ZM4bbbbkNRlC7Pr66u5rrrruO0007jmWee4XOf+xy33HIL77333gBcrRBC\nCCGEOJFZj/UFJJ111lmcddZZAJim2eX5//znP6moqODmm28GYNy4caxbt47ly5dzxhln9Ou1CiGE\nEEKIE9ugWUnuqY0bN7JgwYKMYwsXLmTDhg3H6IqEEEIIIcSJ4rgtkhsaGigpKck4VlJSQiAQQNO0\nY3RVQgghhBDiRHDcFslCCCGEEEL0l0GTSe6psrIympqaMo41NTWRl5eH3W7v9uuYppl1o2BLk48V\nf/wHHIlHhw2TUE0tGgqxaJDlQ15ln9MLQEwxaLTVAnC29zLmBc9LvY5iVUm+uiM/D4vFAgqMmjcT\np8vBooXjsKoKe6q9jK8oIMdp6/BaQxG9W+cJIYQQQoijc9wWybNnz+btt9/OOPbee+8xe/bsHr1O\nc3MQiyVLNw2LyrjFlxIORFrPbfTS7Iuws9rLl/LO52BQoSIP7Jj8rOVmduvbWFX4X5aO/yQFahF2\nu5X8glwA7E47xaUFBCMGWw56mTSymB1VLTQ1BQBYveUQeXYLhfmODq/V449267z+oqoW3G4XPl+Y\nWCw+4O9/LMg9yz2fqOSe5Z5PVCfbPZ9s99tXiopyuzxn0BTJoVCIgwcPpjpbVFVVsX37dgoKCigv\nL+c3v/kNhw8f5s477wTgqquu4pFHHuGuu+5i6dKlrFy5kpdffpk///nPPXrfeNwkHs/eTaN0aAkM\nbf39yPEj8ASieNfXMGfKUFwHPZw+ZQh5Lhvl9fdx0RPnEjHDrCp7hXvO/X3W1/QEouxoMnA5VOJx\nE+PIH+jkrw2j4z/gRize7jxfSGPNtsPMmzIEd073V9CPRqyL6zwRyT2fHOSeTw5yzyeHk+2eT7b7\nHQiDJpO8ZcsWFi9ezJIlS1AUhTvvvJPLL7+cZcuWAdDY2EhtbW3q/IqKCu6//35WrlzJ4sWLeeih\nh/jZz37WruPFQDll6ByuqrwagEe3/YMdzdvbnRMI6/iCGhHNwB9K/NsX1I4ci+ELangC0az/BMJ6\n1veNx038Ia3DQl8IIYQQQvTcoFlJnj9/Ptu3ty8sk37xi19kfc6TTz7Zn5fVIz889Vae2vV/RGNR\nln1wN3+4oHVVOxDWeXVtFREtxv46P1E9Tm1TEFCwWhQCYY3VW+uxWjv+uWXelKEdPiaEEEIIIfrO\noCmSjze+YJSoz09LrULUkfgy2lBZMvKT/HP/Izy563GuHfVlRuaOSpwf0gn7g4wfkoMatjBluJOt\ncY3Tpg/DndsakwiGdWJtVoUDYZ1Nexrx+COpFefW62hdhbaqFvJcmRv6jkUcQwghhBDieCdFcg8l\nhwFu2VmHc+3b7NtoQ03b+HdWfBz/tlqIEeOX//0+N5hXYcFCKK7SaORTusvPcEuMXH8ew5uC5J82\nlsK8xCa8QFhnzfbD7d4zufpsxEwimpGx4hzRDPbX+QETp93KBXNHZhTKEscQQgghhOg5KZJ7qCjf\nwdmzRxCKGqy3ncPYUW5yHK1fxoqQxrwVa3g/+BKvW1azzVXNooqPc27pJZTWljJhYjHF+XaMmMnm\nbQ0oae3qkpv45kweQn5Oa6GbWDk2WTC9PGPVufUxhZnjS9hZ5Um9hhBCCCGE6D0pknuhKN+BzWrB\n4c6nqLwsY+VWDUT5RMWNHKjaTG2ohtrwIf6y637+sut+KuwTuCpnKVdNWkIuJVhiBjGvF8NIFL5G\nUCceieDSw+QZRuo1Y4ZGjqnjzrWnVp3TOe1qu5hFNhK9EEIIIYToHimS+0GpfQQvLV7BqobXeWLX\nv3nt4CsYcYNqbTe/3nonv9n6K+bYJnNqdDbjPQsxnfkA+HSFiMeOz7sTbK3xiOZwHOfhIN7KYe3e\nK5lJTu+WkS4YaS22Byp6oekxGjxhygpd2G1qv76XEEIIIUR/kCK5n7isOSyeuJTFE5fSFG7isa2P\n84+N/2BPZDMmJmv17ay1bOcvLU9ywYjzWTrmcuYWnoVzuwf31DIKcxMrw4GIwboPajkYDdG8oxmn\n3ZvxPoYRJxDWWL+rkeqGAKDgtLcWphHNSEz5SxMI66zb0dBvK8p2m8qIsrw+f10hhBBCiIEiRfJR\n8gSiGTngZB/k9BVdlTwWVVxNsed8Ro/VeLPuPzy153H2+3ejxTVeqHqRF6peZFjOcM5wX8Fc19co\nLSxMPDkQRXG0MGyojQVtOmGk8wU1VmypzTjHH9J5b/OhdivHA7GiHI4aHKjzM3pYPi6H/DETQggh\nxPFFqpdeih9pc/HBzoaMYrNtJ4rCXAdWqyWtC0U+U+xXUjn6Cg5GtlPreJvn9j3J4VA9daFDPBH6\nLS8+/mc+Pf5Krq38Im6lHDMaISdukGuEyTNiWa/HFwxhiUYyjpmmSVSLgaKkivbWaEZrK7lsreOO\nlh6LU9MYZHhZLq4+fWUhhBBC9NT69eu46abreOmlN8jNPf7/b+9A3I8Uyb1U7HZy0Wmj8XnD7VaS\nwWTGuBI2721m/tShuHPtqS4U6Su9VnUUea5LuePMn/Py/hf5/bp7WduwilAsxIM7/8bfdi7nbMdc\npumLOD1aTDi8B9PePuMbNBTearThCURZYbXjdCVeP6LFqGkMUpjnYPXWeox4PDHIRDOobQ6RbBsH\ntGsdd7TcOXbOn1PR4eOy0iyEEEIMLEVRuj7pONLf9yPVyVEoKXBhiWfOSrdYFMoKc3DnOXDa1YyO\nFG1/n6RaVC4Zt4gFQz7K8jeeYUP8aV4+9CIxM8Yb0TW8wRqez53KTaOvY+mERVgtbb5tQR3bxjqK\njBgLZo1IFeFtW8clC/UZ44rZvLeZBdOHoSgK63Yc7nHruKPtlBHVY2w/2MKwkhwpkoUQQogTkGEY\nWK3H72f88Xvlg1RyBdUTiPbq+WMK5/L5Uy7Db9bzwKb7+cfW5QR0P/u0rXxz7U08XPUPll/8KENz\nWkdUW61RFIcHm8PMGGzSHaZpZmSouxu9ONpcs8WikJ9jx9LD6xVCCCFEdrqu84c//JbXXnuFYDBI\nZeUUbrrpW1RWTk2ds2nTBv70pz9QVXWQiRMn8b3v3cK4ceMBqKur45577mTTpo0Yhk55+XCuv/7r\nnHbaAgD27t3NffctY+PGDbhcLubNO5WbbvoWBQWJfVQ33vgVxo0bj6qq/Pe/LzJ+/ESKiooxTZPb\nb/956hoMw2Dx4o9x003f5sILL8Y0TR5+eDn/+c/TNDc3MmrUaP7nf77IOeecn3rOypXvsmzZ3Rw+\nXM/06TP52Mcu7fevpxTJA8wb0Dp8LH3EtDt3KN+cdStXjr6Be976Pe8EHqc5Vs+6+jVc9O+zeejs\nvzKtKPGH3gjqmNEIcU3j7TX7cBxpuxbVYxxsCJHseJHqhLGzkerGAGACypGsdGtXjL6OXmTTVRxD\nCCGEGCx8US+7PDsH9D0nFk7C7Sjo0XP+8Id7efvtN/nxj3/C0KHDeOSRh/j2t2/kX/96GkgsjN13\n3zK+8Y3vUlRUzP33/57vfe9b/OtfT6KqKnff/UsMI8Z99z2A0+lk//69uFw5AAQCAb7+9ev5xCcu\n5+tf/w6RSIQ//vF33HrrD7j33j+mruGll55n8eJP8sc//hWAqqqD3HbbD4hEIjidTgBWrVpJNBrl\n7LPPBeDvf/8rr7zyMjff/EMqKkayYcMH/PSnt1JUVMysWadQX1/Hj370PT75ySv4+McvZ/v2rfz+\n9/cc9de4K1IkD5DkOOv1uxraPWYYcTzBKE6bNVW8JrPC0VCYS/dV8Om87/BK0Vs8GHyOQ6FDfOKl\ny7ir6DrOc30En66gN9koDDfjcRUzvdBAAcJajBxPiPGnX4C7IDf1fv6QRsxM5KYBoprBjHHFKIrC\npj2NeAPRfi+S00k+WQghxGDli3qZ8/AMvFHPgL5vgaOQdZ/d3O1CORIJ88wzT3DLLbczf/5pANx8\n84/41KdW8dxzz1BZOQWAL3zhy8yZMw+AH/3odpYsuYS3336Dc8+9gPr6es4993zGjh0HQHn58NTr\nP/HEY0yaVMm11341dez737+FpUsXUV1dRUXFSABGjBjJV796Y+qc8vLhOBxO3n77DS688GIAXn31\nZRYuPBuHw4mu6zz88HJ++9s/Mm3a9NRzNm3awDPPPMmsWafw9NNPUFFRwfXXfx2AkSNHsWfPbh59\n9O89/8L2gFQkAyQ5zjpbxjzRvq2OGeOKsVotGZv7fEGNVfGFTJxcylnFVzJr3/l8Z9X3CMej3Ni8\njB/O/j6fGfVFbJvq8UaHYXPYcVeWsm5PS2IlOR4iXOXHWR9KvZ9hxNGNGNv2t2DETWqbQ2ze2wxw\nZFW5lkULxvS6UO5pXlnyyUIIIcTRqa6uJhaLMX36zNQxq9XKlCnTOHBgH5WVU1AUhWnTZqQed7vd\njBo1mgMH9gPwqU9dya9//UtWrVrJ3LnzOeec8xk/fgIAu3fv4oMP1vDRj56V8b6KolBTU50qkpPF\nePo1nHvuBfz3vy9y4YUXE4lEePfdt/jJT3555LqriEQifPObN2CarRHOWMxg0qRKAA4c2M/UqdMz\nXnf69Bn0N6lIBlBRfvuR0klOu0p+jj3r5j5bXh75Q0qw5jm46pQvMnbYND7/4qdpijRxx4Zf8Gb9\nSj5i/TQjHbOwOWwouXlYnGFmTSxE2dPYZX/lxOa+xDS/qJ5oMdfTjXzpeppXtlgUnHYrew55mTq6\nWAplIYQQg4bbUcC6z24e9HGLZIHZtuODaZrd7gKxaNFiTj11AStWvMuaNe/z8MPL+drXvsnSpVcQ\nDoc444yzuP76mzKKWYDS0tLUr12u9o1fL7zwY9x441fweDysXr0Sh8OZWu0OhxOLeHfddW/G6wDY\n7fYe30Nfkmqkn/TnxrRTy0/jpU++wTUvXMn25m28V/sm7/EmI22TuaDwGuZ4LyceieDSw+QZ4U77\nK8cMjRxTTxXRDpsl63n9yZ1j57RpQ3lzfQ3jhxdIkSyEEGJQcTsKmDN03rG+jE6NHDkSq9XKpk0b\nuOCCi4DEBrkdO7ZxxRWfBhLF5ocfbmbIkMTmf5/PR1XVQUaPHpN6nbKyIVx22RIuu2wJ99//B559\n9mmWLr2CSZMqefvtNxg2rLzdJN+uzJgxiyFDhvLaay/z/vsrOO+8C1DVxD6oMWPGYbPZqa+vZdas\n2VmfP2bMWFaseCfj2JYtm3t0Db0h1Ug/OZqNaemb+9I386UrsJTz6EUv8OCHv+cf2x7Ap3up0nfw\nt4Zb+O/rv+cMZRHjGuZT1BQi7HNn7a8MiV7KxfV+zI+MQrG3X20OhPXUqrJVtWCqKl5/tMPrSl6z\nL6jx+gfVXDB3ZL+MvhZCCCFEK6fTxeLFS7nvvmXk57sZMmQojz76d6LRCIsWLWbXrh0ALF/+AG53\nAUVFRfz5z/dRWFjEmWeeA8CyZb/htNPOYOTIUfh8Pj74YC1jxowFYMmSK3juuWe47bYfcvXVnyM/\n3011dRWvvfZffvCDW7tc6b3ggot4+uknqK6u4ne/uz91PCcnh09/+rMsW3Y3sViMmTNnEwwG2Lx5\nI7m5eXzsY5eyePFSHnvsUe67714WLVrM9u3bePHF5/rnC5lGiuRBJDnFL31zX+ukPhOrxYInGE1N\n8QOYxTWMGXMZL+1/hA/iT9ESO0xNvI5/8wCvhp7m3LIl3DzvOoYVlmZ7S7xBjeZtDR0WyK+urUr9\n3mJRcLnshMMamhYjENZYvbU+dS3p13zwsB+AU6cO61aR3NXKu2zuE0IIITp33XU3Yprws5/dRigU\npLJyKnff/Qfy8hIT6RRF4brrvsa99/6a6upqJk2azJ133p3qZRyPx7n77l/R0FBPbm4ep522gK99\n7ZtAIlLxxz8+yB//uIxvfetGdF1j6NByTj319FSB3FmhfOGFF/Pww8sZNqw8IzcNcO21X6W4uJhH\nHnmIu+76OXl5+UyaNJlrrvkCAEOHDuOOO+5k2bK7eeKJfzNlyjSuu+5r/OIXP+nzr2E6xWwbLDnJ\nNDT4e/U8q9VCUVEuLS3BjGEiveEJRHlzfQ3nnDIC0yRjc19yU18yM5z8dXrGOHnO9PEFPLzpMd72\nPcxu37bU47m2PP5w/p+5ZNyiTt8b4KVVBwCFj506CoA319cwZ/IQ8nNsWFULBYU5eD2hTjPLvqDG\ny6sPUt8S4nMXVTJqaP7RfHnaXWfbYSz9qS+/z8cLuWe55xOV3LPc84noZLvfvlJW1nVtIktyg0y2\nzX3JzXzpv25bKDrtKm6XiwU55/Hlyst5eOtLrAj/kw9a1hDUA3zj9a8yN3caxY6ijOfFghrWkJ+Y\n1wuAJRoh7sgM3efn2CjMS6xeF7mdKLFYl38R7dbs8Y6k3k7si2gG2w+EZEVZCCGEEP1KqoxBoK82\n+ZmaRvG21UQb3EwIDudTudfzcmwFP1f/gkfzcsdL3+LHhZ/LeE5Ei1FU5yPscwNQWBuiuXJ+l++V\nnlVuyxfUiBoxYrFEl4ts0weDEaNXE/s0PS7t4oQQQgjR76TKGAS6s8nPG9BQFDJGSCclN9EFDKid\nMIfCEW6Uaj/xkW4mHJrApZE6nq95lsdCb/CFs76bmtQHiUxyy5ZaKqeXA+DZWAdq56vA/pCWkVVu\nyzDihCI6vpDG2u0N7Kr2tjsnohk92h2b/EFCkTHWQgghhBgAUiQPcumT+iJarN0IacOIc9gTwhPQ\niGoGtc06IcLUtmgojijOnHx+OOcO3njyNUJGiNs2/oynLns+Fa5XrVGMnABqQaIXY9zR9UShWCxx\nUcmscjY1DQGeemcvcyvLGFGWl/GYP6Tz3uZDPVpFTv4gkW1VujOy4U8IIYQQvSFVwyCXPqkvffBH\n+kS+Nz6oIddlZ+7kMjbvbWbGuGK2bq9h/qgcCvMd5Fpt3Dj1Bu7cdBcrDr3L+7tfY17ZXKB9Jtka\nDmCq3ftj0dtFXdM00fQ4dlui0O9tPrk7ZJqfEEIIIXpDqobjQPpmPqfd2m7jnsNuAZTUxL48K5Tv\nXocayEe3q3iAT8Yn8DvFSciM8Lf37mZi0bVA+0xyWY0HU7Fgnjo2a1u4JE2P8c6m2tSKdluBsI6m\nx1m/q7Fd3CKixTh42M/oI10vejKhrz+HtAghhBBCJEmRfBzpqkBsm00eOaEY5cjKbB5w6YbLePzA\nY7wUXcsPZi3DbXMTD+u07GlMZZIb1ldjqtZOC2RI9nRWOoxc+IIaVlVhwfTydiOxDzUG2V3joYd7\n9oCjG9KSJBEMIYQQQnRFKoTjSEcFYrK38pZ9Teyv86eyybGDIayWSGoAyUTrx4HHiMQifOf9O1hY\ntJiRrkqsOfk4ioswYnEMlwfo/iptsj1cNk67FTVLQW+aJkYsjqa3TuzzBRObAU+bNow8V6LotqqW\n1K/7kkQwhBBCCNEVqRBOAC6HldkTS7EoCqAwY1wxm/c2ZwwgmT91KOfnVPBk8zS2t3zIO81P8E7z\nEzhVF7PL5rB90+lMK5xLODYUl9raYNsSDRPzejEMO6bVgmZq6D4v8WgUUDC8PgyjfSEbC2oYwWDW\nSIY3qOEP6YQiBqu31mPE46kJfUYsjtPe+sfygrkj+6VQFkIIIYTojBTJJ4jkaq7TrqayydkGkPzq\n7N/wg3e+y9amLZiYRGJh3q97l/fr3gVAQWG4YyLvcwZziueSv62BcMsoTLuKxaIQcdnx+nSijTYw\nFXyh3WBrn5uIaDHcR3ouz5lcnhHJqGkIUHXYzwVzKxhRlpfoq6zFQSEVz/CHdNbtONzpZL/u6E6G\nWeIXQgghhGhLKoJBoD+7O7R12vAFvHHle3giLaytX83q2lWsqlvJ+vp1RGIRTExqojt5dMdOHuVv\noEJ5oJxTh8zn1KHzuGDcWeRp5Tg+OAwouGcNpTC3/UqvN6ilei63jWQk8soW8nNaNyAmNx9mmyZ4\nNLqTYZb4hRBCCCHakopgELCpFkaU5mJTuz9cIyl9pTTZHSK5gS+Z9802gARymFtyDnNLzuH66aDF\nNNYe+oCntrzKvvBGqvTNtESbAKgN1/L0gWd4+sAz/GA15NnyqbBNZ2LOXM50fYPSwsJ216Vaoxk9\nl9Mn9PlDGkYsnprGl76SnJ5RTr/ucNRg6/6WAflBQgghhBBCiuRBwOWwUjm6qFfPTV8pbfEnBm0k\nN/BBogNFcgCJ1aKkNvFZrdkK8pGcX3wNFsv/8NG5Fezz7eHRtS8TdO5gQ9Ma9nh2AxDQ/WzXV7I9\ntJL3n3qMn869jY+PWpQaUAKJTLIaDmJYrHgPN7NuT0vqMV9Ix+uLsHZHYhqfYcQJRjQ8AY0VW2px\n2q3tBqckJ/T1dIx1Nr1tIyexDCGEEOLkIZ/0J5Dk4BF/SAOU1Ma95AASaN3E17YtW1IwYrBmWz2K\nojCuYAILi12cc8oICvMctGiNfOjbwPObX+b1D19kn+UgDdHDXPfeDTy89k/cUngNo6xDgUQmufBQ\nkFpnKR7fXiIBGzPydXJVk6ZwnKaIwpxxE6kYnvjhwBfUWLGlLjUoJX1wiqIoPZ7Q15netpGTWIYQ\nQghx8pBP+hNMUb4DRaHNxj1r1k18PVWWM4TLR1zO7NyzOSV8DZtCK3k+cC81oWrejW7msoYfc9O0\nr3H91OtQIgqe9TXYLFbyJ5bg3O/BPb6IXIeVQFOIyNpDKLbuda1In9AXCOus29EgsQshhBBC9Csp\nko8jPd3g5w1oWFQFq2rBH9Yx42YH+eRW/pDerWuJO5zMUk7nunkf42/7/sSftv+ZaDzKXZt/w5MH\nnuZ/Z/4MGJ46XzPivLe9CafNgj+k4QtqqbgFgGHECYQ1Vm+tx2q1ZMQtgNSEvp5M5+uugZriJ3EN\nIYQQ4vghn9THke4WiOaRh9fvakgdW7f9cKrwNGKJYrnjbHJikEdn7dcUQ6dsxxoIFPBV+3w+WjqC\nn3geYq22gz2+PVz33v/jLu1WdOdY/L69hH2JlnEzCjVimobD28L0cZNTcYu20uMWgbDe6wl93dEX\nU/y6Q+IaQgghxPFDPqlPQMlsstJmYTRZeM4YV8Lmvc0dZpOTk+48gWiH72FabTRMnseMmcMoyLUz\nF3jGvJq/736YH6z5EUEzwvryGNPzRpE/sQTHriZAoXzWUIKhKDWxAywoyO009pEeExFCCCGEGEhS\nJB9HHDaVylFFOGxql+cW5Xc8Kjp92MjR9CSO2V2oBQVY017j83Ou56fr7yBkhDho7meGw4nVnY/F\nEQAUrAVuFKuGbnO2e730NnHpLeCSLeM0PYY/lNneLqmjEdYD2YNaCCGEECcOKZKPI0fTKm6gqBaV\naaUzWFO3iqrINlQtTMznyxhjbYaiOKNBTJ8XwxEDIBAxeH3z4dTrRPUYBxtCgEJUj6XGWK/f2Uh1\nYwAwM8ZXQ/YR1n2ZYe6v7LJklYUQQojBRz6Rj3M9WSlNFnlKD4s8byCxamtVLZiqijfL8I90lYWJ\nInlncA3P7/4hQ5sXEw0OT42xNrUoYw81YaypxXMkTuHTFSIee6pNXFSPUeINMvn8SwnopMZY5+fY\nM1rFAX02wror/ZVdlqyyEEIIMfjIJ/Jxricrpckir7Oscbq2GwAtFgWXy06LN8SBeh9RPYaqKOTl\nZK7elkTnovAgBjovqG/zim8l83Iv4fyCa3DPPYNgKMq+yF5mzxtHYVle4klBHefWBsqnllGYa+NQ\ncwjP9kYUmx30jrtxJK4zs2tHR9GLJIlgCCGEEKIrUiSLDrXdAGhVLRQU5nCwxoMnoFHbGOSUSaWM\nSBa6R5zDUs6ZNok/bLiHV6ufQzd1VgSe4f3Ac2xyLOWz468n4shFcRdgLcxPvLY1isXpx1rgJqJa\nWLGvgf0tOvEtdUT1GJ5AomVcrsOa0SoOaDedD7JHL5L6o41cd3QW1zCMOLurvUwbWyyryUIIIcQg\nIJ/GolPpGwCtVgtFbidejx2HVUVVE0Vfts1/C/LmMrX4r/xz5bus0R7lhQNPEifGM3v/zX/2Ps4E\n61l8xPNDRg09vd1zk7GJ8pJcFkwfhj+kUXXYz9zJZe0KcqDddL6BiF70RmdxDSMeZ3eNlwkVBVIk\nCyGEEINA9ia54oThC2m8tq4aX6g1sjBQwzMAyp1j+d+5v+XWEf/kjPzF2Cx2TEx2GW/x2dcu4l/r\nH8TweDC8PuKRCIbXl9jcF42QY4TJNcLkGBFsZjxVkLf9x51rT7WLy8/p3hS/dNm+RkIIIYQ4ucmS\n1XGuq7Zw2aIFfbUBzYglXrujjHOijVsMvzfAmL11fMLxKb5VcBaPBV/gaf0tNEXnR+//iFn7LDji\nRUQ8dnzenQDoTTZKI42Ew3uIGAquRgVTn5D1fYJhPSOTnP7r5DWkbzBMP2ZVLccsfiGEEEKIwUuK\n5OPcsWgLFz+yoy8Q1lm7vXW0dJJhxPEEozhtVqobA0Q1g1r3BFRDo9BRyQWOybgbzuFB88f4zRB3\nKs9x54xfYd/lI3eiGwDr1hb8sQIc04ehhXWMYENiE18bgbDOO5tqM0ZYp+eT2467hkQRnTgn0UZu\n3pSh/fa1OhrSGk4IIYQ4duSTV/RYsdvJRyaXUtXgZ25l+5ywL6ixYksdM8YVY7VamDGumA8Mg+G7\nVjEmP7E5ZjNqAAAgAElEQVRRr1jLxZd/Lv+OvM4Lta9wTugh7OHTCEYOAGA02ciPNBI16zD1GOPq\nmjG1ae2upW1+OcHMaBHXVmJVWWHm+BJ2VnmIHeP8ssWikOeyE4zoGcelNZwQQghx7Mgnr+iVglwH\nVtXS4cY9p11NTfbLz7Fjy3HQPGU+s2cmCtltW2r57uRzeOeNi6kN13F39F/8aOQS3NNHAGDbWIcn\nPhzXKSOIhTT2aAf4iL3jdm0OmyVVFDvtVtRu5K2TrePaTvEb6Ol97hw7C2eW8+b6mj57TSGEEEIc\nHSmSTyJ9WeQpFgWHTcUf1ttlkpMjpZPFpz+UHD5iJ2h1oSgKRk4+BaUj+N+FP+crr3yBukgdNRzA\nWjAl8foODzFM1IKCDsdYd0TTY7yzqTbVDq6tZARj/a5GqhsCRLU4tc1B0qf49ff0vp6IaAbbD4Qk\ndiGEEEIMIPnEPYn0ZZGX57QxttzNrioPu6o8GY9FtBh7D/moaw4RihhENYOqhgAAK7bUpgpRq2rh\n1PLWFnANWtVRXxckM9MKcyYP6bTbRSIWUsuMcSVs3qse0xZynXUc0fS4xC6EEEKIASafuKJX2g4a\nSecLakQ1g6gRpyjfydzJZYACCiyYXo47156KNOSY5ThVJ5FYhMbQPmJeLyYKZjSCNW4kfh/ScEaD\nmD4vhiOW8V5GUMeMRlBpX/jn59gyoiCBsN5l8Zttep+pqgT6oD1cZyv5/TXyWgghhBC9I0XyCS69\nRVxUj3X9hB5IHzTS7n3tKpCIZOTn2HHYLYCCOzczw2xRLIx2j2FHy3Z2N77BoXenkasWZ7SAM/QY\nYw81YaypxdNmM55PV9CbbJREmzBPG4vSQW45ENZ5dW3mSnVyUp8RSxTGq7fWY8TNjO4YyVHc4bDG\nnMlDevulAo5dXEMIIYQQPSdF8gkuvUVcskgOhHXW7Wjo8w1oHUmsLMdBIaNfcdI492R2tGznQ2U3\nl7b8gKUjP82EssW47K0b9/ZF9jJ73jgK207cC+qJTX6M7LBAhtYuGOkRjNZJfeWpTX/p0/uSK95Y\nVV5ffeCYd8EQQgghxMCRIvkk1N8rmsmWZlE9DMCWfU1UNfiB1kxyspdyYa6Ds5zXUZPnZVPgTSLx\nMI8c+CtWHuWsok8y1/UjVGsBEUcuirsAa2F+xntZrVEUh4d4lrhFNm0jGMlJfR0ds1oTcYtjIZlT\nVrro1CH9lIUQQoi+J5+oos+ltzSbPbEUi6KkVpKTq7bJXsrzpw7FnTuSjwYf4d9r32KN/g/eOPQi\nBhFeb3mYsx//P5aMuJLSyAWYvqEdZpKT+WUASzRC3OHq1bW3nd6XzCRnaxXXVket43ormVPuaKJh\nkvRTFkIIIfqefKKKfpVcoc2WSXba1YzfT3BP5Uun/J1t9ev5xUvf5X1lI5FYhEcPPoTNfITYO5dx\nQ8knMl4/mUlO5pcBCmtDNFfO7/G1tp3el8wkY7Gwr9aPpsdT2eXk9L62srWO60p/9V8WQgghRO9J\nkXwSSW7is3dQ4A0WU4aewpcm/4nvD2/igT338VzVC+iKwR8iT3Bu5RUsGNraNi6VST4yeATAs7EO\nehGRaDu9L5lJNlWVSETjtKkdT/Hzh/Ret47rKv7SWXu4wUIiH0IIIU408ml2Eklu4uvqf993R1er\nn+mFXbL4i6ZFFZIDRzJ/3/p4SLFTUXIKd496iCV713H9e1cQMX38eP3tvHbFu1gtR3otH8kkJweP\nAMQdnraX0yPJ6X3pmeRs2eVsgmG9w8fa3mPb48GIkfX1j4f2cBL5EEIIcaKRTzPRK12tfqYXdi3+\nRFFe2xxMbdxLtl8DBatF4bAnhCeQ6CwBHHnMPHJuKQudX+LV8N1sa97K37b8hWtnfjX1XqoWRom1\nZpLVcBDDYsXw+jCMRPTBCOrEI5GMY7GghiUa7rOvSXcn/bWNa0Q0g901Xg7W+7nmosmUl+T22TUJ\nIYQQonekSBb9rijfwenTygElFWNIb7UG8MYHNeS67CyYXn7kWW3OVT5NXcNrbGnayC9X38GkokoW\njjgLU9Mo27EGBZNweC8AhYeC1DpL8YX2gC1RdPt0hYjHjs+7M3UsosUorvdjfmQU0PkKcXd0d9Jf\nW76ghj+kU98SQjeO7zZzMkJbCCHEiUI+xU5C6QNGBkpBnh2nXcXssFNbosDMRlEUnDYbt87/JVe8\neDF+zcennr2M8tzhXDpmCUPGzqVCHcP0UxIr1571NdgsVtyzhlGYe6RYDeo4tzbgnlqWOuYNajRv\na+i0v3JvtG0z1x1267FpM9fXZIS2EEKIE4V8ip2E0geMDJRkcbx+VwOQyLDWNoVY+WEdpgkH6v1E\n9TiqomC1Khlxi6S5w+Zzx8I7uXP1z/FpXmqDh3jgw98DMNwxkf1Vn2HR2CXEXLlYtQhKN3onW47E\nNAzD3umI68HseNjYJ4QQQhxvpEgWfS7bpr6ifAdnzx6BkqWO8wU1fMEotU0hTplUSn6OnfS4BbT2\nIL525le5Zur/45UDL/N/Ox/j1QMvo8d1DkV38asPbueuD37CRNdHON8/kRm+MzGdiQl9HcUtiup8\nhH1uTLvabsR1X0QwkgJhvcPOF76gRtSIEYslct7JjZWBsM6GXY3MnlhKYZ6jw9Zyx8PGPiGEEOJ4\nI0Wy6HMdbeoryu+46HTYVFTVQn6OHXeuvV0P5XROq5OPj7+Mj4+/jP1Ndfz6zb+x1vcCe8MbMTHZ\nGV7HTus6/tryFBdVXMhXp3yZ0c6pWeMWLVtqqZxeTkGuvdsjrnsqENZ5dW1Vh48bRpxQRMcX0li7\nvYFd1YkNiBHNYH+dn0BYw2m39qoH82AhLeKEEEIcb+TTShzXCh1FLCz8JAsLlzJ1qslz+57g0Q8f\n5bB+kGg8yn8OPsuL1S9x6/w7Geo8D2uBG+uRwlu1RjFyAqgFBVjzHD0ecd1dyRXkzjb01TQEeOqd\nvcytLGNE2ZHV76AGKMwcX8LOKk+vejAPlK5GaEuLOCGEEMcb+bQSvdJfm/+SPYQ7G//c9nxNj2G3\nWRiVP4brZ36bsaGlHIxsoyHnHZ7Y80+CeoAfv/8tzim+kjNm3UNfxih6oreR4WBYZ2eVh6mji3q8\nIXCgdHeEthBCCHG8kCJZ9EpXm/+ieox3N9Vy1uzhXY5atlgUcpw2FGDLvmbAbLdxzzDieIJRCnMd\n7XoMH2oKMmZYPlbVghGLoygKo13T+Mr8i/nS7C/xuReuYr9vH282P8bnX9zHX8++nxJnCbGghjXk\nb7dxzxpv3cxnWi2YquWo+yl31UM5ENbR9DjrdzW2i1v4ghqHPWFWfljP8LK84zZyIYQQQhxPpEgW\n/cI0TQJhvcNhI+ncOXY+Om8kRiye6pvcduOeL6ixYksd86cOzRgNnYwknDlrOHkuW7uVzMriKbz8\nyTf4wvOf4736t1nTtJqLnvkovyu+ibFUZN24VxppJBzeg2lXEx0jLBaK9jdjzh5Jb1ehu+qh7Atq\nWFWFBdPLM+4ZFMaW51PbFAQY1JEL6LzThmHE2V3tZdrYYolcCCGEGPTkk0oMGi6HNVUgZtu419Fm\nPqddJdfZ8R/lImcxf/noY3z9+W/xSss/ORRr5JqWX3L33GXY3XPab9yLD8d1yggKcu2oR1aSW1Ye\n7JPNfJ31UM42+tppV8lz2VDV46O9W2edNox4nN01XiZUFEiRLIQQYtCTTyoxKKSvQCZXn72B1kyy\nL6gR0Yx2OeXE8db8sj+kZ319q8XKpyq+x0enLuSWld8kZIS4YdVX+PTwH7Cw4OupjXtWpTZrf2Ul\nrZ9yNokR1xHiDleP7jvZGi7b/SXvLRDWicVMonpmTjvZFk8IIYQQfU+KZNHnHDaVCSMK2V/n6/Cc\ntr2U01cgW/yJyERy8AgkNvLtr/NjxEwimpHKJidzu20Hj3Q0WGPx+CuoLBvP5168Ck/Uw8M1PyNv\nfYDbF97ebsR1RtxiXxNhTz5mB5niiBajsDZEc+X8bn+d0lvDJe8PlFRu2TDiBMIaW/Y14w1qmMCK\nLXUZueYL5o4kbprt+lILIYQQ4ugMqiL5kUce4cEHH6SxsZHKykpuueUWZs6c2eH5y5cv51//+he1\ntbUUFRVx0UUX8e1vfxt7H48ZFj3jcliZUFFAdUOgw3M66qUM2QePJFZQTWaMK2Hz3uZUNjmZ203P\nLwcjBmu21Xf43qcNX8DzS17lymeXUB04yJ82/5bDkRpun383DZPnocQMpp9SkRm3eHcvk6cOS8Qy\nsvAGNTwb60DtfreP9NZwpmkCZsZ9JNU0BKg+HKC8JDf1uD+ks27H4dRrdPS1HCwsFoU8l51gJHOl\nX/onCyGEGKwsXZ8yMF544QV++ctfctNNN/HUU09RWVnJl770JZqbm7Oe/+yzz3L33Xdz00038eKL\nL/Lzn/+cF154gXvuuWeAr1z0h6J8B4V5rf8kBoxYyc/JHDTSdvBIYZ6j03xy0sSiSfz74hcZ7ZoK\nwJO7Huf8J+fxkv8xfHYz0Tu5sBBbYSG2wiJiOfmpY9n+UQsKiDucvbrX/Bwbag/7w5mmmYpnBCNG\nr953ILlz7CycWd6uZWCyf3JUjx2jKxNCCCGyGzRLN8uXL+fKK69k8eLFANx+++28+eabPPHEE1x7\n7bXtzt+wYQNz5szhkksuAWD48OEsWrSITZs2Deh1i+NXqWsI3xn3IE95/5fXq1/mcLiOZ8O/479N\nD7Lddg03zr2RsUVjevSaqhZul102gjrxaBRQMLw+DMPWejwSwXu4mRXbGznYECI9bpEUCOtoRoy6\n5lAqbpEezwATi+XY/rybbRS5EEIIcTwbFEWyrut8+OGHfOUrX0kdUxSFBQsWsGHDhqzPOeWUU3j2\n2WfZtGkTM2fOpKqqirfeeitVZItjq6+HjXQ10a39Jr9Y1k1w6cf8IR2HxcV95/6dtU1vcu+637Km\nfiVRM8Tybffzj+0PsHjiEq6f+w0gr8trVAydsh1rCAcKMrLLPl0h2mwHU8EX2g02M3U84rHjadqF\n7rUyJdLCrPMvpqAw8718QY1YLE56rCQZP5k5voRNexqPedSis/iMEEIIcTwaFEVyS0sLsViM0tLS\njOMlJSXs27cv63MWLVpES0sLn/nMZwCIxWJcddVVfPnLX+736xVd62rYSLrurEJ2NNHNPFKTZW7y\na93MZ7VY8ASjOG1WqhsDtN3gB2C3WrlwzMXMLz2P+998gddbHmZj4DViZowndj7OEzsfpzJvHvGS\nb/LxSRejWrIX/qbVRsPkecyY2Sa7HNRxbKwDFNyzhlKYa0sdd25tIH9MIbZdTUQYSUFhXtYWcQ67\nmnh+Wos4p916XHW36KiHsvRPFkIIMRgN6k8k0zRRlOwrh6tWreL+++/n9ttvZ+bMmRw4cIA77riD\nsrIyrr/++m6/h8WidNgJoTOqasn498mgL+/ZqlqwWBSsR14rGNGxKErGNL2unme1WigrcnHenAos\naX9OvEENi6WWM2aUA/De5lpmji/BvkfljBnlGQWsqiYKt+Rrj82dwRdzf8mMaQqP7PoLj2z9O0E9\nyPbAGr78+mcofK+IhRVnclbF2Zw58mwmFU1GUZTUdZnOHBzFRTjz03odO6JYXR5AwVlcmHrM6Yhi\nzQngKCpAdYUAM3Vf2e4ZWu87eUzN8tjR6s33OXk94ajBht2NzJ8ytN0GxGK3k4tOHdXueXFM9tb6\nqBxd1CfX3xvy9/nkIPd8cjjZ7vlku9+BNCiK5KKiIlRVpbGxMeN4c3MzJSUlWZ+zbNkyLrvsMpYu\nXQrAxIkTCYVC3HbbbT0qkouLczssxLvD7e5ZX9wTQV/cs6mquFx2CgpzAFK/LnJ3vvkt/XnJc4uK\ncjPOafZF2HrQQ16+E4ui4HTayMtz4nTacLtdFORnrtSaaa+NRcFptzF95ATun3Yfv7joZ9zz3h/4\n/eplePRGPNEWntvzH57b8x8AyvPKOW/seZw67ExCyhhKHSPa3YepquQQR8ckx9TINRN/3jRTw04M\nl6lhw8AWN8ghmno8SSNKDnEiqg1TVVP/YLFgWiygWFLvY3bQXcOqWtoVrV3pyfc5+X3Jy3ehxz3k\nu11dfi+Tz3M6E9fVne8/QCiis6fay/iKAnKcfbuSLn+fTw5yzyeHk+2eT7b7HQiDoki22WxMmzaN\nlStXcv755wOJVeSVK1dyzTXXZH1OOBxut1nJYrFgmmanK9BtNTcHe72S7Ha78PnCR/KiJ76+vOdI\n1GDMkFwioShRLYbHG+bZt3ZzzikjOi3m/EENmwX8vjBKLHtHhBZfhHBY4621B4loMfbV+vD4ItQ2\nBYlENFSLBU8gSmGeA1vaymVEM9hX62dseT4Bf+L1raqLb87/LiMDlxAv+ZB1je/xdtVb7GzZAUBt\noJZHNj/CI5sfAaDUVsErwXO5YOy5LKw4m6G5Q2lp8uHYvIoWZwkHW3bgScskt7TYqanZSsCjUh5p\nos6zA0+bjXsRLQY1YXYUTCIei6c27u2r9eH1RahuCFCY7+C/K/dl3E9bH503MrVq3pnefJ+9/ijh\nsIbPFyYc1vB6Qh1+f9o+LxJJtPGrP+xj+54GxpS7O41dGLE4bqdKMBAhGtY6PK8n5O+z3POJSu75\nxL/nk+1++0rbBbZsBkWRDPD5z3+e73//+0yfPp0ZM2bw0EMPEYlEWLJkCQA333wzw4YN41vf+hYA\n5513HsuXL2fKlCmpuMWyZcs4//zze7QyHI+bR7XZKBaLYxgn1x/Kvrhnm2phYkUhAMGYTiyemDqn\n6bFOXzvHYeWc2SMAOjzPnWPnzJnDUZTEprd4PH6kv7KF06YOAxJDOeZVDskoyBPnwhkzhuOyW1tf\nX1VRsXFuxSUsrbwcgPpgHe/WvM071W/xTs1bVPkPAtCoV/PYzn/w2M5/AFBZPIV5Q87AWT6Occ7x\n5H1kEu4jmeR4UMextYHcMYVYdzXREh+OI8sPCWZQo3ntIUyvwfSxxQwvzc24L5tVYcH08g5/uEj2\nVI5qMVz27n/fevJ9NmJx4nGT2JF/G918btw0yXHYCEZ0QhGDD/c1U1bowtbF/zbMcVjB7PjPQG/J\n3+eTg9zzyeFku+eT7X4HwqApki+55BJaWlpYtmwZjY2NTJkyhQceeIDi4mIA6urqUNP+V/L111+P\noijce++91NfXU1xczHnnncc3vvGNY3ULYhApSs8Et+mvnDimZmyCaz1X7Vaf5aG5w1g66QqWTroC\ngM21O3lgxdPsDK3loPEBDeHDAGxv3sb25m0AKFhY5/g0d5x1B0XOYqzWKBanH6s7H8URJMaR/sxt\nrkm1RjHtTYBBnsuWsXEvcV/WrPfS15IjtLNJdg/xh9p3EUk+d9OeJhbOLM/YnJnsn/zm+pp+vXYh\nhBCipwZNkQxw9dVXc/XVV2d97O9//3vG7y0WCzfccAM33HDDQFyaEJ0amT+a0wsXc3rh5Vw0fySH\n9f28W/MW71S/zbs1b+PTvJjE+b/dj/BG1Uvc/pFbObfsUuKRCIbPjxmNYI0b7XosA8SCGmokiCWm\nd/Du/S99hHY2yRHa63c2Zu0ikuw4MmtCaZ/0UZZJfUIIIfqbfLqIk4o3oKEopKbVpcvWS9mqWsDa\ns17PiqIwubiSycWVfHHGV2jyhfjbmy/x/oHf87a6lqZoE19b+XVOtf+Fj5pfYnxTCbrXSmmkkXB4\nT0aPZUhkkkuq/TTGCjD1Sb2/+aOQPkI7P6fjzXK+oMaKLXXtxmsfagyyv87f47xcR8WwzWpheGlu\npxlsIYQQ4mhIkSyOOYdNZcKIQvbX+To8p7cT3ZK9eTkSU1+/qyFjWp3TrmIY8Q57KVssCi5Xa4u4\n3lAtKhW507lywm/5n2F7+OnmW9kfOMAqbQsfKN+jufgGJuRfhsccjuuUEZk9lkm0tGtafZCQR0ex\nHdtpdvk5ibhHZ9GLbEwzkVP2hzQCYT2jv3Nng2KSY6uHleRkFMm96dYhhBBC9IQUyeKYczmsTKgo\noLoh0OE5vZ3olhxCApDvsqc284GZMb1uxZY6Zowrxmq1ZKyCWlULBYU5BPxhXPaj++sSs7s4c+Il\nvDXjY9yz9i5+v/636GaU+3bfzSjny3x95J87zCTHnLnE1eBRvX9f6Sx6kYxdrN5an9Hz2BvQaPZF\neebd/Ywf4ebS08ekCuWOBsV0h8QuhBBC9Bf5VBEnjbab+TKn16kZm/uSx61WC0VuJ0qs864bPeGy\nuvjhabdywYhP8PXXbmRPaCMHIx+yMfAGH+fYxCl6orvRi3Q1DQH21XkpyLOnVpX7gsQuhBBC9Bcp\nksWg4LCpVI4qwmHrWf63Nzoaj5zkDWRmkk1VxeuPdlrY+UM931Q3qWgK3xtxH9/Zfwk+3Ut1YGPn\nG/f0KDGfD8MRIxbUsETDPX7PvpSMXnSHL6hhVS3YOylmu/q+JLVdPZbYhRBCiP4gRbIYFFwOK5Wj\ni7o8LxDWWbejocfZ5HTpEYx0cTMR5Vi/qyF1LJlJDoc1NC2GJxilMNfR4fjkngymMTWN0u1rmeyo\nYA1earzrCK94u8ONe02Gm8jaOjw5FiJajOJ6P2blsG6/X3/rLKfsD2kYsTiaHiOqWdptmrSqlg6/\nL211lFMWQggh+pJ8wojjSm+zyd1RmOfg7NkjSJ9Fk8wkez0hmn0RVmypY/7UoVlXL4MRgzXb6rv9\nfordTvOU+UzXt7Jm34fsUw+hnnoqhe78jPOSG/eCzVGcc8dQWJaLN6jRvK2BUcd4I19SVy3iAmEd\nXY9z2BOmJRBlxZY6nHaVqB7jUGOQ4aW5GTnl7pJMshBCiP4inypCpEnPLUObTPKRkdB9Obgj7nAx\ns/R02Hc/mhnhK+9/ieXn/AW33d3lcy0xA9PnPeaxC+g6p+wLasRicTQjjj1tc6QvqPHm+ppe55Ql\nkyyEEKK/SJEsRB9LzzRDokCManFIddZoPR7RYsxwzWdObBrr1A95v3Ellz19MfeXfpshaiJ+0lHc\noqjOh9GUS3FzCPMjo4D+nbjXHZ3llB12FRQFh82S8YOG3aYC2f/PQEc5ZcOIs7vay7SxxZJJFkII\n0S+kSBbHheTGvs42fvVWdzeMdeVIpDkj0wyJwSVVDX7icXhuxT6GFOZgtVpSU+iimsF5eXfitPyR\n94LPs8Oo4rP+X/PIOX9nYsGEDuMWLVtqqRhXQvMBL4p9cBSKwXD2DYyJHxRiaEYcTDP1w4IvqBHV\nY6ljVtWSEbnoKKdsxOPsrvEyoaJAYhZCCCH6hXy6iONCcmNfT3vpdmcISXc3jHWlKL99phlaV5I1\nI4bdqqYyzYlCUWHGuGI22638buZfeHTfMn699pdUB6tZ/OpS/rnoCcYVzEj0SbaB6nZjLcxHtUYx\ncgIo7gLiDi3r9Qw0TY/xzqZanPb2HUoiWoyaxiC5ThsNET2VSY5oBvtrfQQiOoqi4M61c8HckT3K\nJksuWQghRH+QTxRxQuvPjX7ZtM00JznsFlBoFzVI78+c57Jx8/wfUp43nO++9Q1aoi185ZUv8PzH\n3wXApkcwfd5UCzhryI/ps2MN+bO2jksaqHZxie4gStZccnKAy4xxJWze25SRSfaFdGobg1SOLuJQ\nY7BH2eSIZlDTEKSs0Cm5ZCGEEH1KimQhBkhUi7WLGkS0GP5Q4t/J4x8f9Wm0001+sOLrHPDt5y+b\n7meUcRETD23CWFODJ9eekUkuagoS9rnbtY5LSrWLG6Dccke5ZKfdeuQHgsxBLg6riqoq5Dq7958j\ni0Uhz2UnGNHR9Di7qj2MKBvR67HhQgghRDZSJIvjSl8MHelOBCOb3maXk1nlw54wYGZGDer8BMM6\nB+r9GEacvCMrsMXmWYzLmcne0Cbu//AevldxBrUjZjJn3hgKy/IyMskte5uonF5OQQcb2JLt4o5V\nbjkQ1o/8QGAc+YHAyMwkGzFiMZMGT5idVR4mjypMPbdtRhkS8ZiFM8t5c31Nu/eS6IUQQoi+Ip8i\n4rjS3aEjneltBKO32eWifAenTysnqic2raVHDUBhbHk+tc0hTplUyoiyvNTzikf+ik+9+DEi8QBr\nzL8yyf5lFHdBu0yykaOhFhRg7aCrhGqNEncEenzdfSHZPzmixRKbFPU4tU1BQMFpVzGMOKGIji+k\nsWVfM4c9YVZvPUxBXmtB35OMsrSEE0II0VekSBZiABTk2Y+sfpvtMsl5LhtWNbFKnR5TODtvAUsm\nfoondz3OC1X/5n3LKkoOfocvll19TO7BEg0T83oxUYhHIhheH4aRKF6NoE48GgWUjOORoE48EmFa\neR6WqI1pk8vYvLe1TzJATUOAp97Zy9QxiY2ZcyvLGFGWhz+ks27H4U4zylE9RqM3TEQzAEdicp+0\nhBNCCNEHpEgWYgClZ4+TmeTkOGd/SGvXveObs25lw+EN7PXuojl+gB+vuZG/7fwtX57+DQrM0wfs\nuk1No3jbasIt+WiKlYjHjs+7E2yJ1XifrhBttoOp4Avtzjge8dixNoYZ3uQjb+aIdpnkZOu3XKcN\nq2pp98NCNsnoix6L0+iNoOk9H0QihBBCdEaKZCEGgGmCokCLP8rKD+tw2Fozyb6gRos/yitrq6go\nzcPaJirwnZGP8p7reZ4//ACeeDV7vXv4/ns3Umqv4KuOb1JuntXv158coT1lShlOFJxbG3BPLaMw\n90gMIqjj2FgHKLhnDc047tzagHNMAXV7minSycgkA/hDGkYsTjCS+cOCL6jhC0Z5dW0VZ8wop7wk\nN/WcZPTlYL2/0+uWjLIQQojekk8NcULrzka/3m7k64mifAcXzhuV0UM5I5PcFCTHaUv1UG5rfvBa\n5n94CXrpOu7fcg+7PDtp1Kr56bpvU2Ir55Dra8wfMYdR7tEMzRmGaun9xsaOxB0u1IICACxOP9YC\ndyoHbbVGsThaAKX9caefqD2H3U11BHc0ZGSSIZFb1vQ4Ow568AQ01m5vYFe1l4gW4+DhAKBgxOIs\nWv4GoTUAACAASURBVDC2R/2TQTLKQgghek+KZHFC685Gv4HqpZyth3Iyk6yqCg6rmhFDaMtls3Px\nuE9y9fSr+NeHj3PX6js5FN1Dk17Lz9b8CNYkzrNZbIzIq2CkezSj80dT5hiOryWP/MOzmKZMZEjO\nUCzK0RWNyXxysjdzR5lk40gmWfP6sOgaU0oLccVtnJaWSU7ELRTGlrtp8kVSmeTEEBYjMaUPsmaT\nFYuCVbWwv95PWaGr3WqxZJSFEEL0lhTJQhxnVIvKpWMvx9UyF2/eWn634ddUR3amHtfjOvt9+9jv\n28c7ac97sDrxb7vFTkX+SEbmj2KUewyj8kcx0j2KUfmjGekezfD8YZ2+f3o+OdmbuatMcrQugqsJ\n7NuqKfaEMGeOALpfvEaPZLnbtoTLd9moKMvlUEOQ6LiYRCqEEEL0GflEESedvui13JcCEQOLoqAZ\nsYysbrrkJr/k4/6QjkWxcP6ISykMzGPGFDveeB1VvoMc9B/koO8AVf4DVPkPctB3EC3euiFQi2vs\n9e5hr3dP1vdyqk5GF46mIm8UFXmjGJk/ihJbOYdDLmaE7RQ7S1P55FRv5i4yyY6huYQ/OIQ+ZQjr\nPmykcUczTrsXINUeLhgx0PQ463c1puIWVQ0BYjETVVVS/aVPnTqUrftbmDdlSN98A7oguWbx/9m7\n7/C4yjP//+8z50yTRtWSi1zABTDuxqabXkOAhEBIICGQAiSkbjbJbhKS/AAnZLO72W/qZgOktzVk\nExJ66AabboyNwQVbLmpWm15O/f0xmtGMNCONumzfr+vyZTyacs7Yc7j16PPctxDiyCRXfHHEGW6v\n5dHOLmeGjOxpDmE70NYdzxaCAKZpE4ylqC73Yto2ja0RwMHn6f3YqqoLRVGo809lQWA2q6ad2O91\nuiIJ/vbyGxw116DbbOkppPf2FNL7OBDZj273FudJK8n2zu1s79ze77nufAd8qp8abQbHxuYxr+Zo\nZlccxRT3DMJmNVXajAHP2bIdFMdm8TQvM2r8QHrjniuVYPHx0yj3aZy2ZEa2j3QmbuHRXCybP4Ud\n+4MYpl00HjMWBa1bc1Fb6WV3c4h5DVVSKAshxBFCrvZClGi0s8s1FV7OWjGTSFzvN2gE0qvHG7a2\nctKiaT2PUPK+rqmuAXsIZ7gUF9XuelbWzyyYd7Ydm7ZYK/si+9gf2cuB6D7aUs3s6niHvaG9HIju\nx7TN7P2TVoIWazctTbt5Jmfoncdx8wX1u4Tj9UXjFta2JvydLrQtzVCWzkW7dYuGtkjB9nBejwqK\ngtfdf/Ie5I+ohnTf5Lf3dTN9StmoFbOa6sLjVtl5IMTM+oAUyUIIcYSQq70QE6imwouikG0J11/x\ngjzdLs0Y8TG4FBczAg3MCDRw8oxT0DQXNTXldHfHME0by7bY0b6XBza9Rv2MBAei+3hl39vY3k6a\n4wdoiuzHcix0xeAB733ccOrvisYt1EX1JLa141s9h+r6dEu35q44zW939GsPl15JttIb9xwnO9I6\n/Xs6elJZ7mHlsfW8/FbbiN8HIYQQIpcUyUJMsEI9lKE3q2taDuFYimBUp2/cIkNTx67FmepSmVE+\nk2PK4ez5MwF42m7i7JXplWnTNvnW+m9x15s/YltiI89FXuS9My9NH1dPCzi1IoDt9qAEAtjuEGpl\nJVp1BdGEwYY97TR2GyT6tIdL6hZNHTHKfW7akwb0fD2l2+xvj7CvLR2rcBwHl0tavAkhhBhdUiSL\nI954beQrlmku1EMZMn2UHZbOm8Irb7dT7vdk87q5+nZ8GG+aS+OWZV/kf9/+I2Grgztf+SbvPuYi\n3Orgx5SJi8yYUs7qPiOrc89/y+7Ont9dLJ03Jf1gBZbOm8Ib73QUjcCMVkY54Hdz7gmzKPPJJVMI\nIY4UsvwijniZjXxjnTUdKNNcU+GlOpD/q7Lcg8+jUVHmwetx4XX39lHO/TWRBXJGuTvA5fWfAWBP\neBdfevzTxDrbMENh7GQSKxLFZeg40fTvVjiMGQxihsI4qSRlZoKAmaDMMbLnmHv+fX/PvB8BvxtF\nUQj43bhcSr/jymSUU4Y1ovPL9Fvuu2KfSJm8vbebRKpQVEYIIcShTJZFhBCj4sSyC3jJ/hU7XI38\n8Z0/sXXfi9xe+VmSkYZ+G/eSrzQTLHMRNhSMTjd1yQ7MsI/arjjOCXMAL7GEkZNBzv89pdugQFtX\nnL2tES47/Whs28m2yoslzaJDWUbTWGwUFEIIMTnIVV2IQ0goWriP8kBGY3NfKRS3l08c/VP+nvw3\n1h98hi3GHm4I38519d9kybwLCm/cixm4N7cStBvQjquna28IxeMhmjBY/0YLja0RUoadziL3/G5a\nDrGkTjCa3th3MJjgpW0HqQp4SOpmtlXepafNHfNzlhiGEEIcvuTKLkSJxiq7XCyr7HIpVJR5UFxK\ndnPfpp3t/R6f209Z04onqMZyc1+Gzz+Nu85ax6+2/4h/e+nbhIwgP2n+Z0L+zzBFe0+/jXualkLx\nBrFwUCqrsL3pbwIKZZUzmeTTlqR7MW/Y2srcGRUcDMazo6yjCQNNbcOy7ZLa45VioFzzUMZey1AS\nIYQ4tMiVWogSDXcIyWCKZZUryzyct2oWwWgKv1djxTF1BSMEuf2UixVs47m5z6W4+OLqr7Bq2onc\n9NjH6E518tt3fsQi9S3OjX6vN5PstTBjBk4qiWabOOEQWjyCFQrhoOCkkvhx+mWSM+fo86QzyZrq\noqKsN6t9/mo3T29qGuQoSzdakQqJZgghxKFFrtRCHCIyRWAhPo+aN4RjMjhr9jn89aJHuPH+97ND\naWSb9Tidbz6Dv6umaCa5pjNGIlyJrmjE293U6d2EF0zNyyRn+igndYv2YILOcJK2rnjeEJakbhJL\nGJRPgk2NQgghDk1SJAsxyWViF4W6N4y3UFRHUcgO88hID/5Ib6bLvb3c3cDVs+5gbdN1AGyeFkFT\nFhXNJHfv7mThkhlYKYuWp/fS6q0luDuYl0kGBc2lEE3ovLU3SSxhsmlnB00dMaC3vzS0cMbyhvF8\newYk+WUhhDi0yNVaHPFMyyaeNCnzaWOa2x0o05wyLJ57o4UzVzTk5ZKhN3YxkZyeJMimne15m+My\ng02icYMd+7vxejQ2bG3J3p7UTWKRmVSr0wlarWxKvMQq9xlFM8lmmY5aVYUS00HTmFrjK5BJ7h3N\nvX1fNzsPhFi+YArHzUlHYcIxPdvyzXGcUfkGwzRtdh0IsXhu7bCjEkPJL2dIjlkIISaOXHXFEc8w\nbZo7Yhw1vWJMi+SBMs2O4xBNGEWHYky0mgovZ62YiZJdKVbyitWm9ii7mkPMmFKWN/Akc98z4ufy\n9/1/YFPnepa4r8cKTx8wk2zGTTBNfGYKVyyKK5Uc2gE7DindQoFR+QbDtG12NYVYMKtqXItVyTEL\nIcTEkauuOOKN1Ya8w01NRW/euW8GOhzT0VQFj7t/NtrnUTmv6nz+vv8PhM0Qf9Q/w6kvfoGKioai\nmeSI5cYK+/CHOnihpZJIwiDhqLQEk2TGVgN0hpMYls0/XtlPY2sErzs9znp/exRQWP9GC5eedvSk\nGLgihBDi0CJFshBiWHJ7NkfiOqZloxv9s8pJ3WLZzLM5q/IqngnfR5erjVvi3+WeE/+HxYETC2aS\nK+Im6vp9BCtqcXvc1ChwwqLpbNnd2W8Fe//BCNNqyjh1ce8465RuopvpFnCj1QqukLGOQ2RyzC4X\nvL23W2IXQggxjuRqK0SJxiq77HWrLJhZTWNreFiPH++Nfbn55IxQVCccM3CcKA9s2MPU6jI0zZXN\nL6d0k1XKp6mZcjT3d36fsBnimqc+zP938veo9J7VL5OsaelMsu31gUfD7XbltYDLX8F29VvB9npU\nYHTeD5dLIeD3EEv2H8oy1nGITI45GE1J7EIIIcaZXG2FKFE0YfD0pibOXjlzVFut+b0aC2ZVcaA9\nmnd7sSEjfY33xr7cfHJGU3uUPa0h6qv8lPs82Z7NmUzy0nm1bNndxWXzPs3sTQ38suObRM0ot278\nIhdV3cDlVR8tmEl2pRIYhorL5RBu86BHonkr1X1XsKMJgxfebCUS13Gc9AHGEsaI/r4qyzysWTZj\nVHsvCyGEmPykSBaiRGM1ca+YYkNGJoPcfDLkr+h6Pa68VV2fR+1ZBVYJaHBOk8pZdf/CF8I/5IDV\nzqOhX3FhxxzM8Ox+mWRfsJNd1FJpJ3i5pZlIwmCD5sHnT3/TEE0YGIZNS2ecDVtbANjVFMa0LBQU\nVNUluWQhhBDDIkWyECWSDX6DSxkWHt2VXe3NZJLTg0Asoia0LFjFSQtq+TVnceHj52A5Fo/U7uTM\nEz/YL5Mc9lejxCyqqqdw4rH1bDsQ5pTlM/O6Z1iWDYqSHVedMmxSugko2dXuscwll2qk+eXRaEMn\nhBCidHKlFWKcDJRpHmiVOpoweHV7+6CxiwmlgEdT6QwnCUZTbNjais+jZjPJsYTB3rb07+0hA2tf\nHJ+nkkXla9gSfYaN8UdwKr/bP5PscUMyhVYeoHLaFDwhu1/3jEz+OFM4e91qT3B69DLao5H7Hkl+\nOeB3c/Li6bz8dtu4t6ETQogjlVxphRgnA/VjHmiVejLHLjLmTK3gA+cew9OvN4HjZDtQZDLJc2dU\n0NIVZ8m8Wva0RLJfT1R+gs8//wxRq5vn995PVXxlfiZZt8CysGJRwm2dGKEQ3S1ezJ5vFiJxHT0a\nx/H6sqvXKcPqGSaipN/zzhjRUcglT+RAF011UVHmxqVM/NRFIYQ4UkiRLMQ4OdzjGlUBT89KuNMv\nkxzwu9FUhYDfnddj+YKZZ1Hn1NChdPPbzT/mG8lb8jLJgWAXLU4N7d1JXj7YSjRhsL6pGU1NF4um\n5dAZSeGdO5+XtrVh2jb7D0azmWTTsoklTaJxfYAjP/TJZD4hhBh9cjUVQoyqpG71yyRHEwamZRNN\nGHlfj1sqp9d+gPu7f8Zrxg5ePyrAwlVnZjPJUX81RExSSgWLV05nb2uY1cdNpSJnJfnlnZ2csmpu\nb4/knExyPGkQS0axxmgVfqzb7+UWv5meyWW+/pdtmcwnhBCjT66mQkywseq/PN4cBxQFuiMpNr7Z\n2jP9Lp1JDsd0uiMpnt3cjGHagIPPo5HUTWZal+BRfoXuJHkk+heur70CTUv2ZpJdCRzVRfmUatwJ\nhZoZdWiqC9OyUTUd2xsb8JjsnpHfwWgKSEcXRqvTxVjHMPoWv5nctRBCiLEnRbIQE6xY/+XMZj6P\nNnDhXGo/5bFWU+HlwhPn5PVPzsskd8bwezWm1ng4bcmMvMzye+o+yL27f8WroUeJWO1ABS7LQNVN\nsC0Ux8KJRNDiEcIHO3nlnSCQLiL3H4zipFJ43Wp6tTqcoiucwla1dD5Zt9j8TictnfHscZ2/enbJ\nhfJkeX+FEEKMLymShZhgxTpbZDLMmRXQYibTxr6+/ZOhN5OsqgoeTcXbZzqez6Ny4/Gf5L7dv8Z0\nTD780Af4txP+h7KOZqpcCZqpw2snMTc3UxOMEOuqIhnzs7TCQLNN6kJRZnkD2fcvZVnsiCVoO2oZ\nsZRNPGWyfP4UjptTQyRu8Or2g0NqCTeZ3t9iBopiCCGEGB65ogoxwQ73DX2lOLpyPp9YejN3bfkZ\nWzo289H17+OC2m/hLVsAEYuUUoG2fCbdLSEa5tXhawwxY1E9Cg7vbG1h6pIZVPVEEUIxnS2bW/Eq\nHnRLx6WkNwyO5pTE4RjL/HJmfHWGbOQTQoiRO3QDkEIcRkzLJhzTC65wjvekv7EQTZq4FAXDTLdn\nC8d0gtFUdmNfOKbzpRW38+llXwKgLdHMutQ/sYtt4FJxNDdKRQVmWQVqZSUunw+tqhK1qoq4u4yY\n5ifa8yum+UkoblKGhWHaeZnk9OuZ2dcPRlNEE8a4vAeZ/PJwIhtJ3eTtvd0kUmZJ989kmdOt8IQQ\nQgyHLDEIMQkMt4fyZFEst+v0JBT2NIewHWgPJeiO6mzY2oLPoxGNG+w4EMQ0bQJlbpbzYa6fGeC3\nTXegE+cP3V/iTNcXWOycl80kW2EvdjKJGQoTTxk07uvASiZ74xaGRVNLGNNRSNkuLMth654uWjrj\nJHWLxtYIoODz9H7TcdHJc6ipKS96finD4rk3WjhzRcOE5JJ1w5buFUIIMc7kaivEJHAoFMIDKZbb\nranwctaKmUTiva3ZvB4tu3GvqT1KY1uElcfWMbM+AMDZfJolW+bwjVc/RdKV4in7PwintnDJ6++j\nJpQg2ZNJDod2kDIs/J0Kx2gKtb50jCFlWFSHw8TRaJm9FLfbxSmLpjGzPtCzUbB32Ekmo2xZA+eN\nnZ7V6MmcSxZCCDG6pEgWQoypmgovitI7Ljp34144pqOp6axubmb4nHkXce1b/8Xf7Nvp0Ft51f0o\nX3V1csO8b9Bw7LH4GkNULqonEtdJPL+PKSfPYXZ9eiU4FNN5c9MBErYLD2401cx7fp9H6zfaerLK\n5JgVl4Jp2uw6EGLx3NpBV5MH28iXSJkcOBBlhV+6dQghRDGSSRZCjAtFAZfLhW72ZpIj8XQOOxLv\nzQhnbg9oC/n20nU0KMsB2Bx+hdsPfIItwddLej3VNHEZA3cGyYglDLrCSYKRVN5xZHLMKd3Oy1Jn\nfh1oj/LQC3sJj9FEv0yOucLvxrRtdjWFSsoZZzbyFeu7nTIs3trbTVKXzLIQQhQjK8lCTFKlDhmZ\nTBv7ogmDV7e3F8wme90qjuPQ2BrNZpJD0fSQkX+8sp9ZdQG0np7QoZ4itGWvwvu6P81LZX/hJc/D\ndFvtfPLlD3OF+lGWB89AN238nQrJV5oJlqUfm9Qt6puCmJZD0OWjtea4AY9ZNyye2dxMTWM3iUT/\nyIhp2sSSOsGcLHVGZljK8gV10kNZCCEOM1IkCzFJFRsy0tdkyjOXkk0GJZsJbmqP0tgapszn5qRF\n07JtzJrao+xvj7FwwVSeC6d4T+2/8t6pF3Lblq+RchLca93N2fNOYnXlGSSe34dv9Ryqc+IW7ZsO\noOs2cccFsYF7ItuOg0tROHXpDDCtgh1GwjGdDVtbs8ed0dwRo7E1gjWEvstjYbRavknrOCGE6CVX\nQSEmqcm0QjwaMtlknyc/k6yqCl4tf8BIJqtc7nPj8rjxlPk555ir0ROz+a+9nyCkB3muewMnz3o3\nttuDWlmJVl0BgKqlMP1BDNXGNiwgUdLxVQW8KJaFaRYueHOPOyO9EXDi9R1fPZiA3835q2enNy+G\ne9+foT6PEEIczuQqKMQklVkhzvRQHix2cSgJRdPFZSSuY1lONu+bkc4qO8SSBkoyiR5ViRzsYo49\njUUVS9nYuZ6dnduwwmFcho4VDmN60/laK6ajJaLYuo1t2ris0nK30biOpZtFV5Iz/ZxzZTLV8eTg\nvZZHMt7a5VII+D3ESnidUmiqC5/38Pn3JIQQY0GKZCEmuVJjFxMps+rt0QoXXZkC8ZjZVQBs2tme\nvj2mE00YtHTGeHZzM0ndpLrcSyyZHv7x9q42Gg5sIRicSnPTFmpcFkeVl7MR2Nm1jcTLG/F3uopm\nkhOOSohqHOPYAY9fNyz+8dI+sO2Cbd5M0yaa0HlpW1s2Nw3pYj8Y1Xlx20FmTa0g4HcXfY2RjLeu\nLPOwZtkMnt7UNOTHCiGEGB4pkoUQI5ZZ9Q5GC3eTyBSIlWUezloxE6VnMnM4puMAOA4rj6ljy+4u\nTlo0jUhc78kkT2NjcClTa8tZsHwatRUe3tydgtcfIeREiS2bT0JPFs0kp0ybeMxCcQ+8cpupW1cv\nnErZEGIGmUw1UHAF+lAzWOs4IYQ4ksiVUAgxrmoq8lfD05lrh4oyTzb3C2QzyY7PhydQRs2MOqoC\nXlaap0FPF7inQs9gu88omkk2DAs7WVomGdIrtn1Xg6MJY9ACuG9cJENTXQOuLg9Fpmeyy6UMet/h\nbsDLtI4bi+cWQohDjVzhhJjkDrcNfIUkdYtIXCepm4Rjel4m2bQc7FiMUEs7VpmHukQdczzHs09/\ni3t3/pqrnJOKZpId08JtDD/HG00YPP7K/gG/rpsWrV1xNmxtzRt1nXH+6tnDLpT75pjPWzWrpMeN\n5QY82dwnhDhSyBVOiElusBZvpfZTHg8DFfQpw+K5N1o4c0VDduOa46SHjHRHUry6o53mjhigkNJN\ngtEUW97pJBSMUrF3G437fWiqi7itssw5hX2et9gbf4fO1Hr011oJ9oylzs0kW5ZDZcrE0Y8f1vlk\nVpBXHTeVirL+hW44pve0f1P6tYfLjLweSQxjJDlmIYQQIyNFshCHuMm0sW+ggt5xHKIJI6/gq6nw\ncuGJc1CUTC/iFk5bMj2bSZ4/q4o9LRE6jz+JE09oIFDmIRw3OHP7Qp5sWkfcirFtymtMWfMxqsvT\nRWxuJlk3LdoiBqs9Ixv0UVHmLvreej0qoEzoqOuhRDHGi8QyhBCHOrlyCSEmVG5G2efR8jLJZV4N\nl0vBVVZO1Yx6qgNe1GiK6tYUF2rv5q+719Gov4lWVYnWU6DmZpJ1w8IYQiZ5pHLzy+m2cWY2q1ys\njVzGSPLLQ4liQLqAPXAgygr/0L95KHVzn8QyhBCHOrlyCXGIO5wzy/GkiW076Dkb48IxHSMapU6Z\nAkDE7Ka7pQOrJw4RSxh5mWRfKokTDmF6LayYjis1NkVzLGHw8tsHs39O6haNrRFAwedRi7aRyzWS\n/PJQpAyLt/Z2s3B+PUNdey5lc58QQhwOpEgW4hA3GcZSD5aL9rpVFsyszrZLKyQ3MuD0JDIaWyKk\nDIvWrgQbtrbg82jEw3HcLz+LXdMGbkjYEd566GGqXL2vW2/ZWHa6v3FV0sB8uZVguYekblHbFsE5\nYQ4wutEIqydGkskvp4t6p19WuZDB8svRhMGr29uHNYhECCHE8EiRLIQYscFy0X6vxoJZVRxoj+bd\nXqx7g207HD29kqk1PnY1hZhe6+e0JTOoLPfQ1B7lgdYVzJ7rhrf/D4Dac1dyTO3s7PPGUyYvbmsl\nGjfoCCU54cT5VNcHCMV0ut5qRxlhRnkgufnlTHxkpFnl8drAN5o5Yum5LIQ41MnVSwgxYQYq/nwe\nlXKfG5dLweNWs8VmOKbj+PzMnrYA3k7fN1YeY8rMqdnHqtEU5p4oum2QTKoolVVo1RWoWgrbG+33\nWhMpmjD65ZczMjnmdHu8/nnmYjnm4W7kG80c8WjEMmTznxBiIslVRwgxYmOVi471dMPIzSSneyjb\nTHXPzd7v9caXWOFdmPc4LRHFkzT6ZZK1eAQrFMI0PT0Z5SSoE9OVItOHuW9+OSOTY960o4PGtjD7\n2tIFY+77XCjHPNSNfJOVbP4TQkwkueoIIUYsk4s2LZtwTC+YTR5KIZ3JJL/THMYwLdq6ezPJoahO\ndyTFC5vDVKvTCFptvPbm45zyZm3ec9RbNpWGTVUiP5Nc0xomEa7E8agkdYvqljitC1aN2nsxFJkM\n8rL5UxgovxyO6VivOaDAqYvT9xmNPsxCCCGKm1RF8u9//3vuueceOjo6WLhwIbfeeivLli0rev9I\nJML3v/99/vGPfxAOh2loaOBrX/saZ5555jgetRAiY6BscrENhoWGjNRUeDlrxUyaO6I0dcSYWVee\nl0lubA1T5nNzfO1iNra30VobY+HZl+Y9bzxlsv71Jpo743mZ5O6tLSxcMoOqcg+hmE5wcyuoE3sp\nDPjdg+aXvR4XE92PWQghjiSTpkh+6KGH+O53v8sdd9zB0qVL+fWvf80nPvEJHnnkEWpra/vd3zAM\nbrjhBurr6/nxj3/M1KlTaW5upqKiYgKOXggxXIWGjEC6UI7EdTS1t9tF/gPh2KqlbGx/ki2hzdzf\n/hDvW3BN79fjBoY/RNKr5GWSzbIoalUVWsDbk1EOosbjWEkHIxzCTPVeFs2YgZ1MYobCmGb/7G8m\nrmF7/aP1dgxL3w2Qg3G50sW26lKwraG91njmhItt/pOsshBiPEyaq8uvfvUrPvCBD/De974XgNtu\nu42nn36aP//5z9x444397n/fffcRiURYt24dqpr+8W1DQ8O4HrMQYmxliuODwXhe3CIU03GAmVMu\nJMAfiNLO1zZ8kZZmjcUVp+U9hzLI3jXFNKh9ZzPBymmEurdjqb3xhbChkAx6CId2gLt/pZ6Ja3Qt\nPGmkpwqks9SFhGM6Kd2GnsmEmdtyN/t1hpMld7+oLPNw/urZVAW8dHebQzrG8cwJF9v8J1llIcR4\nmBRXF8MwePPNN7n55puztymKwmmnncbrr79e8DFPPfUUK1as4LbbbuOJJ56gtraWSy+9lBtvvBGX\nq3CjfiHExBisj3IxVQEPs+srQCEbt2jujNHUEaW+2s+y+XPY2/ld/mp8gZgZ4e4DX+b3F/2NRVPS\nMa3Wrjgt63cP+BqO5qZr/nLKAj6qFtVRkVt0xQx829qpXFSfHXudqzeuMfINi7phsf6NlryNexmm\naRNL6gSjevabhdzNfuDQ2BohlpwhUQwhhBglk6JI7u7uxrIs6urq8m6fMmUKe/bsKfiY/fv388IL\nL3D55Zdz11130djYyG233YZlWdxyyy3jcdhCiD6Kbc4rllXOHTJSbGBGoSzuvIYqwCHgdzPNM4//\nPPEXfO65DxEzY9z01LU8fOUTzK6YU3QEdF+Wx4/q8+GurELL6RShaSlcvkje2OtcmbjGaLAdB1Cy\nw0j6Csd0NmxtzW7uyx1WEk0YNLZGsEa4iW+4reMKkUiEEOJQN6mvXI7joBT5Walt29TV1XHHHXeg\nKAqLFi3i4MGD3HPPPUMqkl0uZVj/Q1B7VsPUIayKHerknI8MIznnCs3DkvlT+t2uqS5cLgVNdeWN\nZK7QPCw8qobmzhiKohBLGrgUJXufzOOg97G9t6WPUVEUTp6+hp9c8DNufPRjHIy3ce2DV/HI+x9H\nVVUURUHt89i+z6UoDq5UAicaxrF6C1QnpoOewolFcEj1Oy8lmsKTiuK43KhFnrvvORd6XzKP7ie/\nHwAAIABJREFU1Q07+5i+1Jz7aqor788ul4JtO9nzLEWhv+faSh8XnTxnwMeVcl4AVsJhx4Egs6YG\nSj6mUlVXeLnwpDn9fjKRSJk0toQ5ekZlwcJcPs9HhiPtnI+08x1Pk6JIrqmpQVVVOjo68m7v6upi\nypT+/8MFmDp1Km63O6+InjdvHh0dHZimiaaVdmq1teVFC/FSVFZO7IadiSDnfGQYzXN2VBW/30NV\ndRk1lb6CX6us9Pe7j6Oq+HweEikTR1Wzv9JBYwXH5QIl/fv7Fl3DgVgztz13K9u73ua6hz7E90/9\nHW5NpbLST01Neb/jyDy/YiWoefMFjFgtyZziKqWD2a6RSu0hWWA/nJUymd7YhaMoBNYs6Pfcxc65\n0Lm7VJWm1iiv7uwoWOAZpo1uOWze3YVbc5FImRxoj/Pqzg6SKZNQzEB1q9TUlBOKpnju9SbWrJhJ\n1SDxi6H+PZdyXkO532hywkkaD8ZYOL9+wNeUz/OR4Ug75yPtfMfDpCiS3W43ixcvZuPGjZx33nlA\nehV548aNXHfddQUfc8IJJ/DAAw/k3bZnzx7q6+tLLpABurpiw15Jrqz0Ew4nRvwjzkOFnLOc83Al\nUyaz68o42B7B0o281b9QJEUioRMOJ0gkdELBOIqVbrnQHU6STOo0tkR4+Pl3erK4JrsOhHBrKt3h\nBC3tUf7xQiNTqnzMci7lrCmbeabzXp7b/wyfCX+SNXyJWDRBd7eWfa3Ma4QiKZJJnZSt0L34FNyL\n6/HlxC2SMR1tazveJfX4Cmwg06MpWpX9OC43Ryftfs/d93z6yj33eELHNC2Om1nFzPryQd/TUEwn\nmdRZdUwdrZ1xXt7WSjCUoLs7RjCSorUjSldXDNsovDFvuH/PpZzXUO43mgZ7Tfk8yzkfjo608x0t\nNTWDX2dHXCSbpkljYyOO4zB37twhFai5brjhBv71X/+VJUuWZFvAJZNJ3ve+9wHwla98henTp/PF\nL34RgGuuuYbf/e53rF27lg9/+MM0Njby85//nOuvv35Ir2vbTsk7wguxLBvTPLL+Uco5HxlG85zd\nqovptWUFc8mqS+HYWdWoSvrzaPZ5XQWYMaWMUxb1ZnFtG05bMp2Wzhjb9wVZdHQNx81J92A+fdkP\nueWpIE83/YOXQg/iqwlwfvyzTDOWYlp23mtk/uw4YHv9KIFKlJwiWSEFnjBKeQVKgRVZhxS6NwAo\nWEWeu+/55Mrcx7JsnJ7j8HvVgqOmIZ3tzgwPsXIea1oWlu0QiqboCCYIx3TiSZOucDJ7/2IjrIf6\n91zKeQ3lfqOp1NeUz/OR4Ug75yPtfMfDiIrkrVu38rnPfY7m5mYAZsyYwQ9+8IMBB4AUc8kll9Dd\n3c0Pf/hDOjo6OP7447n77ruzPZJbW1uzrd4Apk+fzi9+8QvuvPNO3vOe9zBt2jSuv/76gu3ihBCT\nV2bISDDaP/Nr2w6W7eDR1LyNez6P2jN1TsflUgj43TmFt5dfXPJr3vvXS3ij/XWe7f5fnv3b/1Ln\nr2NV/SnUGEuY0f0uTixfXtLxuVKJ7BjrvqyYjpaIpv87XJbXUzndQzkxvDelgMwI64zc7haxpIFl\nO2zd00VLZ5ykbvZ8zcHn6b3MFxphPVSjublvMEPd/Fesr7IQQgzHiK4kt912G9dccw0f+tCHiMfj\n3HnnnXzzm9/kr3/967Ce70Mf+hAf+tCHCn7tN7/5Tb/bli9fzp/+9KdhvZYQ4tASiub2B7YIx3Ri\nKRMFiKXMPkW2m5+e9Vs+/dRH2dz5CgAdiQ4e3fcA8AB/+vt3qfHWsGrqqVQkF3K09wQqnSX9XtPR\ndWrfeolEdwVOgdZsSd2ivikIKCQj1SRj/mxP5aRuUdsWwTlhDjDytmyZFeFM94vc7haRuE5LZ4xT\nFk1jZn2g52tKthNG3xHW4bjOazvaufDUuUM+jsoyD+etmjXi8ynFUPshF+urXIx04BBCDKSkq8Kd\nd97JZz/7WQKBQN7t+/bt47rrrsPn81FWVsYVV1zB5z//+TE5UCHEkclx0vv0Nu1sB8hbJU3pNrbj\nsGFLC/taIv26KHy64W6C9e34pu3ltY6NrD+wnndCOwDoTnXz+P6HgIcAKGup4NTO0zlj9hmc1nA6\nS+qWoXg8dB1/EscfX09VgeIrFNNp33QAgDnHTcPXGMr2VA7FdLreakfxlF60laKizJ2zoq5li0JN\ndVFR1n+1vVDfZNt2CMd0LNth7NeDJy8ZSiKEGEhJV4VQKMTFF1/MP/3TP3HllVdmb1+5ciVf+cpX\nuPLKK0kkEvz85z9n9erVY3awQohDV6EeyrlDRor1WPZ7NVYcU5ct9po7Y+xri7JsQR2O7dDYGqbM\n5+akRdMKriJq6mwC/pP5IFcTjKb428tb8Ezdw+auF3lu/3NsD24DIG5FeGL/Izyx/xEAAu4KTph6\nEnXWEo733MiU6qn9nlvVUpj+9EqyWlmJy5fK9lRO91COjtbbd8gZz1jGcEk8QwgxkJKuDN/97nd5\n4403WLt2LX/84x/55je/ybJly1i7di133HEHX/nKVwA4+eSTufXWW8f0gIUQh6ZM9jhX3yEjfb+e\nUR3wZovkcEzHdhwCvnS2VlUVvFrxVdO+KrVazj5qKR9c/H6C0RT3Pb+Z7dHXaLLfoNnazFtdW3Fw\niBoRnm16AniCnU8+yxMfeGZkb8AY0I107CQS1zEtm0hcJxhN5UVSoP8I63BMRzf6d38Ix3Vefutg\nv4EuwzGWsYzRikkMNZ4hhDiylHx1WbZsGevWreO+++7jlltuYc2aNXz5y1/mBz/4wVgenxBCFBSO\n6SgKWJZDyrBKmq4XiRv9bgto1SwNnMMZle/i3BUNmEqUF1o2sqH5Of7R+BjvhHawpXMTbbFWppVP\nH/D5czf5WTEdLR4puukPwIwZ2MkkVjiMovffuDiQWMJgd0sY20nHBoJRnVe2t7PzQAjTtIkmdF7a\n1oamufI2+fk8KkndZG9blEhcp9Lbu3Jv2w6RuD6ijj/jYbRiEpJJFkIMZMhXhauuuoqLL76YH/3o\nR7z73e/mpptu4iMf+ciwW78JIcRQpMc3w9Y9XeiGRTRh0NIZY8PWVjSXQjCWorrcO+CUt0IT7TKq\nfTVcPPcSLp57CZcfdQ2X/O10AJ498DTvP+6DRR/Xd5NfUreoaQ2TCFcW3PQHEDYUkkEPyY4EVQcT\nUHVsKW8BAFZPIbts/hQcx2H/wQirj6tnZn2g331zN/lVlnto7oixty2KZU3uYnisSSZZCDGQkq8K\ne/bs4YUXXkDXdZYtW8ZXv/pVrr76ar7zne+wbt06vv71r3PGGWeM5bEKIQ4zXrfKMbOq0Q0L07L7\nFa+FcsrVAS8zppShuhRWHz8VB8BJF4AAG7a2Fs0nQ/F+wYXMrzqGaq2eoNnO+qZnBiyS+27yC8V0\nure2sHDJjIKb/gCIGfi2teM7uorQtnYIFR78MZDMufTduNdXZpNfdcBb0qq7EEIc6Uoqkv/yl79w\n6623ctRRR+Hz+fje977HNddcw6233so999zD448/zu233878+fP5+te/zuzZs8f6uIUQhwG/V2Nm\nfXnBISOZrxfKKXvdKpadziWnC2gnWxQP1NVhqBRFYWHgZF4IPsCDu//Ou+ddzkVHv6vo/W2vH7Wq\nKrtxzyyLZv9ciKal0JSDuHBQbAtMEzMcwfT2zwtnohnZPszhGIo5cFGdGT7SN5OcyTCHoikUy+pt\nDZeTZR7KNxNjZaib/4Yan9BUhdlTA2jq5N1cKISYOCUVyT/84Q/5/Oc/z0033QTAxo0b+djHPsYt\nt9xCbW0t559/PmeeeSZ33303V111FS+++OKYHrQQQuTK3aSWWwwOplBGua/Tai7nheADRPQw1z30\nAa5b9FFuP/07lLsHH2k6mExEwzxYRtVBHYupRF59maC//9SsTDQj24c5buPvUHCMBSju/ivVucNH\n+maSowkD3bB48c1W3C6yGeS+Q0gKDR8Zzc19gxnq5r+hxidMy2H/wSjzZ1aN5DCFEIepkopkXdc5\n6qijsn+ePXs2juOg673/I/J4PNxyyy15LeKEEGIsRRMG+w9GANj4ZiuOQ14xaJp2SRnlgRYqFwZO\n4hfnr+OrGz5HW7yV3277Jc83PctPz7+LeeVLR3T8mYjG7KOqCG1tQ+02qFi1lOr6sv537olmZPow\nR9pjJDYcKFggQ/7wEcdxyM0kh2M6HreLC08+qt9KMigsmz+FHfuD2dtzHSqb+4QQYqRKKpKvvfZa\nvvGNb/DSSy/h9Xp57LHHOPvss5k+vf9O72nTpo36QQohDn9WTyygzKcNuLHO61ZZMLOaxtYwAb+b\nWfUBTl86I1v89S0GB8sox5Imz29pHvDY1jScwzMf3MiXnv4CD+y+n92hd3j3/13ALcv+mXnO+1CV\n4ccSbK8fpbIK2xcBLYZWWYFWXdHvfpqWwuWL9PZhTqk4JWyYrihLH1smkzzQe5vhOE7BFflSHnso\nSaZMOkJJkikTRiGeI4Q4vJRUJH/6059m+fLlbNiwAV3X+exnP8ull1461scmhDgCZDbnGabN+jda\nCmaTc/m9GgtmVXGgPZr9c24GOXeDWvrPpWWUEymTUEzPWz3NzehWlgf4z9PvYs2M87njpa8SM6L8\naPP3qNF+zYmVlzIrcgPQv7gdCpdlYIXDJWeSXYaOFQ4DDJpPhnTbuJffPkhSt9jbFuGpV/eDbWdX\nhTOt4zbt7Oh5f9Mr8rlOPL60hZCxjGWM1qASt+aiwu/GPcBPGfqStnFCHDlK/oSvWbOGNWvWjOWx\nCCGOQJnNecHo0PoEj5aejnI0HYzy/JZmPFpvUZjUTXY3h+kKJ5haXYamuajlDL4+73+5Z//XeSf+\nOt1mG4913cNjj93D/LIVHAx8hGsWXw0MbWVSsQzKOppJvtJMsKx/0VYwk9ypkHwlvQqeyScPJLdt\nnMsF56yanRe3yL5WTGfD1pbsijyk89uvbj+IVSCCUchYxjJGa1CJqrrwelTUIayQS9s4IY4c8gkX\nQhw2hrPCWFPh5dQlM9i0q5NVx9RRnjOiOBzTSRk2OPSJbMzkihMf4bF9D3Dvzj/yfMtTONi8E3+d\nWze+zrdf/joXzLmU+c75nOm8t6TjcFQ38boGfKvnUF1fYFNgoUzy8/vwrZ4DMGA+ua+A343Po1Fd\n4U0XyWb/wrfvirwQQhxppEgWQkwKhXoim5ZNPGn2yyln7qsbFntawqxeOJXqgHfYK4w1AS9+r0ZV\nuadfN4fcFnN9C8ZrllzNu45+D3996XUOaM9w784/0JLaTcJM8Lfd9wL38qe227nm+Gu5euG1zKua\nP+Bx2KobtbKy5Eyy7fagVlYClJRPFmNP4hhCHD7kEyyEmBQK9USOJoyCPZQz993XFiFlWKP2I/1g\nNNUvk5wyLHCcom3lInGDanc95x77KRZzJVPmtPPgvnX8ece9hPUQLfEmvv/qv/P9V/+dFfUruWTe\nZbx73uUcU9N/up7bSOKEQ0POJLtwcBvJUXkPIJ1d7rtxL9NrORLX81ru9TWR/ZWH+pOEpG7SEUqQ\n1E1KjccE/G7OPWEWZb7C//uUOIYQhw/5BAshjniZUdev7WjPK7iTusn+g1Fs2+aBDY1MrfYXbSWn\nqi4URWFZ3UrOPPoUvrj8W/xo/R/Zbj3G+uYnsR2b19s38Xr7Jr7z4u0cU30s5856F1MSJ7LSORuX\naXBM8xuYLzcRLNCJY6BMsscxmX+gC0dfOOL3IpowWP9GS14rvfR7ke61bFrpzhcvbWsr+l6cv3p0\nBkoNdfPfUH+SoBs2HaEkulFazhrS3wQU65QihDi8SJEshDhkeTQXdVV+PEWKtVJXFmsrfVx0ylGE\nQ4kCK8k2Kd3E69GKtpLTVFe/zW9e1cfqqgv50sqPklS6+MvOP/PQnr/zUssLODjsDO5gZ3AHAPc0\nN7DAvYaG6StZvupkqqdV9z/IATLJLhze0fdygmfkxVvmPGZMKc/buNfbXm9G0SIxs7mvUH/l4ZCe\nzIVJpEOI8VHSp+vNN98c0pMuXrx4WAcjhBCDyc0p+7waFWVuXtnezpkr3P1WG4eysjilyo/Ltvtt\nYvO6VXAcvO6BW8kN1J1jevkMPrXiM3xqxWc4GD/Io40P8dDuv/PsgacxbIO2RDNtiXXAOh5b/z3e\nNe8S3j3vcs6adQ4+zQf0jrBWKFwwqraVF9XIjWcoOLhSiZLeh97zdvU7376b+TJjrzP69leerLGM\nDMWl4HWrKCNsJTfeJNIhxPgo6dN15ZVXoiiDX0Qcx0FRFN56660RH5gQQhSSm1OG9HUnmjAOmdXG\nqWVTuW7RDVy36Ab2d7Xz38+vo9F+nmebn0B3EoT0bv709u/509u/p0wr5xun3sbHl96UHWGd6K7A\n8aj94hZzmzsxX27JRjVy4xkex6S2LYKzsP8AqOHKHXudkTv+WnMpRBP6oLGMiSyU3apCRZkbtzp6\nRfJgmWUhxKGjpE/xb37zm7E+DiGE6KdQx4vxpijgcrnQjeKropA/eATS0YPBVHgqOan6XXzy2I/w\n2CvvsLFtPcr0LTzf+g86k53EzRhfW/9lltYt59iKFXQdfxLHH19PVbmnX9xiT3I3K06cR3V9IP3k\nOfEMBYeut9qZU2KLuFLkjr3OTPXrO/GwmJHGMkZrUMlwMsmDkcyyEIePkorkk046aayPQwgh+inU\n8WI8OU66UHccaGwNs2Fra94EOtO0CcZSVJd7MW27ZxXVwefpvbSWOsrZ7fIyVzuVj6y6gYZ6Pxua\nn+Njj1xHWA/x2Sdv5i+XPInt9aNWVRVsAZf0lqNUVmXbx+W2jAOwvdFRelfyVZS5B4xkjAXJKgsh\nxoP8PEgIccjJFEk1FV4WzKymsTU9mnm0RyHXVHg5a8VMIvHCK6TpyXStnLQoM6pZybvPcHO3mkvj\nzFln8+01/8Znn/wke0K7+Y/X7uBMz2dHfE5CCCFKM6wi+f777+dPf/oTjY2NpFL9N6u89tprIz4w\nIYQoxOtWmTOtghe3tXH+6tksmFXFgfb0KulYrDDWVHhRlOIrpD6Pmi2KfR41O+Ya0pGEgTb0ZSIa\n0UThaMbVx13Dg3v+ziN7HuR32+9h6txTOJuZ2a9n+ioD+FKxATfuafEIVtiLnUymeysPcSPfWOq7\nATCjb4Sl0O0j2QA4nI17k6GzRN/c82Q4JiEOR0P+NN1///3ceuutXHHFFWzatIkrr7wS27Z58skn\nqays5D3vec9YHKcQQgDpCEZuYTweSmkllymON+1sL/j13GhGZiNbUjezEQ1I559zKYrCf5z1A15s\n3kB3qpvnu//KJ0mPuXZ0nfkHNmO+fABg0I17Na1hkl1VJGN+kh0Jaroi2OcuRJ3gSX2FNgBmmKZd\ncPNf7vvm82jZDYBD/UlChd/N3BmVVAyhyJ4MnSX65p4nwzEJcTga8qfpl7/8Jbfccgs33XQT69at\n49prr2Xx4sVEo1E+/vGPU15ePhbHKYQQ/ViWTTxlZYeBjJVSWsllohnFGgHlRjPyew+nIxrxlEnL\n+t39Hje1bCorpp7AU/ufIGoGs7crHg/vzFrOyhOPAhh041731hYa5tXhawzhO7qK7v0hXF4vWP2n\n+42nQhsAB5N535bNn8KO/cHsc0hWWQgxmoZcJO/du5cTTjgBVVVRVZVoNL2aEwgEuPHGG/nOd77D\nRz/60VE/UCGE6CuWTE9+O3pGJV63mh4hnWO0M8qDqakYeLNaJpqRv9FNHbQbQpW3CoCEFcm73XD7\nUCrTXxts455ZFkWtrMTlS6FWVmJ7i3fqmAh9NwAOxudRJ7zPshDi8DbkIjkQCKDr6YvrtGnT2LVr\nFyeffDIAlmXR3d09ukcohBB9ZFrDeTQXmuZiwawq/F6tX5F8qKwshqI60YSOaaWPt2+O2edKF75h\ns4tgNAlQNMecy5VKYIXSmeW+mWQ1HsEIdqNYNlbOABUzZuCkkqhFhpaMl2I5ZejNJEfiet7wkszt\nsaRZUsEdT5o0d8aJl3j/Ukg+WIjDx5A/wUuWLGH79u2cccYZnHvuufzkJz/BcRw0TePnP/85y5cv\nH4vjFEKIrExruIE2xR0KcnPMoWiKYDTFK28fZOeBdGGbyTEHY+lLdYdxgPc9eD7vb/gicz2rAFBV\nF1aBYjJ3+AjQP5PcGSaoN4Jt530TETYUjE43U1KdOKfMBcaulVsxA+WUoTervGlnR082XcHnUfOy\nypeeNnfQleYyn0bDlLJRHfwxEfngkQ4wkcJeiMKG/Gm4+eabaW5uBuBzn/scTU1N3HnnnViWxdKl\nS7njjjtG/SCFEGKiDBTZKGVD30Byc8xN7VH2t8dYvXAqM3tyxZkc883Hf5Rtzz/FvuhuDqS28197\nbua0aedydu0nKfctKTjkRPF4ssNHgP6Z5MZOqtfM67eSTMzAvbmVILNRPBMzFKPUnHL6/WnJtt0L\nx/TsYJDhDio5FI10gIls/BOisCF/GlasWMGKFSsAqKys5L//+7/RdR1d1wkEAqN+gEIIUYxl2aR0\nK7uSOhYT+gaKbJSyoW8wmRxzup1Zuujum1lePO04Hn7vc3z7yR/xSNdddCU72ND2JBt5mh3qNXzs\n2H8qfOw9w0egfybZKtNxV9egWBZKTpGsaSkUbxB7guMWUFpOuW9rPo9bhUlw7EKIQ19po6By3Hvv\nvYTD4bzbPB6PFMhCiHFnmDaRhIHRU+RlYhiH8mpYOJbOJAejqZ6MbTpzm0g4nFJxFf934XN8auk/\n4VV9ONjct+v3XPHIGp5P/gLDHnwzniuVwAmHsplkIxjEzP0VCqczyYkYViiUvd0KhSZFb+Vowij4\n/mT+nDIsUj09lDP3y/6KpAYcLV6Kkf70YDQkUiZv7+0mkTJH5fkycY1MPGW0n1+IQ9WQ/09y2223\ncfvtt3P66adz+eWXc8455+D3+8fi2IQQYkA+r0ZdlQ/fIVAUD1ZcZfLJW/d0sqspnUlO6haNrRFM\nyyEcSxGMpif/rfRcz9eOOp91+3/MNuMRUnaSF1O/5V9eaOV3l/0en+Yr/Bo9OWXzYBk1XfEBM8l1\nyQ4SiXdwesZwJ3WL2rYIzglzmIicMvTPKmfen0wm2TRtYj1FdN8R4pD+O/D7PaxZMg2/RyOaMNjT\nEmb1wqklb9wbjZ8ejNRoxyOk77IQhQ35X//zzz/Po48+yoMPPsiXvvQlvF4v5557Lpdddhlr1qxB\nm+DG9EKII8dYxCsKSRkWz73RwpkrGobdSm6w4qoq4OHo6ZV5Y63Tq54OS+dN4ZW32yn3ezhtyYye\n/G09Ne61TJ39z3zv9Vt5reMFnm35Bx9+6AP8+l1/oNDlPZNTnn1UFd2NXQNnku0G/CtnUtVzLKGY\nTtdb7ROWU4b+WeXM+9P3PcvNKeeKp0ze3BvEstLfFNi2Q8qwJn33EyHExBhyRVtVVcXVV1/N1Vdf\nTUdHBw8++CAPP/wwn/zkJ6mqquKiiy7i9ttvH4tjFUKIPJnpe/GkiVuz0dT8BNloFdGO4xBNGGNe\nTBXuo6xRUebB63EBSt7XfR6VExqW85tpf+a6v1/HpvCTPHvgKa554Ep+etbvCr6G7fWjVFZhlRkD\nZpItHNSqKrSe11K1FLZ3/KYcDiQ3q1xoXHjubbmt5BwnHSUIxXRMyyYSL952L2MkY6+FEIe2ES37\n1tXVcf3113P99dfz3HPP8bWvfY17771XimQhxLiJJgye3tTE2Stn9vuReSajfCgJRXszs5nMbSSu\nk9ItUJR+PYHDMR1FUbhxzr/xUPROHmj8P15o2cANj1/F9fX/Ccwc8jGoegLFMtOZZDO9GmvF9HSv\n5Z7bzJiBnUxihsKYpjt7n8mQW87oG8/QTZsD7TGSSQOP5iIaN9ANi007OrJt9wrJjL0uxWTILI8V\naRUnjjQj+lfe2trKgw8+yIMPPshbb72VXWUWQggxNLk9kzNShkVLZxzdtNnbFiFl2KiKQqDMndcT\n2OfR0BQ3/3XWz6jwlfHHt3/HGx2v8Y2uy2n2fZ6PHH9j6ceh69RvfxkFh0Rid14muaY1TCJcieNR\nCRsKyaCHcGgHuJ3sfSY6t5yrbzwjljR5dWcHq46po9yn0dIZo7kzxqqF9cyYUt7v8ZG4wavbDw6p\nndxEZJZHu3gt1ndZssriSDPkf+VdXV08/PDDPPjgg7z++uv4/X7OO+88Pv/5z3P66adLJlkIcVjx\nulUWzKymsTU8+J1HILdncl/hmM4jKZOWzjgrj61jZn2gZ0VZyWZvM7GA/zrnxwTcAe7a8jPidoT/\n3LSW3759NxfWfoJl9uDFsuLx0H7ciSiWyZKVs/Iyyd1bW1i4ZEb6tpiBb1s7lYvqqS53Z+8z0bnl\nQjLxDE114fdqVJV7CPjTmWbbcSj3DW0k9mQz1hv5hDhSDfnTdMYZZ6CqKmeddRbf//73Oeecc/B6\nD92LixDi0JabOzYtm3jSpMyn9csnD1cm95ye7JZvoEEjw5HpmVyI162iqq68PsqFMswuxcW3z/ge\n5868lG88+w12xTdxMNHK75rW8uw//sC7aj/FSueaAY/D8vihQCbZLItmb9O0FJpyEKVPT2JXn5hG\nweefZLEMIYQoZMhF8tq1a7ngggukL7IQYlLIzR0Ho6mi+eSxMNCgkbGS2xM4k0ku5JjylXx21l04\ndW/y4ze/y67QW+yL7uZ/ol9mfeT3XFL7aeDYYR9H7tjrYpGMYnJjGeOx6hxLGOnfk+aQNu6lJ/hZ\nY358QzXauWfJGgtR2JA/DVdcccVYHIcQQogiXC6FMp8bBdi6p4tdTaG8TLLmchGMpagu96Jp6RX0\npG6yty3C0cpivjT7d7xY8TCPdP2MlvgBtnW/zrbuGwk/tYnbT1+LaxjbU3LHXheNZBQxnrEM3bBY\n/0YLPo865I176T7MYWIJI/tN12j/9GA4Rjv3XGpco1hWWYjDVUn/0teuXcvHPvYxGhqrfKM4AAAg\nAElEQVQaWLt27aD3v/XWW0d8YEIIMVmMRiu5kRRXlWUeLjhxNqZlZzPIuZlkgA1bWzlp0bQ+PZZ7\nM8sXqp/in/UbuOPJH/Jo590E9S5+/vpP2dT6Kndd+CsaAkPvgpEZe10sklHMeLaTsx0HUFh13FRc\nLiVv4144pqNproI9lQGaO2I0toaxcn5SMBE/PZgsDsessqyii4GU9C/iySef5KqrrqKhoYEnn3xy\nwPsqiiJFshBiUhitjPJotJIbjeLK79X69UnOFC2Feyzn32ZaNufVXcuNq67jc0/fyLboC7zc+iLn\n33sGP7vgF5w56+zhn+AIuFKJvBxzofZyhW4fSra5oszdb+MeFH7fMkY6wlpMftKxQwyk5CK50H8L\nIcRk0nfFd6AeyoeLUFRHUdLxityirlBmOXObZlfzhXk/Zaf/Pv79xe/Qkejg6r+/l6+e9A2uO/aW\ncT3+QtnmQu3lCt1eass53Uy/D6rqysskD5brjsR1rCG0fxNCHF6G/G1TY2MjRx999BgcihBCjMyh\nODykVH03a+X2VU5nZyOAgs+jYpo2B4NxgtH02GafJ32pz80xl/nc3HrGt1g9bRU3P/pxgqkg337x\nNv684z5We6/mhMoLx+W8CmWbC7WXK3R7Kdlm3bTY1xZjw9ZWXC4lL5NsmjbRhM5L29qyWe5coZhO\nd1QnnjRLPp+JyCzLRr7hC/jdnLZkOk3tUbxu9bA/XzE0Q/7XcPHFF7N48WIuu+wy3vWudzFt2rSx\nOC4hhJgUxqKtXKn6Fly5m7Vy+yqnV0KdvLzyU681Ue73cNqSGQVzyvU1firLPVxw9EU8/v71fPzR\nj7C5fRNvd7/J23yLv7X/iAPlN3Pzyhup8dWO6Xn2zTZrWgqXL4JWVZmXbe57eynZZqdnIXjZ/ClU\nBbx5meTB7NgfZMvuTiy79NXkicgsT9RGvsOBprrwuFV2Hggxsz5w2J+vGJohX/F/+tOfMnfuXH74\nwx9yzjnncN1117Fu3TpCoeIjPYUQ4lAVTRg8+doBoj1txHKNxoa+gQxWcNVUeKkOeKks9+Dz9OaV\nK8s9eD0uvO7evG3v/dK3VeSscs6pPIoH3vcY/37W/2Nu5XwAwlYH39/0bVb+ZhH/+uw/sze8e0zO\ncbwE/G6qyj3ZTHLmPRnoVymFtBDi8DXkK8C5557LueeeSyqV4oknnuChhx5i7dq13H777axZs4ZL\nL72USy+9dCyOVQghJpVDId4RihbOKWuqC0dVCUVS2bHL7znqQ5w15Up+9vw6ng3/gV2JV4mbcX6x\n9S5+ufVulleeTaDhi5xXfuaYH3ffzXxQeOOeFo/k3W80BpVEEwamZRNNGNi2QzRhZPsoD5Zjjg0h\nmjFZjHZc40h2JEVVjgTD/hv0er1ccsklXHLJJUSjUR599FF+8IMf8Mwzz0iRLISYFMZ6pXeyKFTk\nOA4oSjqznJHJJJumTcq0mFFfgWmYeSvVSd2kOnkCn5tzFkcfG+bXb/+M+9/5P0zb5PXwU1z76FMs\nr1/JB4+5gQr75DE5n0Kb+aDwxr2+w0tGOqgkmjB4/JX9ALQHEyR1izfe6aSlMw4waI45qZu4XGMb\nyxnt3HOpcY3DtQAczf7PR1JU5Ugw4r/BLVu28NBDD/HQQw9x8OBB5s6dOxrHJYQQIzZaK72Z2EPA\n7x52LnkkBXs0YfDq9vaiRVGhIsfv1VhxTF1eV49MJnnpvFrebOzmjBUzUSwru5Kce58zljcws+5Y\nTpl9N9849TZ+8upP+d1bvyRhR9ncvonN7ZsoUyt5zfkwN628kXlV84d8XsUU3MwHBTfu9R1eMtJB\nJZn3YtVxU2nuiPLW3m6WzZ/CcXMG/3cUiRs8v6V5zPPIE9Wr+XAtAA/H/s9idAzrX/muXbt44IEH\nePjhh9m7dy8NDQ3ZmMXxxx8/2scohBATxutWmTOtghe3tXH+6tnDbiU3koJ9uEVRJluby+dRqShL\nZ5OrK7zpItm0+90nN4/bEJjJl1d9k6XONbQHnuF/d/6KHd3biVthfrHtp/xi2085d875XD3/BnBG\n5/8BfTfzQeGNe32Hl4zWoJKKMjcBvxuXSyHgdx+2LQSFEMUNuUi+7LLL2LVrFzU1NVx88cV85zvf\nYdWqVWNxbEIIMeH8Xo0Fs6o40D4+E+LGQzpXaxKMpAquJBfK3EbiBj61jOsWfoLPrLqFR995kv/3\nwk/YHHkKy7F4ct/jPLnvcaa4G/io5+N8bPlHqfPXjfqx52aVi2WSM7c5KNh6Csc0McMRLCeJKzmy\nvDL0Zpb7Csd0UroFilI0s6ypruwgEyHE5DbkInnJkiX8y7/8C6eeeiqqenjn/IQQ4lBUbCNWprfy\n1j1d7G2L8NSr+8G2syvUxfor59JUF4qicMr0NXzyqLksPFbh/r1/4LfbfsXB+P/P3p2HN1nm6wO/\nsy9t032j7GtL2VfBDREdV0QcxSOiMC7jimccQf2N5ziOszjO4hlGHccNZMSNcWBUhFEQFARlKyB7\n2Wnp3qbZlzd5f3+EhCRN2qZNmqS9P9fFBX3zJnneUMo3T+7n+9SgwXkOf9z9PJbs+T2mFl2CyYVT\nMKngIozLn4AURUqnris4qxwuk+w95pDI4ahXwmWTw7hrB9QKAWn1FrhLC4AOFqr+meVgNocLlfVm\nZKSqwmaWAWDGhD4JXSj3pIV80c5ZRzPfTPEX0d+i3W5HU1MTVCoVC2Qiohjz5piVcinsThe27KvC\nZWN6tblYK9xCLG9vZaPFAakUuGJ8n4CZ5HD9lb1CzYIWpPTCk5N+gZ+NX4R/HlqFV3a9hnLzLjjc\nDmw6+xU2nfXs0iqTyDAyZxQmFV6E0ozxsDv7AiiK6PUIziqHyyR7j6khgXJnJWQNNqSNH4GUNAWM\nJ5ohVXY8OuGfWU7TBr4WF/pVt3ztAM9s/K4jtSFnoTsjXgv5uoNo56yjnW/uroslk0VEr7hKpcKO\nHTswf/78GA2HiCh5xHqjEW+OWW+yQxRFX0uyzshMU0EiAdRKechMskopBSDx9VduL6VMiev6z4K2\naSIK+zdj3dl/4fuqbdhbVwan2wmX6MKeujLsqSvz3WdJRT+My5uENNsw9Gq6GhNSRkEqaf119M8q\nh8ske48BgAyV8J8PlbiccDXrIdhDz+T6t5lzGS2QhNlIJE0bOqfs36+6q8RrIR/FXnddLJksIn7F\nL774Ynz77be46KKLYjEeIqKkYbI6samsEtPGFnFhl59hmcMxuc9YAIBVsGJvbRm+r9qG7dXfYUf1\n99Db9QCACtNpVJhOAwBWnPs10lUZmJg/CSOzJ0BqGoiLhCwAHX9dRYcD6Sf3w4VcX9witc4Mc20K\nnGGiEP5t5uxWN+QWNURny41kYi1c7hlomRsP/pq5Z6LoiLhIvuWWW/Dss8/CbDbj8ssvR3Z2NiSS\nwNxSaWlp1AZIRBRv3a3fslTqmSmWSSVwu0Kf478JSSihFvgZLS2LSY1cg4t6TcVFvaYCANyiG7sq\nf8D7u/4Do+oodtdux1nTKc9z2vVYf+YLrD/zBQBgyWkFRueOxeJJ/w/T+kyP+DolSiWaB4w4H7cY\niZQ0BUzl9UgZkoMUdZgi0q/NnKnBAqH5DCSKri04W8s9Ay17NXv7X/vnyCPJPbc3rtFds8qC4Max\nimaUDsjibC0FiPi74ac//SkA4L333sN7770XUCCLogiJRIJDhw5Fb4RERHEWjX7LnYlmqBQyDC7K\nwKlqQ8jbI82k6rRKzJjQB+mpKjQ1Be4QF2oTkoDrENzQm+1QK+SoqDch1AK/1q5PKpFiSEYxLstK\nw7Sxnkzy6u17oM4/gwNNu7C9+jvsq9sLl+iC0+3EzprtuP2z2fh/k5/FvCEPtnltwUSlCpALkOvS\nINOp4UpxQJaeAXmYAtK/zZzMIYUY441BQmkt9xyKt7f11BEFkEgkEeee2xvX6K5ZZcHtxrHKZgzu\nnZ5wRXK0FwIy4xyZiF+h5cuXx2IcRERJJ5IZ5s5EM9pqQxfNTGqoTUj8GcwObN1fjZEDsyCXSzF1\nREHAQqWOfNSfocjFtH5jcHvprQCAc02NWP7dlxB0x/CPw6+jyd6EX3/3LHZW7cR1KU93/OKSTLjc\ncyhqpYwbYnRD0V4IyIxzZCJ+hSZNmhSLcRARJZ1o7eiXaEJtQuLPf0MSMaguF1xu6E32Vh8/VCzD\nn1aRguLUiZg2ehbmjZyL+Wvn4kDDD1h3+lPsUx1EydD3kJHa/k1LpC4nXAYDXKINMrMBrmZluxbu\niUYzZC4h5HlE1P3xbQQREQGILHPqPl8dtxXLyEhRhe0XLJdJ24wF9NP1x5rZX+LxTY/gX+X/xDn7\ncdzy+dVYMv1vmJp3VZvjlLic0Nafg23nOZiViGjhnmB1ItMoQnQOa/N5ukJrm5j458NtDiFgEZ8o\nk8FkcUATou91T+fZUVEJsy06izMZZ+heIv4bLC4ubrFQLxgzyUREneefY44k2tHRvrmRZE4zUj09\nl8P9d+CNZUwanh/y42JvLKOtWWcA0Cq0+NuMtzAsfTR+v/OXMDiaMX/dHbi23024UrMQrfVbFmUK\nWHJ6QT2hL1LSlBEt3LM0mNGkP93lC/dCaW0xn/9CPsEtnl/EJ4FaKYNUKoFGo4TV6sD0cb3bFYWJ\ndt/lRKbTKnHJqEJsKquMyuMlepyBm51EJuJX6amnnmpRJDc3N2Pr1q2ora3FXXfdFbXBERF1Fx3p\nkBGcY25vtKOr+uZmprWel/XmZKPRHk8ikWDB8Adgb8jHippnUWOpwtrT/8bXso0Qsn6NBaPvDjuB\n45YpINPpIl64J3FI4ZIlRjHR3sV8FzY08WTF5TIpIJfhq+2n272Yj32Xu69oZ5y7u4j/9YfbSGTh\nwoVYvHgxmpubOzsmIqJup7vml6PFv+VcqPZy3uP9lePx4Yyv8PrhF/He0aWwuAx4autCrDnzL/zp\n8r8gQ9arxWMrnDaIhuaIM8kwmqAU2p7p7krtWcznv6GJXO6JWzicLV9Pr7b6LgPsvUyR6S6xk6iO\nfObMmVi8eDEee+yxaD4sERF1U96Ff/7ZZm/fX0Fww+YUfLlm/37A01SPoWjgpVhe+SvU2E9hc8Um\nXP7hRXhg5M/Qyzkd3giGVHBiyLl9EHZUwqySR5RJlpotGFHXADjbv0gwEZksDhw/Z4DgEqFWtvwk\noz19l4HIei8nk+7a/zmeEj120l5RHfmpU6fgDrOFJxERdYzL5YbB7AjbYznSKIfB4sDuo3W4esqA\niMcS7YIiM61lttnb93fkwCz8cKLRl2v27wesS1FiGorwE/FHeP3gS/hr2f/BKljxUtlvIcEL+Fh/\nMa7vfzNckhE412sUxk/sj5Q0VUSZ5JoGE/Y3n8RoRXJ/PC24PO9ERg3KRq+clDbPD36djRYndh2p\nhd5kx/cHa7pdVjmR+z8n64xsd8k+Rzz6pUuXtjjmdDpx/PhxrFu3DjfccENUBkZERB5mm4DdR6vC\n9liONMrhdoswmB1wuUVEWurGoqAIlW32bzPnn2tumXNW4enJ/4uZg2bjqc0/x/dV2yDCje+qN+O7\n6s2QQoa+sgnQNd2BWXkz4UrRtTuTDIcUDnn32W48VRN532X/85lV7nrJOiPbXbLPEb/iv//971sc\nUyqVKCgowF133YWHHnooKgMjIurpvDPEyjDRgO7Ok40VWs3KehWph+AfV32CH2oO4Z2y97Hfvh4n\nmsvhhgunXN/j2Z3f4zdlizE6/TI0ae7ADYOvhVahDfm8UrsVruZmwGiGxmkBjAYIes8svX9mWRAC\nC22X2QGp3RrlV4Go+0mWGfKIR3b48OFYjIOIiIJ4Z4jb0yYt0XQmluHNKe8/2RjQzixcVjmQDjfk\n/xQvjX8eBxr24/++WYqdhi9gEKvgcNmxo/FL7Nj4JZ7ckopr+l+HecPnY2rRJRee2+FA1qHtsDal\nQWpxYHhdPaRlddCf1AAIzCxDETijanO4kFVjhDiuL4DEn4Fub99l75sVo+XCcS7kC4355vZJlhny\nxB0ZERH5eD/qTtUoQuaS/XWk3RwQ3f64nYlleHPKRktgO7NwWeVg3gKu2F2Ka7MeQqlwF8ZPsuKb\n2jVYdfRjNDlrYXaa8HH5R/i4/CNsuX0HhmZ5NgyRKJVoLJmEkpJcNDeYcVB/DKPGDkZG3/NxFr/M\nckZKYJHYbHag8VAdJMrE/5i5vX2XPQv5XDhVbYTd4UZVoxneBX3dYSFftHtCJ3K+GUieGdxE0a5X\nqLGxEbW1tSguLg44fvjwYbz66qs4fvw4cnJycPfdd2P69OkxGSgRUU/mEFz49odqXDO5b5u50o62\nm0ukzGlmmgoSSWA7MyB8Vrk1EokEI7LG4rL+U3BF6iNQZJ3AJyc/wnuH/wEAONp0xFckA4BbpYEs\nPR1wyGBVaIE0HeQZGQACM8vyoOeWye1wq0zRegliqr19l4ELvZdHDszGDydkGDUoG0fP6tvddzmR\nJdL3fFdIlBncZFnY167R/fnPf8aBAwewatUq37HKykrMnTsXNpsNw4YNQ3l5OR555BG88847mDhx\nYswGTEREPVtwVrm18+xON1wuN4wWB+RyKaQSKSYVTMVFvSf6iuR6a+ittcPxZpYFIXDm0WV2QG4x\nhrzNe3uiZZbb03cZ8LxZ8b45SfbZY4q/ZFnY164ieffu3fjxj38ccGzZsmWwWCx44403cMkll8Bm\ns2HBggV44403Olwkr1ixAm+99Rbq6+tRXFyMZ555BqNGjWrzfmvWrMHPf/5zzJgxAy+//HKHnpuI\nKFGpFDIMLsrAqWpDvIfSpYLzneGyyl6C4IbebA/oq3yuwQSD2Ymdh2uRqVNDo1FCJpNAo9BCK0+B\nRTCjwVbf7jH5Z5bFoJ7DNocLmdUGWA26Frd5b0/0zHKonHJwJtnze8s3KcwpU7QkSiykXc9cU1OD\nIUOGBBzbuHEjSkpKcMklngUParUad955J1588cUODeTzzz/HCy+8gOeffx4jR47EO++8g3vvvRfr\n1q1DVlZW2PtVVlbixRdf5Ow1EXVbGpUcg3uno6Iu9Ef5gssNi00I20c5mEohQ0m/TKiVMtitrmgP\nN2qC853hsspeBrMDW/dXB/RVNpidkMCMCcV56FegQ3Z2KlwOJwTBjRxNDs4YzWiwtr9I9s8spwfN\nhDWbHWjaX4XiEYUtbvPensiZ5XA5ZW8mWXCJsDkElJXXn/9elLTYnCQZc8p2pwtb9lXhsjG9Eq7/\nc7IuBOxskZsosZB2PbNEIoHEr9N7fX09KioqcPfddwecl5+fj6ampg4NZNmyZZgzZw5mzZoFAHju\nueewadMmfPzxx7jvvvtC3sftdmPRokVYuHAhdu7cCaPR2KHnJiJKdK0txjNZndhUVhm2j3IwjUqO\nkv5Z0KoVsFtbjywEi/ZCp0iFyyp7BWeVVQopZDIp0rRKZKSpoEtRosnhBACkKDwba1iFyCIQ3sxy\nqEyyoDWFvM17eyJnlsPllL2Z5KkjCn1vPrburwp4k+LdcCQZc8qiKMJkdSZkLjnRFwKG09kiN1Ey\ny+169gEDBmDr1q2+WeONGzdCIpHg4osvDjivrq6u1VnfcJxOJw4cOICf/vSnvmMSiQRTp07Fnj17\nwt7v5ZdfRnZ2Nm655Rbs3Lkz4uclIkoWHV2MF23JuNDJm0nWG+0QZTI0G+0QXG54N4i1OwVfmz3/\n9mdmmxC3MQfnnlvrz+wvGrnnUDnllgsoQ79JIYqGRMkst6tInjdvHp588kkYDAbk5OTg/fffR9++\nfTF16tSA87Zs2YKhQ4dGPIimpia4XC7k5OQEHM/OzsbJkydD3mfXrl3417/+hX//+98RPx8RESWv\n9n4E7c0wG62eTPLxcwZoNEpYrZ4i32z1FMEVdUZsKqsEAF8vZkCE3eGJosjaEWGJplC559b6M/tL\nhtxzVwvXDxo4v7jT4QYkCLsQlFnrnqtdRfLMmTNRU1ODd999FwaDAaWlpXj22Wchl1+4e0NDAzZu\n3IhHH300aoMTRTEg5uFlNpuxePFiPP/880hPT+/Uc0ilkg5lfbw/NLv6h2c88Zp7Bl5z8knRKFA6\nIAspGgXkcmm7Msqhrjn4cUKRy6SQSiWQy6RhzwE8Bcf2QzWYVBK6l3FnZOnU+NHkvm2OLTdTg4nD\n81FRb8bk0gL0LdAhLU0No9EGt8uNP51VAnbgmP177Je9h+sH3IQ8xUBIpVW4eGQhjBYHKuvNSNMq\nfdfa2vW39dq097VTaNTQl05G2vBc6M7P1MrMDmj31yFzRC4yWnk9DSY79AfroNCoIZdLfX+/Eonn\n77q16wg3vuDjkdw3Hvy/t40WB77aXRH2XKfghsXuhN7kwHcHq6FWhi6LrprYB2ntiBfF8vs+nEh+\nfikVMmSkqaBUyGL69xSL7werXcCpKgP6F+q6LKfc7me57777wmaDAc+s79atWzs0iMzMTMhkMtTX\nBy6eaGxsRHZ2dovzz549i3PnzuHBBx+EeH6qwH3+c7MRI0Zg7dq16NOnT7ueOysrJWQh3l46nabD\n901WvOaegdecPDIB9Cq4MGHQaLDh212VuGZKf2Tq1K3e1/+agx8nFFEmg0ajRHqGttXHFmUyON1A\nmk7T5hiiJdTY+hQK0KgUKCpIR78iz7Vlnb9tZEEpjuj3o95WiyV7XsSSPS+iJLsUpZrpmKi9D0W6\nvlCrFNDpNMjMTAn7HK09fyS3+5+nykhHVr9evrHKDTakVNqR07fQdywUucEG1TlHwHPUGx2Qy2Rt\nXke48QUfj+S+8aTTaSBAAo1GiSkjC5EeJhqiN9qxcddZXDG+DzLSAs9pNtmx7YcqpKa17/s4Ht/3\nXu35+ZWZmYJ+vWMf22rr+8Fic+J4RTMG9U6HVt2+Wfo0lxvaFDVStW1vqBQtCdHFWaFQoLS0FNu2\nbcOVV14JwDOLvG3bNsybN6/F+QMHDsSnn34acOyll16CxWLBM888g8LCwnY/d2OjucMzyTqdBgaD\nFa4kXKjQEbxmXnN31d2uudloh9XqQLPeAokrdPeKjl5zex47kvOiKdRzGgxWOAUXKqr0kEEMmEl+\novQFKPSDcULcjB21W+AW3TjUcACHcAD/XPZXDNYNR4FjKqZU/gSZ2lFtXldb19yZ167ZaIdd34zG\n0+cgtJIDNpjscDQ0oPG0EkKqCjKZBE6zEy67HQaDFU1aeavPEWp8wccjuW88+H9vN+utsFodgOAK\nOy6JywW43ZC4QpwjuCK6rni8Don486ut10FvtGP7/nNIVUpbvDFpi9EQnbUC3jeMrUmIIhkA5s+f\nj6eeegojRozwtYCz2WyYPXs2AGDx4sUoKCjA448/DqVSicGDBwfcX6fTQSKRYNCgQRE9r9stdmoB\nisvlhiAkxjdlV+E19wy85uTlWZQmQmjH9UR6ze197EjGEC1uUUSKWgG3KPqeUxDcEEURe4/Vo7yi\nOSCTbLI6kd40DXP6zMKtWUaUNX+F7fp1OGbZDRFuHDMcxDEcxJa1b2LUzjGYOehmXFF4Pdxuecjr\nauuaO/PaOa02ZBz4HsaGNDhD9GD2sjlcyKg2wKjXwamUQSqVwOCSQV0nQLANgiCkhH2OcOMLPh7J\nfePJ5Qocq/78gs1gBrMDFpuARoMtZI9oi82JZpO9XbnkeL4OifTzK1r/FuItYYrk6667Dk1NTViy\nZAnq6+tRUlKCN99809cto7q6GjJZ+B8MRETUPoLLDYtdQFqCx0sibTcXql1WeqoS/Qt0mDqiAFk6\nNdIztGjWWyC43KisM+FUtQFjh+SgKLc/ZmIkDOYHsW7PfhjTduLLis9QVv8dRIjYV7cH++r24Nd4\nFiWpF0FX9D+YnnpprC69hdb6M/sL7tUsk0sBmwCroRwSRfy7BcSL2erEjsO1IW8TBDdMVge2H6xp\nkZ/19ogGqnDD1P5cwNdOydrfOVjCFMkAMHfuXMydOzfkbcuXL2/1vr/73e9iMSQiom7HZHXim73n\ncPN0DSL9L6y1fs3RFq12c77eyWkqZOrUkLhcEAQ3DGYH5N4eyn4RhjxtPm4bdT/uGXU/Vm8vgyFt\nJ76s+BTfV20DABwyfYfb112PK/pcicWT/h/G53fNZlbh+jP7C+7VLJdLobAIEOU9u7hznf8eCu4B\n3RbP1uaeuEA8ekDHuy95R3W2v3NS7bhHRETJI5aFbKL0a45Us8lTEPv3STZaHL7fQ/VJlkgkyFDk\nYVbJfVg48RGcM1Xi7b3L8OYPr8LiNmLj2Q3YeHYDrux7FRZNfBoDU0bG+SrDUzhtEA3NEFTnC74Q\nfZfD9WKORu/lRBGqB3RbVIr4detIxr7k0ZBUO+4REVHySNZCNha8vZLLyusglUoCMsmNRhsam234\n/lANsiqaAQT2Sfa2A/OupO+VWoRHRj+Bgc7rcVzxGZYdeg1GhwEbznyJDWe+xLSiqzBVPR9AUddf\naCtEhx2DKvZC2HEW+vNRjVB9l8P1Ymbv5UBt9V32vskKh32XO6+rZppZJBMR9TAqhQwl/TKhVspg\nt15Yed6e/sqRPEesZrMj+Qg6M02Fy8cUQSLxFCfBmeRz9WZMLslHUW6q57HNDgAS35bLoQoarUyH\nR0cvwqPjH8Zr+17B63v/BpPTiE2VX2ITvsS/m0ahNLcUw7JKMCxzGIZmFqOvrl/UX4f2kihVON57\nNMZM7IuM89cJsxPqg3XQDc9FRooi/DF4cs6Nh+ogUSbPx/2xYrI6sX7n2bC3t5Zv9jdjQh8Wyp3Q\nVTPNLJKJiHoYjUqOkv5Z0KoVsFsvzHiZrE5sKqvEtLFFnd5uOJaz2ZF+BJ15vsWUXC5tVybZl2Fu\n4zXIUGfiqUnP4KejHsJre1/G63v/BrNgxoHGfTjQuC/gXI1cg4G6IUh198Fh+RiMLhiBYVnF6JfW\nHzJp7PPdToUaEl065BlpAAC53A6p2gh5us6XcQ51DPDknN0qU8zHmAy8M8iRZpMiJM8AACAASURB\nVJu9jBYndh2pjUu+GUicjHNHFvb5zx6nahSYPq43tOrYlrEskomIiII0m0J/XB7q43QJUvBg6ZO4\nodd8vLz9dVhUJ3DSWI4TzcchuD09Xa2C9XzhvA/fl63x3VclU2FwxlAMyxqGYZklGJpVjELVQLhE\nzjImso5kmxNBomScO7KwL3j2uCt2NGSRTEREPZJEKoFKIYPEbzbLP8McisnixNEKPQTBjdQQM4nX\n5v3E91G6w+XAiebjONp4GEeaDmN/7UHsrd6POucZON1OAIDdZceBhh9woOGHgMeRSxQYVDEEJTnF\nGJpZjN7aQWiyZcLpzgNzwURdg0UyERElpEhzzZF+lJymUWBAoQ5pftlQ/wxzKJV1JpyqMWLs0Bxf\njtmff4ZZKVOiOKsExVklAAC9yY5NZZW4eHQe9K5zONJ4GEeaDp0voo/gWNNRONyeGWpBdOKI/iCO\n6A8GPP7zx+QYlDEYNw2ejZ+NX9SpqIbUboWruRmC4HmtWutuIbcYfed2p24XiaCzCwFVSlm7do+j\nyLFIJiIiAO0rSqO5uK8tkeaao/VRcmYr2+R6cswS34xzMMHl9rWTC2a0eGaPFVIFhuiGYkjmUNyA\nmRfu6xZw2nASu8/tx5eHdsCtrcYJ41EcazoKm8vmOUcUcKTpMF7c8VscbDiAV2e8AbVcHfE1ig4H\nsg5th7UpDeL5Hfxa626RWW2A1aCDqJSx20UURWMhoFQqwa0ZiVUkdzb7nCibkbBIJiIiAO0rSqO5\nuC8Zuc9Xx/tPNuJYZXOL2wXBDb3ZjowUVdiiJtybC7lUjkEZQ5At7wtFw2jfa+xyu3Cgphyrdm+D\nJrseGyrWoKx2Nz478W80ftaAd659D+mqjIiuI+QOfq10t/DfxY/dLqInGgsBy8rrILjcEW8MFEud\nfcPa2c1IooVFMhER9Ugdma3KSFWhX36ar0VcMIPZga37qzFpeH7I2zvSI1cmlaFv2gCM1ikxbUQR\nHp3wCB748h6sPfkZtp7bgpmrrsUHN3yMwtReET1u8A5+rXW38N/Fj90uoi9ZFwJ2dyySiYgo6mIZ\ny+jKrbFD8a6sD1fUtLeFXIefX67B2z/6B5785udYfvBtHGo8gOv/dRUen7AYY7KmAoheThkInUn2\n/9p7DnPKiaEzGWdudBKIRTIREbVbewvUWMYyotWDOVHaYYXj34YuVHHzi/EvIEORiyV7f48K01k8\nvulRAECusg+utE/HjP7TMa3fNEiQ3q7nC5VTBkJnkv2/9p7DnHL8RSPjnKgbnfh/8sMd94iIKOFw\ny+vYC9WGzn+7bLlU6ss9j5D/Fxb0TsVnta+jzuEpjuocZ/HB0XfwwdF3IIEEw7NHQWsdjgE1NyIn\nazq0Cm3I5w2ZU0boTLL/195zmFOOv85knLtyo5OOLOzzzynrTXbuuEdERJRIumLVfag2dP7bZQMI\nyD1PwwN4Gg/grPE0tlV/g++qt+C76m9Qb62HCBEHGvYC2IsdW97H41uVmFR4ESbmXQKVpQSXuPPh\nP/MbnFMGQmeS/b/2npOoOWWp3QqXwRCyvV1bPDESG9wqTQxHGH2JnnFO9E9xvFgkExFRQoo01xxp\nVtlkdeJklQETivPaXVB01ar7UG3ovFln/z/7jzsjdShGFg7F/bgXbtGNgw0H8O25b7D+1Ff4tmIz\nBNjgcDuwpfIbbKn8BgDwyhkdLul9GW4afDOuKLgx5tfV1bwREludDjazpkV7u7bYHC5kVFnQWDwp\nhqNMXuHyz21lnw1mBxxCfLbmjgSLZCIiirpoLK6LNNfckb7Kdqcr4WezOkIqkWJEzkiMKRiNO4of\nxF9X7sDw0QYcsWzHNxWbsLtmJ1yiC0anAWtPfoa1Jz/DPcMfxiTpvfEeelR5IyRF/TKgPtXcor1d\nW5rNDuj3VgOy+CwSTWSt5Z/byj5740NmW2FCz3izSCYioqjrqdnlWMcxmk0OSCSeIqO1Xdi85DIp\nDDYBMokC43Ivwqz8q/DkpF+gorEeb237FCbtAaw/+zkqTRV46+ArOJ5Vj8vHLonJ2OPFrdJAptNB\nqra3aG/XFk+MRB/D0SWvzuSfz9WbcaraCFe4Lhyd3IwkWlgkExERRUms4hj+i/lsDtf5RXwSqJWy\nVjcwkUolgNRzTOYXWUlVpmG07nJMG3sHnrroadz66U3YX78Pmxo/xDPb5PjrjJc7teV1IgrV3q4t\nLrMDcqsJoozlUjgdyT+39QYvUTLL/FsnIqKkEq0ezA6nC07BDYfTFcXRxYb/Yj5PgSH6NjRpbQMT\nuUwKUSaDw+5Eijr0f/nZmmz8a+anuPWT2dhbvwv/PLYCbokDf53+GhSyxGsF1hHh2tu1xeZwIbdS\nD1EihTh5ALt39DAskomIKKlEqwezUiGDQi6FMk6bkkTKfzGfWhm4oUm4DUzkck+R3NY1ZqgzsXTG\nSsz55Mcot+zGv8pXosJ4Fq9fvRRa5ET/YrpYuPZ2bWk2O1BXVgFRJmeBHKHWNjUxWhwQXG4YLQ7o\nTfYWt5ttQquP3RVdZgAWyURElKDivbNeoupogdDW5iRupwr3Fy3Bx82/wHe1X2N79XeY9uHF+NWE\nJVBjRNTGHy+h2tu1RSa3Q9DoAcS2GOtu2trUxGR1wuF0o6y8HuUVzS1utzkESKWBnxIF55S7ossM\ni2QiIkpIPXXxX1siLRDE84HmtjYnUSvkqKp3Yk7+75GNt/F57RvQ2xux8Ns7cU3uAlwu+V20LyUp\ndSTb7NVTtu9ua1GfweyAXCbB1BGFLSJCRosT3/5wrkUeOR45ZRbJRETULUSaVVbKpchJ10AZZnve\nUBJl1X0kstM1mDa2KKC4CLU5yciBWZDLpZg6ogDXp/wGPz53FX6+5UE02uqxrm4p5v3nEP53yvPQ\nIBNWl81XfPckHc02e/W07btbW9QXHBlKRCySiYgoqYSLYUSaVVar5MhJV0Mdwba2ibLqPlJZOjWE\noM0bgjcnSdMqA7LN1w/9EcYXfYsHvrwHW89twfbq73DDqqt891ccViBLnY0sdTbSlZlwWjXYZO+N\ngrQcz3GN57Zsvz9r5VpIJMkbXehottmL23cHMludLY4ZzA7YHS5AIgmIAwVHhOQyKVI1sV1YyiKZ\niIiSCmMYXacgpRD/nPkJ/rjzBfzfrj/CLV4otJ1uJ2os1aixVPuO7WoZLw2glqmRqc7yFdHZ3j+r\ns5Gtyfbdln3+WJYmGxp5Ym0J3ZFss1cib9/d1RxOFzbvq4I6aEbe5nChst6MjFRVwGYk/hEhtdJT\nvs6Y0CemhTKLZCIioiiJRxyjMyv9/TcnMVrCbyX8wPBFuGXAXThjPIVzhlrsPX0aefluWNzNaLQ1\noMZUh9ON1XDLTNA7GqG3h96Aw+ayocp8DlXmc+0eo1auRZbaW0BnIfv8rPSFQjuwuM5LzQWQEvFr\nQV3LLYoAJC1yyxdaHAbmlf0jQhKJBLuO1IbtnhEtLJKJiKhHkssk6JOXCrkseh//xyOO0ZGV/qE2\nJ7E73KhqNEMQ3LA5hZCbkwC9kYbeuCRrHGaMvjCLpzfZA6IugltAk60JjbaG878aPb9bG9DgPWZt\nQJO9EQ1Wz+0GR+hpaItggcVkQYUpfLeEYKnKVGSps6FTZEK0a9FXXwCHRY2Dsr7opcv3FdqZ6iwM\nTB8EtVwd0esXTT19IWCo3HK4vLJ/RKgrsEgmIqJuIdKWcYJLxNlaEwYVpcd4ZIkn1OYkIwdm44cT\nMowcmIUfTjSG3JzEq608qFwqR642F7na3HaPyeFyoMnehEZry8K60XahuG6yNaLB1ohGawNMTmPI\nxzI5TDA5TABOAwAOnE84bGhoeW5Ram98PWcbdKqu/z6IxkLAzFoT3NOLIZMnf0lnsjrPZ49bbrse\nnEkOdU60c8rJ/4oSERGBWeVIBW9O4l24F7yAr6soZUrka/ORr81v933sLrunaLZeKKD1jkZYYERF\nUxWqDLU4XncOotyMWnMdrGIzLIIl4DEqTRVYe3IN5hTfEe1LalM0FgI2HamHVKUCXIm/c2RrvL2V\ng7dd9xIEN0xWB7YfrIHFLuDgqUY4nO4Wb+SimVNmkUxERJREop179maaJTHevSwWVDIVClIKUZBS\n6Dsml0uRmZmCpiYz6vVWbCqrxLihudh9tA7TxhZBpXafn41uwIK1c3HGeBqfn/wsLkUyEI2FgOaA\nYx2Nb8Q7uuHNF48alA3/bddDqawz4UytEeOH5aIoNxWAp79ytHPKLJKJiKhHcrncsDtccEXwn2oi\n7AIY7dyzN9Ps3R443MfdrTFaWrbySlQauQaa1CL0Si3CtQNvwN/3voJNZzfA4rRAq9DGe3id0pn4\nRqL0cE7VKNrsoezZjESKNG1sP+1gkUxERD2S2SbgZLUBZpuA7HbGUbtzpMO7mG//ycawH3frzfYw\nC/o82rOJSyK5fsCN+PveV2AVrJi1+lpM6XUJJhRMwoT8iShM7RXv4UWsM/EN9nBuiUUyERH1SB3Z\nca878y7mM1q8LbgKWrTg2rq/OuyCvq7Y3KGjghd9eQ1JHYNCbRGqLJXYU1eGPXVlwF7PbYXaIpRm\njUOafTD6a0bB4cqHUpa4u8N5dTS+wR7OLbFIJiKiHqkjO+61JRHiGJ2RmaaCRNJ2C65E3krY34XZ\n8YYWG1EAntnx/0p/CYe1X+KUbT9OWH6Aze0pFKsslaiyVPrOffl9JYZnjUSOWAxzxuW4vP/FKErt\nndQ7CFLrWCQTEVGPJJee75McxQVr8YhjxGohX0c2J0k0gbPjkpCz48J+EXeMuBi6FCXcohvHm49i\nT91OlNXtxN76XTimPwIRIpxuB/bW7wKwCxs2rwA2A/naAkwomITx+RMxoWASRueOSbgdAmMp3CJB\nweyE22aD0GyAILT8dMGzSNAGtyqxXysWyURE1CMJ7u7RJzlWC/m6iwuz46FnwYOPZ6WNxsTeowHc\nAwA421iHf3z3Bdzpp7Cnfid2Vu+AxWUAANRYqrHmxCdYc+ITAJ7+0MOzR2BM7jiMzRuHMXnjMCyr\nGHJp9yu3WlskaHBKYNMrYWg+Cihafl/aHC5kVFnQWDyp1ecwWZ0hu1UYLQ4ILjeMFkfYBafRiP90\nv781IiIioihJU+owPG0Kpo3+MQDgq91n0X+QHUeNe7Czegd21mzH4caDcItuCG4B++r2YF/dHiw/\n+DYATzeNETmjMDZvHIbqRsFq7wW3WNjaUyaFVhcJmp1QH6yDbnguMlJaFqrNZgf0e6sBWfhYktnq\nxI7DtSFvM1mdcDjdKCuvR3mFZ6fGUP2VO9szmUUyERFREkn23HM8NZtC7eLWeru74PZ2UokUA9MH\nY1xRKW4vngsAMDmMKKvdjZ3V21FWtxt7anej2lwFALAKVuyo/h47qr/3PcaLJ3UYkzcWxRmjIDX2\nwxDTdKSnDEq6fHO4RYJyuR1StRHydF3IBYSeRYL6Vh/bdf6TkfHD8pCmDSx0PS3gJJg6otAXn/Hu\nHDl1RAEkEklUeiazSCYiImonweWGxSZAq5bHrd1ZtHPP0c40JyLvAr6y8rqA4zaHCyfOGdBosCMv\nQxO2tR3g+fg+XNGVqkzDpb0vx6W9L/cdqzZXYU9tGfbU7kJZ7W7srStDo60RAGB0GrC58mtsrvwa\nAPD3M0COJgdjcj0RjTF5YzEmbzzytHmduexuIU2rCLlQNNTiUu+xaGGRTEREPVJHZmRNVic2lVVi\n2tiipOnw0Jb2ZpqTeUGfdwFf8EStweyA3SEAEknY1nbAhXyrN//aHgUphbhmQCGuGXAdAEAUReyv\nLseHOzfArTuLQ017saeuDGanp5tGvbUe6898gfVnvvA9RlFqb4zJG4exeeMxLn88RueOQZpSF+HV\nx0drO/+5zA7IrGYIUrlvcZ93sZ/LYIjrzn/+WCQTEVGP1J03BomFZF/Ql5kW+k2NSikDIIl5azuJ\nRII+af0wIeNHvjdZjUYrPvzuW2jyqnDUsA9ltbtxoP4H2Fw2AEClqQKVpgrfwkAJJBiaOQxj88dj\nbN54DEkbBcGdEbMxd1RbO//ZHC5knDOjSp0Dg+U4oBB9i/1s9VZkNRggFhfEYeSBWCQTERFFSSLE\nMaj9pFIJUjVKmG2RbasdnG1ur1D55kL1QEwbdCkyUucBAJwuJw43HcKeWk+2uax2Nw41HIBLdEGE\niCNNh3Gk6TA+OLwCACCXKPFm/RiMyxuHIWmjYLMXxX1hYFs7/zWbHdCXVUIhlUM3usCzuO/8Yj91\n/3Q0ntajryL+0R8WyURERO3UVkQjHnEMLuTrOJ1WiUtGFWJTWWXbJyN8ttmrPVt3A61v362QKTAy\nZxRG5ozCvOHzAQAWpwU/1O9DWe1OlNXswu7aXThtOOV5TtGBnVXbsbNqu+8x/nAqHWPzxmFc/niM\nzZuAsfnjka/Nb9c1RktrO//J5Ha4NHrIHTZI0DLmI3UJcBkMYXste/osxz6SwSKZiIionRIxosGF\nfF0nXLbZq62tu4GO9e/VKrSYXHgRJhde5DvWYG3At2e+x6f7v4ZVewq7q3eg3lrvGYejGV9XbMTX\nFRt953vzzcVZJRiSORSDM4ZgYMZgpCpSIxpLtEgEJ3KP7IDVlA5RKQuIW2TWN8PWmA6bWROy17LN\n4UJWjRHiuL4AYvdmlEUyERER+UR7c5LuJly22asjW3d3JL4hQyrGZl4GFJTg5ulDAUHA3sqj+GDH\neghpp3GwydOv2SJYALTMN3sVpfbGoIwh6JsyEC5jLhTnJmBsr1IUpvSKaUs6Ua5A3bCJGDmqwBPJ\n8ItbNJ2oR6+BOVCfag7Za7nZ7EDjoTpIlLF9E8cimYiIKEq6IvrA3HP3EY34hlQqgVwmhcslQe/U\nvgELAwW3gCONh7Gndjd21+7C3royHGs66iucgQvFM+CZdX7/nOd4iiIVgzIGY3DGEN/M8+CMoRiY\nMShqW2+7lBciGXK5HXJJLaQh4hchr9slBHTPiEUEg0UyERFRlHRFHCPaueeenmmOZ2u7aMQ3VOdn\nrpscLRcfyqVylOaMQGnOCMwdfhcATyu6KvM5lDcdxTH9URzTl6O8qRxHG4+g2nLOd1+z0+TbPdCf\nBBL0SeuLfmmDoLQXoko7BqMKhmNw5lDkafI6PPvs7Ygh1GqR2WBuM26RWW2A1aDzdc/wj2BEa4aZ\nRTIREVEPlog5664U79Z2nY1vtLZAMBSJRIJeqUXolVqEy/tc4TuuN9mxbmc5+gywoNp+Csf05TjW\nVI5y/VGc0B/ztaUTIeKM8TTOGE8DADY0rPA9RppShyEZQ9A3dRBU1n6Y4HwIGe3MDHs7YvTpl46m\nEw1txi2a9leheEShr3tGLCIYLJKJiIioTVzQlzw6knE2WpxQy7QozR6Ci1MnBdzmFt2oMJ71zDw3\nlaNcX47D9YdxuOEomoULURGjw4DdtZ7uGwCwYdUyPDX5GdxRMg9yadslp1ulgUSXDkHrgEyng1Rt\nD7m1tUxuh6A1BXTP8Gx1bYr4ulvDIpmIiIjaxAV9iS8aGedQOXepRIq+un7oq+uH6X2vAuCZed5U\nVonxpWmoc54OmHk+1HAIJ5rLUW+rwxNfP4Y39v0Nz059Hlf2vTqmiwGjjUUyERFREgnOEHMhX8dF\ne3Y83lt3dzbj3JH2dGlKHfpkTcC4/Am+Y3qTHa98sxLr9C/jiP4gjjQdxh1rbsVlva/AL6f+Gr3V\nQyN6jnhhkUxERJREgjPEXMjXcdGeHY93vhmITYu6jihNm4oHLpmN/1R+jN99/zxqLNX4pmIjrvzo\nEswedDtGiXORqYjvzoBt4VtOIiIi8vEW4RoV59Goc2RSGe4omYdtc3dj0cSnoZVrIULEx8ffx69O\nzML71c/jjPFkvIcZFv8FEBERJbGeNPPb08Q7vtEeoRYJGswO2BwuGMze2xS4r+Rx3NTvDvxlz+/x\n8bH34IKAbc2rcfXqTzB7yK34SfGjAAJ3/5ParQG9kL1cZgfkFmOLPsneY977dhaLZCIioiTW2RZu\nzDQnrkSIb4TT2iJBk8WJoxV6CIIbqdrAjPNVmicwauitWFPzFrY3fw63KOCfRz/Ex0c/wljdlXg8\nbxGAfF/fZGtTmq8Xsle4PsneYwCism01i2QiIqIeLNqZ5mRjd7qwZV8VLhvTi63tItDaIsHKOhNO\n1RgxdmgOinJTW56AItxgm4R1e8uwH//EP4+tgN1lx27Dety5YT1Gpl2Kn+cshlAyCSUlub5eyF7h\n+iR7jwGISs9kFslERETUpu4a6xBFESark63tOiDcIkGD2QG5zBMVae2NV7ayF54d+3s8ddFTeGnH\n/2HF4aWwu634wbgZ8zduxsy8h3Cp7peQp6kD7heuT7L3GICo9ExmkUxERNSDtbf47ek783UHXZ1x\nNpgd0JvsYW/z5pZ1KZl4qOQXGGyfjUOSf2PliaWwuU34pPZVYEstXr7qVajl6pCPE0sskomIiHqw\nnlz8qhQyDC7KwKlqQ7yH0iW6KuPsPh9Y3n+yEccqm1vcLghu1Oot0JscAESolXLYHALq62WYWHA3\nRgy9AW9X/xxH9Pvxycl/ouqTs1h2zXvI1ebGfOz+WCQTERGRT09ayKdRyTG4dzoq6qKznTG37vbI\nSFWhX34apo4oCLlpicHswMbdlUjRKDF1RCF0KcrznTAkmDqiAFm6Abja9inmr1mAvYZN2FH9Pa79\neDr+cd2HKMke3mXX0b2/+4mIiCgiJqsTX+2ugMnqjPdQkg637r5Ao5L7Ni0J/qVLUUKllEKluLCx\niS5F6dvoJFWjQIoiFQ/2/TPuK30UAHDGeBo3rLoaBxsOdNk1sEgmIiIiorhoNnlyy/4ZZe/XDqeI\nnxY/hd9O+T/IJXIYHQbcuWYOzjRVd8nYGLcgIiIin+7axSIZJWt8oz0LBEURkEgu9Fm2OQScqjYC\nECGXSgMyyznKaZjb6xm8U/lLVJjO4KGv5uO/+78W8zgQi2QiIiLy6WkL+RL5TUGyxjfas0BQo5Jj\nzJAcX4s4/0wygBaZ5Wl4GJId1Vh26DUcNe/CZuEV3KL+S0yvg3ELIiIiapPgcsNgdkBwueM9lKjy\nvinQqDhv2NWCc8pqpcy3kx/Q8o3B4vHP4tJeVwAA3j+yDO8f+Ah6kx16kx1GS/Qz9PyOICIiojb1\n9J35KLb8t7m2OVw4W2cCIMHW/VVQK+UQBDf0ZjtuSv0ljqpOosZ+CusP74S2aWLA48hl0qi9kWOR\nTERERD1ST2p3ByROxjlUZtl/m2uD2QG7QwAkkoAWcVv3V2PqiL6YNm49tlVtxqW9roBWkeJ7DLlM\nilSNIuwGJpFikUxERERtSuTsbkdFe3Y80V+jRMk4h8ss+29zrVLKAEh8LeIA+FrEZaSmoW/WLTEf\nJ4tkIiIialN3XNAX7aK2O75GPRmLZCIiIuqRWNRSa7p/AIeIiIgoCSV6fCNWpFIJUjVKSMK3We4S\nnEkmIiKiHiuRF+8l60x3ZxcI6rRKXDKqEJvKKtFscnge0+yAzSGc76fcumi1g0uoInnFihV46623\nUF9fj+LiYjzzzDMYNWpUyHNXrlyJ1atXo7y8HABQWlqKn/3sZ2HPJyIiIgrG1nbRF40Fgv4t4QDA\n5nCd35FPArlUAr3ZjowUFeTy8G9sOvumJ2GK5M8//xwvvPACnn/+eYwcORLvvPMO7r33Xqxbtw5Z\nWVktzt++fTtuuOEGjB07FiqVCq+//jruuecerFmzBnl5eXG4AiIiIko2PTXSkOj8W8IBgNHqRKpG\ngdFDciC6RWzdX41Jw/OhSwk9U+1tB9cZCVMkL1u2DHPmzMGsWbMAAM899xw2bdqEjz/+GPfdd1+L\n8//whz8EfP2b3/wGX3zxBbZt24abbrqpS8ZMREREyS1ZIw0dkWxvCPxbwmWkqtAnNxUAoDfZ/drB\nxW72PyHCN06nEwcOHMCUKVN8xyQSCaZOnYo9e/a06zEsFgsEQUBGRkashklERESUtBJlC26DxYEN\nuypgsLSdL46nhCiSm5qa4HK5kJOTE3A8Ozsb9fX17XqMP/7xj8jPzw8otImIiIgosSTKpiZtSZi4\nRSiiKELSjv4fr7/+OtauXYt3330XSmVkqyilUknAtojtJTsfBpcl2ErYWOI19wy85p6B19wz8Jq7\nv0S8XrlMCqlUArlMGnJhXVu3d/bxoyUhiuTMzEzIZLIWs8aNjY3Izs5u9b5vvfUW3nzzTSxbtgxD\nhgyJ+LmzslLaVYiHo9NpOnzfZMVr7hl4zT0Dr7ln4DV3f4l0vaJMBo1GifQMLTJ16ohv7+zjR0tC\nFMkKhQKlpaXYtm0brrzySgCeWeRt27Zh3rx5Ye/35ptv4u9//zveeustDB8+vEPP3dho7vBMsk6n\ngcFghcvl7tBzJxteM6+5u+I185q7K15z97/mRLxem11A/7wU2Cx2NLlcLW5vNtphtTrQrLdAEuJ2\ng9mB7YdqMKkkdPeKtu7fHpmZKW2ekxBFMgDMnz8fTz31FEaMGOFrAWez2TB79mwAwOLFi1FQUIDH\nH38cAPDGG29gyZIl+POf/4xevXr5ZqG1Wi20Wm27n9ftFjuViXG53BCExPim7Cq85p6B19wz8Jp7\nBl5z95dI16uQSTGkt6eRQqgxCS433G4RQpgxO5wu6I12OJyukLe7RREpagXcohjTa06YIvm6665D\nU1MTlixZgvr6epSUlODNN9/09Uiurq6GTHahZcn7778PQRCwcOHCgMd5+OGH8cgjj3Tp2ImIiIio\na+i0Slw5vnfMnydhimQAmDt3LubOnRvytuXLlwd8/dVXX3XFkIiIiIgozjq71XVHJM5SSCIiIiLq\n9jqyqUk82sYl1EwyEREREXVvybLLIWeSiYiIiIiCsEgmIiIiIgrCIpmIiIiIEkZHMsuxwEwyERER\nESWMRMkscyaZiIiIiJKGweLAhl0VMFgcMX0eFslERERElND8Ixhd1Q6OpoGfzAAAFsxJREFUcQsi\nIiIiSmj+EQy709Ulz8mZZCIiIiKiICySiYiIiIiCsEgmIiIiIgrCIpmIiIiIKAiLZCIiIiKiICyS\niYiIiChpdNWOfGwBR0RERERJo6t25ONMMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRF\nMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERERERBWCQTEREREQVh\nkUxEREREFIRFMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERERERB\nWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhERERFR\nEBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERERERBWCQTEREREQVhkUxERERE\nFIRFMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERERERBWCQTERER\nEQVhkUxEREREFIRFMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERE\nRERBWCQTEREREQVhkUxEREREFIRFMhERERFREBbJRERERERBWCQTEREREQVhkUxEREREFIRFMhER\nERFREBbJRERERERBWCQTEREREQVJqCJ5xYoVmD59OkaNGoXbbrsN+/bta/X8tWvX4tprr8WoUaMw\nc+ZMfP311100UiIiIiLqzhKmSP7888/xwgsvYOHChVi1ahWKi4tx7733orGxMeT5ZWVleOKJJ3Db\nbbdh9erVmDFjBh5++GEcO3asi0dORERERN1NwhTJy5Ytw5w5czBr1iwMGjQIzz33HNRqNT7++OOQ\n5y9fvhyXXnopFixYgIEDB2LhwoUoLS3Fu+++28UjJyIiIqLuJiGKZKfTiQMHDmDKlCm+YxKJBFOn\nTsWePXtC3mfPnj2YOnVqwLFLLrkk7PlERERERO2VEEVyU1MTXC4XcnJyAo5nZ2ejvr4+5H3q6uoi\nOp+IiIiIqL3k8R5Aa0RRhEQiiej8SEmlEkil7X8OL5lMGvB7T8Br7hl4zT0Dr7ln4DV3fz3tertS\nQhTJmZmZkMlkLWaBGxsbkZ2dHfI+ubm5Ic8Pnl1uS3Z2amSDDaLTaTp1/2TEa+4ZeM09A6+5Z+A1\nd3897Xq7QkK87VAoFCgtLcW2bdt8x0RRxLZt2zB27NiQ9xkzZkzA+QDw7bffYsyYMTEdKxERERF1\nfwlRJAPA/Pnz8dFHH2H16tU4fvw4nn32WdhsNsyePRsAsHjxYvz5z3/2nX/XXXdh8+bNWLp0KU6c\nOIG//vWvOHDgAO688854XQIRERERdRMJEbcAgOuuuw5NTU1YsmQJ6uvrUVJSgjfffBNZWVkAgOrq\nashkMt/5Y8eOxZ/+9Ce89NJLeOmll9CvXz+8+uqrGDx4cLwugYiIiIi6CYnYkdVuRERERETdWMLE\nLYiIiIiIEgWLZCIiIiKiICySiYiIiIiCsEgmIiIiIgrCIpmIiIiIKAiLZCIiIiKiICySiYiIiIiC\nsEgmakNzczN+97vfoby8PN5DISIioi6SMDvuJbqamhocOnQItbW1sNlsUKvVyMvLQ0lJCfLz8+M9\nPIohk8mE5cuXY/LkyRgyZEi8hxNTZ86cQVlZGQwGA7KysjBp0iTk5ubGe1hRZTQaoVAooFarfcea\nm5tx8OBBuFwuDBs2rNtdczCn0wm73Q6VSgWFQhHv4VCMOZ1OHD9+HL1790Zqamq8hxNzoijCbDb3\niGul2OKOe23YvXs3/vCHP2DPnj0APP/4/EkkEowePRqLFi3C+PHj4zHEqDt27Bhef/11HD9+HJmZ\nmbj++usxa9YsSCSSgPM++eQTPPnkkzh06FCcRhodN954Y6u3C4KAkydPolevXkhJSYFEIsEnn3zS\nRaOLjXfffRfV1dV44oknAAAOhwNPP/00Pv/884DvcblcjnvvvRf//d//Ha+hRo3NZsPPf/5zfPXV\nV5BKpbjrrrvw5JNPYsWKFfjjH/8Im80GAJBKpbjlllvwy1/+ElJp9/iwTRAErFq1CmvXrsXBgwfR\n3Nzsuy09PR0lJSW49tprcfPNN3ebonnbtm04ceIEMjMzcdlll4UsmPbs2YMPP/wQv/vd7+Iwwq5T\nWVmJGTNm4JVXXsH06dPjPZyoOHr0KBoaGjBlyhTfsS1btuBvf/sb9u3bB0EQoFKpcNFFF+Hxxx/H\n0KFD4zja6Fm/fj1WrVoFtVqNu+++G6NGjcLZs2fx0ksvYffu3RAEAaWlpbj//vu7TU0ST5xJbsXW\nrVtx//33o1evXvjZz36GkSNHIi8vD0qlEg6HA7W1tdi7dy9WrVqFu+++G6+//jqmTp0a72F3yqlT\np3DrrbdCEAQMGTIE5eXlePrpp7Fy5Ur85S9/6ZYzbOXl5dBqtSgtLQ15u8PhAACkpKQgIyOjK4cW\nMx9++CGuuOIK39e//e1vsWbNGsyZMwc33ngjsrKyUFtbi5UrV+Lvf/87srOzMW/evDiOuPPeeust\nbNiwAbNmzUJOTg4++OADqNVqvPbaa5g1axauvPJKOJ1OfPbZZ1i5ciV69+6N+++/P97D7rTGxkbc\nc889OHToEPr374/LLrsMubm5UKlUsNvtqKurw759+/C///u/eO+99/D2228jKysr3sPuMIfDgfvu\nuw/bt2/3veFLS0vDE088gTlz5gSce+bMGaxevTrpi+SlS5e2entzczNEUcT69etx+vRpAMCCBQu6\nYmgx89vf/haFhYW+Innt2rV4/PHHkZGRgRtvvBHZ2dmoqanBV199hTlz5uDdd98N+zM+WXz99dd4\n5JFHoNVqodVq8dVXX2HZsmV4+OGH4XQ6MX78eAiCgB07duDbb7/F0qVLMXHixHgPO7mJFNatt94q\n3n777aLdbm/1PLvdLs6ZM0e89dZbu2hksfPYY4+JF198sXjq1CnfsdWrV4vjx48Xr7jiCvH48eO+\n4//+97/F4uLieAwzql555RVxzJgx4vz588UjR460uP3s2bPisGHDxPXr18dhdLExZswY8aOPPhJF\nURTdbrc4ZswY8de//nXIcxcuXCheffXVXTm8mLjmmmvEp59+2vf1mjVrxOLiYvEXv/hFi3Pvvfde\n8ZprrunK4cXMokWLxEmTJolbt25t9bytW7eKkyZNEhcvXtxFI4uNV199VSwpKRFffvll8ciRI+KW\nLVvE+fPni8XFxeL//M//iC6Xy3dud/kZNmzYMLG4uFgcNmxY2F/+t3eHa548ebK4fPly39czZswQ\nb7vtNtFsNgec19DQIP7oRz8SFyxY0NVDjLo777xTnDVrlmg0GkVRFMVf/vKX4pQpU8SZM2eKer3e\nd15VVZV4+eWXi/Pnz4/XULuN7vFZYowcOXIEs2fPhlKpbPU8pVKJ2bNn48iRI100stjZu3cv7rzz\nTvTr18937KabbsKHH34IqVSKO+64A/v27YvjCKPvoYcewrp165CRkYHZs2fjueeeg16v990eHDPp\nDpRKJSwWCwBPDMFqtWLy5Mkhz508eTLOnTvXlcOLiaqqKowdO9b39bhx4yCKIqZNm9bi3CuuuAIV\nFRVdOLrY+frrr3HPPfcEfCwdypQpU/CTn/wEmzZt6pqBxcjnn3+Om2++GQ8//DCGDh2Kiy++GEuX\nLsVjjz2GlStX4pFHHvF9OtRdDBw4EGq1Go899hjWr1+PDRs2BPx69913IYoinn/+eWzYsAHr16+P\n95A7zWq1QqPR+P589uxZ3HXXXdBqtQHnZWVl4fbbb0dZWVk8hhlVR48exc033+yLDs2bNw+NjY2Y\nP38+0tPTfecVFBTgv/7rv7rd/9XxwCK5Fenp6b6Pptpy+vRp6HS6GI8o9vR6PXJyclocHzRoED78\n8EMUFBTg7rvvxubNm+MwutjJz8/HSy+9hKVLl2L37t24+uqrsWzZMgiCEO+hxcTYsWOxdu1aAIBG\no0H//v2xffv2kOfu2LEDeXl5XTm8mEhPTw948+P9s/8x/9u6S7TG4XAgJSWlXeempKQkfQFZUVGB\nMWPGtDj+wAMP4E9/+hM2b96MBQsWwGg0xmF0sfHpp59i4cKFePvtt/HEE0+goaEBRUVFvl+FhYUA\nPAWj91iyGzBggG+tkFqthlarhclkCnmuyWSCXJ786VK32w2VSuX72vvnUP++uWgxOlgkt+LGG2/E\nsmXLsGzZMpjN5pDnmM1mLF26FO+88w5mzpzZxSOMvqKiorAz4tnZ2b5c14MPPoh169Z18ehib+LE\niVi1ahUee+wx/O1vf8P111+PTZs2dbvZ5EcffRQHDhzAwoULcfLkSTz77LNYuXIlfvWrX2Hnzp04\ndeoUvv/+eyxatAjr1q3D7Nmz4z3kThs3bhw++OADHD9+HHq9HkuWLIFarcZ//vMf1NbW+s47ffo0\nVqxYgeHDh8dxtNEzbtw4LF++HDU1Na2eV1NTg+XLlyf9Yp/09HQ0NjaGvO26667Da6+9hoMHD2Lu\n3LkBf+/JTCaTYcGCBVi3bh0GDBiA22+/HYsWLWrz7zyZ3XbbbVi9ejU2bNgAiUSCefPm4a9//St+\n+OGHgPO2bduGZcuWtflJSjIYOHBgwCc9GzduDPjd3xdffBHwiTB1DLtbtMLhcODJJ5/E2rVrIZfL\n0b9/f+Tm5voW7tXV1eHUqVMQBAHXXHMNXnzxxTajGYnuV7/6Fb788kts3Lgx7Dtvh8OBxx57DBs3\nboREIkn67hbh/P/27i4mirMN4/if2IJo/ahLqygqShpWWdZAWgwaE6PRiFSNFRoDsQdi0IZEQlPT\n2mqj+FGamGjMGg8MBwYViyuiUtPEA21DYtoDo6ux+IEBAWEVAgpLFc1OD0y3bxctvhZ3yuz1O2P3\nmeG+Tib3zD7zPJ2dnezevZtjx45hGAYul4v58+ebXdaAqamp4csvv6S9vZ233nqLp0+fBlZ4+JNh\nGKxYsYLi4mKGDBliUqUDo6GhgaysrMDTJsMwKCwsZMKECXzzzTdMnz4dv9/PtWvX8Pv9lJeXk5yc\nbHLV/15dXR25ubk8fvyYuXPn4nA4+lzHrl69yvnz5xk6dCiHDh0iISHB7LJf2aeffkpHRwdHjx59\n4RiPx0N+fj5dXV34/X7LXcM8Hg/btm3j1q1b5OXlkZGRQWZmJvv27bPMNcwwDDZu3EhVVRUzZswg\nOTmZ6upqHjx4QFxcHDabjXv37tHS0kJMTAzl5eXExcWZXfa/cubMGT777DOcTidjxoyhpqaGDz74\ngClTptDS0sK8efPw+/2cOXOGX3/9lU2bNpGbm2t22YOamuSX4PF4+PHHH6mtreX+/fuBdZLfeecd\n7HY7ixYtwul0ml3mgLhy5QoHDhxg9erVz/3J8k9+v59vv/2W2tpaysrKQlhh6DU0NOD1ennvvfd4\n++23zS5nQHV3d3P69GkuXLhAQ0MDPT09gTXAk5KSyMjIYNq0aWaXOWBaW1upqqrC5/ORlpbGnDlz\nAPjhhx8oLy+nra2N+Ph41qxZw/vvv29ytQPH6/Wyf/9+zp49S3t7e5/vx4wZw8KFC1m3bh3jxo0z\nocKBU1lZyVdffcXRo0f/8RpWV1dHXl5eYA18Kzp+/Di7d+/myZMnPHz40HI3+vCscTx48CAej6fP\nEq0xMTEsXryYtWvXYrPZTKpwYJWVlXHo0KHANWzTpk0MHTqU9evXU1NTA/y1jOXWrVsts4ylWdQk\ni4iEEa/X2+dm30obIhmGwe+//86bb77Z75rPPp+Pzs5OS8zRfZHu7m5KS0tpbW3lk08+sdRN7//q\n7u6msbERn88XuNG3wrsU/4/Gxkba29uZNGnSoF7G8b9ETbKIiADPGo2HDx8yfvx4s0sJiXDLC8oc\nLsIx8+ug5/AiIgI8+ynXaj/H/5NwywvKHC7CMfProCZZRERERCTI4F84UEREXqiqquqlx1rhBbZw\nywvK3B9lllelOckiIhZmt9uJiIjo8+b/iwz2ZR3DLS8o88tQZnkVepIsImJho0aNwm63s2HDhn7H\nut1uvv/++xBU9fqEW15Q5v4os7wqNckiIhaWnJzM7du3cTgc/Y61wnbz4ZYXlLk/yiyvSi/uiYhY\nmNPp5O7du8/dRCTYyJEjiY2NDUFVr0+45QVl7o8yy6vSnGQREQvr6emho6ODd999t9/NNawg3PKC\nMiuzvC5qkkVEREREgmi6hYiIiIhIEDXJIiIiIiJB1CSLiIiIiARRkywiIiIiEkRNsoiIiIhIEG0m\nIiIyyLhcLlwuF/Bs69nhw4cTGxtLWloaOTk5JCQkmFyhiMjgpyZZRGQQio6O5uDBgwD4fD6uX79O\nRUUFFRUV7Ny5kyVLlphcoYjI4KYmWURkEIqIiMDpdAb+Tk9PJycnh/z8fL7++mtSUlKIi4szsUIR\nkcFNc5JFRCwiMjKSzZs309vby7FjxwCoqqoiJyeHmTNnkpaWxqpVq/B4PIFjrl+/jt1u58KFC387\nl9/vZ86cOezatQsAr9dLYWEhs2fPxul0Mn/+fEpKSkIXTkQkxPQkWUTEQhISEhg7diyXLl0CoLm5\nmeXLlzNx4kSePHlCdXU1q1at4tSpU0yePJnExERmzJiB2+0mPT09cJ6ff/6ZtrY2srKyANiwYQNt\nbW1s3rwZm83G3bt3uXr1qikZRURCQU2yiIjFxMbG0tbWBkBBQUHgc8MwmDVrFh6Ph8rKSoqKigDI\nzs5m+/btdHV1MWLECAAqKytJSUkhPj4egCtXrvD555+zaNGiwPmWLVsWokQiIqGn6RYiIhZjGAYR\nEREA1NXVUVBQwOzZs5k2bRpJSUnU19dTX18fGJ+ZmcmQIUM4ffo0AB0dHZw7d47s7OzAmKSkJEpL\nSykvL+fOnTshzSMiYgY1ySIiFtPa2kpMTAw+n4/Vq1fT0tLCxo0bOXLkCMePHycxMZHHjx8HxkdH\nR5OZmYnb7Qbg5MmTREZG/u2p8Z49e0hPT2fPnj0sXLiQjIwMzp49G/JsIiKhoiZZRMRCbt68idfr\nJTU1lUuXLnHv3j1KSkr48MMPSU1NJSkpia6urj7Hffzxx/z222/U1tZy4sQJFi9eTHR0dOD7mJgY\nduzYwS+//ILb7Wbq1KkUFRXR1NQUyngiIiGjJllExCJ6e3vZtm0bUVFRZGVl8ejRIwDeeOOv108u\nXrxIc3Nzn2MdDgd2u50dO3Zw48YNPvrooxf+H4fDQWFhIU+fPtXUCxGxLL24JyIyCBmGweXLlwHo\n6ekJbCbS1NRESUkJ48ePJyoqiujoaLZu3Up+fj6tra24XC7GjRv33HNmZ2dTXFxMQkICKSkpgc+7\nu7vJy8tj6dKlTJ06ld7eXsrKyhg1ahTTp08PSV4RkVBTkywiMgg9evSIlStXAjBs2DAmTJjArFmz\nyM3NZcqUKQDYbDb27t3Ld999R0FBAfHx8RQXF3PgwIHnnnPBggUUFxezYsWKv30eGRlJYmIihw8f\npqWlhaioKBwOB6WlpYwePfr1BhURMUmEYRiG2UWIiIj53G43W7Zs4aeffsJms5ldjoiIqfQkWUQk\nzDU3N1NfX8/+/fvJzMxUgywigppkEZGw53K5qK6uJjU1lS+++MLsckRE/hM03UJEREREJIiWgBMR\nERERCaImWUREREQkiJpkEREREZEgapJFRERERIKoSRYRERERCaImWUREREQkiJpkEREREZEgapJF\nRERERIKoSRYRERERCfIHs4wcwrBy2XgAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "survivalstan.utils.plot_pp_survival([testfit], fill=False)\n", - "survivalstan.utils.plot_observed_survival(df=d, event_col='event', time_col='t', color='green', label='observed')\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmUXFd57v3be5+hqnoeNLTmwZaFZyCMBgduuMD6kkvA\nwAVywXw3uRBIFkPghgUsAskKgRCv5CPku0C4kEDABMJoMjDkIwmsSwhgbMsyxgbZliW1WkPPXV3D\nOWfv/f2xT1VXd1dL3VK31JL3b61ydZ8659Q+1QV66q3nfV5hrbV4PB6Px+PxeDyeJvJiL8Dj8Xg8\nHo/H41lveJHs8Xg8Ho/H4/EswItkj8fj8Xg8Ho9nAV4kezwej8fj8Xg8C/Ai2ePxeDwej8fjWYAX\nyR6Px+PxeDwezwK8SPZ4PB6Px+PxeBbgRbLH4/F4PB6Px7MAL5I9Ho/H4/F4PJ4FeJHs8Xg8Ho/H\n4/EsYN2I5DvvvJPXve51PPOZz2T//v18+9vfPusxP/jBD7jlllu47rrreN7znsdXvvKVC7BSj8fj\n8Xg8Hs/lzroRyZVKhcc97nG85z3vQQhx1v2PHTvG6173Op761Kdyxx13cOutt/Kud72L733vexdg\ntR6Px+PxeDyey5ngYi+gwc0338zNN98MgLX2rPv/7d/+Ldu2beNtb3sbAHv27OHHP/4xn/zkJ7np\nppvWdK0ej8fj8Xg8nsubdVNJXikHDhzg6U9/+rxtz3jGM7jnnnsu0oo8Ho/H4/F4PJcLl6xIPn36\nNAMDA/O2DQwMUC6XSZLkIq3K4/F4PB6Px3M5cMmKZI/H4/F4PB6PZ61YN57klbJhwwbGxsbmbRsb\nG6Ozs5MoipZ9Hmtt20bBZGaG//Nn/w/1ahUAYy3lYhEjICmVWk6w9LkFlrg8C9YisHScHkVgEcYy\nMDxMoDX9V16JKBSYKhToLpfhgQewbSrhgVKEV13FZFcXfbUaoTHu6dMUMzGB7OtDbdpE95vfhOzu\nbh5nymXSew8SXn8dWRQxOjpKT08PU1NTDA4Orui1Wgmtzys7O9fkOTwej8fj8XjWiktWJN944418\n97vfnbfte9/7HjfeeOOKzjM+PouU7dI0JFf8lxeSjo83t1RHT1E5eZITx46AsaSAMAZhTfuTW4FQ\nIv9RMDswgJESoyTTW7ZggoDOOEZIRaIkUWcXIopACHdrnscSVWvsimJO9PRSkGWszkWyrWAnphDd\nvYiRU5gTYwit5g49fZr0X75DOLiZapZx6Lv/yranPp2R8gwQUSwWl/1aKSXp7i4yPV1F6yWuufG8\n4xNk9xwk2LQNkZ49rWS9spJrvlzw1+yv+XLFX7O/5suRx9r1rhZ9fR1n3WfdiORKpcKRI0eayRZH\njx7lgQceoKenh6GhIf70T/+UU6dO8YEPfACAl7/85dx+++3cdtttvPjFL+b73/8+3/zmN/nYxz62\nouc1xmJM+3Jwcftuitt3N3/vBqrDxzj99TtQxjAbKJQ2yGWkcRghqBQLrvAsBHG9jhWCEEEgBQVr\nsQhIUggkyDmhq4UkKRbQUQHCEFsoYvM1W2OxYYgNY0SakGUWkc39j8Rm7vqyzGJSTVguo8cnyR74\nCVn3ANnQ0IpeLwCtDVl2lv8hdvciXvoKNECbfe3sLPb+nyCuvgbRcfY36sVmWdd8meGv+bGBv+bH\nBv6aL38ea9d7IVg3Ivm+++7j1ltvRQiBEKIphl/4whfy/ve/n9HRUUZGRpr7b9u2jb/8y7/kj//4\nj/n0pz/N5s2bee9737so8WLViWNEFEO5DEqCMdAikmWS0Hl6lPKGQUyrlSGvDAtrQQikBYslwBLk\nh1trIcsABarlOa1GBwpbrWFLJWyl0qwk1+p1RrZtZShNiWs17AILii2X55YeRuyu1EmQUKuC0ef8\nMqRpyuTkOL29/YRhuPIT1OvYhw4h9l4Bl4BI9ng8Ho/H89hi3YjkJz/5yTzwwANLPv7+97+/7TFf\n/vKX13JZixCdnYgr9yHrVRg+hgEQc/2PsjJLcWaG8s7tmNKc+DPWYIVwglpKTFuLRxuMgWoNohD7\nyGHYuRN76CFsrQaAjSKS3buwP38IyjPoT/wlFApzx0cxosWjvFponTE6eoquru5zEsmivx/18l8D\nLr2qssfj8Xg8nsufdSOSLynCEGMNSRgCAtEieBUlxrZvo1oqoaM58WiNxWapqyQbg5YSrEXOzqJy\na4VNM0y9jrUBZHkp2WpIEggUSUcnWSGm3t0FsatS1+OYrKuTek8Pyhqi7h5o+IxrVezUFKK10XCV\nsBOTmPsOYnsHYWj5vua2VCqYO3+I2rXbV5U9Ho/H4/GsC7xIPkekkERaIyxINeeNCGp1BoaHMX19\nZKrl5a3XGbz7bldJFgKVZUit6dIGKV0l2mhN1RiskkBDeFsiYyhMKh7dvx9dLPLQVcWmD1pLyWxn\nJ9VCgeL0DPuEpCHNrbHO1lCpzNkwKhWYniSq1WFiAhvFUCggurpW9gIYfd6WjSZKQakDc/AA8ilP\n89Vkj8fj8Xg8Fx0vks8DgQuabg2bVtYSJgnKWlrt8yYIOH7dtcg0BamIay5aTguFykV2lmnG0WBB\n0jQqY1JNVojoricEMzPz1pAphcoyVHmWBEt2/0GCNHMPphl1ASODAwzd/kniWh0ePUzw6GF2nhiB\nn/2crFBA9PahXvv6lQvlJVipX1n096P+y69ivvUNqNd9Ndnj8Xg8Hs9Fx4vkc0QbnfuR53uLDS46\n2eS3ue2CtFh0VVshkcrJ4EwoCNyfIUszEjTKmLn4ZWMxQYoJA4JKlaBNkoY0BpkkmECBCpyPGcBI\nrFIk/f3Y6RmXMiHzfaSCIMQagz0xghwehoGBc6sqLyAbHeXU//lXOp/xbMJlpme0epQ9Ho/H4/F4\nLjZeJK8QpRRxHFOtVjBSOpHZmm5hLTO9vWhr0S3bDRYrBMK6bGWMAbl44GFQqxGk6Vx12lhMlqEC\nRVCtohaIZBsEiFKRoF5H2xAmJ6E8485vrGviO3USHnoIZiuuUluecekclVmn6LOU7MMfcskd3T2o\n//GbyHOIhpu72FW0YjSu0zf3eTwej8fjuYB4kbxCwjBi//5rqY6N8uDRI8jyLMq01IxrNepdXfRO\nTFJ89Ai1DRswUURmDOOFCGUM0hhAoJWcJ5RFmrLlwL1IY5qOZCyucU9AIUmQCwrJSaFAde9ueo4e\nQaUZibUQx04MW02GhVoNJiacHxmcLzrLYGoyL3trOPyIe8gYjBCIN73lvCrKNs3Q3/g69kUvRvT3\nn/N5muTNfXLjphWJZS+uPR6Px+PxnAteJJ8DYRjBwACFx+2H1DTTKQD01CQ88jDhwCDdd92Fvfpa\ndG8vcraMPHoYKQRSSIwQTiCnWTNn2YYhx2+4fn4lOc0Y/OlPsVJSU4qFwXFaKQpTM6RxTBbFmDBA\nGtu0XGSBQocBRBH1IGBk716GHnqIOI+QQxvQ0vmALVCdxU5NOmF9BpEshCAypu1Ib3cxFmamQK9S\nNVkpRF8/JPWVJWH45AyPx+PxeDzngBfJ54EIQwgVojXFIo6ohwGdQkEUIUolV8HUGVZIGm5jY8FY\nS5plzel5mclICkV0FDcb9wyCh256OiLLKNXqcw19rVjL5ObNmEDRe+IkgdGQpOgopF4qEeXZzFZK\nko4SNghcooS7CidowzCvWs9/S9iZGSeYARsIdFLCTlWIpmfYPTqBnJ7BhqfnHzM+gdEZY0oRZRkR\ni7Hj45hvfQP53Ocvq9Lc8Czb06fPuq/H4/F4POsJmybYBx9ck3NrJUm6C+jpGqZlLLW46ipE2O5f\n4DPzgQ/8Ed/5zr9QLs/wV391O1dcceVqLndZnDgxwktf+gL++q8/e1Gev4EXyRcIIyRJFCKMQViw\nAqwQzCiJtBlBpUJaLLqKsHX7gNsvjSKwlkiVF3mS3cldc58OAtcEqAGlsUqho8hZL84BOzOD/thH\nsJMT+TUIpuKApJ6h0wQmpzCf+jgimJ9gkWmNKRWYCBQbZqaJ2vmbtcZOjK9epXkFeAuGx+PxeC4k\n9sEHyV75sjU5dwa0Kx8Fn/k84trrVnSu//iPf+eb3/xH/uIvPsaWLVvo6eldlTWeC0t+U30B8SL5\nAqGKBeLuXhcZJyXGGLTV9HT3E5XLdH//35m48UaS8hRKiLnsZGvQmQYBAgHtKsm4cdgiTZ3X2Ojc\nRqERaYqWknoexZY1fs7ymDhlUEDboLZazQnkOIZCEaRAFkKopQhjYWBD+4tNnB8araGenM/LtpiG\n7UKps++7FN6C4fF4PB7PIoaHjzIwMMg111x7sZcyLxThYuFF8gVEBAqpFFIqMAarM8KuTiIgkpKg\nWECWp51vuSEC9aKUucVkGRt/9jOskARp4qrQ1hAJSTQzgy4UKBcKmCCgFseM9/czs2GQvqPHCJM6\nMsvok5JQm/bnLxQRHR0IKZDFCKESNyq7IbQXXqeFMKmTKoWdmmhrkbDl8tzPK7BerEVUnK8sezwe\nj+exzvve9wd8/ev/gBCCZz7zSWzevIUvfOEOPv3pv+ZrX/sq4+Oj7Nixk1e/+jd41rN+CYC77/4x\nb3zj6/jTP/0LPvrRv+DRRw9z7bU38Pu//0c88MD9/K//9UFOnz7F05/+TN7+9t8jjmMAfvCD7/Op\nT32Chx9+CKUk11xzPW9601vZunXbkut7+OFDfPjDH+LAgXsoFos86UlP4Y1vfMuaVru9SL4MMFHI\no7/wRESWUZyZReKqyEYpjAroPX2a2aGYLAypd3czszljtr+fwFqENmRRSPfwCKFeni3D1uvYu+5s\nepUXEhvD9jTlyL4r0V/9Ellx8VjsrFBgamCA/iwjBMzxYeyXv4i65SWrk4axEpZZWfZi2uPxeDyX\nK29+8/9ky5at/P3ff5WPf/zTSCn41Kc+wT//8zd529veybZt27nnnrv4wz98N319/dxww+Obx/71\nX3+Mt7zl7cRxzO/93tt597vfThTF/P7vv49KZZZ3vvN/8qUvfZ5f+7VbAajVqrz85a9k794rqFar\nfOITH+Wd7/xdPvWpv227tnK5zJve9Fu84AUv4k1v+p/UajU+8pG/4N3vfid//ucfXrPXxIvk80Tr\nbN5XAlpnCCHQJsMYTaZTdJaSZRnGWIRwo0aMaV+1tTiLBblV11iDzbMulqjzukElhQIAxdkKMstz\nmIUAYQi0RmntcpqNQWnt7rMMYQxaSxczl6bL8whn2ZxAVouznlHSNQIKATLALmwcqNdIpyYZG9pE\nj9GE5ANQpiZX36O8GvaMBt6m4fF4PJ7LlFKpg1KpAykVfX19pGnKZz7zST74wY807RdDQ1u49957\nuOOOLzdFshCC17zmt7g29z//yq+8gI997MP83d/dwebNrifpWc/6Je66686mSP7FX/xP8577bW97\nFy94wXN55JGH2b17z6K1felLn2ffvv285jWvb257+9vfxYtf/CscO3aUbdu2r/4LghfJ50wQKIrF\nIlNTM6TpfNtBsVginZ5mtL+fNM2w9TpaO9EMFmudsFQqQIg5kWmEmtfcB2ARmNyfnAYB0ewsSamE\nbRF9VoAJQ4TWbPrpT1Fag3XDS6xUFGfLSGNJCgUqpRIdJ06ShCGdx0cIkjpaKZiaJtMaUU/c8WdD\naydqlxD7xAXYOgTDxxYL3zSDKMReecXZn+c8WU+T/Hwl2uPxeDyXCseOHaVWq/E7v/Pbi4qB+/bt\nn7fv3r1z/5739w8Qx4WmQAbo6+vnpz+9f965P/7xj3L//fcxNTWZFxEFJ0+eaCuSDx36OXfd9SP+\n83++ed52IQTDw8e8SF5vhGHEE57wBEZHp9FtvLy1Wo2jGzawd/tuCoUCtVqNBx/8CVEUEeRjqIWQ\nqBaxqwrRvOY+AJMm6JkZEIJimrLpZz/n9LVXk0Vz1dlGc5/FcvjJT0JqTVCrIbTBSkFUryONxUhJ\nWihQv/IKaj09pHGEMAYjFROVCkprVD1ht7btG/laaQwkCYK2kwMJAjf+OgxZ1GyYWKjXIEmw4xPY\nMIRqFQvYsbG5/VZhRHZbVrO6vBJ8Jdrj8Xg8lwjVqhtAdtttf87g4OC8x6Jo/jfEDV0DTri2/t7Y\nZu2cVnrb297M0NBW3v7232NwcBBjLK961X8ly9Il13LTTTfzW7/1xkUNfQvXtpp4kXweRFFEsVgk\ny+b+8LZWwx47ih3cQBCEFAoFCoUi4EZaB0FAECwtQec19zW25Y17ylrCJEEZO996Yef2SUslVL3O\ntnsO5Ac3mvnm3lRpHDO+cwf9jx4hSBKsEBTrdUC4N1+tjq3VELmFox31OGbk+usYOvwocbr4TS2E\nIKpWEePjbvx1K5l24nlqiuwLt5NV6/DQIffQ9FTzeUVvH+q1r0d0da04V/lMrKfqssfj8Xg865Fd\nu/YQhhEnT45www03rtp5p6enOHr0CG9/++9x/fXuvAcO3HPGY/bt2893v/uvbN481CwiXgi8SF5l\nRKGAuOJKRK267GOsUujubpBtKpsyH11tTB7vlt/nyRIySeg8cYLa1q3N6rJVAcduuAFhDFZJiuUK\nsuUTnFaKak83JswryUrRPz0NQCIkfTPlMwpkACsFSbGIXeLNGtdq7Lr3oPslUPOrzRZXxe3uQRQ7\nyKIKU1u30jMxSdDVDaUS1Koufq4x+W8tc5UvVmU5x9swPB6Px7PeKJVKvOIVr+RDH/oztNZcf/2N\nzM6WOXjwAB0dnTz/+b8MrDyqraurm56eHr72ta8wMDDIiRMjfPSj/+8Zc5FvueW/8g//cAfvec87\n+W//7Va6uro5duwo3/72t3jHO969ZpnKXiSvA0x3N9PPfR46S6FWmf+gktgoBmsxGzeRDQxghoaw\nnc6GIMozdBw6hLAWGwZOTAa4yXpSYQVIIZEt3mEjJVkUkXR0ABatFLX88VRKshaPtU0SqLg1WSkw\nOsFWKq4abK0Tre2Eq86bBxsiX4jm+O2FZFIwtnEDHTPl5hvSGutymnP7RWtk3Gpz0SvL3obh8Xg8\nnnXIa17zevr7+7n99k9x223vo7Ozi337ruJVr/r15j4rFahCCP7gD97PBz94G7fe+jJ27NjJm9/8\nu7zhDb+5aL8Gg4ODfOQjn+AjH/kQb3nLG0jThE2bhnjKU562pkNHhF0Pac0XkdOnZ87puCCQ9PV1\nMDExO89u0aBWq/LII4fYvfsKCoUitVqV++67hziOl7RbZFnKqVMnUC12C60zpqenAUvBWLqOHaO8\nfTsmr/TKWo2OI0eYGBwgi2KENXNNe/kbJ0gSZMuf2QJWSkSegGGFIE7c0A+DYMNshete9DKCLCN7\n6xtdE14UIoQgDBRppUp1dJQjj7uKHfcepFBtUzU31g01iQsQBk5oN8S0MdRKRY7cfDM7Hn4EjOXI\n7l3suPseCmHo/MxpBlkKV+5zw0yKJeTAAPp5/xeTB+6i79nPIdq48Zz+diuh9e+cnho9L8uHPX0a\n/cXPo17yMsSGDfO2Z5/9NPKaa5FPu+miV5PP9t6+HPHX7K/5csVf8/q45rUcS62UpLu7wPR0bV6P\n1LmOpX6ssGHD2XuefCX5ApNlS9sFFsbEgSu+SikASdEaBk6dxuzcRZaL5CBJGThxkpmuTkwQIrSL\ndcuCwBnlAWnMPE+ygGYqhRUChEDl67JKkYQB2mjCQgF274GOTkSphJSCsBCSjU+5UddKQaGwaNpJ\nvVBgZM9uhn76IHG9PldxbgwfsRaRaaKJCcT4GFZIjDVMbNrAhmPDBFk2J7IPP9I8r33aTeg0ZTSp\n0p2u8iS/ZbCmFec0xR64B254vK8mezwez2WGCKMVj4heLiqQRH0dqIlZ7Dr5UHC54EXyBUIpRRzH\n1PM4uFaMMSRJHaXUopg4l6csXNOfhTBNUUJg8kqzEoIwTZHWIrAI60SwE8IWIQXCWjdGuh0CN246\nF9FiQaSbiCIoleZP3KulzmcshBPKC7y8NghISh3zYurmTugEdVypsOv+n0IQUCsVMFHExM6d9E1O\nEVQq+Vht6QRjmsFseckJfx6Px+PxeDyrjRfJq0y9XmN4+AiDg5uI47jplQnDiP37r0W38e/WajWO\nHn2EjRuHOHz4oXkxcVmWMTp62v1eqZB2di5ulhMChMw9v7Ylcc2iagl9R48ys3EDOmr3tYuYU9Ur\nMd5os7Qn2Riw+c2Y/Nx2sSdZSiewG57l1m3kHuYwnLeuKAjYVakRnSEhpJXVTMU4by5yg6DH4/F4\nPJ7l40XyKmOtpV6vE0URe/bsm/dYGEYuNrgNQRASx4W2MXFSCoSArKuLkzffvPhgIZxvN4rd5DyZ\nZ8IJQZBl9A0PUxkYQKs2f24hQC6tklMp0Uq6KrJ056xZQ1atYKxFZxlZMt/6oIMAY1x2M/W6O38+\n4GSeUF5kh7dOVGs91/iXps6brDXUqojJCeLyLGJiYv6HhaUyldcyFWOFXPQGQY/H4/F4PMvGi+TL\nhGajngAQTblrhSCNIoyS2DYNoFa4qX7tSLOMnw9tpF4sIcIAgUAFkmzDIDz1KaRC8NBTnjyvKRAg\nCwLKAwMYKbnyh3cSGj0nkhsV48bY7LmVQJLCzAzMzubdhQZGRty+SYI9egT9d5+F4WHMiZF5MXWt\nmcpnfa3WU3X5DPhoOI/H4/F4Lh5eJF/iWCmpd3WRBgHGWoSUznGR688sjpncto2kUES3syjk+1lr\n5zX3AWijqQcByloCYxBCoIxAao3Vhnh6Oi9CzxfZ0hgsML5lC9XOTsLpqTNeg7CWsFojzavfyNw6\nYnLrRcP7vG2HaxQcHYNGnjIszlRuIc0yxqOA/iyjaTZZR9VlwNkwenshz6pukkfDyY2bvFj2eDwe\nj+cC40XyOsBOTGLuOwilzhUfm3V1ceoZN2FnZlyKhQaRZVjlhGZQr9F79Bi1ri50mtI5epry4AZM\nY/CIcNXmZsNeQ6i2oIwlyBsCA3ACtlaj76GHnOd6wf5JoUClVMQKiapVnXg9g90irtXY/uDPOLJ3\nz5xI1oblmqQXZiq3Wi+00YxFIT1maUF8sSvLor8f9au3oL/4+fY7VKs+R9nj8Xg8nguMF8nrAeP8\ntudT2RS5uBRxARkaRB6RJhCEOkMGAdJaBo8cpT4wSNIwR+f2DPLBIggB1fpZny+LIkb37m1bSc7C\nkGpPL0Ypqt09KIBqFXTW3FelGWGj8Q/m7hvbksTZLMqAdZF2U6Mn6ZmeISiX4d575jzJaQZpgv7E\nXzqBfBbrxaLq8nqoLPumPo/H4/F41hVeJK8ySgUMDm5EtWuSWyatWcrtspMXYkyeagFz1oRMtK3a\nYkHV6/SOjjGzeRNZIXZCuVFJlgIRha4RsN5eLGtgfNNG9OaNueidL5KtgDSK0Eox29NFFgbug0DL\nclSa0H/qNCpv+hNaE82UEUndNes1K9uAcBMCx7ZupcMeI4gW2Eakcvt197hQjCWsF831L6O63I61\nrDj7pj6Px+PxeNYXXiSvMmEYsmHDphUdI4QgMgYVLM5S1jprZicbI9Bao5SaN4bRGJMPHZG4arB0\nU+usdfdhhOhwVg4RR6gwov/kCao7dqA7Op0fuW/APa5TRFcPorMTu4RItkKggwCRJkhjF1WS3U4W\nUyoxuXUrxWrVNeXlIl8HAUmhwOSevez42c+IazVirdl14ICzWoRhHiOHE8A2b/JTEsLIDRpppSU8\nfaH1IpyeYdfoBOH0DDY67fYZn3DDO8YnsN09y/9DrYeKcxt8g5/H4/Gsb4zRTE1Nrsm5lZKk6Swz\nM/Mn7vX09Dan914s3ve+P6BcLvO+9912UddxrniRvA6Ie3rZe/UNiIGN7B/aOi9LuVar8eCDPyHK\nPcRTU5P09PQ2c5RhLktZSkm1WsENIwEQzvLQ14sOA4QxpFGMCZS7VxIrJdYYTP41v7UGlplBLLVG\nWtqKZGnyISYib75TulkIt0qRFQqkUmGDYM5i0OpvXmIWe6YUYwP99ExOEWjtLBynTkK9jr37x05Y\nt1gvbJYSTk5hTp3A5teVaY0tRGSHPo0eGETe8tJlXe+6JW/w855lj8fjWZ9MTU3yb//2rQv6nM96\n1nPpywtgnnPDi+Q1ojFUZOvWHcRx4Yz7io4OxJOeDEAIi7KUG9nJYqZM8fAjhPseh+rrm7ePG11t\n86qzS6sAqBeLHL3xRleIrSdMDG2mGsdMDG0mkZIsy/Js5xrgPu2aBVP30Kk7nwBrlMstFiK3T1ja\n9tctnBuSpojmWGqDiiJAtOQiL2jss3YuBq5lu85Fckd51olkY9wkvkZWtHWntcWiE/thBMWO+UsS\n+fqNwZwYQR8fZsJo+k6dch7lpTKXz5OL3SDo8Xg8Ho9n+XiRvEY0hopY205BnhtCa2S9jlji634h\nBFI6K4YxaXN7EAQIIQirNfpGTmC6u+kbOUF9aAjywR8NIZ9laW7bAOIYEcVQqUDqRLQNJCQZSkD3\nyAizg4NtJ/kZKZ0tIwzQiaD3+PFmxJyRkkJHB5WNG11DX6UyX+zCnEhOM5wQN22Gj7TQsGnklWQO\n/XzJMdaRtey0ljDTkKXUrWG0u4vS7Z9CKrWizOUVsVK7RrOZT55934vMciwf3hbi8Xg865c3vOE3\n2bv3CqSUfP3r/0gYhrz2ta/nOc95Pn/2Zx/g3/7tX+jv7+fNb/5dnvrUp2OM4U/+5I/48Y/vZHx8\nlE2bNvOiF72Ul7705Us+h7WWz3zmk3zta19lfHyUHTt28upX/wbPetYvXcArXT5eJF9mCCGat4Xb\nJBCmKdJad9/6WC6M5x3X2Ym4ch9SSqQKkFJQKISko+PI+w5SGh9nfOdOkq7F0XUGgVGSyU0bUcYy\nsWkjYbmC1BqjBFopumYrEEVOzDZEckOgN4RkoOaGkCxhwVhEHlFHHEPY8hbPK88SiJsL1aBCd+4g\nwGqNPTGCHB6GgQFsINBJCVu37TOX15BGM58dH1//yRfLsXxEEWLvXvc393g8Hs+64xvf+Ed+7ddu\n5eMf/xu+/e1vcdtt7+c73/lXfvEXn82rX/0bfO5zt/Pe976bL33pH1FKsXHjJt773g/Q09PDwYMH\n+JM/eR9qF2r3AAAgAElEQVSDg4M8+9nPaXv+v/mbv+Kf//mbvO1t72Tbtu3cc89d/OEfvpu+vn5u\nuOHxF/hqz44XyZcIWaZRxtketEkxmasUq+lpur//74zt3UvW1dWsXFvbsEyI5jYtJZXeHrSUpGGI\nwX2qs9Y2LRbGmPl2izBExDEiCBFSIAohlKsuh1m4LGax0J4BSCEQ2hJkmctvNoZNh37u1iYl9VKJ\nrLMTkoS6lIzsv4qhew8SV6sLLtw1LS7KWF4OoWtadBefwYmTzirSwORxc0cOwxV74ZHDMFuZ52k2\nQjAVB6SlLrJffsE5pWKcjbPZMC6X5AsRhtDv/XEej8ezXrniin3ceuuvA/DKV/7ffPrTn6S3t49f\n+ZUXAvDf//v/4Ktf/SIPPfRzrr76Wn7911/bPHbz5iHuu+9e/uVf/r+2IjlNUz7zmU/ywQ9+hGuu\nuRaAoaEt3HvvPdxxx5e9SPasHKVaEi/qKcYYknrajGeTlQomyzBZitZZU/Da3C8shGvsEwKyOOLY\njTc0vcntPMlaa2ZnZ9A6W1aMnVhyqLVDGoM0BqTkxP6rkFqThSFJsUjf2DgUi1gg6e7GhuGcRaIh\nvEOX0iGAKEkWTQVcNsY4gSxlS7U6f45CAYr5rZ6AzrBhBGGElQJMhhkZwZ46OZeKEcWLn+Ncvczr\nNDXjXLCVCvZHP/SWCo/H47kE2bv3iubPUkp6enrYs2duW39e6JiYmADgS1/6O/7pn/6ekydPUK/X\nybKUK6+8qu25jx07Sq1W43d+57fnWVG1zpY85mLjRfI6Jwwj9u+/Fq01tfFxjlrL9mtvpJBXHGvH\nh3n02FE6u7oR/YNMTk4ghKBarSClXGS9AAjqCZ3T09S2bl3kSU7ThI6OrmXmPNt5d+33EBghQVpM\nsQQCsiAgLRTIZsrUO9xo6SyKqBeLLYtUqFTT6GGMK1V2/fRBan29TkymSX5ryVReDlK22BZclnRk\nDDuPDhNmGUyMuw8gD9zvXhsgsQZTraEF2A2DZF+4ncwu/mhwPl5mW62i7/gK6paXXNpNfUtMB/R+\nZI/H41n/tCZngbNgLtwG7tvqb3/7W3z4w3/OG97wFq655jpKpRKf/ezf8NOf/qTtuV36Ftx2258z\nODg477FondrwvEi+BAjDiDAEMTBAx5X7KA4MNEWtjQvOMywVKnC+4YbHuCGSF6I7Ozn5pCcB5DFt\nc57kxnFnJAic1QLa2iBUktB18hSTQ5updnXmSRhz+xgp80EjPTx0/fVYKZnp6aYuJYOPPExYT8BY\nVJrSP3wcpXPP8uSE8xBv2ghjY/kUP+1EbWMgipi/9kwppnp76BkdXfLNLq0lThJ3rtakjDAABMIa\n0AbR2wd9/QgVzlWhG9SqZx1iYoyhLgUFY1jkLjYGpibPrZp8KUzr8zF1Ho/Hc1lx8OABrrvuBl74\nwhc3tw0PH1ty/1279hCGESdPjnDDDTdeiCWeN14krwOWGxcXxwX27Nl3AVfWHhFFiO7uPFEicoKy\nBZWm9I0cZ2bzJjd0xBiEztMphNOzUgg6pqeJazWyIEBZy2x/P3FlliBJ0Uqig5CuySlUZdaJx94+\nRG8PkQpctTXJK8m1fOiJlIuq2lkQuMi4iYnlv9kbSRlh6CrxRiOCAFEsIqIQUSohFgw0seCymmfL\nS562fuoUh0PF7lOnKLZ8ELG54LdtPq0vh8vFs+zxeDyeS4dt27bzjW/8Ez/84X8wNLSFb37zn3jg\ngfvZsmVr2/1LpRKveMUr+dCH/gytNddffyOzs2UOHjxAR0cnz3/+L1/gKzg7XiSvESsZT70WcXEN\nwnKZjQcPcuq660g7F6dQnDPyLEkTdu5eWFexblSTRe4xVllGkHuQZaMyKxUog1WSrFBw1dFGskUY\nElvYdWw4v7j865mzVb4vEDZNMZ/5G2zu715IJiy2u3uRXcPWavDQIYhjbLmM2LDhQi3Z4/F4PB6A\ntt8806bryO0neOELX8LPf/4z3vOedyKE4DnPeS4vetFL+cEP/n3J53jNa15Pf38/t9/+KW677X10\ndnaxb99VvOpVv756F7KKeJG8RpzLeOq1QBhDVJ5tm0BxPlgZkHR0YPOhHPMwBpGl9B49ytiOHXmF\ndGUfAGSaEoja/CEjaep8yK20epLT1D2N1me0HmRhyNTgID0nTzVF+qqgNXZqEnp6oFBc9LBQErq7\nFts1wooT+vV6syHzkmMVMp29b9nj8Vyu9PT08qxnPXdNzq2UpKur0HYs9Ur40Ic+umjbF75wx6Jt\n3/3uD5s/v+Md7+Yd73j3vMd/8zd/u/nzO9/5nkXHv/jFL+PFL37ZitZ2sfAi+TIiyzTG2NwCbOdu\nzP28kLNVr43RZLmQFEKglEvLqHd1cuSmm1BtGgOtBV0o0jU6yuS2bWRh6J6nMbVPqeagkSwLyIIA\noyRgycIQoTV9R45gVAA6IxPCTQycnICFdoaGJxmcTxmckD7D/zlkQcDYliE6xscJqkvutohIG3ZV\naoTmLIK/UFwk8my97gainIksw06MY0+fdsdMTmK+86/IX3w2YvPmNZkCuFo0M53ztbfDJgnmwN3I\np93UXgT7HGWPx3OZIqVasxHRQSDp6+sgDGfJstUtiD3W8SL5UqdYRGzZQtDZRd1k88ZSG2PQxlLu\n7kYbu3jcdE6jwW+hYNY6Y2ZmBqVUc58gkCRJSpqmGGuwSMSCKrENA8a3bwNrsPn0ah1FNBwGVgis\nlExu2IjSGVYIsiBEBwodhEhjGNu2DbCcHh1DpRlRtcLuk6cIF87sbvUkDwy4J6tW1sSCIYH4bAK5\nDbZex951p3uVrtiLPfSQs1g0MAampqFaQf/tZzA9Pe64Wg0ePYw5eABRraDe9QfIHTtW5VouCmmK\nPXAP3PD4ZvPeouqxz1H2eDwezzrBi+RLHNnRQWnvlWzcOESWZTz44E+QUjI5OYFSiiDT1Pv7KRSL\nlCwM3n03o49/vBvkkdOIiVsokpUK6OrqIgyj5mjrQiGkXK5Sq9Ww1qKUWlRJDqs1+oeHEZmmMjAI\n1rrhIy0iXdVq9D36KLXeXnQUIdOMeqmIShOkMS4BI2+cs2FApdCHnpohbCd+G9saY6mTdZbykGUu\n9aJQcF5uJefZEkygSAf6CE8kyCB0Gc3gBqlI5Wwco6PY0dOw3kXySpM2fOqFx+PxeNYpXiRf4rQm\nXtRqVZRSeeVX5Dfp0iSkRFlLNDuLshazzEqrlIogCAiCECkFYRgSBOm8DOaFIlkCYZI40R3HiFIJ\nkgSbDzdBCII0o/fECU7196HjCBd7IeYa9Sx5w15uRw5Dju7ayY4TJ11cWysLPckNn3HDw9yIdjOm\nOZra/ezus0AxNdB/xpi480ZrF2FXLsPp01CpNB9KSiWOXHM1O0bHKDx8aM5ukGUwOQnTUzAzg/nS\nF5BX7rskbBeLUArR2wvT0+f9HN677PF4PJ4LgRfJj0GC2Vn6Dxxg7PGPJ1sDwWWlJC2VUJWKE7pS\nOtuFklghXbOscA101VLJNQDiLCLVzi4EOB+1lIxv3QoWjBAUJyZco2ArxkBSd+K44UluiOhaFVGr\nEXV3IcbGXDVXSpfznKbu93qNTMqVx8St+EWxcxnMQeBuDYLArSuKoFjM85mBVEKg3HYpsDPTZ8xh\nXs+I/n7Ur96C/uLnz/9kvvrs8Xg8ngvA+sjOeoyz3Li4er3Gww//rDlC+pwxhrBcPq/Ei3mNgQtu\nSUcHw098IklHB6axLziBiGvgs7jkjcZNGoPKMqTRLpfYGISxqNRts0q5yX0LkRKi2GU1Dww4T2t3\nN3R2QHc3caHAruMjxFHkxGYcu/sgcPdh5CrKrdXmVU4CaRDVauy8/36iJHEV88ZNSjcEpZnPnK8r\nDN3jrcNb2v0txsfRn/ssdnx8Tda91jQa+uzs7MVeisfj8Xg8TXwleR2w3Li4c8lT1lFEOjCAjCJU\nmp7PMpsYY0jTBGM01uYWioX7KMnE0BBZoDC2MQmvZVZ7HGOkRBhLUKvTdfIEM4MbcutFjrVIozF2\nrvqchCEnNm9iaOTEnO1ioSdZSpiZdhXlhjdWa/d7o2KbZe73JHGjqCtDMDExf3rfKiONIa7WVn8y\nntbYifFzm9a3HmjT0OfxeDwez8XGi+TLkLkoOAtRRL2vjziKMLnAtsY00y9aEy+WSr9YiJSSMIww\npn3jHoCq1emYnKIyNIQOQrQx0EiGEAKVJMh8/LMC+o6PUOnrQ6tiYzEtHmXZHChihSCJo8W2i/kL\nhO4eKBWdcAZnr8hFs4hjokwjosg10/X1Q6kEfX0wPjF3jgtBXrm2WJIoIsoyZOPDRJrOr3DX6246\nX4NCYV37k9eM3l7Uy14BXd0XeyUej8fjuYzxIvkyQilFHMdUKrN5FJwTW8YYtM7ITMZ0Vyep0Rhr\n0EajdbbgHMESU3fmE83OsunHd3H6huvb+pp1Zycjv/BEwI2gFq1BcbbdDJ+zscIjlJqzLiwgrtXY\n9ZOfzB/osZA0xTmjBdYarNZoIZiMAnrTjGA1hiMaAzMzkGVobTh25V723HuQQjUPb274mGcrUK/B\noZ+TffhDzTHgorsH9cpXr8JCzh87Po751jeQz32+GxnejrMkX9hKBfujH561IU+EITYuYO+5G7tz\nFzx62DfxeTwej2fV8SL5MiIMI/bvv5bZ2VkefPAnRFGEEDAzM0NXVxcyiqgNDtLT109HRyeDgxvQ\nvX3zzqH13PCQMyGMIZpdwSQ/0fiPpWm7sLZpaxBpRs/wccZ370I3h0nYPOWicVu5tG6SV2IbjYRu\nW/78C+0W4JoAlQSEs4ukKakxjEUhnZkmWI0R4i3XD8Zda60G1QUTThpV+EoFDj8C+ZAVawx6egq6\nexDdF7mqugzLR9vki9bUi2p1+Q15+eARW6/7Jj6Px+PxrAleJF9mhGFEoaBdRnIe3RbHzsKQFTOy\njRuRxQ4X7aZCRBAuOsdyRDKADlSzMW8hrRP+3M+4jOC8ImyUIu3tg+5uhDYoJek5eZLJ3bvJohib\npVghMXGMEQIbBOggIIlCMhVQbwhpKaBUQmUZi6+kBSldBbbRLAdzDXutdouxcSdeu7vzlAmBsAaq\nNUgTbJK6iueCKrStVFz1eeGwk+XQKv5b19e6dmHcuTs63LqSzKV6xDF2esrF7F2CnGvqhQhD16R5\nhgl/Ho/H4/GcD14kX+LU6zWGh4+wdesO4rhw5p2LBbLBDVhx/o1jFpjYsoVESUy2uCHQTaE2+c+G\n1qY9gLSjg6NPeypKKaLpaSwCIySZkqSBy0q2UlCVAotAS8FsR4nDO3dQ7eigWohRjSSKXTuJqlWu\nPH6CMD2DwJdygQh1IcxCKedRFsLlKltcZTOvJFtrIEmxDz8E0mIfPerGTLeSpDBbxu7avWIrSVSt\nsu3AvYw87uq5lItWjAVhW9IvQrACjIa4MFf9XgfYyUnMt//5zLaLlZzPZyJ7PB6P5yLhRfIlzrkk\nXpg4pnr11ZjCWUT1GRBA3/Hj1LZsIWtTjbbWovOv3qWUaL1YKC/yPjfdGBasASMR2oAAKRQdM2WU\n1iRxTFivE2gN2qDTlKRYRCt1ZpG8BHGSsOvRI87/Gzm/LwMDzUqytAYzW0Hs2QuDGxBR0a2r9Xor\nFRgfQ5xDcoU0hqhaRZztb2ht0ytNmkGWYatV19BXqcxv6lvIhWryW8J2sSzPcjvOlonsm/g8Ho/H\ns0Z4kXwJsdw85QZZphf8nmGMIQsDyvv25RvTMx5zxvVkGslisRuWy2y8916OX3MNaUfHorHX7UZg\nN8uvFkQjV7nhX7ZujHXn8DD13j7oauQa62YyhA4D6kUn+lVSJ8zj7upRxMjQZoaOHCFezkW1xsnl\nY7GF0YggQBSLiChElEoI08ZiMjONTdN50/QgF9BZRqYUU5s30TM2TtBIrmi8Drb5nyZGStI4JqzW\nkFnmvMojI85iYmz+GtzrxPLsLNmnPt7WPgMgevtQr339xUvDOJNnudnQdw6JIkmC+cl9gEA+4Ym+\n2uzxeDyeVcOL5EuI5eYpN1Iu6vX6vPQKrTO0zqjVqmitiaIY2SbqLI5jlFLNSvBKEcYQrqCpz0pJ\n2tGBLJcRYQBBiNUZVkgypbBANDNDUK0yetVV1Lu6yLq7na42BlOrYcKAQx2dqDQlKs9y5cH7CGF5\nkXGrhdZw5FEYG8NGLWI1SWF6mkwKxjZupOPkKYJKxVlFGlP4Gl7mlg8PSbHIkeuvY8c991JIEldd\nl/nEvkYlOx+MInbtdtP62lGrYicn1u20vkZDnz0Xf3GlgvnBf7gPavsf55v3PB6Px7NqeJF8GdJI\nuVgocmu1GkePPsLGjUOcOjXC9u27KbSxXCilCMMIrauLHlsL0s5ORp74RDZ///tOBOZ5yE0a8crW\noowhbr0uYxBagxCEtRrCGJJCjA7UmRv51gKlYMdO6B+Y10hnKxWYmoS07sRwsejEsNbulmdAA2dP\n8BC5rzr3UxOGoLV7viWa9yysim/Zzsw4od3usbExqFRctbiN9cOOjc2NCz/fdbT4lM/0mK8qezwe\nj+d88CL5MiUMo0VBC0IIOjo6KRSKBEFIoVCgUFii+ngWdBQxvns3Om5vYpBJwpa77mL4F34BvdLq\nZSPuzdqmT1eAm85XqdBx+jTlTZswUeSqsVpjpSSoOxGmC/EZxWa9UGBkz26Gfv4Qcbm8/GVZiIxB\nnME6LMIQSqVFAs0GgbO2NCLoGt7lXCBH1So777yrrbA3UlIvlQirlYs2R97OzKA/9hFXkW73eJbC\n5BQcOwLDw5gTI4iWD2C2VoOTJ5AveBFiw4b2T3KWHOUmrT7l3l7Ur74Q861vLn7Mi2SPx+PxnAcX\n699cz0Ugjgvs2bOPeAlhuxJ0ocDEnqVFsrCWKLcUtMbBAQui4dxNS0mlpwct83lzDTEZ5jF1SiE6\nOlD9A/RMTRMMDCK2bkNsHnKV2WIRMTSEGBqC/n6QSwstKwRJsYiVK7NgxMawu1InXo2M5AVIY4gr\nFWQbi0paKPDoEx5PspSd4kJQqzmBHMfQ07voJgY2IPZeAX0DLnGjq3v+PlEE5TLma1/Fjo+3fYqG\n7WI5jX02STAH7oYkQfT2X7gJiR6Px+N5zOD/ZbnMqddrPPzwz6jX239NvpYYKUmVyn3Ri4Wl1hlZ\nlpJlKbU45tiNNzrx2iqoXbQFLuJCOj9u474RhyZlSzxa4CwJ6w2tnae4MUCkYbVwWXktN9McVY0x\nc9vavH4XhULRVcmDFX4JZdz0QHvqBHZqqrnZjo+jP/fZJYXzkqQp9sA9rkmykXDR27toNzs7i/nR\nD7Gzsys7v8fj8Xge83i7xSXO2RIvziUibrWQxhBqTaaCRRFwYaXClkMPM3bN1WQdHVhrMcY0XRKt\nSRjrRiCeIzbLYHrKVcfT1KVUtDTuZXHM1I4d9BwfIUizuaSPNJ1r7rMtkwovMrZex95152J/ckP4\n1+swM41tre7WajA5gb3nbrL//VGC17wO0dmJHRvDDh/DTk21ryAvw4LRHCxCm1fI2y88Ho/Hc454\nkXyJs9zEi/OhEQsnhECpRpScE21LTdtrNtvlxy2MgJNaU5qaYtIYdK6M3X4rX58FjDGkWQYWNJZ6\nEICx1KUgE4K6DKBQBKWoxzFZfq+iOiaKGNmxffkxcStEBAG2uwfqVVeBjSInfBsiuVBgbNdOOkbH\nCBq+ZZirmjca9ZbACEEqJSEX6KuhLHOiV6k8SxonjsfH3GMA1fkxeM3phlOTcPeP0R/+EBQKzqv8\n6GFspYJ481sXRdS1HWXdgq1UsD/6oW/U83g8Hs+q40XyJYQxhjRNCMOobXTbarMwSk5KAWiSpI4x\nGVprrGXRWtIwZHLHdrqPH1/x9LmlsFKSdnYuasgzAqqFGAM0vrA3wKFrHofKEyRkvc4je3bA9i0g\nBDoMmO3to9pRojhbYcfo+NrHxAmBqCdEMzOIWs1VWxu2C9OS1pHpOT3cENINW4axIBd/KEnimKM9\nnexMNYU2+c1rRhhAGDVW4dbaEPYL0cb97ZRytpjuHuclDyugFHZ66twi6qpVXyn2eDwez5rgRfIl\nRJLUeeSRQ+zefcU5p1KAq9jGcbx44t0CFkbJKSXp7S1x4sQY99xzF1NT4xQKJYKF/tSOTpL9AWp8\ngobiW9i4Z4UgDUNM43d7hqo0lnqpxMgznkFxobdUSmzBRaoF3S5NQacp4eQUgRAE9Rp9hw4xcdV+\nsnoKSpIJiRICFYQkvb3osXEn4lI3nGRNmsCkJNaaXQ886IRiqTRnT2hYZYTIPdXuNYuyjJ333ouW\nyvmypVj0IWHd0ZrcMQ+RX6vzk7dG1lkEHD2CnZxcOvliuazBBD4fK+fxeDyPTbxIfgzSSLlYDq1R\nckEgKZVKFAoVlJKAQErRtqotpZwbotdG/OowZHJoM4mU2EqFjpMnyQYHMdH8EDRrTcvPS1RJczuH\nzJM2rBCoYtFVa7VxFdhmE5xFJilhuQxpio5jEiAD6kpAqYgSknCNhDJKzReRjYxkIXJviswbFZ11\nIq7VqRVL5A+u/prWA9a6DOXlDq9RCtHbC9PTix5q9SevGt7X7PF4PI9JvEj2rAk6jpm64gp0HLWt\nWKs0pXfkBPUtWwAYOHKEak83Sey+vp/zL0sa3mchRNN2Yc8gYq0UTGzfhtWacHqaeOQ449u3k+gU\npCKsVOg+fJip3buodXVxeHCQahBQHRpCjY0SZZorHzlMmGVLPseqkQt3IyUTW7ey4fiwa96bt0+j\n6bE1GSNPv1hvLLWmxnq1cCkXlQpYm4/sTt22iXHszMxZR2eL/n7Ur96C/uLnsdUq9viw8zSvweU0\naETOyafd5KvJHo/H8xjBi+RLiLMlWZyNer3G8PARtm7dQRwvnrS3mphCgekrr0DPzjab91ob94S1\nhGnabDQL0xRhWSSoRbOpz/2edXVx8uabz/jc1lo0AhVGqChCqgAVRahKCoASgq7JSWYQSAShECRC\nECLmJvYptUgk16XkeClmSzVZnazk5tS9DKMUE9u20TcyQpCm83aLpmfY+cM7CWtV5+dNlauO2/Uj\nlI0QpHFMOD2NXFgRbjRyGg1BCPU69kc/cP7lLIPxcTAG/b8/ijYa9ebfRW7d6o4tFNqL5kbqRVrH\nHh92iSHtWC37RSNy7obH+2qyx+PxPEbwIvkS4lySLFqFtdbZRYuDa2WhJxlAA5vuu4+RG64nbR3p\nbJdO0TgbzgqinBVDSmR+DmcUcfcSUPl9YC1kGh21P58VOHvIaqXSNRrZWj/0KLUog1haS1yrObEZ\nxRDkIrnhaTbLtCmsIUkUceT669jxozspVKtzn2qsnWtABLdWncHkpLOVWOt+zzI4egRqNfRffQzT\n0wOA6O1Dvfb1S6ZemAceAK0xP7kPsX37oirvmtgvPB6Px/OYYB1OXfCsBGMM9XoNs0RFsSGsw4Uz\nqlcFizEu37j9zbY05c1fX1ooMHL146iFIYmUTGzZQnlwEK3UgiY/M29C3/lgAGMNRmussRjt1pll\nGqMNmcnIpEQLQV0KalJSE4KqkqRr8vrh/NTGEOb2A7R2gnHeTc95qpO681rX687HOzkBU1PYdVJR\nBuamJUrZHC/uBrw0tucJF1HkJvgVim5bHLsPCZ1dbkpfHLspfwvzmBdiNPb++1z29FqQj76msPjb\nFz+sxOPxeC5ffCX5Eme1Ei9WQhAowjDKNV22KHDBWovWummxcOJ2fvnVBgHp4CBKSsKZGfqHhzHa\nMDu0GRPHS3qSzxUXFVfAYokCRSoFtUBSV5IZY4hPn2S6q4tswyAmCDh0xV5UbhuQUhCmGTuCtRHK\nca3G9nsPcuQJj5+bJNhKXuHGGicow2Aud7i3DwoxQsrlN75dLBoNipBX0PPP6I14uDw+ThTdVD8L\n2Olp9B1fQd3ykiWGjUiIi81mxzVZdhjCUqOvV9DUZ9MUZqahq9ud0+PxeDzrGi+SPSsmDCP27LmC\nmZkpurt7ieP5IziyLGNqapKOjk4mJycQQlCtVjBGAyIvLlqXgCEEEgiTBKNN07/cYKEneaU0G/2C\nABsECGuR2iDCCFkoIuICMZIt99/PiV94IrZeB6UIO7sIrJsAaIOQBIGensEmqRtgoRdUbmtLeGKX\ni8j/I+RiMWYsCEOzEtsYLmIthCFRmrFrqkzYptK5rmiO3iYX9PmHpkaVPLdl2GoVZmddU1+thh05\nvuREPtHbh7hq/3l9gLpgTE6iv/h51EteBucbdefxeDyeNceLZM850dHR1RTIQZsKq5SSIAiQUjQn\n7kFD7K5c0ESzswzde5CJJz6RbAUDJxqNfsZomJ1FKOVuUjZ/llHk7uMC0hisMQRZRmCcaDdAioTx\nCUjq2OlpZ1BegOjugdnykmupFwuM7H8cQ4cPO4/x2dYehkxt2kTPyAmCxmjqhekWaYo0BlUug9Zt\nrdK2UnHWjAuAkZJ6qUiYuHXNLSJvNGyso1yeexsY67zKExOQJnDfvdhCAdIMalXssaNoaDuRbyE+\n09jj8Xg8q8W6Esm33347n/jEJxgdHWX//v28613v4vrrr19y/09+8pN87nOfY2RkhL6+Pp73vOfx\n1re+lShaovPKA0C9Xuf48aMXJOViOeg4ZnLnTorDx91X7AsGj0BegazXMVrnFWmHMWbFXmUrJUln\nx+IYOaUQGzchshR5xVVIpZBSEAXi/2fvTWMky87zzOecu0VE7plV1ZVde3U3e9/YJCVKHtlDaiSB\npi2BsoeyCBn0gKIs8ocFDSAKggCBIATwlwBxhDFoiAbJkSzTI40tESYoCRpoMcUh2eyN3S32wu6u\n6srKWnLPjIgb995zzvw4995YMrIql8it8jxEMCsjIiPuzcyueuOL93tfkrUG3lPvQTz7NP5P/jP8\nkyfXP+7aGuo//gcr7DqvbzQgzTAIkkpuJVHaXgz5+a0/ziwMmT9zmqH5BfxGw4riuNlOt9DaepK1\nwSN3qMoAACAASURBVLz2ynqbRkGSWnEfx7uetJxWKlx54H7Ofu9FKj0+3SwIWD59irGr1/DtWwb2\nBhtrYm0kWWa9ypXI+pRVtrVGvt3KNN6FkhKHw+FwHGwOjEj+2te+xmc/+1k+85nP8Oijj/KlL32J\nj33sY3z9619nss/brF/96lf5nd/5HT772c/yxBNP8NZbb/GpT30KKSWf+tSn9uEMDg/GmIGlXGTZ\neh9slmX5QlyG1qa0V9jnBiG6n1dFEctnz9L0PdIgWLe4B5AFPgt3naChFbpjCmuMLm0cm/Utp8PD\nzLz3vfZ5ehbejBRoKVFhgPB9tBAYD5Tvk1SraM8jGaoiR4bXPa70PeT4hF02a7XaN8SxzQIulvLS\nrJ34YDQYu7wXNhoIs8ECXrEM18+TrDXivvttzXMfTKMB9TXEQbdjbITBxsbNz9vluTRF/8XXkT/x\nU7csFhkkLiXD4XA4jh4HRiR/8Ytf5MMf/jA/8zM/A8CnP/1p/vqv/5o/+ZM/4Rd/8RfX3f+5557j\nqaee4gMf+AAAd999Nx/84Ad54YUX9vS495utZCe379uvNnirz+sRRRGtVguluvOElcrIspR6fTVf\n7Otc4APrS+7JQwbGZ67SOHGi7+Ken2ZMXr+Bd+Iuhr//CouPPIIaHirTKex9dzYn1VrTbDZRSjE3\nd7PDKgJpmiIWF6ldu8YbP3gVvXBz3ddHUcT9/9vHCHpeOJj5ebL/83Nw9YpdTjtxwgrcNIXZWRCC\nqNHg/Pe+17fSOQsC5s+eYWx2Fr+PJxmlumqe+5Lujd3iVvhJwtRbl+xx907xTW65MAZu3rQLedrY\n75HnQX0N9YXPI05OIz/0LzGLC/a8jx8vi0X6cdjtF4f9+B0Oh+MwcyBEcpqmvPTSS/zSL/1SeZ0Q\ngh/5kR/hueee6/s1Tz75JF/96ld54YUXeOyxx3j77bf5m7/5m1JkHxVul52stSZNk7xe2t433umS\nGXZ574EHHkH1SVSI45g333yNLMsIwwpBELCwME+atsrcYugWtSqKWD59GhWG/Rf38vIRT2tqS0us\nGoOR3rrH2RmmjNLzcqtFIZKV0lS8gIk4ZqkSodYtKyparRa6WkX0SxmJIpB+nuLg5SLR2FSGspK6\n/3moIGD+7FmG5ub29T9YkyTtmLUsg7QtdMMs49zly6iigEXrripwLSRprUaQJMgswy4pFg+cf/Q8\n+2fftyK58F17eWRcEQnXamGazTL1oiwW8bz1CR+HvVL6sB+/w+FwHGIOhEheXFxEKcWxY8e6rp+a\nmuLNN9/s+zUf/OAHWVxc5Od//ucBUErxcz/3c3z84x/f9eM9TOxmRJwV3v1v8/NCDK1VucBXTJD7\niVoVRSxcuLDtFItBUpaPFOkbEqRUeL6HlB6+FyD6LCv2TtTvJEwcw5tvQOFhX1qyYj+ffEuliJaX\niStRe0qepqVITmpVLj/1JGefeZbK6qp9jM7Ckc0cgza2YW9xwaZf1OuYGzcQp07h/Zz9e8DcXD/h\n3ym3nObukVfZZBkszLv4OIfD4dhDDoRI3ohbeUy/9a1v8fnPf55Pf/rTPPbYY1y6dInf/u3f5vjx\n43ziE5/Y9HPYVratKzMvz3gtPh5UPE8ipcDzJL4vN7xus4/V+XEjgsCjUoloNHQpiouJ7HYRVmPb\n34eux2w/bvtje1Ldb2q97nF9zyZm+D4CU17fe8wij6+TUmB6fmesmO7/PTW+QBXTYooXC2DyP7cq\nVWbf8Q6mX32VqNPL3PeAy//rOmcp2TAr2OTTat8XiE38vPv9nM1wFX3xHhi2XmxdX7PT8UKwpSnE\nLbtsV0x+g6CdyLHuh2Q/ZEHA8okTjF29il8kX9TXKO0kWtlFvoUUXnoBlEZ/5Q8wl9+2x7G6gpye\nxv+3n0CMjGB8+7MpzrX3862cc3nuSZP0me/g33sRMdazOOhHUN1cnNtmj6Xv19SXyf7srwj+1w8j\njp/Y1NfejsPyd9ggced8NDhq53zUzncvORAieWJiAs/zmJub67p+YWGBqan+yzKf+9zn+Omf/ml+\n9md/FoD77ruPRqPBb/3Wb21JJE9ODu3o7frR0b0p8NguUSSoVALGx2vUcs9qv+u2wu3PeYjR0SrP\nP/88xmREkY/nyVJ09ntRUiz4rf9Z5At/QqDCEOMJVBSAJ/IFwPYUslOHSSnxPFn+paGUye0T7ee3\n+k3A2Cjz7/snGKUQ+QKY73vI3DertcbzJFElwPc9oshHV7qneXagqqjVfMKw+xxUJGnUIrIowEiB\nCnwyYzDCoGpV4mqVxvgYaRh2R8OVE1ZT2jGEEAgpwFjx5Hkeqe+xNjLEVBjSb8aoVYKOfMbGangT\nm3/LvvPnrJIayyM15ISti25VQkSlgsiTZExij6MsDPFy77TWectenyfoLBcpPi8+SpmLa88u6xmD\nV62CyggmJ8nm5wHwQw/1wrOMNJYIzp5EJTXq1ZCh/Fx7P9/KOXee+1YeYyPM8Gn0v/0Ycmxs09Pg\n4rkrIzXiARxDPw7632G7gTvno8FRO+ejdr57wYEQyUEQ8PDDD/PNb36T97///YCdIn/zm9/kF37h\nF/p+TbPZLEVMgZSyXBDbrPBdWKhve5I8OlplZaWJ6i2WOEA0m03iOGVpqUGrZTa8bjN0nnOj0eDt\nty9x5sy5vjFyxXMkSQZ4KKXzn40VxL0UPRNFu15B4RFOoogrD9yP8QPSY8epJylqrY4xhiz3wdbr\njfJrwjBESg9vZY2pZ5/l5hOPo7ECuXj+4ncly1SuydpxcsV1hY5TStNKNa3aEHFm0HHadfxpmhLH\nCU8//cw6n7ZJU/S5cwjpUV1c5Aen7kbnwo9z52zaSK3GW088zv3f+CZBPlEVaUa4VkdkNr3DJuEZ\nazvIL0opEj9g1vOIWimVft/bOIVWxvJyAxHevj653++2WW6QtDLIz1u1UpsVXSwppqn9s+fl9dp5\n+kYxSS7+E+m0VhiD32rZZT6M9SIb2nXWQtr0Dzt2R0sJ2iP1fJSQCEAZCfUmK4uryMU6Zi0hqw6T\nrSWIsI5ZbpA2E7LbnPut/nve7GNsCq8KawmwuUXK4rnT1QbZoI6hOJRD8nfYIHHn7M75TuSone+g\nmNjEwOFAiGSAj370o/z6r/86jzzySBkBF8cxH/rQhwD4tV/7NU6ePMmv/uqvAvC+972PL37xizz4\n4IOl3eJzn/sc73//+7c0Gdba9BVtm0UpTZYd3F9KpTRam57jlExOHgfkto5dKU2aKprNmDRVeN76\nx2iLYkOaZl2f9yKUwm80SH0P4/l02wnsgpv2fMxdk1QaDaau30CfPUdWqZRRc0Ap1rMspYiEQyn8\n1VW7aOav/3UvS+DyYysOr7iusEaALSZZ/l9+0n7S8ztTVHErpQnDCN/vSKkIQsy99yNvzjG+tgr3\n3EM2NITJcouCUphGg6xSQU1OEDTsYmUEnP/BG8S1PPatbPbujMgjz5be+HfZaHuSWWYQW/h5d/7O\nmMygjRXmJstsPrPX9iSjFMRNQq05961vE7Ra7cW9IuquOGCwItqT9rjCgOXpacZu3sRvJfaERMcP\nR2v7vEkKWqPqTUhS+11oNCHLSG8uIMeu28f+Jz9OJjxEpu1x682fe7//nk1mUHEL891nkO/90T1N\nmWgfP6g0g5sLiOHNT6I3w0H/O2w3cOd8NDhq53zUzncvODAi+QMf+ACLi4t87nOfY25ujgcffJDf\n//3fLzOSr1271hVd9olPfAIhBL/7u7/L9evXmZyc5H3vex+/8iu/sl+ncGi4XSLGoBBCEoYRSdLC\nGJULON0VCSeEwE8SateuE991Ai29nsdoN/VJKfGEsCkXQpT3Le5TvLNwuxdJwdoaJ773Pa4/8git\nbdhNbofve+taCE21ivA8dKWKBDxtQNkqZqO1tVAcEoTvY8YnIAzanuRWC5aXkVoTNTvSUzp+FkYI\nkmqVsNFAluLZkFWrzJ8/x9DSohXJYMVxmtj7rOV/6d8oRPeL9vniGFaWYXUV9Ud/gB4baz/t+ATe\nx395cCedppjnn4PHn9zblIl8MdDk56u/+t/w/vW/cbXWDofDsQccGJEM8JGPfISPfOQjfW/78pe/\n3PW5lJJPfvKTfPKTn9yLQ7sj6IyD67WqDBohBLVajRMn7iHLMl5++QXW1lbw/QApJVprWq2YKKog\nh0dojU8gGnXC/LjSNKFccOsYjqooYuW++9ZFsG3p2LS2Nga9h6+4fR89McFyUfjRiu10WynQGh36\nqCAikR6VrDslQyQpYaOJMGwYE7fnlMt5He2WUWR/WJ7XnVyhNQiJCgKuPPkEF//+m1QaTbtoaEyZ\nn+ynHeddimhKuwVSWNuG79tkjTTpENMGUxxLK8Zcm0XOzyFGx9rxcIeQssRkF1I7HA6Hw3FrDpRI\nduwuuxkH10sUVbh48R0AxHEzX9yTeZqItVAUiRBSSoTKCOt19NAQJi/L6KcHdaXCyn337eqx7wYi\niuCd70J0CuBmE/3sd20DX2ynq+bYsTJBoiACzt+csxaEAzpxznyf5TNnGLt8GV+pdllIkWzRe9gd\nS3t+kjJ16VK3Habtg7F+Z4BG/mppLv9eZBk0Y0gSePN1uHHN3p5mkCboP/gy3r/71TIe7k7GpCms\nrriIOIfD4RggLi/kDicMIy5evI8w3P7kdS/w19Y4861vEdS3vpRUWDe01usuyhjSIECVnmODBtIg\nQNOuy95tlFIoT6KisLxkYUAWhqjAw0iJEYK0WiUeHl53SauVgzNF7kPmecyfPkW2gUALG01OP/c8\nXpr2vR0gC0Pmz51tP0bxsyny/6S0y3zFFLtabQvrZmyny5XITrQ9iVlespaMnVJUX/f5/pt6Hf2d\nb2O28Xs7UJaWUF/5I5tf7XA4HI6B4CbJdzhSyr7pE3cKhTgGQ6tlBVGRLqF1RqYV8yeO08wX63Qe\nSbY4fZLEk2itdl0o25rrG+vLRrIMMzJMUBcMX52lMTnB5TOnkH0WDMNmzH1XZghUnnSh1zcdHgg6\nl+06PpdaETabiK7NyPxjvoiYBb5tFlxdw09ukxfdS5GkUR4HmFYLU19D7NC/KyYnN66+3qtGvPFx\nvJ/+GfRf/Pmm7u4myw6Hw7Fz3CTZMXBarZg33ni1FK27SbsdzyOKKkSRrcEOgpAoqlCTHlM3blIV\nNlPY931CrZmYvUaoNFJ6BPU6d/3t3+Kvre3KMRqjUSpDCInnee2LH+AJgZdmDM/PI7XCb7UIG03C\nRpPK8grjb10iqNdJAh8lhRWDWWbTNXwfpEQYQ6i09SzvN7qjba+ndQ/o+GgrpzXQqtXQUuLHLabe\nemu9QNbaPm6SWP/x2hqsrNhLo2FvbzZgdhauXIFrs7ad7rVX0X/wZUzR8LfP7GTqLIIAMT7ZtrHc\nDjdZdjgcjh3jJsmObeF5PseOncDz+sWqGVqt1roJrTG6TLjQurBI2M9NELJw/gJZGOZfZzCmXfoh\nlCJYXYXR0dyz3KY33cJ+zL3PlQrN8+ehUkEoZUU1EKQpMv9akSmCtTWEUru64GX91x2PLz2YvhsZ\nRmRDQyA9gtFx/Iqd/Hv1OiMzM6Rj46S1GkxNWXFcTAalBKWJWjEXVtZgF5I6tozMrRCdi3uq39Tb\nepKToSEuP/kEZ7/7jI33u3TZWiZ68pTtl3Qs8HVaH5S034sikk7pssSktFyM9DTl7Qd7NXV2OBwO\nx0Bwk+QjSJEsoXeQ7lDEyAWbeCvX8zzCMMqzhLPyorWdsGZZSkPA/Plz1iusdVd2MRiiZoPpv//G\npqe9hQ0jCwOW7rlYiu9+nuR+vuW+57Gywuhf/Dkyb+UbCJ5HNjHB3IMPWPHv+2WlcxYEXDt/jizw\ncwHo27zkovL5ACY2ZGHI/NkzZFF0m6mn6Z4wQ9t6kWZ2Wl483rlzZGHYXvYTuSguSkcoWv7y70dR\n7T3I74/nHeqUDIfD4XBsHTdJPoIkScLs7JU9SbkACIKQe++9nyRJCMMQ3/dRKmN1dZWRkRGMgcXF\nBWt9yEV3o1G3qRd5prLn+Yh1EQn9sQUmKUqJvIyksDxYT7IOAmYfepBWGKCUoml06VvW2np++wpl\nrfBWVuzEeRvYSXqfG4oECGNIlcIUUWhKk/gBnjIorckAksw23RVkGy/C7QcqCJg/c4ahpWX8NL1F\n9bS0E+HOtA4p7aQ48K1gzjIrks+fY2h+Hr/ZzH3MGnTHpLoQ3MXPRWWADyobrC95H1IyTL2Oefkl\nxEMPl5nJjIzu+XE4HA7HUcRNko8QbYvE3k/DgiAsPcG+HxBFVY4dO0EUVfF9P/cVi/IiRPdFRRHL\n996L9n381dVbClUhROlJrlTsJYoq5fN7lQrZ8ePI/LqqkKVvWUqvFOeDxBhDdnOOib/6K5IbN6jX\n6+1LKyaOQrxWzErgMxcFzEUBS6FPKgVraMT1a1y65wKp0TZjubgoBZVK3zbBA0MulMNGg3NPf5ew\n0eiYCguMkCTVKrrIVxaSfkkSNlM69ya3WvaS5IUjSWq9ymtr9rq4CYtLB86XvGVyiwaNhvUlT065\nRTyHw+HYIw7wv6yOQVNYJOK4efs775Asy7h06Q3On7+nK10jy9aL2yzL8si2dq1yp+3BGIPOS0Si\n1VXu+sY3uP6jP0ra0bDWS+dCX+d1xaXzus4Wv0GL4wJjDEYponoDzxhUjxVBTx1jfmKSWlTBL7zV\nKyuIZhOvNoRZq9OamEA/+BCi1wfu+zbNYKN4tT34eQtjbHrFLSw8Umuiet1OfaUo0y1U4HPlice5\n+O1vU1mt20lx/rMvi0aSpP1ARW21fWZ7EfQI6/zPKkM//yzy2jXEQfAlHxBMmmKW1zDD4e3v7HA4\nHEcUJ5Idu4TJ66it2PE8jyiKaLVa66LQCl9yliX5cFGUnuLOpbzdErB7imCdUAes51UIZBS1FxCD\nwN438FFRSBBFVgj2pD+YxhosLcP4GMLvP2UU4xN24rxLREnC+ddfJ97Ah5wFAcsnTzM2O2sFb2GZ\n0B22Fm3s9WlGEQvnJ4ktGul8LN9n+e5p+1ithNJukXRUWqMhAVY1tFqY1QH6yDs5KF7lrVoxlpZI\n/5//gv7FfwPh8O3v73A4HEcQJ5Ide0IQhDzwwCNlhnEncRzz2mv/wOLiPBMTU/i+z9zcTTzPKwVj\nX2G5RXqX8orPexf3gDJ72Qp26yfeVwSI02fwP/gh/J5iGDM/j/7vf4b8p/8cMTXV/+srlX2dpGZR\n7i1eWLAiua8nObdadHiS+z5Wp0+5lQtjIe3wuHMZsFjqU6q9zLcNzMIC+i++jvyJn0JMTnbdtlde\nZdNoYL7zbcRDDyP6JGOU9dU7fR6Xr+xwOBwlTiQ7Bo7n+UxOHmNxcaHr+iAI2ejfXd/3EULknmW/\nw588GNu8yZfy7HS6uM5e3/AkVx98gFZeLgI267kQ5UKAUhod7G1roZESFYYgPWse8DzE1BSi37Jl\nrWZv2+GC2q5TLu61Pcm5ukV7Hq2hIQJjkL3FK7d6jPLP5R3a9otBvPugFGZxYYMouy2wk6lzs7m1\n+LjtLvktLaH++Ct4/+LDcNB/lxwOh2OXcSLZsS201qRpQhCE64RsEARMTR1nZWV5n46ujVAKr9HA\nVKJ1S3mFpSOsDSFGRgi1Js2LHqKo0rFACGmaInfB7tHpu+5sDwTQtSqts2eoxC18Y7/ncUfNsud5\nBEFIK014uxZxJk04NN2KeeNeWG9w+rnnmH34IdIo4spjD3D2xReprG0itaOcGveWlXS0+RkN2uYl\nm5s37X32aaq+lwkZg5osOxwOx1HGiWTHtkiSFm+++fpAYuSKNAo2EfGm8gU+FW1uquuvrXHXN77B\n7Ht/GJFPq3sX9+yCX9vWAZTX2dvtwqGOKjQfegg9IG9vEVUXrK0x/eKLzD78MI2OYyiEcyuO8bRm\nbW2VV155qUwniaKIBx54BGMMiZS7Xq8NQNzE6DzLWHrtOLrUtgAKowgbDUSmco9xzzF1Ne4JZLHw\n1yl4s2xDq0X5tZ33BzvlLewWBVmWXy/Q//VPMN/4O8D6s72P/7Jb5NsmzpLhcDiOCi4C7ggShhEX\nL95HGO6tfWAjoqjC6dPnkPL2IllXKqzcd9+OhKpQHQ17W8BUq8QPPYypDi5b2hiDNNoKS61LcS6l\nLCPrZG4lEEIShiFRFOF5fr4EuUMLwGapVOzyX6tlBVKa2AXCIooubkLSIqrXOf/dZ22KhdZtoWyg\nLP2A7kKQgsJ64fu3jLTzk5TxKzOsnLzLlox0Uto3Oj4XwNAwjI1DFGGWFm0L3xYwzSbqT/8rZmHh\n9nceJKVFQ2KSBP38s9uqtR4orvLa4XAcEdwk+QgipeyKZdsPWq2YmZnLnDp1ds+PJajXOfWtb3Pl\nPe9GDXdv9m+0uKe1JrvFdLOIseuqne5BhSGLFy9uegpeHpP0UEGI6bK12PbCOI6RWbLh1w4KMTKC\n9/FfhjjGzM+jvvB5GB1D5FXYen4eFhbADyCK2r5bpWx2cRigA5/F06c4/nqMr/S2/cJ+0mL0+nUu\nP/VOavMLtKanGZu9hp/e/vtgtCnPoaRSgYmN4wTtCWpYXtq5L3mLFBYNc/MmpCnm+efg8SddrbXD\n4XDsAU4kO3aFdnFJ/18xYwytVmudRaDIUdbaIEQe5XULbK5yV3BuF132jNsInE5P8PrFPcXy8tKG\ni4RWRKcMDW38Fr6KIpYuXlyX0mGMwWu1OPXss8y86ymSoR7hHvo07p5GSg8zdxMpRZ4prXjllZeo\nxg3kHlgtxMgIFBaFSgWqVchFMvV6PhU24El7sUdfLtFpT7J4+jQTl9/Gb8bFyduSke88jQp8eu0W\nWkrSSoUgjpF9MphVZ9JFTzQeRoPS9rhe/T7mymVrC0kTK/LzdyPE+AT+Jz4JE054OhwOh6ONE8mO\nXaEoLtksvu8ThhFaK5Iky1MmDMYUtdIGpRRenidcoLXGGPC8doV1J6U9Qysr5G5B4U+G9Yt7SZIy\nNjaOv4ENIMsy4ri57TQOk4tFoU2fAasEdGnBsMdlXxx4nqSVaSpRxXqE95K4WTiCaaUps48+wvT3\nXyFSmnaZh7Y6WSmCRpO01yYjBFIpokaDeGyULrtFlpHUalx+6p2c/e4zVNbWtn6MQliRXKlAJbLf\nIwGMjlmRHzcxS4uYuZuoSGCWG5is+3fIzM9D055r1wS6YJ/j9aC7vrpfRNw6xscJfu7nkZOTsLY7\n70Q477LD4TjsOJHsOBAMD4/wwz/8P6GUIo5jXnnlJcIwLEVplmUsLy+tE6pZljE3d7OMkNvp8tpG\ni3tSqrJSeyMGEVe3cR606Fky1Bgj8TyfZHgITpxATIzv+Pk3Re5PNkuLZf6waTZIKhFGK2jGEARW\noGoNWhGt1Tnz/AtcfueT+YMYu/TX+eMq/MMb1VK379i/ia/P/coYuCCAILTPqZW1idRqVviurZH+\nX19i2SiSVobu+R0yWQo3bsLyItnKMqJD6JtWC7G0iPebn0aePbuFb+IW8TzE+DisbFCKktdXbzYi\nTgSBjQwMAmzryi7g4uQcDschx4lkx8C5VTzcrejMUS6W1jpFqZSyr1C1k9XNH5+Koi5vsFAKv14n\nrRyMRcaN6LSDWLuF9UkrpfJJ9sbLaEVc3CDo9CeXj//mG/D1P4PakLU0jI2V02C0ajtiioU9A13R\nbZtINmljyia+eHgAbXFKYZaXESeOQdXvbgHMj8xUh+C1xOYOFxYTgMUFzNISNBo7P45bICYn8X76\nQ6g//sqm7r/lyXLBdvOVHQ6H4w7EiWTHwBlUPFzhT7Z/zvouz9nr2/5l3ce32ouKIpbuuWinzlrj\nr61x8pvfZPa9P7zjeuGNj1Fv2PhnhCALw3We26Be5+SLLzL78CO0qhW0VjQa9XJiboxhcXG+fM5X\nX315wxclRVzcIIUyHRYDmbRg+m64sAA3byIeegRRq9mmuGe/ayfKKysQBvlyXwhCkgUey1NTjF27\nTtiIOff0MwSdrXk7YmOvet9zqlYRXojQ/Z/bhAGiVusSnWYL4vhWzX0DZ4uT5QKXr+xwOBxtnEh2\nbIsiRm5QoqsTz/OIoiiPOLOCU6ksT3NoopQiDCOklCi13r/seX7ZnDdQsgyv3kANDfWNKNNaU6+v\n0WrFXWLVTtZTtFYY0/YcF41/SRQx+8jDVFZWu90HWhPWG6V4tl9rLRfFVFlK69EeGRm9hV9alXFx\nu2kNFZ4HYWhFcLHUZ4z9XmnV0YKXf5SCLIyYP2frqitJStRo2HSMXShuuR0mSTA6tQkYvbc1GpCk\n60VxswlZhmlsIpZtUM19Rwjna3Y4HPuJE8mObTHIGLneOLggCHnggUe6MoDjOObtt9/kxIlpbtyY\n5cyZC1Qqlb7+ZaUU8/M3B3JsnXhrq4z+9d+w8v4fR01MrLtdSsnQ0AiVSmWdb7rVim2KRcfiYSF0\nje+TVqvc9cqrNKenb3kMnZ7ltmDmtn5pdaua50EgPYgqJIHPtYvnuVvKnbX/3WKS3Jl4kQUBjfEx\nso0E1CYn0iZNSZ55BhVv4M/V2tpLXniuO4qvGcPSIvpP/m/kfe/Y3QW+ndRaD5K9tGQ4X7PD4dhH\nnEh27AudEXFKZevi4Dr9yQW+HxBFFXw/oFKplFaOfv7l/WJj37REak0Yx6haDZMLnVLwGoN3q5a5\nA46YGEfc/wDm1VdJorAs4uu6j9a2XW8TlphbTZI7Ey/y797GporNTqS1wjRju9znbyBCa32sQ1qD\nFJjVFSuiByySey0ae1VrfSucJcPhcBwVnEh27ApFDnJhi+ilMyJu16ect6ErS3kXhWrQaHD66ae5\n+kM/RDLaPYXL8rzfdQ1y+dedeOklZh9+CPaxJTFNkw0b/uI4JlOK1JNoo2nlmcUmaVm7hRIErYTz\nz71gxaQUZRuf9jwWT53i+Jtv4be2lrTgpSm1pSW8NO1/h616m32fLXlS/MwuI+4WzqLhcDgccLwI\nPQAAIABJREFU+4YTyY5dQamMy5ff4L77HtzR8l6BEIIoijaIR9sZXVnK28niHQAqilg4fx7P89dN\nRa03uY7QmkGss22HNE34/vdfpNVq9b1da03SbBDfdRd6eYk3qkXZSASPP4YfNzmZJYzfuImvFeCB\nsLXVWkoWT51i4soMfpLmcRL2cYuikWCLNdJd7HQJUGV2YtyPLLW3tVr7m6G8RSuGqddRr7yM/tH3\nsLVkEYfD4Tg6OJHsOBBkWcalS29w/vw9fb3OUVTh4sV3EMfNfTi6g02wtsb4839J40f/EXp0d3yi\nStnlP8/z8TewI1SrVfS999F84wdE584jxsYgjtHfewEdBMw+8CC1ZoxvsCkXRclHUfgRBPZ6Qyls\npdZ2ma8HIwRJtYrfatlJ9OnTHH/jjf65yTt5YaUyuDprxXDf2zUkLXjrza4Wv/KpxyfwPv7Luy6U\nt2zFaDRQ3/k25omHIRxAjF4/dtG77Bb6HA7HXrCL7xM6HFvBkCTra6o3S5YpsizNL1meI2wX4+zF\ntCPXOi57hTEGDaRBgIYNj6PreiALA7SUqA2SKwDQGm91BbEHb8n7vofvBxte5IkTJPffj5yeJhgd\nwx8bJ6jVEEAyVMMIYQWwzi/K5j7bqA/y6/W6rOJuBCoIuPLE42jPY+zqLMt3T/exqoidp2RobQWy\nlO0mwN5LGNlEjtExTLWGCUJ70Rp9bRYzM4O5edNOmhsNzPy8/bz3srq64WGYpSXUf/5PmIWFzR33\nNpf8TL2O/s63Mbdpp9wMIggQk1O7I2KXllBf+SNYWhr8YzscDkeOmyQ7Bk4YRpw9e5GZmcu7/lwb\nxcUVsXBaC5RSZbaw1rrLslG06u0mRbmK8T2Wpk+SSInK0jICrrN2zhhdugOSKGL2wQdJw4ilU6f2\nzWqxE0QUwTvfhVmcp/nmG3DsOHi+ze4NAltXHSekI8NkE+PMnznN2M05/EbDitO+mcntz/00ZeLK\nFVbvOtHn2U3XVHpHSLmB4BTWL1wI5n94qV2ykmaQJuWE2WQpLC2jv/T7iD5LprecOm/Rm7ztJb9t\n5isfFNyE2eFwDBInkh0Dx8bD7Y5/uNebvFFcXBELB7C8vMTQ0DBLS4t4nte1SLhxDfR6dFSh+dBD\n6MrWws2klARBiM5WGZ+9Rmv6blI/aIt2rfGaTdIoQgRhe/gpJa3JScLVNcZnZqgfP3ZghLJSCmPW\n+3T7lr54ksy3E/Es8G18W2AX5KI04cyLL3L5Pe9GRSHzp08xtLKCX9hqtihwszBkeXqasdlZa70w\nxWR6E4kaOyXLrED2PAh8G4sngNExqFat83dqgxizuGlrvnchIeNI4SLjHA7HAHEi2bHveJ7P5OQx\nFhdv/1Zy4U3upF9cXBELB+1YNilFftmey8hUq8QPPbytrxVCIIEgTZHQlXUcNRqc/s7TXH7qnWTj\n0TqHgIADFQ+nlGJu7kbfVBJjTJlT3fniI0sSVOCzVKtyffokF2ausqk5X2HP2CRFSsjQ/Hzbn1x4\nnveKwLdRckaAVoharbvKugfTatkCkzhet/xXWjQWF0qrRhd7tRjYeUzbrbzeDq4m2+Fw7CNOJDv2\nhcKCYAVuwNTUcVZWlgf6HLbW2pSTzc766v7HVFgfdsd+YdjAk5zXUpvcEtLv67IwPDBTZGM0SmUI\nIZHSfq/8tTWOPfscc08+QTa8fhHMCIE2Bqk1SRCiNAQqtZaEwhJR+JRv40kOGw1OP/c8sw8/ZKfT\nUWS9zhsf8N5MkreBabUwzzwNq2td1ozy9tyiwZXLcOkS+jvfgrPnrI2FvVsM7GIPLRkuk9nhcOwn\nTiQ79oUkafHmm69z4cK9A4mI66TXp6xURpom63zKne13YIW7MeB5g/cpG2NoVStcfve70H4AHZ7k\nzPdZnj5ptaJW6wRfqxIx+9CDpJUK/h4uG94OO5W3Pl3PQFiv4xnQcr13V3o+CMnc3XcjlYa0ZQVy\nkiBUSri6ikiSfFFOWe9tXz+yTbwIm02EMaTVKjOPPbrxQRZT5L2cJG+FTouGCEtrRkFh0TCNBsxe\ns1cOj9jJtLNo7BjnYXY4HLfCiWTHrhCGERcv3kcQrC/H2G06fcqdddZvvfWDLp/y2Nj4uvroubmb\n+L4/cJEshEB4PiKM8Htqqf0sY/KtS0y+dYmZH/ohkpHuSawRkub4ePk4BxV7Pip/MdKNFgJTqZAc\nO0aQJCSPP4kMQ8zCAt7/+FvOvPIq6ZmzMDoK09N2mtpskEURy1NTbY8x0Dvpl0oxdtXe3p1wkadb\nHODvWYnvgxa3tGaY0Adj7yOGhuw7CxvkVt8Wz0NMTtrnPco4D7PD4bgFR/xvSMduYZf3Nr/g1llT\n3Y9WK2Zm5jKnTp3d1ON2+pSLOut+PuX19dFi1zRVsSTYKXSFEAhj8JMEgZV//YTwrcSxDkMaDz64\n5YXCQaK1Js1SGo0mSR/hpbVGeR5LJ+/Crzd4bbiFJyS+Jzhx4gSe1kR90iOyIFjvMe5BKsXElSt9\nRLIhC0KWT51izBj8NLHT6wPcXmeKZcPe6xsNSLL2n4uPuY/ZLC2h//7v8P7Zz1jxexvE5CT+v/oI\n3sQQLO487q0fe+pddjgcjl3AiWTHgaCzprofRc31XmYbHxZUpULz7Pl1gn9vsf7qsNng5D+8zPVH\nHyXt8CYXIl8K++cgSfG1xotjlO9jlLIiuNm0l0Is9v15m7KJLw1DssAmZwD4ScLUW5dKQZ0FAfNn\nzzD0xpv4y6nNZVYZJssOXs+cUpjvPd+/Gl1rqNettSJpYXy/K2LOAFy/hvyx/3lTInlDtpmv3Jfd\n9C67hT6Hw7EHOJHsuKPZzTrrQZGFIYtnTjN+dbbreqEUQbNJUqkemuZgYQxhvYE0put7HqytMfHy\ny9x8/HG88QnCC/fiex40m6waw+jrr+OdOk2oFfKhR2w9+MI8VCsddglhVXa+ABg1GsQjIyyfupu0\nWoWVFSuSL13qOKDcbjE6Zr82scJSHESbgbEJF0SRTcjoJfBhPoMotO2EnRFzcdN+bW6/MAsL6L/4\nOvInfmpLonnb+cp7zKAW+kyWYZqNg/miyeFw7DsHdJvF4RgMRWRclKcBHERUFLF05gy6R7gFjQZn\nvv0dwj61zIcNobU9D2PAk4haFTE0RBaGLE2Mk0YRoedz/soMURjmddWSrlcHg1IxxmAaDWsHaDQg\n3aByer8oIuTWXYI8gzlof+771sfca0HaYvnIHUMxYc49/LdleRnz0ouwPNhkHYfDcWdwAMcpjqNG\nZxzc7TKMW60WV6++vWlvci+9sXDdt62PidtiTO+WKRr3yhi48jrKWuqu6/apVnv3MCjPAwwmjiFJ\nrXBtNq3FoPMcTc/HTT18btlYWbZiWGnIMsxrr1iRmaRQX8OcunuA57QDtNpYtKepFb3F7Wlmz6X4\nfu2VIB6kJeM2bNXX7CLjHA7HIHEi2bHvbCUObrve5H6xcEnSQimF1pokaeF5XhkTZ4wV60IIPE/m\ncXGDfeOlFMjGoIKA5bunSQMfnWf6pr7P0rS9rsBWbotcOx4coayiiMULF1BBgGG9iC//bLpfoGSA\n9n00kMYxQdJCrq5Y20ARB2e61XEWBmWr3m3pZ7dIWoj77odq1QrMhXnEBtnZe4pWsLgIS0v9I+uM\nsX7la9fsOWljJ8bPftcK5tUVTGN3lvA62VNLxi5nMpssgzS1Hx0Oh6MHJ5Id+0JnRFySbDPGagt0\nxsK1Wi2uXZvh5MlTRFHUNyauSMEQQlCpBCSJGrhItp5dm6ZhAJ0L8WKaHmQZ47OzNKaOIdOUtFLB\nCyOklO1K6w0KSPYaXamwcOECwfISSinSNCXpSKMQmS0OMWlC0vKZm7uJlMIK5uEh6seO03jH/Ryv\nRBz7V7+At7KCeu1VmxlcCF3PByHIqlXmz59naH6BoNlkbOYqQbPZ56g6IuCCwArPPi14ZnUF01gr\nBVPXqDpNyTyP5ZN3MTa/gN875VUDrLzORS9huHE0W2eWr8qfN4raX7vdSLijyuoK3LxhPzocDkcP\nTiQ79oWtRsQNgiIWrlKpMjbW7VnsjYkrkiKkFARBgFJFI99gKZbbdO5LltJbZ70N4pjpV19l5vHH\nMD2Tdjt13n+RXGCMyWPseuOJBVIpfA1K2sm8jdsTJFGFK0+9k+kwQgmBHhvF93z7tr4UhI0GQmva\nGXntizQGL8vIoggtJbJHsNpFvsv4tSErPvuhFMzMYFZWoN4AT3bdlmnN/IkTDF2/gd/rD9fGToAH\n2egnxMZWhl4LSokBozHLS5ibN9t11p011vtQYX3gGR2B43fZjw6Hw9GDE8mOA0FhowjzSWkv7Rzl\n3fdB7jXdtgRdaqDCbtGqVli6e5osCKDDbmGMsVN4rRFLSzA+cXDKIfrkQXtpwt3PPMPMu9+FHB4p\nf87FNFz2yciO4hbnn/5uvvDX/2evgoArTzzOxW/+f1TW1rpu85OEqcuX4d77NhbJngenTtnjqFS7\nkyXS1C51BYGdavcKVKXtffai0U9rWF1tC3Jb0Qizs1boJyn6z/4b5ht/Z/3dl95CX5tF5PnZnRXW\nZmGB9K/+HPXhnwW5Sy9W99C7vF2EF0Dg248Oh8PRg0u3cBwIlMq4fPmNDa0XRY5ysAfVsVmmyLKU\nLEtJ0/aluK7/ZftLU91i0totpJSl3SJqxoxfncVPUzzPTrl938fzPMIwopYmTP6/f4W3ujqI098R\nWRiycOE8qp8gNTbfWKj+U1cjBdnIiLVVFKgOT7JpX7T0WDx1GtWTDa2lpFWrlbnJm0UEgY2FK5Mj\nOhIlpGzXW3ve+steVV4bYwVyWbWdj9M7j61SxQQh+HlEnB9gghCjNfraLGZmxk6ab9zAXLvWP5N5\nQBTe5R3lNm+AqdfR3/k2pr77HmyHw3F0OSBjJ4dj//E82bXcB9ZuAYokycgyRZJsPO0Ow4h0h3Fi\ntpEv/zPgJylSa9vIZ0zXhFYIYQX1AUp4VVHEwoULXcLfGEMaBCyePsPk9euYPF0EDGJ1ldrsLI3j\nx0iqVW784x9jolpFr66SjY3iLS8TQC6Oc7GsDdqTLJ45xdjVGU4/9zyzDz8EQFKrcfmpd3L2u89Q\n2aKAMmVyRLcnGa3RQrB4/DjHr1zp9iUXnuS9jForRHFejEKjYSfKWsPrr9r4PK1tbvJrr9j7dhSP\nUKlg4hhx4zp69SMw1S592W6+8p6zywt9t8KkqfUwj4zaNA2Hw3HH4kSy445mK3XWnct9BZ4nGR+v\nsbTUoF5v8Pbbb3LmzAUqfSqg0zThlVdeHtixp7Uab7/n3VbgHFKKBUMV+CyeOcXozRuoLCNp1G3z\n3lqdsRs3WR0fZ3FxAaUUSr1AqDX6H/8Ytbl57vnTP8VTylpJhGjbIYRACgibzfIFRHH9VrvFjVI2\nVcIP1nmS/bjJ2JUrLE9PM/HWW92+5GJhbmV5HxIS8ng7IWymtDHWUlLJM8FrHf71zuKRahX0AjSb\n1pbRySHPV95yFfbYKPLhR2FsC819S0uoP/4K3r/4MBw/vv2DdTgcBx4nkh2HirY3eXO/uluNjCuW\n+wp8X1Kr1Wi1DEppfD+gUqncNqpuEBjPIxkeRsYt5s+fJw1DvJ6cZK01GkPi+6RKobP1k2yb/7x/\noqff915KaX3KUlBbXc11rQQUQRAQCkkWRSRhiJEyj4IrHrDj44D25YTnIcbHMVFlnSfZn51lYmGR\n1VOn1vuSC0/y6BjC9/dnhVLk/1ekeAT9rC7dqR7msBTUbNXXvMUJs/Ct11zsa6W7w+E4qDiR7Nh3\nwjDi7NmLzMxcvu19C2/yIDno1dUqipg/fy7/ZP3iXgbcmJokadbRZr0Y1lrnE9pd9J8qRbi2RhwG\nt1geFHnyhShtI/bP9rZCOPu+T1CpwsOPkb35BqZatZaBStWKJt8jiGNbRR0GkKVtTy7YqWrhF95C\nIoko2+x6BFPx2FJ2Pw+QBSHLJ08ylqYcFZm1l5aMw1KT7XA47kzc4p5j37FxcPsnUtvV1YPZ8u9c\n/LOXLI+P654Ct8tEbv+Yxfem3+JeBTgxv8BEdYiJicl1l7GxcUZGRjY9fd8O/toaZ7717dtUaJuy\nPbDre5AXo2itMcaQZRlZlqI8STo+TmN6mrTjZxM1Y848/wJ+mpIFAYunT6P3KUEhC3zmT58iC47Q\nvOGQWzK62GqN9SYwaYpZmLfeZYfDcag5Qn+zOxyWrfiUt0Jvq1+BUhnGKJTSaG3KiakVif3tCP0Q\nndNXuhf3wiwj8bx1aQ/tYzgYgsaes60hB4FIU2SjzvGX/4GFB+4niyosLMzj+x5aG3Qr5vWn3kl1\nbo77nn6GIMvaiRcGlPRYPHWqePDiWcrbtSdJa0MEQmx/IlAs5uk+S3oqzy3OFKbZtGkRaf5Mabb/\nQlJl9pg7K6yNsX7kLEPNz2PCGibLa88785WPQq5ykmB+8APEQw+vfwdhuzjPssNxx+BEsuNQoLUV\nVkEQ9k2W2Arbrba+Hf0W/wDiOObll19gZWUJrTWVShUpJVprGvkCW5alFO17dypZGDJ//hxZGFKc\nqxDgZRlj166x9I778x4NL68BNxhP0pyaBKNRp04RKGXTHObn7YJdpYKXZUy/+hqh0iTVqo2QCyOI\nMpJqlcuPP8rZxWW29XJIa9tiFwTWe9xs2ucvMFghuroKb/4gX/7LrR55+oTJsv3JH1EZXJ21dpTO\nCmvfh1YC9TXqX/4yWVhF5/8tdOYry5PTZa7yHcs+pmQ4HI6DjxPJjgNBZ011P5KkxZtvvs6FC/fu\nydLcduld/CvwPIkQEiE0Uopc6JuOyfD2BXI2NMTS+3/8QIiZwpuc1WqYHguEiiIWzp8HBF4RdSdE\n7lQuAiny6bj0gLx2W0hAtHOSAaE1YaOJQCOMIWw217XtWXb4QkhKiCJ8z2Pq5k1bV57XWQMQVawo\nHxmBC/dYAR3kectpXnOdJBvm+ZpGw06fpbbNfYNE67Zfu/jdiiKbr6w11GqI2hBG+pjCu50pm4SR\n5yrLmRmYmmo/Zp9Ul43YVe/yISgq2U1cDJ3DsTc4kew4EOxHTfVWOagLfsbzUGNjVsDtM0Gzycln\nn+Pt97ybpEO0C6Xssl2lgvG8coqfBQGLZ04zevUqfqPJ6Pw84vQZ9NiotVsYwPdR0qPlCbxUEaQp\nUbPJ+e8+w9rx4zRGR8lyYRfW65x75lmCOM4rnMlzhXfwM5MSX2umrt+wn3cKMy8vGvHzpb+11fbS\noNLW4vDaKxu/lZ+kdvoshBW0A353ozh++yLD2D/fvAlJAkqRfu97aNHxzkyRr/z666CyMle5QIxP\nID/0Lzf3vLvoXT7yC33O0uFw7An7/6+qw7GLbDUy7lYUC37bpaictkt81p9sOny0xmwk5PYlWGwd\nWiuyPAtYa939YsEYsjBAS0kWhl0LemDF8+nnnmfm8cdojYyUkXTK91k4fYrh69cxaYuRGzdYmJwk\n870y4k4ODZHddYLXJ/4RNQP3Xb2O/61vQqOOmpykOTGOGhmxuclABDCcF2RUorw1z2vXOW/1vKUk\nrVYI0gx5CxErfB8zPmETN4IAkgySFuK++6FaJROCpShkvJXgF/aGRgPqa1a8xk0rmHeTcrosAM9W\nVgv7rkZJrVoee5mrDBA3MUuL1n5yUNnihNk0GpirM5hGY/OWmGLZb2QL2coOh+NQ4kSy41ChtabV\nijftTd6NyLitUqRQFAkOdpFPlmkOWusy/WKjcyoW/fYLpTJWV1fxcvGRJAlSijzbGFvmMT1NUq2y\nND1N6vt5q17+9UHA0qlTt5T7whhqS8ssC4GWshTZQgiEMXhCkoQ+qla1U/MwbGcaS9FdAlJQTFF3\nQFKpcPnhhzn7/VeoNJtdt/lpxtSVGfyi8KWMkQvXZRMrKVioVRhpxAQd0XTG962Il8mOjnNLCAnS\n2Dpu6a3/3crWv6Aw2kAc2+lwsdzXj31c+NvyhLnZxFydsV7zzT5HEMDk1O3v6HA4Dj1OJDv2nTRN\nWVpaYHx8kuA2/rokSZidvXLgvcmdBEHIvffeT7PZJI6bTExM4vs+WZYxN3cTYwzNZh3fDzYUyXZx\ncf8ipTzPZ2RkpPSMp2mC53nl8co4ZmJ2lqRWZXx2lsZdJzCVSil0vTRlfGaG+rG2uOhM6Sg/CtYl\neAhsVqVMUzTYFAkDjI63B6DaWHtDL9ucHm8WP02ZmpmBnXhui+SMIolio5rrMtXD5FYSszv2DJXB\njevQarUX/aBdbf1f/gjiGP2l3+9bwiHGJ/A+/ssDOZRDU5PtcDjuSJxIdhx5disSrpMgCPE8iZQS\n37dZxwBSilzndMe79XIQfNBSeqXvufd41NAQM08+ad+i3wAjJWaL5+E3GtQW5lFRJY8yS0jimGv3\nXmT6ygwibeElCaLVsktyvY+vw3YJyC4L5u1gsgyWFgFhjz/Nfcn5C6IsCFi+6y7Grl/Hb7Xskl8R\nC1II5M5K7kGgdft5oqhjWm+rrcXkVNuC0Uthyeitu94uu5zJbJpNWF2xHx0Oh6MHJ5Id+85eWyJ6\nfcq7FQm3HpHbFfZf8O4ErTVJ0spFvZ0kG6NJqhWkYEO7xfLd06g+7xSkQcD8+XOkQZBHHLeLRoRS\nyCRFTR5DT5/CaEX2+LtpfOt/0Dp+F6ysMHbjJqHRcPLk+gW5KLLJE0vLVvgdMEofsxDQbFi/cBSV\n55HVasxfvMBQHOOvrlqxKPNlwWLivFsvoKTsbiDssY/0w8DB9iz3kragGduPg2IfPMsu7cLh2B2c\nSHYcOfbLp+x5HuPjEwcihWInSCkJwyiParMiWWtNlin8LNvQbjF2ZYZ4aIjGZHuxyhhTRsNFq6sY\nDFmWkiQJYAiyjMrCAmvHjpE21+z9jaYxMU5zVOONDKHn55g7c4aTaYovuu0qoTGcu/w2wUFuP/M8\nO6X1/O0J3s6J8h5jiul28XmjYX3LhV/5gHqXC8ToOJw4YT8O6jH3w7Ps0i4cjl3hcP9r7TgyFDnK\nB6U5brtkmer4c9aRcNFZVb2e/Vza60fZ9ie9ruuEMfhJgqDbkiGMIcrj2d74kffSuqU4ErmbwPqR\nh1ZWWBACKT2M0fhegKc1QdJCZBmZ57F08i6OXbqCr7rFsASiVsdCXLY9sWyEIKlEhHF8y4SLW+Eb\nw1SSlskW69Da2iyKj2BFc1FiUjT6ddotjGmL1MKrvEeYVgvzzNPd1orCt/yFz2N8D5aWb+td3m+h\n7Ng8pl7HvPwS4qGHEa58xXEEcCLZcSgocpTj+HB6B/tVViuVobXCGJtukWVZ3jS3fppoUx72+qi3\nTlKrcfk97ybb4O34Xjrzk1UUMX/+PKoji1rkZSMiLxkxBvwoAM+jEQQMra4hM4XQGtIWmdIsDw8z\ntraGv5FgrFTay2ibRPk+V97xDi6+8L11CRebxTdwLLmF5aOwN4Rh2+JQrdo/V6tWDPezWxTnUty2\nV2SZFciet863zOgYolqFqQ2mmp3e5W2I5CO/0DdgS8em7RquodBxxHAi2XFHM8g6650s+PWrrI7j\nmFdeeQljNGl6Aykl1Wqt73FqrWk26wdige9WGM8jGR5ed5xJrcaVJx7n7pde7ro+bDQ4+91nuPzU\nO0lGR1k4f96+ULjFc/hxiyhukdx1F+LsOeQLz+OtCcQjj6GAeaMYFkXsXr8HyOPjDiJCWKFb5PwW\nS4fFdcUUWcr2wl7xvd6v343At5F3sCnfMgzAuzyohT5PIirV/vGBG3AQpqkDt3Rs1q5RqyHf9Z5b\n/mwdjjsJJ5IddzSDrLPe6YJfv8pqu8jn4eX/SLcrq9c9Owd94a+fXaT43HgeydCQbdzLxZwxBiNE\nWT6y+SdSSJUhPM/WQhcismiGS5oQVmBAEYFhHHP6lVeYvffedbdpKUirVQIhGEhBcmGZyMWf32ox\ndeWKTbbYKAJuHz3Jg8KsrvZNxDDz8319zV3Xd3ibtzphFuMTiEceRYxPbP5gj/A0VQwNId79nv0+\nDIdjz3Ai2XGoKLzJRV7vnYDneQRBSLZNv+xBoChFKUVxH8HWL+GivC4M869pvxAoUy7y/9nH16hM\nY9KU4MplzOmzaCHQxtDK4+e01mStGNMvN7mXTdh3pNaEcavvS5SkUuHy/fdz9soVdizJ+3iSfWBq\neZksCJg/cZyxRgO/iLrbZ0/yoDCrq6j/8O+t/aL3tizt62s2cQyX3kJfm0WenG57m3c5Ms7hcBwt\nnEh2HCoKb/IgGWR19VGlWOQzRnflPXdOl700ZezqLGvHjqGiqPu6qSl0pdIxFDXWhhL4zJ09S0tK\nRNzAGFhOUkbn52iMjLKyukI2PIxKU94IQ9Aa3WxyOQy5b3EFP2nZ+Lfxsb7LYwBidAwWN0hg2Ev6\neZJzbBTcRYZuztm/tA+CJ3lQxLEVyFG0bvovoL+vOWjYdxHCcEfe5q3WWDscjqOFUwWOI0evT/kg\nVFffCRTieKNSlDL5IlfCZRpGHBM2GmRDQ5iOtIwyHu7CeYyBQEjA4Hkew6trxMMj4Pu0pqYQ09NU\nR8bwVpaJX3+d9PwFxJPvxl9dQ//3P0P+03+OmOrv4TRra+h//3/Yprk0pcv7kWbtNj9dWCE6prWD\nntz2epILimW9g+hJHhSV6pY8viYMrFBOt1/nveUa601wEDzLO8XlLjsclkM4dnA4dkaStHjjjddI\nbtEOtxu0WjFvvPEqrVa39zLLVB4FB1pbW8H6Szsi7lZRcYcRL00589zzhI1G39t7xbfMq6qFEPjN\nmOGrV4mEIBgZxR8aQfgehCFiaopsbIy58VGysTHE8eP9L8eOIcbGMErZZbJW3L4keQ5wqwVaQabs\n58VFG5Bi7wTqRp7k4pKmVjSmSdu6oVS7+trRhVlYQP3n/4RZWBjcg+aeZTb4fd4VirSL8QHlPS8t\nob7yR7C0NJjHczgOKW6S7DgUpGnK0tIC4+OTBId0stG7+FfEwjUadYxRaK1RKsMYWd6dko2uAAAg\nAElEQVRfKYXneaUw1lqXU1opZVc78UFgo8U9gFatxlvveTdpbrXoXNwD8oW+9Sdjz71t3dDGYMrr\nFX4rZsgLAIPSaf59UqRpiq8V82HAmN7YoypGRgj+9UehuUZaHcJU2pv7ptHAfOdb9riGh2F6ujuV\nIYrs9fL2b9drIJWCQJvtTye0atdv93qStbYV1/U1+7lS1oYgJSDA6EMllHuLSrpuazQgsfnRJkvL\nxb5yoW9tDbGZUo07xMO8LwUmDscRwIlkx6FAqYy5uRuMjIweWpHcSxELV6/XefnlF0jThLGxsdIb\nnWUZy8tLjI3Z6dDc3E08zyvTL4QQuQg9GMKnc2mv76Tb80h7oqNUELB45gwCUJ6HlyQQgunw1hb1\n1lmWYgw0m01UHFOdn2dhdIRAa5aWFtFovNVVgiyjWV/j9de/zz2TxzZ17GJ4yGYRV2v20j4p8H3C\nRp1zb10iQHT7hYMAxOYkbyIFl2oVzjViKnqbr2yklz9ntye5Va0ye/87mF6tExVxZmkKSZJbN8Sh\n8iz3LSrpRGt728oKqAz1hc9DpVIu9JlGA/Er//sdW1RyJ1g6HI7DgBPJjkPBQViu241jCIKQSkUR\nhiEjIyP4PctlUsqyxtrGw3VHxB0k20VXAUifxb1+KN+nOTbKyVdeJR4d4cSrr3Htne8kHt74H35T\nqbB25gxjV2ZYSVIyP8CPY4Q3CePjtEbH0Hm1td5MwsUmkFoTJUk7D3iP8bOM8RvXWTl5F/7MVfwi\nDi7HSElSq2HWbvMWf2HBEBystyB66VdUUlBYR4Jh6xk3GhOE9meT2e+LuXkDMzMDPT504wu0NwU7\nCew7CMt+g46h22Q5ifMqO44aTiQ7DgXbXa4bZGTcbi/4dVZW288zG2eWv+WstUGI7smxPmBvn99q\nca/ffY3noSoVvCxDao3X5+11OzFvi3AdRayeO8fotetgDNqTSEyH5UFv6vn7EjcxHVNe02iQGVg+\neZIxDX7SE9MnpbVA7BJaCNIoImi1GJ1b4PI9Fxm9OYffbLZFbpbZpUOtYWW5XWnda7co7BhxXHqo\njdabsorsG51FJWDP89r1dr24NvY8v/+yTfnQGtbqUH+tnC53ooVgZfoE5qO/CNUhzNIS5sXvYX78\nJzdnz2B3lv32m03bNTZbOuJw3CE4kew4VGzVm7wbkXGDJssyms0GYRihVFuwKJWhVEYcN0nTJK+z\nNqVnucDzfMQm3/K/U1BRxOLFi5ggaAumnVCpIicnYfYGNDve4o9jMgHz0ycZeu0H+EVxSU6YtDj3\nymsEUm656nozJJUKlx96kLMv/8N6P3HxQsD3wfPtcY2O2UVC6G+3GJ+wolrYdAxxSOwXJVrbn3fx\ncyjeKYii9sTZD+zC5eiYtdB0ksTohQWbj10dsp7kuHnoPckOh2N3OFAi+Q//8A/5whe+wNzcHA88\n8AC/+Zu/yWOPPbbh/VdXV/md3/kd/vIv/5KVlRXuvvtufuM3foMf+7Ef28Ojduwlu+FNHmR19Xbw\nfZ+JiSlOnz5HpWPyFccxb7/9JidOTHP16tv4fki1Wi3tFwVCyLy5785DKEUQx7apTwblAl8Whixe\nvEA0OwtZisYu60E7IUQpRWaMzd69zbRUjIww+iv/Dn1tnizrmCTPz8Pv/3uoDcHYGOLivbZyOUeS\n/yXq+/at6L2mMxYOrF+583e4jJPLF/2K23ORfGjpd17F3we3qsaWAppre364joOLs5A4bsWBEclf\n+9rX+OxnP8tnPvMZHn30Ub70pS/xsY99jK9//etM9qkXTdOUj370oxw/fpzf+73f48SJE1y9epWR\nO3RRw7F7DLK6ert43v/P3ptHSVbW9//v5z53qaX36llhZpiBgYEZloDgwhAjmoAIuMDRL6JijIAh\nEU4W0SRED8sJht85/o7GmBOUKETFuMSYOICeKOYb0ahsAUYYB2ZlZnpmeu9a7vIs3z+ee6turV23\nuqq7que+zqnTM7Xcem51ddXnfu77835TJBKJqufXdQOWlYCu66BU6ZMrdcu9SnHQz3e4EJpWjKgO\nbjPyeWx46mkcuOB8OP7ftue5CJL5dM6QmJ3DwL59OGqY8NLpUPrfNPYaBpJnngUyPL81ljYwAMIp\nCKvo2JqWKsp0XXUmKwuvgA4XybrnIXPgIHQ3gi9wMeKalCf6+Zpk6XmQhKPMVSS4zzKhzCXDLqjO\n8cQ4JJMQB/YDR45AHNhf10c7HHvdFN2gWY5pnlhCEtOArimSv/KVr+A973kP3vGOdwAA7rzzTvzk\nJz/Bd77zHdx4441V9//2t7+Nubk5fPOb3yx20dauXbuoa47pTZYq2robhg8Xm2YGC91UCvtfcwE0\nITCzdg08Qy8+jvvFczmk2DjlugHd82AWHFApwTUtNCxI4HkeBgaM1jXKgB/eQQDGlfVYHWQ+rwbJ\nNKq6mW2OGdc9D5mDB0tSgwY4pokjJ63BmldfhVUooKYmWQLi+HHfnSP0ewr8ogl6vliudMmQjMHl\nHvDF+yFNC3JiHJibg/i3b0P+909qboMMDZdir5tgKTTLbXe7aHKQLyZmudMV39ae52Hnzp24+eab\ni9cRQvCGN7wBzz77bM3HPP744zjvvPNw55134kc/+hFGRkZw5ZVX4sYbb1ySU+Yxi0M7Cs2l0ilH\nHfwjhMCyrIUVeEtMU2vXNAjThJHLYfDwERRWrgI3TUgpQV0Xml+ohQf4ips1TbipJCbXnQwZGhgM\nhgcppdiwYVPrv+9EAtqKFUpXwZk6LRtKeJPMK8Zeg3F1G0FpmC+R6IhWeT4kIXATCchEwpdi1NYk\naytWQFQWyZ4H2L4XdK9/lla6ZHgUhBFgYADSSqrfWTIJDA4DgzXONtiFhcVeLxZtdruIfZdjYhRd\nUSRPTU2Bc47R0XJP00wmg71799Z8zMGDB/E///M/uPrqq/HFL34R+/btw5133gnOOW655ZbFWHbM\nEnAiRUhbVgKbNp0O2y4Ur6t0wGiGVh6zGJR8nv3/B7HVodvCJXbYh7l4HVTHmBtGVSKhlEqX7Hle\nyzIa0t8P+r4bgJ3PYdowseq33wxj5crS809MFGOvAShHhYHBkm5Z1wE/LMUUEqfkbRiteiQ3QPdc\nZA4cgJ5MF58PwLyaZGIYIBqt7vj3enFcie+SQUCUQ0wqBZJIqe4/1YBk7UhsCZSHx3QLsaQjJmZR\n6IoiuR5SyrqdKCEERkdHcffdd4MQgrPOOgvHjh3DAw88EKlIDrxno0J9w/7g54nAct1nSjVoGvE1\nv5XOEaV9FkLAdV2YZnsH/NS2OQ4e3ItNm06r6npSqhU1y6roKy961bocmKZVd13JZAKWZVTtX731\nhH8G/9a06k5t+P9RqSzMnFQK+y+6EDyVrNIrh+8pPRe6P8znUgpLp6Ccq7CRqSmkjx1FdsUKuP39\nmJ2dxp49u3DOOb/VUF7T6L2tDw5AJhOYHujD6swQjDWlgzSpE3h9aRir1AG+TCaBdKpmwVUc8gt9\n3kiNgAMoOxoACV3h294RDU4yCSObU3Z3lWt0lV6ZnHYaQIKzD6RiW/4/hQSIAKA0ydB4edChx0oy\ni7BkhHkA56p+1khp7QhZ/vk/gvvUQ/pR3roe7J+StBD/MTW3DUCi9n6p3a1eg5T+drgA4AGMQXoe\nSKEAIgHi2JBcgDg2SKGGlMYuAIxB1wlIE387i8bKUeB97yv+V+rq91Frnc18bstcFmLnTmhbt4Kk\n++rfr8HzdBNRvqt6ZZ8asVy/m7uBriiSh4eHQSnF+Ph42fWTk5PI1BmmWLlyJQyjXGu4adMmjI+P\ngzFW5QBQj5GR9IJOZw8MLM2g11LSS/vsui7Gx8cxOjoK06xdJFkWQSJhYGgohVSdoayBgSTy+Tz2\n7t2Ls846q+79WsGyCCxLByAwMJCs2rZlEaTTCZx22raa+5DP57F7925s3ry57rp0Xa+7//UI/54t\ni8A0dSQSamhQFe5a8UOZcwlNI+C8PEwEqO4Y1yMIxAg/lhsGZtauAQ+t3QyG+V5zAey+PhSGh9E/\nPqGeFxJEqoJUahp0nUJKjr4+q6nfWa33diKhYbA/haxOMTCQRP9wqQDmbgq5pIn0oNr2jKWDSAbC\nmxuuE8KDKwUAAkkJBFGFYlAsBgcmPJnAqxtOx/pf/BKJQqFUEAYQAhA1AKrpFDw4qAkuUIWnRgi4\n63dGpYQ4fhyE0vIanXMI/z7a5GSpW8k5wBlMSkCTJgR34egaiE5BdHUfKSikrsGyDGjJ+u83wV0I\nS8dg6HXTEqXH1Np2sH2mhQpq6Rc4tPYaAMAmfriIULHcnDPQZ54GMXQQx4F0CiAv7QTx49LL8BhA\ngH5NwPB/73xiAoX/+A8kr7oKtN6w3yITfh/S4dpyi0af29zNIvfCs0ift7Xu4wFA9p0M8ZEPQxsc\n7AkniGa+q7ibQtakSHIbRp/Zdfslsll4zz0P45yzofXVP4ABeuu7uVfoiiLZMAxs3boVP//5z/Hm\nN78ZgOoy/fznP8f73//+mo85//zz8f3vf7/sur1792LFihVNF8gAMDmZa7mTPDCQxOxsAbxNqV7d\nTi/uc6FQwJ49+wEo+7R697FtD9PTeThOeTEX3udsNl/3fgvB8zyk00OYmpqouW3HsSGlBtvmNYtN\n11X1i7LErb0ux/GQyzU3SFbr91woFOC6DIDahrqeQEq/EygEhKghh5gnca8WhGiQUj0v9TwMHj6C\nbCYD7hcxxI9kNvL5qqK6EiEkXJfP+zub7729enQNXtZfwmzOBZvKFa93J2YxzgRGJ2Zh9PXDS/VD\nTk0BM9U2Y0q/PA0MDYH4DiXStiEKtpJI6CYgASlkMdBEzxew/oVfg2ua6vYq649q+zYpAQlwzsEZ\nh0fV7yPYlgQAIcGlBEwLTiqJI5tPw7psDjpj5ZvzPCCvJD5iZET5DgfXuy5cLoGCC2l74EwAjINo\n/tkNxgEm4DgeQOsfKEjbAxyGmRnVvXUdBtgeiP+YmtsGIBlXnXAhIYks/ptxrp67Yg1SAtzjgOsp\n6Yum+vnCMCF1XQ1YWkkIMwFRyzXG40C+gNnjk9Ayq9UaJmbhvToGd2IWROsOD3Y5k4dXcMFm8iBm\nruy2Zj63Gz2+CpoEsi6ACC4ri0yU7yo5k4c7NQv7n78O44MfAlmxsuH9FxuZy0HMFaBN50C82p91\nvfjd3A0MNzggDFhwkcwYw759+yClxMaNGyMVqGE++MEP4hOf+AS2bdtWtICzbRvvete7AAC33347\nVq9ejT/90z8FAFx33XX46le/invuuQfve9/7sG/fPtx///244YYbIj2v8lRtveDhXIBVWkYtc3pp\nnzlXxUKjNTd7n2bu1wqEUAwPZzA9PVVz25SaOOWUzQBQ83k7ta7w9oLnCOuCwwVwK/HYVZrksmQ9\nX5Mc0imHoZ6Hk5/9X+x9w+shqm6Fv6bg0vxrU+9+on8Q5KxtEP2DZbc7LsNxQ0e/y6Al0yAf/giI\nbVc9HijXLwd2Y3JiAtLXMUvPA8bGUKqGAU1KWHYBdjJZdn09pF9Eq9c1fPFfIwkllaA63GRKFY9V\nnsmypEnWw/7DUF1mAVWkFj83QwdC/o/gPnXXKdQvJ/CkFlIVuyQ40Kq17eIThC/l+125htK6hLr4\nr4Os2k6d11ZKQAgwBmj+710y9Z3BmKy2C1wimllTo7+BbtyndtDM332w74SQtux/232XrRRw/oVK\nNjTP2nrpu7lXWFCR/MILL+DWW2/F4cOHAQBr1qzBZz/72YYBIPW44oorMDU1hc997nMYHx/HmWee\niS996UtFj+SxsbGywITVq1fjn/7pn3Dvvffi7W9/O1atWoUbbrihpl1cTEwjlsoSrhdRQ4DBl0op\nIru8gC7df6F5FW4qhf0XvgZeon7HjhkGCsND4KYJWuEhbGSzGH3mWWD9JmBN509Fkv7+xi4IqRRI\nJlMegZxIKIeFeV4sSQjcZBKm46DjysNAk+x5KBaPHlOa3nxeFeL5vHKP8EKr8Vj3pdcJDhQlKkQV\ny0eO+DZ4Uu3D2Fi1hAVQXWnBIfPzdFdjepehIdC3vwPihz9oz/Zi3+VlxYKK5DvvvBPXXXcdrr/+\neuTzedx777345Cc/iX/7t39raXvXX389rr/++pq3PfTQQ1XXnXvuufjGN77R0nPFnLhURlsvliXc\nUif7LQRKKSzLguM44Jz56XaliGzOOYTgEEKURWQ36jBX3lbZpQYASSnciiE4KX1PC7/AoZqGwsAg\nCNVAHacYRiKlBDgDnZtV9m3djF1QhZwQqgNbecpUCHBK8eq2bdj05JNI5AsNi2qdMWTGx6FHDDhh\nlGKmfwSD+/ZCdzxgYkK5PwBqTYxB7t6lusuuLx/RaUi3LADOIBmr099fAvyutXL1IID0HT+Cv8FG\n3T4u1CWCw4WcnIT44WPQfu9ykBpBWB2hzW4Xbfdd7mKIYQBDI8vP0SWmLTRVJN9777346Ec/ir4K\n0fiBAwfw/ve/H4lEAqlUCu985ztx2223dWShMTGtUMtXuRPR1s3QDcl+rWIYJrZs2QbOOWzbxq5d\nO2GaZlFeZds2HMeBpmmgVC/qhKWU8DzXlz00dxpQStG4uA6vq2DjpOdfwIELzoeXSoEL37VBSnDO\n4XoujgwPob9QQKuHQXJyEvyHj0Geflr1jRptKva6LokEyNCw8uLNZUsJeUFXM+h0GoYvXwh0uMJX\nUdQuRXXOkRmfUJ3gCBI4puuYWLkC6XQfdOSBTEbZpwGAywDXAdl8BpBMqk7y7IxvrxbolllRuyxz\n9buvMp9XIvrFhBA/OEWUF8mNaKVw4hxyanJRO+ptDzBps+9yTEyv0tSn58zMDC6//HL8yZ/8Ca65\n5pri9b/1W7+F22+/Hddccw0KhQLuv/9+vOY1r+nYYmNiotLLvsqOY+PQoQM46aT1SxJ+UolhmMVa\niFJaFpGt66wi7CNcvClv2malF8QvZOoVypVlocY5tJoFieo4M0NHoZAv+k1TSqNJazgHpqdghYr/\n4lqGh6BtO7up2GuPMUyaOkYYQ/DspL8f9KY/BGwb4uXd4Lt/o4qSwInD87u5K1cCfWkgm1O367pa\nVy4LEOWK4VkWDELaI8UgfqqfEdYkE0Bw5QGdSkEyBmTnVMEZ7iSHu831cD3AdSBtG6SBlCYmJiZm\nKWmqSP70pz+N5557Dvfccw8efvhhfPKTn8Q555yDe+65B3fffTduv/12AMBrX/ta3HHHHR1dcEzM\ncqRWx1tKCcdx5h2K69VkvmYG9+bdhhCgrgviF8nMMOAlEmB+gRa4brz66n6MuWqgzrIsbNmyLVKh\nbEmJTWvXgSzgYIULjgnTwKAoL+gDHTOZmCgVm6W5tdLPWi+HP7DmJpM4cO45WD8103LHPCpE1yGH\nhgEzVEhXdJvrIfN5IJft3gJZTf0Vf8qZacjjxwGoYUvk8+pnDWS22tmk3bRd0hGHk8TE1KTp83Dn\nnHMOvvnNb+Lb3/42brnlFmzfvh0f+9jH8NnPfraT64uJ6Ro6OeC3kI53kMy32IST/BhjRUeFSgs4\ndV37ntdNpfDqeedi7c5fw7BtDB0+DKNgwx4ChGVhbvXqsvsTqIMQy7LAGPd11bxho3NJsCxlBScE\n4PgOGUwNy5kz0zj5+edx5OSTVQeZ+YEfUgBCK0kvWrCzXBCU+t1m/2+iotvcEK9LLcSEAObmfOmL\nkr+If/sO5BP/DQDFKHLx4JeKVn5lmBbIwEBn19hmSUezco0TSascEwO0MLh37bXX4vLLL8ff/d3f\n4W1vextuuukmfOADH2jZ+i0mZrGp1bVthk4N+PXaQF/lEB8AeJ4LQFmtScmgaVqxUxzYsLULSSm8\nVAqyideK+CEbYWkIjzjE53guDqYsrPPcqi5tpC7+PPpl0tcHcvoZQLqvGGvt2QVMTxzHYKof5qGD\nqvO6apUqjjxPuTRQCqRTfuQ0LTlTNED3PGQOHQLt1k7uUhJ0kIODDgEg3QcMKkkNAYBMHdcCuwA5\nM1OKJV9uLFet8tAQ6HuuA/o7fHDTAm23lIuJRNPfyHv37sXDDz+MBx98ELt378Zf/MVf4Gtf+xqe\neOIJXHnllfjv//7vTq4zJqZtBF3bxRzaa4TrOtizZzdct/YEveM42LPnN3Cc2v67i00wxLdt23nF\ny6mnngHLSsCyLOi6jlQqjXS6D6lUupj2pwrnBtG4oU70fEW1k0ph30UXwkmlwCImCUZFSgmHC7BH\nH4GcnCy7LejiN3Pw1JR+2TCUS5n/GniEYGJ0VKXMVUovql6i5rvIqkg+DKNL7Nqk60Lm86pTmcuF\n7OU81XEuXrzScGNwaeKgoCUIKV5IIgGSTs97QY8N5MYoiGGAjGS6swidngb/l4eVk0zMotNUK+27\n3/0u7rjjDmzYsAGJRAL33XcfrrvuOtxxxx144IEH8J//+Z+46667cOqpp+Kv/uqvsG7duk6vOyam\nbVRawnUbzWqTF5PwEB+g3C1KA3sqolp1xWXo+uYG+OZztwAA+N1kwgXGtmyBbtsgnENWaCqZYaAw\nNIT0QgtpKYG5mc46FoSdLgLLMc6BhAnkc0qC4brqZyC5CNYjfIszTetc0dghpG0De/cAVgLSDLTN\nNezlALW/th3aV+lLThZ3n6XjqNe/8vp8HnAcVfDX0SwjkVA69JiuoO0Ski7uSsdEp6ki+XOf+xxu\nu+023HTTTQCAn//85/jQhz6EW265BSMjI3jLW96C3/7t38aXvvQlXHvttfjFL37R0UXHxLSTpbKE\nW04QQkApBW9DETmfu0UYI5/Hmhd2ojA8jPxoBk5F8cFNEwXLgmfoYMwDYwycM9ihVDzl1LH0soOw\n00WAPjYG8qsnQE8/C/TRHdiw+zcwNp8ObSSjCrFnnlJa5r4+FWIyPQMwptwuTBOGpkVyu2jGX5kR\ngmlTx2CeoB1jXiSRADZuKpOZBIN9sMxylwzfXq7oqOFrhhfT41Y6DuTTT5b9nkrrY4BjQ+ZyYHU0\ny2RoGPSmP+zuQvlEGuRrs4SEGAYwkmnDwjpDLN+IRlNFsuu62LBhQ/H/69atg5QSbsjn0jRN3HLL\nLWUWcTExMSWWc7KfZVlIp/vgedNN+yFX0oq7Bbcs5EeGIRrMREgpMTMzjVwu68fQc+zatbOY4GlZ\nFrZtOwdAnS/IZBJk1WqgsL+FvYpGZWIfYUx9mY1kQBNJaIwBVkINxUmprOACn+LQ0J5rmjhw8lqs\nHxtDIoIfcZm/ch2YRjBhGkhr7SmSAYCYpkojDBUpUtfLhwIDNC1kO0cWHusYFcZUgUxpyUO6uDYK\nEICcsrG2u4ddUGcKbLtxMmNE2u120Xbf5ZjuoUsSAXtlCLSpIvm9730v/vqv/xq//OUvYVkWfvjD\nH+J3fud3sLpiihwAVq3qTU/amJhOE3XwrzRg2DvdHCWVUDHVgCiLq263ywUACJ3C8T9gZYPhOUp1\nUEr9KG1ZDEIJ3C7CTh2VkFQKZPVq4NChqtuiFCetWPUVdcwDg6Ur/U6lzOdV51Kjqqjlwu+0eqqQ\n5KH0vt5yB+wNDL26gJ/H3UMCTaf3ybm52t1qVNvQyYkJyEOvQh475kt0YklHTEw7aKpI/qM/+iOc\ne+65+NnPfgbXdfHRj34UV155ZafXFhNzwhDojk3TKjpcBAOGQQhGN0MphWlaACSEEOCcQUoNQijZ\nROBXHJ42a1QwN6u/5oaBqXXrQPx/QwhojKnOsv86EqL00ZpGoWQcWmS3C8Y5DiYtbKx0uIhgxbVg\nqz5dV9IK1wVmplUB5bkAAcxphg1PPwOjOGwGf6iNl+QIoddkMWAEmDZ0DHkMeisHR4GDR5jw4B7g\nHwj4BwfBe8tjndWOLwJybg78/n9QXedat1fY0EnbBvbvgxg7ooYMe0HSEXNCQ9JpkAsvWuplzEvT\nHljbt2/H9u3bO7mWmJgloVlLuE4O+HHOcODAHmzefGbkyOpuSOYzDBOnnXYGCoUCbLuA4eERv1PL\nMD5+HFJKFAo5UGr4RSkpWsQJUV3QVAaN1IPrOgqDA1i96zeYXb0K1PNw0nPP49DZ2+BGKBA8z0M+\nn0ehUADn5XIR27bBOQMH1AFL+KDFKUATvG2yg3owKTGzZjUGtfNhvf1dIJkM5MQE+AP/CAwMggLQ\ndu8C2XwGSCoFjWpA0lKx0kL6cgxNFc2LBCNKltHHOPSIpxAkY8D0FFgigZlVqzAY6KRrDe4JoVIJ\nqX8AwAXAmdpGD52FKcO2VYFsWTUdM6ps6Iy8kuH0DwAaiSzpaPqMyImkVY5ZEAvVPneLHCM2N445\n4Wk2yKNbB/y6xf3CMEw/8tmArhtF73RNI37XOOxyoRqeC4ZS8EQClDEQf/91142kLhBCYPfuF7Fn\nD4HrMr/jXX67OzMFmsvi5Zd3AZPHi7fp09NYOX4Mo8xFJ5TmgURD9Pdjcts29DlPgWQyIIGWMJFQ\nslwhgcCPOrDQC1vFSfhyDAYICaEDXiIJ2qUpjUGaHxvox8RppyJNKXTHqT+4l8mU9MEuAzxXbaOL\nHGFaIpFsukCQplHyZ25S0lGkyTMiy1WrLF0X4n+fgfb6i7taH9tTLFT73CWe3N2fXBATs8wxTQvr\n12+q28luNfxkKaCUYmhouKfChaQUcBy3KBmxrPJLMplE39AIxIoV0Pv7y24D0XBkaAiFOtrRsueZ\nnAT/xtervJYbUfJhtqpv9E+rw3FUx8ax1c+ZacipCSXJcBzAddRtjq3+zTlc08L+886Bm1x6V4+6\nUKokIpQq7a9R4XTRCCmV+0c+D3AGP9FG2cX1euEc0348D/J/nwXy+aVeSTWBpdxQA3/1mI7RO99k\nMTHLFDXQV3+gayGR1UtBZVx1aXgv/FPta6frFcI5TNsBSfergqsBhmH4NsM1FtXXB75yFWhfX1HL\nDABSJ7CNJjuWC40S1jSQweHiqe6wZZycmIDY8e/Q3nY1SCYDfWwM+NlPgI0bQcaFtIwAACAASURB\nVAaHy6zV5DNPAYODQH8/yFw28jJ0IZFxPei1XqdOI4Qq/AlpLLdgDHL3LtVBn8uq+zAl8/Fb7ou/\n9pjuhFKQoSFgdrYtm2u3TKDbLeU6RioF7TUXzR9v32HiIjkmJqYt1Iqr5pxBCA4pg8E9VTQHxwPh\n4lLZv0V/3iB9z7MsmIUCmGkWnS7MfB4bnnoak2+6FLJWN7aHEKaJ6Uu2w+zvR1Cml1nGpVJFKQZx\nHfXlalrKiiz4ogls43QK1Eg/LPNXrhPQoUuJUZepVMAO7GdDNE3pdOeTW7gOyOYz1PtrclyFsei6\neoO1+kbrAhqGmLie+gkUD5wAdSDH3RSkI4FkLCWohIyMgL79XeDf/pf2bLBLZAK9TrcM9sVFckzM\nItHtyX4LIRge3Lhxc5nUwrZt7Nq1E1IKeN4x32lC+nZsajjP81yU9MqqfqnZza2Hn74HKIeLmbVr\nlNMFaiQ3twJj0GbnljzJTkqByclxZDIr5n3/mLqBU2ayoIwpb95gG4FtnKdcL2Sg8fXv4CYsHFi/\nHusPHUKi0B0x6FXU8kk2jJIUI2zDJmVta0DO63eTg9vCly6gYYiJEOr65571teeuGupMJCAIwYyl\nw0v1g3z4I005XrTbdzmmi4gTASPRVJG8c+fOSBvdunVrS4uJiVnORB38E0LA81wYhlm0hetWguFB\nXder3DkopZBS8+OpgaAgLslLqgf5mnW3qIR6HgYPH0F2dBTcsiIN8HHO4XnVSX90egrp//t/MXHB\n+WAVXTxP0+GMjIBVhkq0iaBYkW98U6THaZoGS9Mg+weUPCEY5Aps4xwbKBQg8jnADg15BdZxUqoi\ndAHvO136sowlLDIlY8DcXLXcolCo300O7ht0naWE5GzpraYbhZgAQMr/u3OZ2s2BQXUWQSMgkkFO\nTYE063ixUGlQTNfSLfKNXkn+a+qT/ZprrmnKAF9KCUIIXnzxxQUvLCbmRMd1Hezd+zI2bjwtsi1c\nt6E6yK0VvpGeR0rlbhHxeYQQOHbsGDyPVa3RmJ3FyrlZeIU8JiaOl30WMsbhptPYO3YYg6vXNkxT\ndDwXB1MW1lV6LTciKFbmsW7zpMTUyAiGpSy5bJgm6PtuAOnrK96vaBuXSgEJA8Z554FCKzbJy6zj\nQBZk9aVLYNSd34O6kxBdh+zvB3IVcotksv4BAA95S/sFM+mmodlaISZhKgJNiEZAuAs5PlWUYFQ9\npEY4Sfj/AOKAkpj20iXJf/PR1F/+Qw891Ol1xMR0PZ10mVhIZHUvuF8oazgTnud2tFAO65OB5uUW\nUkowxkCIVlU7UU2DIYGERuFVDP8F8lbP88A5b2i+IKWEq2kt7T8hBKZpwa0TMS0G+jF5ztkYHCgv\nYkhfX8kuLiCRULpejUBLJgGiqwE4QEVb6xSgOtokVlkQOufITExCr+jgO4kEjmw+DWt2vwIrO8/w\noUZRPFVBNABi/i558f7t8ipcWqTrQv7mpaIEo+r2ecJJAMQBJTEnJE19q1500dKLp2NilppOukxE\njawO0wvuF4xx3+VCFYtBoVjpdhHQch0d0icDADdNiAiSAU0jIFUDbY2LJCmVVMOuoRUNDg4WipnL\n4+Rn/hf7Tz9twdsCoKzgTAOiUACRmvJZBiCpBiQT6tS+kKorGcC8OhvrHDpjyExUW+ZJTYObTEJq\nvV/ALgaSMUjHBbEsYLDaSqxhOEkqpXTt01OQY2MQO/5j+WmV45CU9rNMtM/d23qKiTlBmG+gTwgB\nx7F7QpvsOA4OHz5YTP8LHC/y+Ryk5GUx1YSQsrjq8L61q9tMXbeuS0MzCCHg2QW4jg3v+DjyhECG\nvkjV+jmy2Vns2rUTtOJL1rIsbNmyTRXKySTImpPUqf4mCSQaJzs25MxU88OD9b70fW9l8+gYTnnl\nFZgb1oFrRvGoRBIJuGmlYZayWuaRSMxrpdeVFAfwRHBU03ODe23BSkQOJyHptDqn4DjLVqvczSEp\n3ZI8F5Vu0T4vlJY+7b73ve/hG9/4Bvbt2wenRrLP008/veCFxcScKMw30Oe6Lo4cebUntMmV6X+G\nYWLLlm3I5XL49a+fQz6f82UJBjRNA2MMudwcdN0oK5KFEHDdiKlhtSAEfEFFnYQQErrHcNKzz+DA\nJZfAHSh1RgJ9sqZRmKZZ5uzBGPft8JQMg6RSICedVEpFa+bZixKNaKuu96UfeCtrhw7BfPTfMfje\n/4OsmQJjflphHX/lIroOYZrwNAId8/XYuwQhlsfgXkxv0O6u9AlqKdctg32R21Lf+973cMcdd2Dz\n5s2YmprCW9/6Vlx22WUwDAOZTAYf+tCHOrHOmJiepxe0w53AMEwkEoliZLWmEf+iQdOCmOrqSztw\nA43yQg3pCUDqrFMNJWrQdd2P4w4ubT51W7BhvPgiMD2zoM2Q/n6QTAZIpUFXjIKsWKm8lVesABkZ\nrvZXDl9ME65GsC+VgEu776wGoxQToxmw8IGRpqmLrquhN12vvW/BJZn072sUh/26anCvjUjHUZ3K\nykvIdzn4v7Rt1UX2B/rk3NxSL78ttJKE2YjgAHVZyVGWgulp8H95GJieXtJlRP7L//KXv4xbbrkF\nN910E775zW/ive99L7Zu3YpsNos/+IM/QPoEOtKJiYlCL2iHW6V0AFC/MKSUYmBgEJOT44u3ME0D\nN83elAhUYDGGjceON3yNA1r15C7zV+5BmK5jYsUo0hMTKFOCn+CDe7Vo1ndZaprvre2CP/xVYOwI\nxNgRaKvXLI9BvmUqIalHr8o3lorIrYD9+/fj/PPPB6UUlFJk/cnivr4+3Hjjjfjnf/7nti8yJiam\nuwkOAOYryIIBPnUp6ZGDYb7wpV0stCvtpVM4cv4F4Gb1vhHOYWazIP4XLOccjHn+hYFzBtu2YdsF\n2LYNxrzQ/8svKlSlgqKOOdpQZyDhCZIPq6BUdboqDh40TYMlBDQp1bBWnS6jdD3IQkEVTy4DXE9d\nQsN9AoCjESxtBItPUV8c0iQ3uixXTXKYsO9ywiq/pJLAyLD6mbCUG4ppAn39aqDPNCGnp2oX2DHd\njS/fQJDO2ENIz4OcnFBSjEUicnulr6+vaEO0atUqvPzyy3jta18LQH1BTE1NtXeFMTHLnHoyjMAW\nji+DDkd4gE8IDlUYa35stbJfC1L4AKVJ7hYkpfDSqZoxzkYuh7W/+CWObd8Ozjmmp8eLhak6EODF\ngb5AZ10o/LrmAGbZkJ9PUcc8z7AfIQSWZTV9QEBGRqBfdz3ocBqYypXfqOsgA4PlISQhJJEA94CZ\naRVMQlA+4OcP97kawf5UAhvyNhJREhTbTaxJbsx8vstAyXs5mYQ0DVUo1zqoi4lpllbcL5bAWzly\nkbxt2zbs2rULl1xyCS699FL8/d//PaSU0HUd999/P84999xOrDMmZtliGAaGhkaqTo8HtnC2XWj4\n+F5I5hNCIJFIYtWqk7B37+7ikJtt23Ddw9A0Dclkqrh+xhiy2dnIHWXqOBg8cgQza9aA+17Ji4WU\nEpwHXssEhKgueXigL1mn2K0c8ouKmctjwy+fhPZ7o6qAWQg1QkjC6GNjIL96AvR120GEBAYGywf8\ndF11HduAIASeacLwPNXdDp7C85A5fAS614QsJKxJXg5hIp2Gs2oXFY8BjKmzB64HFAqQzKsOJ4kD\nR2KapFfcLyL/5d988804fPgwAODWW2/FoUOHcO+994JzjrPPPht333132xcZE7PciRpZHaYXkvmC\nsA7TNH1NbWf6chKAoLQsBqPTKX+VqKFECkBAytJAXz3UmYKSNCNMINGYYx6mztiMNa/sgekUAP/A\nqejD3GZdZc0QkuA21wEMA2RwWHWNScVr7HmA50FSDVKnSp7BK4queQ78AlzTxIFT1mP9/oNIhLra\nuuchc+QIULndujtUW5PMDAMzo6MYHB+H3uAUrrRtldoHqKE2xgCvRpHtsd7WtnIGHD5S7YktfImK\neEHt++wswFlVOEkcOBITsFy0z5GL5PPOOw/nnXceAGBgYAD/8A//ANd14bou+up0HmJiYk4M5nPw\noFSDZVl+15QVdbhSCjDmQUoJSik45y1JQYVlYXrduqrrF7tQrgljoLkceDpd1AJzzjE+fgye55VJ\nMwICiUY2m4WtAfrMNOZe2gk2pAIhAolG1A9yz/MwOTmNdPrk8hui2FdZJsjQsNKmNpBlyNnZ8lAS\nHzLkF9lLqGtluo6JtWuQnp4uFclhzbKUqqt6YL/aT0B1Uqen/WTCiteJC4AzSNaj8gwhVIEcdN8D\ngoORZFLJM1ymAmkGBku+337gCGwb6LEiWRYK4N/7Lui7ru0+V4peDTpZJtZ1kYvkb33rW7jssssw\nEPIKNU0TZptOr8XExJSzkMjqxWY+B4/ANznQWdu2jV//+jnYdgH9/QPI5bIYHBwCYwyOcwiEELA2\nJL0tfHgvjVdf/zqwCEEgldC5OQz86D8x++a3gA8PA1AHB0qioWzkKr2WASXRYIzBoxRUpzAtE9Sy\nyiQalR/kcmoa4oXnIYdGgTXVa+ac4fjxo1i3bnXZ9VFCFUg6DXrTH9YtcgNZhn7ZVdBXr66+g39q\nXraxSNYZQ+b4eFWMdSQIKblfBPrk9RtA1qwF4HeSc1nAMlGljXGVCwTpdTcVTasoynyZimGoS6BR\nDmzzgFLgSBci5+bqvk/lxAQQDKUeO1b7TMASyki6OejkRCDyX/Kdd96Ju+66CxdffDGuvvpqvOlN\nb6qrs4uJiVk4C4ms7kYMwyyrLSjVij7DwU8Avgfxwp+vHZ7LklJ4HTxTpvmBIY2kGcS04G7ZAi3d\nD+Lfp657heBK0lCZmNcGTN3AKXkbpm6owqFO8VCUZYwM15VutBudc2TGJ/whvflhuo58X1+5rzJQ\nZQFHEuVJdTLwUa48cPWLx5juQc7Ngd//D6UzAZW3Mw84dhyYmQKbnQFJVH/WRpGRyMlJiB8+tvyi\nuxebLom1jlwkP/HEE/jBD36AHTt24M///M9hWRYuvfRSXHXVVdi+fXtVFyQmJmb508zwIGMM+/fv\nwSmnnLqoRX8Qgy2Esp/rCulFC3BNw9GVKzFkGPN+cBNCYPrR31Foxl9Z2cTJ9g+J2oWillzm8743\nL1en+j3fYs5jvj5WAFh4QcoNHYX+fnAj4vcW52pNlQQDbvl8Tes4FdIRu0IsKratCmTLAmrMbBAA\nMpkGdruqIKsMHooqI+l23+UekW90y2Bf5Ip2cHAQ7373u/Hud78b4+Pj2LFjBx599FF85CMfweDg\nIC677DLcddddnVhrTExMl9Lc8KCE6zpLUqS6rgPGNN+DWXSVxVxDfB0zsywA0pepzP/6WYaJjXkH\nNKJEZyEDpC2TSFRrm21bWYw5trJrKxRUcclCg3HB+0jXGweDNEBnHMm5Oeis+YJGMgZMT6kio5Ym\nmTHI3buqpRiA7yftQNp2b2qWe5lEsuEAmTQNZblYcZ9ulpG0QizfiMaC2r6jo6O44YYbcMMNN+Cn\nP/0p/vIv/xLf+ta34iI5JqYNtJqa1nuoaGflmSzAGANjzC+m21NKmKYFXadF7+J2dUG9dBoHX3sR\ntA4NpgQ65onfeVNbtyunpsFfeB78lHVAejjioprrRIVlGY0g/f1V2mY5MaGcE1IpwDJAtm6DZlrK\nKeOZp1RXMPibqNLPRtgVz0MqmwWNEE5AdB1yaBgwjdqaZNcB2XxGaaAtRKBnrnVKPybmRKIl94sl\nkGAsqEgeGxvDjh07sGPHDrz44ovFLnNMTEw0aoVBLElXr0NQqmNkZBRTU5MV11OkUinf0ULZoLmu\nU+yY8mYtvhoQDMWVbNna10WWlMLt64PVplOXlcExkivXCy68Yjoh8/W24UQ/h3k4evppWK9TNFV+\nCa66sy2cEm62ExVFllFT25xIqGKYAjAT6lS5Em5DmAa8VLrKPzkqdTXJ80FpQ01yeKCtijiEIyam\nJfeLsARDeh4wNwv0D6jrO0TkInlychKPPvooduzYgWeffRbJZBJvfvObcdttt+Hiiy+ONckxMS1g\nWQls2nR6S4/tBfcLwzCQyazA7OxMxfUltwvbtnHw4F6sW7cRjmNjdnYGUsqyMBVCSM9qiudDSomp\nqYkyKYgxOwsjl8XU8ePgVIOrG+CcQdO0skQ/QKJANaxptkjuEUzGseHgIZinbi67vp5/clRa1iQv\nAtJ1y6KDG/ozh+l1r+YOIh2n5lCn0op76met22wbMpddtAHUZUGntc+LlL4X+ZPhkksuAaUUb3zj\nG/GZz3wGb3rTm2AtcrJVTExMiW5yvxBCwHHsSOl/gdsFIQTpdF/RLUd11U8c5aYKXOGglELT1H5T\nTYNGNCRtG6te2oX9F5zv366VJfoxxv1OfHNd8lYH+yLRhi9JzbFhZXNAPg+JBgN9YdpgGbjUSNsG\n9u4BrISKgQYa+zOH6XWv5g4hXRd47tnaVnBCqOufexay8nPLU7Z+4qsPgdz2p3FQSpMsF+1z5CL5\nnnvuwe/+7u/GwSExMYsEYx6OH5/tCW2y67o4cuTVptP/HMfGoUMHcNJJ68u66YVCc4lszVDpbhHo\nngElWVCd286XE7y/H7O/+3sqTKQBpcQ+QNOossILflZJR7TaZ+9SKWivuajuKX/LMLGp4CBpWQiX\nlPP5K0dhQV+SwTDf2BE1vDc3q2QKwUBfPgvkc0A2WzZUJQiBZ5kwdB3EddUpWcbU9JVUBxVhWhnc\nWwxIIgFs3ASk+4qR3w39mcMsF6/mdsOYev9QqgJRKknVeb9rFBAMcma66HAxr+9yPl8d2R0mgu9y\nbCm3tET+K3rnO9/ZiXXExMTUgTG+bLTJlUgp4Tidd7wIu1sIITAzM+1LFlTSXyq1CIlQug4+ONjw\nLsH6AoTgypFDcEjOQVwH0vMgDJQV/KVBRwVJp0EuvCj6GpvwV16MgdJgmE87dAhix79De9vVIJkM\nZC4L8dWHgOlJQDeAk04CIaXOn6sRHBgZxvrpWSTzOVXIMAZIAQgN0CSgawgMuFsZ3FssiGkCFW4L\ndf2Zw8RezY0x9MavXyWSAG6pVGrKd3l6BuLBLxX9zCuJFN/d7ZZyHaJbYq2bKpLvuecefOhDH8La\ntWtxzz33zHv/O+64Y8ELi4mJWV7MF1ldi3YN2YXdLThnGBwcgq7rYIz5muelPzEtpYTrunDdUgCK\nmS/A9VwUCjb6s3MYfe55HN+6Dd5Av29nJzE+frzoU73QdMJmZBiLNVBK+vuBTEYVipkMyIoV6nLb\nn0Lft0+l+V14cVmaXzHl74p3QF+9GnJiAuz///9UxzmhHDE0qkFIgmas9GJiqmjCdxmZBhrZHo7v\nXlS6JNa6qW+rH//4x7j22muxdu1a/PjHP254X0JIXCTHxJxgBMODle4MYeaLrA6jUvgoREVHrJWG\ncz2JQpBsFwzBLTVBFzlIIASU9ELJLQh0IdA3PY1JjYBrWuj+tFgwB69/pYylWVr1V+4YNXTNpL8f\nZGS4ZppfzZQ/yyql52lU/fTfSIIQMF2H6KQ2O2Z5Mo/vcj2W2nc5lm9Eo+kiuda/Y2JiOkctW7hu\nJRgeDDtRLATDMDE4OATPc2HbR4vPQQiBEO21ces2Au0xALC+Phx6/euheQwEBLJh91OFtdh2AbZt\nI5fLolAoFGUYlNKSA0oqBXrhRepLvkNKg3bIMjo9/OMlLMysWAEvYZU5STTC0TQc3nwa1hw9Cmux\nj63qJf2FqUj9kxqBzBfUcFpMTLfIN1oY7A1LMBaLyJrkffv24ZRTTunAUmJiYsIEg2ztKjyXkkax\n1fXiqjVNA6W6XzDKYjMw1Ahs6/qCAT7lGlG6PujS1qLRbe1AUgqvrw/m7CwkpP86enBdF4CElEA+\nnwOYB822cWDPyzh69Ag4Z8hm55DP54ryFsuysGXLNhiGCZJOg170Wmh9aWAqF21NTQ739YLPN/UY\nknNzoF61LVg9JAFcy4LsxBux0fM2SvoLU5H6JwgBc2wgOxc7XsR0DS0dAIclGItE5CL58ssvx9at\nW3HVVVfhrW99K1atau70aUxMTGfohWS+xrHV9eOqA7uzTnaOhRDI57PwPBeEaGWdeykFOOcQQqBW\nQ1/KzhfK5U8YPlBQBw+apsEoODjpF7+E87aV0EdGwBgFpQVfi62DMQ7HUSEtC36LNDHc1y7qvbeb\nTfMrIiUgpOqeSaL+DUB3XaRm56C7riouAfUzcMPoIk/uhkl/YSpS/zSNQM/Ogh0fBzwPMqcOimr6\nLnue6jhXdhm5iDvRMd3FIqXvRS6Sv/CFL+CRRx7B5z73Odx333244IILcNVVV+Gyyy7D4DyT2zEx\nMe2nFzp23YymaUil+mDbuaLlWoAQApyLotSjkkAH3GlJjJdO48j5F2D02WcBoOz5lDwDAEGV1jr8\nf86b75Z2C/Xe202n+SUSQF+/KnY5BwiB1EpFspImeEWJAgBVDAZuGBLqiCTCsGlHqZf0F6Yi9Y9o\nBHALyjJv7yuQR4+o+9XyXeZcDZRpmroECOm/JnGh3AkWaikn+1LA8NINt9Wi09rncPpeJ4n8l3/p\npZfi0ksvheM4+NGPfoRHHnkE99xzD+666y5s374dV155Ja688spOrDUm5oSkl7TJUdP/wnHVjuPg\n8OGDOOmk9cXbOfct0EINvU4095oNPqlHpzvJklJ46ZQq8JqBcWiOAzCurNIqcBwb+/YdxLZtZ5bf\nMI+/cqQ1t9FzuYom9Yykvx/0mneDP/MUkE6DpFPQKQXjXDWXdR0skYRYtapUJHsecOSI2rbwA0t6\n/OCT6Lo6WNh4arFgqem77HmA61ZLOrjfXV7g30lMNe2wlJMjIxCf+HOoDPcuoVu0zwuk5cNjy7Jw\nxRVX4IorrkA2m8UPfvADfPazn8V//dd/xUVyTEwbWUhk9WITNf0vHFcd9kymlMKyLLiuA6W9LRWh\nnShIpRS+zpe0ILdQemvRRV02LZuFtecVaImU6qZWUM+fuhl/5abT+jooy6inZzStBDYaSZih9yBJ\np0sFX7C7fq6IZ5iYWbkC3tHjqpscvk9xA9EOTpmuYzZhYYgAeveoNQBNA0km5/dd1rQauufF1V+f\nULTDUm5qCrJQAMxlFPLW6VjrJlnwOaTnn38ejzzyCB555BEcO3YMGzcunqA6JiamdwgKM9O05u3c\nGoaJLVu2YXJyAjMz02CMgVJadLdQxTNASEmvXE8O0QyEaDBNs2W5RZQY7lbx0mkcuPBCsFAyWKCH\nDsLkGFPyASk8tTbhQTAPjDFwzmD7p3Rt225o19eIrrOJC0FHR5GqLJ4tCzDNYvSw1DWA+Qc0ut8t\ndh2V7AeojnL4taEUiJBex3QdE0kLfR6H3qHC0jFNHFmzGmuOjMFy3Y48R8wisxBLuYr3wILkGxHS\nADtJt8Rat1Qkv/zyy/j+97+PRx99FPv378fatWuLMoszzzxz/g3ExMQsK5oZHuSc4cCBPdi8+cym\nIqsNw4RlJaI28lpGeSlrZQluQMmSrV7ntNFt7URSCrevTw3uoVQge54LjXsQUmBmZgpcA/TZGQyM\nj2NqcsKP3pYQgmPXrp2glPoFc8Hvnpd+X636K3czpK8P5PQzgHQfaF8KlmXAcTwlr83nVOd006nQ\n/NRFmc9DPvOUKq4BwHVV+l0XIQmBa5nKYSMmJsRC5RuR0gBPACIXyVdddRVefvllDA8P4/LLL8ff\n/M3f4IILLujE2mJiYnqETg0PUqqBEAopPV/yQPzusHJ2CLte1G7aLfciQgIoFfWapk6T6xrFwFwW\neY1CUurb2kmYpgld12HnGEQ+D2bboFbp99XOmPCmZRkNaJuu2TCAZBJIpaElTYC6gJAwHBuD4+Mw\nzGRJhy2l6hwbuhqCq+i460Iic+wYdM4BEmt0Y7qMhcg3uj0NcAkkGJGL5G3btuHjH/84Xv/614Mu\nsVYkJiam9ynFVVd/nhiGiYGBQczNAbpu+Ol4ArlcFlIKaBotWrfVkju0w56tGZ9kIYTfsS0VhUIs\nnjUcIQQEBMRPFgxkI8G/K5MGLacAsXcv5MwMsDLil2GTw31tkWUsot1cs+hSInPsuB9z3V0d5shU\nhpPMZwHneVBibtbzA1nLnhbkG4uZBtiK+8VSSDAiFcmO42BqagqWZcUFckxMl1AqMrvEpqoGpmlh\n/fpNOHToQNVtQVx1rdAUx3FQKOQWz4e4AlUANze4Nzc3C9d1/ShpzS+gxaIM9LmpFPZfeCGS6XTH\n59ubGe5r23PV6Ua35A1uFyA1AsFdSNuDFBIeY5gZHYU3OVPuH+wxP8K63XvUPdQMJ2lkAScEMDEB\nUM13u2BxOElMXf3zfNpnOTEBeXSs5YOtcPpeK1ruZon0rWpZFn71q1/hgx/8YIeWExMTE5WgyOxm\nlOtFdBs7TVMGwMplgkFKrSwFLxg+k1L44RqVlJL6WqHUjZ1/cK+/fwCcs2IASqAD7vRAHxDoldNI\nVDQvVJIg99eiut0AwJl6DW3bBi0UwP0gDdu2wZinrg/HWC8R9brRkeQ9iQTI0LA6jey6EJYOOEwd\n4bg2MNwP5OZKHVXbBjxXFci6rtxBIgzu6YwhU3Cgd3kjqWY4yXwWcJmMkqG4DPBcZS0Xc8LSSP88\nn/ZZ2jZwdAza1e8EWdHAvaMe4fS9bimSAeDiiy/GE088gde97nWdWE9MTEwPEnSzpZQ4fvxo0x2+\ncFx1rY64YZgYGckgn88jmUz66XEMx44dBecMmkZRKOT8x1cXJUE3t3IYLwrNDO4FwR3B8F9J4rB0\ntnCqCC7A1mnxoGJ8/Dg0jYBOz2BwYgK/2bULbOwYhB+uwR0HuZkp5GdnkRoYKMZYt0QbPZcXAunv\nB73pDwHbhq4TDA6mMDOTB2MS9NcvALteAL3iauhnbQOgOlz8gX8EBgZVIIeuK3eMJtEZw6jtLOp+\nM0oxMzSIwekZ6PDmf0BAM+Ek9ZBSdd39szwyn69yWYhZ5jTQP89rXScmoCR3pgAAIABJREFU1QHp\nIsk7WiVykXzNNdfgU5/6FHK5HN74xjcik8lUfXls3bq1bQuMiYnpfsKSiSgDfJVx1bU64pRSUKpV\npMkRSKkVO82NitjaHeblDevrw9j2i+FIWXxthBB+l5uAUoq+uSykZcE1raKcRebmQA4cgLE5Bcda\nWIx1J2UZ9Qb66skwSH8/0N8Pomugw2kQMwfCBMyRDAZnZ2GOZMq7WYmEP+i3tAV+szBdx0RmBOls\nbmG+rkKoooWQ+eUWjEHu3lXqQrse4DqQth1LME40WtE/5/MdWkx7ifz3dPPNNwMAvv71r+PrX/96\nhfG++kB+8cUX27fCmJiYmAo0TYNhGEX5QLcQDPEBqJI41KI07NfekBRJKbz+fshcDpr/GR10vJvc\nQpmvcgClFEKIpbeJqzPQx8bHceynj6Nv+5tgrFkz72Y0SqETDVotaYRdqMoVASo0y5UHYCxCF3cB\n6IwhMzEJvU3v/2InenwcumU1J7dwHZDNZ6iDCZQS/EiN8JqYmKh0Ota6WSIXyQ899FAn1hETE7PM\niRpZ3WsEISeqc6sVC+aZmem6xal6jOt3ennn462l8HXIeTDmYeLYcbh2yfIt8FeeWbESDnOLvsoB\nlmXhlFNObZtNXNuJ6IZBBgdBVq4EGRwsXRnWMNc6FZzNAnOzgOyr/TwRNcytoHOOzMRk27ZX7ERP\nTUFvlLhn+PplSQDBlRwl3G33ulNuIV1XRbQzBngRpVexk8fS0CWx1pH/ki+6aHGmmmNiYpYXUSOr\nK2FMfVg6jgPbdmBZVlFLW8+mbTELOU3TimmCweAe5wyDg0PQ6xRNjLGihR1jHoTobJEhpSrMdahp\nRko1UEpLRbLvr5z1hw8DX2W1Vg7HcYpDfotCh3XNHmPIUw0eYwhEG2ENcy3Y7t/APnoExsZToY9k\nqu8QUcMc01mkbQN796jO//S0SlmMMlTJBeC5kHGhHBnpOOrApBaFgpLsTE1CHj9e/dhstsOra454\nNDUmJmZJmS+uWkVGW+BcRSu7rgMhODgvffgGLhe1dMn1nCk6QSBpqOVN3OgxClks9usV/OHrF3IA\nwPrSePV1r0V6cBAaKRXJRX/l0DBieO2cM4B7kIU8pOfVDCsIaEd6X6ft5rgQyFMKXmHTF2iYa+GN\njWH/li1YLyRord+B55V7D4epYXMY01lIIgFs3KSKZNcBLBORhPYuAwp5kC53K+k2pONAPv1k3YNN\nOC6Qy4J/82GIvr7q200LZGCgfJshCcZiEblI3rJly7xfOLEmOSYmJkwjX9tGcdWU6li1ag36+vqK\nDhUzM9PI5XIYGhoGALjuYWiahmQyVafIXpzY6FYIJBoAAefct7pDTW9l5ckc7pyj+G/ddTH06mHI\nM84Aan3hVG6LUnh9fZCUAlEbwzOzkDtfAFadBPQP1L1bO9P7KmlHmh8AmLqOIc+DGUUeYZmqW5zN\nAzPTVTcH1lcYGqwb+4tYt7uoENOENPzfW1Q3D0kANy6QI8OYKpApVTr2SjQKUA1kJFPUtRexC5Az\nM0rOEyYswVik9L3IRfInPvGJqg+mmZkZ/OxnP8OxY8fwgQ98oG2Li4mJWR60GltdywPatu2QqwXm\ntXcLd2AXI9gjCoFEAyBgzA05UNS2swuG/JSGWRaHpZcr9brRbUnzA6DpBnQrCa1Bp78Skk6DrF0L\n/YLXQ1+9uup2Pj4O57EdsC5/G+joaPUGEgnVqW4j7R7ki4lpG4Ze+6Cknq4dfvLfzEzDzS5W+l7k\nIrlekMitt96K22+/HTPz7FhMTMzyZSHpf0IIOI4NwzAbujAoHa0OIVRBoOsaGFPyCyFUR5ZSWrd4\npFRfkG9yuwkG/dRlfk/moEgmpGhRC25ZmNx4CgYSia7R0EmvOVlGw210sBu9ICgFGRmuGYLguQ72\njQ5j00A/9FZCEsKEHDYauWro8JAp+Ke12+Cw4SQSOLL5NKzZsxdWvdPlMTEnAG39PL366qtx++23\n47bbbmvnZmNiYnqEqOl/4bhq13Vx5MirRc/k+s9hYnR0JU4+eQMA4Ne/fg62XcDwsLIJmpmZbjgs\nR4hWM3gkxvdXvuQSeJZZZV/HmNKEO65TPKAhNTS2xaS+2eZkGS1RZ6AvqgyDeQ7yngPmdVmgQS2H\njXASIPPU/xOJcj/j0OMX4rAhNQ1uMgm5jM9SxHQH0nVLR/vBdfk84DiQFbHWVVHXHTgrU0lbi+R9\n+/Z13enMmJiY7qXVuGopJY4ePYzVq08CpVpxyCzY5nzDct1KK4N7lT8X9PyUwk2nkc/nwDkvJvQB\nge8zx4HpaaTGxrDnld9ATFZPpVuWhS1bti14LY2oN9BnDQ7h1LPOBRkcamo7jKvBPbaYjh1NUMth\nI5wEKAC4+/fC3LARtJbzRwspgZmJSejL3cGB8/pDlfXwmHJhiPq4mPnhHPL5/612wPAY4NiQuRxY\nKNZa2jawfx/E2BEQ/0CS3vSHHS2UIxfJX/7yl6uu8zwPr7zyCh577DFceeWVbVlYTEzM8oJzjomJ\n41i5ck0kXXJtJFy3C0/DL4CgCOacRx7cC2+jDSspPn+Q0AcAhEgAEgndxLBtYzphgVtW2SNLNnFL\nU2xFdsOYmwVyOfWzWTSq5CM1dOPtpKbDhp8E6FIN+zefig1mEskWpSxhir7Ly1nTzBgwPVXDA3oe\nuFBx2wf2qzTBeOiyfUipDgQtq3y4T6MAAcgpG8uH+ow8YCXUmSmNqDMttl3XiaYdRC6S//Zv/7bq\nOtM0sXr1anzgAx/ALbfc0paFxcTELC+kFJicHEcms2JBRTKlOkZGRjE11b4whW4g0CK3MrgXJPa1\nc4ivZGcXnM5XlnZUV+vTqQFBNEgZLuhDSX2O3ZwsowHt0DU3RAhQ11WRy01ChoegbTsbZLi5bnVM\nl6DrwNAwYBrRLeDyOWD9hmKBLF0XaDFWWebzquiOKREe7uPNHahJoQrssBwDQNslGJGL5Jdeeqlt\nTx4TExMTFcMwkMmswOzsDFzXRTabhWHoUGLN3u4stzK4V7pucdeq5BjHyvyqA0nGrl07YczOwmpC\nltGwUO6krhmARQ0MzczAos0XTUueHGkXIDUNgIAsFCDnkYpIjajghhjfjqwFCzhdBzFCp/z37gGs\nBKTZwsG+6wGuo7rS0R+9vOEMOHxEHURwDvnMU+XaeiFU5/i5Z4shL/yBfyyzVGy3BKNbBqFjYmKW\nMY26v0HRUesUvRACnufWdbxQXUyJZLIPgARjrGrgrBFBil+3sNSa5Gbgff2Y/d3fA7NM8MlxEKJV\nSTJM04SVsDDUhCzDMADPc2v+/p15utFAcx3pejDBkU8mwZqMsQaaSI7slBwjPMzHOZAwAdsFaKGx\nNzMhkMIr+TsvAKZTzGRGMHh8HHqXzTouFsVwknRftY9vE8h8HshlY9lGLYRQQ6kaAUCrZRgAkPLP\nKLlM9UUGBkuSDLvQdglGU38xk5OTOHbsGLZs2VJ2/UsvvYQvfOELeOWVVzA6OoobbrgBl156aVsW\nFhMTs3wId38rCYoOu0YR5LoO9u59ua7jRdgOznFQlsoXaHtdt36aH6CKdNddepur7tEkz4OugyeS\nRasxTSMheUgoZZAaRVlGrVCNoAPteS5eeukFOE511aVNTdXsRnPOkc/nkEqlkUql5u9I14ELgUIq\nWZW4txA6JccID/PpY2Mgv3oC+oUXQ1+9uqE3s64T9Ll5uJ/9O8gFzgIwqmMiM4L01PQJ3WEjpgmk\nUiDpdGsb8GK5RUOIBmjS7/rXec96HMjOAZpW/D1IoOQG0yaaep9/5jOfwc6dO/Hd7363eN2hQ4dw\n/fXXw7ZtnHHGGdi9ezf++I//GA8++CAuvPDCti4yJiYmphZCALquY+PG0zEwMADHcTA2dgirV58E\ny7Jg2zYOHtyLdes2IlGnc+N5Ll588flFXnk13aZJXiw4V11lSnXoevl+0zrdaMYYCoU8NI2WdaSj\nIj0XEFL9bBOdlGMEw3zEdQDDKHo1N/JmJroG6mZBdKNpMZLuecgcPhKHk8R0L1ICjEeaJ2iFpork\np59+Gtdee23ZdV/5yleQz+fxxS9+Edu3b4dt2/j93/99fPGLX2y5SP7a176GBx54AOPj49iyZQvu\nuOMOnHPOOfM+bseOHfizP/szvOUtb8HnP//5lp47JiZm8QnHVbdSXEgpIISAaZpIJJJIJJIYrLD/\n0nUDiUSiofdyt9BLmuT54P1KlsGb7LbpOq2y7aP1utGMQ/c86JDgC1B2EtMEFUJ1BtvEvHKMtjxJ\ni5KO+cJJPAYICd12kHn1UOlxEeQoMdFZ6CCgjAcBO0ZTRfLRo0exefPmsusef/xxnHnmmdi+fTsA\nIJFI4H3vex/uu+++lhbyyCOP4NOf/jTuvvtunH322XjwwQfx4Q9/GI899hhGRkbqPu7QoUO47777\n4u51TEwPUhlX3WxxEST7tbNzqiQOpKzYDLq19WQMy8mCru3oOvjgYEc2rWWzsPa8ArplC3i6pD20\ns1kc2rsbJ23cjERf37zbaWVwrxuIKukgySTI8DAwOVkznERwBk9KGJxDC7Thle9tXa8dXNLjOKaJ\nI2tWY82RMVhLUGy2YxBQug5kwQbM+d/zMdFoqkiu7GyMj4/j1VdfxQ033FB2v1WrVmFqaqqlhXzl\nK1/Be97zHrzjHe8AANx55534yU9+gu985zu48cYbaz5GCIGPfexjuPXWW/Hkk09ibm6upeeOiYnp\nPISQloJDahEk+01Pt/Z5E4ZSCsuyMDur9MCElE7fCSGKF03Taq5dXb/gZTTFfIN7aq2qyBFClBX4\nJ0JBL2emYT/7NOTICqCJIhlJ33M12VtDVFHPumgDAzA+cgtIttStDIeTeDrFfsmx3vGQeP45f2Cq\nomDTtGj+wj2CJASuZS5ZumA7BgFJPgfSY+/hXqGpInnjxo342c9+VuwaP/744yCE4OKLLy673/Hj\nxxt2fevheR527tyJm2++uXgdIQRveMMb8Oyzz9Z93Oc//3lkMhlcc801ePLJJyM/b0xMzOJhWQls\n2nT6grcTdrxoB4Zh4vTTt0BKDoCWRVYzxnDs2FFwzpBIJOs6bCxG0qgqcmVxgK96cE8FrDCmFddV\nPgRYvyN+okKSSZD+fpBk81IcOTkJ8cPHoP3e5SAtfN+1g1YkHWo/K6QvfjgJqAa4BVUc67rvW1vd\n1Swm88Va5bay0EFAwuI0wE7RVJH8/ve/Hx//+McxOzuL0dFRPPzww1i/fj3e8IY3lN3vpz/9KU4/\nPfqX4NTUFDjnGK2Yys1kMti7d2/Nxzz11FP413/9V3zve9+L/HwxMTG9S9jxglKKVCpdVti2gq6b\n0HUdnEcvIher7lRdbNJgcE91GIPhNyEEOBfFwl4N/XWZcHkeouqao+J4LqYMHY7notky2XMcTOZm\nMeI4WCKn5CWjlMwXa5S7mVY1znHQSTVNFclXX301jh49iq9+9auYnZ3F1q1b8alPfQp6yHNxYmIC\njz/+OD760Y+2bXH1prVzuRxuv/123H333RhcoOZN2RdF/+KgVCv7eSIQ7/OJwWLuM6UqsW1qagKr\nV1fHVVOqPHgp1aDrWtV1lFpIJpMYG3sVqdRpVd21Wo+vBSEGkskkZmezZX69jDFIySEEh+s6MAyj\n5meSruugVCsbvCsN2NX/jKm+L4AGg2iNBvfU2XBliafuy8ukcppWrrcubbP8OUvrQPG5wv/WbBup\ng7uRXbeuatCwmX0OniP4vZTWVv4YzjkEAXifXyCHQkukYEpewlV4iec5oFSDx1y/y85q/r4r39uU\nEhD/Z6P3RxiXCExaJkaIaPoxnYaaOkgqBWrqVWuq9/csdQJBCFD8Dvx/7N15tGRVeT/875mr6vad\nb3fTNE3PdDcNpMGfENCYoMQoBsTOK5ggChFJDAYiAdQV81Njoq7lwArGiYC0LEhEXn8QjUB8AfFV\n6TeSAKINaXrupqWHOw9VZ9p7v3/sOqemU3Wrbk2n6j6fRa3mVp2q2qeGe5+zz7OfR8lLOS6/eDR7\nM4BsinL2PROqXD2q6wqUNr8u+fsc7KdQFchzKoX7ljv4LLPPiiwtpqhy3wCEr5uygNih+HXKfx8W\n+njB/TRNBfcd+AcPyLMCNS5IVVwXcBxovgO1ivew0tiFqkD+Jq38ukLJbSOgoPB3ESBYmQoWvgdw\nDsXJQMlkDwjsjBz/1BgUXQESybqbilRd6vCDH/xg2dxgQM76PvPMMwsaxODgIDRNw+joaMH14+Pj\nGB4eLtn+yJEj+M1vfoMPfehD4enD4JTiWWedhcceewyrVq2q6rmHhnrqml3p64v/ivlGo31eHFqx\nz5alwDQ1zM1NYsmS1UgV5eT19ycxOLgNlpWrc2xZChIJAwMDqezPOgCOvr5kyf0TCRWDg30YHOxB\ncp5T6n1955U0IUmn03j22WcxOzsLVVWxdGl0S21VVcE5zwap8iJ/JQkkEkbZNtyahjC45lwNA8Wo\nAJNzURCEysYducBUCFFwMMCYCANj+fhKeNAgtw/GUPjHkLHc5ISua3kz0bn9MU0diYQBLZ3b3+Jt\nKrUelxP/LHwPg8cL7iO7+R0v2xRGm5xE79gYpqYm4HIP+/b9D3RdhxgbQyY9i1ePHsLrt26CWSZI\nCD7b+nQ/lgJYOtyP3sEqq3BMJ6HrGvr6kpH3YWNjyPzgB0hedhm0iL9fzWBZK9GTPg+Da1aWfAcC\nxd9n5qYwZelQhA/GVaiCw+ACmuBQBIdSoaKFAAd0FZZlQE3K15gzF9zS0d+fglbla9lsfX1JsIzc\nT1gGPF2FomtQ8koNMk2FpiowNBWGHlF6kWvgmgLD0NDfL1/bKUuHmsjtey2KX6fgfajr8TJabn+X\nD2Fy8xlQenuh1pjjzNNpiJkZDCwfquo9rDR2zlw4Ea93IHhdAQVqdhvBNfjZgwgIQAPAj70GEfF7\nQDAGeA7w8ktQrOxzez6E6wA77gGSSahDQ+j7q5uh9i28W2cs6oEbhoGtW7di586deMtb3gJAziLv\n3LkT11xzTcn269atww9+8IOC6+644w6k02l84hOfwIoVK6p+7vHxuQXPJPf1JTE9nQGbpy1ot6B9\npn1utEwmA9uW+XSTk2k4TnTuQn6jkeA+k5Np6LqOnp4BTEyMlb3/qaeugW1z2PZc2XEE+2zbrGCf\nXVcGfjIPWDY6i1rgzxiH53nZ+yoQQgHn8rFs20NEMzkACO+jKAoY49nFdzL3uFgwhuC2XE5y7jr5\nWHL8chGfDJRzjUp4GGzn3yc/ZSRY8AfIznjB/gb7k1F0+Bs3lexv/jaV9jnYb9f1MTmZzr7OPoDc\nfTzPg+O4Bd388qmKiiUzM5hRVMiZJy17USEEMDszh9HR6ZIDo+LP9lzGB+sfwFTGhz9R/vORLz2d\nge8zTE9nIu/jHh/H6PFRjBwfh6m2ZjEV5xwrV65FJsPgOIVjKvd9Fo6Al+qFmJiAyxi4ZcCdmYGS\nscF9Bk/TYCgKtHKTSMkkHAYgI0/PC9sDHB9TU2koZnWvZbPk77M/lYbr+BBCBfc54DMoau7D6Wkc\njAt4jEOLSiPxGQQTEB7D1FT28+r4gO1B0WpPTSh+nUR2fPU8nuLJcQf76wkVUA0oWm1Bt1A9QKhV\nv4eVxi5sDyzi9Q5lX1coAiy7jfAZwIX8SgsB3/NkG29VLf3FKwAYFrhlgQflIYUCMA4v2SMD7ddO\ngB8bg8Ki0/EGqzgQiEWQDADXXnstPvaxj+Gss84KS8DZto3t27cDAG6//XaccsopuOWWW2CaJjZs\n2FBw/76+PiiKgvXr19f0vJwHf5QWhjEO318cwVOA9nlxaMU+cy5gGCZc14XjOJicnMTAwFDFWcgg\n0GOMwzA0DA4OY3JyQgY9c2kcPXoYK1eevqBatcX7HASuQYCaC2JL5beUzt1HVHUfGWiKgoC3Wrmz\naSIbJPvZnwurWwS35y/0k/cvrZqRH4DnqmMU7k/x/kZtU2nMwXiCseXfJ3gMVQUUpfCPYxjEy/8K\nx4EguPcxN5cuOcjTNBWJhBa+z9x2wUdHwW236s86Y8EBh4i8j+P6OGno6HV9qC38naHrJjjPnVUt\nVvJ9TvZAuf7Podg21GwHP/WMM6HgYbipFA5bBlYrGnTTinw86LoMToL3jMsvie8LKDH5XSn3WYAL\nIccHoHgBa25BbJmFrcF3gct9AwAuBMAFlAXEDsWvk8iOr57HU3nugNev4/FqfQ+FL8AcB5idK3ku\nkU4Dvg94bvi9LOD6ctZB05B7T4JL9sAs+H2oKnJxackABKDndeUTABiDSKTk42Xsuj+PsQmSL730\nUkxMTODOO+/E6OgotmzZgrvvvjuslnHs2LG6F+cQQuLFshJYvXodDhzYC99nBTWTKxFCwHFku+mo\n6xtdxSEIPMqd/g9uk7O0AkDzK16UlnarXN1CCBG26w4mB4MAvVNwzpHJpJFWFMyddy48BeC2jdHR\nk1BVBfr0FPpGxzAxMoLdu3eV/M1QVQX9/b1Yt24TFEWH67mYNOS/nZRQ1agKG2EHP98HevugDA3L\niheWJSfmzYRsWtLFdN/HwMQkpvt6oY/70CudAqmCrwCTho4Bz4fe5cVkKtZ4dj1gchLQtejSgYzL\nOt39jW3f3mixCZIB4Oqrr8bVV18dedt9991X8b6f+9znmjEkQkiTBY1BajkIZszH4cP7sXHjliaO\nLFdDeXZWLugLgswA5xyuK4N1WQqOQc6KBAuH9JKZ0EYJ8oprqW5hmlZelQtRkJvcGbKtuXUdrK8P\nihBQOM+28laAvn7MnnMOuGXCNM2CxeWATAfJZGS6hGHo4L4Pn3PwDitp1ugKG9by5dhw+Xbok1Ny\ncZvrAKYBkclAVJtylZcS1Ul0xjA0PoGpgcY0vvEVBWOmgSU+g95ZX66aVarxLNJpYG4WsMzIcoJw\nfSCTjn2DmlgFyYSQxSdoDGLH8I+sYZjYunUb5ubmcOTIAaxatRaJRC6Nw7bt8HoA2L17V0Fwpihq\n08+A5belVlUVag2tihljJekW+TnJcVVYUUPJ7rcKqBpYvw6F+dB1HbpuZPcxmE2XM/62LfNz3fEx\niLk5uONjZT9/mqYV1uROJqGsWCnrC7cJ4wxjpoH+BrWLDuoui5QHMTAIjI3KU9y2C2i514UxD95c\nGkZPClpEl0JlYFDORHeYsLQdqVmlGs9Cz9bbjqppLxTAjX92AAXJhJCOYpoWTj99HY4ePZxtLOI1\nNagzDBOJBIOuG0gkEkgUnX4OrgdkQBUEZ+0mc3wrp1tkMpmSmeTcjLjS9mBZtW30Hf0NZletAl9A\n8CWrZJwAy5aPC/IeXXeXDKxfPQhzehpHXz2II2UmtCzLwubNZ4WBstrTg8S6dVCbVLu5nZTeXmg3\nfAj6wYNQnv059Ne/Afopp4S3e8eO4fCzP8fa178BVt71oUSi7pJbhMQJBcmEkI4iZ71ke2vXdfHq\nq4cwODgETdPDYKjRammp7dfQaCGXx9z4/GU5w6pVTLdIJpORM8nBPnRa85FiMi/bD6tkBEGyaZrQ\nNA2KYUJJp2EYJoRVukDN9xkcRx5YBGeMG9U5Mq6U3l4oQ4OAYUAZGoSydGnuNteJvL4jODbg+YCq\nyVnMarW5m91iynGOIwqSCSGx5XkeJifHK1a80DQNw8OyfnGzguRqAqMgf1kGVaXjyM9fDgJXxnxw\nzqCqajZ/2WnouKPSEvKv0zQtW+JOlNwvDngigemNG+t+HFl7WsumXYhs8xcdTNUwPTyEYVUrO/tf\n82eqDekYcWiVHVuJBJSBQYhjr8mFYgqA/DQVzgHblmki5fJjLSt68VkLdHSOM2OAV+Ygw/Nl9Qsg\nt40nG4QEJeDigIJkQkhsMeZXrHghZz39spUkHMeuqyRcLQzDxObNZxUs7MuXn78cpGfYth3mMTPG\nkMnU3kqWLJxgHEzVql+cVoV2pGM0vFW2qsmqFjXkt8dVkEKiHj0Kds83gb7+gkVmIp2G2LMbysZN\nJYvPwm1cF0hXV/tZFwLDrtd5AW2DCd8HJieCjkmlGzCea4FtZ+Q2jMkDluAgvckVgqpBQTIhJBZq\nSWkIeJ6LiYkxuK6LVKonr1KG/NXWrJJw5RiGGbmQOxCV1xzkMbdKfsm4+RbuyYOPXJ3lducoL5TM\ns87lJMt24wKMeZCvgxd5Wr3SAVg57UjHaPRCvqDahRG14KoDKb29wHC2vF0yCeQHw0LIxWXF1+er\n4XOvC2DE7axqKc2g6LpcBGoa5atbBAcePSm5jefJwFlR5Wseg8oXFCQTQmKhEcFFUCmDRAsW8wUq\nL9yTM/HBQYtsttD8+s+NJoRAJmMXdSY8AUVRYMzOwJydxXTPDLwTx0ruGzQ38TyvZMFmWzU5pSOo\ndrEYcACuacKELA3d7Vqa46xplatbBJMD+duoai5IjgEKkgkhHcc0LaxbtxHpKk+BNstCZr+j+D4L\nZzeLZ3YDuc5gwXPV/kckWMxX7cI9y0qEbaFld1IW5lPHkWrbWHLoEKZPXRFeF3Tyk+OW+61p8jUw\nVAXGXBqeqoBHnBIWgoExv2wKTbs0OqXDPXECEz9+AoMXXwJz2bKGPGancDUVB9ecjlMNHb0A4vbp\nbnT6RkfnOLcBBcmEkI4TzHRlMs2vrVwpr7ne2e/8xX6e5yJolhEIWuXmZnOB/HbSC1HLwr2w/jAA\ngIf1huNKcxz0792L2ZHhktvyD2TkAkYVPLUEXn8/eGpJZH1pVRUojo+F5wEz07JD3TydIZul0Skd\nzHMx6mbQ57mVN+yGXGU7U3B4KVwHTFdwJGlh/VwGiaj89DbWcO/69I38xX3FC/eCn6MOUhlvSc4y\nBcmEkI6SX/GiFZqZ15y/2G9qahLT01PQdSPMUeacw3HsMDhPp+fCChVCCHiei5gUouhIQtPCS9Um\nJ8H+7weh/V9XAZ1WBq1OHZ2rHFS5mJwAnLwqMowBPUlgehpieroEbTD5AAAgAElEQVRsebiwUYpt\nt2jAiwDnwPSU7LxXvHBPQC78s22ZglF8BosLQDQ/UKYgmRDSUfIrXpimiYGBoewpdR7rVIBygsV+\ntm0Xdo8DELSODlIeglng3KwoRcj5mGVhasMGcLMwiAtm5LM/ZWtFC4AzWRGMs4Jc7UBU90HHc3Ek\nZWGV52JxZO3mdHKuclDlojjI1Y8dA/6/nwBQoP/BZQXNUwpkG6UICpIbR1WBvn4glYxeuDcwKMvE\nRVXIYNkZ5ib/zqcgmRASW/Pl/MpZVeDVVw8imdzStMVVvu/j0KH9WLNm/YKDhEblL7dCueoWQck9\nIFf5IX9/2l0BI6irnF/bONd5kOVdNwdAgZGxMTQ+jvGRpfCM0vx2IWSQ7OdVvhBCwFXVsvvZlnSM\nGLTK7gRKby9Q1BFQ8X0oqSWA59bWJKUobaNqbUzdAGJYoq7S4r5qeLJCjfx/Pzo1ow4UJBNCYqv+\nnN/CknALJ1s61xMAVrsvnOcqSARBZ1BlIX9GtHQhX2MEs/KAKKluwTnH1NQkVFXNNkdxoaoKFEXN\nG1+8KmDk8rrzZ+dlyoqmKlgyPY0pVQGLmJFiTGS79tXwh7cN6Rjd3Cq72ZTBASgbNkDseaW6O5RL\n28hizIM3l4bRk4KmRR8khakbbRDrHGfOc69pNekWnANjY4CWvY1xgPmyRnODmr9QkEwI6VimaeH0\n09fh6NHDAGSA6XkuDMOEqqodVRJO09SwK1wwExoEzL7vgTEWBp9BTnKwkE9REF7qFaR8AKXVLRjz\n0d8/AF3X4fs+PM+FpuW3vo53BYz87oOKokAYBmZXnAphGJEz/AuZ9W9HOkajF/It5moX8ymXthHw\njh3D4Wd/jrWvfwOseVI3upmvKJhcthT96XT1gaaqyu6GtaRbDA8DRvYZXF+eEdD1hp3RoiCZENKx\nZI5kLoXBdR0cOLAXa9duiFdd2yoYhon+/gEYRm7hnu/7mJqaRE/PEszMTENVNRiGEc7kBgv5AJka\nkJstrU/56hYqdF0PWzgHt+cqQ8S/AkY+1ffR+9prmD59VcMec750jIY8R5NTOqqudrFIRaVthLe5\nDmAYtaVudCFfVTC2bBl6jhyBzmv4LuTXSTYM+XNk1z4lt03wHRBKYcvxBojn4T4hhFTAGMPY2El4\nXmmXtE6mqrkgNKhyEVwng1Ele1GzaQ75C/lan+scpGAEOb+5mW8fvu9VuPiRC+VIlSYnwR78V2By\nsiEPp6RSsE47vWxb5m5mmhZOX3YqtLjk6BbhABxVQeccenYXmkkmhJAKNE3H0NAIJibGS26rVEN5\noYJGHoCs5KEoChjzswFokJ/Mw3zldi2UkznJTjZIz+Uk5+ctV7ovY7JRR/354gvHLAsT69aBWVbb\nxrAQjU7pSAwOYcPFv9+AR+o8qqqiN9WDtWkbpt6eutcAyi4EdDQVh/p6sXp6JnY1nCvRucDwiRPQ\nGZMzwx2KgmRCSEfRNB3Ll6/AwMAQDMMoqGTQDIZhYHh4Kaanp0pua2QN5fzGIvn7lEymwFgwMyvr\nIssmIDwMSoM84lZWzlBVFaZpFaRkFOctl5PLZw7qQbOwakZwe3HlDLkdL1m8WM9rzywLk+vXlVxf\n/Piu68DOBiNOwgTftBlOwoQSEaB4fvNTFFqR0hGlW3OVVcNAon8Qajuaw8yzEFAoAmBe5RrOQ0NQ\nkkkgRidndCEwfOIkkLAWXrkiBihIJoR0lPzFeJ7nYWzsZOzaBi9EfmORYrZtY8+elzExMYbBwWEk\nEgn4vo/R0ZPhwrnC+smtkavrnJ+TXJi3XE6wn4z5mJmZKVoAWFo5A0BYaUIG0LkOhI0MFmWTFi8M\nkIXgOHRoP44ffy1vbA4y+/ZEzpabczNQY3rqvl7dmqusDA1Be8+ftOe551kIqB87BuXZn1es4awv\nSUHt6wMmSssYkvpQkEwI6ViMyYVtq1atgWlacN3SmZhGaFwpucqCxiJRdF2HoihFC+dyOcqdStN0\n9Pb2wjDMggWLxZUzgCBNgxd0HYyaca6XLBmXa/2t6zqsvJSMZJl6xL7P4DoerBYHyXFolU0Wrt6F\ngIpe/fefA/BUBQYXtCitCvQaEUI6WtCkIypQDNo611u3N5i9NuoIQBzHxv79r8BxqGNXMVXVIhcs\nBrPUuYtasFix2bPnweNrWv7YjApVRATcZAL+xk1wEiZsO1Ny8ZoxC9vghXyLiRgfB/vOv0CMl645\nWBBVAxJJ+W872RmIubmSi2NncEDX4ETcHtf85naimWRCSMfyfQ9zc7PZjmils3txKglXT/6yoigw\nDBOAAt9neRUihGyvHLH2vd0L+7oVYwyjoycic+GDnGw/1YNXyqRjWJaFzZvPyr6fjdHohXyLqtoF\nYxAT4w3r1GYtX44Nl29v6PtbkzpznNvZ6CQS59HvDePytuKOe74PkU7L33tu/QekFCQTQjqW7zOk\n03NhRQjTtLBu3cb2/YFqEstKYPXqtRgdPQHOfTgOshUvGAABzhUwxqBpWjiz2u6Ffd0qaPaiKGrY\naCUgD1gEenv7Ihcu+j7LLsxkZdNqFjamxi7kW8zVLuola7e3L8isO8c5To1Ogg58ilJ9xz3fh9iz\nW8bNrgNh23UVx6QgmRDSsTRNQyrVAy1baL7df6CayTBMjIwsw2mnrUYikYBt29i9exdMUx4QTE1N\nFlSViFrY10mNPnLtsXPKVbcI2mjLbVozey5zwYtPqc+/cLHaaiye55ZdkFpcYSNIKXIcG4qdgaZp\nNR0oLuacZs/3MW7qGPJ9dMuhddc0Owk68NXScc91oGzcJH8HzM1CqXNWnIJkQkjHMgwDPT1L6soV\nnk9xq+t8rVrQl3s+DYlEIkwd0TQtDIrzG5EEihf2dUrmRVQNZiC6uoVMY7HDWfKgIgXnvGMXNHqe\ni//5n1/DiThdDkRU2Bgfhz83i717dwPjJ2tO6XBOnsCR/+dRrPr9S5E4dWUjdyX2GGc4aRrwJ8ew\nfGSkqb9LFsLUDaxpdw3n+UTUeGbpNDxNg+ExqCKi6ZNfZSOoBXTcU1IpeVsD8v8pSCaEkAoq5TXn\nl6NrhvxmJcECxcWQMhFVgxkoX93CshJh6oNsuMI6NkAGZN6z4zjZBYPRC8DyK2wIywBXVZiWAabp\nNad0VJuu0a25ylwBxqenMML82AXJba3hPJ8K+c+u6+DwmtU4/eAhJMotVrashuQNNxMFyYQQElP5\ni/0SiSTWrTujZBuZjy3CdtC560sX9uWnIsQ91i6twVw9IUT4WgjBs/scBIAdMp0OQNe1eetNAwBX\nDVmFQzWg6FrTGux0a66y8Biwby/E6euAFe1d4FusnTWc51Mp/1nb/TLwxOPAGZug9vVH3l+4LsTz\n/1318/mGgamREfSPjkJnzSn3WYyCZEJIR2OMYWzsJJYtW9G0WaAgWA1mN+OguEMfYz5c1wnTEWw7\nnQ2WBITINekIgmRVDRb5dU7QKGeO50+3CFpjA4Dn+eH1wb7KOsgxP0ogrSME4NgA7/ymRK1WLv9Z\nOXZMpkroJlDuzEMH5H9RkEwI6WhCcIyPj2J4eGnTgmTGfBw+vB8bN25ZcCm5Rucv53fos20bR44c\nwKpVa8NFfQcO7IGumzBNI3xO3/cxMTGWrUushUFn/t8qzoNgMn5BpJxd1uZNtwhaYwOAbafh+15e\nTeXODZAZY5GLL/2EhcyaNdATFuDLAyY7O7unaSosS4HnuVAU+pNfIpmEsnQZMD7W7pG0RMtznF1H\n1mCOINJpWbZN1WQ+sefLqhUqR9TvH93zMPzaa00ecNFztvTZCCGkgTRNx9DQCCYmohsBxKkkXDPy\nl/M79Om6UbCoL9hnxlhYJUEGxDIwdl05y1xcDULONsvgKo7BZHETkVxaRjDDn6swIW9XS+7TiSrV\nZxZCgAFwpyYghHyfd+/ela1sosA0dSiKhjPO2FrVd2ExVbtQUikoy5ZCTE005PHcEycw8eMnMHjx\nJTCXLWvIYzZSy3KcLRPQdWA2DUyVNrlhzIM3MQXDdaAqkLP4vp+tiawBplFa9q0NKEgmhHQswzAw\nPLwU09NTAADP8zA5OY6BgSEYhtE1JeEcx8FvfnMEK1eeHrk/UYv6NE3D6tWbCoKioGycqqpIp2ex\nbNlSMIaCIDkoHRe0we50uZJxuZzkSgvUCkvMoeK2rVSpPjOA8KAgOBNgmmb4HmoakMlUv5hvMVe7\nqBfzXIy6GfQ1o7NiA7Qqx1np6YFy6qnQX3dhZD1m79gxHHrmaZzek0KyfxBKKiWbgDz/33JBn2XF\nIv2FgmRCSNdgzMfo6An09vbFbpV6Pebr1mdZichFfYZhlqSHaJqWnWHUsgcSQWCVo6pK7Bf2VUMu\nZpSlpvIDZd/3y+5ffmAcvNz1tjVvpOj6zPkKazWrqgyS5+YyYQpGseI6y7adgQ3AtjNhq+Jaay93\nCkVRYOomnHgcC3UXTStbj1lxHXmWwrSAZFLmLQshZ58NXZZ8oyCZEEI6V6UayqT9ZO1oA55XmJNc\naZY816Uw93Onv7eMMUxNTYQpGMW468JfsQKvHDsKdfxkSd1loDnttOPAshJYs2Iljvz6l7E8c1J8\ndmyx4IoCzzRhqCra+e3r7G8+IWTRa3ZDD9O0cPrp6yIf33Ud7N+/B67bnHJEuX2rvQwakeIY+LSa\nrC/Nsov4rJJLsrcXvStORbK3F5ZlwbRkqpJpGbAsC1pQe9mxIcbHZM5yF7EME2vTDqwYHgAEZ8ea\nVdavWUwrgbVGEuYC091c08ShdWvh1tkxr140k0wI6Wj5C+Ka8YdE5jW3p4lHsG+2nYHv+zh0aD/W\nrFlfd5617zNwzuB5XmROcnF9ZSBeKQe1yG9h3Q3pFvWQzUlqq7usZrdnzIdz8iSO/L9PdV+ucioF\n9X+dX75UWRuJiUnwX/8KYmAkdjWcK9FGRpCqNvc527GvoNqF58nW01zIf4urXbQoFYOCZEII6QgC\nrls+Lzlfue58QW3ldHou7OrGeS4nuVx95dz99YI20Z0gvwrGYk23aJRqO/N1GqWnB8rrz2/3MKJx\nJvPCY5Cf23CqKussp9OyY59ty1bSCoCMJmtXs2zFCyHAVRWeZcFwHKg8m7/c5O8mBcmEkK7RrNSL\nRpSSa2X+cqWFfJs3n4W5uTm8+upBnH32mXBdgDE5U5pfXzmZTIYVEwKKonZk6kdU2bhKZwbk7eFP\nzR8gaZvFVO4OiFmOs6ZB+6MroQ8OAQDE2BjYPd8E+vqh6BrAXGBgUAbChgHXsnB47RqcfuAgEo4j\nr2/y7yM6PCaEdI0gPSH45e95Hk6ePA6vzhzKoJRcPcFts/OXq2UYMgBesmQJenp6kEwmkUgElwR0\nXYem5aoj5F86MUAm5THG4PteyYVxT9Ze5sF1skGJ4zphFQwvpiXOajY5CfbgvwKTpbV8F0JJpWCd\ndjqUGKZuADHKcVY1IJGE0tsHZelSeRkeBhIJQMmmPAUZUvkVHAMCMg3D9XIXv/G58jSTTAjpWt1S\nEm6+pim1sqwENmzYhGQyCduO7oZFulul5iTwfWD5cszYNnDiGDiXDWgOTUyAZ6teWHPTXVntol6J\nwSFsuPj32z2MsuKS42wtX44Nl28v/PwkElAGBiEmJ2SKhannAl/OAMGBTEZe3DIHaYmETMNo0OJS\nCpIJISTmipumFHMcG0ePHi7bbGQhfL9yDmTUAr+4LnDrhmYijVaxOYmmyWYOWfI9FjBUHZ6q5qpd\nVNmchMRITHKcoxo9Kb290G74EGDb0I8dA555Gpidg5JtNqK4DiAYlK1nQTWtyMeFrgOmSUEyIYQQ\nab5mI7VQFBWmaYExP3KWkXMO13WgaRo4Zyhe4Be3xX1U3aKy+ZuTAEGDEk1X4SsKNF1BtywjczwX\nR1IWVnku4tibU1EUmJwvmlKGSm8v0Nsb3WxEVQA3A5gJINGaWXAKkgkhpIJKC10asaCvkvzFfq0S\n1c46n23bOHLkAJYtW4GDB/dB09SChZKKokAIDt8vH1jON0vdSFTdojbygEAUXSdfE+Zzmavsy1no\n4g5+ndiVTwiBtKri4LGjWDs8HLs29kENZ63DXtd6FwiauoE1U7PQ/PbmTlOQTAghFVTKa446ZdhI\nruvgwIG9WLt2Q9ObpuSLamedT9cNpFIppFKp8LR7PpmKIWecTdOKDDJlkwqt5L7NQNUtqsM5RyaT\nLpk5D1JQRnUD6vLl4K4DPumWdPDr1K58QgDuzAy46wIxC5LjXMO5En90FCd+9mMseePFMFasqPn+\nqqrC4hy8zelOFCQTQrpWKwPLZstvmtIs5eorR49HlpMrF+QGM86rVq1FIqJrVjDryFim7nGTRglm\n0QsPIoLZdc2yoCYTULgAmA/TNMMygb7POjdP2fch9u8FNmwCevvaPZoCsa7hXEm9uc+aBvQPAMeP\nNXZcNVo855AIIYtOcUm4hWKMYWzsZN2l5FrFcWzs3/8KHMeef+M8QX3lamfHgxnn6EsCum4gkUhE\n3h7n2cZg5jS4MObnlUiTs+TywoouvCsW+uXPvOdfVFWFqmrZf4vLBFJ5wE7QKTnOytAQtHe+C0re\nAlKTcaw+eBgma90agc6fXiGEkCYTgmN8fBTDw0sXHHA3O385XyMX8i02wQI/uYBPXjc7Ows3W3JK\nppG4UFWlZIGiDKp5Vy/06zp9fVDXr4c4fKghDxf35iSdmuMMyFldy3VbmgBFM8mEEFJBUKO43ooN\n9TQkCRo4NCr4chwbe/fuRiYTn1QH32dFs7UiXDCWu4iSWd5GkzNshTnMS5YsweDgEAYHh9DfPwDT\nNGFZiewsee5iWYmyOdgknhTDyDawaEzo5Zw8gb0/+D9wTp5oyOM1XExynN0TJ3D8wX+Be6KG10lV\noSSSTW9FnY9mkgkhpIL5ahS3guu6eO21V7F27YbIBXW15l7HaaZZ0zRYlpXNZ5Ur2RnzwTmDEDJ9\nQdM0KIoSpjPwvNPFqqo2/NRx8cI9TZNpBYEg3aC0dBqHEDSLHDee51bMnWeMAdkDUcUuPXCspWqH\nEAKuqsbiuxUlLjnOzHMx6mbQV03nRjuTq7eydh3AOcTcPE2QIt7HhaAgmRBCOlwrFvUFalncV42o\nBYC2bWP37l1QVRVzc7Po7x+AruvwfR+joyehaVo4WztfpYpmCAL1YsHMt1+mbJWcIe+WCsOdwfNc\n/M///BqO42QPsgrfN845vMlx6LMzeOWVlyBOvlbyGKZpYdOmrUilelo1bAIUduBznIKbhO8Bk1PA\nQD8UPTqtRRkYlGcJ6kBBMiGELFC9tUA7UbC4r5EMwyypiKBpWhgMBwvEgKD5hdK2lIagtJ0Mzktz\nkjnnmJqajBwf5xyMsehW0KQpGJNVNxRFwdzcTGSNbiNjIzk2jqnlp8DTCs8OBGczAOCss7a1fMFp\nM7pptkK9CwQ9z8OknUb/n34QRsRBJxsdhfP4D2G97R3QRkaiHySRkM1J6kBBMiGELFClGsqNECz2\nY4yFKRKdkvPaiBln32cFM7NRrbCLNXvRnKqq4XtQ/D5wLithBDPfxXzfh+e5XVGSsNOoqirL2Gla\nSRtuQ9fQNzuLtK4BRuF7w7mA73twXbct5e2468KenABfekr8ajhXYPUPYP2ZvwWlf2BB9w9/t67d\nIPOQi3iug4Mjg1jX1wt96dJ6h1sWfVMJIWQe7aq3HCz2s+0MGPNx+PB+bNy4pWKjj7ioZ8Y5yFNO\np+fAmA/XdcIZ2Khc5dL7y9bYzcoPzi+HVki2b86f+S7WiuYppLyoNty8rx/H3/Qm8FQq8j1ta7m0\n6WmIXb8Glq+MXQ3nSuKS+1wvCpIJIWQercz5bYSFBvVxObUb5CnPzc0VNCQpl6tcTFFUaJpWsTV2\n3HHOCnKbg/rM8wVsQQUQUj2hafDrPC1PGktMTIL/+lcQAyPACjkpkJ/e1ioUJBNCyALVEoy2Mn95\noUF9nKpeyEYlrKAhCSBnmecbnhAcvi/TNHL70v59qhZjPmZmZgoWKFaqz5yPajU3X6VqGUGpxnKV\nMoDaqmU0WlwOhOcV0bEvP72tVShIJoSQBaolGG12/nItNE3H0qXLoes6HKczuggC5dMwAsGiuiBn\nmDG/YOFVrntcu/agOpqmo7e3F4aR3/Y5yGfWKuakywobrCPy1jtRfrWMKNx14a9YgVeOHYU6fjJy\nG8uysHnzWW0JlOOS46ykUrBOOx1Km+s1z4eCZEIIiTnTtHD66etw9OjhyNs55/A8F4ZhVhUcGYaB\nZcuWwzRNzM3FN0guXvxXLg0jYNt2SXrGr371PDzPg6bpUFUVmqaC8/jPKquqVpLbXL4+cz6q1dxM\nQbUMWTs74n2wLKBC6obvs2xN8NYvAgQQmxznxOAQNlz8+zXdpyAFo0UoSCaEkBaoZ/GfXMBXvlKE\n6zo4cGBv2WYjnSpq8V+5NIxAaXqGCtlBD+1dgNUA5eoz5yuu1awoCoTwY5FC0010XSu7OHM+xSUA\n603fsCwDwCKo4ZyfgqFqQCIp/20iCpIJIaQFOm3xXzkdk9PYZSrVZ85XXKtZBskMnudRnnIMzZe+\noU5MwDp2DPv3vQJeJn0jmUxgYOC3mznMlpuvzrIyOAD1rLOhDC6sxFy1KEgmhJCYasdq7vnEaXHf\nYlKpPnO+4lrNwUxyJpOhPOUYmi99Q0tYGLBtTCYsMMsquT1I3yjX5bFd7NlZHD2wByvXbkRiyZKa\n728ZJtamHWhl8raDGvLNzuumIJkQQmIqf7Ffq/4oNEozZ5xrb1QiIERQ+QEVA3x5m4AQCuJWEaN8\nfeZ8hbWaVVVBMIHs+z583wv/v7iknGzbXFpCLuo60lhl0zcGhjD7B2+H0tMTWe4QADwvfrW3xdQk\n7BeegxhaCiwgSJ5PUEO+2ShIJoSQDlDLH4VaF/IFGtk0pZkzztU2KskvtcU5QxD85gfLQoiw6kUw\n7iBQDhR3aOs08vPgYWZmGplMOryuuKScELJttgyec/eXbyEFym2h62D9/TXdpZ4c53aWpyuQSkH9\nX+cDedUv6m11vRAUJBNCSJdZ6EK+bsmbDhiGiQ0bNmFiYgxCyEV8mqaCMQ4h5Klu13VgGCY0Tc7O\nygBChH+IFUXp+DbSqqrCMAz09vaF1UCiSspxzsEYD3OZA0Gec6cvfFwM6s1xbmd5unxRHfvmS8Fo\nhs7+5hNCCKkZ5xy27YLz7qmEAUSnYSSTqbCBi2EYSCQM2LYHIQRs28bo6AkMD48UBI+joyfzgmYW\n/n8nUxSlqpJyuVrSSsn9SfzVk+PcyvJ0wvOAmWmgtw9Km+vGV0JZ/IQQElNB+oMQAidPHofnNaam\nses62LfvFdi23ZDHi4sgDaM4LUVVZY5uECgbhgFdN8KFbUHwGFynqkr2onZ1cBjMEHPOspdcTnLU\nJbctp9SLmAtynIsvSpDjPDAUcXvrDgadkyew9wf/B87JE9XfKSIFo9loJpkQQmIqSH+w7UzFbn2d\ntqivWo1c/Of7DIriQdNk1RAhRNi2unRBm4CiFOYld5uoknKVcpJljrmdrZZBra871gJynJtBCAFX\nVWs62IpKwWg2CpIJIaTDtWqlN9DYxX3zacTiv6CVtXwcBoDBdWUg7Dg2fN8Pgz9AVhQJFvnJDn16\nxbrEnSqqpNx8OcmWlchWy6DW10Qqt0hwvgWCjmPX9b0W4+PgP3oc6lvfBmWoeSUyKUgmhBBStU5b\n3Be0smaMQdNUDAykMDmZBmMcJ08ex8zMNFavXhfuk23b2L17F0zTzKZjqF2RkxwlqqRcpZzkXEBN\nra9J5UWC8zZBGR8HT8/B811ErYyY7yyS5zgYn5vGkOOgmefPKEgmhJCYa+XsbaPEacyGYcIwAF1X\nkUql4DgCvs9hmnKRn2laBVVANE0rWeRGCClUcZHgyAiUN7wRRk8PEFHf2dd0+JyDs+iDrfnOIjHO\nMGYa6OfNrRHd/t9ehBBCKmrV7O1C6ytHaeaYG5WrHMyOdvPivFpVaiYic5BFNt2CF3R5k7nc8Wtq\nQZovshGKbgCJZNkgU+iVv3PC8yAyaVkFo4Yylo1GQTIhhHSZhS7kW2h95VZrVKMSy0pgyZLeyEDb\n96MDvsKFfYWzYJ2+kE0GwtUt3OOcY2pqsiifmYGxeLVHJh1qehpi16+B5SuB3j4AhQfHrUJBMiGE\ndJlWLuTrZJZlYXBwGFZevdj8hX5RAZ/nufA8F0LokbnKnbzQT86sa1Ut3GPMR3//QNgqOdechMIK\nIjHGyuauM1+WEXRcB3bEwj7Pd0uua2YXz3Lo00wIIYuMaVpYv/4MJBIJOE7pH6hO1Yg0jPyFflGm\npibx4ovPYWBgMGxAkq/TF/pVv3BPLcnbLveatRvnbMFdAzmndtwLwRjD6OiJsmcWuOtBnHIK9o8e\nhzE7XXK7OTcDtTjtJz8Fo0ViFSQ/8MADuOeeezA6OorNmzfjE5/4BM4555zIbR966CE88sgj2LNn\nDwBg69at+MhHPlJ2e0II6Vae52FycjzsLDcfWf4rEfsSXrUu/mvUTFOw0C+KbdtQ1dLudSSeGPMx\nMzMDRVHgui5UValppj8/BYVUT9bc9qEoKlS19MBEsVQwXUOiZ0l4NiLg+wyu48Eq/h7np2C0SGyC\n5EcffRSf//zn8ZnPfAZnn302vv3tb+P666/H448/jqGIGni/+MUv8Id/+Ic499xzYVkW7rrrLnzg\nAx/AD3/4QyxbtqwNe0AIIe3BmF+x2UgjNXJx33yavWAxqo11tXyfhQ1IarkPaS1N09Hb2wtFUcGY\nD03Tavrcci7g+17sDyjjSnaujDqzIs9GRH/3cgcm+XWW82svI5GEOOUUINnctROxCZJ37NiBq666\nCldccQUA4NOf/jSefvppfO9738MHP/jBku2/8IUvFPz8D//wD/jRj36EnTt34p3vfGdLxkwIIXHQ\nynJrnbK4rxpBG+taaJpsMMK5j4jysGEnu6BRR+lzWh2djnTCXQQAACAASURBVNGJVFWDpmkLrmKS\nq+xBGkkIgYmJsZLXlnMBbWYaqePHC+ssj4/Dn5vF3r27wfr74SYSYGZzu4zGIkj2PA+7du3Cn/3Z\nn4XXKYqCiy66CC+88EJVj5FOp+H7PgYGBpo1TEIIiaU4Nvho5YxzKxmGiZGRZTjttNWROcm2bePI\nkQNYtWpt5O2apnVd+/BOENWGuxpCCDDGMDc3k52JjkXY1BVkS3iWnd3PHcAoioCmqhjIZDCdsMCy\nC2uFZYCrKkzLADOtsJ55M8Xi3Z6YmABjDCMjIwXXDw8P48CBA1U9xhe/+EUsX74cF154YTOGSAgh\npAbNnHFud6MSTdOQSCTK7peuGxVvr1Z+ekal0nP5aMYzWlQb7mpwLuB5Lnp6eilAbpL8lIygFvf8\nZIUV27YLrm30QWis33EhRFWnR+666y489thjuP/++2HWOPUu35zaT8Fomlrw72JA+7w40D53Ps/z\nMDExjsHB8gv5ovY5lUpi48ZNMM3ys7+aJhfiaJoKXS//elW73ULouoVkckXNz1m8z45j48iRQ1i1\nanXV1TCqeY5699uyDCSTCTiOA8+TgbLv+xCCgfPcoihZbq7075eu6+HsXO52JVuhQv6cX8Ui2KbS\n31tFCS5K3r+Fj9es97tW+e9z8H4E1Tnk61J9uouiMHAu0zWCx5WvP1tQ+kZQFi14nQrHV/vj5b9/\npftb2+PV+h5Weq6oz1fh7Sj43CmKAs45Mpm0bEqja9i3bRu4nYE4KcvBaVNT6B8dxcT4ODzPA+cM\nr7zyUkG3P8uycOaZZzcsUI5FkDw4OAhN0zA6Olpw/fj4OIaHhyve95577sHdd9+NHTt2YOPGjTU/\n99BQT13dlvr6OjsnbyFonxcH2ufOlU6ncfjwOFatOgWpVKritrXus2UpSCQMDAykKj52tds1UrXP\nGezz+LiD0dHjWL9+DQYHe6p6jkRCxeBgHwYHe5CMWDTUmP3uwcDAbxd0tEun03j++efDms7j4+MY\nGoo+CAqCwdx9ZVUHy9KRSMjtNS0XVAXBH2MiG/SgIOgRAuBcga7LRW9yslogkTDC55dPx1r6fs+n\nry8JXRcwTT0McvP3txqcyxJypqlhYCAF3/eRTs9C1/UFpREFnQqXLDHR19cDy1JgmnrBa1mL4HUH\nCvd3IY9X63tYaexRn698wesqt5XbMCYACKiqCmEYUJYsgZH3Ghumgf65OTimAcU0wJiK3t5U+Nye\n54ExhiVLrIZ9BmMRJBuGga1bt2Lnzp14y1veAkDOIu/cuRPXXHNN2fvdfffd+OY3v4l77rkHZ555\n5oKee3x8bsEzyX19SUxPZ8DK9B7vNrTPtM/dqtv22fM89PYOYXbWheOUnrr0PA9TUxNYvXolbJvV\ntM+ZTAa27WFyMh352LVu10jz7Xfx+zw5OYdMxsHk5BwUxYp4xGinnroGts1h23MltzVrv11XBhZB\nKeLg/6PiNMY4PE++p8EkEOcCjuNDVWVFDhlQcAAKhAi24eBchA1DAkFbat9nUFUZ3DDGYdteOB7P\n8+C6fkvf73Ly3+fZ2TRc14eqipL9rUawr67LMDmZBgCkUktgGOaC8mGDpiuzsy4Ym0Mmk4Hr+gBy\nr2UtPM8Lzzbk7+9CHq/W97DS2KM+X/mC1xUAVJVDCCX8/AWfWdnpMf9gTYHIPp68rfA7wBhqGn81\nB8axCJIB4Nprr8XHPvYxnHXWWWEJONu2sX37dgDA7bffjlNOOQW33HILAOCf//mfceedd+LLX/4y\nTj311HAWOpWq7ShW9qBf+BeaMQ7f7/w/qrWgfV4caJ87l6JoGBpaCgCR++M4Lo4fP4aVK5eDMVHT\nPjPGsx3XKr9W1W5XSa2L/+bb7/yx+T4HYyK7MKu216CSRux3pcf1PB8yH5PB87x5a0LLNtLyPrJK\ng9w+CHyDS3BdOUFQIrfP3T//8Zqx3/VgjIevm6KU7m818vc1COqChjELyVGWBxtq3meQhw1LFhKL\n5O9P/v4u5PFqfQ8rPVfU56vw9uDzpkRul/95C3g9PTj2xjeCpVIt+wzGJki+9NJLMTExgTvvvBOj\no6PYsmUL7r777rBG8rFjxwpOH/3rv/4rfN/HTTfdVPA4N954Iz784Q+3dOyEENJJNE3H0qXLoes6\nHKd13atq1U3l5upV3C6bMR+u64AxVrHsnFx3I8ug1ZNaSEi7CU2D39sLAFA8D8bMDDA0AjSxqU9s\ngmQAuPrqq3H11VdH3nbfffcV/PzUU0+1YkiEENJ1DMPAsmXLYZom5uZqC5JN08K6dRu7ooyZ67qw\n7Qxc123YY9bToKSS/HbZxWXmKpWd0zQVpgk8++x/U33mmOKcFeSf18L3/di2A28mfXYWy555Bt7w\nCNDEA+hYBcmEEELiTVXVqitBxJ0QHJxzCNG49ICFNCipVn677OIyc+XKzum6CstSuqpWdTcJ2mbX\n2gkwIPN4gyB78RwEcSEwtnw5UpyjmT1GKUgmhBDScM2cce7WRiXNNl/d5SC/tDiHtJYcXlKboG12\nPQsBfd+DruvZ6hCLgwDgGwaqq6m8cBQkE0IIabhmzjg3KldZNh4wOi4NodaUDl3XYVkWMhkbjMnT\n+oz52RJcApwrYd3foAVz8WOrqko5zU2iqrJznL7A3NriMyELTd+QB06LL3WjEgqSCSGELEqWlUB/\n/2DHpY/UmtJhmibOPPPsgkWatm1j9+5dYQOuqalJ9PQsweTkROSp/3JNIUi81JO+wblskhIcSBEK\nkgkhhHSJWtMwDMNAT8+SmpouOI6No0cPY+XK0zsquDYME4pS+Cdf07TwFL+qqtkGGUr2Qmksnaie\n9I2ghjO1386hV4IQQkhXaEXJOCEEHMfpmjxdmacswk5wxXnKUTiPRx1kEq2e9I1aK2WUS+2Qn6XS\ntJ3c/WTue9zPTlCQTAghJJa6qdxcMy2k7FxU3WXPc8E5gxAcQghoWvnaypqmQ1Fotnkxq5TaIWt3\nu9k256WfE5n7zmAY1Xe6bAcKkgkhhMRSs8vNaZqOkZFlHX96eSFl56LqLi9btgIHD+6DqqqYm5tF\nf/9A2VP2Qdc5snhVSu3IpW5E50ZzLuD73rwHdvKsRelZG5ZMwl11GiwrAcX3wudkzIdt29nxaXUf\nYHf2bwZCCCFkgQzDwNKlyxv6mJ2Us1xcd9myEtl2y1qYo7zQigtkcaiU2qGqavYSdTBVPhUjIASH\nbduR6T2cc3BVw8T0NLS52ex1cnZ69+5d4ZmSzZvPqitQpiCZEEIIaZBuy1kmpF2EQJjXXBxQB9cF\ni03ldQKAyFZsUbKpRAw1rMstQUEyIYSQjtKoXGVqSiIV5zT7PgsX8lUrv1EJIQDCmttR5KwvB6CE\n28julyK8b6Bc+UFFUcLZ6uyjQgg1TP1oRCk7CpIJIYR0lEblKtt2Bvv2vYL1689AKtXTgJG1RqNT\nOoKcZs9zYVkW0uk5MObDdZ2CagdyMZYD07QiDyosy6I8ZQIg91mRAW70wr3gs8W5D0VRIQTPNrXJ\nbdNuFCQTQghZlFzXxcTEGFzXrTpIjsNiv2aldASL+ebm5nDkyAGsWrUWiUQuCA8W+BVfH2jEQqlm\nkbPj85e3K0bl7hZGVdXwYKrcwj3PcyEEoOsyB16evch1fsy/FCt3faNRkEwIIaQrtKJkXDMW+8WJ\nYZhIJBh03UAikSipN13u+rgKFnCl03NhG24hckFbMKM5f7m7eNfzjaNcOkT5hXu+70EIFs4kyxxk\nmY8cnMkIrssn4+PmB8oUJBNCCOkKzS4Zt1gspO5yXOXPjsuqB2rBWQDf9zEzM43e3r6y5e7yc2VJ\n4yiKki0fl5tJZoyHM8mmaYFzDlVVSz6LQb5zsz+jFCQTQghZlDjn4aWTNStHuVsYhomeHiCVSoUV\nDwKcM3DOkMnMIZFIlV3AGeRb19qRjlRWebZ5fvl1lIMufo1EQTIhhJBFyfNc2HYGnuc27DHbkbNM\nZefml988JZ9t2zhwYA8AYO3ajZG51kAu35qxDICFV/OgKiDlBV345P/Pn24hP/d2OJss85R5OPvc\nCBQkE0IIIQ3S7TnLnSy/eUq+IM2imlzr4nbexearAAJQFZBy5KyyVlO6hWUlwjrJQTORRpZzpCCZ\nEEIIIaQK5WakA/NVAAHiXQWk3fJrIgfBcW11khubOkVBMiGEkEXJNE0kEslsh67O0eiUjmpzmrtp\nQV89ys1IBzqtAggpj4JkQgghi5JlJTA8vLSmxW5x6NLX6JSOanOau21BX5xQjnM8UZBMCCFkUVJV\n2cK2lmDXdR0cOLAXa9duoJnCLqAoCkzTgus2bvFmLRqR45xMJqDrOhzHa/ZwFx0KkgkhhBCyKFlW\nAqtXr8OBA3vb8vyNyHG2LAOmaWJuLhckL2SGmWalS1GQTAghhHSwduUod4t251rXm+Os67kZ5npn\npqnyRiEKkgkhhCxKzWhj3Y6c5XblKHeLbsq1rndmmipvFKIgmRBCyKLUjDbWlLO8uLV7Vhqg6huN\nREEyIYQQQkgDdNOsdLWicpl93wfnAooiAJTWLu6UVvAUJBNCCCEdpNEpHe1opU06X6X8Z89z4Xku\nhNDL5jhrmh62oY4r+kYQQgghHaTRKR3V5jQvtgV9pLJK+c9TU5N48cXnMDAwWLYqB2MMY2MnKz6H\nECIyNz64Xs5Iy9tlW2oO3/ezP9cfgFOQTAghhFSpGYv9OsViW9AXB3HIca6kXP6zbdtQVQW6rkPX\nKyRIVyCDYAbOOYp3X4jg82iHr00QNE9NTQKQQXhUhY9aUJBMCCGEVKkZi/1I+8R9drzTc5x9n8H3\no5ucFOctc144a6woClRVg6qqJQcJQUBsWQmoqryNcwHGfPT3DwCQKR/1phBRkEwIIYR0MMpRXrjF\nNjveqplpTVOzOcc+HKf0ds45bDudnekVEEIF5zx8HzRNg6IoBZeofVFVNe8zzyGE7KIJoGwZvFp0\n/zeAEEII6WLtylHuFr7v49Ch/VizZn0sZ5MbqVUz04ZhYmRkGU47bXVkTrJt2zhwYA903YRpGtA0\nHb7vY2JiDKqqQdPUMO+4XE5yK1CQTAghhDTIYs5Z7lwCrrt4ZpNbRdO0ivWYg++IzB1m4Jxlg2IO\nxgQ8zwtLxUXNJEelYTQaBcmEEEJIg1DO8uIW9xznONE0DatXbwqDZdu2sXv3ruwssqyQoSgKdN2I\nTCNSlMLqF82ovUxBMiGEENJBGp0z3I5W2t1qseU4l1Nt7rNhmOFMs6ZpSKVScBwHnPsQQpZ3E4KH\n1SwYY2G+snyJCwNjTdOhKGr2vvWjIJkQQgjpII3OGa42p3kxLegj9VlI7nN+3eUgZzmTySCZTELX\nZc7y1NQk+vsHwsV5xRRFhaZp8H0KkgkhhBDSIottQR9pvfy6y7quQ9PUglrLqqrWVXu5VnRehRBC\nCOlgNMO7cJqmY2hoBIoSz3DIcWzs3/8KHMdu91AWpXh+KgghhBBSlWCG14hqfbYAnHM4jt2UhVBx\nYxgGhoeXQtO0dg8lUrfmOMe9k2CAgmRCCCFkESueiXZdB/v374HrRnSB6EKLaSY+LjPTQc5y3CuA\ndP8nghBCCCFlLfZc48W0/50yM60oCkzTQjqdbus4aCaZEEIIIaQBFtOsdDNZVgKrV69rexoMvYuE\nEEIIIQ2wmGalW0/Jln5rXR4zzSQTQgghJFRuNnQxLegj9WlG7rOu6xgcHC5bI7kZKEgmhBBCSKhc\ntYzFtqCPLFyn5D7Ph4JkQgghhCxKcZ8dpxzn9qJXnRBCCCGLEmMM09NTGBgYgqrGb96QcpwB32ct\nuU8UCpIJIYQQMq9unNUMmol4ngvOtVgGyo0Ul/fQcWwcPXoYK1eeXrZWsqZpsCwLjuOAMb/gNs45\nXNeBaVpl3zPLsuqujtE9n3RCCCGENE23zmq6roMDB/Zi7doNSCSS7R5OU8XlPawmZ9kwTGzefBYY\nK50Vtm0bR44cwKpVa5FIlA+yDcOsa5wUJBNCCCGENADnHJ7nwjDMrp+Vbqb8meZyBy66biCRSDT1\nwIbeQUIIIYSQBqAKII0Rl+oYFCQTQgghZNGKS55uN2nGa9qM2svzoU8EIYQQQhatuOTpdpNmvKbt\nmF2mmWRCCCGEEEKKUJBMCCGEENIAlLrRXehdJIQQQghpgLinbsSl+ka9BxOKosCyLCiK0uCRFaKZ\nZEIIIYSQRSDoMBhVe7iVgoMJwzAWdH/LSmDdujPKNiJpFJpJJoQQQghZBOI+0x2IS9oKBcmEEEII\nISQ24hLMU7oFIYQQQgiJtXbMLtNMMiGEEEIIibV2zC7TTDIhhBBCCCFFKEgmhBBCCCGkCAXJhBBC\nCCGEFKEgmRBCCCGEdAzHsbF//ytwHLupz0NBMiGEEEII6RhCCDiOAyFEU5+HgmRCCCGEEEKKUJBM\nCCGEEEJIEQqSCSGEEEIIKUJBMiGEEEIIIUViFSQ/8MADePOb34xzzjkHV155JV588cWK2z/22GN4\n+9vfjnPOOQeXX345fvKTn7RopIQQQgghpB1a1aI6NkHyo48+is9//vO46aab8PDDD2Pz5s24/vrr\nMT4+Hrn9888/j1tvvRVXXnklHnnkEVxyySW48cYbsXfv3haPnBBCCCGEtErQotowjKY+T2yC5B07\nduCqq67CFVdcgfXr1+PTn/40EokEvve970Vuf9999+F3fud3cN1112HdunW46aabsHXrVtx///0t\nHjkhhBBCCOk2sQiSPc/Drl27cOGFF4bXKYqCiy66CC+88ELkfV544QVcdNFFBde98Y1vLLs9IYQQ\nQggh1YpFkDwxMQHGGEZGRgquHx4exujoaOR9Tp48WdP2hBBCCCGEVKu5Gc91EkJAUZSatq+VqipQ\n1eqfI6BpasG/iwHt8+JA+7w40D4vDrTP3W+x7W8rxSJIHhwchKZpJbPA4+PjGB4ejrzP0qVLI7cv\nnl2ez/DwktoGW6SvL1nX/TsR7fPiQPu8ONA+Lw60z91vse1vK8TisMMwDGzduhU7d+4MrxNCYOfO\nnTj33HMj77Nt27aC7QHg5z//ObZt29bUsRJCCCGEkO4XiyAZAK699lp897vfxSOPPIJ9+/bhk5/8\nJGzbxvbt2wEAt99+O7785S+H27/vfe/DT3/6U9x7773Yv38/vvKVr2DXrl1473vf265dIIQQQggh\nXSIW6RYAcOmll2JiYgJ33nknRkdHsWXLFtx9990YGhoCABw7dgyapoXbn3vuufjSl76EO+64A3fc\ncQdWr16Nr33ta9iwYUO7doEQQgghhHQJRSxktRshhBBCCCFdLDbpFoQQQgghhMQFBcmEEEIIIYQU\noSCZEEIIIYSQIhQkE0IIIYQQUoSCZEIIIYQQQopQkEwIIYQQQkgRCpIJIYQQQggpQkEyIfOYmprC\n5z73OezZs6fdQyGEEEJIi8Sm417cHT9+HC+//DJOnDgB27aRSCSwbNkybNmyBcuXL2/38EgTzc7O\n4r777sMFF1yAjRs3tns4TXX48GE8//zzmJ6extDQEM4//3wsXbq03cNqqJmZGRiGgUQiEV43NTWF\nl156CYwxbNq0qev2uZjneXAcB5ZlwTCMdg+HNJnnedi3bx9OO+00LFmypN3DaTohBObm5hbFvpLm\noo5783juuefwhS98AS+88AIA+eXLpygKfuu3fgu33XYbXve617VjiA23d+9e3HXXXdi3bx8GBwfx\njne8A1dccQUURSnY7vvf/z4++tGP4uWXX27TSBvjsssuq3i77/s4cOAATj31VPT09EBRFHz/+99v\n0eia4/7778exY8dw6623AgBc18XHP/5xPProowWfcV3Xcf311+Ov/uqv2jXUhrFtG3/913+Np556\nCqqq4n3vex8++tGP4oEHHsAXv/hF2LYNAFBVFX/0R3+ET33qU1DV7jjZ5vs+Hn74YTz22GN46aWX\nMDU1Fd7W39+PLVu24O1vfzve9a53dU3QvHPnTuzfvx+Dg4N405veFBkwvfDCC3jwwQfxuc99rg0j\nbJ2jR4/ikksuwVe/+lW8+c1vbvdwGuKVV17B2NgYLrzwwvC6n/3sZ/j617+OF198Eb7vw7Is/PZv\n/zZuueUWnHHGGW0cbeM88cQTePjhh5FIJPD+978f55xzDo4cOYI77rgDzz33HHzfx9atW3HDDTd0\nTUzSTjSTXMEzzzyDG264Aaeeeio+8pGP4Oyzz8ayZctgmiZc18WJEyfwy1/+Eg8//DDe//734667\n7sJFF13U7mHX5eDBg3j3u98N3/exceNG7NmzBx//+Mfx0EMP4R//8R+7coZtz549SKVS2Lp1a+Tt\nrusCAHp6ejAwMNDKoTXNgw8+iIsvvjj8+bOf/Sx++MMf4qqrrsJll12GoaEhnDhxAg899BC++c1v\nYnh4GNdcc00bR1y/e+65B08++SSuuOIKjIyM4Dvf+Q4SiQS+8Y1v4IorrsBb3vIWeJ6Hf//3f8dD\nDz2E0047DTfccEO7h1238fFxfOADH8DLL7+MNWvW4E1vehOWLl0Ky7LgOA5OnjyJF198Ef/7f/9v\n/Mu//Au+9a1vYWhoqN3DXjDXdfHBD34Qv/jFL8IDvt7eXtx666246qqrCrY9fPgwHnnkkY4Pku+9\n996Kt09NTUEIgSeeeAKHDh0CAFx33XWtGFrTfPazn8WKFSvCIPmxxx7DLbfcgoGBAVx22WUYHh7G\n8ePH8dRTT+Gqq67C/fffX/Z3fKf4yU9+gg9/+MNIpVJIpVJ46qmnsGPHDtx4443wPA+ve93r4Ps+\nnn32Wfz85z/Hvffei9e//vXtHnZnE6Ssd7/73eI973mPcByn4naO44irrrpKvPvd727RyJrn5ptv\nFm94wxvEwYMHw+seeeQR8brXvU5cfPHFYt++feH1//Zv/yY2b97cjmE21Fe/+lWxbds2ce2114rd\nu3eX3H7kyBGxadMm8cQTT7RhdM2xbds28d3vflcIIQTnXGzbtk38/d//feS2N910k3jrW9/ayuE1\nxdve9jbx8Y9/PPz5hz/8odi8ebP4m7/5m5Jtr7/+evG2t72tlcNrmttuu02cf/754plnnqm43TPP\nPCPOP/98cfvtt7doZM3xta99TWzZskX80z/9k9i9e7f42c9+Jq699lqxefNm8bd/+7eCMRZu2y2/\nwzZt2iQ2b94sNm3aVPaSf3s37PMFF1wg7rvvvvDnSy65RFx55ZVibm6uYLuxsTHxB3/wB+K6665r\n9RAb7r3vfa+44oorxMzMjBBCiE996lPiwgsvFJdffrmYnJwMt3vttdfE7/7u74prr722XUPtGt1x\nLrFJdu/eje3bt8M0zYrbmaaJ7du3Y/fu3S0aWfP88pe/xHvf+16sXr06vO6d73wnHnzwQaiqij/5\nkz/Biy++2MYRNt5f/MVf4PHHH8fAwAC2b9+OT3/605icnAxvL04z6QamaSKdTgOQaQiZTAYXXHBB\n5LYXXHABfvOb37RyeE3x2muv4dxzzw1/Pu+88yCEwO/93u+VbHvxxRfj1VdfbeHomucnP/kJPvCB\nDxSclo5y4YUX4k//9E/x9NNPt2ZgTfLoo4/iXe96F2688UacccYZeMMb3oB7770XN998Mx566CF8\n+MMfDs8OdYt169YhkUjg5ptvxhNPPIEnn3yy4HL//fdDCIHPfOYzePLJJ/HEE0+0e8h1y2QySCaT\n4f8fOXIE73vf+5BKpQq2Gxoawnve8x48//zz7RhmQ73yyit417veFaYOXXPNNRgfH8e1116L/v7+\ncLtTTjkFf/zHf9x1f6vbgYLkCvr7+8NTU/M5dOgQ+vr6mjyi5pucnMTIyEjJ9evXr8eDDz6IU045\nBe9///vx05/+tA2ja57ly5fjjjvuwL333ovnnnsOb33rW7Fjxw74vt/uoTXFueeei8ceewwAkEwm\nsWbNGvziF7+I3PbZZ5/FsmXLWjm8pujv7y84+An+P/+6/Nu6JbXGdV309PRUtW1PT0/HB5Cvvvoq\ntm3bVnL9n//5n+NLX/oSfvrTn+K6667DzMxMG0bXHD/4wQ9w00034Vvf+hZuvfVWjI2NYeXKleFl\nxYoVAGTAGFzX6dauXRuuFUokEkilUpidnY3cdnZ2Frre+dmlnHNYlhX+HPx/1PebFi02BgXJFVx2\n2WXYsWMHduzYgbm5ucht5ubmcO+99+Lb3/42Lr/88haPsPFWrlxZdkZ8eHg4zOv60Ic+hMcff7zF\no2u+17/+9Xj44Ydx88034+tf/zre8Y534Omnn+662eS//Mu/xK5du3DTTTfhwIED+OQnP4mHHnoI\nf/d3f4f/+q//wsGDB/Gf//mfuO222/D4449j+/bt7R5y3c477zx85zvfwb59+zA5OYk777wTiUQC\n//Ef/4ETJ06E2x06dAgPPPAAzjzzzDaOtnHOO+883HfffTh+/HjF7Y4fP4777ruv4xf79Pf3Y3x8\nPPK2Sy+9FN/4xjfw0ksv4eqrry543zuZpmm47rrr8Pjjj2Pt2rV4z3veg9tuu23e97yTXXnllXjk\nkUfw5JNPQlEUXHPNNfjKV76CX/3qVwXb7dy5Ezt27Jj3TEonWLduXcGZnh//+McF/+b70Y9+VHBG\nmCwMVbeowHXd/7+9+4+pqv7jOP6800As07xYolQoa1zlch2scOjcWi4HorUSWoPpH+JQxyaz5cxS\np9df6Np07Tb/cPzhsPDHlTDJ2viDamyu/mh2dYYZDVSEqzBMuKTI7ukP1+3rRcKv4T3ec1+P/7j3\nnMP79c/Z+5z7+cH69ev5+uuvGT16NCkpKUyaNCk0ce/69eu0tLQwMDBAbm4ue/bsGXZoxuPO7XZT\nX19PQ0PDkE/e/f39lJeX09DQgM1mi/rVLYZy48YN9u7dy7FjxzAMA4/Hw/z5880ua8Q0NjbywQcf\n0NXVxVNPPcXAwEBohYe/GYbBkiVLcLvdjBo1yqRKupficQAACAxJREFUR0ZraysFBQWht02GYVBe\nXs7UqVPZvHkzM2fOJBgMcv78eYLBINXV1WRkZJhc9X/X3NxMcXExt2/f5tVXX8XpdA66j507d45v\nv/2WMWPGcOjQIVJTU80u+6GtXr2a7u5uDh8+POQxPp+P0tJSenp6CAaDlruH+Xw+tm3bxm+//UZJ\nSQl5eXnk5+fz6aefWuYeZhgGGzZsoLa2llmzZpGRkUFdXR1//PEHycnJ2O12rl27Rnt7O4mJiVRX\nV5OcnGx22f/JqVOneO+993C5XEycOJHGxkZeeeUVpk2bRnt7O6+99hrBYJBTp07x448/snHjRoqL\ni80uO6qpSX4APp+Pb775hqamJq5fvx5aJ3nSpEk4HA5yc3NxuVxmlzkizp49y4EDB1i+fPl9f7L8\nWzAYZNeuXTQ1NVFVVRXBCiOvtbUVv9/PSy+9xDPPPGN2OSOqt7eXkydPcvr0aVpbW+nr6wutAZ6e\nnk5eXh4zZswwu8wR09HRQW1tLYFAgOzsbObNmwfAV199RXV1NZ2dnaSkpLBixQpefvllk6sdOX6/\nn/3791NfX09XV9eg7ydOnMiCBQtYtWoVkydPNqHCkVNTU8OHH37I4cOH//Ue1tzcTElJSWgNfCs6\nfvw4e/fu5c6dO9y8edNyD/pwt3E8ePAgPp9v0BKtiYmJLFy4kJUrV2K3202qcGRVVVVx6NCh0D1s\n48aNjBkzhjVr1tDY2Aj8s4zl1q1bLbOMpVnUJIuIxBC/3z/oYd9KGyIZhsGff/7JE088Meyaz4FA\ngBs3blhijO5Qent7qayspKOjg2XLllnqofd/9fb2cvnyZQKBQOhB3wpzKf4fly9fpqurixdeeCGq\nl3F8nKhJFhER4G6jcfPmTaZMmWJ2KRERa3lBmWNFLGZ+FPQeXkREgLs/5Vrt5/h/E2t5QZljRSxm\nfhTUJIuIiIiIhIn+hQNFRGRItbW1D3ysFSawxVpeUObhKLM8LI1JFhGxMIfDgc1mGzTzfyjRvqxj\nrOUFZX4QyiwPQ2+SRUQsbPz48TgcDtatWzfssV6vlyNHjkSgqkcn1vKCMg9HmeVhqUkWEbGwjIwM\nfv/9d5xO57DHWmG7+VjLC8o8HGWWh6WJeyIiFuZyubh69ep9NxEJ9/TTT5OUlBSBqh6dWMsLyjwc\nZZaHpTHJIiIW1tfXR3d3N88+++ywm2tYQazlBWVWZnlU1CSLiIiIiITRcAsRERERkTBqkkVERERE\nwqhJFhEREREJoyZZRERERCSMmmQRERERkTDaTEREJMp4PB48Hg9wd+vZJ598kqSkJLKzsykqKiI1\nNdXkCkVEop+aZBGRKJSQkMDBgwcBCAQCXLhwgaNHj3L06FF27tzJ4sWLTa5QRCS6qUkWEYlCNpsN\nl8sV+jsnJ4eioiJKS0v56KOPyMzMJDk52cQKRUSim8Yki4hYRFxcHJs2baK/v59jx44BUFtbS1FR\nEbNnzyY7O5ulS5fi8/lC51y4cAGHw8Hp06fvuVYwGGTevHl8/PHHAPj9fsrLy5k7dy4ul4v58+dT\nUVERuXAiIhGmN8kiIhaSmprKc889x5kzZwBoa2vjrbfe4vnnn+fOnTvU1dWxdOlSvvzyS1588UXS\n0tKYNWsWXq+XnJyc0HW+//57Ojs7KSgoAGDdunV0dnayadMm7HY7V69e5dy5c6ZkFBGJBDXJIiIW\nk5SURGdnJwBlZWWhzw3DYM6cOfh8Pmpqali7di0AhYWFbN++nZ6eHsaNGwdATU0NmZmZpKSkAHD2\n7Fnef/99cnNzQ9d78803I5RIRCTyNNxCRMRiDMPAZrMB0NzcTFlZGXPnzmXGjBmkp6fT0tJCS0tL\n6Pj8/HxGjRrFyZMnAeju7qahoYHCwsLQMenp6VRWVlJdXc2lS5cimkdExAxqkkVELKajo4PExEQC\ngQDLly+nvb2dDRs28Pnnn3P8+HHS0tK4fft26PiEhATy8/Pxer0AnDhxgri4uHveGu/bt4+cnBz2\n7dvHggULyMvLo76+PuLZREQiRU2yiIiFXLx4Eb/fT1ZWFmfOnOHatWtUVFSwaNEisrKySE9Pp6en\nZ9B577zzDr/88gtNTU188cUXLFy4kISEhND3iYmJ7Nixgx9++AGv18v06dNZu3YtV65ciWQ8EZGI\nUZMsImIR/f39bNu2jfj4eAoKCrh16xYAo0f/M/3kp59+oq2tbdC5TqcTh8PBjh07+PXXX3n77beH\n/D9Op5Py8nIGBgY09EJELEsT90REopBhGPz8888A9PX1hTYTuXLlChUVFUyZMoX4+HgSEhLYunUr\npaWldHR04PF4mDx58n2vWVhYiNvtJjU1lczMzNDnvb29lJSU8MYbbzB9+nT6+/upqqpi/PjxzJw5\nMyJ5RUQiTU2yiEgUunXrFu+++y4AY8eOZerUqcyZM4fi4mKmTZsGgN1u55NPPmH37t2UlZWRkpKC\n2+3mwIED973m66+/jtvtZsmSJfd8HhcXR1paGp999hnt7e3Ex8fjdDqprKxkwoQJjzaoiIhJbIZh\nGGYXISIi5vN6vWzZsoXvvvsOu91udjkiIqbSm2QRkRjX1tZGS0sL+/fvJz8/Xw2yiAhqkkVEYp7H\n46Guro6srCzWr19vdjkiIo8FDbcQEREREQmjJeBERERERMKoSRYRERERCaMmWUREREQkjJpkERER\nEZEwapJFRERERMKoSRYRERERCaMmWUREREQkjJpkEREREZEwapJFRERERML8BXTzGDZAdZf6AAAA\nAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "survivalstan.utils.plot_pp_survival([testfit], by='sex')" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "ppsurv = survivalstan.utils.prep_pp_survival_data([testfit], by='sex')" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XeUnVd97//3fuqpc6ZJM6NeR5KL5N4LxQQn+BLAlwQI\nmHtJIIQsQkmur/ENEG6IgXjBJfALEAIJhJZADDahGbAx4A6SJdmymtVHmt5Oferevz+eMzOaot7l\n/VprlmZOfZ4jjf053/Pd3y2UUgpN0zRN0zRN08YZZ/oANE3TNE3TNO1so0Oypmmapmmapk2hQ7Km\naZqmaZqmTaFDsqZpmqZpmqZNoUOypmmapmmapk2hQ7KmaZqmaZqmTaFDsqZpmqZpmqZNoUOypmma\npmmapk2hQ7KmaZqmaZqmTaFDsqZpmqZpmqZNcdaE5N/+9re8853v5MYbb2TlypU89NBDR7zPU089\nxete9zouvvhiXvnKV/K9733vNByppmmapmmadr47a0JytVpl1apVfPjDH0YIccTbd3V18c53vpNr\nrrmGBx54gDvuuIO//uu/5rHHHjsNR6tpmqZpmqadz6wzfQBjbrrpJm666SYAlFJHvP23vvUt5s2b\nx5133gnAkiVLWLt2LV/5yle4/vrrT+mxapqmaZqmaee3s6aSfKw2bNjAddddN+myG264gfXr15+h\nI9I0TdM0TdPOF+dsSO7v76elpWXSZS0tLZTLZYIgOENHpWmapmmapp0PztmQrGmapmmapmmnylnT\nk3ysZs2axeDg4KTLBgcHyeVyOI5z1I+jlJpxoWBQDvjFO75JdV/yHDKMMXdsQ1UrZKsDfJk/YTvL\nxm8vUEhM1nMpAF/jj3g5D7GfuUhhooSBMAQmEmUIWmZbWA1pGl7/u8TpHHuH8yzIDZLZug5Rq007\nHiObIV59GXtKzSxsLpGy4+SKMIShIWhuhtmz4fd/H9LpiTt6HuzZAwsX4pFizx5oa4PeXli4EFKp\no36pjs1Bz3vqnkTTNE3TNO3UOGdD8iWXXMKvfvWrSZc99thjXHLJJcf0OENDFQxj5mkay//y5XiD\n1fGfK/tHKO0ZYuA/H+V1agOZ/feDEEjDRKiYuf5ubqn+kBGaWMflvJlv0iqG2JNdyd70ctLeEFEE\nQil2MwdVMilvyBKmsvRVMuyxKyzaJ5FmHmna489rxAFpKyTd6bJhcDa5FkXBCZMroyrm4Agy1wj7\newj6hqFBTpxEcRR73UbCVJ5S2aDr3zcSvWo1G3c1kkrFNDQc/WtlmgYNDWmKxRpxLA9/41IJa9tO\nonQB8vmjf5KzzDGd83lCn7M+5/OVPmd9zuejF9v5nixNTdkj3uasCcnVapW9e/eOT7bYt28fW7Zs\noVAo0NHRwSc/+Un6+vr4xCc+AcAb3vAGvvGNb3Dvvfdy++2388QTT/Dggw/yxS9+8ZieV0qFlDNP\n08gvaCS/oHH851mXzqG8f5Ro43ZsU2HHvYROCmm7AIzQzrLtPfy21MTjxg0gwVYhy8rPsqSyiUG7\njf2pJXhmjiDbhCFDrIYUTs5lcXOI5dtYAzaBm4X6YwJIz6NWrWKYKaTtELtpYrf+VxcrhO0S2Q5G\nEBBHEhVN/JKISGLEijiSyEiSlUUojtD63HriC1YTZY49wMaxJIqO8IuYzhJdc0Py/Uy39TzMrn3E\n8+afE5Xmozrn84w+5xcHfc4vDvqcz38vtvM9Hc6akPzcc89xxx13IIRACDEehl/zmtfwsY99jIGB\nAbq7u8dvP2/ePP7pn/6Jj3/843zta1+jvb2dj370o9MmXpxsynbw0o2kqt04URUhYpQIx6+/KLWd\n35ZWsV6t4bdLXsvigXW0FPdgKMmsoJvWoJtBp4MdQZ6y04TjgFnPwyZgWmBbIA/6m1FEEAUIrwa+\nD7UqkDxneThg/840cwshDaKGKBUnH3DNG/82l4NVqyTDaYlVKyPU8f8yeR50dQnmzVPHlXFFFGL0\n9iDb21Gc/SFZ0zRN07QXl7MmJF911VVs2bLlkNd/7GMfm/E+3/3ud0/lYU2jUml2XHgbjeEg1oE0\nVTePSk30ADfINPSDr1y+N/sdzF86QmN5P2t23k9n7+OYSFqDblp3/SeD6Tns3ZdjZNW1cIgNVEQc\n0tC3A6NcgvUOVtnDHtmG7SR9y0bNZqi3hfkbNmJRRADqoJ5k6diQP4aeiqMUBLBjh8Hs2fFxhWSV\nyxNef2PywzlWVdY0TdM07fx31oTkc0lkp6nSwK7yMsIgjfQnWiNiMTF+7vGe5Vwke4EFPNZxGYu8\nR7jaf5Qr/MdJKY+W2gFaHvx/VH7zHfZd8rsMLlwNQUAsfWSUPIYR+ohahVhBZGYIjRSBmcU3TQAC\nJ8VwfiGBWyGUIRQaUOmkz0Z4HsbIMCqdOemvgSiXaNu8EXHxamg4sZ5jEfiYO15Azp6N0iFZ0zRN\n07SzgA7Jx8my4MLG/VTdPHFqIoQ6YYXZW4fpC5qoRRbLWwYAMCtFLhTP4OWaeTTzKpZHW+kob8eR\nPtmhLlY+/M+Um+ayL7OMwCwQG8nCPVOGyOIoUiq6ugwwRtkZWrhmEibLkcu+YYcdRZMOUzArALte\nSFZKIjwPatXxNgxRrWBUyqSFh1EuIYpJC8mkiRhHQagTb9kYZxgox8HcvZOoc5WuJmuapmmadsbp\nkHwCXDMCOyS2o/HLbCJW5vbRN9RE12gjmfp1wlWUU7MI7RS+cCHbxu7gEtpmKxZsfojMSA+54f0s\nLg2zYf7vUizMB8CKfXL+CKGCfFbSkB6YdAyhAY4Z0Ty6i6zXi/20xM7VK9tBQHk4Yksqx7LBn5K3\napi7dtC0ezetQ/uJH94H6TSyUCC49VXHHJQP5Vj7lVUuT3TlVVgb1iOiUPcoa5qmaZp2xunNRI6T\n70MUJWOKw2jiK4pgeWYfAPtLBT7x6I08smshpZpNKCx8XEIjRWS6RFaargtfwdNv/TR7L7sNgFRU\n5Yrd9zNndBs4KbBdlGUhTBOrvqjv4C/LAkso7DhAGibScVGmXf+yiB2X7vxSokwO6Tgoy0Y6dv1P\nByUVRk8PxtAAojgKM8xoPlbhUInyDx4lHCod9X3GepRV7twdF6dpmqZp2vlDV5KPkW1DoaAYHRUE\nASjlc3DHQRB4rDC3YYtXEiqLF4Zm8cLQLL4t1nC1vZgbsmtZU9iJpSZ6l5VhsuPmtzLaMJcLfvkl\nTBVz0a4fUSjvZ1fH1RgyQkmFCn0Ma/ICPzNUOHEVIw4RMsbu7sISEuIYwhCzamJmtmNXd2KbZUSl\njD04gDk4gBgZBpLeZeF5qFQKWWgg+N3boKn5uF+jk9qKMUYv7tM0TdM07TTSIfkYpdNw660xxV6D\n3XuayPp9WHZl/HqvEjNaHOKrL/sij+5fyg/3X8GeUguhsng0uJpHg6tpKhZ5WeFpbmzcyEphYdbv\n27foSpxNG1g0vBE3qjK/fwNNpX2MuLOJMIj7diOm7CZoxCZzi8Oka32kZJV4REHGxRgawvBrEKUx\nakOYHMC06scpY4TnY/Z0k6wI9JPgKQREEQKB/9r/fkLtF2ZQI/XbJxCF609KdXh8cV+hAeNYwrIO\n15qmaZqmHQcdko9DOg1qdpoDV/w+KaOI605UTIPhChWep/HS+byhbyMvWz7A1j7FI4+YPPkbl1KU\nYThu4L6hW7hv6BYWDI/yOxfs5ZZVe2kxKxxoXEVv6you6nqI5tJect4QKb/IAWc+g8MG0p58LJEE\nNywS1WKqUiAPlFCWR6pWRKGIMZANNiqTpSgyPDO6lEsLO8jn620VUYgITFShEYXAKI5gjI4iwmDS\nKLmphEheh0NMrgMlEZUyyJNUTTYMVC6HCKNjmoShJ2domqZpmnY8dEg+AbGTJnQExkEhuUaBbUvm\nc3HjENHoDqJMAwsuyPDGtlFeG3yb57ylPNnfycb+uUTKZO9wgS89djFffuwiLp7dzcsUXN28lZHF\nb2RV9yMs738KS0XM83dTZiFdzdO33bZin7CvET8KMXIWynWxRUiMoBRlkZYDto0ESuTrP9cXGwpA\nxuC6gEDZU1J4rYYI660hlgFGBMUKeVWkeWGJUBVRU/YvoVQirgb0dQmaPXBnGNMsyiWsDeuJ1lxy\nVJXmsZ5lURw94m01TdM0TTs+n/jE3/HLXz5MuVziX/7lGyxbtvy0H0NPTzevf/2r+dd//eYZef4x\nOiSfJoFy2OgtJ0uFW9o3cG3zJrYMz2FHbR67iy0oBBv75rCRt2IPhFyY2cml2eu4rfF7/LeRb2AT\nckH3I7R4+9nbdgXD+QUTZdwIlGUBCsO2kLaNME0EAhWbhz2uw6rVcH7yQ4zRJJgaBpBxcao+0g8R\nw8M4AwNJo/ZB/OEYtvUyuMcl/zofd/YMjy0lonwSK83HQrdgaJqmado0Tz75OA8++EM++9kvMmfO\nHAqFxjN2LOKQH1WfPjoknyYik8a/+DJMO8RxgAAW1uC1l4f4QzvZ+PAoP9m5it7hFKGyWV9ZwfrK\nCu6zb+Hl7u38VfhxrpOP0Ta8nbbh7ZRTLeybfSndrRclTxDHEEXIEJQRouIYpZIeYyPwiGpJNXjs\n+zBKtrUWYYgRxzMfcxhgjI6i3BQqlUKYArIuyvGRsYLWWTPeT8YhWIPgBxAFM97muNXbLpLEfnx0\nC4amaZqmTbd//z5aWlq58MKLzvShoJQ604egQ/LppFJpVCYNLigfpAl2c0xrs+LSaB0vvz3Dtm9s\n4LHRNTzdu4hK6FIMM3yP2/get7HC3M7/kP/CHeqrzPG6WbX353R2/ZKexk7iWoCHg4xNpGkR+2Wk\nEqRkjYXGevxymQgTx3MZ7B9hS9TEAreHNFUcQtzOGMud+Z+DSqUgkwFTQDYFyoRafQbeDAyhcI2I\nII4Q5fLMLRI1b/zbY2m9mLSd9cmiK8uapmnai9w993yEH//4BwghuPHGK2lvn8N3vvMAX/vav/L9\n79/P0NAACxYs5K1v/WNe8pKXA/DMM2v5i794J5/85Gf5whc+y549u7noojX8zd/8HVu2PM8//uOn\n6e/v47rrbuSuuz6I6yb7ODz11BN89atfZufOHZimwYUXruY97/lL5s6dd8jj27nzBT73uc+wYcN6\n0uk0V155NX/xF+8/pdVuHZLPIkLAsnwvi+Y8zR9c8jzP9rbz5J45bOybS4TF1ng5H+Bj/B8+ys3G\no7xN/jOvld9j7tAmACpGjhF7LsPZFiwVIqUBSJpbFDhN1OI0fcZiGjMme6sLaM2DKUcJghBbHENb\nRhBgr/0NVCszXt0URTjGKNuHMjg/+ynuc9lpt6mJFN1+ntylkEpJRH8/9uOPEV53cqZhHIujrizr\nMK1pmqYdB1Ecxdy+7ZQ8tmka0JDGLNYgnmhhjJd3ohoKR/04733vXzFnzlz+67/u50tf+hqGIfjq\nV7/Mz372IHfeeTfz5s1n/fp1/O3ffoimpmbWrLl0/L7/+q9f5P3vvwvXdfngB+/iQx+6C8dx+Zu/\nuYdqtcLdd/8V9933H7zpTXcA4Hk13vCGN7N06TJqtRpf/vIXuPvu/8VXv/qtGY+tXC7znve8i1e/\n+rW85z1/hed5fP7zn+VDH7qbf/iHzx3nK3dkOiSfIM9LOh0O/lkIhe8lG45UaxCS7NERBGDWs2gY\nzvx4fmwh/RilfC4q7OHizi1Y8SZ+HVzDU/GVbK0uRGLyC3kzv+BmMlT5KP+H9/FpsrJMtriVtvJO\nqk6BYqqVCBvDBGGAoZIuhYO/BICSEPhQb884oihKArIwUMYM4dq0iQoW6kCEdCzklLF1wvMJB4fp\nqeRZGNbzplIndxrGmJPQnjFGt2lomqZpx0oUR2m+/GKM0ZFT+jxT18jLQiNDa5896qCcyWTJZLIY\nhklTUxNhGPL1r3+FT3/68+PtFx0dc9i4cT0PPPDd8ZAshODtb38XF110MQC33fZqvvjFz/Htbz9A\ne3sHAC95yctZt+634yH55ptfNum577zzr3n1q3+HXbt2snjxkmnHdt99/0Fn50re/vY/G7/srrv+\nmttvv42urn3Mmzf/qM7xWOmQfJxsG5qaYP9+QbU6ubm8vV1RLpvsGmig0mqicoJaDWo1AajxUJ3J\nJDvmUc+loXJ4prqCbLUyHqZFYJMJZrHQ7OLCxn2Eefhl7RrWVi9gKCpQJcP7+X/sMpbwEfVhmtQw\nlgxp8AbIewP4ZppKj4efbyGjUrTVHPJxH21+TEb14soKKghh336UJRC1MqxYdeQXIIowensRh+hn\nNqsWFb8Da9tW7N4pATUIMCsm1H95TqVT0p5xvHQlWtM0TTtHdHXtw/M83ve+P5/UHxzHEZ2dKyfd\ndunSZePfNze34Lqp8YAM0NTUzObNz0967C996Qs8//xzjI6OIKVCCEFvb8+MIfmFF7azbt1veMUr\nbpp0uRCC/fu7dEg+26TT8Pu/D319EVE0vfpZKqV5+ukbuOWqmHw+olTfoblQUON7dFgWySK+seJt\nJjV5cR9Jv27K66JqFih0SBaUN9PRuJnXWnvYMdLKV567hkEvx2flu/FyTfwln2KWv5+msA8BpOIa\nqf7t+EP76M0sQrht9NLArqCDjFEmH1sYoU8wOhvLUmRjl9bgKKq5UiJ8H+Wm6kl/MiVtypk2VKqE\nMidXp4UMEKUSolCDUgmBQtSS1g1Rmpgnp2znhDY0OaSTWF0+FroSrWma9uKjGgoMrX32lLZbNDSk\nKRZrxCfQbjFVrVYF4N57/4HW1tZJ1zlTPiG2DsoBQohJP49dpg7ahffOO99LR8dc7rrrg7S2tiKl\n4i1v+QOiaOaP2Wu1KtdffxPvetdfTFvQN/XYTiYdkk9AOg0NDVM6FMIQY3AAUq1kMib5fHKbsdun\n00kF+VAOXtxXvwTTMnGNiLQV4xgxKSvEtEMuntXN/77qZ9zz5O8wEmT5cvlNLEzv4hXZR1hQ20Ym\nKpONS5jEuLHHgtIW5pe2MurOotHcT54QQ4BQITLsR0RgViuYO3cigwCm/BIcrBSm2DCyhkvbDpC3\np7doGLFFzvKwerqwxJTe5ZqHMSqpOmXsn/4Ux65ibt0MgBgtjgdjWSgQ3PoqSKePea7y4ZxV1WVN\n0zTtvKcaCkSXX3lqHtwyoClLPFyZsWh3vBYtWoJtO/T2drNmzfQ9Go5XsTjKvn17ueuuD7J6dfK4\nGzasP+x9OjtX8qtf/YL29g6M01jg0iH5ZLNtZHsHTN1g4zCUMIjSuaRxeIrYdChZTTTEw2SCKm5U\nJh2MYstktNoS0c/Hl3yO/731HYyqAn9T+wBZo0qbtZ+qVWA/LqkMtJb2kvcGECga/T4upw+qEAsT\nz8pRHY6p5WdRs9KECxcdNiADSCUoxxmkmnmOYd6qcXPjMxCDctOTq81SohxJcfZSZGuNWlimFLTQ\nkg8QhQKkMwjPm7zz36mcq3yGKsvjdBuGpmmadpbJZDK88Y1v5jOf+RRxHLN69SVUKmWefXYD2WyO\nW299FXDso9ry+QYKhQLf//73aGlppaenmy984f877Fzk173uD/jBDx7gwx++mz/6ozvI5xvo6trH\nQw/9lA984EOnbKayDslngSidp3fVTYTV6deFVppfNf43LBWyev4IK4eeYGf7tXhOUp5OBUWWxg/z\nxyPf5R9734SvXO6s/F9k1uIiewvSMGnORQw2LCYVFJlV3ElTaT+OTEawmSomG46S7Xp2/Dnlzp8T\n/+qnhBevRpRKRMs7kfMXJu9WRQzVKiIMsGIPEQUQzrDYLwqTFY2GmQRkwzhkwPUjg57RDA2ZkLFo\nrpRE1GoT7RcHjYw72c50ZVm3YWiapmlno7e//c9obm7mG9/4Kvfeew+5XJ7OzhW85S1vG7/NsQZU\nIQQf+cjH+PSn7+WOO/6QBQsW8t73/i/e/e4/nXa7Ma2trXz+81/m85//DO9//7sJw4C2tg6uvvra\nU7rpiFBnw7TmM6i/v3Rc97Msg6amLMOH+HijWIQnnjC59tqYhobk5+9+16JQUIdst6hWk/tkMvVd\nouuXPfposopv1ZwR1oz+mk0tN1K1kz6jTDjKRd0/40C3wY5wIQ8PXU6IjYPPHc63mGP0cG12A+5B\nfcGBtCiGaZap7TQHvTREQ2RVBSc+dBBVrotsa8OcOxe/0EStr8Tz/W2sau4h686weC+OEH4N2diM\nyuQwBvsRvg9KQeAzWnN5ZO4buH7+HogjNu1q4LLUc6TmtSRV7CBAeB7xxWtQqRQynYaWFsoXXcnI\nb3ZReNka3NZTPyru4L/neGT0hFo+RHEU+4nHCa+9blKfmCiOYv/yEeT8+UQrLzjj1eQj/ds+H+lz\n1ud8vtLnfP6f84vtfE+WWbOO/P9xXUk+zTwvmXAxk6lj4iDpd87nFaYJ7e2SFlsxp0PiuckvQsqX\ntNRinOE+WtJVLpVr+eTIOwhw+Wbwej6SvoeUFXHw+6yUGZEySxRpp+w2Y0c+I3NWkQ6LNA3vIJeD\njtkSd/NGjPpGIML3Mffuhb17cUlapq8wUlBuwGhqQBYakYUCpNKU4xQbh+azOreJvBGML/KjVEyq\nyXGM6QU0FLuwD3QhMRiqtbPbb2GpMUDKkkl1OvKTwCgESimil7yU0Jf07aiQuV5OtG2fJqe04hxF\nmLt2Ei9ZqqvJmqZpmnYW0CH5NLHtZLLF6KjA9yd/NBCGMDwsSKXUtDFxQX1X50wmWc9mW0mVWdUT\nogvYtiJlBAhKrHCfwWyWfHzoz6iS5aPenfxj5m4WW10zHpdBDAIMW+DbBQajRXQvX4X4+B+RzylS\nX/onjMFBzAP7MXfvxNq9KylvQ9KyMezBcN/44ynHRTS00GEtx2osQ8EB200qyFKOt17klc/NbVtR\n6SyjYQavUmATlzE3sw7XrkIUIgITVWiEMEIMDRzdDGdN0zRN07STQIfkk6xchg0bTJYujTl4LVg6\nDbfeGs+4iUipBE8/bbJqVTwepscmn9VqyZ+5HJi2ge/kUFMW+EnDomw1kglHSMVVbrSfJO0M8sHg\nQ4yqAu8b+gj/3PQ+5lr9055bKvCNFEoYCDXlYxohUC2thEuWEWYymKYgl3GoPLeF4Hs/Zmhnifly\nD3Z5ZHxesgh83IEDrOIA9CQPo2wH5TgoQ6DSGZRjJ1fYdvKFDaY1+TIByBhcF4UYr4RnMrDqAok4\nzISQSadwEqdinLAzvUBQ0zRN07SjpkPySSZlEpQzGbj++sm9umMj4GaSyUA+P/OYOMdJCrC+k2fH\n/Jun3TcyXZ5svgEjCpP1cZbDqmA9f2J/k3+uvJl+1convL/kr9q/Nv14FQSxSaNhYsX+tOuDAMJa\n0iBimiCEQTXTirJSdGdmU2jKkHEihFfDqFYwqmWoVDGqFUxVD85hgAjrJfH6wGglBCKMkC2tOPl2\nrHgVsXDqWxGGycK/KEy2LQwCCENErYZVLWHJCmG1iDqoLeWQM5VP5VSMY3SmFwhqmqZpmnb0dEg+\nT3ikCckwqgpIbBpUgTWpzdwQPcWj/tU8U1vJkCpgisn90FKBQtJIMO0xazXY/bxgGEHkGAhh4LoQ\nlxw6/HYiw6cnaMZWJJXfbPJVbk6zobSYm8UvmecMYPo1jMFBhFcbrwgLpTAH+jEH+mliM6+x1/LA\nnHdghvsxzXIyGSMKk3QexohyEbl7J3a1irlvL6KnZ1IoPnim8pGcVdXlw9Gj4TRN0zTtjNEh+Ryn\nhEHNzDE8ahJKk53eHIxAUQsXEcQpZoukX9hTKX49uoY59uSWC0VSZO0It2JNCcpRlGylbTeAkwHD\nUKRSEMWKbEbRVj1A5GZRpj3pfpYBvkjxaHA1t7Y9RyGvMPPdUBwFFMLzMbwaWBaiXEZISSYs0uj3\nohoMlGWDUW+xcF2UEUHoEi9agkpnMAaHkkWC6aTcPm2m8kE8Dwa6IeeBO7ax/VlUXQaSNoxsdnzX\nwTHjo+EKDRg6LGuapmnaaaVD8llAlEu0bd6IsXg10HRM9x1rwXCGDFJ+jdmqyqyom/nmBgKRptPZ\nyv3e7yExiWPFTe6vqFp5pEj+6qUEEcfk4iQgV81sMtv4ILYFppu00qZSEHhgGjGZ2jBR5KHMybcX\nsctcP4UIQ6ziCEYkEdUKBD6YNtgWihTRpZdDLHEfeQiABlVMnsSyIDz6ADt1pvLBrRdhCN3dBotC\nDjkN40xXllUuT3TNtdhPPD7j9SII9BxlTdM0TTvNdEg+CwglsWonVtk0TYjdNGtn30qrGEB6AYGR\nAiVZ6u1je7CItdGl/IH7c/pyywnMpAorZdLV4M1KntuvRMwxZ5h7PIXEpJpumrGSXIrTdPmLQfnU\n0r046QirVMEww2RRnlIYCohjlDHxTzAdlRBxBIGPGB5C+D4GCuIYr6rY9ch+5jeXcLwR7OLIxC5+\nQZCEZECl00dsvZhWXT4bKst6UZ+maZqmnVV0SD7JHAeWLpVH2tX5sA6epTzT7OSpfJ+JkXFmmqLZ\nSr81h4IcwZY+q1Nb2B4sYmd1DkpJ0nGFxmCAktNMoGyEAlsmzxcBtVQjynYmFttNEUUwMCAISyae\nZxMbk0OyLwVZf5QBL03QU6Rkx6QrHnYYIA0FSmKpEHNoGMOdqO/ODvbjlC2EESAqZYQCZZoow8Q3\nDbYHC5mV6cFtyk0+IDNZcCgLDSDMQ7ZejDma6vJMTmXFWS/q0zRN07Sziw7JJ1kqBcuWHdsmhkIk\nRU/HmT5LuVZjfHay70OlIshm1XgRFZIQHccT7aqBmeaRwqtxRUA6LDIvsxOKECibB93XINraWFR8\njs3N11ISDQQBLFuWVFFHR2HJSotLU/YhQ7KMk6BsiPpO1VMCvGWGLEp1MxotoZJtxUiHOMpDVOOk\n31gqSmGe59WNXNp4gBbLRkQhHalh4sJcFA4ENUCA7SQnZxpg2cmQaHfK63vQ/OSprRfZuMgFi8qI\nuIio73BNqVTf3KQEtWN4N3M2VJxnohf4aZqmaWehe+75COVymXvuufdMH8px0SH5LJBtdum8bQnx\nHJdbOybPUq5PTKNQSILhtm0mnZ3xpE6CsVnKjgO7dhlEEVRVGk+k8TFY1SAQQqGU4PnSfBbgUiFD\nkQaKFAhN/KnYAAAgAElEQVSAUZLgVzIgsiVJTfnwhKh3B8zQISDM+vWWibBBmCaGaRCbJiCJhc0w\njcTWEMp1EFGYpO+xecmGAUzfj92LLHorrSxoGCFlRRCFmLt2IEqjCFQyU/mg1gvCEDE8jHqwvz6T\nGfzhGHPrEM6Pe3AWNRNed25XcMcX+OmeZU3TNE07aXRIPkXGNhVZsybZVOSwUiniZcsBSDO9lXZs\ndrLtlbigbwOZFWuwM5M/7h9r7xgeFgiRVJyFgJJq4LHsTWSzyTHtGJlFfrhEqSoYQlAUYrz9AKBS\ngRUrJldKzdDD9MEwBKYIMYMqpgwwVIwhZ9gdBTDUlIArZf0rBqkQKsaOvaRabTtABaNcQQ4NJK0M\nUgIC4ghimcyqI5np/MLwLNqy5SQkx/Utr00Llc6i6sFaplMox0lemGx28qE4EcowUUph9PQQ9A4x\nsNMjv7yIy2FmLp+gM71AUNM0TdO0o6dD8ikytqnISf1kXkncoAxTd8arM01oalIIUW+HMJLnb25W\ntLdLXnjB5ECtmeZRgwsaLJqbFZZQBAF0dNQryaWJ9XDKdvDSjaSjYZyqhxACK7Jxa0XMsEzKG0EJ\niM3p1UsRGkTYRMpARiGWV8YIPYSMQUrcKKK1sgd7qA9VX6wmfA97966kG9uyULaDlAocG9s3EfIw\n1W3LTFoxEODXsLZtPeQ21o1hzAUpH3eHgRX5MCLp31gl7/XjNpnHNHP5mBxru8bYYj5xDizmO5qW\nD90WommadtZ697v/lKVLl2EYBj/+8Q+xbZt3vOPPuOWWW/nUpz7BI488THNzM+997//immuuQ0rJ\n3//937F27W8ZGhqgra2d17729bz+9W845HMopfj617/C979/P0NDAyxYsJC3vvWPeclLXn4az/To\n6ZB8njHNJByP/SlE0mUwb55k504DKQ027m5mq/FKliwKmbM4CcVj6+fGWjcAVCrNjgtvozHrk0mD\naRpksylG9vbhPj+CVRplr+qkRsO04/CERWzY1MoxsWcgohzpOERiI2KFF9sMO+1EDT7Rygtg+1aM\nwQGElEktOIoQUYRRq6IMg5SbY0nXY9hN80B1HP5FkMnIOZXNJ1XhMVEEcYxh2qRTKQh8VC1COhbK\nMJGOjZIxRk8PxtAAKt+QNF0bEdTCmWcun0Jji/lEuXTWT744qpYP20a2t4+3vWiapr1YFIuwffup\n+W+4aRo0NECxaIwv4gdYvlzScIz/r/rJT37Im950B1/60r/x0EM/5d57P8Yvf/kLbr75pbz1rX/M\nv//7N/joRz/Efff9ENM0mT27jY9+9BMUCgWefXYDf//399Da2spLX3rLjI//b//2L/zsZw9y5513\nM2/efNavX8ff/u2HaGpqZs2aS0/gVTg1dEg+R3ieIK4BUbJNdFhNLre9Es3bnsGoXEGQyo9XkMMw\nCchCJN+n03DT5UX2bAvZNdqKL20277TZulvR0SGZNUuSzSaLAIOD1utFdpownSLMgDQNomyKMO0h\njBQhNtJ0kNb0GRG2CXOMQdIqBMNEGJBSIbFUoBRSSgpeD1ZxBE8IdjbexLLUs6TjKqJWxSiNJkEZ\nEFLi1opcuvU7sBXa0y2waAHm4nnEbYcOzMp2JtJ/FGLu2ovwvYNOLoLAw4ozVEtzsLZsxjIrk3qa\nDQPIuNhOmvCCG49rKsaRHKkN47yZfGGaus1E07QXnWIRLr88x+jo9HU2J9fkTz8LBcXateVjCsrL\nlnVyxx1vA+DNb/4ffO1rX6GxsYnbbnsNAP/zf/4J99//n+zYsZ0LLriIt73tHeP3bW/v4LnnNvLw\nwz+fMSSHYcjXv/4VPv3pz3PhhRcB0NExh40b1/PAA9/VIVk7drY9MfGiVhS4PvhFgWEmv2xGSRHu\nqVCNFZFKAq4QUCwKTDO5/8hIchkiy6wV0Dw6wkhXjR2VDqQU7N9v8u1vG8ybJ2lvT8bXBQFHN8ZO\nzDyeTsqkS8AElAGGYRBaLrFpQ6zwpEN/ZiFhc9JrvDdaxgKzC9etz28e7EdIBSkXMVpEFctYYRJw\ns7VB2DwIm59BASqXQzY1oQpNxB1zZj7OWCJ8D2VaE/0kZpgsaMw1UGpeiMpFqCiCIEiqyo6DMAQo\nhejuRswZGp+KMT4p4yDH3ct8tk7NOB6+h/lCn26p0DRNOwctXbps/HvDMCgUCixZMnFZc3MLAMPD\nwwDcd9+3+dGP/ove3h583yeKQpYvXzHjY3d17cPzPN73vj9HqYkpVXEcHfI+Z5oOyWe5dBpuvTWZ\neFEeMNmSWsLKV5rkWpN+28qBiN3dipX5GHd2jONMtFrY9YlpUz+lTxckLy9s4rdGhk278vT2CqQU\n7N1rsm+fgefF7N8vWLz48KPsTBVhSR8Ve9OukwqE9BEyQpkyWXynRLKwTkGMiU+KQCRJ3BcpQimI\n6jnRiklSdkMBmc0jmqrULrkEv69C8YV+5g5twvSqSaW5XMYol7H27UNZFnLWbGR7O+Hylag5c+vv\nEOosa+LjfgHImFwWbmzYS4YQc1tXMinDsVGOiyEECIk1UsQuGtS689g//Sluw/TX5oR6mWs17Cef\nILzu+nO62nrI3QF1P7KmaS9SDQ2wdm35FLdbpCkWa8TxRLHleNotLGtyLBRCTLsMknGrDz30Uz73\nuX/g3e9+PxdeeDGZTIZvfvPf2Lx504yPXaslH4Hfe+8/0NraOuk650Q2lziFdEg+B4xNtzCMFO7q\nThpmT0zMMEpJxTeVglR91rJZX8PmujO3f0Z2ni3pm8kBlzfHDA3B8LDBtm0GSgk2brR45Suz/N7v\nRSxfHo+PnxsjLYeaVcCQMam4hiknl5INGeGGZWqxQ+QHxBhEQUgUx8SRiarvtlfwehjojgiUTfeI\nyaaRZlakdpMSAamaB0LgpMoIFSMCH2O0SJxrZO+85WTXLCZXHcDo7cHctxdRrSCUQkQRZvcBzO4D\n2M+sQ2ayjLSvwF4wG0IP3OkBzTQUeScAP548KcNNoQxASJQfIpubGe1YjGztRaYnT/UQnnfETUzi\nGCIPRDzD1DylEJXjrCafA7v16TF1mqa9mDU0wOWXn5pPCy0LmppgeFgSRafvE8lnn93AxRev4TWv\nuX38sv37uw55+0WLlmDbDr293axZc8npOMQTpkPyWeBox8XlcnD99UfeMvpYZbNw2WURV1wBTz1l\nsWuXQRwLfvADG7C55JKI170uZFn9E5fYSfNcx8tp3b+BPY2XUEtPeUcYV5lb3MI+YwGxsMC0EEIg\nwwFCM5W0YsQxy7LdWK5DKbbBstntdrIgPYplVAijGiiBmc1hIqFmEnd0EDmt1Oy5RLNsIqcDlnVi\nbd4ESFTrbIx9e7F278IYHgLAqFZo3rkOdibHJnN55Ow24rnzUPlDVGytg95l1EMyTr2VwnUhnYHM\n5JCsSKZz4NVmmO6cqPaW2PNMyMIVJfIHva8QpSKiVpmYEX2MzpueZU3TNO2cMW/efH7ykx/x9NNP\n0tExhwcf/BFbtjzPnDlzZ7x9JpPhjW98M5/5zKeI45jVqy+hUinz7LMbyGZz3Hrrq07zGRyZDsmn\nyLFsT31KxsXVpaMSS0fWsaPxMmrW4T/GLxTgqqsiXv1qxcCAwX/8h43vC9avt1i/3mLNmpg3vQla\nWiCy0kSGU59LPLX1QAGK8ZYjQ2EIhYFCCIUQBkoILLPeGqKSjghp2GBZCMPCMAykFPXgGCc3dFxy\neYPr8t0k6bW+fM6yQCjkvPnE8xYQrboA4dUQpTLxvh7Enr1kavXQXC5hlEtYO18gbmsnXrz4pL3W\nhAHOz3+GCGbeqdArCmrd9vR2jVoNc+tmVCYDL3k5NBRO3jFpmqZp2lEQYqYSz/TLktsJXvOa/872\n7dv48IfvRgjBLbf8Dq997et56qnHD/kcb3/7n9Hc3Mw3vvFV7r33HnK5PJ2dK3jLW9528k7kJNIh\n+RQ5nu2pTwWhJOmohDjEbOWZFAqKd73L513vCrjrLpcnnrDwfcGGDSYbNsDKlTbLWhsYMVuxZYAV\njUy6vxPXyESjzJU7yEQlpOFiqwCTCEtFRMrEFw7W4eb/qqSHmTgCZNKrEPjg+5Nv5/vJlAqh6tfV\nh0SnUsTtcxldfhWP7VvEzc7jNG38NcboCMbgICKOMHt7MHp7MEZGCW64CeWc4MyKKMYYHUU2Ns3Y\nUiAdm9GOtuntGo6DaduIahURBdPecpwTTsZMZ923rGmadsZ85jNfmHbZd77zwLTLfvWrp8e//8AH\nPsQHPvChSdf/6Z/++fj3d9/94Wn3v/32P+T22//wRA71tNEh+TzieYIgSIquUVT/k3ovbATRDG8S\nD7HfBgCtrYpbbol4xStCHn/c5uGHLWo1wZYtJluYza9yH+Hq+SXy2ckBPBMVWSN/Dl6NEbuVMF3A\nAJqFg2fmCJVNEBvMUQZGsrcISiWL/aQEqSRm6GMooFhGkfQkm93dqPSUsRJRiDE6Aijo3p9Utitl\nVHv7xG2EIGpsQc5fQLysk2KQYmRTN8v7HkdIibXlecztW4kuWoPMZMCZ+dci50bcsKqfjHv4lheV\nSkEmM/nCQ1SXx++jFCIIEKUSojiaHHa5jPXcs0QXXYxsaj4luwCeLOMznevHPqMgwNy5I5mLPVMI\n1nOUNU3TtLOIDsnnOOW4lOcuI+s4DFWhVhOYphofBVeLk1aOWhr8QxSTXTcJ1PGU7BcE8MILBpkM\ndHZKFi8Oee45hyefVHieoFi2eOLZRlatiicNkMhGMK+WgcDEdEIMKajWIBeAZ0CoQEpJcSDGtMFX\nVZq9fZQ9i2osMQ2FGbtIJQiDPBYxrjSxZnVgNk5pRfB9xMgICEXcMReFSKZTzDSX7qDX7NkFv0fT\n8iaaX1iL0dONiGPsDetQpkk8fwFx56ppi/xMQ5FPH+ZdxaEEAfba32CPSKzeTuyRbdjOQbu2RBGi\nvw9jeBjnxz9CNTUll9dqmLt2YDy/CeHV8P74T1GzZh37858toghz107iJUsnKu1Tqsfn8mQPTdM0\n7fyiQ/I5TqRTWBd08rLOmCBIApzjqPF1ZulAkqvB4sUS2x1lQf869s66DN+ZCCOmmbT1Tg3JjgPL\nlklyOUW6vuPe9dfDq17l84Uv2OzYYVIuC0ZGBMuWTSTwTKjIhQrpgUcDhXgER9ZwVECMhyliUDGF\nuIa0UqSFSae9i83MxybEIcQQishwMFw76bbwLITlYroztETUe5LHt6WuWUzvk55OpjJEF1yIvPll\n2L99CuuF7Yg4xtq9C/PrXyW49nrk6tVgneAA+CiCagVEFmWYKNNCmRPV0lg41LId5IvlZPe/sUb2\nOMawbJSUmD3diOLI2R+Sj3HShp56oWmapp2tdEg+xx088aJYTIKx4yRfrgsO9TVvDriOJKfKpBx5\n1FvGjYXtTCZ5nGw2GTVz5ZUR/f2CYtHghRcM2toUzfWNQez6c0aWy5MNN5GxQ8JSjcBIU7Ka8HAR\noU/a3UepcR6R6eIFgoqXZiQ7h9ioopTAxyYjDFBQkhk29XRyZX44Gdd2sDgG5ERPchAASY+ywMMK\nq4jAh6i++x8BVuQhwgCIqTXMZsv1b2fJRevJ/+JHGKMjiFoV9+GfIdf9Bm64AVpnn9hfVBRh7O/C\nHCpg+buwrOr4VZUowxP9K7jR3Exmy2ZUut6qEQSYvT2I/l7M3l7sR36BP2feOdF2MY1hoLLZZIrH\nidK9y5qmadppoEPyi5ATlJnbt56utskV5WNhGLBiRcy6dYI4FqxbZ3LzzRG2DUoY1Mw8ggqhmaZq\npfHIUAkdirGLp1JYEkYrDgPCJTRSqDiiNe6hVhVI4eAGJj4mcQnsWOCFBkXPRaopFco4xhgZ5uCe\nZFEuASCqNVIMsWC0TCrqwRgZQVk2Nh6zSi627MdQZfxA8MLwLNpmzSe1+hLEyBBW9wGMgQGMkRH4\nwQ9wmluIGxqJrrhq8uYkR0tKRBCgDAPlpFD2ROVdGSliN02cbUblGlBjbR6mn8xqTiXvUIxi8bBz\nmM9mKpcnuuZa7CcOver5aOnqs6ZpmnY66JB8FjjacXFHO0/5SISSuEH5mCZeTBVFyfqqlStjNm2y\nqFYFGzearF4dE5JnQ/56VlR/nSwMNASedPBjm1iIZKawktgiwMXHBCzhs8DcRSCSErdJjI3ABgxi\nlDKQM3VQmCaysQmQEz3Jo8OIKETmCziOy8oOCUEBWcmhHJeIPMNxB1FuGImBiKOJanMcowoFvBtu\nxtizG+fxX2OMjGAMDZL9zKeI58wlvOoawiuvRs5fcEyBOWfWuGnWZjIpCeLgxWn2RM/L2HzmMZY9\nsUPMIYhyCWvDeqI1l5ybPb1HWtCnaZqmaWeADslngaMdF3c885Qj0+VAbjm26eLiH/kOR/OYEfT2\nGoyOChwHmpslQ0MG+/cbpFKKlhZFKhCUK4KiEkR2mk3RCnzpEUYOMTaurHGp2kqWKlJ65MJhUsob\n34nOIkQBNhKQxMIGYVAOHDb0zeHStq6JtgvTTEaPjfUkmyZGfy8iCJOQCckUjHIZZflYxDRVu7HE\nCIYs4/TsY9YoOFFXMilDKGIpiVeswu/sJP3cBtRjjyFqNcwD+zHvv4/U/fcRt3cQXnl1Ephntx3x\ndTOFJG/VpgTkk0BKxKkatH06zLSgT9M0TdPOMB2Sz0MHj4LzSdGdWkFHLLFinzBKWnbDKGnhPTg2\nh+EhH3ISy4K2NkkYJpMvWlpiHntMUKsJ9uwxmD8/oiErMKIc+awgStvsr17E0ngrgVXAExnCqExX\nbhXdTSsBWDy6gcBIU7aTyQ5SCnxc0nkLEUYUPQtlmkglKAcztF0czDSRbe3IfONEVdb3EeUSykkR\nixye1U6cLSGlRdA+n36rk6WtAlnpS/YpGavcmiZccgl++xyUAmvjeqxNzyHqi+nM/7qf1H/dj2xp\nJVqxiujCi4jb2g95aNPEMYQhcSQpezbpWoAxNrzdr/dRB0HyzsTzEKWJEXjKds7q/uRTRWVzhNff\nMNG7rWmapmmngA7J5xHbTjYC6elJAuvYhAffh1oNjAiGh6DsTFxWmzLRIpliceTnyqkSV5TX05W9\njCid57LLYh57zCSKkraLq6/O82zLzSiVjB2u2SkwTBwjQooAi/oGIONTKKb/qerfKwGKY9ykYqbW\nhfpGFznL57qWLfUAOsN91UEbk4xtSy0EpWtext41b2CB20Puuaexn34K67mNiDjGGBzAefzXOI//\nGvmf/0F41dWEV15DvLzz0McYxxg9BzA9l2B4Lk/Ec3mF2kIhVX/rImOE5yP6+jCG+rE2rINvp8ar\nrbLQQPjyVx7b63KKHFXLx5EmX/ge5gt9R16QZ5ooy06qz62zMAf69SI+TdM07aTTIfk8kk7DrbfG\nDCU7MFMoKISAPXsUCxdK7GoMZWhbEzO3X1LojAnTk1NyEFAP2IcnlCQTT+zk19Ki6OyUbNtmMjRk\nsGOHoqNj4uP/UDiMGk00q2Fc6WGqGqmoQi5KNp/IxEUKfi/SMJDCwlYBUoEdx0gJvtlw1GPFZhTH\nGMNDKCvZ+jq5LEKEIY4zpd1ibBGg5SS5WiiMUhnfk7zQnWP2ykbcm15KeNNLoVLBfmYt9pOPY216\nFhFFGMNDuA/+GPfBHyMbmwgvuRRlmkzs010nJSIMUbhJKK8fo2F7k1/rKIAgwBgcwNy+FeU4iDBM\n2hRGi8SFBsg3HP9rczIcRcvHjJMvDpp6IYLg6Bfk1TceEWGoF/FpmqZpp4QOyeeZdBry+fqM5Pro\ntubmJLj4pkvfrOXMzbm4RcikIZzhE+tabfplM5EyadsYa9NYvFjS1ycYGTHYvt2gsVFiWUm2rao0\nP3FfTcYOQYHjF4lb17N/9hqEkgTCYXn8NFtyVxCYGaIQqiJLrsEhjmGgliWS1nirSFBvFRE+EB3F\nbsimiWxqTloU7Ik+ZRF4k9stit2AJG5pRTmpJJcLiXRSiDDA9sv1MWb1TUWEILzsCsJVF2B0dWHv\n3om5c0dSYQ4CjJFh3EceBkDZNnF7B3LufGTrQfOOhUgCtGEkG2pMbVmWFsIwUNkcqtCYTLzwfUSt\ngnJdjNHiOdt6cNxTL0wTlcsffoc/TdM0TTsBOiSf445l4kVsp+hv7qTdHjrh541jKFcEI8MCrzpR\neW5vl4yMGCgl6O8XZDJJ4bZaFVTDNFWZ9NCGUQNPts4hm4ZMOIonMpR9l75SBs/I0OG5VJRLxXKJ\nY6gFgtzIAHvCmK6iYFsFcpbAjASz+8C0oBBNFIlnZJpJQB4LyYKkpcF1SGVNhGVilEuAgsGByZXk\nYhl3xxZm9Q2Roog1dWtq30eMDBOtuhD/FbeCYWA9uwH76Sexn1mL8H1EGGLt2wv79qJsh7itDSyb\nXE5wQ+o3rAtWT0y5mPRiM/P0izhEpVyEf3IWZJ4MolzGenbjyZu0oWcia5qmaWeIDsnnuOOZeCEt\nl1LHMmLrKHcUmYFpQi6raGxShOmJNoJ0GrZsSb533aTlw3HGuglEMke5XjQ9uHtCqSR4u8pDAK7w\nCbFICUUswDKgM1ckNFO4RkBa+GQMD0P4mMTEkXncwx3yjs9N83eCH00eJ+ceVEkeGsFfupJ+Zz6L\nOwdxpm5PXati9PcjxgJuKkV05dVEV15NbWSE1He+hbVlM8bQICKKEGGA1bUveS0Nk7Z0gf+fvXeN\nkSs7z3Oftda+1LWru9m8iuRwOENyqLnPRJqbRrI1sjWWxrEUK8eGBQc+iB3j2D8S2EBsIAECIwjg\nXw6iXyfn2ICSwEgOcmJH1jmWLPvYlj0SZzgXDeeiEckZckjOsMlmk9113de11vmxqvpaTXaT3U1S\n3A9Q6O5dtav23lXd/e5vv9/7eaXDV99Qree90kky8MZAHEPUW9TUt5RNa/Kzw20X1xtTd61M5KKJ\nr6CgoKBgoyhE8m3EavOUB8TxfPMeOD2VJNDJS+jGQecYyIetszqkBN/DjdjrU63Of6+yBM8L8Dwn\nqgfCeCCSF2KERywrlEio2ISSiVwEXJ5hDAR5Tq3ZolvZipfF+GkP30TIPEWanJ6qkuQKMKi8v11A\nOw34wcXdPDp6irHV7NTCOLkwnG/cCwJsuUIW1rDlGCpDokCCoC9ce4uX6xy9bTtxKvjw7j3clZ6k\nNPWhm6aXZwijKXev8GD+MrBzfjUr6ZkSFdvBMwZ5eRpOHnexdnkOaYxInV/ZdPYhur35KvkSTKNB\n+vwXb14axtU8y4OGvmt6ZoaQZcgzZwDQ99xbVJsLCgoKCtaNQiTfRqw2T3mQctFsCpJkXvRGEfR6\nMD0tiGPB2JgdqqkaDbd8tZFwC1EKlLRoI1a9vhWStj/O5co/4NjoZxACOl24okdRlDGAsj28+F0m\nK4e5VN7GUTmOjyGgx34ELT3C2KmAkJiRXLB7t8vDMFb2I+OuY0reWunn/YqZmcWpGkmCmrpIOtul\nmeZkoyHBx3Zjtm1Dnf8QMdtEJjF3J8dpzUjYPgpAR5f5+/YjPFt9lVHbcsLYU24in8oQwmIrbg65\nvucebLk6dLNEHCObzVt2Wt+goe96/MUiTVAnjiOwmD17iua9goKCgoJ1oxDJP4YMUi6WitR2G44e\nVRw+rHn3XcUnP6mpD7ny7fvuOa5HJAsBpdDQjRRJtrrKYOTVeWf8GXZdeZGucikNkS2DECjPFXJl\n329cKRn2+PO2Al86YR6gqagYpTPSVGAMaw2Nu3E8D333fvTWrbDw8n/UQ0xdIItnuZTs497xHONH\nkGVuVPXYFtSJEyiTUzt3gnz0IQhXEHvKc29Q309NELqDU664Ls0hWEAk8dD71kQUIbJhmXkg2i1E\nr4tot/tfW8vuJ10n7/RCn/LV7isEc0FBQUHBDVCI5B9TBukWC5EStm2DkRGnp+p19/31kKuQc+UD\nZHK5rzkMnEgu9y5TzivoYG0NXIO4uIaZoW7jvuCNqJgOeT5NEEX0SuMY5eOZiJLtYYCydmXxKKiA\n6q34/O28xA9m7+HR2nFGWL14lMJSK+dIcZVqfhAMF6xBgPV88rzUT9jo+1z6DXn5xARy6gLSaLz3\nTpIfvn9uVW0lbV2hYjtsQj18OFFE8O3/F9lcodqbZYiZGfwPz6HOnUVcuLD4AxhFyIsXyD75FIw0\nhj/HtXKU+yzyKVdr5E88iXfsB8vvK0RyQUFBQcENUIjkO4haDZ55RtNaub9r1WSqxIeVQ1TVIksy\n4CrJAHHmYbUhz13PmTHuZm0/Pi6bD3KwuaRNnUxLesrFxYWkbB23GA2y02LLzhe5svsBdl1+m9M7\nnyIJRwiTFjqDpmiQH3SiKGll3KteWnHbjZW08/KaLRj1Us6zhy+taZ3VIksBptFANZvIbgf14VnY\n5YRy15Q50jvEs8FLrENexHUhshTZbLr4uZXE58RW18B4+Qqm0VhUTRfGIpoz+C+9SPbcTw9t3hua\no7wSaYo69T75fR/vC+tVTMApKCgoKChYA4VI/jFnLRFx60UpcJXWbl6i2dTEsaDXE27Kcr+AmmUw\nOyvo9Qu+eT7CW/wEsv9zKy0jRJmSsFjVH7HtVUmCOqlXJQlHiENXkcz8MomokAeucqm97ubs6FrI\nc0Se4em4b1nI3EHQ2nlUjMHW6hitkZ0O6sIkQXkCTyRInaHMdXhfNgBbKrkq+WBU9mrXswaSFDk9\nDd0e9EXy9aZeDPzfev89ixIuRLez+HGF/aKgoKCg4DopRPJtzrUSL64nIu5GCQP3Yu28TL3eply1\nyyLg6rT5jH2Vc43HiLw6WeaSNwaV5TR1VV4pnY68rclz5MUL+K0OW9MP8NUU0nNnDKLbIbM+l7qj\nbFNX8LdsRUQRQmvqZ37IromPUdJX2JooCDfxTbwaaYr/2ivQW3IykrvJMqLbwb98afF8824HdfYs\nIs0wQPbCl6BcQrRbyKmLi4TzIlZjwegPFhlGYb8oKCgoKLheCpF8m7PaxIsbYRAlp5QrevZ6rpDY\nn8ZfVD4AACAASURBVIyMWOJaqFecqo1NyNun4P5HlkfAedIwItoEniHv+zWUmtdVa5lAbQzILMZ0\nnIi03R45KdZLyEjIo4ysm5DHOdZk5GToNCePc7SCdhry+tT+1cfErRXPw2zfQda5xIy3g3ykh/Fi\nN/Gv1yUyVX5o9zHiHcMbKZHftQ/v1PtIo7n/8os0d93LjL8V7PmhT6+NoB17lEsCJTf2swC4N73X\nBT9w/ur+MvXR+/ODTVrtxeskKSKOkJMfEXzvRVSauaSNKEKdfh8b9Ui//I+XGemvacFIYtR7U0Wl\nuKCgoKBg3SlE8m2E1i7GrVxeXKTbKJZGyUkpSFNoNgXdrqDddpXfpVXq0XHYN3qFD2bHuXA5RP1I\n02jcmHizQhL7NeySLN3EBnwwO47XmeGC6TfhRRGTxJiSJEYz0W4xdSlCzKZoD5okzEYZlzqapFbC\nM97Gx8QJQdCdYZc+S9C+glTuDEPEEZ6BUX0FlcWInsUqDzO+BXXlMmXdoXzuDR4JZ/EbgNm27Kk7\neYkXj+/kqYfbNIblN28Q1g8WRd0JrV083bCxh2EGnoAgxJZKmMaIi6wLApQfIJut64qoE2laVIoL\nCgoKCjaEQiTfRnS7cOSI4qmn9HWnUoCr0q4iRGBZlJznSUZHQ86ezblyRdJseuzbZ4bEyAUcujvi\nz78xzfuzE3z0kSJJDGFoFzXu9a/Ok7HYngvzwltrd+tS58Suz7A1WJyuEIsyf9v4WWQ15eDB/kqt\nFvdgkJUS1hq2XzxJe+xeeh/F5EGZLg3i2R20ah0ylbEtN5BnLqJMuyzidUcpSluqHC53wG9gcDst\nkpjM1Jju7CAPz2PrJaz00PUR8pEx/HMfIHXOruQD8ishpr0DW71Z7XurwPOGDzQR/fs8b1kCiLW4\nfOlOB7tS8sUq2ZAJfIWvuaCgoOCOZNOjZAtuPoOUi9U08pXLLiZucGs03NdSaV7vDIbTLbzVqvC/\nfeII9apr7pqelszOirkpykkC3a7gyhVBNNXh7jN/B+0O7bag3RbEsXtcuy3odFzj30re5FSVSUoN\nTN3dkvoE0dhOEAIvT1E6x9MZyuQorfGyhC3ReVTmNiRvddGdmLzVQ6c5WoXYjSjVK+UE5MKbUljl\nkcsAK5XLQe6LSbFtK/mDD5OMjAPg5Qn+Ky+jjr+7uSbzjcZad4JiV7lPUmKrVZBDKv8Df/I6vn8D\nX7NYr5zngoKCgoLbgqKSXLAh5CqkM7GPxx+MeflYlShyFo1yGapVS4j7Oj5uAc32vEVNabzQ2TIG\njXv1ukVrJ5iVcraLJFhuu1hIRJk/4x8CGSVaHOAI53iAB6gQ0SBDMsIH/IBHSSgzYRUn2Y6iykFi\noM4+/M355TAGoXOsNpxKPsZ92SyhXZAaISXtvYf50Tl4qHUEYQ3+8XdRkx+RHzq8GVu4NlY6k8n7\nBnapFozuFu5rlkCaItrteT/RVbC1OvmTT+Ef+T4kCXLyPCQxcGNV6KuyIHKuqCYXFBQU3BkUIvk2\n4lpJFtdiM+Pgcq/E1NhB5EXJo4/mvPyyh9aC6WlQylKWi6/MD5r2ljbuLf05Ceq8v+czV31tY6CZ\nVqhWQZSBXhUxUkfMlCGs4AOjmaFdKxGbCkFD4mUhwUgJpgNi7aP1cmttO/b4wZmtPLJvhnp59fFn\nV9tQ0Wnjm5yx7BLdXGHbXYS32Fdc15b9FU3mb8WLOshuF9lq4b961PlT7nn8xrflBtFGECUB1emL\neCw5NgNvTZpgqzVUcxaBxQahE59nz0CWEfxf/xWwJL/8v2InJoC+73mYaO6nXogsR05OusmFQ7Zr\n3ewXCyPnCpFcUFBQcEdQiOTbiOtJslgorNN08+PgwFlP77pLc/q0wlrB1JQkGFNznmQAlUY83HqR\nNxqfpqfqyzzJ17PNvg8h4PdtIQNLLDjbseeDZyDw3WP84Op2ZGMFnchbvwY/KV16g65yubkVJSx5\n+QrWX3xZXxhNiS4EZbJDB5FTU3jvnUBYS3D0JcY/OEvl808B6+jDXSOdLOSl2Yf4dP63jJTN/HAP\nYxCtFmQpwhhQChFb+Oi8e4OMRkQxotdBnTyBbDVhZBQ75nJGTKNB+vwXV0y9kB+dcxF7H5zGbNm6\nvMp7lXi4goKCgoKCq1GI5NucayVeLBTWabr+r52mzl88jMHwECmdHqrVDO22xFrBhzMjvNx4gHS2\nhG8Suh2Lirp0laUjnScZnCfZGPc6N5qXbAyIJHbfpAky6iENmK7CRDG6E2GTFGxM2rGI1NlepVrT\n3Iy1ISXCwG57jsSU8KIOIluSUGGMi1YzGtntYMfGyQ9/HO/UKUQcEU6d52f+6z8le+0w4tC96AMH\nye85sHw09mYh1fzZSJ73M/985zkulcBYqFWxnrskYj0fZXJsrQpxhBmpYxujiDhGNpvXTr3QGnXm\nA/SDD29IlXfp6OtFFE19BQUFBT+2FCL5Nme9Ei/Wgu/DyIidE+hLxXmeu6a8ILCkqbtfa6hWIQgM\nly87ofy98/fy5N6ccT+mllryDOo1i1B2RU/y9ZJan1Mz45SiGQId0Yi6dJotIpvRjDTbex8ye8nQ\nvBLRQ3DOaldVFuB7Cl2pUzMb8+tS92Purc3yUvw4Wa1FaUklGZM7tZ7nmNExF53WaGC2bEHOzuK9\n/RZenuD98A344RsAWCEwH9tNfuAg+q59mK3bnFi9WQgBQro3UVj3IfL6Xpvcdw2LQeCWl8tQqWAB\n0ZzFf+kI2dPPDK8IC4kthe65NwqlVhx9vaZhJVojop6zfmxGhmNBQUFBwQ1RiOSCNVMuw0/+pOb4\nccV992nGlkzgiCI4cUKxZ4+e8xlbK/E8V2yrVAznzimSRHDkiMenHvXcsJEFvuSVPMlrZdDoF8kq\nr4/+LOFYyggtWjNHeKv+FE07wsd3z3LflSOcHn8A/7Skp0PsPQF+AFJIpPRpR5Z7E+3K41EPF1w3\njxiUvq8XKV3ChfLAW1Iy1wwO4nwqhgBMSPbEU6R792OihNLZU3gfvI/Ic4S1qA/PoT48N/c0lT/8\n38k+8QTZJ54g/8QTZA8/6s5cNgtj+t4Z63w2A9tKlrnovcGEmihyE2uiHkQRYnpqxYl8tlZDHzqM\nGOpIvrUQ3Q7+ke+TPfX0DUfdFRQUFBRsPIVILrguJibg4x83NBrDr+qHoRPTQeD0nefNT9zbts2S\n55rJSUmaCv7maIP6xw5wUL634utVTZuD51/hyt2PkQSr95gOGv2SBFIlEWGZDNC9Cll5hMQ0MDWD\njaroxji9xk5Ue5ayTAkkCCEQwhCnOd6VDo3JJnI8Q44sF2WmMYLsdJdvRJ92Xub1yw/w6MQZ6t61\nRXVsAs4kO7jL+5AyOJGZZeBl/bQIl+0sGnXsT32OXrkKWYY6dxb1/nt4p95Dvf8esjkLgJyZIfzO\ntwm/820ArFLkDzxE/g8+4cTzP/gkZs/eVR/bYWgraesKFZWjxAIjuTGIXs+JZGuRWFc9BrdPcQ91\n9iyy3cR/7RVXNU5T52c+M4KFoRP5lh+0wv5QUFBQULA+3FIi+Y//+I/5oz/6I6anp7nvvvv41//6\nX/PQQw+t+Pivf/3r/Lf/9t+YnJxkbGyMz3/+8/z2b/82wfXGP9whdDrw1lubk3KxElu3Wnbt0hw7\npshzwTc+fIIHq1uo1V3hdGnjHrnBizqksSFZoE8X+p5XixWSyKsvi5HLvDJv3v2zpJ0U80lNpQxK\nSYQocf58wo7HL1Puvk7204+R7Boi1KOY8Fv/DyKOF9c1IzfH22SGdhZgMg30Ra7WIAVCLxfdifE5\nGe9hR/UiZWsRUQ85O4PtRaBz510OJt3BOnHCTbvrY/bsJd2zFz79k4jL06gzH2D27HHWjLffRGiN\n0Br/2A/wj/2A8h/9H+54b9+B/uQT8JlnUQ88Sn7/Q4um6l2LrinzRvtBnh19i4a3+IQh1h4f6Hu5\nyz9P6PtY2f/zIwVCSidq+3YEW6mBctFweP6qJ/Ktyf6wBjZkSElBQUFBwS3NLSOS//zP/5zf//3f\n59/+23/Lgw8+yH/6T/+JX/3VX+Xb3/424+Pjyx7/zW9+kz/4gz/g93//93nkkUf44IMP+J3f+R2k\nlPzO7/zOTdiD2wdr1y/lIo4FLLnUHUV9V0LEnCc5z93rLXzN7dstzz7r4uF6PcFb3Xupvp8xsX15\n414YC2ZmBOfPS3r+vLjNczcmWwinN1dj9Yy8Om9PfMY14y1xNkSU6VCmhSYDFBJBiSYJbVJiQtrU\nMUMyeYMgwG80XLNZsqBSHEXOjpH2qHcnEfUuwiRz1WAhJNLm1FS0srVWCGy5Mu9JzjNEGqN37oRc\nkx886JYP3eEe+tB9JL/4S+4yf7eLf+wHeK8exX/lZfxXjyIvXwZAXbyA+uY34JvfYASwQUD+0CNk\nDz+CSFOyBx/GNkavfZBX4rp8MxbiGNFuYf0AoXO8Y2+QP/zI3GAREa1cwV8XipSMgoKCgjuOW0Yk\nf/3rX+cXfuEX+NKXvgTA7/3e7/G3f/u3/I//8T/4tV/7tWWPf+ONN3j88cf5whe+AMCuXbt44YUX\nePPNNzd1u282a8lOHjx22NTgteL70GhYmk1BkiyORIsiaLXg9GlJpzPfwKe1u7I+GDwnJdTr8OlP\n57x+1DJ1JaAb+2STltFRt0+Dxj2FZWzMcvdEi22t1zm71dkukgRmZyVS3ngvVJ67bW633c9BAEJI\nhHCvQdNj16Tgnb/0MPXlvzqNRo2f+YkvUlaLY0REu+Wqy+Y9qucFZt896Lp1ZxIWkJKamuLTwXHw\nlldtY+NzPNnHXeIswSJPsoYgBJkvGvM8lIXRJtUq2dOfInv6U0QA1qJOv4939GX8V1/Bf/VlvHd/\nCNYi0hT/1aMukxkoA2bLBGZkBL17L2bPXszEVlbzp6QkEg6p9xBRhL0Sg+i/YVYjco3MUshS1On3\nISi5N6TXgSBEXLmCKJXQO3aQPf0son+WZ0ca84NFhnG72y9u9+0vKCgouI25JURylmW88847/Pqv\n//rcMiEETz/9NG+88cbQdR599FG++c1v8uabb/LQQw9x7tw5vvvd786J7DuFa2UnL4yIGzy21brx\n1y2X4fnnNUvTygDabfjudxVRBFu2WEb6/t2PPpLUavMCeVBUDAL45GMJ77za5vTsFtJUcOmSZMsW\nMyd8B77mMDDUbIdSYFwIMm65WIfoYt3vy1PK7V8YgpQWIdzyLVssu3oWscWSlRcf8zgWNJuCVJUp\njSy3BNhSCeu7xjwbhNgQQIDnz4+jFsNVfmoDTqZ72RFcYEOMREKg99+L3n8vyS9+Fc+TjMmc9v/3\nd8iXjuC/ehTvlaPIjjt7kJenkZen8U6fcvvmeYQT2/h8UKPrjeKZBKFzIHcNecagjaBrKpStxDPa\n7evgzTUCPOEOuB9AueLi4VSG0BkEoTt+Yeiq9HkKUTSXejEYLIKUyy6PbJT9YrO43be/oKCg4Hbm\nlhDJMzMzaK2Z6E/ZGrBlyxZOnz49dJ0XXniBmZkZfumXfgkArTW/+Iu/yD/7Z/9sw7f3dmIjI+LK\n5ZX7qAbL03S+gc/3Fw/0WIj2S9T3lrmroTl71kXETU8rfN+wbdvmTj/xPKfXnEh2AjwIoNQXzpUy\nZMuKtnZZRf22ptEg/8nPkj/7EwCIqYtU/9XvIpuzyAvnUWfPIHs9d1+e4104jwf45REm6tvw5QxC\nxaANIo5JTYl34/0crFxilJY7qAORvMpoOmsNIkoQ7Tai14FeB9GcxYxPkD3zrNuWVnO9j8RVq7mb\n5lXWGtFpF/FxBQUFBZvILSGSV8Jai1ihRPjyyy/zH//jf+T3fu/3eOihhzhz5gz/7t/9O7Zu3cpv\n/MZvrPo1pBRIuXZxo5Rc9PVWxfPcNnqenZ82N2TZaljtPrscZUGWif7xtXO2hYUV5IUMlk1MWEol\nzcmTCmMEk5OSXg/u3iL664v+c4i5791HZP59dIkUrgo8eN7B4xa+/mA9oRRZqY5QatFzDV7HWreO\nkhIpBUpJzJJj4GLrBJ4nlx9Tz9lBpFiyDf1tapsyb3Qe57GR96iLeVuE6D9+7tMp3EIh3fdi4b4q\nAWqFz7Fy6yhPgnftz+vQ97lWwTzxSXTfl+u9/BJWSuTMFeTkpEvRmJ0hiFrsEz8k37HbVYV1DnlK\nrqtMx9s5KC7P7YsQEOceZ1sT3GVOEeoZsAY5OKBau1HWtTp+r+OOn9bINEZ94E6eVbuF3bmT7Gde\ncGdjnkQpgRns69Kf17LPA0yG/8H7ZLt2gLdEDHsSwlXGua1yW4auk0T4rx11lfN1io+7Xf6GrSfF\nPt8Z3Gn7fKft72ZyS4jksbExlFJMT08vWn7lyhW2bNkydJ2vfe1r/NzP/Rw///M/D8CBAwfo9Xr8\nm3/zb9YkksfHqysK8dUwMuTS+q2ElFCrwegoNBorL1sL19rnsTH3vN/6lrMpuCEi8xG/K/mnPc/d\nPzYGO3bA9LSrRDebkuNRg8sfG0EJH4SPEEH/5sSWtfOWi8GEv1JpvvA3qAYvfP1Bs58Y2cL5bT+F\niN391i5eN47B932q1RLlckC1WiKvLq4oCuG2NQzD5ScBIkeIEJGD0BaRGUQKpAahLdZAO6+AAV/M\nV1V9YfH6TgRPCXwpCQMPAs8N5NAKSj5x5PFRcyt3jeJsKEsRGtKQ6mgVGqvPRV70PsscRuvMhWLX\nK+5DdNdueOQhaD0F/+W/wMwMu3qnyM628A8fAKvAUyjhgfTxlEQJAUqCknhGoLAoKfFC39klyqH7\nMOS5E5PbJiDP8ccakGWEO7ZCa8ZtRyWEt4/B5z8HYxNuO2slGOzr0p/Xss8L930Nz7Hyk5fgheed\nd3y11eDBazcq67MNwzbrFv8bthEU+3xncKft8522v5vBLSGSfd/n/vvv58iRIzz33HOAqyIfOXKE\nX/7lXx66ThRFyCVqREqJtfaqFeilXLnSve5K8shImVYrQuvNtQOshVYLOh3F7Kyes2sOW7YaFu7z\n7Kzh2DHJww8b6kOa/lst6HYVvZ7A9y1pqsgyhnqYwS3Pc1cVdXHAgnodkkTQ6UiiVPEHrzzLP6xc\nQszmnEozen5GlsGlSwIQnDrldqbTEezaZYljS5C02X3xdd4ffYw0HVkkYN32COLYYPt9dFnmnmuw\nzH02fLIsoxultAnp9FJyuzjnuNdzKRv//b/PTwsc4GWWQ8eq7DzdQbbbnHmrgRcoZJ4yNh3R1AI1\nc4lmFlPdksxto9aScjaDESm5UGQGkjQHL4csR2QaHWe0Io9jp0NqjTaNypD52b0E0UtIZ7uwiqmB\nQz/brS5BL8EGbhqg142xGoj7b2iSou47DMfeIeg18WenMW8l6LvvRuQarXOESdBZhjYGqw1Ig2cz\n7hUXAchtCAgsoj9oxH01ViCQaCsRSHIrUdYdJJ2D12wTzXSg2oV2hIdH3ozcvra6+J2Y7Br7ftXf\n51U+x+qQ0FrD4JnBazd767gNjtvlb9h6Uuxzsc8/jtxp+7tejI1du+BwS4hkgF/5lV/hd3/3d3ng\ngQfmIuDiOOYf/aN/BMC//Jf/kh07dvBbv/VbAHz2s5/l61//OocPH56zW3zta1/jueeeW1Nl2BiL\nMdc/rUtrQ57fuh/KPAetBXluXOQZrtK6b59FSju3bC1obcgyQ7MpyDIz9DkGr2uMoNeDJDGkqSRN\nl1tQpdWouIfNq+j+6F9nCYHduw2TkzA1JWnFISasML7FsmOHIQ4NSQIzMxIh3DJwjYMDsW3R+HEb\nqzXWLo6hc9th+5+B/uOtQIj5ZTD/XLFfZfLQp/oHYfF7rjWkqSBNYXTUUiot3MmAqU/8NGPpJJXW\nRS7veQgdVFBpj+A9S5T6lDotmuXtbN05nz5SBZ7lIs1sDHNxFHquZG4Nc6l71lqMBWsGmdJDPsva\nIg3o3GDX8Fld+NkWuXHHSFvIc7zzHyHC0oLR0hlidhbbGCHD4PfartHv+HFMtYaHYXs+iRd1IEsh\n1y6n2mhi7XPOfIw9pk1JuMQPa90xFu7AYq3BJjE215huDxElIED3esgkxc42MRUX+q0//iAWCblB\n5Aap7ar3fdjvs8gNMkrgxEny+z6+qSkTg+032qAzjZltYcL19SXf6n/DNoJin+8M7rR9vtP2dzO4\nZUTyF77wBWZmZvja177G9PQ0hw8f5g//8A/nMpIvXLiAWvCP4Td+4zcQQvAf/sN/4OLFi4yPj/PZ\nz36Wf/Ev/sXN2oXbhmslYqwXnjcfExfHgrw/eXgwnTiO+7YGMia65yHbR9ZPeBDCrR8EsG2bYWrK\nVRbPTwX421wDnV2SbjGYeRFFV9+uct7mntnXOV57jIT1z74tleyyNDafErJWRuRlgkCgA1D9oXOe\nGfiOLQwZsGwRiFU2t20KnofZuQsblucPeq+HOvU+UoLdOoG5DLLTRqYu6ULUQ7SFmIAyEpnEc+HZ\nJjPM6grbbOREMoDRiNkZRJIgde5Uc5a75TqHbhfZ6SAuXURdvEjwrT/HLpiPbhoN0ue/uH77nOeo\n06fQ++/Z1JSJQWOgm0oY4798hPS5nyrGWhcUFBRsAreMSAb46le/yle/+tWh9/3n//yfF/0speQ3\nf/M3+c3f/M3N2LQfCxbGwW10g7yUMD4OTz6pSdOBIJY0Gk5XJQlMTkp27jSEYUCSHGDspCQM58Wg\nyyl2IrhUcs9x+qOQS4cOkKvVT4FbirCGct5G2M074zZeQNTYgfFLeHmClyeoNMJPe3hZiNaG07Nj\n7GhfZqy6OGdZ5YKabCM9ib2uYRwbwMIIkD5myxakBVsKyce3oD48i7o0hdCacmeaS96TnOUwP+V9\nh3pJYT0PjEamCaOqRygWXJIw1lWcoR/t1u+eFLgIvaCESFKstoh2C2M1tm82F3GCvHAB0W5CpTof\nD3c70h9isiGpHQUFBQUFV+WWEskFG8tGxsEtpVaDZ55x4+xaLSdyg2Cxrlqos4TR1OmCqmCEQqnF\n2ceViiWOBR9NekyOHFxTKsetgA7KfPT4C8h8XgD7kQus7kSK7MMfAj7pvnvR44urxhXgU0mMer82\nP8r5FiPOPc4n+9gneoRKgueh9+0HKVEXL+DlKU+av+c7lX+MNf14j/6ZWkllHFQfYGV9fnijMYgo\nQhg715kpBz4M5YGQiDhG6CvI2Rn8d9/BXrjg1k1TN7Ck0SD58lfm4uF+rNEa0R/pXUTEFRQUFKwP\nt2l5pWC1VKtOrFbXtyF+3QmzDo/MfpdS3hl6f6Xi1FOeCy5cWOw519pduU8Sd0tTdxv8nPVtHnnO\nXPPg4Huth73a+pOm0M7LNGksuI0QUSaihEahUaSExJSW3TJVAnnrip9Ee5yMdpPYBdElQqA/tgdd\nd2dkW80l6ra94nPEJuB4djexCZzJemAKH4Rr+77zQIchtlLFjG/BlsouFq/VxnoBtlJz47k9zw0e\nydIVX2/V9EdfM6zBN45R751kbo76TUJ0O/jfexHRHf77U1BQUFCwdm7NslTBuqGUq+re7pTLFqUs\nWgvOnpXs3u3UrdYwO+vEy+SkO+fr9HVCrwddKxm7LLiQSWZnBZ4HGkG7LZgxgqYVGy6U0xRee03S\n6y0WWeVUIU9JbBKzK7nCtN7C2RMpl2vL/cdlmXAgzxEqcxnD19NxuRkY7SInBujcCdm2q5qP6ymE\nMG7Kntbu8X0xnBrFqXQP2+0Z5kwcq2zCFVm2qCPUWuuEaxzdcK6wrdVXHH29WRPxbLVG/sSTeMd+\nsLoVispyQUFBwQ1TiOSCdafTgWPHFA8/rNdNoEsJ27ZZJiedSH76aadslXJpEgA7dzqx1ezbNxsN\naGDYIiw7thimEksQQANLHcvYiLuEX9Ft7jnnYuJg/Rui8px+FB5zyRUAfhCg66OMm1PsUNN0TI0y\nkhr9RAmT48cdIr+OzQxWxEhlnbAEbBhipUIKQ62UIcXNbe4TRuP3Wi6RYhBqr83c9gLsSM/hqRgR\nS1AexliSVBGKlHI8y0P6B4R2wWUPaxG9nhPeWs/bLlT/T1ccQ5IgL13Ek9JVmvMcoi4yjgj+ajvJ\nl7+y8mjIzeQqk/uuiVJ9b/XqBK/odvCPfJ/sqaeLJr+CgoKC66QQyQXXRRDAPfeYoYNBjHFCeWkG\nc5YJksQJuSSZt0gA6DzkYnCAyIT9+DgnjHW/0CitZu/2hMnJKhcvuqi1wWsP/MsDr/NgeRiCUiGz\nWw8gw3Duir3P/NV7ZVwjX5h2NryRz/cX9blBWOb4fT/L6OwH1K58yGx3gvDgPeTjTkmrpEdj8jiX\nJw4R9QT70G6QRP9JrFKgDXW/w7OHLjibwU3ESkVWGcFWsnkRq3OII6xwCR3SGnIVYAOF9RSdvMxR\ne5An1OvUS/AxO4MVCps7QYy1/YkvzueMteD7897s0LgoOt8187k3NUPkGdbz5ywX9hYQyZtVdS4o\nKCgoWB8KT/IdiNZOxN6IzWAQI7ea//W+76Lg8tyla/R67muSuK+tFnx0ucxJeYiuLi3zD2sNI7LD\nM+ErABgjOHXq6h/dgQDv6hIfVg/S1aWhnuRBLN1C3/JKx8WP22x/9+/wopV9tWsl88q067s4P34/\nsV8j98vkYZU8rNIWI7w3u502I+RB2aU6hKW521xG8S1ETJnj2X5iWeln80lnhehf8h/V03g6RaQJ\nIknx0ohRM4OnE7csTRHtDqLTQWRuWMzxfD8xpfl53sqb9ym7eeDgKfdBEyAHSRDr2d0p5e2dklFQ\nUFBQsGaKSvIdSK8Hb7+9OSkX4K50P/ecptkUNBqWctldJT9zxnLXXW6y3dtvK0olOzcm21pJGDrd\nk2UQRJa7azOUS4YolvzFX3hkWc7Bg8urv1rDxYuSTmdeJ+U5c57kWJYQ2UGmmiW6WnAhkGxvOt9y\nsynmxlUvwxq86PorzivZiEUCOnM+Y9ON0IF7YN7JiHqasBMhdYaWKX45WbzuejSmrSOp9TkZCcHt\nPAAAIABJREFU72VHqUlJpk5clkrYIETkOYFJyLxRbD8CLsvLTPe2kXtnsCXcsJR6DZtr7OwVeqbG\nCX0vO+QlQjftxVWnB86SwaWGXM+Pc0wSdzkhS9fVl3xTUjIWWDQGmcm2XLn2egUFBQUFN0whku8g\nBhYJ/yYUIMvl+Vul4m7j405s9npu2wYRcTBfKByIXJ2FXB67lxd+qss3vl0lzSR/9Vc+Fy5oRkfN\not4kpWD7djcue/B8SQKdjiQIwPdDuhyklkOQukl9W3znWz7ftQvTydaNPIcrZ7rcM/s6J+qPEXnz\nQ0wCXaLRHmFreomZUy1aJfcG5bHGXEro5jM0kimmKx12+uDpxbO9baXqModvVaR0Gca9LlXTJhMB\nyIbz2RpFQkhL1KmICCW0qxRb+k170h08myDaKe4OC/2hMxhn5xCzoPqNe6LdwiqFyFKE1reWL3mN\nLLVo2Nr6D78pKCgoKBjOLfyftWC9GVgkWq2Nf60ogpdeUjz99OLmvTgWsGSmXBQtjm0Dp4sGXuM8\nB61KTI0d5N6xJv/qUy/x71/7SWZbHm+/rWg0BPffv7j0O2TWxbwnuX+SMBg3HQTg96f7Dab3rTfG\nQJYYarZNKTCYRScqZY7u/Qp2e8r+/fM+b9FpM8ZRpnd8nPHTPyAcHWPs4yVKo4sHqVjluUpq3hv6\n2mIT4smksNRUD8nwKvvcoA/A77bQdWddEEajreRo+ijP6dcYEZ1FTXqhjbiPHxGa2PmSbV84D94j\noSAIneAevHFCgBBYIbFZjv/qK2Q/8VlM+WMbfhxuG7SGqAsjhTe6oKCgYCUKkVywIVjrhpcMmvcG\nvuRmU5Aki1VoFEG7DdPTAqUsSjnBPBCxMGjCAzTsqrf5la/M8Cd/tYWzZyXNpuT11wV79mRs2XIL\njW8egpQsS7kAyEWZRJQxdTM3bhvABiVMuUoiK7Sr2xGijUgXV5JF1kPMzLixzCtcJjCNBtYf0mW5\nTtSDhM+MHqOdJAzTyZFfR6kOFd1FZBlyegrTGMM3mm16EgF4cRchYmg7w7zIMko244A9DtpCEgKC\npJvzgdnLXepDSkQInWNtyU2lsyCiLiiFxLoGvnYbouEnEDfMLeJVXqsVQ3Q7+EePwBd+muLfQEFB\nQcFwir+OBZtCuQzPP6/nbKMLabchCBSvvaZ45BE9d1W8XJ6vBCvVt170C8blkuXLX874m79RvPmm\nRxwL/uRPfD73uZyxseHVTL3AtgquQj2scU+I+Yq2lPPV7JuJlj6n7/kcnX+oEEuuuIt2C//oy2Sf\nfAJbH24yt35wU+0GiSjzcvh5fjr7Fn4WIaMIW66Q1bYw1d2JAPLSeaxY7EkWxrozJduPO0GQiBIn\n7b3sENOURAJ4EJb746u1i0lTCpSHlRKRJa558DoRnTbesTfIH35kmd1h07zKSYx6b2rl+Lj++Oob\npshXLigoKJijEMkF604QwN13G86dW1xdG3iSh1Euu/UGj1k6wnoYUsKnPqWJYzh5UpFlgm99y+eh\nh/Jl9gutYWZGLPY590XzuVIZnR3k/FSZZnN+MInnzYvkdlssmpGxGVghnXdZuOOYeyGmXsUO0cG2\nUsXWR27pTNxMhrQn9jJ28STCGNSVywSyRiYCJ5KFT5s6ZRkgVf9SgmDOPuF8MGL+TZFy7tjMpVzA\nghQMtT5TCo1BDMs0XCs3UHUWabqm+LjrbfIr8pULCgoK5ilEcsF1obWzSZTLywtOpRLs32+5eHFz\ntmXHDkulojl+XBFFgjff9JidFXz+8zklXxPkPVJRYWxMLrI6DKrIE7sDRHiAiQQutS1CuMEkYQhS\nurSL2Vk7F/27nsyFM+SLc6MBElvn+Ohn2GZnCLW7r70gfc733fHvdODCu5IdD0J1E9JKbgQrPUyt\nhux2EVpTmz7D56rf4WXxJD0d8HbyIE9lp6nbaD4neeFt7olwB070x1f3PcxzE/wGE/10Dla6SLl+\nNNzNqqpvakLGelWWCwoKCu5gCpFccF10u3DkyPrEyEnp0i5WQ65CLo0dIFeLS8yNhuUrX0n59rd9\nLl2SnD2r+NM/FfwvP9PmcPPveHfrp1BqbGjj3sKK9aBxb7BsULT0PDBeSHvnvWjvKuXtNaA1XLgg\n8OM293Vf503/MU7a2qJKdxxDoiVBU3DpR4o/+zNvTt81Gpbnn9dY605Y7CbYsUUcY61xZxdqoaJP\nINdIk1IXbaTJnEA1OVg9H5tnnag1Iw3k7AzCWrZ1z7Ev3Eop6TKRXcDvzCJsrz9qGid8bf9MAjHo\ngkToCIHbcQH9xj4LeYZI3RASGccIIfH/6i/w3n4LcP7s9Pkv3pZpF7cEhSWjoKDgDqFIxr8DqVbh\nmWc01Zs7oG2OWg0+8Qk9dHrfUnKvxKXxg+Te8kvO9Tp86UsZe/c6q8X0tOTr//c4Jy9vWfQ4aTXl\nvI20a5umov0SrZ0HMcH6JAIY4+wenjSMiDa+MnPiPAwHMXmuMi8l/RxpdwtDaDbFUI/3RmD9ANNo\nIJLYTbGLIkTURfQ67tZpIVoz1M0sP1F6mRHTRGQZIssRg+l5QmL7nYu2PoLevtMlvWE5mL5DpkKm\n/R1ktVFsrYb1fXd2ItX8xD3PIxQpd9kznDF7iEV53l4xsFgEQf9n5022nsTU65jGKDYszU3hWxNR\nhP/SEURn/QbJrIqBRUNISFPUqffdmdNNRHQ7+N97EdHt3NTtKCgoKNhoikryHYhSLIpluxl0OnDs\nmOLhh/W6bovvwzPP5IyNWY4dU/Qiyb8/8ileqM2Lm1Le4f7Lf8+xxrNELPZdDoaILG3cS1NXrV2J\nQYzd1YR+JkM+qh4gk4sr0YPXWAmDpCvrmAXntNZaoki4pserbNe6US6TPv9Flz3cbiEA0xiBgef1\nymXUubPYcg1GG/Pl+ixDYrF2hCSp8l62nwe5Qigltl5H6+14ly5SsjHbLx/HHzl0zU0p2Yh98izf\nM0+ww17grN7FXnuZUFz7jMFa4wR+ez4H0foB1K9xxmitE4U36kteIwOLhmg1Ic9Rp0+h999TjLUu\nKCgo2AQKkVywIQwGl6wkGo1xQnmp5hjkKKfp6q7kJokTtgtnaQgB99+v2bXL8pd/6ZHlim/8ZYP7\n79fs3r2yJ0FrN5UPljfutVqCEyfUio2ESQKzs26fVyKVJT6qHsJfsl/GQNaOOJh/jx/xLEmw2Eua\nZSO8Iz7D1osWddQdUyfa3bZuDRT3bkZTYbmM7VsUbLmMLVfnfTJR1H8TBNYL5kdmW+FSJowiI+D9\n/C4O2jcZHEZbq6GbTVQaE+QxTzW/A/VdCBEjsgxjBIkOCE2EHNgthMDTlglzCWlzZrMy24WmpPox\nb31vstAGshzre/hvvok9cwbS1Ink/j6As1+YF34Wxm6RSysFBQUFBbcEhUgu2BAGg0tWSxDA+Ljt\nDxQRfQFo5yq7eQ7drqBatYsEcZo6cVvp2yMXjpO++27Dl7+c8T//p0+WCd5+WyGlprFr+DYoBaOj\nbpuXNu5duWI5eFCvaGONIrh0SXA9g++sBbShJjqEvkEveQ7Zt9qG4XwsnjuB6NsuWorYr2HF5rqn\nRBzPjYXpzGa8d3kX+8JJqtVsfthHnjlvsM2oizY9s8R8LgS2VsV0QSYxI3qWZEZh9+zCzvp0dI3v\n5Y/xjPgeI14GCPB9ch0wLbayU15iOtvKIXkOZP9FrXAeZiHcgSqXXKxcpTbnozaNEWy5ioidfcS0\nm9D0odVF5ItPdES75bKX+98v5WbH6wGLxlcPjYhbgku/eNZdUmptkH2j8C4XFBTc5hQiueCWYOtW\n+Of/PCPL5hMcGg07pz2iCE6cUMuE6sACUau5QqZeYjPevdvyla9k/Mmf+CSJ4NgxRaBD7l+hUXAw\n5W9p494gnu5qDYar8VRfDSGcjXap0NZ6Pid6YZOh1s6n3EzqTN71aT5eW5vH+noZ+JNls4lI+gKr\n2SVOJdZGyOkmtlp1O5PnkMSMiIRPqSP8vXkKi8DST6UwxlV1azUSFRL2moSty+gLwg2gFpJc+FgG\nnhQX/RaIjP3qLD45WvS7LedOEux8RNycT3nhgcucTaRScZ7oTgv/O38BniDoJcsdFVmGuDCJnJlB\nNFuLBXEcI2ZniP/pr2O3bt24gy4ltlqdE+tLWTq++poo5Uz8Gyheizi5goKC251CJBesO1eLh7sa\nC3OUB98vFKWDSupSoToYJ70SO3ZYfu7nMv70T11F+ZW364QHnmDLWAgGhNGEaY/UVLiVe1m1nvdK\nJ8m8TzqO56cWrsQgLm5dWOBPHpCensa80cXqJjafwezYxcAXIrIUa0H22gjhgQ0RJgbyvt/GYpVH\ne2In7ckpJrKLqMvT6FIJ4dfwbObSMQbxHcZQIuGQPEnL1BfcP0jQYG1RH7lGNJuweyc2qGD0kHWr\nVcSJE5hGY96HDQgzg7pyGZHGbGS4iK3VyZ98Cv/I91e3whory3Ovc535ygUFBQU/jhQiuWDdWa94\nuIE/GZwITJLlzXODhrmBGF8p7WFiwvLYYzlvvOGRJIIXT+7ikNTs3m0Isw73nH+Rd7d+Chi7/g1m\neIPfYBvzfPH2ZVk/ytcM13QV7aLh3ik9Rs/UuXxZcPKk80oPMp7dTdDpGLpdsdJU6rm4uPUUynbh\nk02APnCQ3FPo9BL5Aw86MRn1IPCx2iA6JxBiFGvHsKUElEecSc5md7M3vEBNpsTbxzHTLWQcoeKY\nkp5lwl7Cs9l8BNxgBKIUeCZ29+exi5sDYDClb42ytVQCq9wI7GGE4VwFeoBdw7jrq03uW2/WXFke\nUOQrFxQUFMxRiOSC62IQI7cRVkzfd6Ku2RQkifOZRhH0ejA9LYhjwdiYxffd8qX+5XJ58VCOhdv8\nxBM5r7ziEUWC48cVSQIP3bW67RJG40U9dFjBDpnkludw+rRkZmbxpMAkgakpSbMpiOP5qvfAZ52Z\nEsfNvew1Z+eKoQDCGiq6jcC4+N983nIxsIVUKhAElnvuMSu+F3Es5uLiNtQ66/nYMMRSWtDUJ7BB\niNXGCTDhgfWwUjuRnIecyO9hezhLSXSpeSn6wAHEu+8i8oxS1kHJjFwoUC4wzo2cViAFuQiYZZRc\nBaD6ZyAW4Do6GdMUMjtcJEe9/lnaElE8OANaTSzbek3uu5MofM0FBQU3kUIkF1wX6xkjtzQOrlyG\n55/Xi6qu7TYcPao4fFjz7ruKT35SU68P9y+nKbz22vB/qE7c5xw54tHtCj74QPF3R2scvvva2+kl\nHbaf+R5T9z1DVlnusfQ81yy4datd5puemoI8l1Qqi9LRSBIQImQyP8DeZJJr9d4p5dYfDEIZRAJf\n3S9t5042NgorJFmpRi8N+PCjUT52UFG73iv2QUh+9914J08ggMfM68Sy3BevAiMUifYJTYqxFm2V\ns0jM5V7b+RDqcJVV1CyDV1/F60TIYRXoPHce29bsYm9Pp4P68Bz+3/4Nya7dG3sWcgNjrdeTzbRk\nFL7mgoKCm0khkgtuCgsj4tJ0eRzcQn/ygErF9RoNvg6sHMP8y1ejUnFC+fvf9+h0BK+9XeGP24/w\n2HPrs18r+aYDpRkRPYxXwQgn4gcVYXuNrORbHVurM3XoGfb86AxxlmBYvjMSS11FyPzalVRbqWKq\nVWS3i8IQmhhUBYSk443yvfQRnvFfITU+58UuUvUOeH2fi8VN+xucTawGraHbxfqhi7Abtk0jo0PW\ncxVy2Wo57/U6i+SlFo1NG2t9NQpLRkFBwR3CrdulVHBbM8hBXpo2MWAQEXezZiKUSvDkkzn1uqsa\nfvfMfr7+J1s4d04OtWqsB2Xd4cHL36WUL59UloqQ0/5BMrE8iLms23yi+12qZpOnvS0hiqDVGn5r\nt/vOgwR0pElmIqLLPeIrPbJOStpNCU3E0/Vj1Gk7/7DOwWhSI3kv2UOSL67+2yAgCp0w9dCIIW9M\nSWTsFBcoDRskYi2L/CurIQhYNPbwWrcg3FgbQGHRKCgoKLhpFJXkgg0hjuHllxXPPXdjzXsDpHT2\njvWstgYBPPpozvHjiosXJTOziplZ5ys+f97ywAOaAwfsis1w60kiSpzyD7FVWpZKLomlatouweEm\nEUXw7W8rms3hb0CWQfuSpnK2jjx/ic5LHcKKwssidpyLscawYyahomYhTVyd2VhE5pFrxfvpXg74\nZwg9jZXzr+H5kKcKz2pEmmKFxLMxE6bfrGdZuXEPgUgSbO0Gh4TkmasYDyNNnFk8jm9uhvJarRhx\njJz8EB46vLHbVVBQUHAbU4jkgluCKIKXXlI8/fTwMdW1mmsUbC3XITeE78OXvpTx/vuSd95RTE5K\nQHD2rODsWUkYWu67D/bsEWsOS9gsSlmbncdfpXvfo+TljbkMnmXQbArC0GUzD2NiIqA1/lkys4XW\nJz+OP1rFj1qUXrN0mzlTU4IHgmlGKn0/iu9jogDbLCM8D9toYD0fTH9inrGuSBv42EQjAJkm6LLP\nRbGNXWqKio2YZCeeUBz2TlISybzdwvOwYXhjZ1Z5hnrvvfk86KWkCaLVxPvRO/Bn31hmtzCNBunz\nX9xwobxWK8Yg/YJD+9mofwMb6l0uGvoKCgo2gUIkF9wSWOui4673qvLSuLilY62TfsFv4AGGfqIY\nbtmDDxoOHjS88ork4kXJlSuSTkf0B5DAsWMerx3dygsHD/Hodkl9jf/389zdtHaCM2M+Am7QhAfu\n54EY19rdjL56mpmwBj/ubEqluVSyV/V+97Zv5fShz3PfTo1fAZUG5Nt2Invn6ZgqmEv9HeoPE9EZ\nI/llumLcVZYHO53lgMUKiVAS43moPEdYS6V3mY6o86J+hp9QL7JLXuC03c9+ca5vu1gwTORGpxBq\ng0hirPKGh3ErBcZgqzU3xU/5TqADIk6QFy4gr0xj6yNucl+vO7TiDFevOotOB++tN1cfH3e9TX7X\nma88lA30LhcNfQUFBZtBIZIL1h0XtaY5dmzjKzwrxcUNYuGSxMWsBYEbeb1QkMLCEc+OctklVHzx\ni67y+e67ihMnFHkOk1Me/+fUg4jvWR54wPDsszmPP66vOWkvz+HiRUncErRTwRUl6HpiLgIO5hPE\n2m0xp2sSU+JdfZCZbsjOBOwNTvS7GeigzEePv0B76xWak9/n8f3fw4gmtjHmDv7lhK0fTRPX9tLb\nfheTeY295SlKSRPRnMEqhbgcg5AY30dmGUHa5YB3nDPyHspEHBQnucSO/kmCmR8mYuan+t0wnsdQ\n343o3xcEoDz8d9+BXn8qXpoioshNFCyX3eS+mRmC6emhz3XVqrNdmzf5epv8rjtf+VahqDAXFBSs\nI4VILlh3BvFwG5FUNfAmD557pbg4cOIZ3DjrPXs0SrnHL8wwHox7XooQsHevZd8+zXPPKV5/PWfq\nguXk+z7WCt56S/HWW4pKxfLkkzmf+ISmXLZDr+x7HmzfbpiJLPXEMj5uKfl2LgJOoQnTiEhUqNfl\nguMWMs1BKlmTMLu10i8Gw1GWMnzoS5kOdVJCEkJyGSLDEoQh1VrK4fqHTHmHSGSFE/FdbKt2Cb3I\nVYFt/6zGGqzvY/vV5MfzV7BC4OG8yBM4X3KGYMpMsM1ewCdHiAR6rNxBup7o3AlkP3BVYeUaDU1j\nxOVGA0wMH10t4tiN+d6AhIw7iaLCXFBQsJ4UIrngphMErnp77ty1VfXAm7yQYXFxC5cNxlkvDC5Y\nC2EIBw9a/sk/yWi3c1580ePFFxXT05JeT/DXf+3z13/tMzFheOQRzec+l1OpLPZHeP2r9aqfTDYo\nJCoFddPh8fTvOVr6NEqNLCuASXPrCeTXXnP7vpRBdbzVUotOPvSMYuIynJX8/+y9aWxc53n3/bvv\ns83GVaJ2WaslS7blNY7t2I77uIvb9GmbpmkRpGkCvE0LBGiLFmjQJQhgJGjyqUDafmqboi0atE/e\ntCjep0vaJrFjx/EWL/JuWbIWaqNIcZnt7Pf9frjncIbkUCIlUiTl8wMGJGfOzJxzZjhznev8r/+f\nwBNs6Qd7Ia9DJptIFdg2qlhCNhtYpGxOz5J4LiSaSWkCRRJc3lQ30SOrOFaIth3TEb2GXUXtuO03\nWRrPSembQxShtTJd51lSjLZEo9ZVqnHNBgM7WUpJxmXIY7JzcnJWkrxIzlkR0tR0G4tF8z27e7dm\nZGRpnyMIBFrr6c7mbJ3ybMLQrFe3znLGxo2aj30s5qMfjXn7bclTT9k8/7xFFAnGxiTf+Y7ku9+1\nZ8gxMqbltrM0yVkstVIzNckZKm2pBlbJ4GCSQLMpZhT7XlTjhtGXODV0J729c3Wosd9SLJCQ+BEq\nCM2nTxSaHSDTlotEYn4mcdvCTQPoVjdYoBwPKw7Zrk5Si9cRaJteNYWdRgD0q0lsYXauSGKjZbkW\nneQrIYpwXnwBJidmSjMyWhIN5/Qw1ntHsZ/5IenuPdPF6bUaDOzkmkoyck/mnJycFSQvknNWhEYD\nnnnG4r77lsYirpNOnbLvC5pNqFbFHJ1yuaxnFMRRZGqp0gLkjFLCwYOKgwcjfu3X4Ac/sPj+921O\nnrTmyDHuuivBdTUj1R6ecB8mmSqhRFuTLJUgDlMsVaNRrcx5cj8x2uRqUGBoFdnlOk67YVpAUdF1\nCq6CLh1iVXRoWr2cqfWyx5pANhsIGYPfRMY+G9OT2GGKiGNEFCCS0DhcaG10vzLTxQjwPPREZiOn\neEI/jJA2B+zjAIzpIRLhga1NJPZCXtCVImlJNGwXXZwlzchYP2T209lzIED19kKxlEs0loJcw5yT\nk3MJ8iI5Z1kw8c/pNT8TDDN1yp1x1oXCTJ3yvn3pnPhoMJKOS3WTuz3fhz6UsmePYnxccOyYxbPP\ntuUYTz3ltJbTHDhgsXG9Btqa5LLS9NYCHhRP81r5p2g6M7WUSnmct/chU5BylbSTu6CU2Z5uWSyN\ntMiF/jvY7jTx7H4Gb+6lMFBCTlykfOoMtxZGqe24BXVxG+nmkDS6gBwZIRBFhhtb2SHeoyBaRwiO\nQ2SX8JImlXgSzwrZZI3gioQQl0S4aCHNkUx2WeVoxzFGHJeSZmRHJK1lNMxvTXc5Ot0vVtGB17Um\n1zDn5ORcirxIzlkWsuG9hdIZU92Neh0OH7a47bbuPsqz6dQkZzHW3XTK3eKjF1Mgz2ZwUHPwYMzH\nPx7zzjuSJ5+0eeEFizA0nezDhy0eeiihp3UG2bLAEi3NsehomHaQpma5+WzgYukxtXEv6YJEvstD\nksDZs4J3q5KGPbcojSKY9Nfzn/w4bvUi+jCIkqTQkOwbEwgPrG0CTfsCgkB7HFF72MQZCjShFXcd\nOBW8pIlEc0C9yZBsUsAn0ja2jhAYV4sgdTgVbGNzM8V1w7YX4GoliqBLpDd+06y7aP2eXdfSMYt6\nHevtt0ju+eCC5Am60kPywEPQU4aJxpJuwjTXULuck5OTsxzkRXLOqiCLqZ6PLOZ6raTzSgkHDigO\nHIj4+MfhG99weOEFmzQVvPCCzUMPLV2hltgFpjbto7SCFnFpamrPkqpzoP4KR/vuxLfbxVpW5LuW\nTSz6qNgjuAQ41LBQpGGMrk7RM34S0TOFSJuQxAii9ouuASnQaEo0SKSDrWJ26fdoxv2gEorUOaRf\no6jqRppAzFTssuncCFbdMVrnMFidhXKSYB9+ufu6JQlicgJZryOaDXM012kxB8iR8yQ33wpXo+G9\nUn/lLiyndjkf6MvJybkW5EVyznXNcsRZLxZzAKC4eFFx7JhFvS54+WXTFQeIhMdJZy9b01Mz7id1\nSkE1aegSzAmrXp24tqInquHaiqTDCriU1jhYf4njg3fy5s5HGbrfp1QEx68i0FijF1h3yz7WvTWJ\nvuN2El3DPvkeSvfDpAu44Cq0ZeQB0rZAutCIcUhIlYSCjYNmqx6FVIPtkDglxuRmdm0s4A16EIaI\n0L+60wXLhVKIZgNd7jGuFbPQXhGhzhjNsufNsJgjiIz7RRIZGUa9hn34lYWHj2TPcYX+ytecpRro\nyyaIV+tgZ05Ozoqy+sV6OTlXQWYZtxjpx3KxZYti61bTFT13TvLee+bfL5IFTjg3EjMzYKKY1rmz\n+n3TFV3jCK0oJjWEVsR2kbjYR1zqoyr6eHlyF01RpNTncnC3T3nAQxdLaMs2MdVII8EQkumPLCHA\ntgmk0c/0xuOXjiXsRCkjVWg2zc8oWpZtvlKmLeS6XWxn5t+uC8USujBLaqMWFz5yvTDdYS4v7B9e\nNBvYb71puvM5OTk5s1iF7ZSc9xuddnCXGzCv1+G11xauTZ7NbFu4TrrZxEm5dEPvQsDNN6fUaoJq\nVXDkiGTnTkWlok1ehjZ2b9nZ9s5Y6k77ONtuR1yvdbQGP3aRaYIIsiSSZru7p008NXTYwenWzhKS\nKXcdheA0tk5QfoB2HLOsUoDApsl6cQ53xMVqGrmFCAM4cgTtFUxneXICfcP2Fd0P0ySJ2QfdCMOW\nXCRs/x1Frf11DSUkSyjJuCyL1TXnlnE5OTlLSF4k56w4i7GD0/rKtMndbOGmpgRRZArPiQlBoaCn\nbeKyAlQIgecxxy7uSrEs+MAHEp580iaOBadOSTZvVrgBRLGJpW46RhuiU4HvQ00JmrFAKZicNA3Q\nTAO8WgrlxPIYLt5IoF2SpO0FnSHitg90FLUPUMLIxbdKaD8mHquSVuvIqSkIAkQUI5RPJZ5EWArR\netGD1OFkuoUdnMG3ejjHJjZzvmWFVgCE8Vu27e5yC79Bsm+fkS34TeToKHI1WDwkCfL0aaQ90l0O\nkqaIIEA0GuaNlCQQBQg0OoqxLoy0882XkWspyVh2T+Y0bXl1r5J/pJycnFVFXiTnrAidFnGNa3Cm\ns9MWrl6H11+3uOUW043utInLiunMBcOyNOWyQxCoJZOxlstw110pzz5roZTg4kXJ5kGP084+vF4X\nyzaygUqqKQJ9pQThV6mlJfr7JcUi04VoViutNIld4GRhP8nFKpvqgnOhoG61heDFSLC6EMtqAAAg\nAElEQVRxSjDlwIVQ8vzz2exZman4HiIbXuUG9hde5aaf+AClpIbz2iuopER5+CK4HrrkgGURxEWO\nRAfZ5NUo65S34gNsjs4jtEbEMdr1ppP6tLRIpGuumy8Fz3WhUWudRghnWqKFIUEIw/56tvVMUrBm\n7ewkXroCSylEHKIKBfC6F4S61OGhbMUIoU2xr4xsRHTms+dcFtFsYg0PI5rNlV6VnJycVUheJOes\nCIu1iFsKMgu43l7YsmVmYTPbJi6rnyzLFLVaL22zacMGzb59iiNHLIJAMDJZJBrYz5DUcwYFiqrB\nTc3DPOs+CLRb7Vqbum61yE61NoV7Sy6M3SFTccwcHb29ULfMPvY8s3/PFdfzePrT/EzvONVzx4iL\nvUZV4bgI4VCUEUKAbnkeaylBGI2yFDAqNhBJD1eFiCCYMfTmiYgb3RN48ka6ppwAJAnWieMwPob0\nigirQxuexMSTVap+iA4nkPYsKURLJqK2LaFcw7LbUYazSdOuL7jWpk0v6nVEdaojzrodY70iEdar\nHF0qoW7YbgJncnJycmaRF8k5q4LM4q1c7q4BznyU56sd1iK7dyvOnxdUq5JmUyKEolBoSz0zuUU9\nEYQhBEowOSmm5RZxDK4rW8VRDVEooeXKu2AIYV7Dzs67VFDC5/ba0xzufxDPK083dm0b0lTgunMH\n7yp2wC3uEbQQQPdCJhBFnrPv58HocYRSiChCtyr0ggjZ7x4ntncx71ifbZPu3AWujSpWUE5HMR2G\nxJMpo/ZO9g4mKGeWkD2JzdDXtUhrS1Pk+bPtbnHaivLWQBgjqlWcJ76L/fpr4PtYx48hzp+fLow7\nI6xFvYb9+mF4+AGWbX77WmqXrxTLQjtenraXk5PTlbxIzlkVBAE895zFI4901yVnPsrV6tzbln5d\nMudZ890pRFsHfOn7LA4hYPt2xdGjgjAUJqJaqumgkUxuUSlovBgKrqa/X0/LLaIINm9WeEGV7cee\nYqryIeLSyqaGRcLjVOFGYjm3aytQFNP6vPpfLSSR12NcLFoVrUjjtmuFUmanKUWkbN6Nd7DdOgto\nhuWOad9kHYSkpfLiTPMcxxyJeR44M9dd2w6JVTCdWGeW3EJw7QospYycREqTOiOF0WlLiXZsKBZR\nxSLadU1BbTso1wXXRQQh8vx55PgYuqfXdJovjre60stTxC6rdjkPKsnJybkG5EVyTk4L224P94Wh\nKXqlNMN9zaa5bmJCMDCgu3a0+/o09friimXLgp07U44csdBacPKk0UrbtnFGtqxWPdRKV3Ycc2nV\niiYhcBVokjMiabTJnaF7SkGgPE5Ye7hJnZpp4FCrcfDCK7xRuJOq7qG+5SFu0gkiaGJbBURjEjdN\njc+1SgGNSBMKaY0Teit7xHEekM/wor6TwOul4l/E0ikqCBGorn7D85Kt2CxNskhidBxzfHKAm3oa\nM3XJSWzudy2F4VksY2xs3qQU5gguCHHeeMN0b5PERC4HLU/ozuCRYtF0mkdH4NFHwGu7QVypv/K1\nZtkH+i5FmiL8pgkyyTvQOTnXNXmRnHNds5g4687hvgzblvT3e0xOJkxMKJ5/3uKee9Lpbm8nvg//\n+Z+L/5cqFEyc9cWLgigSHD8u2btX4VsVXur9sCnE1ihKwfi4IEmKTEX7WBedZyQS1C2JbUMhhL3V\nGhdrmhdesKhWJWEIG7wKN0e30W+Ncqj0OkJK6KmYosR36J1sEniDyHKRHl1DKovI7SeJ69hJiJOG\n0AgRjTq6XkYdO2rS6OYjTeHs2a6a5NLUCAeTw4yODszVJWfWdY5z7ScotTIuHtJCSwuRJOhSEV0y\nb3Td299etiN4RBfLCKURjbo5HdHZOF/r/sqL7DDrUpn04IGZA5GXQTTqOM/8kPi++9G9K3vmJicn\nZ3nJi+ScNUWmTXYX2CBcbJx1NriXYbrL5v5J0h7wu5xV3WIplzVBoGg0JBMTkgsXNBs3WjStHiwV\ncMK9kUB7M3ySM8mFjszPpj/Tdi0j839eCTLbt85hPttu5WLYUJRGh+4mpqap16GnR1OpOMQDGwiG\nL6IVCKlAaRAalEbqhJ5kYrq7bOQZglrvFkYaFW6M38ZSMQIQjQbe49/FfepJ0p27SG+4geTue2au\nqGXBli0orzRHk2zXa6yXFu9WdxAP+jN1yUmMaNRRGzetXIqfJYGWELzTxWM2Ha4e2l8jbg6L1DUv\nusNsWehC3hHOycnpTl4k56w45TJ88IMphw9f/osq0yYvJVl09UrPFw0MaNJUEwTGP7lSSSmXjYTh\nuLufalVQmNRzBveKkeRMUzLsWgTe3H0YhkZTvZyFslApxaSB1GW6RWi3HNmmw1kcx9SUDuanpc0B\nkOO0nC/6i5y9+yM4lZ3cNfE9s8DAoFmgpileDJEyhL4+M9QXFdGlHjTwtvsBhjyL3mQMa2rSeAsn\nCSKJsY8ewT56BPeZp4nvvof4jrtQ/QNmJbPqfZYmGdtBS5fEnqtLDpTDcDTENuGskeDwq+daSjLW\nTEx2Tk7OdUleJOesOJkd3EoVqVl09VLROfgH7U5u3JKvipZsOQsDkcagAsuC3btT3nrL6JOPHbO4\n+WazXkJAsdh9cM9pKrb2Kwr7UuLi3O3wfajXxYK771eCF9e5Y+ppJtRDJHQ/Ba0UKNEu8DPLuGw/\nZPvI91uJ0WkR5W4iGNhMoXYBYfrClC2f/d5J3kr24iuX4XgnkbKn97gGtBAI10X19aM3FUgP3Iw1\nPIz1zttIv4nwfdynvo/71PdRpRLpTQdh0wbYtThfwlA5vOtvYyi9OI/3xnXIWpdkdDAdY11cwlcv\n1yzn5Fw35EVyzvuOxeiUF0Nnql82+Aem6AsCMwA4Odm2ucskE0KYglG2pAc7dihOnDD+ySdOSHbs\nMMXIfIN7TmJ+looQz/Ndv1JyiwylTOFbAyZbQSOWBZVUsH0i4Ob0Bxw9/iAjzV5efNGiUjHr7E4U\nODFWZFNd0ecFWCqFOASVIpQiCRSjzR5SRyNU64BCpeZ3qUmkS1P34gxtJt27H+79ENZ7R5HNBvbL\nLyIbDWSziXzpRwAUyhWS/TeR7D9gJBRgih4VYScBIo7oFLWIWGOnreunc807YqNXOukliSFVMyOs\nEe11rVZB24jEvMc6/ZXfF77KcYw8f95omJeooM01yzk51w95kZyzJkhT871eLF79d9lidcoLpdvg\nH5hEvyAAyzJ+yDfcoPBMQjJay2kJguua4ndoSFOtKsbHJRcvSioVTbG4tBKTlSDQHie8fSjHw3FM\n0W8LcB3FgKhT9BR21A5zsSyIGkWe8H6a+3mcfbs9vIoHtSrqQh0dVdDrS6yr17ht3QjlcpG6KqJr\nveieQbTlUQs8fjB5C/cmnolhkRK1ZQvRfR9C/z+/if3iC7hPPoH99puIKDIFzks/wnnpR6jePpLd\ne811xZAh/zgOF2YM7jmRxfqmhTtawz7mYY2cR3sFk5ySxBAGK1coJzHW0aOIbB2yCGvXA99Hjl+E\nf/93XNtr/y90+CurTZumfZWvV1bUJSMnJ2fVkxfJOauCzpjqbjQa8MwzFvfd191HebUwe/Avo1Bo\nd4G9jtkq227rdDMZhhCwa5ei0TAd6eFhyY4d6bwHB4Fd4dz+B3ELK3/CX+qUUlojsUooMXOFQ1Hg\nhLe/FTaisSyjXpYCdGugLztYyPaPdsCXJZQww2m6JbmQQEFGCGEjgbIVIIUyUouOi5g/QgRsm+TW\n21BDG5CNGuUXniU9NYw8cRyRpsjqFO4rLwLQWzrDths8xPoBVIcFXOzbjAXbiYYmsPbshWrVFMmu\nB1FoCtQ4Mm30bvgtsbillr6YThUiDNCW2bFZhLW2bEgVqr8fymW0tlCqtZ9a/spa6xm+yhmLsdRb\nVu3yWggqWU5ySUdOzjUhL5JzVgUrEVO9WK7lgJ9lwd69KW++aaGU8U823WTN0JCmp6dd/GlpERd6\ncFZBvVBUDQ7VDvNq/4M07PapZqlTKrqJ1CVSbZGmRmLiK4+Tzh42+Kdwwjp3Vg8jG7cRej2EIfiJ\nQyBL6CghrcakKsYOfQrC52DhGCPRFoLAI/RB2DE9usrDhecopYEJ2kitttn0pXAc2LWL6OZDKAXW\ne0ex33kL6+QJhFJYzTrb3/4ecf/9qA2bpu+mk86gEQd5cQw6OskiDODIEVM4dyMMTfdZWuZIcDl0\nvrZtQk+UEb5bw6cQjToyDuDll7G1RGaBLS1/ZVGrms46LV/lFqqvj/j+BQ7SLaN2+f0+0JdLOnJy\nrg15kZxzXbNYy7hLcbUDfkkiiON2kEYmWc0G97KfGYUCbNumGB42hXKjITh6FI4eBdCUyzA8rFi/\nXrF9u2LvXr2sBXzUkt1mv3c2sGQEVmrWX+lWYjKtvxVU0jq3RU/yavoQF8I+QLQ650Vq6T7ubp5n\nfFSzzq9x6gTEFyRJAs1mmTFxNxt4lwvao1IocvuhOmWtkFNTxHIr6r0xonUbURsSBJA53ipANR30\nWD9Yi/Ca9jzSAzeTHrgZpiaxn/4BzntHkXGE8+ILRA/+mOlizsa2UZu3oL0imZ5G+A2SffvQxTJh\nJDgzXmbrYAMvi+D2m4jJcbRlI2pV5JlTi3tRFkuamu6ybaGF1+okS3RHHat7+82b029M+yoDiCBA\nTk0hkhUWuF+KxXaYwwB57qyRxcwzcDqbZRn2y8nJWZXkRXLOmiJNjZ54odrk5bCMWyzZQF8W6Ob7\nbTeHKGrHXmeSjE4GBjSWlVKtmiI5ikBrIzloNODIEYsjRyx++EMHz9Ps3q3Ys6d9GRhYmm2PIjh6\nVFJq1QUjI3La6xjA9SUbmoIgFvgKatIM56Wp0WPbrQJa63a6dPb6ydbQouuBp8x+kJ653Rw8uJAU\noFigmpRJXI32PFSpglae0WvYNtqeWxjpTPx8pRSKTG28kbfVPTz47t8h4hjnhWeJHnwYbBtPxtxY\nPI2XBZBkNnKZXqTDmzjA4Z3J9azbNIZX6ijaXRcs59r6LFu2eRE8D7RkTlJ4F+mH1sqk9tVq08N9\n3VjJgb/FdphFFCHPnUNE0aWEOTOxrFWdRpiTk7N05EVyzooTBHD6tGDbNn3ZkKxmE15/ffVrkzsp\nFuGRR1JGRgSjo5JbbjHa66wrm6ZQrVoMDenpInQmmiCAM2cEW7dqwlBw8aJgfFzQbIrpKOwwFLz1\nlsVbb7WPHgYHFTt3KjZv1mzfrrnvvnSe57g0rgt79yoqFVNKTE62/IxbtaCsKYrDmkKoKWoTCCIs\n3bJ7ExRSY/rQqbueLpJVW5dttRw8tNMOIHFat5VEQBCB8JugQa0fQo1gWtdJAsncLr9IFhcTPh+j\nPbup33QHPW+/hKxVcV5+kfjueyhYCftKwyhre9cglwWRJMaBIo7M73EMdpdHi+N2Mgu02/RLTRKb\n4b3aVHvQD9rR1nEMQYA7Njb3qA4jyYge/ciSrMpaicnOycm5PsmL5Jz3PctlCddJsWg6pK7bdm8A\n83fmkWzb8zcTs4LSsmDdOk1fn2brVjPgV63CunVw+rTk6FHJ8eOy5dUM4+OS8XHTSf33f3ewLM2B\nA4o770y5666Uu+5S7N2rFtRsdTsahLOXD+wKb/d9GH8sgUsoUpQy3eSFUkxqHPSfI3ZcrLhKIQ3x\nR2NeObWL2zefw4piXO3j1ANExZl7ekFJtGOjrYRLrtgCaO48QKk2inVmGOvcGdTRI6S7dl/VY5Ik\n5nS/tIwWuF5HajE96Bcpi9GojyF3CleZmG2kbY4mkhgRhWilLq+5XgypQoQhWLYZ9Mv01Fm09fp1\n0xKM2UxLMuIlkmQstydzGCLGL7Y1UDk5OTkd5EVyzopzrSURs3XKy2UJNxshoFDQ043ApaJUgttv\nT7n/flMEKmW6zseOSY4ds3j3XcnZswKtBWkqeP11i9dft/j7vzf37+3V3H67KZrvvDPlnns0AwPz\nP1+SwLlzM+UWSSI5V3fRQRU/mV9uEYbtIJGMQHscs/ahlGsaqjHErehtkSjsOODw5v9FerNLFAl6\n7pxkbPg1qge3YU1NMPDmacoDHumePXMimdOwgBrZAvYwV1skIwTxbXcY7XB1CvutN9CVyozBtkWT\n6ZiFRFQnEX4D1TdgJBpAMy7y6vhN3Nf/NjbVlp7YNnKJOET7/vJNktrWTOkIzJCPdEODGVZcI4g4\nQTTriHjpnEVWRLOcu13k5CwLeZGc875jpXTKhQLs36+WXa4pJWzfrtm+PeXhh1OaTbhwQbBrl+bt\nty1eekny4osWIyOmuKpWBU8+afPkk+2Pg1274I47PO64I+HOO1N27mwfQdi2SfrrrJ/CECYnJWGo\nKSbd5RZ2kDLg1KiqCqJlD6cUTPkFRpP9bJiaohHC+fMC3zUFtusLGsDxc2Wqb/SQpoIgEIjhAlKX\ncWJBUW2HJGSLVcbzZn6klR3Bg4WTlLrJF64E2ya+517c7z+OiCOcl18ivu22q35MLAcclys6gkpT\nQKxMAl4UzdQv+03w/Wm98mrVLk+vQ6WM2rYDXeneGb8iVkCznLtd5OQsD3mRnLMmyHyUZwd1rDU6\nI6uz0LO01WXNEvi6cbUWup4H996b8pM/abqpWsPZs4KXXrJ48UVTOB8+bOH7pkg7fhyOH7f5l38x\nHxGOo9m4UbN3b8quXYpmU9DTo2c0GW0bEstojDP5CJiiXWooioB746e5yKNkTgKdg3y2DTI2Mte4\n5R/tplCy2xKVJNH09GoiV1OxQ0TkE8eaC9Uy63yFZ888bW4BPQTTIXlXKgNItaCeFKjYAVapTHz3\nPTjP/ACRxLgv/gh15AjWqZNo1yXZvXdORxvAs1P2bq7j2fN0tFWKqNWQimm5hZN4DNU8E2JCo6vc\ngnrdbFv2ZrpWRMbtg2ZjxnXC9411nG0jJiYur12+jsNKrjuCAOv0sEkozMNXct4H5EVyzpog81Gu\ndm9KrXq6RVb7Pvi+QClNFMHUlFm229lSpdrBI0uBELB1q2br1oT//b9NBR7H8PbbkldesXntNY8f\n/lBx5Ihs3SY4fVpw+rTkiSfMY3ieZvNmzaZNxoYujqEpK7zY82ESa2GnmqVOKasmvigRS4+T3j5S\n28O252q1XbcVzV12qRZ6OTKquckaw0Yh0gThNwgTxciozcahhMLcOhUAXSobycIiCJTLDy8e4Cc3\nvkyf00QNbSC59Tbs1w4jAFmr4v7gSQDcJ76H2rSFdNs21NDQdIe34Cpu3Fy7xM6w0D09qN623CKO\ni4yyi72DIWoeuYWuVEzISuBf21PtSWIKZMdth4xkuuXMOm79UNe7dmqXr0Su8n4f6FtySccC5Rp5\nQmHO+428SM65rlnKOOurGfDrFllda9VLSmlGR+W0VrpLE5IwBCHksvogOw7ceqvijjsSBgY8JiZ8\nLl5UvPyyxTPPWHz72zanT0tqtbabxokTghMn2ivlupqeHoetW9WMRlNDVHjOeYAPihdnPGdJ17kl\nfpJnnIeIZB/vOftZJzWXeqksFTPgNjgzeAc9uw6yNYlBByR3bSMBxp4aoefQRuzBud1LMB1O3Hkq\n6EWQ7tqDWrceeWYYGQTIsVHTRVUK6+xprLOnAfAe/y7JzbcS33KI5JZD6A0bLrFxVjuaEdC4JHYr\nrITWYKLVOmpQSdsWBLFi6XPacRelW4Yl0C4v1UCfkOhiAcQi9t1q6KYusaRjoXIN7Xqke/a2HU9y\ncq5z8iI557pmKeOsr3bAr1tkdbFoHq9Q0FiWmDMn1clK1EB9ffDww2agb/NmRW+v5uJFwX/9l83k\npLG0u3DBDAQCRJGxp5ucFOzapSiXdcvRwqKme0i1RGvQquWb3HK70NqEwi0EoRWuCkmdAnHBRTlF\ntEqnu2radtDFErq0BAkyQMUK+NDAm7zUuGnObUmxgj+0h8INQ6gP3IX7ve8gR0exTp9GnjuD0BrR\nbOK88BzOC88BkG7cRHLLIZJbD5HsnOWOYUTc0xZwXtpgf+E4XtoANY8F3EpqkpcK3+8qhRG1aldd\nc+f1ndrmxXaYdaVCeuDm7uEw8/C+7qYWCqR7b1zptcjJuWbkRXLOmiLTJl9PMsZCATZt0kxOLrHt\nxTIgBKxfb0JLSiXwvJQ0heFhwTPPWFSrxrs5TQVHj0rWrdMIYTTYbgKxgkRBErTSolv2xokAe9Ys\nZVb/JcKc2c9mxIIAir7PjuGnUUO3ksSQJCnhhDGeTvyYZMqH4uWF3CK4fDfTEoqKFSDF3GHPelLg\n6amD3J9cpGRZqKENpDt2E3/oIahVsd87ajrLb7+Fdf6cebyR81gj5/G++99oKVHrh0i3bUf19CCq\n1Rma5BKwj/NETYtzzQob6wGOzerQJC8Vvo/77X9HZnqjTuK4u67Z942X8/nzqE2b2trm5baMy8nJ\neV+RF8k5a4pMm7yULGV09fsRy4LNmzV79ijGxgRxLDh5UpKmpqtcLiv6+zVWDI5l7ODsglEMFBOw\nffO7EG1rOKUwBw1BgZcL+zgTFpjUEqXA9S1umlSEQZOTjkNzdIChyCd8rgFa0zgVkb5U484PSFxh\niiw9MNB1eAyMflaOL8NEqOuR3rCD5L4PoUtlxOgF7Ndfw3ntMNabryMbDVNAXxjBujACgLYs1MAg\nauMm1PohdMm4LjTjIq/Ge3mgNInthatDk7xEiDhCTk2hvUL3zmw3XbPrIksVtFe4Km3zomOsc3Jy\n3lfkRXLO+47ZOuXVEF19PWBZ5lIua8rllHfftQgCQaMhSRLNkCeQEoQyElDLMr9LUirU8HWFlLY1\nXJqCsgqcqew3xbGr0docJPX3wYQG7RX5775fYtf2mDsOhbhBlSR6kXO772bvR4r0UsV5/jniez6I\n7plHb+MH2P/6/xqZQxjOjGgOQ9O+ljGkCSQxiHZBvZhEPz20gfjHHiH+sUdAKazj72G/9COc555B\nXriA0AqRplhjo1hjo2Y/lMqooQ24g9sReg/assFKV5UmeanQhcIldcxz8Dx0wTMd9Ct9zkXGWC+I\n1aBZvlpy3+WcHCAvknPehyylTnkxzDf4FwSCKGrXaN3IajXLMh3Xq7WEW26KRTh4MOXoUUm1KglD\nwbmol4t9c4eCCgR8MH6aF/SjVMXM27MaUAjTCDbFMtiOURxUqHNr7VWsym2463qxm5qk6BEVelA9\nZfwARqfKVJxevPkGkhwX3ddnTu2rBsLp6CpHEQRN7FhhxT4iChCqQ6KhJNpx0IstUKUk3bOXdPMW\n1OAgOtXYx45gHz2CqDeQLVs12WwgTx6n/+RxfpYfEA4MwfbN5jFma5LTFKKw/SYKQ1PUS8sIvtei\nFGOZWQ6XjJXQLC+120Xuu5yTY8iL5Jw1QRDA6dOCbdv0mm3OzB78y2zhzp83ARlhaDrcWS2TJNBo\niOnhtygyxWJ2f89bfc3D6Zqtxc6diuPHoVaTpNri/049TLmYMDhrcC+7rxIzHwvatWCW1BdFpvZL\nFSSRoi+psWFLgtZGcZDE5v0SBKYBfO6cZGcM887jF4vEP/EoxAGJU0B5Haft/SYiChFjPjgbSW9I\nSb12kZyGBdTpTWCPX3bfpErQDC1KXoolZ525cF3SLVsRcYjqXwcarNELyNER5OiokSSgKE6MoKIG\n6eYtkCazNMkh1rlz6GJryC2JkZOTaNsBASKJSddSoTw7qKQTv8n0P0wUtcNLWgN9+AEspLi7XjTM\nKxBgkpPzfiAvknPWBFEEx45JNmxI12yRPJvMFm583HzfT00J9u1rW6f5Phw5YrFvXzrjPpn7hWW1\nmodXfrZ5SVHKFPVR1D5Dm6bGuUNrRb1uorHrTQc1ZpwyZGoG9wQQ+SkWNUiLKCx8n5YzhkDrVlGt\noRRL1o0LkhjOnJboScHZVyzkSQur6dB3sYfhtxz6v2PxE/cscOWLBbNz3RK6s0hGoF2PQiHgvm2n\nKZYttGy/ATUFow9eAPXA5odvr+f+m8boK11GA10qke7YSbpjp9FZXwxQr77FUP0EslFHj42Sbts2\nrUmupSUORzu4eV0/5cHW+oUhol5DuwVTJMfR2jl13i2opJMkMd3Oi6OIKDLhJcXi9ECf9ptEH/34\n9RtUcj1IOnJy1gB5kZyzJlgNw3XLsQ7FIvT0QH8/7Nih5kgyPa/9Pe+27GhnWNKuosaglEaP7Hkz\ni+Q4FnieBjTNpkQpQbMpAU1hXYUX4we4LX6RQa/BgfAVjvEgU7pvurln26Y4zuQWouAxPrCHDf4w\nZVFnd+N1jqtDiFIflHqY6nkIqjA1pZZMliKlpuLGK9O6FwJroJcTt/wU3uF/odcfxZqcQGiFKpg3\nh0JSVyXUpYz0tDJyjCRudU5XsQ6/W1BJ521Wag5mohDSFOU6aNeFNMVSIEcuIMfH5urQbQmFq3wN\nV8Gw31JLOhYs18i1yjnvM/IiOWdNcKXDdUtpGbfcA36dkdVgOsnZGWVgRoc2Y7XFdGca4s5AOylN\nkeu60NOjuHDBOF80m4KzicOGYh9IE5Qyu+4Qon3/TJtMocCodyMb0vM4SlPQPo6tsDoOHuYxsrgs\nIggg7XiN/SahrxmfKDOwIcVjlmg8FIhlFIinWtJMXUpWxLbKJI8PfZyfHv9H3PqEcXVoNkmLRRyd\nsj48hzviYDVbGz9bbhHH4J4z10mJyMyqV5tmp4M5QSVJjHX8VDuIJEkgChCuYwIukgQxOYE9OY74\n/wpzHC+kBLZugod+HBwPUa9jvfUGya2HFqy9XZZhv5VmgXKNXKuc834jL5Jz1hSL1SYvh2XcUhOG\ncP68oL9fT0dWgymOm00YGxNMTQnqdVNEz+4el0ozi9LVjG1Db68iiozrRRQJzic9pKXFeUTH0uNs\n5Ubi2hIVeI4LAwNw5jyy6bev932CZsLIpEvvuRHE0Myd3aMaPDhUo9jjGOeJJaaeFPjBxYM8sO5N\nIEZJm6ldt7Du1GvIqUlEHCMvjhFvvZmxaDO7Nnp4g62icrbcIgpIN22GMERLC3nGebgAACAASURB\nVEnryGMVN5TnkCoTzZ2lDloxQmh0sYz2zAeC9ooIv9GOxu5AxiFMTEAcgeOBVgg/MF32nJycnFms\nqq/Wb3zjG3z9619nbGyMm266iS984QscOnRo3uVrtRp/+qd/yv/8z/9QrVbZsmULf/RHf8RDDz10\nDdc651qyHNrkpYyuvhI8D26+WXHnnSk9Hc2cWg2ef97iwIGUl16yqFQ0GzfqOV1x22ZNeTxngSSe\npxgflyTK4lyyseuyUqcUkyZNSqSpbA/w2QVOePspVIenr0s6TB2iqDW8F0mSYgV9udjhYhF+/ueJ\nLkyQJu2CSdSqpJMKwinExgbJnQdN5HLnXWlFXSfXSPsiLZIb92MfeQtZrSJrNXpPv4PqvcV0Uzs7\nr3Yr4loAKjVx3HYr3lqtIq3OYrHtmds1R4fUPRpbhwKi5rVd15zVTS4hybkEq6ZI/o//+A+++tWv\n8qUvfYlbb72Vv/u7v+PXf/3X+fa3v83g4OCc5eM45jOf+QxDQ0P8xV/8BRs2bODs2bP09OQTvjmL\nY6Us4ToxUgTmPH+pZK4vFo3co1hcnJXsakC1HCyUal+0Ns4eU1OaNBW8F9/ANhWZ21OjeNAaSrrO\nHVNP8gP5EOOqb9oJI/su668KZBoy8NbzHK4O4ts9JIk56AkCQW9vPxv2PMTuygIKwmIRehU6mdlV\n1IUC2mmiXc90Jud7AZLlLb48GXOjexJPGG10snMX9pF3kEGAW5/gvvg/SZNfYIaPRxZzLTBa5E5N\nsk7NEYWW83hDL+vmXDs6XTJCH2IfqlVEohAj57HeO4oYOY+Yx0e7M/Z6QawCzXLOwsklJDmXYtUU\nyX/7t3/Lr/zKr/ALv/ALADz22GM88cQT/PM//zOf/exn5yz/rW99i1qtxje/+U2s1jfmli1bruk6\n56xNViraejUMH15rlDIdXa1NnZLVX0ErltrzNM2m4HS6Gc+/yN4UajVBHUEcQ6whFSCsmQN80/VH\nwWXc3UTJDim4CtVqkiYJ2LamVhNs366vrl4RgkS4EFWN9dh8+M2WcNy0tEW8tLYjBStmf2EYLR3A\nBilRA4PQbCKnJtkQnqH+2vOw8ceoRS6vDG/mvrFnKHq6uyZZKTh9GqkForNITmLk1CQIvbYs47ox\nyyVDJjEkEW4zNFZ/oxcQI+dxvvsdePXVrg+h+vrasdcLYEU0y0vsdrHUvss5OWuVVVEkx3HMG2+8\nwW/+5m9OXyeE4P777+eVV17pep/HH3+c22+/nccee4zvfve7DA4O8rM/+7N89rOfReZH8NctS1Fo\nrpROebGDf1Ka9RSLk+uuKqQ0250VyZ6ZraJQyKKoNc0mgKCpijgO9PRoUq2ZnBTYqpXQJ0xKXzbA\nl3WSlVPggtxMb9QOHBHCPLZtm+e79970il9v7bikGzYwvn4TIjmPnJqa6bkXd8ReJwkim7JMzUSl\nLpWNFGO5EIJ0506SoydwG5OU33gJ/+47UMVN1NIyYf8QXjHtrknWKWzbhmrFfU8ThojJSdNJXuun\nn2e5ZOg4hMRC9/WhvBKkKXpwHWpwHfT1z7m7CIKri72+Rix5gEnuu5yTA6ySInliYoI0TVm/fv2M\n69etW8fx48e73md4eJhnn32Wn/u5n+Ov/uqvOHHiBI899hhpmvK5z33uWqx2zgrwfoqQrlRMx7ta\nbV832wFjIZj7rByZO0XmXpFdskhwyzKSi8mmh+w3AXGWbhXGoi3VoCXTyPySwSQ0a91SEsQQ26Yu\nShKjMshCRa5YRlMsEj/yUzTiGqcnUoZ+6i689e0HE7V27DW0JLJ9vdO6ZW3bRgcMVAoJDxwYpeQt\ncXdWCKKtO3COTCFUivvk4/BTnzC3WTY4ch5NsjRHEbPlFtA6grl+/s+mXTIkYGEkM17JdP9tZ14d\nk4a2k8ZqIpd05ORcE1ZFkTwfWmvEPG00pRTr16/nS1/6EkIIDh48yIULF/j617++qCJZSoGUiy8i\nLEvO+Pl+4HrdZts222Tbeo5LROc2p6lxmygt8XyHbUMUSV54QXD//YrZsnozmCcZGIAoEnNs3+IY\nJiYEAwN6XuuzwUFNsSgX5ILR7XW2bZBSYlmmcBJCImVbxiBlu6jNLma59u+duuTO3zPJhR/ZPC7+\nF/3am7FMHEOoIKq1nksryqKJL0rItMA7ai97mqcYOS9Q1Nk98RIjpbsIggppKvne9wQf+9il5TWX\nem/bPSWUp7hQLTFY6sca7NAt2hLZU0EOmC6kKBeRlUrXgsuywHWyArm1UyyBFAKd7T+E2V+t1RCt\n65UQ1NMiFS2xRPvuGV7JQg/0IyYmsI+9S+HMewixbboDnz2jkAKhTNSh0ArCECksUB0FcRwi0gTQ\niDhCZJ+PreulJaB1ydZ9Wr/cWt/pZebd4QIhwbLNHaUE0Xmfbo/d8fhk14uO7eq2DrQeRyUQt9wt\nohDpB+bOYYBIY6wwMHrl2YQ+Io3Metqr6HOvvw/94Q8z/TFkSyxLoLqs54I+t4MAOXwKtf2GS8s1\nLvE8q4lFfVetkW26FNfrd/NqYFUUyQMDA1iWxdjY2Izrx8fHWbduXdf7bNiwAcdxZhTRu3fvZmxs\njCRJsBd4inNwsDxvIb4QentX7ym45WItbXMQwMmTsGPH/J/9mayhvx/65pnb6O0tMjUFhw/DQw/N\nv9yVIGW7purrm/vYUsK6dfDoo91lkVNT8MMfwv33z79e7iJnj2Dm65ytY7nlqOV5Zn9m+zSTOliW\n+Zn9+2U+x0q1u7tZSmAWN935r3q+1ovTb25LEkiVhVIWSljYtoXW0G/X+WD4FC8UH6Lq9DHCTexN\nL1AomAfqk01cW1Ao2ZTLEMcO5fLCXrNu723bhg0bEoqnXfr6yvQNdNiKyQQqBehvXVfyWm3wBXaL\nRWr0JBbg2mBb5qdrtsXDwnEksSjzo8n9PCTP0+dEZrnUAkua34WADRvMG9736fvBf1F44EFcx8Zz\nUnN7apmucm3KvChpCqdP480+sopjqFfNUcrYSNt0OmvNe7bZZpGa3wsOFFr6J6EgcaBcMJdLbXfk\nUe7cb2WvfZ9uj509vmuD09pPQpvtmm8dwOzb4RMdR1whJSHMP0WzCdVJvDcOdx/IjCLQmrInIXvd\nazV48UW46y7mHNGuFJ3vw75y10Uu+bk9lcDIadi/e977mwcpwM8+uvSdgmViQd9VMoGiA5Yy27fa\ntmshX2It1tJ381phVRTJjuNw880388wzz/DII48Apov8zDPP8KlPfarrfe68807+7d/+bcZ1x48f\nZ2hoaMEFMsD4eOOKO8m9vUWqVZ80fX94bK7Fba5W4aWXLAqF+Z0rqlWo1y0mJ9OZ2kxmbvPkpJp3\nuashCGDDBsHwsOz62LUagCSK1AyXqwytQWsLredfr0x2sBC6vc7VKjSbNq5rOo5haGHbelr2EIYm\nWS9NTac7uz5JQCkTK525dkWRqU9s29Rp5npJHAvCUFMopK3iWWClKVKmWFaKmi48U4SOKKlJ6rII\npECKJpm+HVK0TlBK02wqJieTS75ml3tvH7zF593XPaZqPmqi/fkSXmhQPRLSu6+B1+PiuEXExcnu\nT9KpX84KT9/Hnqyii0W07WKnGhUlYJttcXSD+/peJdY2caqIE0Ucp6AFJCkiVegkpdWDRt19D+5T\n38e6OMq2d79HNJQQxmZ7RJySxgqrp4+aKvFqdRd3b3BxvRTV2UkOQ6wLY4AmXb+xba0WhojAJwkT\nqAfQDLHDBG3HRrIBEMaIMCZpBKAvUWw0Q0QzJJo0A3VuM0S7Yfs+3R679fhWlKClDSQQJ2a7gnnW\nAYHtR8h6E10oIC0bx9WEtoeyXfBA9vYbfbLd5Z8riJHVKs3RSfBaBXG1hnNulHi8Bskq6dxVGzj1\ngHiyAWrm99+CPrcvcf+5SKiuQglKB4v6rqo2cC5OwX99h/jHfxJWm8NFECCnmqiJBhS6H3yvxe/m\n1cDAwCUOCFtcdZGcJAknTpxAa82uXbsWVaB28pnPfIY/+IM/4JZbbpm2gAuCgF/8xV8E4POf/zyb\nNm3i937v9wD4xCc+wT/8wz/w5S9/mV/91V/lxIkT/OVf/iWf/vSnF/W8SumZXxCLJE0VSfL+elOu\npW1OEkhTQZLMH1G8kGWybb7ccleCbZsmwdmzdH3sYhHuvVdNr+uVrP+V0Pk6m2JXkbbS6LQW03IJ\nyCQUolWwt4vkzr+zrnImzejUKhcKiji2SFNBrSbo6dFzZBsZWoOrAu5qPs0TxUdJWtfR8Zyg0Vqj\ntUIpteB9M997Oy6UObf/AXYW0hm3+77izBlwfIU16JH8xM/M62rRqV/O4pJFrYqnjI5ZRzHynbfN\n+reeQqKoWAFTcWk676JzW7Pdkn2CJfv2Y73zNtaFEQ4e+b9M9T6ELjnTC2ql0dIiwWVC9aNcjXKi\nmQcQCqRlurTacdGON329iGNUqtGphlQjtTbrpdr3FZr2MvPuaI1UTHtSG+s/3U477PbY2bpp2tdn\nr7nS7TyQznUApNaIJEWnGtWqaZXW0zp30aF5n7ueCpIUlSpUa11FopCpJk3m2gWuFAtZp0t9bq/G\nbVoKFvJdlW27YIm2f6l9l20Xdu01v19m3dbSd/Na4aqK5Ndff53f/u3f5uzZswBs3ryZr33ta5cM\nAJmPn/mZn2FiYoI/+7M/Y2xsjAMHDvDXf/3X0x7J58+fn7Z6A9i0aRN/8zd/w1e+8hV+/ud/no0b\nN/LpT3+6q11cTs6lWClLuLVIEAi01nMisjNrt6xwzpzDMm2xvsxxqOuClBqlBMePS7ZvNx/0dSo8\nZT1MQIn5Xp5IeBx39hEJD1fPjI0uxDV2HH8RUb8Veq/BqfFi8ZIuCLpURvf0zvBj1cViKxnu0j7L\nqTa65LKOmferVwiiH/txiv/nG7hJk/XP/Re6tw81MIjuqZBu6B7aMvfJUsBolqcr7CylxW+a62ZZ\n3k0vs4wx3VdEkiAvjpmJUAGoBCtR5kAgTRFBgGg0uhc0fgBxuPDTMDlrDl2ukHzwXuzDLy/J4+W+\ny9cXV1UkP/bYY3ziE5/gk5/8JM1mk6985St88Ytf5F//9V+v6PE++clP8slPfrLrbX//938/57rb\nbruNf/qnf7qi58p5/zI72vpaWcKtdLLf1eA4WfiHwPfNpTMi2zf5DMRxyzih1czItMWdHeRsIC/T\nJGfLrl+vGB2VaC04dcqiUFA4jkVAD0K3ay+lTCdRC/MEMo057u41Q21piNIdmuZYYTVrZkhtFSOC\nAO377fAPZ9Z0ZhITJBZP127jJ53n6JMBYp7TqmrLVoJb76Tw2ksIrRFTk8b3GHBeexVdKNLbt55d\nto8c2wab+sim44LEZniszI0TNVwRw7kzaNudXgcRBnDkiImADkOskfPmd9uZXoYwWF2FcksQrwsO\nwpagJdrz0JZZZ126xCnXOEY2Y+MxvUBEvYZ9+BWS226/djZqS+12scS+y6say2rtuzX2oZxzTVhQ\nkfyVr3yF3/qt36Iyq5I4deoUn/rUpygUCpRKJT760Y/yO7/zO8uyojk5V0I3X+XliLZeCKsh2e9K\nKRbh0UdT4jjTSJuiOWuajo/D8LCkWNT098+c9QLz3T01ZeQY2fxXVkxnyzgO9PcrqlVJmgqCQJIk\nCiH0DNlGTYHfqsF01OCO+BVeqjzEhOojTgV+E2pKoBDYDckbSA6MQ2XrlW27qNcoPPsKtn8XMCvm\nWCww9noetOOi+vqMF2+1iohicEIzkAftTqdjnCZQKSJOEMKk5mnbQgsxxxUwfeQR/D27cV59GVGr\nIScmEInZ0SLwKQbD3MEw/CNo1yXdvAW1ZSv++l0cD+9hS88mbLtGunmrKYLBaJL9Bsm+fabz7TcR\nYxfM7S2bO6LQFNJxRMsAuztZF/paYkmjbVJpa8p0HiuYGfe5gsJJKUS9zpIOLlyGpQ4wWXLf5Zyc\nNcqCiuSpqSkeffRRfvd3f5ePfexj09ffcccdfP7zn+djH/sYvu/zl3/5l9x9993LtrI5OYtlLfsq\n1+tw+LDFbbddeRjGUlIsth0yst8zQwDfb7tUZEEe0A7/6NQXO047TKSzSC4UzIzY5s0px45ZhKEg\nSTKrOTX9mJZlzA8yCUfmrBFJppPjOm3n/EAwPg791fbzL0paoxSWX6dSUnMadbrSw8iBhcVeBwGM\nnYNKAF52kFQsEj36EUQcIc+ewXntFdTgIFRaC4Qh1rkzqHV7UNYWQKA2bUKVYtPlPGfiCFOl8VUJ\nRwnTExYCtWUraXWqVeRq5PhFtG1jHzuKnqpi+2ZoTkQR9skTcPIE63maX+AbJOUeZF8FimXSHTun\nNdSksfGALpXaMoZZneQZ3eb5CENEs9Ge4szJyclZhSyoSP7qV7/Kq6++ype//GX+8R//kS9+8Ysc\nOnSIL3/5y3zpS1/i85//PAAf/OAH+cIXvrCsK5yTcz3SreOtlCmUL9eQyizs1kquQDa0lzXpOr2W\ntTYF7N69Ke+8Y5EkouWOIQE1LdlIklaISJpipz5BI6VhQ6w8jrCPauiBEEyFgmooeOIJm1eOtyzi\n+jSPPro4DXqxYJL79FUcrMQxnDsn2RnDDB+Flo5Z16om9EJI9PRInkC3Lpk2eMbfWoNKaCQlnmre\nyr2JR9eTFEKgKxXSnbvBKzCpevjRyA4e3nUa98IJ5JkzyAsjiDRFoHEaVWhUsVrzJqpSQW3cjFo3\niNq8hXTfTWDbqM1b0F5xpgNGZ7d5Pvwmsl5fvQVypgUyU7GIeh1RnQLMsKVoNhC1avf7+suvX15y\nSUceTpKT05UFa5IPHTrEN7/5Tb71rW/xuc99jgceeIDf//3f52tf+9pyrl9OzqphOQf8rqbjnSXz\nXWs60/98v+2DnCTtTm6rxpgugC83wJdh21CpKBoNQRwbnXKjISmVFHUq/FA+wB3pi1Rkg5uT13lV\n3EddDpLIAqes/SYCW7YjrCsVTV+fJggEU1PGpm61DWpq20UXC8Yqrlk3V0YRIgyoBKN82HqSl5Ih\nRBwiwsjof5PYlM5pajZ0EbrK0KmQ7NmPPLDLHIglCf7pcc6+WWX/6NO4tfFpLa6s15H1d+EYuM8/\nh3Y90p270AWPdPsO0ht2trWrnd3mS3Gt5RYLJU2R58+abfd9aDZwvvPf2K+/Zm5vWfm5Y2N0S+9R\nrgM9y6ynWmJJx4LlGu8nrXJODlcwuPdLv/RLPProo/z5n/85H/nIR/iN3/gNfu3Xfu2Krd9ycq41\n3bq2C2G5BvzW2kBf5xBfGJpqOBvaiyKYnDQHFJbVjojOur+dsdSXQwgoFo2NW5JIlDKFsuNAQ/SA\nlK2UupmP2RmBLWRmMZfVbHp6nRdKvQ7n35JsuhXKs2qfxXTxL6tfLhZID96KrpSnY63DasjUyyfp\nv2kD5aPHkP4g6e69pD3aOElowPNQcQk91g/WwgbMPBlzY+k0nrWxLWe2baLNN/BOuI1N6yL67Bpq\n2w7k2Cjy7BmsM6eRE+OA0azaR94GwHn1MABqcB3pps2ogQHU7r2kO3fN9O5bKyiFiGO0NBpmYdno\nngqqr7+9zPqhrncVQYCcnDD2X9ch16tWWZcrxB96YHW+bkttKZezKBZc2R4/fpxnn32WKIo4dOgQ\nf/iHf8gv//Iv8yd/8id885vf5I//+I958MGlGxzIyVkuVptO+XIDffU6vPba6tImZ0N8GWfPwrvv\nSppNiGPJDTeY4JMwBK3ltLwiG+DrJOswZ3ZxaWouWdfZtjVKqZbsQjAxIQkLPTzlPky/ujh7Zm3J\n0RqiKR/vhWcQj3xoxuntxXTxF6Rfdl0Q1rTcIkgszk7+/+y9e3Bc533f/XnOOXvO3oAlSFAgQVK8\n30RSom6UKFKiLNmW7EhxHbtqa2esNGnjvKpjz7zTpp3Umb61PUnqzHhad5JOm3R8aZN67DaO3VCS\nnUi2LFHUxRJ1IUWKAu8kiAuJ2y72cm7P+8ezB7sLLIBdYBdckOczg8FlsYtnL9jzO7/n+/t+40Q9\nDatCbgHFQGb1u6LGM48iUd1ha+IiprGMnJzmekIglyzB7VoBO3YpKcXwVVjWiXb+HMaJ99BP9SCK\nFifa0FW0oasAWIdexG9rx7nrbuyHP4q/dt3MC5qwlitSzV4OihZzTqlj7jolv8FGo+mlF200Nntn\nHHXOsghPC0J0feGcSOoktJS7ttRUJP/whz/ky1/+MmvXriUajfL1r3+df/JP/glf/vKX+e///b/z\n93//93zlK19h48aN/Nt/+29Zs2ZNs9cdEtIwJlvCtRpS1qZNXkjKh/hAOV6YZmkIz7JKMlXDKGmQ\nywf4gAm3CynV8yAlpNNiwgktKJ41TWIYEtvWAEE2b+D67ST0EaTnE/MzaNLDF5WdFhuLs+ZmNulV\n0tTqQfqI8eY+CRVOFwWla9XGPEQhjzYmEOkxkmMSkckhdKGKSDuPEBKwkBEDqbuoxMEmYVm4u25F\n3rOXQjZL5NAvEONZtCuD6L2X0Hovoo2rgUAtPYb1s+ewfvYc7uYt2A9/FGfPvVMlCraN3vMBWjxR\noW2eYi8H4DpoIyNIo5h97rkI18FrVqE8HbZd3eYuly1Gg2en1SzLyBwy4kOaR4MlJC3dlQ6pm5qK\n5G9+85t86Utf4rd/+7cBOHz4ML/5m7/JU089xdKlS/nwhz/MAw88wF/8xV/w6U9/mldffbWpiw4J\naSTXyhLuekIIVSTP5Po13fUiEVUMR6Pqc1ubxHVhZKSU6hdcbhg+uZzSKNs2+AkdS7O5036FAb2b\ntJaaKKx9H/JE6dG3stezyWaVrCWXK9nYgfr7ba3QRCpzugiwe9N4o29if2Qz8SNR7vTfgrtux+1c\nqgoxJDKWwCOF398NxgXAw/MFWduiXWrUM4pl6S6bUoNYY9PrhfOOzvnLbayJF4hoGn7XCvyb1+Le\ncZeK0B3sQ6aWYLx/gsirhxGOg/HBSYwPTuL/5XewDzyEvXc/RIqHH9PE27QZP5mckJmQyyJGhtTw\nX3kWe6GAyKSRZlQ9ca6jHq+F3Ia2bSJvvA7Z8aqXiUwGP7MOMZ6trllOpbAf/ZXWLpRvoEG+hktI\nWrgrDYTyjTqpqUi2bZu1a9dOfL9mzZpi6lbpjdQ0TZ566qkKi7iQkJAS13OyXzIJ69f7vPuuVvc8\nVtBdDob7dL0UYz35IxIBy/IZHtYBwYjXznvyFjzHIi8gNymsxHEEkYjknXd0zp0r7urnVCs7eB5S\nKcljj0k6OqqvT5oWma4NYJyb+wNUK5MS+2RGw1myDNnWjpaIYSQ0nESsGIAhkKaFtKJIoqCV3s4z\njsWh3tUc8N6nvWrecnWihsuWjgGMS9NrmwuuRs/lJDetHWJKKSAEMtmGu+denAcfJv+ZzxF58eeY\nz/0d+kA/WjpN9G9/hHXwx3jbtuMvW4Zz/wF1hjV52M80K7ckAoyIeiFEinHb/gJ3kV1XFcgRU3WF\nyynKQ7yNG6u6e4h8Xu0UOPaMyYz10mi3i0b7Loe0Di0j31gkQ6A1Fcmf+cxn+IM/+ANee+01LMvi\npz/9KQ8++CArVqyY8rtdXTXGnoaE3GDUO/gXDBhWaUa1LK6rnCMKRSlpkFKsaZUuF76vit6g41ut\nYVUeIFLujKF+V6k/C75JTkYxhJgi5RBCPeaxmOoUxycaJ3IiCKXkdjG9sllaUdIrNiG5POWyeoqT\nuVj1BTrmTcmh0t/MF5DZ7CTdblGrWyh+XRBFqxEVPSiu0QCdbGvD/vjj2I/+CsbRdzCf+zuMI28g\npMQ4/h6p3/oc3pqbcXfdSuHhjyJr0P22CjJiTi3gYUZ3DwkTUppZyeUqdhXKmWxDJ9JjysJvdESF\nzISSjpCQhlBTkfwv/sW/4LbbbuPll1/Gtm1+93d/l8cee6zZawsJuWEIPJEDVwgoDRiOTWPH2koE\njheuq+q0IGHZttWHEEqKEYmoojkwwwkkvuWR1cHPyzXJsiyWOiiGpQTb1ZGULG19POJkyfhxhKlP\naKHNsnrG88qDUGpzu8jl4P3zGuvumeRwUYcV13yt+qRuIONxRCGviqFcDpHLAdAm8nxIP4+VtxCe\njrCVlhk7j4i4YESKUcwLt72atzUuXE2wZtk4URPcW3fj3robceUK5k+fwXzx52iZDPqF8+gXzmP+\n9Fmce/Zif/ijeCtXMfFiKqfa4N7EyYEo+50WisWeC7kc5rMH0UZHq18+2YYul0M/cwrR1wex2OKQ\ndITc2ESjeJs2X+tVzErN7hb79+9n//79zVxLSMg1oVZLuGYO+OXz8OqrOg8/XH9kdSsk88Vi8PDD\nHv39gsFBjZ07laykWMPheTA2ptPRISd2ynU9MCYQGEZlF1jT1O+Ua5KDwjoSUY4XjiNwZISXjf3c\nq79BJAIdZNjr/IIX9QfIi9q3EvN5GB1VVnaT66t0Wt2PsTH14ZU9xloaknbzHQ0KjkZvfhnLd9yJ\neHAfsq1ddRMBP6VeMPGTJ3G3bMGNxXFzEbx4B/7ICbyUBkGB7C3c9GfB1ZUsI5Unapb+ruzspPAP\nPoVz/wFkPEbsL79L5PXXEK6LeehFzEMv4q25GT+RILdqI4Oyk+XxcUzNqz645zhw+RLSKP4Duw4U\n8sWzsUW0DVOGcGy0UZWWOK1OttyGzjTR4kn8VAohtLolHTXviNxAWuWQeTJf7XOLyDFCc+OQG55a\nLeFadcCv1mS+ZhM4XrS3S+LxUhPLNEtZF4ZRctUq1x5Xo5omGSo9kX2pPJOl0CYq1cmyi9lwHPjp\nT3UMA7JZA3/SA+k4MHJOI9ejcfwZA62j9LZp5gy29mvs2APRJuRHBBKNgtnGifZ9PMCLRNraJ7SE\nMhZTlnHSr0jiC2ziKtL5PH+iy+r7gnEZY4kvrp1nmWFgP/YJ7Mc+QexPv4nx5i8xXz2MyOdVdxnQ\nT51ioPs+7FtXo69aWhyMmzS4Z+fxVq4qxWAXCohCWU76IkaWDL5nx7IgRmLkAgAAIABJREFUFq9P\n0hFQ447IdatVtm3006dwt93S0vrYxcR8tc+t4sm9+N9FQkIWOYkE3HOPx9tvVz/bnmv4ybUgGoWt\nW/2m7/LqenBSI3Dl/CQErqu8m1evBtOUeN7UE6Z2M8LV9GaWLTUx20uXZ7PqxGnVCKyYZRxjLsNV\ngUSjmuSmwjIul0NkM2p73rbRxgSpvisIbxxhakonCxO2cRk9zkuFu3jYdzH15scoz4a/spv8Zz5H\n/rOfU93kv/uJspRzbDad+zmcAz+RwFu3AalpyOWzPNi+X/RdFuDYJfNtATTdWTtk0eG66GdO423Y\n2HIhKaGl3LUlLJJDQq4xwUDfdDuYrRZ+MhuT46rtshqlPKba80pSimCQr1bKH6uZimRNeiT8cYRv\nATMX04EFXXXL3SijK7awst2raOx5lqTg1hi3Pc8oYSk0/HjZC6XMMk6kx4i89irOnnuQbe04vWli\nfYfx27bjrl1Saa2GxNOX4Y90g3EZZH1FsmX4bFqZwTKasHURi2N/+BHsvfux/uZ/I98/jXmuB913\n0cbH0Y6paGip6fhLliBTKeX0kaiUW4hCHk6eRCLQBwcR+RxIiTB0kEUNT+h+FQJKQpJIIHJVLP3m\nQqNlAq1uKdckpGnhbdyENOfpcT9PwiI5JCSkIVSLq1a+xALfl9i20vQGFnGBTVswyFeeygfTu1sE\nBbUQEikFWT/Gi/qD5GWcJBn1u8XrJ2SGPdlfYLn3AYs7rSqrt/HeTQ+wzZBMHHrLLONkPIEMpBhp\nwLSQ0aiyIpuo7Iu2cXq0qk6w3F9ZF9WHDKMRj80r05BtovWaEPgrVjKyahevXl7LAfd52s8fQz99\nCmHbCN9DH7oKQ1eRQuCPjuBu3Kw6zYaByI3jbtmCRCAunUe7fBmZSIChA3LxampnCjEpFEqphblc\nKczE0EBzIedA5NoWHK2ITLbh3ruXyOGXG3J7rSITWPS0yGBfWCSHhCwQrZ7sNx+C4cH9+70KV6wg\ntMP3JYODWlFjK0kkVFEdJPQFg3yBy8Vs7hauW3K48KXGiNeG8MEKYq2LDmiyAXNbwveI5LMI/9p2\nc1wXzpzR2LBhdk18PA7btzpYww4iny8JDMpt4wKvPlkgsFLOFKIcOr+WA/Y7pKIL7D88Da4RI7/u\nFqwdGyCbJfLqy2hDQ+gDfYh8HiEl+sUL6BcvwAvP43WtwFu9Gn/rNrwV3Sqyu5wg5nG6RrhTjLoW\norTd0QrMFGLiukoDOqYs4EQuh0Bp1jUNiFtEzBjuRz5ek+NFo32XQ1qHUL5RHzUVyceOHavrRnfs\n2DGnxYSEXM/UO/jneaoTG4u1fjBSMDxoWUxx54jF1H2JREoFsGGojyA8JOgiB8zmbqEs3yS+rzrW\nQSc6ItUuui5Kf69WbLtUH5UTyWVYdvQQyAfI5SrtQzKORX9sMzm/OR26oFgR63cDS2q+nq5DJKmD\nbFOWccEgV9E2TjBG29VzsHQUYeQQxSp6wjrOc4sd57m/8CzDK8oyGlhs6zpy6TLclatwb7sdcfUK\neu9FtNFRtGHlJa3396H392G+8Uu8rhVIw1BnqL6PiBjge2gRE6lNc/grFpxohpJu5HOtYSk3U4gJ\nINuLr4+ibZ6fakfGEirCXJeIqyO1O17MUxoU0sK0inxjkST/1VQkf+pTn6rJjF5KiRCC48ePz3th\nISE3OuPjcPiwzt699dvCtRoq2KNU1NZ6nencLYKEPqhM55t8vVpxHPjlLyGT0ZGy8ooxW2dTr0Z/\nUjBQ0CtMEzKZBBevbKPzsMPK9TOnKWYy0HdcY8WuSV7LM1EsVoScuVjJ2xr9o22kbI2Jct20cB5+\nBGKlM7LANs7z48TtMdhzN27Mxy8OK1ZYxy2NzMtCLWr6SpbRLIRALlmCF4tib90O2SzGqQ/QPziJ\n1ncZgSqYA+ToCH4qBe3t+Es6kNNJDxylaZaGUdIGtZBTxrQhJuWUB5roAoQHRe16NaqFk5R/P/F3\nQ9/lkAbRMsl/s1DTf/53v/vdZq8jJKTlaabLxHwiqxeD+0U0CitWSAYHxZR8iNmopkmePCgXXJ6R\nSV7UHyTtxdGq/N50eJ46KYlE5JR6KKqreqOrS5K3pl5P12FsTCUNzvT8Sal2BmpdUzlCqNdI4Ds9\nmYLZxpHUAfaaHhVLjEWnHIBkLIb04hDJqyIqJpHFIlkSUR1k0yrqd68tlu6yqWMQS6/s5KbdGEdG\nt3J78n3aUV1y2bEU5657cHbtRlwZQJgmxltHMN47ivB9hOuiX70KV69iXriAf9MKvJUr8Zd3MeWf\nR9dBN0D3Fq9+uRzbRj96FMv2qneSZwknAcKAkpAbkpqK5D179jR7HSEhLU8zXSbqjawuZzG4X+Tz\nYkLO4LolTfFkt4uAcpnFdJrk8p3g4PZAp0CbMi9woQBQxzHdNJkSA67PstMupdrNT1dpmkYijakp\n2sjwIO/worwTmL+WUBSKmuRstmjpUXz95CJgm6qDWqgsDqeLSG4mUcNlS+LKlJ/7UpB2Y/hymu2C\neBxn7z7s+x8k8vT/nfBf1tJjCM9TBXPvRfTei4CKHvfb2pDJNpVqmM8hE8m5ndG0Iq6LyOWQloWf\nmka2M004CbG4euyKkhb9zdPXn1Y5DElpONeL9rl19pBCQm5QZhvo8zy1Vb8YtMmZDLz7bin9L3C8\n6OsTE4WybZd0xbat6rRotLI4DQb6ykNHJmuSg/krKDb+io9NYONmGGDNs7vuunD+tIbV73NxJMuQ\n1Y4vSk9C4Nhx4oTOj388tSBOpSSPPqp2CKRpkV5Zn6VRINFYuc7HHM8gpp02m8Q0B/3AWzmZ7Wdn\nx0WS+QT5gkAL4sGn81cOrh9PKBnCYiISQcYT+J3L8TVBJJPGc1y0gYEJrbYo5NELebgyWHFVqWlI\nI4L1f76Pt2kr/qpVeEuXLdriWUatusNJiJcFlMjrU6vc0iEpLZI8Vzeton2eJ3N6t/vRj37E9773\nPc6ePUuhyt7pm2++Oe+FhYTcKMw20JfNwtGji0ObLGVl+l8sBo8+6jE0pE4GLl3SyGYhlVLH4HQa\nhoZ0li+XFcfubFYFfOg6Ncgzphcfl8s05oLnqecnSp7d44d4I/4I2UhJvqDr6r4mEpJUSlYUyfm8\nYHS0JMOQVpSxlVuQVu2DbHOVaEx70C96K2tDV7DeeA39Iw9hSwPPVU/YtP7Kwe0aBp4RJZvTifuC\nRRH67KsBIXxf+SQDflcX3opupbsdz6hhxlwOkc8h7FLHXPg+wi5g/vJ1+OXrEz+Xuo7fsRS5rBN/\n6TL1sWzZou+ahTSABnelb1hLuRYZ7Ku7SP7Rj37El7/8ZT75yU9y5MgRPvWpT+H7Ps8//zzt7e18\n4hOfaMY6Q0IWPYtBO9wMYjFoaws+SzxPYFmqSC4USnHV5Q1KwyizeKtRblH+ffD1MEl+pj3IA8Kc\nl0uypimJbiRS2fEWQq3VLM40VTbp5IRfdCPQ7Bw3X34ZPbsX2ufRoYnFkG3tEE+osxXfQBaL5On9\nlUtksgYvn+jkvrU5Wu2QnXcNzg+nWKvnSwc3TUfG4sh4XD2J0sdfugypR4DlU28kl8M4d0Y5W2Sz\niOw4xBOIoauI4tmK8Dz0K4NTO89CINva8d56E2/NWvxVq/G6V+Gv7G7NLmDNvsvZovdyemKg73oZ\n5Gu03V1Ld6UXEa0y2Fd3kfytb32Lp556it/+7d/m+9//Pp/5zGfYsWMHmUyG3/qt3yKRSDRjnSEh\ni57FoB2eK8EJwGQ9bznRKGze7PPWW7V3BQIXi8A2DkpyCyHkhPlAUGhDpdzCsHRkMokWaQ3P3/kQ\nNSU71o5hx/1Zg5Xn6sld7q+8GCl4Bj2jy1mx5HLlwS3Q7RjKAk4Zc0//YpVtbUgjAnYBkcmQ//z/\ng3/TCrT+PvQzpzFefwUtM44YGUYbHkIUBfVCSsTYKNpbR4i8daTiNv1lncqSbulSsG3cW3fjbdmC\nXLqsCY9EDdTqu1x0+VCd9jza5UuIvj78FSuuj0G+G83ubrHKN64RdRfJ586d44477kDXdXRdJ5PJ\nAJBMJvnn//yf84d/+If803/6Txu+0JCQkNYlOAEYq+4wNUGgSw52z4LI6mCYL8B1K6US1SzgJlu8\nlX8fFNfBx3zI6Une69jPtvE3plymSY+Ym0X40Yn7E9wPlTZYGuhLp5WMpNqAH1Qf8puLjjlYx4ye\n3OVbwmW1ga6DGZUqzbA8hKScXKTYZcyVgkmKlA/3eb4gW9CJWx66do1PDoN4R4GKpZ5LmIhp4q+5\nGX9ZJzg2Mp5U2yG+rwrjq1fRBvvRBgcQrovW16c8lotoV6+gXVVDiOZLvygtrbMTd/NWvM1b8bZu\nxd28VXWem617rtV3GSaeY7+9DTGaRFpRtNHR2n2XQ1qGRS3fuAYSjLqL5GQyiV1s33R1ddHT08M9\n99wDgOd5DA8PN3aFISHXOdPJMAJbOGdxNvUqKB/gy+UEICfCUmwbRkfV7wXve45TafVWzfO4/Ge2\nLTAMWZc3cq34QienJ5GTk9uAqJth5+iLDLr7sO0kb7+tkc2K4poo3ldV/DoODA8LrlwRVTvu5UN+\nAYGOGWtoxjWqJMPaTwhksg13/wPQloDhyk6iNAxkqh2tPISk/G+NCVKXR9ESaUTgSVc24BcM92Xy\nRVnGtiuk4tfwRTxZk9zoMBFNQy7pwFvSgbd6DSKbwd27DxmLI4aH0XovovdeQuu9hH7hPFrvJbRi\ncwlAu3JFWa8dPlRxs9Ky8FZ246++GW/VKvxlnYixUWS0sbrnmnyXoei9HAPLQkatCu12SEi9zMX9\n4lpIMOouknfu3Mn777/P/fffz0MPPcSf/umfIqXEMAz+23/7b9x2223NWGdIyHVLNAqrV8sp2+OB\nLdxs3dnFkMzneUr+umOHKjaCIbehIejt1SZOFIJjdToN/f1qcC+fF1VPFNTuucR1Bbatoes+KSvH\nau8cZ+Va/AVWzHoeZLNiQresnovKgb7OzurdwclDfvXSRpoHeQuX3UjmqausEkJSjtObJjb0Ju6H\n7sZL+vip9ooBP2kYYFrQgJA6zxdkbZO44VR0oy3NYXOyF0uboSMcMKMmudodbFCYiBDIpUvxli7F\n23mr+lk2izY6gv3Qw2iX+zA+eB/9/RPq8wcn0S+cL129UMA4ewbOnqm4WanpyI4OvFWrcbfvUF3n\nRp4dug54kx7UQiE466vYRZgcTnK96JRDFoBF4n5R93/+5z//eXp7ewH44he/yKVLl/ijP/ojPM9j\n165dfPWrX234IkNCrnfqjawuZzEk8/nFHe5EQh1DVYJn7dvJ1cJEhIBYzCeT0ZBSdahNoSO10sBf\n8LGQRCKlxpznVRvoq8S2VVppLiemSDECicblIYvjfRvZnjgH6VJdOCHRaLSuskoISWlRqsspk0m1\n1S50ZLnDiOuBmy2TZWSByrMckZ/aoa5GxrE41LuRfavPkLJK14nqDluivaqgq6UYn0aTnPcinM8t\n5+bYIFG9bI2Ti858Tj0RoO7PJJnJBIVCTRHWckkH7s3rcO+5t/KC8XGMUx9gvP0W5sEfow0NoQ30\nofX3l3TPvocoSjci77yFv2QJ7vYduNt2IJfUHl1eFddB7+mZuoPgumDnEZ6rtMxXBxG2rdQrZUVx\nGDgSMsF1on2uu0jevXs3u3fvBqC9vZ3/8l/+C7ZtY9s2ybmmIYSEhFwXzObgYRiqizw6KigUVFEY\nFNCZDAwNCRIJST5fcqzwPPUhpap1Av2yViyGdd3HdTVAMJq1OBbdqmKwiwEj2ayoCCq5VgjfQy9k\n8aw4UlMtf9uGN97QGBkRFdKMgECicfFikiuntjJGP/3jBnZMvXUHEo16N+Dzebh8WXDrrZMuqMe+\nylCey9ro6MyyjKUOWvvUEyI/lUJGzGsSUhJQ8CN8kOmmyxopFcm+j8ikK+QW+pkzaGNFiUShgN7f\nh7SiU2O7XQcK+ZoK5aokEmqgb9168DwV/BGPg+uinTuL+cLziPGsCvU4cxrhOmgjI5iHD2EePoTX\nvRp38xa87u65/X3PV110fZLdjO4onXqyXd3vQgFy4/ipduWCAhOBI4tSp5zLEXnlMM59+1qvu7lI\ng04Wtfa5jLqL5B/84Ac88sgjtJe1rEzTxLzRfK1CQhaI+URWLzSzOXgEvsmBfCKdVoXu4KDGxo0e\nFy7obNnikcvBuXMaug7j4wLDKAWGBIVzUCR7HpimTzarCuVCQSMW8yes2eJxOW8ZSt5IcrTzAAV9\n7npQI5/hphOHGNi2DyeuurSuq4p4w4BYbKrXMiiJRi4H470QF9CekjgxWSHRmIzIpOk6/g5i161V\n7eKCnYutWyt/Xpd9VczCfvRXpi1yA1mG89E7KHRPXcPE1nwDi2RLd9mUGlQyjLmiaSp5T9cn5Bbe\n+vX43WvU5bksYmRIFYeTtbyFAqKQm5s8YyYMA39lN97adaWBQbuA0fMBxnvH0C6cQ8BEiqDUdNz3\nT2AfeAh5++45/b1Kr0NUBz7wboSiRjk+sU0yETjSiuRy075ORXoMkc1ANoMYHam6G3MtZSShpdy1\npe7/5H//7/89X/nKV9i3bx+/+qu/yoc+9CFii+HoHRKySJlPZHUrEotVHm+i0ZLPsGWVLgt2xwMn\nC10vNVPK3S2EUMfzREIyPi6QUpDPa1iW3xB3CygO7xnN6zBFImqdM0kz9LhFrnMTVpuFMiOY3odZ\nSB8jl0HIxmtN4nHYfouPiKM8l6d7/y/KMmhrW7Ahm6jhsqVjAJF1a1Jh5L0Il3JLyXsRUuVNYU0D\n3QC9eDYWnfTEmGZlwViOt0BDiqaFe8tO3Ft2ItJpjBPvYbx3FG3oKsL3iLz5SyJv/hLZ1gZ79iC8\neSbrLFZyOcxnD6IF08GTcRxE32W04WHE6FjVYrgeGUmjfZdvVFol1rruIvnQoUP85Cc/4eDBg/zL\nf/kvsSyLhx56iMcff5z9+/djLLbI0pCQkHlTy/BgLgevvKJz333evIv+QKNc/hGJSKJRn3xew/cF\n6bRGJOJPpOYVCjVLRluSrB/ltdFtbFvpM9uhWum165/nqsVfWdchEgVHr0dVPjui3HKuXPfrOsXY\nxbInUHdAgJjnk2n7BpfzS7H9Oo9brls9CnJiwC1L1STI4H41GNnWhnP3PTh37UG7dBHj2DvoFy6g\npccQ6TQ89xwmoL93DOfAh7Dvu18NMt4ACMdGGx1FWtHpt/0TCcTJk/ip1JSUybplJK3uu7xY5Bst\nMthXd0WbSqV44okneOKJJ7hy5QoHDx7kmWee4Xd+53dIpVI88sgjfOUrX2nGWkNCQlqUWoYHpVS/\nN99jR5C+p5UN6Llu4I0s0XUfz9NwXTERbX35skYsVqptXLcFRMo1EOiYhR9HSp18XtTUDEwmYft2\nHydZXyE7nwHSuSIjVbTNQUw0Y7QNnUO0jSI8Ry3QziOEVNv/FIcI56inMTWHlbEhzHrkGa6LdrkX\nptEki0IeTp5U2t3JFAoqwa9Z9mlC4C+/CWfPveS+8CX0U6cxD/1ChYY4DvpAP/oPvkf0B9/D3bIN\nb/ly3O07arOAW+TIaHTmCVrLqpCPTFyPFpaRzIFQvlEf82r7dnZ28uSTT/Lkk0/y0ksv8fu///v8\n4Ac/CIvkkJAGMNfUtMVGEPyRz5fcpXI5JobtgqKw3OGiXHoRpOsF3xuGJJOR+L7SJ9u2x8qVPslk\nqZvcqA2vvJHkSOoAnUZznqBAx5xbuw9Y2rDbFZk0N713FO7fC4k6O0o1dqIqZBkzEYtN0TaL9BgC\n8Pw4icIY3u7bcZdGlB4YWaEHlro+tVitkajusio6RFSvoyNd1AdLK1Zdk5wbx92yZWKgrYJcVnkk\nL8QMj27g7r4deecdRK7243zr24jRUYxTPepunDyBcfIE5quH8TZuxtl9hwpKCQlZCObgfnEtJBjz\nOlT09fVx8OBBDh48yPHjxye6zCEhIfVRLQziWnT1moVpwvr1PhcuVBZWkQh0dSmZRC4nyGZhdFSQ\nz6v7L4T67Pulx2ZyJzrQHZcn8sViPrmckl1cvarz85/Dhz7kkUjIhjpdBFplqfnA/G94coMxUrSl\nzRc/C6FOIKAy0W/ctrg4uIVbHIsqpdkUlGa5aC1CfUVyrZ2oumQZVbTNMhZDenGkkSv6HJuAQJoW\nbiRGViSn+CfXy7Sa5NkwjJk1yVU6khNcixCOeBx/3XoKDzwIvsR8+SUiL76A3t+HcF2M94+jnzxB\n/pP/cOHXFnJDMif3i3IJxgKl79VdJA8NDfHMM89w8OBB3nrrLWKxGA8//DBf+tKX2LdvX6hJDgmZ\nA8mkcrCYC4vB/SIahQ0bJP39lT8vd7tIp+G113T27PFIp+Hdd3WEkFy+rCGEug1dL3WYZ2pkahq0\ntfmk06pQPn9e53/8D40dOzx27GhNqYXrwttvK5lIQMzW2dKvcXwAxjIZruYSZLM6plmZ6AdJ+vu3\nc7Nr11QkLxaSlssta0bRrZUVP5/OP7le5qxJXggmtM1FZvJnLmcW4b1cfhOFT/wahQ8/gvV//wb9\n/DmM4+8hXAfzxZ/j7pzsC3gdUZ4bX04uW+bpXeWyXE6dqS7QAOp1QZO1zwuVvlf3O8P999+Prusc\nOHCAb3zjG3zoQx/CugH0TCEhrUoruV94nvI7rif9L3C70DS46SaVzAclB6rAySLoGAdBIrMNpek6\nLF/uY9tKm+z7gnffNXj/fR3Xdfj4x1trgs/3lR1cIlG671FdNSs7Y+PsHD3ML8wHiMXasKzKRL98\nXnXha51jU4N9Ek2bPbBuzjTgIKnbeUyZwy2MgyanH+gr41r6LjcM20bv+QAtXmYzN5M/czm1ejUL\ngb98Od7a9fjLOrF+/hz64AD+5V689Rsbd19aBdsm8vYRyI5PvawYRR4ZG5mqxbJtRC6HTKUofPLT\nYVBKjVwv2ue6i+Svfe1rfOQjHwmDQ0JCFohCAXp6Foc2OZuFo0drT//LZODtt3Vuu82r6KZP59ZU\nDTnJ2Sr4PpBldHT4PPigx7vvGvT06Ni24H//b5Of/9zgscccurv9hqb6TocbTdK//X48a2Y9XXli\nnwVEin7PRgQMOcmq1guO2ZWSA2laeBs3Ic3qDYxkEjpvkSTbYLisSp7NX7ke5nOQnBjm6+tDZDPK\nvqsYiyxyOTT3Km0DpxDWICJWGrrzfEHWs4glI0jbVg+QU/zs+ypuuey5ntPg3kJgmnibNuMnkyW3\nhZn8mcuZg1eze+tuIu+8hTZ0FeNUD97qmyt9kq8HPFcVyBFT+R5PQrZPk1aoFxCOU+lwMavv8viU\nyO6Kv1WH73JoKXdtqbtI/uQnP9mMdYSEhEzD9aRNnozvq0J5ro4X5U4Xk28Xgg60IJPRuOUWn+XL\nJceOaYyNaVy5ovHtb1ssX+7zsY+5Dc9/mLJWTceNzXyQm+wsJgrgqCRgPNvD8DLYuTigl9zGitrk\nisZhNIq3aXPda6zFX3lBBkqLw3za0BUir72Ks+ceZFs75FVHzz83TGJ0DLluA/6S0pM/ltF453iU\nXRttUsUHRuQL4LmqqBEC4tGJF8ycBvcWCtOcqm2eyZ+5nHq9mnWdwoMPE/vr7yMcG+PUB7i7bqt/\nzYsAGTHrdvOQ5ScMtfguDw9jXrky7YlGXfHdrW4p1yxaJNa6psPC1772NX7zN3+T7u5uvva1r836\n+1/+8pfnvbCQkJDri9kiq6sRxFGDOkYIoT5Xc7oo7wYHjhcqpEROuFssXw7r1nlEInDwYISrVzUG\nBzW++12TDRvg/vthaeNMJOrCdeHiRQ2jLBE44WrERgSnRjQiQwXWOoc4Yj9C3krhuqUZMNuGgQGN\n/DydqmrxV16wk7ZYDNnWjown1Of2FLSrLe/Cuat4hTcpfPIO8mVpfnZvmtj4mzgfVyl/Ij2GGBlB\nH+hDppYoAX/UBE82UWeyOPHXrsNdvwHjzGn0s6fx1m8IO5dVqMl3uXP59NdfzPHdC0irxFrXVCQ/\n//zzfPrTn6a7u5vnn39+xt8VQoRFckjIDUYwPFgtIjlgtsjqcoKY5pERVfAGxTEUd9CdUhrfdNcP\nimddLzXgguvv3etx4IDHwYMGBw9GKBQEp0/DuXMR7rjD4+67vQW3jvV9db+i0dJaTa1U7AcNxFgM\nZETdr6Co9X1VvAaP/2QZS63M1V+5aVTTNcdiKsWvWppflZQ/GY0iDQMZMRGR4gPnqc6xJzVyXgRP\ntniwwgJh33c/+tkzCCkxjr6Dc+++a72klmVW3+Xprse19V0O5Rv1UXORXO3rkJCQ5hHYwi2EXna+\nBMODY9PL8OoiFoNbbvFJpyUnTqgJwPZ29XcCV4d4vFQ7TY6flpJZrd5MEx55xGXjRo/nnjM5ckTH\n8wSvv25w7JjO3r0umzcvfLtR10u7tJ6R5MSKA+i+g6FPv+Ma3N9MRj0H6TQMDChtd3CdSKS0uxto\nlrEsyDXH7aMRsoxmD/+MuxbHxtZyT8dJlpqZmq6TzhscvbyV3Wuu0LbQM+vTJf2VMzn1Txfq6xqm\nOmVqCd7NazHOnUUf6Me73Iu/srsxaw9pDVpFvjGXwd5yCcYCUbcK7+zZs6xbt64JSwkJCSknGGRr\nVOF5LZkptnq6uGqzONtiGKoIDLrCgbSi3B+5FreL6Ugm4cMfdunu1nn7beXlnM0Knnsuwhtv+Kxe\n7bNiRfW+quvOXozPh8CHOe6M4vswMgqXHUFGF3ie+vtSajh5D28kzQvPmxw9qpPLwZkzGn19YqIw\nTqUkjz5atAqMRvE3b1Ft61yVaf8ZqHW4bzFo6U3NZWV0CFOrXZPsS0HGjeJLwYL222dK+qv4vcrU\nP00D7Bza4EBNhbK3dj16Xx+ikCfy9psUliy5/ob4Qq45czkBLpdgLBR1F8mPPvooO3bs4PHHH+dj\nH/sYXV1dzVhXSEhIjSyGZL6ZYqtniqu2LGhvl2QyzWunuy6cPas9ia4cAAAgAElEQVT0vLfe6rFq\nlc+xYzrptGBkRGNkROPcOZ81a/wp0gXPU4//6tVNW94EfrFbrGmVCYOWBW1+hi3yRboS95JIpTBN\ntROcSkliMcjnlQ2e48zfwaqW4b5GMd1ru+Y0vyLC85COo/QoQqppSAlRmWWVOUBUZpV1GqjPngea\nWJD7WDMzJf2VMyn1T9cF5NL4p86o+58tegFX810uFACJc8tOIkd+ibBtzF++hn3HXc09GwwJqZOF\nSt+ru0j+sz/7M55++mm++c1v8vWvf50777yTxx9/nEceeYRUKjTaDglZaBZDx66VMQxYt86fGPJb\nu9Zn926PEyc0Xn3VIJcTpNMa772n0dXls3mzR1uxgeq6quZoYuAToOKv3+vYz9KRNyeK5MDVLBIB\nw1FrKJdJBvpl9b2kUFgEup1JTPfarjXNT0ZM/PY28HyEXUDoGng6wlEFn7AlbenLiPg4wi8Wi66j\nurGgHuSIjtRbJGxkpqS/cspT/3QBXgFteAjjVA9yYFD9TjXfZddBGxlBGhH87lXovZfQhoeIHHsX\nv6sLLyyUm8M8LeWIRaGjtWKEmq59Lk/fayJ1/+c/9NBDPPTQQxQKBZ577jmefvppvva1r/GVr3yF\n/fv389hjj/HYY481Y60hITck1SKrW5V60//K46ozGZWyd9ttpQNxoaBkBRM2t17J3SLoPAdOF5O9\nkushEql8fDVNaaJvvtnmhRcMLl7U8DxBf79Gf7+gu1uyaZMa7gts6JqJkl0kkaK2F4HwPSw7i/At\nYGoFn8nA0aMaDz5Y+fPZ/JXroZGey1OoVc8Yi+EeeBj/0Iv4S5ci2lMQjeDlHaQvcUY1Imkf5+ZN\neKniC6pQUJW3ZaknNjMO5iKXGxgG/vKbcDduQi7tVD+r5rtcKCAyaaQZxV9+k/KkHh5C77uMt/ym\n5p8N3og0wFJOLF0Cn/lHTVzkHGgV7fM8mfPpsWVZfPzjH+fjH/84mUyGn/zkJ/yn//SfeOGFF8Ii\nOSSkgcwnsnqhqTf9rzyuWsqSZ3IkoqQCw8NKIhA4WgQOEJ6nahnTnP49ONAv14LnQW8vWJZQ29NF\nXFetI5XyGBhQBbKUgt5eweXLgmXLJEuX+kQiGq7bOs+RUciw8cJh9M17ITl1h0/5U4upj10N/sq1\n2MRBc2UZ0+kZ40mNbXfH0ZLlbhiW8saddIIhEYy7JufScVa5WZZMJPcJQCARCCFAr+/sNO8anOlr\nVxIRs4UKBGUZM7vvshFR/4CRCPbd92D9/HmEXSBy4j282+9UneeQhtEQS7mRkaIfZIvseDSCJsda\n18q8H9F3332Xp59+mqeffpqBgQHWr1/fiHWFhIRcZwTBIYnE7A2pWAwefdTj3Dl4802dkRHlbhGJ\nKHlDJiPQdaVXFkJMDPWVI+XsRgABug7d3WBZkkik1IYuFCCT0TBNWLXKI59X2/8XLmhIKbhyRXD1\nqgC8eXsUz0beSPJ64gCuFic4bAQnDcIt6aP1LHg5wAUnB062FDiSTqvrpdO1PzaTaTmbuDK0VBva\nhyuLZ2mYyFhUdeTGM+BGEAUHIUEbt0nl02jjIGJlptN2HiGkuoOmCXXILQp+hJ7+FMtXpJtWJKdt\nkyP9q7m96yJtZhNjuKMxnDvuwnzlEMJxMP/+WfL/8DPN+3s3MPOxlMOZ9OYzD/lGPWmAzaRVYq3n\nVCT39PTwt3/7tzzzzDOcO3eO7u7uCZnF9u3bG73GkJCQFqeW4cF8Hl59Vefhh2uLrC7a4U7ZYQyc\nLWajXslFIPec/PcMY6KxRiQCu3f7bN7sc/KkzoULqrN88qTBV7+qs22bx113Ncdj2Rc6Wb0NQ4CG\nKpBHRwVSQswWrBgTvPWWjnZOJ5LVWTcEZ4/oOHF9wjYP1OOay8HgoMajj1Y2Eefqr9zSxKJ4t+xC\nJhNoyQQkorjjeXxP4p3O0nb8Lbwdu3E3lMU/I5UMQaBeuPUk4CwAvtTI2Bb+Avg7+zd14W7chHGq\nB723F+vgj/BWdCOjFlrfZbw1a0P3i1ZinvKNutIAbwDqLpIff/xxenp66Ojo4NFHH+UP//APufPO\nO5uxtpCQkEVCs4YHDQOiUYnvC2xbFYa+D6YpsW1BoaBqmOmK0mZJKBMJuP12j3Xr4PhxnStXNAoF\nwdtvG5w4oXP33R7btzdXfiHL3C6CjAwjBnocojp0LIWrbZC3gsdBTrhdSNfHG8lh51IVj918Y8LL\nqVWWMeNtNErXbJqq6I2rIhmpIz1JrN2hc4lDrD2CjAeDTwJpWhOyAjFJcG4ZPpva+7B0l2p67+sR\nd/NWtCtX0EZHMHo+wOj5QF3w9z9FCoFc1onfuRw/lUK7Moi77Ra8devx1q2vT38VMm/mI99o+TTA\nayDBqLtI3rlzJ//6X/9r9u7dix6K+ENCQuZJEFddrRkVi8G2bapiS6VUMVwogONoZLOQTEryeUEq\nJas2+xxn7rKCgEAPXY1oFLZs8bjtNpcLF3ROntQpFAQvvWTwxhs6O3e63H13c4tlXVelmqZBxATD\nAguIFDvjsixpMJCkekNptl5+BTH+ECyp7zBQ63BfI2QZzbabk5M+10I04rEl1Y80kiz6InlyOEmh\noNw9tEn3y/Nwtm9H7+9HGxhAGy8FrwgpEVcG0a4o1wzz1cMVV/WX34S3foMqmid9lh1LF0da0iJk\nLvKNhUwDnIv7xbWQYNT17lgoFBgeHsayrLBADglpEYIis8V2hCtIJOCeezzefnvq+0YQV10tNCWT\ngYsXNVx3gYMbingeDA8LDEN1tatdns+ryx54wCWZlJw5ozE8rJHLCV5/PcLp0zq/9msO+/Z5Tets\nZ7Ukr8UPcKdh0fS+XQ3DfY1ium70XLzBRT6v7NCEB9kCeJLcmMvgSITomMuSKv7BQruOC7hq4SRl\nFnAVL3jPRTgO3vZbcHfthkIeMTKMt/t2RDqN1t+PdvkSen8/YmQYUWYVpw0OoA0OEHntlSlL8FNL\nikXzerx1G/DLCmi/a8U1H9oKqYFp9M+zaZ9FegwxdHXu21bl6XtN9D6tq0i2LIvXX3+d3/iN32jS\nckJCQuolKDJbmcD1ot5jnq6rY7XrKh2t5xXnquxSlzifV49BtYaU51UGb8xl3R0dckKPPBnXVUEo\nN93ks3GjRzYLu3d7DAwIDh82uHpV4+pVjT//c4uDB30++1mbW29tfFfUFzo5rQ2pVXatXRcKlCUV\n59TP83nwXTXA54+VLOzSaTUYmU5XxlhfK6brRtcj75ERU8kARkcRTh5sC5EtoPmgj2SJFjLoIyNo\no8UDfS6HCB4o00TGE8hqZ0jTYGkOm7pGsYzW/p+sGk5SZgFX8YJ3HYSdx1u5SslQCgXE8uW4d9xV\nkqlks2ijIxQe/wRibAz9zGn0s2eKH6WvRdmEqzY6gvb2ESJvH5myPBmL4a1dh7duahfaX72m+llr\nyMIyk/55Nuu6XA6tvw9nz15orz9jozx9b1pZSQOo+1W2b98+Dh06xL333tuM9YSEhCxCgm6270NP\nT+0dvvK46mod8VgMbrvNY/lyQVeXnBg6s20YHdVIJn36+zVuuklWHQYMQtbmczzVdaYtkoVQtx1E\naJumKtg3b5asWeNw/LjGiRM6fX0avb0af/InUR55xOGJJ5ymd/59H06f1hj2NVy36BBFcQZtVGfN\nKPzkp+AnDfxiNyc/7tHbk6W/N0pXt1aKsZ4DjfRcnhexGPajv4JwbHRDI7EkgT0yjuf62Ecuk/vl\nCPaHP0Lh9pVAscMF+Kl2iMVVgVzHfYgaLptXjCHNhQt3yLsG58eWcHP7CFHq0BdVCyep0Ysb31dd\nd4pnp0EHPhLBX78Bf/0GpqiUfB+tv69UQJ85jVb8rJ89gzZWKrZELodx4jjGieNT/rQ0DLw1N1d0\nnr31G9Xntesg2dwUthDFrPrnmazrfKk6za7dci455dR96PjUpz7Fv/t3/47x8XEOHDjAsmXLlJdk\nGTt27GjYAkNCQlqfcslEPQN8k+Oqq3XEg8Kz3OLVsiAel1hWKaZ5ukL4WnnZC6GS/P7RP3I4ckTn\ne98zGRsT/OQnEY4f13nqqQIdHc05PBQiSU6seIDRU0l0QxX6gXTBskDzlMa7cxnYMYnnqXUkvTSd\nw4fJi/sYHU3NL8a6ibKM6Qb6ppVhxGJqEMnQIJUA30C6PrHlYyxfoRFbnkCWdbNkLFYc9FscxVbB\nM+gZXk5XIsO8emqehzY8NK3cgsuXkIapOsuFPJw8WfJNLhQQ2fHS2Vg1NA1/ZTf+ym6c+/ZXXiYl\nYmhIdZ3Lu9BBAT04MPGrwnUxzpyGM6fhZ89V3owQyJXdsHkT8TXrcLtWoPX34XatUGtbHE/pomJO\n+udctkmraSx1F8mf//znAfirv/or/uqv/qqiQJZSeZYePz71zC8kJCSkUUQisGqVnPD9bRXK56AC\niUOhAHfe6bF5c45vf9vi2DGd8+c1/uAPonzyk3aFpKRRSE2nYLbhCw3LUAWy76sCWZ8lylndgKzw\nVQ6IRFT3/1rbxE030OcMpcn87Ts4T9xKtHv2YSChaxCPqs+TL8vnqz9OZZrlKdeZxpu20Vi6y6aO\nwaLDxvyZ6ERb/RgdS5VX7mxyi9w47pYt6mQCIJdFy2TmbpcnBHLZMtxly3DvvHvqxZk02tmzZQV0\nWTf60kVE0fNRSInovQS9l7B4gcl7ADIaw+/oQKaW4C9Zgkx14K1YgVy6bG7rDmkKTY+1rpG6i+Tv\nfve7zVhHSEjIdU69kdWLDdeFy5c1LKtU9BYKcPJkaTf7Ix9x6eyUvPSSjuMIvv99i+XLfXbs8CYs\n7pq9xjNnNBjViF4VnHkVshEdKVWzI/BX/uAdndGic0P585VKSe67z2uYTVyjqdsNI5lkZPVOlpRV\n+xUa5mqT/mNjaAMD+MuWgTf1xVyvhnkuRA2XLUuvNOz2JjrRy6+SrKYvEoDvVUozPAdi8coO4kxd\n5Hkik214O3fh7dxV5Q4U0M+fm+hCG+fPEr1wDu+DHrRzZ1UXPLgr+Rz65Rxc7q24CW/5Tbhbt+Nu\n3qLuV9ltNz13PmQqLRJrXfd/8p49e5qxjpCQkOuceiOrJ5PPK4eL4WG4cEHQ3S0njsmeV/04tpDH\nNsOAlSv9iTqiUFD66S1bKk8Mtm/3uP9+wV/8hUVfn8bgoMZrrwluv91Ba7KbQhDnnSjKU+JxEKac\nOA4F/srJJNheyVcZ1OM/OioW9DFttq45n4fhYViRp+QKUqZhrrqmi5dw3j+LuHUHeufSqZfXqWEO\naQCWhbd5C97mLQAYhka0I8HY8DjepV4S/98fQHYc4/QphGMjsjmlhx3PTDhx6IMD6IMDmId+gd+1\nAm/1zcphQ/ownsHfGgal1Y1tT/8mXBwuEek0YqzK4F9uYazoZiMcDw0JCbmmzBZXbRiqg1koCAoF\nwegojI8Lcjm1vRqJSDKZol9wletbVvNCRaqttaLZ5lVqqQO2bpV89at5vvvdCC++GCGbFRw6FKGr\nyycW86vqqx1H3V6gcPO8uTdZbDPJ0c4DbE8msYQ3cTuBv7Jpgjll7eo5wPMwclnwLGbyCW5Iel+T\n7eYcB4aGtKk+2IGGuQoZLc3FoZWsdyzaqHJS43rgVtdbimZnl4dMJRbDvf0OfF1HdnQoeUjwDyol\nYjyDfvoUxvvH0QcHEFKi911G77uMtCzc9RvxVq1auDeR6wXbJvLG65Adr355Lod29SrmT3+CrDJ1\n7ZsRaKv8ebkEY6Gou0jetm3blEG9yYSa5JCQkHJm8rWdKa7aNJUF2LJlcuIY1dsL585p7NrlFb/X\nJpwxqiXvBZrfViMahX/8jx1GRgTHj+u4rqC/Xyed1ti0aergo7KbE2iauk+BY4XvQ5Q8K+xzGO5q\nqGF0yxc6OaMNqekg6ws70bIZuo6/gnb3vdAxvXVTI9P7JtOIND9QJwBr1vj1zRwZJtKKIgoFtNEq\nXbKi9ZXs6Jg29ldGWtjU/HrENEsfk9w8ZDSKu6wT9+57EFeuYBw/hnHiGFomgygUiJx4j8iJ9/Df\nOoIYG6HwiV+7hndkEeG6qkCOmNVf73oEX9fxO5eVdO1FRD6PNjKMjE36xyyXYCxQ+l7dh45/82/+\nzZQieXR0lJdffpmBgQE+97nPNWxxISEh1wdzja2u5gGdTqtjnXofkkQiEqp19Ip4nvqA6ZPzrhWG\noSzuNm/2eOGFCFevamSzgmPHdHbs8Fi1qnTfA19oo+hW4TiQy6mimRbUBzeC6brRjUjzA9AMDS2V\nRDPqONDGlATE/thuClWGA/2RMeSh1xD79qAtmdohkxGz4QbUFYN8zQ14vK6RnZ049x/A2Xc/2oXz\nRN47it5zEuG6aFevkPjGn5D4xp/gbtiEXfy963bIokHIiEnV7gVU17VTTP6b7XYXKH2v7iJ5uiCR\nL37xi/ze7/0eo9VMpUNCQm4I5pP+53mqKIrFZt7ZDLS0ykVC0NYGY2NK4lYoqG5rIiGn7R7H463V\nWTYM6OiABx90eOUVg95eDc8TvPOOwdCQz65d3kRDMpCUGMZEMwUAW4tyxtzKaqOFKqQaZRkz0cxu\n9LwwItDWVmEbFzCehrNnk6x7oJ3kHEISyqlw2JjBVSNKgS2JcfAa47CRdmMcGd3K7UtO0WbcgBIR\nTcNfu47C2nWQTmMcfRu9v0/ZzgHG6R6M0z3I//U/cO7ag7P/Adwdu8KEwOuQhh4qfvVXf5Xf+73f\n40tf+lIjbzYkJGSRUG/6X3lcdTYLR4+WPJOnIxZTlmp33KEKwnweBgc1du5U3588qU8ZlisnCP9o\nNYSA7m6f7m7JsWM62awoRnLDnj0LU/wWIklOrXmA8UK8IqEP1Ne5nCpaC4VSWt9kgqS+WmUZc2G6\ngb56ZRh23ifdm8HOt1YVXtVhozwJsJBDjGeQiWTVM775Omz4UpB2Y/gyLPowTbwNG3E+9hj2gx/C\n+tEPiX33W2hXBhG2jfnyS5gvv4Tf0YFz3/3Y+x9QiYAhtWHbTOkb57LqjT2XrYi1nhx13Yxdmck0\ntEg+e/bsRHJTSEhIyGzMNa7a8+DYMZ2dO5V8wyx7r7Ss6sNyiwHPg/Z2yX33ubzzjs7AgEZfn2B8\nXBV+1Qb3AilJI956paYzrrVx+pw24ZEcnFCoolmgpQ26LwuO/Z2B3zb1EJJKSR59tMlF/TQDfYml\nFlse24C3tDZ3CdtWg3tNdC6bG1UcNsqTAD1f4B/vQdu+CT1RxYauToeNRvsutyzlRua1Ehie2zb+\nqtXknvpd/K4ViOEhIq+/RuSVQ2jj42jDw1gHf4x18Md469Zj738A5959yFRjTxCvK1wX4+0jUx0w\nbBuRyeBn1iHGsyVtfy6HfuYUoq8PYjH8VAr70V9paqFcd5H8rW99a8rPHMfh1KlTPPvsszz22GMN\nWVhISMj1hW3D6dOCbdtqi6yeCSlVWp9s5TzTOvF9SKcFvq8K05tu8hkY0ADBmTMaS5bIqoN7mYyq\nmm27VDDPh8AmTtdLCX0QSGAky5ZJurMSsUzixCqfgMAmznHgmvQg63TD0LIZVl45ipa9BaitmJFC\nw40lkbXGN8+VKg4bQRJgJmdwpv8m1u9opz0+/22RCd/lwnVcJLsu2uVesKJKLlPz9RxEJo0wLfVP\npgYiVAz2jl3kP/s5jLfexHzpFxhvH0F4HvrZM8TOniH6v/4n7q27sfc/gLv7jtbcwrqW+D4iO45M\ntFUO9xUlRd7GjZVDfaaJFk/ip1IIoamdFsee1ommEdRdJP+H//AfpvzMNE1WrFjB5z73OZ566qmG\nLCwkJOT6Igiy2LChvuG9yZgmrF/vc+HC9bUVrGnQ1iZpb1fF6dKl0NMjyecFuZxgwwa/6uBeMqkK\n1Xy+sS5Vk+3sQBXQ0WLhHI/B+KSkQCkluZwgnQYtXZssY0YaoGueCSF94iJXe/gIamCof/sDbEi2\nkP47ZHYMA39lN9KKTT9IVo1CATE6jL9+w6RtlZLNn7tjF+6OXYj02ER32Th3FuF5RI68QeTIG8h4\nHPuuPTi334nsXN7gO7e4qRjuc2ubrpbSR+RyFXKMidtqYNFcd5F84sSJhv3xkJCQkHqJRmHDBkl/\nv+omnz2rkUhIhFj8neXJYWcrVvicPaszOCgmhvYmD+4FhfFCzwzZNrzxtnLjKP9ZLqe+T7gGHTXI\nMmY6njVT1wxKE79smSSRmP13y69zLZMjRT4POV0VE7kcZGfp/uoCqiUH3ohUO/OrhcA+DsC20Xs+\nQIsnqt6O372Kwq89gX21aCd3vGgnl81i/eLnWL/4OX5bO9pAH/knfwu5ZEkD7th1guug9/QgxjNg\n5xHIyrkD10WMZ4iMjagudC6HgIpOcqMlGC004x0SEnK9MlP3Nyg6qtmzeZ6qA6ZzvPB9VRivXi2R\nsuRwUT5wNhMqxa918DzVIQ5mrjo7JWfPgusKBgdF0zXJteBaSfq330/ei5PNioqiPpBkpFKSdiQr\nV84uy4jF1PNV7fkfn6UbDTV2pKfBtiEzDlEbaq2TZ0uObJYco3yYTxvzEIU82tgYWnFbYTpvZqEB\nwkfGY0h9fof8vGtwbryTm61+bljjM9PE27QZP5msjK+ugrPvfvB99PdPYL5yiMiRN5S/dnqMxH/+\njyT+83/Eufse3HXrsfc9sDgHKRqJ5yMKeaShI4SFjCWQVuW2o2wvnlQUteV+qn1CkiHy+YZLMGr6\njxkaGmJgYIBt27ZV/PzEiRP82Z/9GadOnaKzs5Mnn3yShx56qCELCwkJuX4o7/5OJig6xqoUQePj\ncPjw9I4X5XZwo6NCNday6mvbVoXX8LCgo0NWy3UAVEdzaGh+968RlGuSs2WBbZom8X3ldBGPy6Zr\nkmdDajpurA1ZXGMkMlWSEYtBnJIsw5ly7C+m96EK5Gef1RkdnXrCoqWrd6Pzebh0SWPVKp+urtk7\n0tNh25BJC9obOLjXNDlG2TCf3ZvGG30T+2N3UOhum9GbWTc0EsLFK3jzjssueAY9w8vpWn71xi2S\noTgpPNXfdzq8O+8id+dd5PJ5IodexHzpBfRTPQgpibz+KpHXXyX6N/+n0k7uRk740w3VDZip62/b\naFevqt8rPg8SSm4wDaKmIvkb3/gGx44d44c//OHEzy5dusRnP/tZ8vk8W7du5YMPPuALX/gC3/nO\nd7j77rsbusiQkJCQavg+JBKShx92WbFC2ZMdPapcL5JJ1YF87TWdPXs82qbmPgCqSPubv7n2B6TJ\nmuSA5csl/f2CdFrQ2ekTiSyMJnmhcBx1UmNZEI1WdpwjZvVutGlCX5/6XN6RrhfhOpjOOKJGHWQt\nNFWOEQzzpUFa1oRX84zezIYGmgtm7cNqluawOdmLpbVY+s5iJxrF2bsP75YdOPfeh/nTZ4j+r/+J\ncaoH4TiYhw9hHj6En1qCc99+7PsP4K+5+VqvujWRUv3fNlljV9N+0Jtvvsnjjz9e8bNvf/vbZLNZ\n/ut//a/89V//Nc8//zy33XYbf/7nfz7nxfzlX/4lDz30ELfeeitPPPEE77zzTk3XO3jwINu2beML\nX/jCnP92SEjIwpPPQ0+PIJ8vFRf16EN9X0kREglob4fubvjoRz26u9X3bW2qydDWpr6v9tFKgVnl\nmuTgY8UKpaPI5QSuW9Ik63pJkxx83Uq4USXLcKMzaBPKiEYl8WJzbuKjbEiw4ueWR7tIEzPn6cYQ\niSDjiarx0XMl2Blp5gnLXCUdIp9X2xTZbCmcpFCo/HBdojLLlug5ojKr3B0mW3SFzBu/u5vcF/9f\nRp59nvHf+QKF+w/gJ9T/ijY6gvXM39L2+/+K5O//K8wf/1DZngXPXflH8DyGNIWaOsn9/f1s3lxp\nq/Ozn/2M7du3s3//fgCi0Si//uu/zte//vU5LeTpp5/mj//4j/nqV7/Krl27+M53vsM/+2f/jGef\nfZalS5dOe71Lly7x9a9/Pexeh4QsQibHVc+k9SwnSParNTSiFoLY53Jtb7FmQNerB1QsRO3Q1VXq\nlAwMaESjfkslBk5HIMtoBkYhw8YLh3FW76WglwafMqMex14vsONui2Rq9ip1LoN7rUDdkg7TRC5Z\nghgaqRpO4uXzFMYKWFFNDUwJCX7lbUvLQi7GrYpZSNsmR/pXc3vXRdrMa1BsOg4in8fdtRv39rvQ\nz57GeO8Y+ukehO+jXzhP7MJ5ov/n+3jrN+Desgtv/YbSWVihgJ4fV2+mi+GNYZFR0yMqhECUHSGu\nXLnCxYsXefLJJyt+r6uri/+fvTcPjuM87/w/bx9zAwOAJyhSEg9RoigekqyLjCnZtGxd8SWvvGWV\nvdlNvN7dxNlKauPNH97Kz/EvlVSSyu56d+tX8cpVXsdZOZHtVda2JMuyJFuUKEuiRIqiKFMUSfEG\nCeKcq8/398eLxgyAGQADzAAD8P1UTQ3Q09PTb3dPz9NPf5/v09/fP6MV+fa3v81nP/tZPvnJTwLw\nta99jeeff54f/OAHfPGLX6z6njAM+aM/+iN+//d/n9dee43hyP1eo9G0HIYxs8Yh1Yg6+505M/tl\n2bbSJXsehKHAtstBqeuONH4qqoCqWowQjzc3i5tIQFdXSF+fwcCAwdCQYOlSSVdXOKZwLwjKiUEo\nB/iGUW5EsujJ5Ui/+jJsuh2m0cRBxuIUu7ppm6VWd66pW9KRTOLd+wBBsazXrGxOMlS0Of5CD2uv\nb2eJLVQh1DgtqDRNCBqXcW8VQmmQc+Pz111wXCGgv/kGnPs/jsjlsPe9gr33RazjxxBhiPXeUaz3\njhJmMni37cC9YyfhVVdBIacyB7qXW8OZVpC8du1aXnrppdGs8XPPPYcQgp07d46Z7+LFi5NmfWvh\neR6HDh3iS1/60ug0IQQ7duxg//79Nd/33//7f2fJkiU8+OCDvPbaa3V/rkajmTsyGfXDPlsqHS8a\nQTIJd9+t3DVsOyAeL//SFIsq8BwcNLjyyrBqDUlUQNdMbgb4934AACAASURBVLopYP9+6O01CEPB\nhQvqEY9LLEsF+q4L584Zo9vF92FgQGCN1MD4/mUSKNdDPE6h84q6LMFEbhjrwH78bduRmeZkyqdi\nKoeNqiSTSHtc4DvSnERiIS0bmUghY3HlKFBlm8Sp6Mynj6XGUaUQUKZSuPc+gHvvAxhnTmPv+SWx\nPb/EGOjHyOWI//xp4j9/mmDNlfg33Qyf/Qx0rpjHQSxOphUkf/7zn+c//sf/yNDQEEuXLuXRRx/l\nyiuvZMeOHWPm27NnDxs3bqx7Jfr7+wmCgKVLl46ZvmTJEo4fP171Pfv27eOHP/wh//RP/1T352k0\nmoVLpeOFbUN3dzhrSWkyqR4zsVGbC2/mVApuuSXgyJGQS5cMBgYEIHAcwenTI5Zr7SHd3eFo8OQ4\nkMsZUYMwPG/hFfZFuuYg3hxrrFwOTp82WJqD6cacpUJI7t0cmWtC4vUGqgucMZ35tAx2zgivWI3z\n2c/hfOazWG+9if3CL7D3vYrwfcxTJzFPnYQnfkz6Y/dQ+s1Pqav7mXT30/rmCUwrSP74xz9OT08P\n3/3udxkaGmLz5s38yZ/8CVaF/uXSpUs899xzfPnLX27Yykkpx8g8IvL5PF/5ylf4+te/TnaWfdEN\nQ2AY9QsbTdMY83w5oMd8eTCXY7YsCAKD99+HTZsmtqtWBWoGliVH5XaV0zIZWLJEcPCgxY4d4QQH\ni2rvr0YiYdDZqTKxld7JyndZTbtwwaCjo7rsL5OR2LahWqUayqZNyRwEpilrBqdK66zeo851AiFk\nVfmGYajb7B0dIb4Pp04Z9PWp9wwOCgYHDZ57zmDHjoDVq9UyKu3ZwlCd64RQQXP0GePPf5E8A8TI\n+bFyuiAWFunoOYmfvhIh0qPjrZxnsjFH4zYMgWUZI+8zJrzHdcH3DTCyMM5kwXcMCNS+cUyDQsHA\nsqBQMPA8gecZo8se+7ljj23LMhBCPVebvxrF0KCnxyQVTv89zca0LcJ0O6ZtTVinmt9ny1D7yxSY\nBghDYBoCQwikweRl/SPHiGEK1awEwBQIQ1nOMc/bZcyYo3HWGJt6jdHv7ARGxiqjsUXvqRx7XSs3\nbjtV7Icpl2dayJtuwr3pJtxcDmvvi9jPPYt54jh4HrEf/4jYj3+ETCTwr9tEsG17fd39HAdRyOOH\n/vT24WTrbk5xLEXnGTFyjjEqp4FA7TMReNWzF76D8D0MpwTOiDG+U0Q4RcxCTq1/A7rvTVvl/cUv\nfrGmNhhU1vell16a0Up0dnZimia9vb1jpvf19bFkyZIJ8586dYqzZ8/yb//tv0WOpHHCkY14ww03\n8OSTT7JmzZppfXZXV7pqID5d2ttbqDR+jtBjvjyYizEbhgriLlyAm2+eKCNtb4cHHlCZ1MrOcpkM\nRI2qojuU2ezE91sWdHerFs+1LOAiPvEJcN2x2ZfBQXXSPnlSref27dWtUa2R9szKxkw9IolDOm3X\nLAyLrEBtWyV+LGtsc69qnxM1z1i3Tr03DOHiRfV86pTBP/yDwZo1cMstZYeMSJOcSKhlRz7LAPH4\nuOYTQr1HyvJYoum+D6lUgpSMk0oliMftqvNMNuZoPteFjg4VwadS6gIgeo/jwOuvq0xvNeyCw5oh\nm/feSTBInFQqTjIJQZ+PcTRGz6/SfOaGdM3fx+jYNlb5DG+0WbUqTbZzetV7xrBPMhkjm63xnuFh\n2LdPHdBTHXQNwjDSFG5dSXZ1bSn2hO+z4UMqDqYkECFxEZIWAQkRQvSohQnEbUgn1ANABODGSXek\nIdsalZDt7UmQrhpnPA5xCxI2JMpfMFfYxGMWyYRNMlFlzCKEmAWpkbGBWl46Xh57PYzfTtF+qHd5\nmQR86hPw0Y/AoUPqZPWP/wg9PYhSCXv/G9j734C1a+HOO2Hnzqk1OoUCDA+TWN45vX042bqLoOr2\nLr8+sl2FKM8TTTNN8FHH2fvHy4UWlZRKkBsmdujN8knZdaFQIJ2Kq5NkZ6c6sc8iUG6JUkjbttm8\neTN79+5l9+7dgMoi7927l89//vMT5l+3bh0/+tGPxkz7z//5P1MoFPjqV79Kd3f3tD+7ry8/40xy\ne3uSoaEiQXB5qOX1mPWYG83QEOTzKvodGAhqyh0qG40MDUEuZzIwEBCLwfLlglOnjJrv37ZNBW6T\n1RRHY/a8sWOWEqS0kFKM/B1WlVd4nvp9cRwTy1Ld/5SjliCfD2pKMqL3BIHEdQW+L3Dd6llvz1N2\nd1H7bd9XWdvubsmyZSoLnsspCcapU3DqlMpwX3NNQHe3xPMEpVKI66oW11IKwMJxPMKwvIKOA56n\n0jmlUnm80XiGPQg6rhpZd290vJXzTDbmaNyFgmBgwB/53yIWKy+nUIBLl0xsW1a9YIjHXdrbPeJx\nF9P3sG11LPh2CV96nD/vcOFCfkIDmvHH9lDe4VJyKQN5h7A/X3uFKxgezFMsugwO5gn7J+4o58Iw\nQ/t6ae8eJr58bjKqQaCOc9U8Z+xrNb/PRQ87lkRcGqDQH+AO5Sj0hCQGhvBzDk4xJJ6NY9rVbwnI\ndIagFIAcKQYsOIiCgzuQh3B+Q4sxYx7IEys4SB8sx0dankoLj1B0DBzXp1jyiMkqUgPHQ7g+QTQ2\nUMuLOSBnoF8av52G8rNentm1jOR/+A8M/T9/hvH4D0n8l7/BfPsQIgjg+HE4fhz53e8S3PQBvDvv\nItiytfotMWkifDn9fTjZuhecqtt7lJHtigBZGpnH8TBdH2lKRBAQFBzM4TzSsiaurx1HZNqUFMsa\nuV0WgDA9fDuBCA04cx73Qj+0V/9h6ZzGhXFLBMkAv/Vbv8Uf//Efc8MNN4xawJVKJT796U8D8JWv\nfIWVK1fyh3/4h8RiMTZs2DDm/e3t7QghWL9+fV2fG4ZyzA9EvQRBiO9fHsFThB7z5cFcjDkMIZFQ\nnfLy+ZCzZwWrV0+UXVSiCtAEvh+SSsFVV8HZs+D7IQMDcOCAybZtQf2FTUwcs++ru1RhaIw4SYQ1\ni9+CQAWeYcjoQ0o57feou2IGUla/uxhNU8F6eVrUqrqzM+SjHw04ccLkwAGTQkGQywneeMPinXck\na9YErFihguXK9Rl/DlTromQf6rXK6eXxjB9vtXlqb2cl/4i2dRiGBIEc49QhpRjNnFei9okklOpZ\nynDk/dG+gkIhpL8/nGDRFy0v2s+h45LoPUPorMH3p5dtCoKQMJQ1vx/FYsiZM2AXQ8w5PGckk+WL\np2pMWF87jn/3fQjPpXR2GL//dZzdG/FeNRgIUxx/dYi1m1fQ3lVd8K8CFxuCkWMnkBghBH6IbJFz\nZRCEBH44coxKDCmRIWNcIMIQZMV3dgIhCKnmCUaPVwgDWR57XSs1djuJaP1msTwxsuKBMHDv3I28\n1I80LewDrxP75fOYJ44jfB/rlZexXnlZyTE2bcbfsg1/y1bCFStHbjfVtw+FHxKWXMJcfuK6FwsY\njoM0rOquG46D8HyEZartPvIwKs5vMlQXztKwwBx3HEogCJB2rFyQGoKwPcJ4EonAKBRnfTy2TJB8\n33330d/fzze+8Q16e3vZtGkTjzzyyKhbxvnz5zEXWtWJRqOZlEwGbr89YO9ec4Jn8mSEoboVP/6W\nfjR9JgV4k6GytkqjXIvICSM6TXlNblYWhhPbUvf2GixbJvnQh3zef9/gyBED1xUUi4IjRyzef9+k\nqytk6VKJYahgudWakEyG78PRowZeqZ1fB3eRH05R8tQAYjGwCyarB+Cdd0zE/7Um3GU1DIMrroBd\nu1SwrAr3RF2Fe61Awxw2Rjr4yZyB17EE2d6u/g9SSKuITKaQqRkUgC0g4qbPmvY+Tg51cE1nLwlr\ndubnJdfg1KU0a5bkScTm72JBZjK4d9+De/c9GCffJ/bCL7BffAFjeEjJMd7Yh/3GPgDCZcvxtmzD\nv/Y6wu5V0/8Q18U8+i5GaqJlII6D2XNeOaVYVS60fA/yOeTKlbMYZfNpmSAZ4OGHH+bhhx+u+tp3\nvvOdSd/753/+581YJY1G02SixiD1OFSUSvCrX5ns3t1cHyrbho4OiRBKAjA4KMYUf6vb24LOTonv\nq654UM6IplLN8/c3DLXtorbUxSJj3C1Wrgzp7DTo7xecOGGOSjHOnTO5eFGyZk24oAJkUBlmxwHT\nMgkTbdi+ukubHOnMJxIZeuK7ML0U2aycECR7nqS/nxG7P5B+QJgvIf2F5WfWaIeN1Io2NvzOTlLe\nIADCcVQQUyxCYXpBoyiVpp6pBUlYPtd0XuLkUMfUM08Dxzc5ei7D8mxpXoPkSsIrr6L08BcoffZz\nWIcPYR08gHXwTczTpwAwLl4g/uzPiD/7M6RhkPi/P8T9yMdwP7Qbf+v22rY44zyex1AsIAb6qnpu\nAyqTPDyIaPHkZ0sFyRqN5vIjagxSqTtuFZJJ+OQnA3btCnjlFZNbbw3G1GINDzM6PaIyOIsK8ZpF\n1JYa1HMsNvb3yDBg5UrJypU+584JenoMensNfF9w/LjJSy+p+rJqXQZbOYCOZBNCqHWPx6NxmzhG\nG3YBksmAVCpyyVDvC0M1vqEhNa3Ym2dZz1sUe29kaKi6x39UKBkhY3GGuzcg57EBiecpDfrVHjRi\nLUZ9l4sxwmwW0d+HcEoYQ0MYFUFM4Pg4F4eIL2vHjE8MH8JsFmkvvMzzqLXdYseyRiQW2wAQfX1Y\nbx3AevMA1qGDGLkcIgyxX3sV+7VXSf/F/0vY1YW76y7cD30E764PT8w0V/F4HvNa+cs5kaKF0k20\nLjpI1mg0C4p0Gm67LeDAAXO0sUij5RWVJJPKpCCVUs/ji8Gi6dG8yWT134u5JghUljtqJmKasH17\nwLFjkrNnla3dq69CNiuIxcrFy76vMuat0KXP8kssy5+kv/1KfKt+JwHXhX37DAoFNT7fN/B9VSgY\nj4eI0xZX5uDtFyzk8eo/h9ms5J57yt3tRDJBeM1GRHJhZZ+nRTKJe8/9uO9fIhh8Hffem3BWla8K\nh88O8/73XueqO2+ibdVEmYdsgOWWZu6QXV14uz6Et+tDEIaYh9/GfuM1jEu9WG+8jggCjL4+Eo//\nkMTjPwTA33Q97l27ce/6MP7mzfM8guajg2SNRrOgiLJehqEkEK+/brJmTUgs1jwf/Hpaaiuf5ell\nRyId82yboVTDNKGzU45mXF1XyTFcVxX57dtn4fuCkycN7rqrfEvdcWBgwBiTpV6oqIBYjFrheZ6S\nxWSzknhcYuaV13ZnpyTITtxnpZLyoPa8cuzXqM6RLcvIVaGMx9Vze4Wn3DDVpy8ARMkZKRqoYic2\n2fu8+W2uMWcaZ8MgWLsO2dWF8+nPAGC/8Etiz/2c2PM/xzz5PgDW4bexDr9N6v/7b8h4nOCqtXjb\ntuPffAvhqisik/VFgw6SNRpNy1IqqcKqyRwvYjFYt0693qwgeTqBkW2r4GtwUGl/x1OpX46C4mKx\nrGNuRgLONMfKEiIv5q4u6O6WnDsnePttgxtvFCxfXg4So+zzfONbCS6m6+/iOp6oqUoU+KdS6n9X\nQCGvxlo9+y+r7svJmA85Riu0ym5VpK0kJMb584io8jaoqKr1fUQ+h0xnahYQyGQKOU9XjPOlcZbt\nWdz7fxP3/t8EKTGPv4f93M9V0LznBUQhj3AcrCPvYB15Bx77HmHXEvwbtuJv3Ya/br26Sq3mcQxq\nuusCsjxPpIUPQ1pFhqGDZI1G07JM5XgRyS1qyQJyudlZwtVDMgn33BPUdLWo1C9H8ozhYfWczUpc\nF959d+6EwOvXh/T2qg51v/iFxWc+47VEYDynBIHKFDZQVzIfcoxGF/JJYeAnM0jRwsL06TIiITH6\nehFAmG0fW2RWLGAdOYK/cePE4rMRpOtiTGZtU0HcCtjQnSNuLaK7DUIQrNtAsG4Dpd/+EjgO9qu/\nIvbUE8R//E+YZ88AYPRdIvbL54j98jmkEITZDvztNyLbqxRF+h4ip06AolBUDhi+hzEwgDQMhAwJ\n5lvvhQ6SNRpNi1CPpCGiUIDDh01uuSWgs7PslBEVyzXLEq4WkSa5FtV0zVO9p9EoP2GVUb35Znj5\nZTh92uCddwzWrQtHC/eEGJsEiqYvRKL1Vg1Z1HETBOCVoC0UFEvgFya+r1is38pvPuQYjS7ki9wu\nFo28OJlEto3Y2yXT424bCGQ8UWU6Y+aZ1P+xgkQs5Jru4VmvcksTj+P9xi78rdsINlyDFALrvaOj\nrhnG0CBCSsyBfsSrr1D65IPI7LhA2XEQg/0IJGG2S93acRxEbhhpmAhkS+i9dJCs0WhagkYEF5FT\nhqY6UTGfYahmHldfDcmkpFgU/PKXFqbpI6Uq3AMVeEV3oKM7p/4Cs0vzfThzxhhtgBKG4HkmliVI\nXIxxixvjrbdjlC5O/EGO5Dul0sSCzfmk2ZKOUbeLy4AwFBRdAzMULIK8+ZQ0Q+Ms27N4Oz+It/OD\nEIYYp04S++XzxJ9+EiOfI/FPP6T0z/45sqNz7BtjMUCOdcCwbHUAhq1xnrkcjgmNRrPISKdVQD3f\nLhIzyX5Xo1QSo7KRKNtZ7REFeVHAVy9RMV9Hh6SzU3LVVfDBD6oFFQqCvj5Bd3dINqvm6e4OWb1a\nPbq71aNZvs+NwPJLLO8/guWXPXsj2zfTVL/DsZi6MEil1L5LJtRzKjXxYVlKM97sxjD1UpZ01O/4\nUQ2nd5gL/7gHp3eRZ0CrkHNMDp3M0jMYJwhbT2/UaPlGpHF2/CZlaQ2D8KqrKT34EO5tt6tJuWES\njz2K6O9rzmc2ER0kazSaBUeU6ZqLu3G5HLz4okkuN/G1KPs906xbVOynvHtVoxLXVUGd4yhZQF+f\neo78fj1PPcJwZgV2UTGfZamg8YYbVPALsG+fstWzrPLrlY9WDpABrMBh+eC72OHEYqHIWzkq4ovH\nQabSnOq4AZlKTxhrPF7DdSQIlJZyHvWSsz3uxuM5IRfey+M5k2cWF4NWWZRK6gsVPYpF3FLAq29n\nyPW7Y18becxno5RIvtEqjUnqwd+0GeeDdwFg5HIkHvvexEA5ukUVPfyRE5zvgVvxf7XHHHwHW/yU\np9FoNGOpdLyYC5qpa64s9jt7Fg4eNOnqkqPBj+MoyUMUxEppjAZvSoeqgmQ5i00hBNx5p8/3vhfD\ndZXs4oorwsuiiE8aJq6ZRBrTv9oS+Rz23pfw7tix4GzQZstC1iqPulwMDiKcctBrDAWYxTzZnqMY\nvQKjvfqXKWqUMt+WcAsNf8s2sG3iz/5MSS8ee5TSZ/65chMJAoye84hcfmLhXhhC7Jz637InXqEH\nPsL3ml7cp4NkjUazoKh0vEil4LrrglEJQgvUedRNVLg3PDw20xkRZXSjv6OHlI3ritfdLdm0KeDw\nYZNjx1QL6+uuaw1NYD34ZpwL2WvwjLFa3UjGYhjl1tZhCMaIsYXrQpXkM24V44tcDs4fNli5BdIt\npFOeCxa0VnnE5WJ8kOueHUae2UMKgffRnWOap1Qy2ihFB8l142+7EWAkUM6T+P73KH3802CahCtW\nErZ1TCzckwHBym5wHGQsMfG2ju+pfdnkk74OkjUaTcsyleY3Oj++9prJ7t1B04qrikV4+WWTHTtm\nfou7UfrlZrF7t8/wsOD0aYMLF9RKbthQTp9HtqZRkX/UCKXyN2q+HTB8K8GFzo0jThUquvV9uHRJ\nFStGftG+LzBNQcIxiA/DsWMGpfjEHRO5W1TebZdSTa+ZvQ8CRLGATKbm7KqtFVplLwiSSeS4NLjM\nGbhtXdhuoa4mKaJUmpGT73xKN2D+LOr8bTeCEMR//rQKlB//Ac6HPwLZ9rGFe/VIeeRIwQEjt72a\ncALSQbJGo2lZZut4Md4SbqZICfn87CQX0x1Lpf9+dM6P/vd9FXcJUS7kU04VM1+vCNuGT3zC4wc/\nsDl/XgXKP/uZzfbtwejnOQ4cOTKa9KGnxxijVW5FBwwVFCvnkygDH4+r7ZgcuXBJJkFW0R97npKl\n1lO4Nx9yjEXdKrvJyEwb56/ZQfeRF6c3fw3ZRkTg+DgXh4gva8eMVw+xIunGfDCfFnX+1u0qUH7m\npxjFAomfPYW76y7CjiVqhiDA6O+bvtzC8+DcGaQ1si19D5yS+sJbjWljqoNkjUazYEmn4bbbAg4c\nUBm7qLlIMqmCoIVkCWdZynUhCsygXMSXy0E+LyiVKrOhY5MmljX7LHUsBg884PEP/2AzPGxw6pRB\ne7tk1y5/NIu8cWNAMqn+HhhQ2zpKAkW1N61Y4Geaar3CUF0QmCYYwmIwswojZmFXWeeZJILnQ47R\naG9mp3eYwWcPkP3wNuJLdQe/MdSQbUQMnx3m/e+9zlV33kTbVNKNRUzJMzk+uII1MYdExQ0Of8s2\nMAxiP3sK4brEnn0GiSDYsk3JLzq7kEJMT27hlgi6r0DGR1xeHAfhFBt6AmrBU5lGo9FMj0gjGQWH\n+Tzs3Wtyxx3Nk140i2QSrr8+JJMpt6guFlXmds2agPfeM0kkJNlsOZMbFfKBynY24rchFoMtWwIO\nHoThYYNDh0xsG+64wycI1HpG1nux2Ng7pTCvpg91Y0qfJaWznE+vb9gyp5RjNIImSzoit4vUzrAh\nzUkWHVVkG6MMg4zH65JuLEYc3+Do0EqWd50hMU6Y4m/egrRt4j99AuH7JJ75KW4hj7ftJnU8myaE\nBsTiKiMcFWtUIlBeyhNOQI31a2xRdZxGo9HUxnXh2DHBPMv7Gk4sVg5CU6lyljaZVK9VBqWRzCGy\nNmtkrGRZsHVrwLJlSsexf7/Jiy+aEwK/8e5NlbrlKk5ala5bo406NPUj8jnsF/cg8lV8CWeyvESc\nYP0GROLyC4nTafjAzcGsJVnNIggFw0WrJT2cZ0Nw1VpKd39s9GIj9tIeYs/9bO7ao04TnUnWaDSa\nSYjFYO3akFOnJuYUcjk4cMBk27bGedaWSgJGMi9KXiEplRjjoQxlvXKkUW40lgW/+ZseP/6xzYUL\nBm++aREEcMcd5YK4c+eqa5Ij3XItIg9o12VegxPPiHM2M9ENo9VptKQjvSTBtocal01fSJgmLF8O\nyzaHiHlsTlSrEDBXtHnpyAp2bOwhm5yYJZ3vQsBaxK2QDe3niZs+UP0KXnZ2UfrYPcReeAHzUi/2\nO4cJe3pwt90IZmvkcHWQrNFoFhSxGGzaFLJ6tSSRaH5GMpGAdeskPT0TX2ukh3LUWGRwUOA45ah3\n5UrVNnp4GHp7BaYpR23LXFcFyJFNXKPvvCcS8OlPe3z/+za9vQaHDlk8/rjkc5/zsCzo7g7H3O10\nnLG65VoUi5DLidEAudI1I3p9vHNGtHzfL8trouLFmeKZCc5krp0wPepsGC0/l4OhIfXacJDhxNUf\npDOIEw5NXKZTnDit0cyJpKMKi1WrbNoG1tIMvm3MyLFiNkxVCGgMCbLnBjG6vJoezrKrQ50YS62T\nhU3YARuzPUgrQ60gGYBUmtKn/hnxZ57COnEco7+P2Ksv443Yxs03OkjWaDQLispivFJJyS4Ww637\nysYi4xkehljMZN8+k+3bA7q6ykFlJMmICtOasV4PPujx2GM2fX0GTz1lMzgo2L49GHWKGK9JrtQt\n1yLaZ64LR48apFJjg+3xzhmggtaBATEqMwmC2QfK4wkCOH9etaKOZCPPPGPx1lvqdc+z6O9PcO6n\nsmpHvkxgsmEebfCayWLVKstMG97OD87Ph09RCOidHSbZ9zreR2+q6eFsJhPqS1fKN3NNm0cshvOJ\nB5HP/BT70EGMfJ7Yq6/gLF0232umg2SNRrNwcV11y//mmwPSaVW41wwaZSU3FVFjkVqvVWqWo/Ua\nH6Q2g1QKPv5xj8cftxkYMNi712LvXgvDkHR3S9atC7n6alV0WC+xmPJjHl+wON45AyKnD4NYTGXe\nozbdjcygh2G58YhlqWW3tamCyYilS6uPs1QSDJ0Xc1+8OA/ezJoGMttCQGv60oQgFBQck1Q8wDRa\nyPnHMHB3fQjhlLCOvovwXOI/+RH+9ZsJVl85b6ulg2SNRrOgiZp0VIsNxlvCzZRGWMk1Q788l6RS\n8LGPebz/vsnBgyb5vCAMBWfOCM6cMXjhBchkJKtWhSSTcOONk0suKhkf/EfTql0ARIWKtl22w2sG\nhjFiE2eo/V+5bq5bvWeBlJKhMMOxKz/IyhpyDNtuvPvX5dwqe7aI3DDWgf3427YjM7OXkEhh4Ccz\nyHqaYjSBmWic513fLATBlVcTptLYb72JCHysgwcgDAnWXzMvq6SDZI1Gs2BxHDh3TowWs42nlSzh\nZqNfNoxykFYqCQoFWVO3G9GMwr5kEv7lv3RJJODQIYOf/tTi7FmDixdVQJDLCY4cMTlyxMQ0JRs3\nhmzbFrB1a8Dq1bIpBYZzjevCvn0GhcLEwbgu5HIWw1dZDNSQY2Szknvumf4FxHRodCHfZeV2EYaI\nRhUWAKkVbWz4nZ3zZoM8W43zfDY6GV2HFSvxYjb2wYMIp4R96CCiVMK/5tryycz3RpqHjOu457pQ\nLKhpDdDh6SBZo9EsWCK5RXQuTKdVU4XF5tOfyShXif37TRwHBgcFxSIUi8oJw3FUs5F0Wo5qeJtZ\n2GcYSn5y440BO3cGBAGcOGFw7JjByZMGjiMIAsHhwyaHD5t873uwZEnIli0qaF67dgGZKY/D96FQ\nEFWtW9X2laxfH1Y9BkslweCg0js38hhtdCHf5ex2MVsi7/Z5Y5Ya51ZpdCKzHZTue4DEj/8vwnOx\n3nsXMThAcPU6dQKq0XFPOCU4cgSJQBTysw6UdZCs0WgWLLatHBaiYGXef6CaSDIJN98ccNNNAW1t\nqpgPVGYS4MgRc4yrRLXCvmZpZVMp1Qhl/fqQXA66uyW//rXJm28aHD9uIKXg0iWD5583eP55pWW+\n+uqQ3l6DO+/0qwZ3le24I6q5W4yfL5qn2dh2dS345IWLcoxzyWQUi7XbYY932MgPq3EPD0M4NANJ\nx2WsaS6VoPccZEoQX2ANiGqySJqdyK4luB+4BfutNgbQMQAAIABJREFUgxjDQ5i9FwHwbvwAIKt3\n3Cvm8TduRCIwcrlZe0zqIFmj0SxYEgkVkCUSzfuMyXTNc1XQV/l5bW2MSkcqC/2ipiOT6XrnoqDM\nMGDdupAbbgh58EEYHIS33jI5cEBpmXM5pWU+dszkL//S5C//Mk42q7LMN90UcMMNQVUPZqjubuF5\nat7xXs2+H7Rke+zpUCzCU0+ZDA5WD6jHO2yE/RbxXxsceNLC6LTqlnTke3Kc/8eXWfnQ7aRXtXbg\n1Gg8D06dMrDeFWxop6nnkpmQSsGm6+fXw3kqqumfg3yRUt4gKdyqBnC1Mt0TSKZwb9+JvX8f5sUL\nmL0XEa/sxf3ALaobX7WOe8kUWm6h0Wg0c8BkuuZGFPRNRmWxX1SgaLSGx/60yWaVBGbnzoAwhGPH\nDPbtU0Hz6dMCKQWDgwZ79hjs2WNhmkqukE6rbPPKlWUtczV3C9ct+zVH8zhOc+zw5grPU5KaeBwS\nierHV6XDRhBIiEO8XeLFqVvSMV25xmLVKgcBnH7f4MotrRckz6eH81RMpn8evujw1pE2tq0bICur\nB6symYIquukJWBbebTtg/+uYp09iDA4Qe+lF/O3bGzGMyT+66Z+g0Wg0mhlRWezX3q6CzfGUSgIp\n5Wgjj4hqhX2RFEHK+Qm2DUPZva1aFbJrl8+ddwbs2WPy3e/avPuuyjIHgSr+A3jjDeWYcfXVymJu\nxYpwWsV/YVjeFp6ngqAgaE5nwmaSSMgp/aYBvCIEFphJMBPTl3TUy2LVKptukZXvvoTI3QHtrdUk\nZV49nKdiEv2zf+Qc6V99n2DrVvxV1XUs0nWx9706vc8yDIa33o5jLmfF+69hFAvYr71KcNVaZPcV\nsxnFpOggWaPRLGhcVzUUue665skuomA1nW4dyWZlh75iUVAoqAyi66rA8Px5QS6nCvsimUVUzBeP\nQyolMc250e/WYskSySc+4RME0Nbm0tNjcOCAwf79JsePG4Aaw1tvmbz1lolhKC/lbLacYa4ltzhy\nRP1/8aIxciGhsstSqv3ZKvtRM/8IGWI7OYRsnY51C4Ya+meZGQbbQiZSyFS6xpvrvJgTgp71t9PW\nJkm+tQ/heVjvHMbVQbJGo9FUx/fh+HGDdeuCpgXJpRL86lcmu3fP3Equ0frlyg59w8Pwyismt95a\nLur7xS9MMhnVBCO6ZR9ll1MpSKVU0wvHGet+5Tgq6zrXcoXIMWP9+pB77vF57jmT3l6D06cN3n/f\noFhUWuZ8HvJ5k6Ehya23qgB7vNwiao0NcOaMsglMp8tjWmiSlYha/sylMMOJ5bu4Oowji2r8UWGn\nZanxFosT3Tg0IGNxhpavI9N3ar5XZU6Ya42zcBzVtrIaxcLI7a6RytuRW11CSjAmBtAJ02Nj5ixk\nrsJL2phnTuFff0MT114HyRqNZgETi8HatSGnTlWPelrJEq4Z+uXKwr1UamxRX1sbgMR1Ba6rfnBc\nF4JA4DiSXE6MtHRWco0INY9a3nxmWxMJ2LhRFfRJCT09gqNHDX79a4OhIYNcTnDsmMH69WHN1tig\nAkPTLLftblbzkWYzmT+z75vk83Euvi5HpCZqnmQSDEO1/I7FTO6+u7o13QQuI7cLGU8wuGIDqcGe\nhizP6R1m8NkDZD+8jfjS1pJuwBxqnK0YMp5AOA7G4MQru8DxcU5fxBwuYIAquHNdcEsQjyOTGeQk\nx164bBmyvQ3Z0dG8MaCDZI1Gs4BJJGDdOknPyO9bqQSnTwtWr1bSi8ViCZfLwcGDtbv1VSvqi8Vg\n9+6xFwhRdjEWk5w5I7jxRpAyIAjKkWOk5c1kWqf4TQhYuVLS2RmQyUjeekvJKE6cMOnqmvynXl0I\nlDXJUiqJRq1gOdIwC6GeWyWonsyfGaB9pDGEssOTZLNyxJFFyWouXZp+Md/l7HYxWzwn5MJ7eVI7\nQ1qxvHHONM5JVeTp3ru9qh/z8Nlh3v/OXjZuaCdzVYdypCgWEEhkMo1MpSCY/y9fi5wCNRqNZva4\nLrz3nsHy5c2TXswHUk7erS+TqV7Ul0wyQR6STJat4VIptezx1nCxWOsEyOMRAm64IWDPHoHnCd5+\n2+Smm4KqnsW+DxcujNUkhyHYtqgpufB91ZjFMNTfpdL86rbHU8ufuZJKr+ao42Iky6nGeJ/l/BAM\nDEBqCIJM+XNb4Y5MozEMSKcWrgSnpbHs2n7Mw0AsjkwkkMn0iHelQMbiyvfYsiGo0Up1DmnR06BG\no9G0PpN5KGuaRyIBW7cG7NtnUSoJ9uyxuPfeiZGsZcHy5eEYTbKU0NUla+4vzytbyEU2q616wTBd\nXBfeesvAda2qga7vdJC37iT9iyRW3JzguwzNaafdCmQycOutAedPtKb7yfi7Y5cLQSgouHHapcF8\nXr/oayeNRrOgaXZDj3QabrutemY6n4cXXzTJ55vz2dHYdMHVRK64QtLdrVLr77xj8t571X/OLKs1\ng5+5xPfVxVw8roLd8Y8lyw2u3JxmyXKDbFbS3i6Jx5WEI5tVfw8OCrxSgMgNz01Xmjkkk4FNm8KW\nlGZFd8ca0BdjTkllDK67JUUqM7MwM+fFeeHsBnLB/F4ZLPDrY41Gc7lTWRDXjB+SSNc8H7djo7EN\nDakg5+WXTXbsqK5LrodSSRAVnY+XW1TzV4baLZLnk82bAy5dUoWJzzxjsWqVO2E/RYVsYbg45Baz\nYSa+y3YKonbahQs5Lj65+LTKMqb0szLWeipikRtmxeE3EVu2tpyH82QY2TaMj0xP+zzasW+M24Wj\nTjp+oL6A4y50xRx9KXWQrNFoNAsAKVXmejqFZLW680XeyufPC/J5wcAASKms1aC2v3JEKtVa0oNY\nDDZtCjhwwKJQEPz85xYf+cjYH0/DgGRSjq775Si3aBTT7cy34EgkCDZcM99rURUhQ6zi4vRwlqZB\n2N6GcAqqY1+xiBipHBYBtPWfhDCPsCWEAYE0KARxUqaDKUJkPD6pA0Yj0F99jUazaGiW9KIRVnJz\nqV+erJDvnnsC+vpg3z7B3XfbSOnj++oHuNJfecUKOWG8lkXTZC0zZelSyfXXB7z9tsm775pcdVXI\n6tVjAwrDGGsBF9nC1SKyjDNNXdC16LmM7O6gxTTOlo1/526c5SqDL4aHEECYbSco2qT7TiNTVxIs\nTUA8zqCT4MVz69nZ/R7ZeEkFyFZztWj666/RaBYNkTwhOvmXSnD0qKBUmt1yI8nFbH5Dm61fni6q\nYx0sXy7p7FTuF9GjrU29nkiU3REqH60WIEfs3OmTzar05gsvWPT0XOYi5GniukpyM/5RKoLnq+dC\nQV3cFYvKYSVywahsgb6QEfkc9ot7EPlcY5aXUNINkWg96Qa0jsZZCgM/mUGmksj2rHq0tavufcJE\nIpAw8lz9QRCqA3LkUa099mzRmWSNRrNoWSyWcFM1TamXTAZ+4zdC2tqgv78hi5xXbBs+9jGPxx6z\ncRzBU0/ZJJPw0Y8uEjFxE5isOUngZvGNO7EOJjFjJq6rdN1ywCI74nrRebW5KN0uZkt6SYJtD62f\n79WoSatonFMr2tjwOzvHHD/SjhFmsxiDgxhDAcJxEEYJUQwg8BBFh7a+9xFtg4igepGETKWRlqW0\nzA1AB8kajUbT4oxvmjKeXA4OHKjdbGQmlEpKl1yLagV+81ncd8UVkgce8PnpTy1cV/DDH8Y4etTg\n6qsDwnDhNxNpNJM2J0mZ0FE+kNQ+LrteyMjtYprNSTStQ6tonKs2ekomce+5H+G5uGeHCS7uJWhr\nxx9pNhL0eaSHewi234jfVV1mIS0LYnHwa7TCrhMdJGs0Gs0CJwwnbzZSD5alivscR+A4E7OMngf9\n/YJEQo60Px5b4DefxX0bNoS0t7s8+aRNX5/Bm29aHD1qkkyG2t2iBtNpTgLqgiGRANsC4pLGiBPm\nn1wOzh82WLkF0u1Tzz/XCKEuRC4bG8NkUkkuqjQbkUUXadnIZAqZmhvtlw6SNRqNZhImK3RpREHf\nZFQW+80V1dpZVzI8DK+8YrJpUzAaYCUS5YyzaaqgcrLAUmWpm0M2C/fd53HypMEvf2lTKAgKBYNY\nLBzVLWt3i9pEbbwrcRy1LUolYOTCoWhM7OC3ELvySQmDg3DyFZNbPtJ6bewjD2cvM9l9ndZjtgWC\nqRRsutYj3j+/3pOX0Vdfo9Fo6mcyXXPVW4YNJJ+HvXtN7rgjaHrTlEqqtbOuJJWCzk5YuVIyOKh8\niispFssZ585OWbUZSjarpjdDomFZ8PDDHuvXh3znOzGCQHDunEmpFHLlldrdoha+D0ePGjjOxOmu\nC6GXRRh3It9O4vhqA1YGxQu1K58MApy+HKGXBFrL4aKVPZwnw+sbJvfjN/Ee2kpiVf3aZ9OEWEIi\nhGQ+hSE6SNZoNIuWuQwsm01l05RmUctfuRqRnVytIDfKON96a0Bbld/IKOvYTB3z7bcHnDnj8fzz\nNq4r6O83KBTUBUBnZ/M+d6ESBCprHNnlRZimut2fbjeJL8vgOGAUVTe+KCAulcSC1SlbXonuoy9h\nFHZDZ4s1SWlhD+fJmLX22TCQ6QxinnUmOkjWaDSLlkYFlq4Lx44JrruuBbxFp8FMC/lq+SvXIpmc\nPCBKpZSt3GRZ6WbT3i5ZvTqgv9+gv19lSV980WLr1oArr6x+bESFflHhXqmkrNCgdkdCUAHmYtAv\nW9bYYj4h1HaIx8v65SAo2wQqZFUNu6a1WCgaZ5lpw7v9DuJnz4xOy8QDrl8ziBnvnrP10EGyRqPR\nTIHvw/HjBuvWzdxKrtn65UoaWci3GDAMWLMmpL1dcvKkSRgK9u+3uHQpZMuWYEzWVG27sYV7x4+b\nDA2p1x0HenoM4vGJWmXfjwLlxthPaZpPmMpw/podLHv/jcYssMWbkyxUjTOAYUhisRDfmLs110Gy\nRqPRTEKjPIpno18OAhX0NqpbXy4Hb71lcNdds19Wo6i0nKuVrY0ytdHt/3qytkLAsmVKHnDypKRQ\nEJw6ZTAwILjtNn80I6okJ6qwLyrcW7s2YNUqRtdtYEDti/GuEFFfg8up0G/BY5p4iQxSNEZ8nu/J\ncf4fX2blQ7eTXtVi0g1aR+Ps9A4z+OwBsh/eRnzpNDXLQiCTiTlNg+uvskaj0UzCVB7Fc0GhAG+9\npQr4qkkX6tVeR9nSVsg027Yq+BocLFvOqQ5vgiCQ9PUJ0mk56jbhuuXb/6AC1XouHFIp+I3f8Dl4\n0OTcOYPhYcF77xls2VLeGFEb66hwL5GolBWo7V0pPahkvDOEZv6JCkmrMTysOgu6rvo7HJo4Tz2u\nHVKqz5OtmqZtEY2z54RceC9PamfIVOG6KJVGs97BVWvVxi1M7oMsZttmdQQdJGs0Gs0CZy6K+iLq\nKe6bDtUKACNrsVhMcuqUycaNSqYStUKuzOKOLzKbDrYNH/hAwLPPCvJ5QRDUl5mKZBXjiazSarVs\njjLkmrmjWISnnjJHiwrH333wPBg6bTB01OCN/2MhOiYeTNms5N57A13sOcdUduATzrig1/MQ/f3I\nzs4q3XAUYTaLtGdXta2DZI1Go5khs/UCXYjUW9w3HaoVACaT5YxtZYHYZFncehBiZoG+78O5c5Nr\nko8cqb5+jqMSYDpQnjs8T3UHFAKOHxdV23DHioIlDpw4YeAmjXHvF6OB9ac+Nff2ds3opjkXzLZA\nsFSC02dSrL7rfpLmxC9MODCEfPEVxM5bMTqqVwZLOzZrqxUdJGs0Gs0MmcxDuRFExX5RG+VcTk1r\nwXqgCTQi41wqCRynnJmdzFkiotmtsS0LurvDqoF6tK5R5ns8xaKSuSwGS8KFhm1LfN8gnZ6YeEwk\nYZkDg11QmrBPJUND89eGO/QCShcLhF6cVvNwnox0V5yND6wj6JrZ1Wz53Jok0T5xo+eH4cSJDFfv\naifT3jzttw6SNRqNZgrmy285KvYbGlKZlV/9ymT37uq65FZjNhnnSKd8/rygUGCkYUltrfJ4otbY\n0y3sq1c/almTa5LHWqONRWeR55eqbbjtDCfX7gIrRbzKRV2Nu/lzglHIseLwyxi33N56Hs6T0SLa\n59mig2SNRqOZgrnU/DaCmQb1rXJrN9Ip9/WNbUhSS6s8HstS22CqILmVvWLHa5unk0WHxePVPJdI\nw8SJ1d8VTtM8RG6YFYffRGzZCu1q31TK2+YKHSRrNBrNDKknGJ1L/fJMg/pW8ldOJlUjkvENSZJJ\nCMPJo1vfV4/I1SBqChIErR0YR7iuag+dSpWznpP5M1eivZqbz2RuGflhtf1rOWVAfW4ZjaZVLoSn\nolrHvkp521x1i9dBskaj0cyQeoLRZuuX6yEK7uPx2k4MrUgtGUaE50F/v6CzU2LbamylkiAI1GtC\nCFKpxjlzNItYDDZsCMlkym2fJ/NnrkR7NTeXSreMavhOB3nrTtK/SGLFq6f9s1nJPffMfREgtI7G\nWSSUX7NIzK9f81Tor5FGo9G0OOk03HZbwIED1X/UgkD9eE+32UgiAddcozLarRwkjy/+qyXDiBge\nnijPGBiACxcE2Syk05JEwhzNLLcysdhEbfN0nT20V3PziNwy4nFIJKpdIBssWZ4e+Xvi66WSmLci\nQGgdjXN6SYJtD62v6z1jJBhzhA6SNRqNZg6YTfFfVMBXKwOaz8PevbWbjSxUqhX/1ZJhRIyfnkio\nrKptq4dploPISHqhGpnM3lau2dTyZ65kvFezaaq/tU65sSQSsmZx5uTI0aY5EbOVbySTXBYezpUS\nDCkM/GTjOiXWQgfJGo1GMwcstOK/WiwUTeN06OgIGRw0GRoS/OIXFjffHNDe3pr7aDJ/5vHzVXo1\nG4aSpFy8KHSg3IJMJd8whi06zwkO/cwibKu+47u6BJ/7XDPXcu6ZymdZZtro2bSLdZnm3jbRQbJG\no9G0KPNRzT0VrVTcN1u2bAkxTTh2zKRUErz0ksm114bYduts74jJ/JkrGe/VbJoGxSK8/351uzzN\n/DKVfMOOSbq7JWKJxEtWl28MDIiWsxbMDQYcetVh8y1xMtn6tc+ZDGzaFOJlqolWyh7yzZas6K+M\nRqPRtCiVxX5z9aPQKJqZca63UUlUuKeK99Rz5I183XUh2azk4EET3xe8845JW1vI1VeHdfsnN5vJ\n/JkrqfRqNs1yNq5YVB3/or/HW8pF9nHjt6vva51zs6kl3xCJDAPbP0gsnsKuerzLpjfQmRG5HOlX\nX4ZNt0O28drnSILWbHSQrNFoNAuAen4U6i3ki2hk05RmZpyn26jEtqG9XY5uDynFSJMRgZSSMFTZ\n+nRacuONPm+/bZHPC4aHDd55R9DdHRCPL4wOh5Ph+0pu8d57JhcuqGnVLOV8HwYG1DaqzDoHgQ6U\n5wtpmPjJ+jycZ6Nxnk97ukpkTLlfyFj5inC2ra5ngg6SNRqNZpEx00K+xaKbjkgm4e67A/btU1Fu\nPK6CQseRSBlSLMKpUwbLloUkk7B2rcsrr1icOGHieYLTp03WrVs42ftaWBYsWyZZvz6gq0tNq2Yp\n5ziQyxnEYmO7zPm+CroW+sXC5cBsNc7zaU83hiod+6aSYDQDHSRrNBrNZUaUWV1MThhQXYbR0QHb\ntyvP4UxGkk7b5PMBQRDS1weOY3DrreXgcceOgEcftXntNYsgEBw9avHoo/Cv/pXb8u4Xk2FZ07OU\nq3QCiRBicWjQLwdmo3GeU3u6IEAUC8hkqqWvvlrcUl2j0WguXyL5QxjC0aOCUqkxy83n4cUXTXK5\nxiyvVYhkGONlKZWew+m0ek6l1LTK4DGatmlTyIMPeqNOFy+9ZPG1ryU4f34BtOurg8gJo/IRZY3H\nP8bPq50yWptI4zz+Eesc0Th3Zia8Vt33uTnke3IcfeQl8j3TPwlVk2A0G51J1mg0mhYlkj8MDU3e\nrW+hFfVNl0YW/5VKYrSIrVAoZ9Oj9tXjC9ra2iSf+pTLc89ZnDxpcuqUwX/6Twn+xb9oMRuBGVLN\nUm4yTbLnqfmVplu3vl6ozETj3JT1kFGdQB1vqiLBaDY6SNZoNJoFzlxVekNji/umohHFf1Era3Ub\nWVllFQqCMBT09THyEKN3fItFKBYFIInF4P77fS5dCvj+921KJcHf/m2cbdv8aRUOtjLVLOUm0yS7\nbnl+3fpaE1GrSHCqAsH88OzuRojcMNaB/fjbtiMzzQv69SGu0Wg0mmmz0Ir7olbWngeWZdDREWdg\nwMf3Q44cgUOHLD70IZ+NG9X8w8PqOZuVo3KMWAw2bgz5H/8jRn+/wYEDFtms5OabF7ZQt5ql3GSa\n5Mp5tdOFZrIiwakKBMN+i/b3DK4oQrXr+6nuIpUKIbl3c2SuCYk3MUGgg2SNRqNpceYye9soWmmd\nk8my/jibVQGf76vsu2Wp58oixmj+yiK3a68N+dM/LfGnf5rg4kWDF16w6OjwWb9+YQfKGs1MmaxI\nULSlEUt/g/ZYCmlMvKjOFybXtk91FymS/1ztQTMVyrpwT6PRaFqcKHtbTY/cSIJA/TA1IkvYzHXO\n5RpTeCiEyoxO13e1owO+/GWHeFwipeCJJ6xFV8xX2XhlssI91y1ruQuFspZbc/lRrUgwmTGxu9pI\nZsyqBYSJ+BR3o4IAqzg877csdCZZo9FoFhkzLeSbqb/yXNOoRiVtbXDNNSFtVSSNpZLSJY+nvV2y\na5fHs8/a+L7g8cdtHnzQpb29dgOHhUIQQH//9Av3jhwZq2cuFHSgrGkMRiHHisMvY9xyO3Sqjn2V\nEoy5QgfJGo1Gs8iYy0K+hYxqTjBW81hZ6Oc4E7PEQ0OqIv+223xeesmmWBT86Ec2993nEY+rLNlC\nLWgzTejslBM0ydUK94pF2LixfCFWLEIuJ1pCXqNpDVy3tpyiVILAU4HvUJXCPqc4cVrlxfFcySAW\n6FdZo9FoNDMlyjRnMtV/oBYqjbCMqyz0q8bZs3DsmMGWLT6rVkm+//0Yg4MGr71m8e//vUMyyYIO\nFE1z+oV743XbrZpFdl21vq5bf98K7Qk9M1wX9u0zKBSqy5FK+Sx5406G9sRpe2viTskEJhvGb/cg\nwCoWILhMfZL//u//nm9961v09vZy3XXX8dWvfpWtW7dWnfexxx7j8ccf59133wVg8+bN/MEf/EHN\n+TUajWaxUirB6dOC1aunpwE2TSU1aOFGV0D9xX+NkmFEhXvVGB4uNyf5+Md9BgYEzzxj8+67Jn//\n9zH+zb9p0UjxMsV14ehRJRPp6RnrCz0dfF/JkK69Vhdo1oPvK6vF8RdcEaZpYtgZliwPSFbp/Dd0\nXkyQI4+RYMwRLRMkP/HEE/zFX/wFX//619myZQv/63/9L37nd36Hp556iq6oX2gFr7zyCg888AA3\n3ngj8Xicb37zm/z2b/82P/nJT1i+fPk8jECj0WjmB9edvNlII4macCSTzQ+ym203V62N9XQplQTF\nouTBBz0uXBC8+abF3r3KGu5Tn6qehlY6Z81cEovBhg0hpikpFNRxW0978cjrd6FKaOYb2669vYOg\n+jlESkmppM5rlT7Lld7LMhbn0tINXNXk7nsts9u//e1v89nPfpZPfvKTAHzta1/j+eef5wc/+AFf\n/OIXJ8z/V3/1V2P+/7M/+zOefvpp9u7dyyc+8Yk5WWeNRqNpBebSbm2hFPdNh6iNdT1YlpIYOA6j\n/rAPPeTR12dw+rTBU0/Z5HJw111+1e2TzcqqmTVN84jF1GMmF0Og7ky0qpRkIeP7cOCAge+PvXh0\nXQj7TbpNwbsVPsthv0X81wYHnrRwkxkGBq7jejya2T+wJYJkz/M4dOgQX/rSl0anCSHYsWMH+/fv\nn9YyCoUCvu/T0dHRrNXUaDSalqQVG3zMZcZ5Lkkm4eabA266KRjjivGRjwR85jMpTp822LPH5uWX\nLW67LeCjH/W5+26f5cvV/rHt2lIOTfOo1oZ7uu/L5VSQ7boLW2/eaoShkmSk02MlGaYJuJKVHRJ7\nicQbkWMEgYQ4xNslXkpZz9VzV2AmtESQ3N/fTxAELF26dMz0JUuWcPz48Wkt46//+q9ZsWIFd9xx\nRzNWUaPRaDR10MyM83w3KonFlKa7clzt7ZJ/+IciX/hCgvfeM/F9wYsvWrz4osWf/IkKrO+7z+f+\n+z3WrZveBU2lDV3kQzzVBcdCt6FrFtXacE8HdccA1q5tjcY4i5FKScZ0iySllBSLYrRDZuWyGnkR\n2hJBci2klIhpuLx/85vf5Mknn+S73/0usTqPYsMQGEb9OjHTNMY8Xw7oMV8e6DEvfEolOHVKsGZN\n7UK+amPOZmHXLkkqZdQMxixLvcey5KQZuenONxMyGbjuOoCx5+6pPnP8mIeH1e3ebduqeyVXY7LP\n2LQJnnmmxKOPqiYjTz9t8c476rP27TPZt8/k61+Ps2lTyP33+zzwQMCWLeGEZibJJHR1CQYGxGjQ\nWyxCqWQghAqW83nlUlJtnJmMJBZT+zD6fRMCDKO8X00ThDAwDDkqQzCMaL6x0gS1fmLk9zKaT2Ca\ncszyDENgWca863cr97NlqXEbhsS2DZLJ+rKPhqEuVhIJ1dYcwPcNHEfO6A6Jcssob6do/Sq3ZT1U\n7uPK8c5kefXuw8k+q9rxVUl0DKnjTc3jeXDsmCCXA9/JIswPE76RQhpq4XbB5up+wYn9NgXbplBQ\nn18ZFHd0SO69t36P+JpjbMxiZkdnZyemadLb2ztmel9fH0uWLJn0vd/61rd45JFH+Pa3v80111xT\n92d3daWnFYjXor398rtvpsd8eaDHvHAZHISeHrj2WhX4Tka9Y46K3To6Jl/2dOdrJNP9zGjM+Twc\nPAg33gidndP7DJWRhK4uqgbWhgE33AD/7t/Bf/2v8O678H/+j3q8/LKa5/Bhg8OHY/z1X8PVV8Mn\nPwmf/jTs2BF5FcPnPjdWBzs4qLTQkaLw8GEVlFdasFWuY2UgmM+Dbduk0/aoNV7UbTCRYPRCSgiV\nJbftsbICIZR8JppXCJXxS6dt0unyPK4LHR3hn+jRAAAgAElEQVTxOdvfU9HenkRKtY2iDHLleKdD\ntE3Uto/junDqlLpAmUmRbKmk9kcqFaezUx0vqZRaXrQt6yHa7jB2vDNZXr37cLJ1r3Z8jX89FlPP\nlcdVGKqLRM+C5PL4mOM4kbFZ4VoUltsMYmPbsGpV+TtQKqmLyXS6ceeclgiSbdtm8+bN7N27l927\ndwMqi7x3714+//nP13zfI488wt/+7d/yrW99i+uvv35Gn93Xl59xJrm9PcnQUJEguDysYfSY9ZgX\nK4ttzKUSrFghKBRkVTu0UgnOnjXZvDmB69Y35qEhyOVMBgaCSa3WpjtfI5lq3OP3c38/9PXZ9Pd7\ndQUU27apILG/f+Jr48e9dCl88Yvqce6c4MknTX70I4sXX1QFSydOwH/5L+qxdKnk3ntVhnnXrmBM\ngCAlSGkhpRz530DKEFlFuRG1koYoyxjH8zzy+XKGrVAAxzGxLDm6DNVuWkzI/KnlCUol9XmqNbUg\nnw9G36vaUwsGBvw529+1qNzPAwMhhYKF78sJ450O0TYpFEIGBpQWYM0ai0xGVr1AmYpCQTVdKRR8\n+vvV8VIoWMRi9a1X5fJKJQOIjRnvTJZX7z6cbN2rHV+VRNtVCCiV5Ohx5bpiJCstJhzfUrogPaR0\nkbgj85SPwSCob/07O6f+0rdEkAzwW7/1W/zxH/8xN9xww6gFXKlU4tOf/jQAX/nKV1i5ciV/+Id/\nCMD//J//k2984xv8zd/8DatWrRrNQqdSKVJ1HLlhKAnDmRe8BEGI7y/8H9V60GO+PNBjXrhYFqxd\nq/6upvErFODIEZMNGyAM6xuz70MQCHw/nFQ/ON35JqPe4r+pxl1erhpzEKjfAPX/zNZxPJONe9ky\n+MIXAr7wBZeBAXj6aYsnnrB47jmLYlHQ2yv4u7+z+bu/s8lkJB/5iM/99/vs3q1+9MMwJJ8v6zFz\nuXCCl+x4TNPAcVSQHYbl+YMApBQjy1XTwnDiNGAkCJEjv5fRfGq7VS4vDGe3vxtNtJ/DMCQMZdWx\nTUU01srviWWFxOMzKxoLAiXfiLaT70f7RU65L2stLwzFyN/l8c5kefXuw8nWvdrxVUm0XdVxScVx\nJSYcbxFFM827V+zCNVOEnpyTY7BlguT77ruP/v5+vvGNb9Db28umTZt45JFHRj2Sz58/j1lxlnz0\n0UfxfZ/f//3fH7Oc3/3d3+X3fu/35nTdNRqNZiERFb7F4yoIbVUWk93ceDo64KGHfB56yKdQgOef\nVwHz009bDAwIcjnB44/bPP64TTwu2bkz4IorAtauDTFNQaGgLOhcV2V6+/vFaEvpSgxDZetSqcXl\nMqK5/JCGiRNTGicRBiS8AiKMA807sFsmSAZ4+OGHefjhh6u+9p3vfGfM/88+++xcrJJGo9EsOhIJ\nuOYaVdRXb5ActbReDDZm+bwqcMznG7fMmTQoSaXgvvt87rvPx/PUhcFPfmLx5JMW588bOI7g2Wct\nwMIwJNu3B6xfH/KBDwRce61keBheecXk1luDCTppyzIQIo7jaHeGVsV1Z36xGrmeXG7EvRxrzu/B\ncu6ATPNE8C0VJGs0Go2mtTFNRou/FjqqSYRoqIZ2Jg1KKrFt2LVLaZL//M8d3njD4IknLJ54wua9\n9wzCUPD66xavvw6PPRZj69aA3bt9li5VdwbGZ9yVA4H2921VorbZUXFhvTiO0iS77uXVFdDzoL8P\nEiVoZm+ey2iTajQajWauaGbGebE2KhmPYcDNN4fcfLPLV7/qcuSIwU9+YvGjH1kcOqQG/uabJm++\nqf7+6lcly5dLVq+WXHFFyOrVkiuvlKxZA2fOCJYtEyPWqtV9l5U9WWTfVZ7eKhrjxUjUNjuTkTP6\nrhSLqsYgFqtPa73QkVJp/2dS7FgPOkjWaDQaTcNpZsa5UVpl24aurnBBtIkWAq69NuTaa13+9b92\n+dnPLE6fFvz85xYvv2wShgIpBT09gp4e5cs8FpVKtm1JZ6ekrU3i+6oJSiajfG6z2ZBSqWzFVUk8\nvrgvSOaTWExd8M3ELQMmXsTMVL5xuUo3JkMHyRqNRqO5LGlrg+uvn34jkVYhk4FPfUpFRl/+ssfx\n44L//b9t2tslvb0GZ84ITp82OH1acOHCWHG05wkuXBBcuFB7+cmkCqLb2lQA3dYG8bjk0iVBe7uc\n0PxE0zrMRr7hOCorrQPlMjpI1mg0Gs2ioF4ZRiIB3d21uxJWI5eDAwdMtm0LWkabvWSJ5AMfCKpm\n1oPAIJ9Pc+hQkfffhzNnVBB94oTBkSMG/f0Czxsb9RaLgmKxdiBtWZJUSvKrX1ksXy5ZsiSkrU1Z\nop04Idi4sb5tqmkcs5FvFIvKw1nr18voIFmj0Wg0i4K5sIwLQxUoLxT9ZzwOK1cqWckdd5RXemgI\nfvhDi1gM8nnJ/v0WiYTk7beVm4byYRYMDwsKhbFBtO8LhoYEQ0Oq818l3/ymSl8uWxaOaqOvuOL/\nb+/Ow6Oqzj+Af+9MMplJgIEkQICUVSExEAiUYKCuUMpSEKIsBUEQSrVYUi1IqSu40VaLVRSrRRBB\ndoiIQCuIVCQ/sWWJyh72kITsZCbJrOf3x2UmyWSykMw+38/z5Jnkzp3JOSTG9773Pe8RiI2Vv46N\nlb+OimJG2l2aU75xq1nkuko7nNW8V2erf/f1xYY+PjwiIgpWgdRuzp2a0nYuNBTQagVKSyWYzRIi\nIgQ6dLDezCRaYTTKx0JCbDuZyVlGvV7+MBjknfmKiuRNUIzGmhFvfr4C+fnA0aPOoyS1WqBTJ9sC\nw6pA2vbYsSOz0b6uvtIOgwHIy1MgLMx5IGw2yxe1MTG+fbXJIJmIiHySu9vN2TZV8ffby01pO6fR\nACNGWGAywd5nOT7eArUaUKkErlxRomfPui9QQkKq2soJARQUAJcvKxAXZ0VRkQJXr1bVRmdnywsK\nhagKpCsrJWRlScjKqjuyj4621ujUYXu0BdPR0cxGe1N9pR0VFUBJifx75qw22mCQf+8aKouSd7Cs\nfVxnbYGzLe5BS2solOVV37OiQn5fQL4QbO4FNoNkIiIKSmo1cNttru0h5Ys1y3XRaKqCiPBweSGj\nRiMHP2Fhjb9lL0ly1r9jR4Fhwyxo1ap2VGM0Ajk5ErKz5QWF1R+zsyVcuaKoVdZRUKBAQQFw7Jjz\nSCosrHo2uior3bkzkJAQOP28fVl9pR2236O6FhA21IHDbAYuXJC3VXdkNCpQpg/F0Uyr/XdYLv2Q\nf4c0GvlOyYgRzbsTxSCZiIjIRfytZtlTVCqgSxeBLl2cZ7yFAEpLYe/KIQfRNbPRubk1s9EGg4Tz\n5yWcP19XNjoCkZFyEBUVZYXJBERGwt4Cr2VLgfBwMBvtoywWOeOsVNYu2VAqq+402YJwOSstoNUK\nSJKE0lIJJlPzsskMkomIyK+4qlY5WDYlaYitptkWLFZWSjAYbq3XbmVl8yJNSQJatwZat7aid28A\nqB1Mm0wNZ6P1+prjKCqSA+jsbOeBtFJpa3UHhIfLXTsiIuQ2eOHhcl9pk0nAZGrW9IKS2QynWWBA\nPm5bJGg7x7aYz/ECMyQEtXqZ23p5O2aqLRZbUCxgMDT/6odBMhER+RVX1SrfuAEcOKDEPfdY0KZN\n89/PU1xd0mGraa6okG9R5+ZKKC8HSkulGt0OTCaguFhCmzbC6QYsWq3z464SGgp07izQuXPd2egb\nN4CcnBCUlGhw6pQB584B336rxI0bEvLyFKioQI1stMUioaREQklJ/d97xw5g2TK5DhqQN2SJjBRo\n1Uqet1Yr0KqV/KHVyjW6wZyhNpuBnJz6F+7pdPLn5eXyOWYzUFIiLwiVd9Tz7JidYZBMRERBqbwc\nOHlSiYEDGx8k+8JiP3eVdNgW8xUVyQv5kpMtNTZasS3wczxu44qFUs0hSYBWK5dWtGkD/OxnZhQV\nWbFtWwisViAzUw7azGagrKyqxZ1OJ0Gnq+oPXV4uB8+ObJ09AODSpfrHEhpaFTTbAulWrQQ0Grlj\nSEyMQJcuAmq1CMjSnJAQoEMHa501yQaDXF5jNsu18CqVnFkuKVHYu7RYLPLzzrq21LWgz9UYJBMR\nUUDwRMs4dyz28yUajRy02BbyOfabruu4r7K1usvNlW4u6hJQqYDWrQVatxY3W5FVtbsD5CymySSX\nkMj9fiWEhwt06yZQUCAhM1OJykq5JV5pqWRfLFadySShsFBCYaHzca1fX3WVJUnyroa2QNrx0fa5\nVitvI+7rvYVtQkLqX7inVMqtAo3GqkyyTidnkq1WIDdXgZISCSEhtbPRtgDa3YGyn/xTExER1c/d\nLeOCRVP6Lvuq6tlxQA7Y1Oqqi5yKCiArS4kePeq+uDKbJVitQGqqvBX4tm0h0GqFvaOD0Yibm6tI\nKC3FzUep2rGqr3W6muUegPz1jRvy6xojPLwqgI6IEFCrJRQVAdHRIdBorLh0SYEOHaxo3963e00r\nlUD79tab257L2WWdTmEvt4iJscJgUEClql2TbDbLFzLuXkvAIJmIiIKSxSIHOL5Q+9gc7qpRDhQa\njdzVIiZG3KyzrgpGjUagshK4dk2BmJi6a6pt9dbOFvCpVEB0tK1euX5lZfLiw0GDrCgvl3D5soT9\n+0NgMgHl5VKtYNtZ2Ud5ubwLYk5O1bFDhwCgdspWpaqeiZZLP2p+XfW8N2qoHbPNtzIGIWouDLQt\n/HPp+Fz7dkRERP6hvBw3+/O67j29UbPMtnMNq755SnVlZfLiTQC45x7ntdZAVb217fVyN49bL7sx\nmSS0bAnExVnRqpW80NBqRY3MtI0QsC+gdJ6ZlhdSlpbKW4nr9bW/n9Eo74hYUNDw2BQKucvH6tVy\nFrptW/kjOtpa7XOBdu3kbcVdzWKR52Mrt1Cp6i+3kLudKOzP2bppmM0Wl5WkMEgmIiJykUCvWfZn\n1TdPcTwONK7Wuvp23s5ajDXUAQRofBcQ2yYtERECHTs6/50qLwfKypSYPTsMZWV6nD0rsHVrCKxW\nCZWVqBVYl5XJj46t8gDAapUD7xMnlDhxoqGxyTXdtvruNm1q1lGHhQH5+RIiI4XTPsfOKJVyD2tJ\naly5hdFYtTgQkANkg6Fx36uxGCQTERERNUJdGWmbhjqAAO7rAhIRIbfI69JFQKu11rtbotlsC6Bh\nz1IXFEg3A1u5FVt+vvxRWCjBaq1dR11cLB/Ly2t4bCqV3INao5GD/rAwOdBWqwWiouQLh5AQOTgO\nDZUfVaqqHsm30ifZlRgkExFRUAoPBzp3rj+Y8EWuLulobE1zIC3oa466MtI2/tABJCQEiIwUiIwE\nbGUjttKO1FRzjbFbrUBRkRww2wLp/HwJ2dkS/vc/JSor5VIPW7BtMtXOUhuNci14Q/2oAbnsIzQU\nOH5cQAj57oxGIwfWtv7UnsIgmYiIglLLlkDfvnVn/JzxhV36XF3S0dia5kBb0OdLmlrj3NydDhtD\noXC+MPHGjdqdPoSQ//vIy5OQkaGE1SrZFyXKH/Lner386Cygtlqlm6UTzuYmcM89ZkREuGGiTjBI\nJiKioKRUygHnrQS7ej2QkaFESorFpzOF1DgKhVymcCtbcLuSK2qcIyPl2uDKSjcPthEkSc6kt28v\n0L69XGJR12YiJSVy2Ye8wYtcK33+vASzWQ6SQ0PlDLbZLO/8KHclkbcfj4vzzCpVBslEREQUlFq0\nAO6804KMDO/cFnBFjbNGo4BGUzNIbkpm2hNZaUchIbjZJ1le/FdZqYBSKe9C2LWrFRcuyLskhoYC\n//2vEteuKXD1qgI9ezJIJiIiogZ4q0Y5UHi71rq5Nc7Vuzk0NzPd2M4b3hAba8W1awp7Wzut1v21\nyQySiYgoKLljG2tv1Cx7q0Y5UARSrXVzM9Pu6rzhCu3aCahUAkajhOxsBbRa9//MGCQTEVFQcsc2\n1qxZDm7ezkoDgdF9wxmFAujUyYoLF5TIy5PQs6f7vyeDZCIiIiIXCKSsdGM5q3+uqJA3+6jrbkpd\nme6GxMYKXLggd8C4fl1CQkLT3qexGCQTERH5EVeXdHhjK23yf/XVP9+4AVy/LiEqStS5wYdGI3e5\nuBWtWwtERAjo9RJycxUA3HtBwiCZiIjIj7i6pKOxNc3BtqCP6ldf/fO1a8D58wr06WO5uWFJbUYj\n8L//1X+VZ7HUzjp37GjF2bNKFBdLKCqC/f0NBvk9be38jMZbnJATDJKJiIgayR2L/fxFsC3o8wW+\nUONcn7rqn8vK5DsUGg2avKOlxSJ34ggJqdnBIzzcdkEn4dixEHs7OLNZDpTPnJGfLS9vfqDMIJmI\niKiR3LHYj7zH17Pj/l7jXFkpobzc+V0Kx7plg0EOdIWQLwqUSthb1Tm2pbt61YrCQgU0GoHYWKv9\n9RUVQM+e8r+XTic1u4SIQTIREZEfY41y0wVbdtxTmemQEDmDbDAApaXO+zXn5krQ6eRFfxYLbu6q\nJ+/AZ/tdVirhNEhOSrIgL8+K5GRLjR39LJaqzDbLLYiIiIKct2qUA0VFBfB//6fE4MG+mU12JU9l\npjUaYMAAC/r3d96PuawMOHBAiRYtBLRaQK0W9sxyeLj8O2ixyJllpVLe7ro6hULum+zuXuQMkomI\niFwkmGuW/ZUQ8oVGsGSTPUWlqr8fsxw8y5uDyB+AxSLBbBYoLwdKSiRUVsoBsrOfTViY+zfsYZBM\nRETkIqxZDm6+XuPsS1QqYOjQqgvKsjL5MSwMEELg5EkllEo50+ys9EehkLPNthZzTe29XB8GyURE\nRH7E1TXD3thKO1AFW41zXRpb+6zRVGWaQ0OBmBi573JFhQSzuSqzrFDIpRd6vYSICGHvduFYdxwe\nLtdDm82umQeDZCIiIj/i6prhxtY0B9OCPmqeptQ+V++7bKtZzsuT0L69gEYjX8idOaNEz551lzOF\nhMi/pwySiYiIyGOCbUEfeV71vssajfw7V73Xsq3zRVN7L98qH21PTURERI3BDG/TqVRAt27WGptV\n+BKdDvjmGyV0Om+PJDgxSCYiIvJjtgyvWu2a97NY5ODM4r97WDSaWg107y589gIjUGucfX0nQRsf\nHx4RERG5k2MmWq+Xs5d6vXfH5SnBlIn3lcy0rWbZ1zuA+OgNBiIiIvKEYK81Dqb5+0tmWqGQe447\nbiLi8XF499sTERERBYZgykq7U4sWwJ13WlxWQtRUzCQTERERuUAwZaU9TZIAjUZ4NLvMTDIRERHZ\n1ZUNDaYFfdQ87qh91miA+HirR7d8Z5BMREREdnV1ywi2BX3UdP5S+9wQBslEREQUlHw9O84aZ+9i\nTTIREREFJZMJyM2VEBsroFR6ezS1scYZqKyUANzav4H8muZjkExEREQNCsSsploNdOsmUFEhZ5N9\nMVB2JV/5Gep0wPHjSvTtW3ev5NBQQKsVKC2VYDDUDHpNJqC4WEKbNgKhoc5fr9XW/VxjMUgmIiKi\nBgVqVlOvBzIylEhJsaBVK2+Pxr185WfYmJpljQYYMcICk6n2c2VlwOHDSiQnW9CypfPXh4ai2Yv8\nGCQTERERuYDFAlRUyMFZoGel3al6prmuC5fwcKBlS7j1woYL94iIiIhcgB1AXMNXumMwSCYiIqKg\n5St1uoHEHf+m7ui93BCWWxAREVHQ8pU63UDijn9Tb2SXmUkmIiIiInLAIJmIiIjIBVi6EVhYbkFE\nRETkAr5euuEr3TeaezGhUAAtWsiP7sRMMhEREVEQsO0w6Kz3sCfZLibU6qa9vkULYMiQujcicRVm\nkomIiIiCgK9num18pWyFQTIRERER+QxfCeZZbkFEREREPs0b2WVmkomIiIjIp3kju8xMMhERERGR\nAwbJREREREQOGCQTERERETlgkExEREREfkOnA775Rgmdzr3fh0EyEREREfkNq1UOlK1W934fBslE\nRERERA4YJBMREREROWCQTERERETkgEEyEREREZEDnwqS161bh/vvvx+JiYmYOHEiMjMz6z1/9+7d\nGDlyJBITEzF27FgcOHDAQyMlIiIiIm/w1BbVPhMk79q1C0uXLsW8efOwfft2xMXFYfbs2SgqKnJ6\n/tGjRzF//nxMnDgR6enpGDZsGObOnYtz5855eORERERE5Cm2LarVavd+H58JklevXo1JkyZh3Lhx\n6NGjBxYvXgy1Wo2tW7c6PX/NmjW46667MHPmTHTv3h3z5s1DQkIC1q5d6+GRExEREVGg8Ykg2WQy\n4ccff0RKSor9mCRJGDx4MI4dO+b0NceOHcPgwYNrHPvZz35W5/lERERERI3lE0FycXExLBYLoqOj\naxyPiopCQUGB09fk5+ff0vlERERERI0V4u0B1EcIAUmSbun8W6VQSFAoGv89bJRKRY3HYMA5BwfO\nOThwzsGBcw58wTZfT/KJILlNmzZQKpW1ssBFRUWIiopy+pq2bds6Pd8xu9yQqKgWtzZYB61aaZr1\nen/EOQcHzjk4cM7BgXMOfME2X0/wicuO0NBQJCQkICMjw35MCIGMjAwkJSU5fU2/fv1qnA8A33zz\nDfr16+fWsRIRERFR4POJIBkAZsyYgU2bNiE9PR1ZWVl44YUXUFlZidTUVADA008/jb/97W/286dP\nn46vv/4aq1atwvnz5/H222/jxx9/xMMPP+ytKRARERFRgPCJcgsAGDVqFIqLi/HWW2+hoKAA8fHx\n+Oc//4nIyEgAQG5uLpRKpf38pKQkvPHGG1i2bBmWLVuGLl264N1338Vtt93mrSkQERERUYCQRFNW\nuxERERERBTCfKbcgIiIiIvIVDJKJiIiIiBwwSCYiIiIicsAgmYiIiIjIAYNkIiIiIiIHDJKJiIiI\niBwwSCYiIiIicsAgmagBpaWleO2113D27FlvD4WIiIg8xGd23PN1eXl5OHnyJK5fv47Kykqo1Wq0\na9cO8fHxaN++vbeHR26k0+mwZs0aDBo0CLfffru3h+NWly9fxtGjR3Hjxg1ERkYiOTkZbdu29faw\nXKqsrAyhoaFQq9X2Y6WlpThx4gQsFgt69eoVcHN2ZDKZYDAYEBYWhtDQUG8Ph9zMZDIhKysLsbGx\naNGihbeH43ZCCOj1+qCYK7kXd9xrwJEjR/DXv/4Vx44dAyD/x1edJEno27cvFixYgAEDBnhjiC53\n7tw5vP/++8jKykKbNm0wevRojBs3DpIk1Thvx44dWLhwIU6ePOmlkbrGmDFj6n3ebDbjwoUL6Nix\nIyIiIiBJEnbs2OGh0bnH2rVrkZubi/nz5wMAjEYjFi1ahF27dtX4HQ8JCcHs2bPx+9//3ltDdZnK\nykr84Q9/wJdffgmFQoHp06dj4cKFWLduHV5//XVUVlYCABQKBR588EG8+OKLUCgC42ab2WzG9u3b\nsXv3bpw4cQKlpaX257RaLeLj4zFy5EiMHz8+YILmjIwMnD9/Hm3atMHdd9/tNGA6duwYNm7ciNde\ne80LI/Sc7OxsDBs2DO+88w7uv/9+bw/HJc6cOYPCwkKkpKTYjx08eBArVqxAZmYmzGYzwsLCcOed\nd+Kpp55Cz549vTha19m7dy+2b98OtVqNRx55BImJibhy5QqWLVuGI0eOwGw2IyEhAXPmzAmYmMSb\nmEmux6FDhzBnzhx07NgRTz75JPr06YN27dpBpVLBaDTi+vXrOH78OLZv345HHnkE77//PgYPHuzt\nYTfLxYsXMWHCBJjNZtx+++04e/YsFi1ahM2bN+Pvf/97QGbYzp49i/DwcCQkJDh93mg0AgAiIiLQ\nunVrTw7NbTZu3Ij77rvP/vWrr76Kzz//HJMmTcKYMWMQGRmJ69evY/PmzfjHP/6BqKgoTJs2zYsj\nbr6VK1di3759GDduHKKjo7Fhwwao1Wq89957GDduHIYOHQqTyYSdO3di8+bNiI2NxZw5c7w97GYr\nKirCrFmzcPLkSXTt2hV333032rZti7CwMBgMBuTn5yMzMxPPP/88PvnkE3z44YeIjIz09rCbzGg0\n4te//jUOHz5sv+Br2bIl5s+fj0mTJtU49/Lly0hPT/f7IHnVqlX1Pl9aWgohBPbu3YtLly4BAGbO\nnOmJobnNq6++ig4dOtiD5N27d+Opp55C69atMWbMGERFRSEvLw9ffvklJk2ahLVr19b5N95fHDhw\nAE888QTCw8MRHh6OL7/8EqtXr8bcuXNhMpkwYMAAmM1mfPfdd/jmm2+watUqDBw40NvD9m+C6jRh\nwgQxefJkYTAY6j3PYDCISZMmiQkTJnhoZO6TlpYmhgwZIi5evGg/lp6eLgYMGCDuu+8+kZWVZT/+\n6aefiri4OG8M06Xeeecd0a9fPzFjxgxx+vTpWs9fuXJF9OrVS+zdu9cLo3OPfv36iU2bNgkhhLBa\nraJfv37i5ZdfdnruvHnzxPDhwz05PLcYMWKEWLRokf3rzz//XMTFxYlnnnmm1rmzZ88WI0aM8OTw\n3GbBggUiOTlZHDp0qN7zDh06JJKTk8XTTz/toZG5x7vvvivi4+PF8uXLxenTp8XBgwfFjBkzRFxc\nnHjuueeExWKxnxsof8N69eol4uLiRK9ever8qP58IMx50KBBYs2aNfavhw0bJiZOnCj0en2N8woL\nC8UvfvELMXPmTE8P0eUefvhhMW7cOFFWViaEEOLFF18UKSkpYuzYsaKkpMR+Xk5OjrjnnnvEjBkz\nvDXUgBEY9xLd5PTp00hNTYVKpar3PJVKhdTUVJw+fdpDI3Of48eP4+GHH0aXLl3sxx544AFs3LgR\nCoUCU6ZMQWZmphdH6Hq//e1vsWfPHrRu3RqpqalYvHgxSkpK7M87lpkEApVKhfLycgByGUJFRQUG\nDRrk9NxBgwbh2rVrnhyeW+Tk5CApKcn+df/+/SGEwL333lvr3Pvuuw9Xr1714Ojc58CBA5g1a1aN\n29LOpKSk4NFHH8VXX33lmYG5ya5duzB+/HjMnTsXPXv2xJAhQ7Bq1SqkpaVh8+bNeOKJJ+x3hwJF\n9+7doVarkZaWhr1792Lfvn01PtauXUShuQ4AAAumSURBVAshBF566SXs27cPe/fu9faQm62iogIa\njcb++ZUrVzB9+nSEh4fXOC8yMhKTJ0/G0aNHvTFMlzpz5gzGjx9vLx2aNm0aioqKMGPGDGi1Wvt5\nMTEx+NWvfhVw/6/2BgbJ9dBqtfZbUw25dOkSWrVq5eYRuV9JSQmio6NrHe/Rowc2btyImJgYPPLI\nI/j666+9MDr3ad++PZYtW4ZVq1bhyJEjGD58OFavXg2z2eztoblFUlISdu/eDQDQaDTo2rUrDh8+\n7PTc7777Du3atfPk8NxCq9XWuPixfV79WPXnAqW0xmg0IiIiolHnRkRE+H0AefXqVfTr16/W8cce\newxvvPEGvv76a8ycORNlZWVeGJ17fPbZZ5g3bx4+/PBDzJ8/H4WFhejUqZP9o0OHDgDkgNF2zN91\n69bNvlZIrVYjPDwcOp3O6bk6nQ4hIf5fXWq1WhEWFmb/2va5s/++uWjRNRgk12PMmDFYvXo1Vq9e\nDb1e7/QcvV6PVatW4aOPPsLYsWM9PELX69SpU50Z8aioKHtd1+OPP449e/Z4eHTuN3DgQGzfvh1p\naWlYsWIFRo8eja+++irgssm/+93v8OOPP2LevHm4cOECXnjhBWzevBlLlizBf//7X1y8eBHffvst\nFixYgD179iA1NdXbQ262/v37Y8OGDcjKykJJSQneeustqNVq/Otf/8L169ft5126dAnr1q3DHXfc\n4cXRuk7//v2xZs0a5OXl1XteXl4e1qxZ4/eLfbRaLYqKipw+N2rUKLz33ns4ceIEpk6dWuPn7s+U\nSiVmzpyJPXv2oFu3bpg8eTIWLFjQ4M/cn02cOBHp6enYt28fJEnCtGnT8Pbbb+P777+vcV5GRgZW\nr17d4J0Uf9C9e/cad3r2799f47G6f//73zXuCFPTsLtFPYxGIxYuXIjdu3cjJCQEXbt2Rdu2be0L\n9/Lz83Hx4kWYzWaMGDECf/nLXxoszfB1S5YswRdffIH9+/fXeeVtNBqRlpaG/fv3Q5Ikv+9uUZeS\nkhIsW7YMmzdvhhACy5cvx9ChQ709LJc5ePAg/vjHP6KwsBAtWrSA2Wy2d3iwEULgwQcfxJIlS6BU\nKr00Ute4dOkSHnroIXu2SQiBtLQ0dOrUCc8//zzuuOMOWK1WnDhxAlarFevXr0efPn28POrmy8rK\nwtSpU2EwGHDvvfeid+/etf6O/fDDD/jqq6+gVquxdu1a9OjRw9vDbrLHH38cxcXF2LBhQ53nZGZm\nYs6cOSgrK4PVag24v2GZmZl46aWXcO7cOcyaNQsjR47E6NGj8c477wTM3zAhBBYtWoT09HT07dsX\nffr0wc6dO1FaWorY2FhERUXh+vXryMnJQXR0NNavX4/Y2FhvD7tZdu3ahaeeegqJiYmIjIzEwYMH\nMXDgQHTr1g05OTm4//77YbVasWvXLhw+fBjPPvsspk6d6u1h+zUGyY2QmZmJPXv24NSpU8jPz7f3\nSW7bti3i4uIwYsQIJCYmenuYLvH999/jgw8+wKOPPur0lqWN1WrFa6+9hlOnTuHjjz/24Ag979Kl\nS8jLy8Ptt9+ONm3aeHs4LqXT6fDZZ58hIyMDly5dQnl5ub0HeEJCAkaOHIn4+HhvD9NlcnNzkZ6e\nDr1ej+TkZNx1110AgM8//xzr169HQUEBunbtitmzZ+OnP/2pl0frOnl5eVixYgW++OILFBYW1no+\nMjISw4cPx2OPPYaYmBgvjNB1tm3bhj/96U/YsGFDvX/DsrKyMGvWLHsP/EC0detWLFu2DCaTCTdu\n3Ai4C31ADhw/+ugjZGZm1mrRGh0djVGjRuE3v/kNoqKivDRC1/r444+xdu1a+9+wZ599Fmq1GvPm\nzcPBgwcBVLWxXLx4ccC0sfQWBslEREEkLy+v1sV+IG2IJIRARUUFQkNDG+z5rNfrUVJSEhA1unXR\n6XRYuXIlcnNzMX369IC66K1Op9PhypUr0Ov19gv9QFhLcSuuXLmCwsJCdO7c2a/bOPoSBslERARA\nDjRu3LiBjh07ensoHhFs8wU452ARjHN2B+bhiYgIgHwrN9Bux9cn2OYLcM7BIhjn7A4MkomIiIiI\nHPh/40AiIqpTenp6o88NhAVswTZfgHNuCOdMTcWaZCKiABYXFwdJkmqt/K+Lv7d1DLb5ApxzY3DO\n1BTMJBMRBTCtVou4uDgsWLCgwXO3bNmCjRs3emBU7hNs8wU454ZwztRUDJKJiAJYnz59cP78efTu\n3bvBcwNhu/lgmy/AOTeEc6am4sI9IqIAlpiYiGvXrjndRMRRq1at0KFDBw+Myn2Cbb4A59wQzpma\nijXJREQBrLy8HMXFxWjXrl2Dm2sEgmCbL8A5c87kLgySiYiIiIgcsNyCiIiIiMgBg2QiIiIiIgcM\nkomIiIiIHDBIJiIiIiJywCCZiIiIiMgBNxMhIvIzy5cvx/LlywHIW89GRESgQ4cOSE5OxpQpU9Cj\nRw8vj5CIyP8xSCYi8kMajQYfffQRAECv1+P06dPYtGkTNm3ahFdffRVjxozx8giJiPwbg2QiIj8k\nSRISExPtX6ekpGDKlCmYM2cOnnnmGSQlJSE2NtaLIyQi8m+sSSYiChAqlQrPPfccjEYjNm/eDABI\nT0/HlClTMGjQICQnJ2PatGnIzMy0v+b06dOIi4tDRkZGjfeyWq2466678PrrrwMA8vLykJaWhiFD\nhiAxMRFDhw7F0qVLPTc5IiIPYyaZiCiA9OjRA+3bt8exY8cAANnZ2Rg/fjx+8pOfwGQyYefOnZg2\nbRp27NiBLl26oFevXujbty+2bNmClJQU+/v85z//QUFBAR566CEAwIIFC1BQUIDnnnsOUVFRuHbt\nGn744QevzJGIyBMYJBMRBZgOHTqgoKAAADB37lz7cSEEBg8ejMzMTGzbtg1PPvkkAGDChAl4+eWX\nUVZWhpYtWwIAtm3bhqSkJHTt2hUA8P3332P+/PkYMWKE/f0eeOABD82IiMjzWG5BRBRghBCQJAkA\nkJWVhblz52LIkCGIj49HQkICLl68iIsXL9rPHz16NJRKJT777DMAQHFxMfbv348JEybYz0lISMDK\nlSuxfv16XL582aPzISLyBgbJREQBJjc3F9HR0dDr9Xj00UeRk5ODRYsW4ZNPPsHWrVvRq1cvGAwG\n+/kajQajR4/Gli1bAACffvopVCpVjazxm2++iZSUFLz55psYPnw4Ro4ciS+++MLjcyMi8hQGyURE\nAeTs2bPIy8tD//79cezYMVy/fh1Lly7FL3/5S/Tv3x8JCQkoKyur9bqJEyfi5MmTOHXqFLZv345R\no0ZBo9HYn4+OjsYrr7yCb7/9Flu2bEH37t3x5JNP4urVq56cHhGRxzBIJiIKEEajES+99BLCwsLw\n0EMPobKyEgAQElK1/OTIkSPIzs6u9drevXsjLi4Or7zyCs6cOYPU1NQ6v0/v3r2RlpYGs9nM0gsi\nClhcuEdE5IeEEDh+/DgAoLy83L6ZyNWrV7F06VJ07NgRYWFh0Gg0WLx4MebMmYPc3FwsX74cMTEx\nTt9zwoQJWLJkCXr06IGkpCT7cZ1Oh1mzZmHs2LHo3r07jEYjPv74Y2i1Wtxxxx0emS8RkacxSCYi\n8kOVlZWYPHkyACA8PBydOnXC4MGDMXXqVHTr1g0AEBUVhbfeegt//vOfMXfuXHTt2hVLlizBBx98\n4PQ9f/7zn2PJkiV48MEHaxxXqVTo1asX1q1bh5ycHISFhaF3795YuXIlWrdu7d6JEhF5iSSEEN4e\nBBERed+WLVvw4osv4sCBA4iKivL2cIiIvIqZZCKiIJednY2LFy9ixYoVGD16NANkIiIwSCYiCnrL\nly/Hzp070b9/fyxcuNDbwyEi8gkstyAiIiIicsAWcEREREREDhgkExERERE5YJBMREREROSAQTIR\nERERkQMGyUREREREDhgkExERERE5YJBMREREROSAQTIRERERkQMGyUREREREDv4fAuyB+uD2jkIA\nAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "subplot = plt.subplots(1, 1)\n", - "survivalstan.utils._plot_pp_survival_data(ppsurv.query('sex == \"male\"').copy(),\n", - " subplot=subplot, color='blue', alpha=0.3)\n", - "survivalstan.utils._plot_pp_survival_data(ppsurv.query('sex == \"female\"').copy(),\n", - " subplot=subplot, color='red', alpha=0.3)\n", - "survivalstan.utils.plot_observed_survival(df=d[d['sex']=='female'], event_col='event', time_col='t',\n", - " color='red', label='female')\n", - "survivalstan.utils.plot_observed_survival(df=d[d['sex']=='male'], event_col='event', time_col='t',\n", - " color='blue', label='male')\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/example-notebooks/Test pem_survival_model_randomwalk with simulated data.ipynb b/example-notebooks/Test pem_survival_model_randomwalk with simulated data.ipynb index 37b3c25..50e92ba 100644 --- a/example-notebooks/Test pem_survival_model_randomwalk with simulated data.ipynb +++ b/example-notebooks/Test pem_survival_model_randomwalk with simulated data.ipynb @@ -7,28 +7,10 @@ "collapsed": false }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/Cython/Distutils/old_build_ext.py:30: UserWarning: Cython.Distutils.old_build_ext does not properly handle dependencies and is deprecated.\n", - " \"Cython.Distutils.old_build_ext does not properly handle dependencies \"\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/jacquelineburos/.local/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.\n", - " \"`IPython.html.widgets` has moved to `ipywidgets`.\", ShimWarning)\n", "INFO:stancache.seed:Setting seed to 1245502385\n" ] } @@ -251,12 +233,25 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", @@ -268,70 +263,70 @@ " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
agesexageratetrue_tt
059male540.08208520.94877120.000000False1.0138551.013855True04.18-1.12
158male390.08208512.82751912.8275194.8905974.890597True13.18-16.12
261female450.04978727.01888620.000000False4.0934044.093404True26.18-10.12
357female430.04978762.22029620.000000False7.0362267.036226True32.18-12.12
455male0.08208510.46204510.462045female570.0497875.7122995.712299True40.181.88
\n", "
" ], "text/plain": [ - " age sex rate true_t t event index age_centered\n", - "0 59 male 0.082085 20.948771 20.000000 False 0 4.18\n", - "1 58 male 0.082085 12.827519 12.827519 True 1 3.18\n", - "2 61 female 0.049787 27.018886 20.000000 False 2 6.18\n", - "3 57 female 0.049787 62.220296 20.000000 False 3 2.18\n", - "4 55 male 0.082085 10.462045 10.462045 True 4 0.18" + " sex age rate true_t t event index age_centered\n", + "0 male 54 0.082085 1.013855 1.013855 True 0 -1.12\n", + "1 male 39 0.082085 4.890597 4.890597 True 1 -16.12\n", + "2 female 45 0.049787 4.093404 4.093404 True 2 -10.12\n", + "3 female 43 0.049787 7.036226 7.036226 True 3 -12.12\n", + "4 female 57 0.049787 5.712299 5.712299 True 4 1.88" ] }, "execution_count": 4, @@ -361,7 +356,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -370,12 +365,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAHcCAYAAAAa41gWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl4VOX9///nzGSyk30lYQsJBhKSgKiAiAq2UlfEqtWK\nK9qKXaz2g/5arfLVtlZbq9S9LtBKXSqKG6LWXQgoS9gDhEDIvsBk3yYz8/sjEEsJSGByTiZ5Pa6r\n14Vnzpl5T3jn9MU597lvi8fj8SAiIiIi0kdYzS5AREREROS/KaCKiIiISJ+igCoiIiIifYoCqoiI\niIj0KQqoIiIiItKnKKCKiIiISJ+igCoiIiIifYoCqoiIiIj0KQqoIiIiItKnKKCKiIiISJ/S44C6\nZs0afvrTn3LGGWeQnp7Oxx9//J3HrF69mlmzZjF27FjOPfdc3nzzzeMqVkRERET6vx4H1ObmZkaP\nHs29996LxWL5zv1LSkr46U9/ysSJE3nrrbe45ppruPvuu1mxYsVxFSwiIiIi/ZtfTw+YOnUqU6dO\nBcDj8Xzn/i+//DLJycnMmzcPgJSUFNauXcvChQs5/fTTe/rxIiIiItLP9foY1A0bNjB58uRDtk2Z\nMoW8vLze/mgRERER8UG9HlCrq6uJjo4+ZFt0dDSNjY20t7f39seLiIiIiI/p8S1+s1z+6i1HfO2X\nOb/i9JNGGViNiIiIiPSWXg+osbGx7Nu375Bt+/btIzQ0FH9//2N+n2tPupHW1nbcbiiraSI3vwj3\nsLUAPPz6J3wUW8OlZ44kOS7Uq/XLwGKzWQkLC6K+vgWXy212OdKPqdfEKOo1McrBXvOGXg+oOTk5\nfPHFF4dsW7FiBTk5OT16n/NzJuBwNNHR4YY0uHjceH6zchMdtGMJrmft9mrWba9mYkY8F08ZQVxk\nsDe/hgwwLpe7s9dEepl6TYyiXhNfclzTTOXn57Nt2zYAiouLyc/Pp7y8HIC//OUv3HnnnV37/+hH\nP6K4uJiHH36YwsJCFi9ezAcffMD1119/QoWHBPozLDwJgLjBHdj9rHiA3C2V/Pbvq/nH8nwcDW0n\n9BkiIiIiYrweB9TNmzczc+ZMZs2ahcVi4U9/+hOXXHIJCxYsAKCmpqYrrAIkJyfzzDPPkJuby8yZ\nM1m0aBEPPPDAYU/2H4/kQYMBcPnX8uBPJnH2+CRsVgsut4fP8sq48+lcXvl4J/XNehhLRERExFdY\nPMcymWkf0XWL/4CVZd+wOP/fAPzh9HsIDxhEVW0Lb3+1m9wtFRz8ZgH+Nr4/YQjnnjqU4ECfeS5M\nTODnZyUyMuSwXhPxNvWaGEW9JkY52Gve0OvTTPWm5EGJXX8ubSwDIC4iiDkXjOH/3XgaJ58UC0Bb\nu4t3Vu7hzqdX8v6qItqcLlPqFREREZHv5tMBNTE4Hqul8yuUHAioByXFhHDrJWO559oJZI6IAqCp\ntYN/f7aLu57OZU1+leH1ioiIiMh38+mAarfZSQiOA6CkoazbfUYkhnH7FTncedU40pLDAahraufJ\npZv58Jtiw2oVERERkWPj0wEVvn1QqrixlKMNpz1paCR3/Xg8t12WRVhI5/yrr3y8k9c+LcDtO8Nw\nRURERPo93w+ooZ0Btaq5hvtX/4VPi7+i2dnS7b4Wi4WskTH8ZvbJxEV2TiS7fPVenn93Gx2avFhE\nRESkT/D5gJodm0mY/yAAKpureH3n2/xmxQMs3vZv9taXdHtMXEQQv7n6ZEYkdh6Xu6WCBa9vpLW9\nw7C6RURERKR7Pj3N1EHtLifrqjbwRWkuRfWHjisdFjaEM5ImcXJcNv42+yGvtbZ38OSbm9m8ez8A\nwxMGcdtl2V1DAGTg0XQsYhT1mhhFvSZG8eY0U/0ioP63vfUlfFmayzeVeTjdzq7twX5BTEycwBlJ\nE4kLju3a3uFy8+KyfHK3VAAQFxnE7VfkEBfhnbVkxbfoRC5GUa+JUdRrYhQF1GPQ7GxhdcVavizN\npbK5+pDX0iPTOCN5EmOjR2Oz2vB4PLz+2S7eX70XgLAQf351WTbDEgZ5/TtI36YTuRhFvSZGUa/1\nDX/60+/5/PNPaGxs4IUXFpOammZ4DRUV5Vx22UW8+OK/euXzvRlQ++2ySsH2IM4eMoWzkk9nZ+0u\nvijJZUPNFtweN/mOneQ7dhIREM7pg0/l9MGncdnZqYSHBnQujdrUzp/+tY5bLxlLxoE5VEVERESO\nx6pVK/ngg/f429+eZfDgwYSHR5hWi8ViMe2ze6LfBtSDLBYLoyJTGRWZSm1bHSvLvmZF2dfUttVR\n21bHe7s/4v09H5Mdk8HU1EncHDyG59/bRmu7i7+8mkf2yGh+MHEYo4aY10wiIiLiu0pLi4mOjiEj\nI9PsUo46JWdf0u8D6n+LCAjnvBHf49xh09i0bxtfluSS79iJ2+NmffUm1ldvIj44jmnnZvHVZ1Za\nWqxs2LWPDbv2kZocznmnDSMrNRqrj/zrQ0REpD9rbu2gfH+ToZ+ZGBVCcOCxx6c//GE+77//LhaL\nhTPOOIWEhMH8+99v8c9/vsjbby9l//4ahg4dxrXX3shZZ00HYP36tfziFz/lL3/5G08//TeKivaQ\nmZnNfff9nvz8rTzxxKNUV1cxefIZ3HXXPQQEBACwenUuixY9T2HhLmw2KxkZWfzyl3eQlJR8xPoK\nCwt48skFbNiQR1BQEKecchq/+MXtpl7lhX48BvVYVTVX82XpKlaVr6G549v5U+1WO7GekZRtj6Wl\n9tvxFINjQvjBaUM5bUw8fjafn6VL/ofGaolR1GtilP7aa82tHcx7aiXNbcZOERkc4MdDt0w+5pDa\n3NzEa6+9zDvvLOW55/6J1Wph6dIlfPTRB/zyl3eQnDyEvLx1/PnPf+SRRx4nO3tcV0DNzBzLrbf+\nioCAAO655y5iY2Px9w/gllt+TnNzE7/5za+56qpruOqqawD4/PNPsFisjByZSktLC88//zRlZWUs\nWvQycPgY1MbGRq68chYXXXQJM2acT2trK0899TdcLhePPfZkj382GoPqRXHBsVyadiEXpsxgbdUG\nvjwwVZXT7aSMfBiVT6I1nsbiRBrKYimraeL597bxxheFnHvKEKbmDCbQf8D/GEVERKQbwcEhBAeH\nYLXaiIyMxOl08tJLC3n00ae6bvknJg5m48Y83nrrDbKzxwGdQxRvumkumZljAbjggot49tknee21\nt0hISATgrLOms27dmq6AeuaZ0w757Hnz7uaii77P7t2FjBiRclhtS5a8yqhR6dx00y1d2+66624u\nvfQCSkqKSU4e4v0fyDFSsjrA32ZnUuIEJiVOOGyqqlp3JSRVEp4ciGXfcGoLhuFoaOOVTwp4Z+Ue\npo1PZvqEZMKCNX+qiIiIEYIDO69k9vVb/P+rpKSY1tZWfvWrWw8ZD+pydTBqVPoh+44cmdr156io\naAICArvCKUBkZBTbtm095L2fe+5ptm7dTF1dLW63B4vFQmVlRbcBtaBgJ+vWfcP3vjf1kO0Wi4XS\n0hIF1L5maFgyPw67jEtSz2d1xbquqaraPa0Qlc9p08Op2TaMXWX1NLV28M7KPXzw9V6mZCVy7qlD\nidUcqiIiIr0uONCPkYPDzS6jR1pamgF4+OHHiImJOeQ1f/9DL3T5+X0b0ywWyyH/fXCbx/PtsI15\n824jMTGJu+66h5iYGNxuD7NnX05Hh5PutLQ0c/rpU5k79xeHPTz1v7UZTQH1KILtwV1TVe1w7OLN\nXe9R3FDKxobVXH3OUH7YMY5lq/ayqXAf7R1uPllXymfryzh1dBwzThvK0HjNoyoiIiLfGj48Bbvd\nn8rKcrKzc7z2vvX1dRQX7+Wuu+4hK6vzfTdsyDvqMaNGpfPFF5+SkJCI1dq3nqvpW9X0URaLhZOi\nUpmbfQORAZ1Ptb28/Q1sYbX86vJs5t9wKhMz4rFaLLg9HlZtreS+F7/hkdfyyC9y+MyUDiIiItK7\ngoODufLKq1mw4BHef/9dSktL2LEjnyVLXmX58ve69utpdhg0KIzw8HDefvtNSktLWLv2Gx5//K9H\nnfd01qzLqa+v5957f0N+/lZKS0tYvTqXP/xhvunZRQG1B8L8B3FL9vUE2PxxeVw8u2kR1c37GBIX\nys0XZvDgTyYyfXwy/n6dP9bNhft56OX1zH/xG177pIC126upa2o3+VuIiIiImW666Rauv34Oixcv\nYvbsy/n1r39Jbu4KEhOTuvbp6YT6FouF+fP/yPbt27jmmit4/PG/8rOf3dbtfgfFxMTw1FPP4/G4\nuf32n3PddVfyt7/9lUGDwkyf0H/ATzN1PDbVbOWZjYvw4CEhOI47Tr6VYPu3407rm9v5ZG0JH68t\noan18Okv4iKCSE0OJzUpnNTkcAbHhGhu1T6iv07HIn2Pek2Mol4To3hzmikF1OP0yd4vWFLwLgCj\no0ZxS9b12Ky2Q/Zpbe/gq43lbCioYVdZPa3trm7fKyjAj5FJYZ2BNSmclMFhmrrKJDqRi1HUa2IU\n9ZoYRQG1D/B4PLy8fQkryr4GYGrSZK44aeYR93e7PZRUN7KrtI6dpXUUlNRRU9fa7b4WCwyJCyUt\nKYKRyWGkJUUQFRZg+uX2gUAncjGKek2Mol4Toyig9hEut4vHNzzPDkcBAJeNupizkk8/5uNrG9so\nKKmjoLTzf0UVDbjc3f91RA4K6LrCmpoczpC4UK1k1Qt0IhejqNfEKOo1MYoCah/S5Gzmz2sep6ql\nBgsWbsm+gYzok47rvdqdLvZUNHQG1gPBtbGl+7nL/O1WUhLDGJkUTlpyOCmDwwkNsp/IVxF0Ihfj\nqNfEKOo1MYoCah9T2VzNn9c8TnNHC4G2QH494VYSQ+JP+H09Hg8V+5spKK3rHBpQUkf5vuYj7p8Y\nHUxacviB0BpBfGSQhgX0kE7kYhT1mhhFvSZGUUDtg3Y4Cvhb3nO4PW6iA6P47Wm3E2Dz/tKnjS1O\ndh0YElBQUsfu8nraj/AzCQ2ydw0JSE0KZ0TiIOx+tm73lU46kYtR1GtiFPWaGEUBtY/6qnQVL29/\nA4AbM69mfFxWr39mh8tNcVXjIWNZHQ1t3e5rs1oYnjCIkUnhjB0ZzZhhkbrC+j90IhejqNfEKOo1\nMYoCah/l9ri588v5NHe0cPaQKfww7SLDa/B4POyvb2NnaS27SurZWVpLcVUj3f0t33ZZNlkjow2v\nsS/TiVyMol4To6jXxCjeDKiabNOLrBYrI8KHsWVfPoV1RabUYLFYiA4PJDo8gYljEoDO+Vh3l9V3\nTm9VWsfmwv0AlNU0KaCKiIj4mD/8YT6NjY384Q8Pm11Kr9E8RV6WEj4MgOKGUtpdfWNZ00B/P0YP\nj+Ki00dw++U5XU/7N7V2P0OAiIiIiJkUUL3sYEB1e9wU1ZeYXE33QgI7L5x3twyriIiIiNl0i9/L\nhoUNxWqx4va42V1XRFpkitklHSYkyA6OFpp1BVVERKRX/fznP2HkyFSsVivvv/8edrudm2++hXPO\nmcEjj/yJzz77hKioKG677f+YOHEybrebhx76PWvXrmH//hri4xO45JLLuOyyHx3xMzweDy+9tJC3\n317K/v01DB06jGuvvZGzzppu4Df1LgVULwuw+ZMcmsjehlIK6/eYXU63gg9eQT3CIgAiIiK+oKWj\nhYqmakM/MyEkliC/oB4ds3z5e1x11TU899w/+PjjD3n44T/y+eefcuaZZ3PttTfyyiuLeeCB37Fk\nyXvYbDbi4uJ54IE/ER4ezqZNG3jooT8QExPD2Wef0+37/+MfL/DRRx8wb95vSE4eQl7eOu6//3dE\nRkaRnT3OG1/bcAqovWBE+PDOgFpXhMfj6XNTOYUGHhyDqlv8IiLim1o6Wrhn5YO0dLQY+rlBfkHc\nP/muHoXU1NRRXHPNDQBcffV1/POfC4mIiOSCC2YCcP31c1i69HV27drJmDGZ3HDDzV3HJiQksnnz\nRj755D/dBlSn08lLLy3k0UefIiMjE4DExMFs3JjHW2+9oYAq30oJH8bnJStocjZT1VxNfEic2SUd\n4uAV1GYFVBERkV43cmRq15+tVivh4eGkpHy7LSqqc0Ydh8MBwJIlr7Fs2TtUVlbQ1tZGR4eTtLTu\nl1EvKSmmtbWVX/3qVv575lCXq+OIx/gCBdReMDJ8eNefC+uK+lxADTlwBdXR2MZHa4rJSY0hNqJn\ntytERETMdPBKpi/c4vfzOzRuWSyWw7YBeDxuPv74Q5588jF+/vPbycgYS3BwMP/61z/Ytm1Lt+/d\n0tK5BPrDDz9GTEzMIa/5+3t/RUujHFdAXbx4Mc8//zw1NTWkp6dz9913k5XV/apJHR0dPP3007z1\n1ltUVlaSkpLCHXfcwRlnnHFChfdlkYERRASEU9tWx6clX5EYGs/wsKFml9UlJjwQAGeHm5f/s5OX\n/7OT5NgQctJiyEmNZXjiIKx9bFiCiIjI/wryC2JEeN/5/1dv2LRpA2PHZjNz5qVd20pLjzwr0PDh\nKdjt/lRWlpOdnWNEiYbocUBdtmwZDz74IPfffz9jx45l0aJFzJkzh+XLlxMVFXXY/n/961959913\neeCBBxgxYgRffvklP/vZz3j11VdJT0/3ypfoi06Oy+bj4i8obSzn4TWPc3JcNhemzCA22PyJ8Sdm\nJFDf3M43+VXsrWwEoKS6iZLqJt5dWUR4iD/ZqTHkpMUwZlgk/nabyRWLiIgMDMnJQ1i+fBlff72K\nxMTBfPDBMvLztzJ4cFK3+wcHB3PllVezYMEjuFwusrJyaGpqZNOmDYSEhDJjxvkGfwPv6HFAXbhw\nIVdccQUzZ3YO7J0/fz6fffYZS5Ys4aabbjps/7fffpu5c+d2XTG98soryc3N5YUXXuChhx46wfL7\nrotGziDUHsIHRZ/S6mplbdUG8qo3MzVpEjOGTyfU3ztLgR0Pu5+V8ycN5/xJw9lX10peQQ15BTXk\nFzlwuT3UNbXzxYYyvthQhr/dSsbwKHLSYsgeGUNYiO/eLhARETFa9w9KH76tcz8LM2f+kJ07d3Dv\nvb/BYrFwzjnf55JLLmP16pVH/IybbrqFqKgoFi9exMMP/4HQ0EGMGnUSs2ff4L0vYjCLx9PdKu3d\nczqd5OTksGDBAqZP/3ZurbvuuouGhgaeeOKJw4457bTTmDdvHpde+u2l6v/7v/9j3bp1fPzxxz0q\n1hfXEW5sb2L5no/5ojQXl8cFQKAtkHOHnc1ZQ6bgb7ObXOG3Wto62Lx7P3k7q9m4a99hT/lbgJFJ\n4QeGAsSQGB3c52YoOFFas1qMol4To6jXxCgHe80r79WTnR0OBy6X67BBuNHR0ezevbvbY6ZMmcLC\nhQuZMGECQ4cOZeXKlXz00Ue43T3/JbHZfG/hqwi/QfxozEymD5/C0oLlrKnIo9XVyluF7/NF6Uou\nSp3BxMEnY7WY/90G+fkzKTOBSZkJuNxudhbXsW5HNet2VFPlaMEDFJTWUVBax+uf7SI+Mohxo2IZ\nPyqWtCHh2Kzmf4cTdbDHfLHXxLeo18Qo6jUxijd7rEdXUKuqqpg6dSqvvvoq2dnZXdsfeugh1q1b\nxyuvvHLYMfv37+d3v/sdn3zyCVarlSFDhjB58mTeeOMN1q9f751v4UMK9u3hnxveYFv1zq5tQ8OT\nuDr7ErITxvTJK5Iej4eSqkZWb6lg9eZytu918L9dExpkZ8KYeE7LSGD8SXEEB/adK8MiIiLiW3r9\nFv9B7e3t1NbWEhcXx5///Gc+//xz3nnnnR4VW1/fgsvl+7cnPB4Pm2q28caOdylvquranh6VxqWj\nzmdoWLKJ1X23usY28gpqWL+jhs2F+2j/n1tGNquF0cMjGT8qlnFpsUQfmDXAF9hsVsLCgvpNr0nf\npV4To6jXxCgHe80behRQAS6//HKysrK4++67gc6wddZZZzF79mzmzJnzncc7nU7OP/98zjvvPG67\n7bYeFdvfxs+43C5WVazhvcIPqWtv6No+IT6Hi1JmEB10+KwIfU2708XWIgd5O2vYUFBDXVP7YfsM\njQ8lJzWGs8YlEREaYEKVx05jtcQo6jUxinpNjOLNMai2++67776eHBASEsJjjz1GYmIidrudRx99\nlO3bt/P73/+eoKAg5s2bx6ZNm5g0aRIAGzduZOPGjfj7+7Nz507uuece6uvreeihh3o8gWxrqxO3\nu0d5uk+zWqwMHZTMlKRJ2K12ihqKcXlclDVV8GVpLs0dLQwLG9KnHqT6XzablYSoYHLSYvj+qUPI\nGhlDWIid5tYO6pudANQ1tbO9uJbP88qw26wMSxiE1dr3hjIAWK0WgoL8+12vSd+jXhOjqNfEKAd7\nzRt6PM3Ueeedh8PhYMGCBdTU1DB69Giee+65rjlQKyoqsNm+nTezra2NRx99lJKSEoKDgznrrLN4\n+OGHCQ0N9coX6A8CbP78YMR0piSdxrLd/+GrslV0eFx8UvwlueVrmDF8GmcmTcbeh4MqgNViIWVw\nGCmDw5g1dSTVtS2dU1jt7JzCqrXdxSufFPDlpnKu/t4oThoaaXbJIiIi0gf1+Ba/mQbK7YnK5mre\n3rWcvOpNXdsiAyK4eOQPOCVhnImVHb/d5fW89OF2dpd/O5RhUkY8l5+dSngfuu2vW2FiFPWaGEW9\nJkbx5i1+BdQ+rLBuD28WvEdhXVHXth+nX8bkwaeYWNXxc3s8fLmhjNc/29U1x2pQgI2ZZ6QwbXxS\nn5imSidyMYp6TYyiXhOjKKAOIB6Ph401W/j3jrdxtNUS5BfE7yb+mjD/QWaXdtwaW5ws+XwXX+SV\ncbD5kmNDmX3uKNKSI0ytTSdyMYp6TYyiXhOjeDOgmn/JSo7KYrGQHZvJDZlXAdDS0cLrO942uaoT\nExpk59oZ6fz2mgkMS+gM2iXVjfzxpXU8/+7WbmcCEBERkYFDAdVHpIQP54ykzpkR1lZtYHPNNpMr\nOnEpg8O455oJzD73JEICO5/XW7G5gt88u4qP15bgOo7VxkRERMT3KaD6kItHziD8wK39V3cspbWj\nzeSKTpzVauHscUn8/uaJnJGVCEBLWweLP9rB/QvXUFBaZ3KFIiIiYrQez4NqpoE+h5vdaic6MIp1\nVRtp6Wilw93BmOiTzC7LKwLsNsalxZIxIoqiygbqmtqpa2rny43l7Cqrw2qxEBcR1OtrSWu+QDGK\nek2Mol4To3hzHlQFVB8THxxHcWMZVc3V7KkvJjN6NOEBYWaX5TVRYYFMzR5MWIg/BSV1OF1uqhwt\nrN1ezcfrSqiubSE40E5UWAAWi/cn+9eJXIyiXhOjqNfEKN4MqHqK3wc5Wmu5f/WfaXO1MyR0MP83\n4efYrLbvPtDH1De18/HaElZurmBffeshr8VGBDI5M5FJmQnERXhn3V/Q065iHPWaGEW9JkYxdalT\nM+lff52C/AIJsAWwdf926tsbCPQLJCV8uNlleV2Av43RwyI5Z0Iyo4dFYsFCZW0LLpeH5tYOtu+t\n5T9rSti2Zz9uD8RGBGH3O7EhALrSIEZRr4lR1GtiFF1BFdweN39e+wRF9cX4W+389rQ7iAmKMrus\nXtfmdLFuRzUrN5WzdY+D/25eu5+V8aNimZyZQMbwKKzWng8B0JUGMYp6TYyiXhOjaKJ+AaC0sZwH\nv3kMt8fN6KhR3Jp9Y6+My+yrHA1t5G6pYMWmcsr3NR/yWnioP5MyEpicmUBybOgxv6dO5GIU9ZoY\nRb0mRlFAlS5v7XqfD4s+BeCe0+4gISTe5IqM5/F42FPRwMpNFazeVklji/OQ14fFD2Ly2AROGxNP\nWPDRbz3oRC5GUa+JUdRrYhRvBlQ/r7yLmOaU+HFdAdXRVjcgA6rFYmFEYhgjEsO4YnoqG3ftY8Wm\ncjbu2ofL7aGosoGiygZe+6SAsSnRTM5MIDs15oTHq4qIiEjvUED1cSH2b/+l0tTeZGIlfYOfrXMc\n6vhRsTQ0t/P1tipWbCpnT0UDLreHvIIa8gpqCAn047Qx8cw8I4XQILvZZYuIiMh/UUD1caH24K4/\nNzqbj7LnwDMo2J/pJycz/eRkSmuaWLm5nNzNFdQ2ttPU2sEn60opqW5i3lXjsA6gsbsiIiJ9ne5x\n+jib1UaQXyAATU5dQT2SpJgQLjsrlT/PPZ07rsghe2Q0ADuKa/l8fanJ1YmIiMh/U0DtB0L8Oq+i\n6grqd7NaLWSMiOLWWWNJju0cHvHaZ7uoqWsxuTIRERE5SAG1Hwjx7wxauoJ67PxsVm44fzRWi4W2\ndheLlm/Hhya0EBER6dcUUPuBUPvBgKorqD0xPCGMGacNBWDL7v18tanc5IpEREQEFFD7hYMBtVFX\nUHvs4inDSYjqHCLxyscF7K9vNbkiERERUUDtB0LsB8egKqD2lN3Pxg3njcYCtLR1sPD9fN3qFxER\nMZkCaj8QYv92DKrCVc+lJodzzoQhAOTtrNFT/SIiIiZTQO0HogMjAXC6O/ig6BOTq/FNs6amEBvR\nOV3XM29sZPveWpMrEhERGbgUUPuB7NhMhoQOBuDdwg/ZVLPV5Ip8T4C/jet/0Hmrv7HFyYMvreXD\nb4p1RVpERMQECqj9gL/Nzs1Z1xJqD8GDh4VbXqaiqdLssnxO+rBIfv7DLIIC/HC5Pbzy8U6efmsL\nLW0dZpcmIiIyoCig9hNRgZHMyZyN1WKl1dXGMxsX0ezU5PM9NSE9jr/+6syuSfy/ya/igX+soaxG\nD6CJiIgYRQG1H0mLTOGytIsBqGqp4cWt/8LtcZtcle9Jig3l3utPZeKYeADK9zVz/z/W8PU2XZUW\nERExggJqP3NG0kROH3wqAFv3beftXctNrsg3BfjbuOnCMfz4e6OwWTtXm3r6rS28/J+ddLgU+kVE\nRHqTAmo/Y7FYuHzUTFLChwPw0d7PWFOZZ25RPspisTD95GTu/PF4IgcFAPDRmmIeenk9joY2k6sT\nERHpvxRQ+yE/qx9zMmcTERAOwEvb/k1xg+b2PF6pSeHce90pjB7WOZ1XQUkd8xd+w/a9DpMrExER\n6Z8UUPup8IBB3Dz2GuxWP5xuJ89sXERDe6PZZfmssBB/7rgih/MnDQOgvqmdh1/O47VPCti+14Gz\nQ7f9RUQIQ+sEAAAgAElEQVREvMXi8aGJHh2OJjoUBHrk64p1LNr6CgCpESP4Rc7N2Kw2k6vqu/z8\nrERGhhy119bvqOa597YdMv2U3c9KalI46UMjSB8WyYjEMPxs+vefHNmx9JqIN6jXxCgHe80bFFAH\ngCU73+GT4i8BODVhPFenX6aQegTHeiKvdDSz+MMdbCty4HIf/ivkb7eSlhzRFViHJwzCZlVglW8p\nNIhR1GtiFAVU6RGX28WTG14g37ETgKyYDG7IuAq7zW5yZX1PT0/kbU4XBaV15Bc5yN/rYE95Q7eB\nNdDfxqghEaQPjSR9WARD4wZhtVp64yuIj1BoEKOo18QoCqjSY60drTy76R9sdxQAkBaRwk+yriXI\nL8jkyvqWEz2Rt7Z3sLPkvwJrRQPd/YYFB/h1BtZhkaQPjSA5LhSrRYF1IFFoEKOo18QoCqhyXJzu\nDhZu+Rd51ZsBGBI6mFtz5jDIP9TkyvoOb5/Im1s72FFS2xVYiysb6e4XLjTIzkn/FVgHx4RgUWDt\n1xQaxCjqNTGKAqocN7fHzcv5b7Cy/GsA4oJi+FnOHKKDokyurG/o7RN5Y4uT7Xtryd/bGVhLq7tf\nQjUs2M5JQyO7AmtCVLACaz+j0CBGUa+JUUwPqIsXL+b555+npqaG9PR07r77brKyso64/8KFC3nl\nlVcoLy8nMjKSc889lzvuuAN/f/8efa5+ubzD4/HwduFyPiz6FICIgHBuzb6RwaEJJldmPqNP5PXN\n7ezYW8u2vQ7yixyU72vudr+IUP8D41c7A2tsRJACq49TaBCjqNfEKKYG1GXLlnHnnXdy//33M3bs\nWBYtWsTy5ctZvnw5UVGHX4V75513+O1vf8uDDz5ITk4Oe/bs4c477+SCCy7gzjvv7FGx+uXyrv/s\n/Zw3C94DINgviLnZNzAifJjJVZnL7BN5XWMb+QevsBY5qHS0dLtfVFhAZ2AdGknGiKiula7Ed5jd\nazJwqNfEKKYG1Msvv5ysrCzuvvtuoPNq3Jlnnsns2bO56aabDtv//vvvp7CwkBdffLFr25/+9Cc2\nbtzI4sWLe1Ssfrm8L7fsGxbnv44HD/5WOzePvZbR0aPMLss0fe1Evr++le3/dYW1pq71sH38bBbm\nXDCGU0fHm1ChHK++1mvSf6nXxCjeDKg9mpjR6XSyZcsWJk2a1LXNYrEwefJk8vK6X+993LhxbNmy\nhY0bNwJQXFzM559/zplnnnkCZYu3TBp8CjeNnY2f1Y92t5OnNr7I2soNZpclB0SFBTIpM4EbzhvN\nQ7dM5qGfTuL689KZlJHQddW0w+Xh7+9sZVPhPpOrFRER8Q6/nuzscDhwuVzExMQcsj06Oprdu3d3\ne8wFF1yAw+HgqquuAsDlcvGjH/2Im2++ucfF2rQyT684OTGL0IBgnlz/Iq2uNl7c8i9a3S2cOWSy\n2aUZ7mCP9dVeS4gJISEmhLPHJ+PxeCgoqePhl9fT2u7iiTc2Me/H4xk1JMLsMuUY9PVek/5DvSZG\n8WaP9SigHonH4zniAxurV6/mmWeeYf78+WRlZVFUVMTvf/97YmNjmTt3bo8+JyxMc3b2lomR2cRF\n/orff/E4DW2N/GvbG7hsTmaN+cGAfBjHV3rt1KhQ7g0J4N5nc2nvcPPXV/P4461TGDE43OzS5Bj5\nSq+J71OviS/pUUCNjIzEZrNRU1NzyPb9+/cTHR3d7TELFizg4osv5tJLLwUgLS2N5uZm7r333h4H\n1Pr6FlwujZ/pLZGWGH49YS6PrX2W/a21vLr5HWLtsYyNHWN2aYax2ayEhQX5VK8lRQXxs0uzeOzf\nG2hq7eCep1fy22snkBAVbHZpchS+2Gvim9RrYpSDveYNPQqodrudjIwMcnNzmT59OtB59TQ3N5fZ\ns2d3e0xLSwvW/1mD3Gq14vF4jnrltTsul1sDvHtZTEAMt4+fyx+/fpSmjmbyqrYyOjLd7LIM52u9\nljkiihvPH83f39lKXVM7f3ppHb+ZfbKe7vcBvtZr4rvUa+JLejxY4LrrruO1115j6dKl7Nq1i3vv\nvZfW1lZmzZoFwLx583jkkUe69p82bRovv/wyy5Yto6SkhBUrVrBgwQKmT58+IG8d+4LIwAjSIlMA\nKKzdY24xcswmZiTw4+93zsCwr76VP7+ynobmdpOrEhER6bkej0E977zzcDgcLFiwgJqaGkaPHs1z\nzz3XNQdqRUUFNputa/+5c+disVh47LHHqKysJCoqimnTpnHbbbd571uI16WEDyevejPlTZU0O1sI\ntmvski+YNj6ZptYO3vyikPJ9zTz67w38+kfjCArwynBzERERQ2ipU+nW7rq9/Hnt4wDMzb6BjOiB\ncZu/P8wX6PF4ePWTAj78phiA9KER/PpH47BadceiL+kPvSa+Qb0mRjFtHlQZOIYMGozd2nnVTbf5\nfYvFYuGKaalMGZsIQP6Bif5FRER8hQKqdMvP6sewsCEA7KrbY24x0mMWi4Uff+/bFcEq9jWbWI2I\niEjPKKDKEaWEDwdgT30xLrfL3GKkxwL8bUSE+gNQ6VBAFRER36GAKkc08kBAdbqdlDSWmVuMHJf4\nyM65UKscLSZXIiIicuwUUOWIUsKHdf15V233S9lK3xYX2Tn7QqUCqoiI+BAFVDmiYHswiSHxAOyq\nKzK5GjkeBwNqTW0LLree3hUREd+ggCpHdXAc6qaarayr2mhuMdJjB2/xu9we9te3mVyNiIjIsVFA\nlaM6M3kygbYAXB4XL2xezFelq8wuSXrg4BVU0DhUERHxHQqoclRJoYn8ctxPCLWH4MHDy9vf4IM9\nn+BD6zsMaLER3wbUnSW1JlYiIiJy7BRQ5TsNDUvm9vG3EBkQAcDbhct5s+A9hVQfEBTgx4jEMADe\nyy1iR7FCqoiI9H0KqHJM4kPiuOPkucQHxwHwcfEXvJT/b82P6gPmXDCaQH8bLreHp5ZuprZRY1FF\nRKRvU0CVYxYZGMHt429h6KBkAFaVr+H5zS/hdDlNrkyOJjE6hBvPHwNAXVM7Ty7dTIdLT/SLiEjf\npYAqPRLqH8Ivx93MqMhUADbUbOHJDS/Q0tFqcmVyNCefFMv5kzrntS0oqePVjwtMrkhEROTIFFCl\nxwL9ApmbdT3ZsZkA7KjdxYL1z9DQ3mhyZXI0l5yRQsbwSAA+XlfCys3lJlckIiLSPQVUOS52m50b\nM37M5MRTANjbUMpf1z3F/laHyZXJkVitFn5ycSbRYYEALFq+naKKBpOrEhEROZwCqhw3m9XGVek/\n5JyhZwJQ2VzNX9Y+SUVTlcmVyZGEBtn52ayx2P2sODvcPPHmJhpbNIZYRET6FgVUOSEWi4VLUs/n\n4pE/AKC2rY5H1j1JcUOZyZXJkQxLGMQ1554EQE1dK8++vQW3W1OGiYhI36GAKl7x/WFnc9VJl2LB\nQpOzmSfynqOqudrssuQITh+byNnjkgDYvHs/S78qNLkiERGRbymgitecnnQa1435ERYsNDgb+Vve\nczhaNTF8X3XlOWmMTOqcxP/dlUWs26F/UIiISN+ggCpeNSFhHJePmgnA/lYHj294nkZnk8lVSXf8\nbFbmzhxLWIg/AM+9u5Xyffq7EhER8ymgitdNTZ7EBSPOBaCiqZInN7xAa4dWL+qLIgcFMHdmJjar\nhdZ2F4+/sYmWtg6zyxIRkQFOAVV6xYzh0zh7yBQAiuqL+fumf+B0K/j0RaOGRHDFtM6FF8r3NfPC\nsm14PHpoSkREzKOAKr3CYrEwK/UCTks4GYB8x04WbXkZt0dLbPZF009OZlJGAgBrt1fz/uq9Jlck\nIiIDmQKq9BqrxcqP03/I2JjOdeDXV2/i5fw3dHWuD7JYLFwz4ySGxoUCsOTzXWzZvd/kqkREZKBS\nQJVeZbPauCHjx6RGjABgZfnXvF243OSqpDsBdhu3zhpLSKAfHg88/dZmampbzC5LREQGIAVU6XX+\nNjs/zbqOIaGDAfiw6FP+s/dzk6uS7sRGBPGTizOwAE2tHTzz9hbcuuItIiIGU0AVQwT5BXFrzhzi\ngmIAeLPgPVaWfWNyVdKdzBHRzDyj84r3rrJ6PltfanJFIiIy0CigimEG+Yfys5ybiAgIB+Bf+a/z\nz22vUdygANTX/GDiMIYcGI/6+me7cDRomjARETGOAqoYKjookp/lzCHELxgPHlaVr+HBbx7jL2uf\nYE3Fejo0FVWf4Gezcu2MdCxAa7uLf320w+ySRERkALHdd99995ldxLFqbXXidms8nK8b5B9KTuxY\nnG4nFU1VuD1uHG115FVvZmXZ17R1tBEXHEOgX6DhtVmtFoKC/NVrdE7i39jiZHd5PeX7mhkaH0pi\ndIjZZfUb6jUxinpNjHKw17zB4vGhOX8cjiY6OjSPZn/S7Gwmt3wNX5SspKb122mNrBYr42LHMjV5\nMiPDh2OxWAypx8/PSmRkiHrtgJa2Du5+bjWOhjYiBwXwwJzTCArwM7usfkG9JkZRr4lRDvaaN+gK\nqpjKbrOTEj6MM5MnMzxsCM3OFqpb9uHBQ3lTJavK17CxZis2i5X44FhsVluv1qMrDYey+1mJiwji\n621VtLa7aO9wMTYl2uyy+gX1mhhFvSZG0RVU6deqmqv5oiSX3PI1tLpau7YH+wUxafApTE2aTExQ\nVK98tq40dO/xNzaxbkc1FuDuaycwIjHM7JJ8nnpNjKJeE6N48wqqAqr0Wa0dbXxTuY7PS1ZS3lTZ\ntd2ChcyYdM5MOp2TolKxWrz3rJ9O5N1zNLTx27+vorXdxdC4UH533SlYrcYMu+iv1GtiFPWaGEW3\n+GVA8LP6MSxsCGckTSItciRtrjYqm6vx4KGquYavK9extioPPBAfEofdeuJjI3UrrHtBAX4E+vux\nqXAfdU3tDE8IIyE62OyyfJp6TYyiXhOj6Ba/DFj7Wx18VbqaFWWraXQ2dW0PsPlzWsLJTE2eTGJI\n/HG/v640HFmHy83/PbWSusZ2MlOiuP3yHLNL8mnqNTGKek2MYvot/sWLF/P8889TU1NDeno6d999\nN1lZWd3uO3v2bL755vAVg8466yyefvrpHn2ufrnkIKfLybqqjXxWsoK9DSWHvDYqMpWzkieTGT26\nxw9V6UR+dEu/LOTtFXsAePAnE4mL1FXU46VeE6Oo18Qo3gyoPb4numzZMh588EHuv/9+xo4dy6JF\ni5gzZw7Lly8nKurwB1eeeOIJnE5n1387HA4uvvhiZsyYcWKVy4Bmt9k5LfFkTks8mT31e/m8ZCXr\nKjfQ4XGxw1HADkcBkQERTE2axJSkiQTbg8wuuV84MyeJd1cW4fZ4+Gx9GZdPSzW7JBER6Yd6/HTJ\nwoULueKKK5g5cyYjR45k/vz5BAYGsmTJkm73DwsLIzo6uut/X331FUFBQQqo4jXDw4Zy7Zgf8cDp\nv+XClHO7llJ1tNXyVuH7PLz2b7R2tH7Hu8ixiBwUwLhRMQB8ubGMdqfL5IpERKQ/6lFAdTqdbNmy\nhUmTJnVts1gsTJ48mby8vGN6jyVLlnD++ecTGGj8KkHSvw3yD2XG8On8v0l3MSdzNmkRKQBUNdfw\n+s53TK6u/5g2LgmAptYOvt5WZXI1IiLSH/XoFr/D4cDlchETE3PI9ujoaHbv3v2dx2/cuJGCggL+\n+Mc/9qzKA2w2700nJP2XH1ZOGZzNhMQsntu0mDUVeeSWf0NOfAY5cZlHPfZgj6nXjixzZDSJ0cGU\n72vms7xSzhqfZHZJPkm9JkZRr4lRvNljXlmz0OPxHNNSlK+//jppaWlkZh49JBxJWJjGEUrPzJ10\nNb9evof9LbW8tO11xg1NJyIo/DuPU68d3YVnjOTZpZsoLKunuqGdUUMjzS7JZ6nXxCjqNfElPQqo\nkZGR2Gw2ampqDtm+f/9+oqOPvvxha2sry5Yt47bbbut5lQfU17fgcukJROmZa8ZcwaNrn6GhrZEF\nKxfys3E3HvEfVDablbCwIPXadxifGo2/3Uq7082bn+7k5osyzC7J56jXxCjqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzj3rssmXLcDqdXHjhhcddrMvl1hQZ0mNp4SM5e8gUPi3+is01\n+XxatJKpyZOOeox67ej8/axMzkzks/WlrNpSwaVTUwgPDTC7LJ+kXhOjqNfEl/R4sMB1113Ha6+9\nxtKlS9m1axf33nsvra2tzJo1C4B58+bxyCOPHHbc66+/zjnnnEN4+HffXhXxtotTftA1gf8bBe9S\n2aSHe07UOScnA9Dh8vDp+lKTqxERkf6kxwH1vPPO484772TBggVccsklbN++neeee65rDtSKigqq\nq6sPOWbPnj2sX7+eH/7wh96pWqSH7DY71425EpvFhtPtZOHWV3C5NUXSiRgcE0JmSufv/WfrS3F2\n6OcpIiLeoaVOZUD5qOgzlu5aBsCM4dO5MOXcQ17Xiis9s7lwH4+8tgGAG84bzZSsRJMr8h3qNTGK\nek2M4s2VpDTnhAwo04dO7Zof9YM9n1BYt8fcgnxcxogoEqM7lzv9aE0xPvTvXRER6cMUUGVAsVqs\nzB59BYG2QDx4WLTlFa0ydQIsFgvfmzAEgOKqRvL31ppckYiI9AcKqDLgRAdFcsVJMwGoad3PmwXv\nmVyRb5uUmUBIYOeEIB99U2xyNSIi0h8ooMqAdEr8OMbFjgXgq7LV7HAUmFyR7wqw2zjrwPKnGwpq\nWPL5LqoczSZXJSIivkwBVQYki8XC5SfNJMTeOX5y8bbXaXO1m1yV75o2Phl/Pyse4L3cIu56ZhUP\nv7yeVVsq9HS/iIj0mO2+++67z+wijlVrqxO3Ww9hiHcE2AKICAgnr3ozzR0ttLvbyYxNJyjIX73W\nQ0EBfqQPi6SuqZ2q2hYAaupaWbujmk/XleKobyMi1F+T+f8Xq9WiXhNDqNfEKAd7zRs0zZQMaB6P\nh2c2LWJTzVYsWPj1KXM5JSVTvXYC9te3smJTOV9uLKem7tAH0IYlDGJq9mBOGx1PcGCPFrLrdzT1\njxhFvSZG8eY0UwqoMuDVttXxwOq/0NLRSnxwLH/5wd00NTjVayfI7fGQX+Tgy43lrN1eRYfr21ON\nv5+VCelxTM0eTFpyOBaLxcRKzaHQIEZRr4lRFFBFvCy37Bteyv83ABenf5/zhn5fveZFjS1OVm2p\n4IsNZZRUNx3yWnxUMFOzEpmcmTCghgAoNIhR1GtiFAVUES/zeDw8seF5tu3fgcVi4a5Tf05ySLLZ\nZfU7Ho+HPRUNfLmhjFVbK2lt//YBKqvFQnZqNFOzB5OZEoXN2r+f4VRoEKOo18QoCqgivWBfi4Pf\nf/0Iba42BocmcOeEX+BnHdjjJHtTW7uLNdur+HJDGTtK6g55LSLUnylZiUzJGkxcRJBJFfYuhQYx\ninpNjKKAKtJLVpSv4l/b3gDgvOHncH7K902uaGAo39fEVxvLWbGpnPpm5yGvpQ+N4PxJw8kYEWVS\ndb1DoUGMol4To3gzoGqaKZH/MjwimT2NRVQ37WNX3R48eLAAYf6DsFltZpfXbw0K9idjRBTnTBjC\n0PhBtDldh0xXtWpLBelDI4gJ7z9XUzX1jxhFvSZG0TRTIr3Ez89Km72ZO96/H6f72yt5fhYbw8KG\nkhYxgtSIFEaEDyPQb+A80GMGR0MbX20qZ/nqIlraXESHBTD/hlMJDrSbXZpX6KqWGEW9JkbRLX6R\nXnLwl2tlwXre2vkBRQ3FuD2H95zVYmXIoCRSI0aQFpHCyPDhBB9YlUq86+ttlTz91hYAJo6J5+aL\nMkyuyDsUGsQo6jUxigKqSC/53xN5u6ud3XV7KagtZGdtIXvq9+J0dxx2nAULg0MTSI1IIS0ihdSI\nEQzyDzXhG/RPz727lZWbKwC46cIxTMpIMLmiE6fQIEZRr4lRFFBFesl3ncid7g721pews7aQgtpC\nCuv20OZq7/a94oPjuoYEpEaMIDIworfL77da2jq494WvqalrJSjAxvzrTyXGx5/uV2gQo6jXxCgK\nqCK9pKcncpfbRUlj2YHAuptdtbtp7mjpdt/owKiuq6upESnEBEUNyBWUjtfOkloeXLwOjwdGJYcz\n76rxWK2++/NTaBCjqNfEKAqoIr3kRE/kbo+b8qbKrsBaUFtIQ3tjt/tGBIQfCKudgTUhOE6B9Tss\n/bKQt1fsAWDW1BQumDzc1HpOhEKDGEW9JkZRQBXpJd4+kXs8Hqqaqymo3c3OA4HV0Vbb7b6h9pCu\nsJoaMYKk0ESslv69mlJPudxu/vjSOgrL6rFZLfxm9smMSAwzu6zjotAgRlGviVEUUEV6iREn8n0t\n+7uurhbU7qaqpabb/YL8AhkZPvxAYE1h6KAkzcUKVDqaue+Fb2hzuggJ9OPkk2LJSYtlzLBI/O2+\n8/NRaBCjqNfEKAqoIr3EjBN5bVsdu2p3Hwituylrquh2P3+rnZTw4V1XWYeHDcFu6x9zgvbUlxvL\neHFZ/iHb/O1WMkdEk5MaQ3ZqNIOCvTNZdG9RaBCjqNfEKAqoIr2kL5zIG9ub2FW3+8CwgEJKGsrw\ncPivadfiAZGdQwJGhA2sxQM2795H7uYKNu7aR1ProVN/WSyQlhROTlos49JiiI/qe3PU9oVek4FB\nvSZGUUAV6SV98UTe0tFCYV1RZ2B1FB518YBpQ87g4pE/GFBjV11uNzuL61i/s4b1O6upqWs9bJ/E\n6GBy0mIYlxZLyuAwrH3gYbS+2GvSP6nXxCgKqCK9xBdO5N+1eMAp8eOYPfryATle1ePxUFrTxPqd\nNeTtrGF3ef1h+4QF28lO7QyrY4abN27VF3pN+gf1mhhFAVWkl/jiifzg4gFvFrzH7voiADKj07kx\n82r8bX17HGZvczS0saGghryCGrbucdDhOvTv1N/PSsaIKHLSYsgeGUNYiHE/L1/sNfFN6jUxigKq\nSC/x5RN5m6udv2/6B9v27wBgZPhwfpp1PcF2315xyVta2zvYXLifvIIaNhTUHD5uFRiZHM64tBhy\nUmNIjPbOSfZIfLnXxLeo18QoCqgivcTXT+Qd7g7+sfVV1lZtACApNJFbs+cQHjDI5Mr6FpfbTUHJ\nt+NWq2sPH7eaEBXcGVbTYhg5ONzrq1b5eq+J71CviVEUUEV6SX84kbs9bl7dsZSvSlcBEBMUzc9z\nbiImKMrkyvomj8dD2cFxqwU1FJYdPm51ULCdcWkxXDwlhchB3pkpoT/0mvgG9ZoYRQFVpJf0lxO5\nx+Ph3d0fsnzPxwCE+4fxs5w5DA5NMLmyvq+2sY28gs6HrP533Gp8VDD/39XjCfPCHKv9pdek71Ov\niVEUUEV6SX87kX+y9wuWFLwLQLBfEHOzb2BE+DCTq/Idre0dbNnt4Jv8Sr7eVgXAiMQw5l05jgD/\nE3v6v7/1mvRd6jUxijcD6sCZLFFkAJo2dCqzR1+O1WKluaOFBeufZdu+HWaX5TMC/TuXUv3pxZl8\n/5QhAOwur+fJpZsPmxFARES8RwFVpJ+bmDiBOZmz8bP60e528tTGF1lXtdHssnzO5dNSmZgRD8Cm\nwn0sej8fH7oBJSLiUxRQRQaA7NgMbs2+kUBbAC6Pixc2L+56iEqOjdVi4YbzRpMxovNhsxWbK1jy\neaHJVYmI9E8KqCIDxKjIkfxy3E8ItYfgwcPL299gy77tZpflU/xsVubOzGRYQue0XctWFfHRmmKT\nqxIR6X8UUEUGkKFhydw+/hZC7Z2D2FeWfW1yRb4nKMCPX12WTVxE5wIIr/xnJ19vqzS5KhGR/uW4\nAurixYuZNm0aWVlZXH755WzcePTxbA0NDcyfP58pU6aQlZXFjBkz+OKLL46rYBE5MfEhcZySMA6A\nLfvyaXO1m1yR7wkL8ef2K7IJC7bjAf7+zla27tlvdlkiIv1GjwPqsmXLePDBB/nFL37Bm2++SXp6\nOnPmzGH//u5Pzk6nk+uuu47y8nIef/xxli9fzgMPPEB8fPwJFy8ix2dcbBYATreTLfvyTa7GN8VF\nBvOry3MI8Lfhcnt4/I1N1NS1mF2WiEi/0OOAunDhQq644gpmzpzJyJEjmT9/PoGBgSxZsqTb/V9/\n/XUaGhp44oknyMnJYfDgwUyYMIGTTjrphIsXkeMzInwo4f6d4yjzqjaZXI3vGpYwiJ/PGovVYqG1\n3cU7K/aYXZKISL/Qo4DqdDrZsmULkyZN6tpmsViYPHkyeXl53R7z6aefkpOTw/z58zn99NO58MIL\neeaZZ3C7NYegiFmsFis5cWMB2LRvG+0up8kV+a4xw6M4fWznCl0rNlVQub/Z5IpERHyfX092djgc\nuFwuYmJiDtkeHR3N7t27uz2muLiYVatWcdFFF/H3v/+dPXv2MH/+fFwuF3Pnzu1RsTabnumS3nWw\nxwZCr01IyObzkpW0u9rZXruDcfFjzS7JZ10yNYWVmytwuT28s3IPP52Z+Z3HDKReE3Op18Qo3uyx\nHgXUI/F4PFgslm5fc7vdxMTEcP/992OxWBgzZgxVVVU8//zzPQ6oYWFB3ihX5DsNhF47JTyT8M1h\n1LXWs9mxlWnpE80uyWdFRoYwY9Jw3luxm9wtFVz1g9EMSwg7pmMHQq9J36BeE1/So4AaGRmJzWaj\npqbmkO379+8nOjq622Pi4uKw2+2HBNiUlBRqamro6OjAz+/YS6ivb8Gl5QWlF9lsVsLCggZMr+XE\nZPB5SS5rSjdSVVOL3WY3uySf9f0JyXy4ughnh5tF72zh5z/MOur+A63XxDzqNTHKwV7zhh4FVLvd\nTkZGBrm5uUyfPh3ovHqam5vL7Nmzuz1m/PjxvPvuu4ds2717N7GxsT0KpwAul5uODv1ySe8bKL2W\nHTOWz0tyaXW1sbl6O2Njxphdks8aFGRn2vgkPvi6mG/yq9hVUtc1of/RDJReE/Op18SX9HiwwHXX\nXcdrr73G0qVL2bVrF/feey+tra3MmjULgHnz5vHII4907X/llVdSW1vLAw88wJ49e/jss8949tln\nuVM8GY4AACAASURBVPrqq733LUTkuKRGjOiatH+9nuY/YT+YOIwAuw2AN7/UMqgiIserx2NQzzvv\nPBwOBwsWLKCmpobRo0fz3HPPERXVuT51RUUFNputa/+EhAReeOEF/vjHP3LxxRcTHx/Ptddey003\n3eS9byEix8VmtZEdm8mKstWsq9rAqQnjSY9KM7ssnxUW7M/3Tknm3ZVFbNy1j2WrishOjWFwdPAR\nx+mLiMjhLB6Px2N2EcfK4WjS7QnpVX5+ViIjQwZUr5U2lvPwmr/hdHdgt/rx06zrFVJPQFOrk3lP\n5dLS1tG1LSzEn9HDIhk9LJL0YZHERQQNyF4Tc6jXxCgHe80bFFBF/stAPZHn79/J0xsX4nQ7sVv9\n+EnWdYyOGmV2WT5r6579vPyfnZTWNHX7ekx4IGOGR3FKRgJDY0MYFKSH06T3DNTzmhhPAVWklwzk\nE/kORwFPbngRp9uJn9WPn4y9ljHRWvHtRNQ1tpG/t5ZtRQ7yixxU1Xa/FGpidDDpwyIZPbTzCmuo\nAqt40UA+r4mxFFBFeslAP5HvcOziqQ0v0H4gpN489hoyotPNLqvfqKlr6Qqr24oc1Da2H7aPBRgS\nH9o1JCAtOYKgAK9MWS0D1EA/r4lxFFBFeolO5LDTUciTG1+g3dWOn8XG/9/encdHWd77/3/NTCb7\nPtlD2JcgSSBhR0HBHW2larGnirVHrd0O7c/Teuw5nlbbY7Wtx1alp18tWrWl1VpqtYpaN7RiEBFC\n2NcAScieyTpJZv39EQhEQBiYmXsyvJ+PRx/gzD33fCgfLt5c931d9+3FN1OUMdHosiKOxWLC4fax\ntvIQW/a1sOOAne5e93HHmU0mRuUlHQ6s6YzNT8YaZTnBGUVOTOOahIoCqkiQaCDvt6etil9venIg\npN5WvER7pAbYp3vN6/NR09jF9sOzqzur2+hzeo7/nMXMuGEp/bcEjEhjZE4SUXqEpXwGjWsSKgqo\nIkGigfyoPW1V/N+mJ+nzOLGYLNyukBpQp+o1t8fL/vrOgVsCdte04z7BU4Bioy2ML0gduCVgWFYi\nZm1pJcfQuCahooAqEiQayAfb176fX1c8Sa+nD4vJwq1FNzE5c5LRZUUEf3vN5fawp7ZjILDuO9SB\n9wTDd0Js1MDsatGodLLS4oNRvgwhGtckVBRQRYJEA/nx9rUf4NcVy+n19GE2mbm16CamZBYZXdaQ\nd7a91tPnZndN28AtAdUNXZxoMJ8yNoMrZw1n3LDUsy9ahiSNaxIqCqgiQaKB/MSq2g+wrOJJej29\nmE1mvlZ8sy73n6VA91pXj4udB+1sOzzDWtfiGPT+uGEpLJw1gpIxNj3V6hyjcU1CRQFVJEg0kJ/c\n/o6DLKtYTo+7l7yEHP5r5p1GlzSkBbvXWjt6eXdjLe9sqB30VKv8zAQWzhzB9IlZWlx1jtC4JqES\nyICq0UlETsvI5OFcNnw+APWORjze41eYS/hIT47lugvH8NA35/DF+WNISYwGoLapm9++so0fPF7O\nW+ur6XPp91FEwo8CqoictpyELAC8Pi9NPS0GVyOnIy4miitnjuDnX5/DLVcWkp0WB0BLRx9/fGs3\n3/+/D3n5gyq6elwGVyoicpQeTyIipy37cEAFaHA0DgRWCX/WKDPzJudxQXEuG3Y1sWrtAfbXd9LV\n4+JvH1Tx2kcHmTc5j8tnFJCeHGt0uSJyjlNAFZHTlhGbjsVkwePz0NDdBJlGVyT+MptNTCvMYuqE\nTHYcsLNq7QG27rfT5/Lw5vpq3tlQw6zzsrli1gjyMwJzL5mIiL8UUEXktFnMFjLjbNQ7Gql3NBpd\njpwFk8nExJHpTByZzoH6TlatPcD6nY14vD7WbKlnzZZ6SsdlsHDWCMbkpxhdroicYxRQRcQv2QlZ\n1DsaaXA0GV2KBMiInCS+saiIBruDNz46yAeb63F7vGzc3czG3c2MH5bC+SW5TB2fRXys/toQkeDT\nSCMifsmO77+u3+BoxOfzaU/NCJKdFs/NVxRyzQWjeHN9De9urKGnz8OumnZ21bTz+zd2MXmMjVmT\nsikZY8MaZTG6ZBGJUAqoIuKXnPj+hVE97l46nF2kxCQZXJEEWkpiDNdfNIaFs0bwXkUt71fW0dDq\nwO3x8smuJj7Z1URcjIWp47OYOSmbicPTMJv1DxURCRwFVBHxS3bC0ZVRDY5GBdQIFh8bxZWzRnDF\nzOEcaOhk7dYGPtreQHuXk54+Dx9sruODzXWkJEQzY2I2syZlMzInSbPqInLWFFBFxC9HLvFDf0Ad\nnzbGwGokFEwmEyNzkhmZk8zi+WPZedDO2m0NrN/ZRE+fm/ZuJ2+ur+bN9dVkpcUx67xsZp6XTa5N\nuwCIyJlRQBURv8RFxZFgjafb5aC1t83ociTEzOajq/9vumwCm/e1sHZrPRV7WnB7vDTae3h5zX5e\nXrOfETlJzDovmxkTs0lLijG6dBEZQhRQRcRv0eZounHg8urpQ+cya5SZsvGZlI3PpKfPzYZdTazd\n1sC2/a34fHCgvpMD9Z38+Z09FI5IY+Z52UybkEl8rNXo0kUkzCmgiojfoi39AcPldRtciYSLuJgo\nzi/O5fziXNq7nazb3sBH2xrYd6gDH7D9gJ3tB+z84R87KRmTwazz+ncCiLZqJwAROZ4Cqoj4zWo+\nHFA9mkGV46UkRHPptAIunVZAo93BR9saWLutgboWB26Pjw27mtiwq4nYaAtTx2cyrTCLUbnJJCdE\nG126iIQJBVQR8ZvV3D906BK/nEpWWjyfO38UV88ZycGGLj7a1r8TgL2zj16nZ+CpVdAfbIdlJVKQ\nlUhBZv+PObZ4oixmg38VIhJqCqgi4reBGVRd4pfTZDKZGJGTxIicJK6fP4bd1W2Ub21g/Y5GHH39\nfdTe7aS9qpWtVa0Dn7OYTeRlJDDscGAtyEpkWFYiKZptFYloCqgi4jerRZf45cyZTSYmDE9jwvA0\nbrpsPNWNXdQ0dvX/2NT/Y3dvf2j1eH1UH36vfOvRcyQnRFOQmUBBVhLDsvp/zNVsq0jEUEAVEb/p\nEr8ESpTFzKjcZEblJg+85vP5sHf2DQqs1Y1d1Lc68Pn6j+nodrK128nW/faBz1nMJnJtCRRkHRNc\nMxNJSdQWVyJDjQKqiPhNl/glmEwmE+nJsaQnxzJ5bMbA606Xh0Mt3QOB9cis67GzrTVN/aG2fGvD\nwOeS460D97YeuVUgLyNBs60iYUwBVUT8phlUMUK01TLwRKsjfD4fbV1Oqhs7jwbXpm7qWxx4D0+3\ndjhcbNtvZ9txs63xxy3KSk6I1qNaRcKAAqqI+O3IPagOlwOP14PFrL0sxRgmk4m0pBjSkmIoGXN0\nttXl9nCo2cHBxk5qGrsHAuzg2dZuapq6WXvMbGtSvHXQTGtBViK5tgSsUZptFQklBVQR8VtuQg4A\n7c5OVu1/i8+NvtzgikQGs0ZZBnYNOOLobGsX1Y2d1DT13y5w7Gxr50lmW3Ns8QOzrEdmXVM02yoS\nNAqoIuK3ObnTWVe/gX3t+3lj/zuMTRnFRNt4o8sS+UyDZ1ttA68fmW2t/tROAl09/beweLw+apu6\nqW3qZu22o7OtiXFWJo1KZ35pPuOGpSisigSQyec7siYy/Nnt3bjdXqPLkAgWFWUmLS1BvXYa7L1t\nPPjxI3S5ukm0JvCDGd8lNSbF6LKGDPVaeDt2tvVIYK1p7KLumNnWY+VnJDC/LJ/Zk3KIiwmvuR/1\nmoTKkV4LBAVUkWNoIPfP1pad/GbTU/jwMSZlJN8pvUP3o54m9drQ5HJ7OdTcTU1TF3sPdfDRtgZ6\n+o7uZhETbWH2pBzml+ZTkJVoYKVHqdckVBRQRYJEA7n//r73dV4/8A4Alw6/iEVjFxpc0dCgXosM\nfU4PH21v4J0NNRxs6Br03thhKcwvzWfahCxDF1mp1yRUFFBFgkQDuf88Xg+PVfyW3W37APhGyVcp\nyphocFXhT70WWXw+H/vqOli9oZaPtjfi9hz9PU2Kt3JBSS4XTcknMzUu5LWp1yRUDA+oK1as4Mkn\nn6S5uZnCwkLuueceSkpKTnjsiy++yA9+8ANMJhNHviomJoZNmzb5Xaz+cEmwaSA/M+19HTyw7ld0\nurpIiIrn7hnfIT02zeiywpp6LXJ19bj4oLKO1RtraWzrGXjdBBSPsTG/NJ/i0TbM5tAsqlKvSagE\nMqD6fSf3qlWrePDBB/nJT35CcXExzzzzDLfddhuvv/466enpJ/xMUlISb7zxxkBA1UpHkciSEpPM\nLZP+hWUVy+l2O3hqywq+W/Z1oszhtVhEJBQS46xcMXM4l80oYNv+Vt7dUEvFnmZ8Pqjc20Ll3hZs\nybFcVJrH3JI8khOijS5ZJOz4fVPM008/zQ033MCiRYsYM2YM9913H7GxsaxcufKknzGZTKSnp2Oz\n2bDZbCcNsiIydBWmj+PKUZcAUNVxkJf2vmZwRSLGMptMFI2y8W/XlfCLb8zh6jkjSTkcRls6eln5\n3j7+/ddreOLlreyqbmMI3XEnEnR+TW+4XC62bt3KHXfcMfCayWRizpw5VFRUnPRzDoeDBQsW4PV6\nOe+887jzzjsZO3bsmVctImHpypEXs69tPzvsu3mn+p+MTR3F5Mwio8sSMVx6cizXzhvN588fycbd\nzby7oYYdB9vweH2s3dbA2m0NDMtMYMHUYcybnIdZVxrlHOdXQLXb7Xg8HjIyMga9brPZqKqqOuFn\nRo0axf3338+ECRPo6upi+fLlfOlLX+LVV18lOzvbr2ItFj1qToLrSI+p186UmVtLvsxPyh+mw9nJ\n8i1/4LKRF3HV6EuJPvx4VOmnXjs3RUWZmV2Uw+yiHGqbunhnQy0fVB6ip89DTVM3z76+k06Hiy/M\nGx2w71SvSagEssf8WiTV2NjIvHnzeP7555k8efLA6z//+c/ZsGEDzz333CnP4Xa7WbhwIVdffTVL\nly49s6pFJKxtb9rNT99bRp/HCUBOYia3T/syxdmFBlcmEn56+ty8v7GGle/uoa65m9hoC8v/61JS\nEmOMLk3EMH7NoKalpWGxWGhubh70emtrKzab7SSf+tQXRkUxceJEDhw44M9XA9DR0YPHoxWIEjwW\ni5nk5Dj12lnKicrjh7P/nRXb/8q2lp3UdzXxk9WPMDtvGteP/xyJ0YFZ5TmUqdfkWDMmZJKVHMMP\nn1xHr9PDite28S+XBObxweo1CZUjvRYIfgVUq9XKpEmTKC8v5+KLLwb6934rLy9nyZIlp3UOr9fL\n7t27ufDCC/0u1uPxaosMCQn12tlLjU7jmyX/yvqGCv6y+2W6XN2UH1rP5qbtXDfuc0zPLtWOHqjX\n5KhhmYlMHZ/JJ7uaeGt9DZdOKyA1gLOo6jUZSiz33nvvvf58ICEhgUceeYTc3FysViu/+tWv2Llz\nJ/fffz9xcXHcddddbN68mdmzZwPw61//GpfLhclkora2lgcffJDKykruu+8+v1fz9/a68Hq1ylGC\nx2w2ERcXrV4LEJPJRH5iLrPzptPl7Kam6xBOr4tNTVuo6jjI6JQRxFvjjS7TEOo1OZG8jARWb6zF\n4/XhdvsoGXN6Vyc/i3pNQuVIrwWC35sULly4ELvdzqOPPkpzczMTJ05k+fLlA2Gzvr4ei+Xos7g7\nOjr47//+b5qbm0lOTqaoqIjnnnuOMWPGBOQXICLhL9GawJLzFjMjp4w/7VxJU08L21t38T8fPcxV\noy5lQcFcLGbLqU8kEuGGZSYy87xs1m5rYHVFLZfPLCAjJfRPnxIxmh51KnIMPXEl+JweF6/vf5s3\nD67G6+v//zg/MZcbC69nRHKBwdWFjnpNTqa+1cF//XYtPh/Mm5zLLVee3aOD1WsSKoF8kpT2nBCR\nkIq2WPn8mCu4e/p3GJk8HIDarjp+sX4Zf9n9Mr3uPoMrFDFWTno85xflAvBBZT0NdofBFYmEngKq\niBgiPzGXf5/6TRaPX0SsJQYfPt6t/oD/+eh/2dK83ejyRAz1+fNHYjGb8Pp8vPTPE+8zLhLJFFBF\nxDBmk5kLh83hnpn/TknGJADsfW38pvJ3PLnlD7T3dRpcoYgxMlLjmDc5D4C12xrYUtVicEUioaWA\nKiKGS4tN5Y6Sr3B78c2kRCcBsKGxkp989Av+Wbt24F5VkXPJF+aNJjm+/wlsT7+2g54+t8EViYSO\nAqqIhI0pmUX896zvMS9/NiZM9Lh7eW7nX/n5+sfY177f6PJEQioxzsqSyycA0NrRxwvv7jG4IpHQ\nUUAVkbASFxXHDRO+wJ1Tv0FeQg4A1Z21/O8n/8cz256jva/D4ApFQmfqhCymF2YBsLriENv2txpc\nkUhoKKCKSFganTKSu6d/hy+Ou4a4qP59INfVb+DHa3/BWwffw+3V5U45N9x42XgS4/ov9f9ulS71\ny7lBAVVEwpbFbOGigvP50azvMyd3BiZM9Hr6eHHPq/x03S/Z3rLL6BJFgi45PpqbLhsPQEtHL395\nb6/BFYkEnwKqiIS9pOhEbpx4Pd+f9u2BvVMbHE0s27ScxyufoblHlz0lsk0vzGLqhEwA3t1Qy44D\ndoMrEgkuy7333nuv0UWcLj1HWIJNz6wOb6kxKczOnYYtLp2q9gM4vU4aHE18cGgtHq+bkcnDh8wj\nU9Vr4g+TycSE4Wms2VyH0+1lZ3UbWWlxmE0QFxOFyWQ66WfVaxIqR3otEPSoU5Fj6JGAQ0ePu4dV\nVW+xumbNwDZUaTGpXDvuakoziz/zL+xwoF6TM7F2Wz1PvLxt0GtRFhPZ6fHkpseTY0sg1xZPri2e\nnPR4YqOj1GsSMoF81KkCqsgxNJAPPXXdDfxl18vssO8eeG182li+OO7z5CXmGFjZZ1OvyZnw+Xy8\n8O5e3vj4IKfzt3daUgx5GQmMykshPSmarNQ4cm0JpCZGh/0/4mToUUAVCRKFhqHJ5/OxqWkLK/e8\nQmtv/715R55SddWoSwd2AQgn6jU5Gy63l0a7g7oWB3WtDupbugd+3uf0nPLzsdGWw7Osx8y42hLI\nTosjyqLlKXJmFFBFgkShYWhzepy8eWA1bx5cjevwNlRJ1kSuGXMlM3OnYjaFz1+86jUJBp/PR1uX\nk7rDgbW+xUG93UF9q4OW9t5Tft5sMpGZGkuuLYEcW/9tA0d+fmSrK5GTUUAVCRKFhsjQ0tPKyj2v\nsKlpy8Bro5KH89VJN2KLSzOwsqPUaxIqR3rtUH07NY1d1Lc4qGs9GmAb7A7cnlNHgaR46/H3udoS\nyEiOxWzW7QKigGp0GRLBFBoiy/bWXbyw62UaHI0AJFoTuK1oCePSRhtcmXpNQudUvebxemlu7x0I\nrHUt3dS1Oqhr7qa799QPBYiymMlJj+sPrunxh8NrAjnp8cRED41dNSQwFFBFgkShIfJ4vB7eOPAO\nq6rewocPs8nM4vHXMDd/tqF1qdckVM6m1zodzv7g2uoYdNtAU3vPaS3SSk+OIfeY4Hpk9jUlQYu0\nIpECqkiQKDRErs3N23h665/o9fQBcEHeTL44/hqizFGG1KNek1AJRq+53B4a7D2DZ1wPh9c+16kX\nacXFWAYv0Dr88ywt0hrSFFBFgkShIbLVdTfweOXTNPW0ADAmZRS3Fy8hKTox5LWo1yRUQtlrPp8P\ne2ff4Z0Fjpl1bXVg7+w7da0WM9MLM5lfNowxecmaZR1iFFBFgkShIfI5XA6e2vpHtrfuAvo397+j\n5CsUJOWHtA71moRKuPRaT5/7uFsF6lodNLQ68JzgCVfDsxNZUDaMmedlE2PVvaxDgQKqSJCEy0Au\nweXxenhp32u8ffB9AKxmKzdN/CLTsqeErAb1moRKuPeax+ulua1/kdbmqhY+3FI/aC/X+Jgozi/O\nZX5ZPjnp8QZWKqeigCoSJOE+kEtgfVT3CX/cuRL34T1TLxsxn8+Nvjwk+6Wq1yRUhlqv9fS5Kd9a\nzzsbajnU3D3ovUkj05hfNozJY21YzLpXNdwooIoEyVAbyOXsHeio5vHKZ2h3dgBQZCvklkn/EvSn\nT6nXJFSGaq/5fD52VbfxzoZaNuxqGnQbQHpyDBdOyWfe5DxSEqINrFKOpYAqEiRDdSCXs9Pe18Fv\nN/+eqo4DAGTHZ3JHyS1kx2cG7TvVaxIqkdBr9s4+/rnpEKsramnrcg68bjGbmFaYxYKyfMbmp2hR\nlcEUUEWCJBIGcjkzLq+b53e+SHndxwDERcXy1UlfZpKtMCjfp16TUImkXnN7vFTsbubdjbVsP2Af\n9N6wzEQWlOUza1I2sdHGbB93rlNAFQmSSBrIxX8+n4/3aj5k5Z6/4/V5MWHi36bczoT0sQH/LvWa\nhEqk9tqh5m7e3VjLh1vq6Ok7uqgqLsbCnKJcFpTlk2sLTFiS06OAKhIkkTqQi392tu7hic3P0uvp\nZVr2FL466csB/w71moRKpPdar9PN2q0NvLOhhpqmwYuqJo5IY35pPqXjM7SoKgQCGVA1By4i8ikT\n0sdSllXCh3Xr2Nm6B5/Pp3vbRMJUbHQUF5Xmc+GUPHbXtPPuxlrW72jE4/Wx/YCd7QfspCXFcOHk\nPOZNySM1McbokuU0KKCKiJxAYfpYPqxbR6eri0Pd9eQn5hpdkoh8BpPJxPiCVMYXpPKlBWN5v7KO\n1RtrsXf2Ye/s428fVPH3D/dTNj6TBWX5jC9I1T88w5gCqojICYxPO3rf6c7W3QqoIkNISmIMn5sz\nkoWzhrNpTwvvbqhh6347Hq+Pj3c08vGORvIzEphfls/sSTnExSgOhRv9joiInEBSdCL5ibnUdtWx\nw76HBcPnGV2SiPjJYjZTNj6TsvGZ1LV0s3rjIT7YXEdPn5va5m7+8I9dvLB6L3OKcphfms+wzESj\nS5bDFFBFRE6iMG0ctV117G7bh9vrJsqsIVNkqMq1JfAvl4zj2nmj+Wh7/6Kqgw1d9Dk9vLuhlnc3\n1DK+IJUFZfmUjc8kyqJFVUbSaCsichIT0sfxdvX7OD1O9ndUMzZ1lNElichZiom2MG9yHnNLctl3\nqIN3NtTy8Y4G3J7+J1ftqm4jJSGaeZPzuHBKHunJsUaXfE5SQBUROYmxqaOwmCx4fB52tu5WQBWJ\nICaTiTH5KYzJT+GGi8fyQWUd726opaWjl/ZuJ3//cD+vlh+gdFwG88vymTgiTYuqQkgBVUTkJGIs\n0YxOGcHutn3ssO/hKi4zuiQRCYLk+GgWzhrBFTOGU7mvhXc31LJlXwten49PdjXxya4mctLjmV+W\nz/lFOcTHWo0uOeIpoIqIfIYJaePY3baP/R0H6XH3Ehely30ikcpsNjFlbAZTxmbQaHeweuMh/ll5\niO5eN/WtDv701m5WvreXOZNyWDB1mBZVBdEZ3QG8YsUKFixYQElJCYsXL6aysvK0Pvfqq69SWFjI\nt7/97TP5WhGRkCs8/JhTr8/L/216kj1tVQZXJCKhkJUWz+IFY/nfb53PrVdNZFRuEgBOl5fVFYf4\n4ZPr+PkfN/DJzkY83sh7QpfR/H7U6apVq/iP//gPfvKTn1BcXMwzzzzD66+/zuuvv056evpJP1db\nW8uXv/xlhg8fTkpKCsuWLfO72Eh9TJuEj0h/JKD4z+P18MsN/4+qjgMDrxVnTOTzo68kLzHnjM+r\nXpNQUa8FTlVdB29/UsO67f2Lqo6wJcdwUWk+8ybnkRQfbWCFxgrko079DqiLFy+mpKSEe+65BwCf\nz8eFF17IkiVLuP3220/4Ga/Xy0033cR1113H+vXr6ezsVECVsKSBXE7E6XHxXs0a3jjwLj3uHgBM\nmJiZM5WrRl9Kemya3+dUr0moqNcCr8Ph5P2KQ7x7+ElVR0RZzMw8L4tLphYwIifJwAqNEciA6tc9\nqC6Xi61bt3LHHXcMvGYymZgzZw4VFRUn/dyyZcuw2WwDAVVEZCiJtli5dMRFnJ83g38cWM3qmg9w\ned2srV/P+sYK5uXP5vKRC0i0BmZgFpHwlhwfzdVzRnLlrOFs3NXM25/UsLO6DbfHy5rN9azZXM/Y\n/BQWTM1n2oQs7al6BvwKqHa7HY/HQ0ZGxqDXbTYbVVUnvi/rk08+4a9//SsvvfTSmVd5mEW/wRJk\nR3pMvSYnkhyVyPWFV3PxyLm8svcffHjoY9xeN+9U/5MP6z7m8pEXcfHwucRExZzyXOo1CRX1WvBE\nYWZWUQ6zinI42NDJW+tr+HBzHU63lz217eypbef5xD0sKBvG/NJ8UpNOPTYMZYHssYCs4vf5fCfc\nG6y7u5u77rqLn/zkJ6SkpJz19yQnx531OUROh3pNPksaCSzNvYXrOq7guc0v81HNRnrdvby053Xe\nq/mQ6yctZMHoC4gyW055LvWahIp6LbjS0hKYXJjDHQ4nb647yKtrqmhoddDe5eTF9/fx9zVVzCnJ\n43MXjGaC9lQ9Jb/uQXW5XEyZMoVHH32Uiy++eOD1u+++m87OTn79618POn7Hjh184QtfwGKxcORr\nvIdXulksFl577TUKCgpOu9iOjh48Ht0/I8FjsZhJTo5Tr4lfqtoO8Nfdq9hl3zvwWlZ8Bp8fewVT\ns0swm46fVVCvSaio14zh9frYtLeZNz+uZsu+1kHvjcxJ4tLpBcyclE101Kn/ITtUHOm1QAjIIqmL\nLrqIJUuWcNtttw061ul0cvDgwUGv/fKXv8ThcHDPPfcwYsQIoqJOfxJXN3hLsGkxgZwpn8/HttZd\nvLR3FbVddQOvD0/K55oxCylMHzfoePWahIp6zXh1Ld28s6GWNZvr6HV6Bl5PjLNyfnEOUydkMTov\nGfMQn1UN5CIpy7333nuvPx9ISEjgkUceITc3F6vVyq9+9St27tzJ/fffT1xcHHfddRebN29m9uzZ\nWCwW0tPTB/3vgw8+wOfzcdNNN2E2+3evQm+vC6/Xrzwt4hez2URcXLR6TfxmMpnIis/g/LyZZMdn\nUt15iB53D+3OTtbVb2Bf235yE7JJiUkG1GsSOuo14yXFR1MyxsaCsmGkJcXQ1NZDV48Lp9vL4ViX\nOQAAIABJREFU3toO/llZx+qKQzTYHZhNJtKTY7GYh15YPdJrgeD3PagLFy7Ebrfz6KOP0tzczMSJ\nE1m+fPnAHqj19fVYLJEzXS0i4g+zycz0nFJKs4r5oPYjXtv/Fl2ubnbYd7Nj/W7Kskr43OjLyUvO\nNrpUEQmxuJgoLp46jAVl+Wzbb+edDTVs3teK2+Olo9vJexWHeK/iEDHRFkpG2ygdl0HJGNs5+WhV\nvy/xG0mXJyTYdClMAq3X3cvb1f/k7YPv0edxAv0hdt6wWdw+80t0dTjVaxJUGtfCW6/TzZZ9rWzc\n3cSmPS04+tyD3reYTRQOT6V0fCal4zJJC+OdAAzdqN9I+sMlwaaBXIKl09nF6/vf5p+1a/H4+u9B\nWzTxcq4suFS9JkGlcW3ocHu87KpuY+OuZjbsbhr0EIAjRuUmUTouk9LxmeTZ4sNqNwAFVJEg0UAu\nwdbc08rTW/9EVccBYqNiuP+C/yTWrO1/JHg0rg1NPp+PAw2dbNjVzMbdTdQ2dR93THZaHKXjMykb\nl8nofOMXWSmgigSJBnIJhYMdNfxs/aMAXD5yPp8ffaXBFUkk07gWGRrtDjbubmbjriZ217Tz6fCW\nnBDNlLEZlI3PYOKINKwGbF+lgCoSJBrIJVSe2PwMm5q2EmOJ5r7Zd5MUnWh0SRKhNK5Fno5uJ5v2\nNLNxdzNbqvoXWR0rJtpC8WgbZSFeZKWAKhIkGsglVA456rh/7S8BuGT4hXxh7FUGVySRSuNaZOt1\nutla1cqGXc1U7m2mu/fEi6ymjMtk6oRMUhODt8hKAVUkSDSQS6hERZlZvvX3fFy7iWizlR/P+YFm\nUSUoNK6dO9weL7ur29iwu/++1daOwYusYqwWvvvFEiYMTwvK9yugigSJBnIJlagoM+3Yuesf9wNw\nccE8rh13tcFVSSTSuHZu8vl8HGzoYuPuJjbsaqamqQvo34v1BzeVMSwz8P8gDmRA9e9RTiIiEjAj\n04ZRmlUMwPu15bT3dRpckYhECpPJxIicJBbNHc2Pb53Bd79YgsVsoqfPzS//vInWjl6jS/xMCqgi\nIga6esylALi8Lt46uNrYYkQkYpWMyeCWKwsBsHf28cs/b6K712VwVSengCoiYqBhSXmUZvbPov6z\ntpz2vg6DKxKRSHV+cS7XzhsNQG1zN4+t3IzL7TG4qhNTQBURMdjCUZdiwoTL6+aNA+8YXY6IRLCr\nZo9gflk+ALuq2/jt37fh9YbfciQFVBERg+Ul5gzci/pezYd8XL/R4IpEJFKZTCZuvGQ8ZeMzAVi/\ns4k/vb2bcFszr4AqIhIGrhv3OVKikwH4w/Y/s9u+1+CKRCRSmc0mvva58xg7LAWAtz+p4fWPDhpc\n1WAKqCIiYSA1JoVvTP5XYizRuH0eHt/8LPXdDUaXJSIRKtpqYel1JeTa4gF4YfVe1myuM7iqoxRQ\nRUTCREFSHrcVLcFsMtPj7uH/Nj1Fh1NbT4lIcCTGWblz8RRSE6MBeOrV7XxQGR4hVQFVRCSMnGeb\nwJcmfAGAll47v9n0O/o8ToOrEpFIZUuJ5c4bppAYZ8UHPLVqO6srao0uSwFVRCTcnJ83k8tHLADg\nYGcNv9u6Aq9PTwASkeAYlpnIf3y5lOSE/pnUZ1/fyduf1BhakwKqiEgY+tzoy5mWPQWAzc3b+cvu\nl8Nula2IRI78wyH1yOX+FW/u4o11xi2cUkAVEQlDJpOJmyYuZlxq/6ba79V8yDvV/zS4KhGJZLm2\nBO6+sQxbcgwAz7+zh1fL9xtSiwKqiEiYspqj+FrxzWTHZwHw1z2vsKGx0uCqRCSSZaXF8x9fLiMj\nJRaAle/t46UPqkJ+BUcBVUQkjMVb4/nm5H8lyZoIwDPbnmNf+35jixKRiJaRGsfdN5aRnRYHwEsf\nVPHX9/eFNKQqoIqIhLmMuHS+MfmrRJutuL1ullUs59ltz1PZtBWnx2V0eSISgdKTY/mPG8sG9kl9\ntfwAf353T8hCqsk3hO66t9u7cbu1klWCJyrKTFpagnpNgu5Meq2yaStPbH4WH0eH7WhLNJNshZRm\nFjHJVkhsVGywSpYhSuOanI32bicPPbeR2qZuAC6ZNox/uXgcJpPpuGOP9FogKKCKHEMDuYTKmfZa\nVftByuvWsalpK12u7sHnNEcxMX0ckzOLKc6YSKI1MH9RyNCmcU3OVqfDyf8+V8HBxi4ALp1WwJcu\nHntcSFVAFQkSDeQSKmfba16fl71tVVQ0baGiaQttfe2D3jebzIxPHcPkzCImZ04iJSY5UKXLEKNx\nTQKhq8fFQ3/aOBBSL5tewA0LBodUBVSRINFALqESyF7z+rwc7KyhonELFU2baeppGfS+CROjUkYw\nJbOIKZlF2OLSz+r7ZGjRuCaBcqqQqoAqEiQayCVUgtVrPp+PQ931VDRupqJpC4e66487piAp/3BY\nLSYnIStg3y3hSeOaBFJXj4tf/Gkj1YdD6uUzClg8vz+kKqCKBIkGcgmVUPVao6Np4DaAAx3Vx72f\nE5/FlKxipmQWMSwx74QLH2Ro07gmgdbpcPLQcxUDIfWKGcP54vwxWK0WBVSRYNBALqFiRK/Ze9uo\naNrCpqYt7GmrGrQbAIAtNr1/ZjWriJHJwzGbtBNhJNC4JsHQ6XDyiz9VUNN0OKTOHM6/XDKO9PTE\ngJxfAVXkGBrIJVSM7rVOZxeVTVupaNrCTvsePD7PoPdTopMOL7AqYlzqaCxmS8hrlMAwutckcn06\npF41ewRfv35KQM6tgCpyDA3kEirh1GsOVw9bWrZT0biZba07cXndg95PiIqnOPM8pmQWUZg+Hqs5\nyqBK5UyEU69J5OkPqRupObxP6t//95qAnFcBVeQYGsglVMK11/o8Tra17KSiaTNbmrfT6+kb9H6s\nJYZJtsKB+1Z1G0D4C9dek8jR4XDy0OGQqoAqEgQayCVUhkKvubxudrbupqJpC5XNW+l2OQa9Pyd3\nOjdO/KJB1cnpGgq9JkNfp8PJuxtruXVRSUDOp4AqcgwN5BIqQ63XPF4Pew4/GGBT02banZ0AfKf0\nDsanjTG4OvksQ63XZOgK5DZTujYjIiKnZDFbmJA+lhsmLOK/Zv77wGNUn9/5Iu5P3bMqInK2FFBF\nRMQvCdZ4rhmzEIB6RyPvVn9gcEUiEmkUUEVExG+zcqcyOmUEAKuq3qS1125wRSISSc4ooK5YsYIF\nCxZQUlLC4sWLqaysPOmxb775Jtdddx3Tp0+ntLSURYsW8dJLL51xwSIiYjyzycwN47+ACRNOr4uV\nu/9udEkiEkH8DqirVq3iwQcfZOnSpbz44osUFhZy22230draesLjU1NT+cY3vsHzzz/Pyy+/zLXX\nXst//ud/smbNmrMuXkREjDMsKY+Lhp0PQEXTFra27DC4IhGJFH4H1KeffpobbriBRYsWMWbMGO67\n7z5iY2NZuXLlCY+fPn06l1xyCaNHj6agoICbb76ZCRMm8Mknn5x18SIiYqyrRl9KcnQSAH/e9RIu\nj8vgikQkEvgVUF0uF1u3bmX27NkDr5lMJubMmUNFRcVpnaO8vJyqqiqmT5/uX6UiIhJ24qLiuG7s\n1QA097Twj4OrjS1IRCKCX8+rs9vteDweMjIyBr1us9moqqo66ee6urqYO3cuLpcLi8XCj370o0Eh\n93RZLFrTJcF1pMfUaxJskdRrM/PL+LBuHTvte/nHgXeZkz+VzPiMU39QQiKSek3CWyB7LCAPVPb5\nfJhMppO+n5CQwMsvv0x3dzdr167lgQceoKCgwO9Z1OTkuLMtVeS0qNckVCKl1+6YdSPff+N+3F43\nf9nzMj+Y9+3P/HtBQi9Sek3ODX4F1LS0NCwWC83NzYNeb21txWaznfRzJpOJgoICAAoLC9mzZw+P\nP/643wG1o6MHj0dPwZDgsVjMJCfHqdck6CKt1xJI5tIRF/J61TtU1G/jVx88xU3nXU+UOSDzIHIW\nIq3XJHwd6bVA8GvksFqtTJo0ifLyci6++GKgf/a0vLycJUuWnPZ5vF4vTqfTv0oBj8erx7RJSKjX\nJFQiqdcuG76ArU07qO46RPmh9TQ7Wrm9+GYSrPFGlyZEVq9J5PP7ZoFbbrmFP//5z/ztb39j7969\n/OhHP6K3t5drr70WgLvuuouHH3544PgnnniCDz/8kOrqavbu3ctTTz3Fyy+/zDXXXBO4X4WIiBgu\nxhLNd8u+ziRbIQC72/bx0CfLaHK0GFyZiAw1fl97WbhwIXa7nUcffZTm5mYmTpzI8uXLSU9PB6C+\nvh6LxTJwvMPh4L777qOhoYGYmBhGjx7NQw89xBVXXBG4X4WIiISF2KhY7ij+Cn/Z/Xfer/2QRkcz\nD32yjK8Vf4UxqSONLk9EhgiTz+fzGV3E6bLbu3V5QoIqKspMWlqCek2CLtJ7zefzsbpmDSt3/x0f\nPqLMUSwp/CLTckqNLu2cE+m9JuHjSK8FgvacEBGRgDOZTMwvuICvFd9MtNmK2+vmd9v+xOv732YI\nzYuIiEEUUEVEJGhKMifx/039BimHnzb1931v8Pvtf8btdRtcmYiEMwVUEREJquFJw/j+tH8jPzEX\ngI/qP2FZxXIcLofBlYlIuFJAFRGRoEuLTeXOsm98aoX/r7XCX0ROSAFVRERC4sgK/3n5cwBocDTx\n0CfL2Ne+39jCRCTsKKCKiEjIWMwWFo+/huvHfR4TJrpc3Tyy8Qm2t+wyujQRCSMKqCIiElInWuH/\njwPvGl2WiIQRBVQRETFESeYkJmcWAdDr6TO4GhEJJwqoIiJiINPhH7U3qogcpYAqIiKGMR3Op4qn\nInIsBVQRERERCSsKqCIiYhjTkUv8evypiBxDAVVEREREwooCqoiIGE7zpyJyLAVUERExzJFL/D5F\nVBE5hgKqiIiIiIQVBVQRETHO4TVSfR4nHq/H2FpEJGwooIqIiGEyYm0ANPe08P8qn6bX3WtwRSIS\nDhRQRUTEMBcVnM/4tLEAbGvdycMbfoO9t83gqkTEaAqoIiJimLioWL41+V+ZlTMNgNquOn6xfhnV\nnYcMrkxEjKSAKiIihooyR3HTxC9y9ajLAWh3dvDLDf/HlubtBlcmIkZRQBUREcOZTCauHHUxXznv\nS0SZLPR5nPy/yqd5v6bc6NJExAAKqCIiEjZm5JTx7Sm3ER8Vhw8fz+96kb/ueQWvz2t0aSISQgqo\nIiISVsaljeF7U79FRmw6AG8ffJ8nt6zA6XEZXJmIhIoCqoiIhJ3shCy+N+3bjEoeDkBF02Ye3fg4\nnc4ugysTkVBQQBURkbCUFJ3I0tI7mJJZDEBVx0F+sX4Z9d2NBlcmIsGmgCoiImEr2mLl1qIbuWT4\nhQC09Lbyv5/8mt32vQZXJiLBpIAqIiJhzWwy84WxV/GlCddiNplxuHtYVrGcfe0HjC5NRIJEAVVE\nRIaEufmz+HrJV4m2ROP2eXhyyx90T6pIhFJAFRGRIWOSbQJLJi4GoK2vnae2/lFbUIlEIAVUEREZ\nUsqySlhQMBeAXfY9vLLvHwZXJCKBpoAqIiJDzqIxCxmdMhKANw68w+bmbcYWJCIBpYAqIiJDjsVs\n4daiG0myJgLwzLbnaO5pMbgqEQkUBVQRERmSUmNS+NeiGzFhosfdy283/15PmxKJEAqoIiIyZI1P\nG8M1Y64EoKbrEH/e9TeDKxKRQFBAFRGRIe2S4RcyOWMSAOV1H/PhoXUGVyQiZ+uMAuqKFStYsGAB\nJSUlLF68mMrKypMe+8ILL3DjjTcyY8YMZsyYwVe/+tXPPF5ERMQfJpOJJectJjPOBsDzu/7Gwc4a\ng6sSkbPhd0BdtWoVDz74IEuXLuXFF1+ksLCQ2267jdbW1hMev27dOq6++mqeffZZnn/+eXJycrj1\n1ltpbNSzlEVEJDDiouK4vfhmrGYrbq+b5Zt/T6Oj2eiyROQMmXw+n8+fDyxevJiSkhLuueceAHw+\nHxdeeCFLlizh9ttvP+XnvV4v06dP54c//CHXXHONX8Xa7d243dqQWYInKspMWlqCek2CTr0WHB/V\nfcKz258f+O/RKSOYnl1KWdZkEqMTDKzMOOo1CZUjvRaQc/lzsMvlYuvWrdxxxx0Dr5lMJubMmUNF\nRcVpncPhcOB2u0lNTfWvUhERkVOYmTuVekcjbx5YjQ8f+9oPsK/9AC/sfplJtglMzy6lOOM8oi3R\nRpcqIp/Br4Bqt9vxeDxkZGQMet1ms1FVVXVa53jooYfIzs5m9uzZ/nw1ABaL1nRJcB3pMfWaBJt6\nLXium3AVC0acz8f1FXxUt4GazkN4fV42N29nc/N2Yi0xlGYXMzO3jAnpYzGbIvv3QL0moRLIHvMr\noJ6Mz+fDZDKd8rgnnniC1157jT/84Q9ER/v/r9fk5LgzKU/Eb+o1CRX1WnCkkcDo3HxuKL2Kg221\nfHDwY/55YB0tDju9nj7KD62n/NB60mJTOH/4NOaOnMnI1GGn9XfZUKVek6HEr4CalpaGxWKhuXnw\njeetra3YbLbP/OyTTz7J8uXLefrppxk3bpz/lQIdHT14PLp/RoLHYjGTnBynXpOgU6+FThKpXFlw\nKZcPu5g99io+qtvAhoZKHO4e7L3tvLLrbV7Z9Ta5CVnMyJ3KjNxSMuLSjS47YNRrEipHei0Q/Aqo\nVquVSZMmUV5ezsUXXwz0z56Wl5ezZMmSk35u+fLlPP744zz55JOcd955Z1ysx+PVDd4SEuo1CRX1\nWmiNTh7F6ORRXD/uGra27ODj+g1sad6O2+ehrruRl/a8xkt7XmNMykim55RRllVCgjXe6LIDQr0m\nQ4nfl/hvueUW7r77boqKiiguLuaZZ56ht7eXa6+9FoC77rqLnJwc7rzzTgB++9vf8uijj/Lwww+T\nl5c3MPsaHx9PfHxk/KEXEZGhxWqOYkpmEVMyi3C4HGxs2szH9RvZ3bYPgL3t+9nbvp8Xdr3EJFsh\n03NKKbJNJNpiNbhykXOD3wF14cKF2O12Hn30UZqbm5k4cSLLly8nPb3/ckh9fT0Wi2Xg+D/96U+4\n3W6WLl066Dzf+ta3+Pa3v32W5YuIiJydeGs85+fN5Py8mbT22lnfUMHH9Rs51F2Px+ehsnkrlc1b\nibXEUppVzPTsUsaljY74xVUiRvJ7H1QjaQ83CTbtFyihol4Lf7Vddayr38D6hgra+toHvZcak8LU\n7MnMyC4jPzE3rBdXqdckVAK5D6oCqsgxNJBLqKjXhg6vz8uetn18XL+RDY2b6fX0Dno/NyGbGdll\nTMuZQnpsmkFVnpx6TUJFAVUkSDSQS6io14Yml8fFliOLq1p24PF5Br0/JmUkw5OGYYtLJyMunYw4\nG7bYNEMfDKBek1Ax7ElSIiIi5zKrxUppVjGlWcV0uxxsbKxkXf1G9rb3P6zmyOKqT0uJTsIWl44t\n1nY4uPaH14y4dJKjk3Q/q8inaAZV5BiaaZBQUa9FlpYeO+sbNrKtdSfNPa3H3bP6WaLMUdhi048G\n19h0bIfDqy02ndiomLOqTb0moaJL/CJBooFcQkW9FtlcHhctvXaae1po7m2lpaeV5p7Wgf92epyn\nfa4ka+LRWwaOCa8ZcemkxqSccvZVvSahokv8IiIiYcxqsZKTkEVOQtZx7/l8Prpc3TT3tNJyOLAO\nhNfDs68+js4ddbq66HR1sb/j4HHnspgs2GLTDgdY26dCbBpxUXq8qQxNCqgiIiIhZDKZSIpOJCk6\nkVEpw4973+V1Y++1Hw6trTT3thwzA9s6aBcBj89DY08zjT3Nx50HIMEaT2acjdyULFKiUkiPPhpm\n02JSsJgtJ/yciNEUUEVERMKI1RxFVnwmWfGZx73n8/lwuHsGZltbDgfYI+HV3teG13f0Mn63y0G3\ny8H+jurjzmU2mUmPSe3faeDYhVuH74eNj5BHvMrQpIAqIiIyRJhMJhKs8SRY4xmRXHDc+x6vB3tf\n28AtAy29dlp6W2lztlHf1US3yzFwrNfn7b+9oLcV7Md/V1xU3MBCraMLuPrDbHpsKlFmRQgJHnWX\niIhIhLCYLYfvRbUB44DBi6Q6erpp6R28YKvlmDB77Oxrj7uH6s5aqjtrj/seEybSYlMHZluPXbiV\nEWsjwRof1k/XkvCngCoiInKOiLfGEW/NpyAp/7j3vD4v9t52WnqPvX3gaJjtcnUPHOvDR2uvndZe\nO7va9h53rlhLzMC9rrbYtEELuNLj0rFq9lVOQR0iIiIimE1mbHFp2OLSGH+CJ7b2unuPbp31qQVc\nLT2tuI95qlavp4/arjpqu+qOO48JEykxyQOzrf0zsEd3IUiyJmr2VRRQRURE5NRio2LJT8wlPzH3\nuPe8Pi8dzs5B22U197QOzMZ2ODsHjvXho62vnba+dvZQddy5os1WUmNTSIlOJiUmmZToZJJjkkiN\nTiY55uhrZ/sAAwlvCqgiIiJyVswmM6kxKaTGpDA2ddRx7/d5nP0zrZ/a8/XIf7u8roFjnV4XjY5m\nGh0n3jrriBhL9EBY/XSQTYk5HGYVZIcsBVQREREJqhhLNHmJOeQl5hz3ns/no8PZNTDb2tzTQntf\nB+3ODtr7Omnv66DD2Tno4QXQH3oVZCOXAqqIiIgYxmQykRKTREpMEqNTRp7wGK/PS6ezm3Zne39g\n7eukzdlBx0CQ7Q+zZxNkYy0xJMckDQqy/T8mKcgaQAFVREREwprZZB4IsSSd/LizCbK9nj56HX0K\nsmFCAVVEREQiwlAKsikxySQryJ6UAqqIiIicU/wLsl0DofVIkO2/LzZwQbY/rCYNDrLHzsqeg0FW\nAVVERETkBPqDbH9YDG6QbaLB0fSZtZxrQVYBVUREROQshHWQPdF9skMgyCqgioiIiITAmQbZ/m23\nOj8VZDvocHYFNcimxKQQY4kOxC/dbwqoIiIiImEkHIPskf1jP72nbFZ8Rn+dAaaAKiIiIjIEhUOQ\nNWHiG5P/lUm2CYH8pSmgioiIiEQyv4PssdttHQ6yx4bZY4OsDx9ratcqoIqIiIhI4A0Ksp/hSJB9\nteofrDm0jm2tO+nzOImKig1cLQE7k4iIiIhEvCNBdlbuNABcXjfbWnYG9jsCejYREREROSeMTB5O\ncnT/PQMVTZsDem4FVBERERHxm9lkZnJmEQBbmnfg8roDd+6AnUlEREREzilTDgfUXk8vO1p2B+y8\nCqgiIiIickbGpY4mISoegI2NgbvMr4AqIiIiImfEYrZQnHEeABWNWwJ2XgVUERERETljU7L6L/N3\nuxwBO6cCqoiIiIicscK0ccRYogN6TgVUERERETljVouVItvEgJ5TAVVEREREzsolwy8kyZoQsPOd\nUUBdsWIFCxYsoKSkhMWLF1NZWXnSY/fs2cPSpUtZsGABhYWFPPvss2dcrIiIiIiEn+HJw3ho/n0B\nO5/fAXXVqlU8+OCDLF26lBdffJHCwkJuu+02WltbT3h8T08PBQUFfO973yMzM/OsCxYRERGRyOZ3\nQH366ae54YYbWLRoEWPGjOG+++4jNjaWlStXnvD44uJivv/977Nw4UKsVutZFywiIiIikc2vgOpy\nudi6dSuzZ88eeM1kMjFnzhwqKioCXpyIiIiInHui/DnYbrfj8XjIyMgY9LrNZqOqqiqghZ2IxaI1\nXRJcR3pMvSbBpl6TUFGvSagEssf8Cqgn4/P5MJlMgTjVZ0pOjgv6d4iAek1CR70moaJek6HEr6ib\nlpaGxWKhubl50Outra3YbLaAFiYiIiIi5ya/AqrVamXSpEmUl5cPvObz+SgvL6e0tDTgxYmIiIjI\nucfvS/y33HILd999N0VFRRQXF/PMM8/Q29vLtddeC8Bdd91FTk4Od955J9C/sGrv3r34fD5cLhcN\nDQ3s2LGD+Ph4hg8fHthfjYiIiIgMeX4H1IULF2K323n00Udpbm5m4sSJLF++nPT0dADq6+uxWCwD\nxzc2NrJo0aKBe1SfeuopnnrqKaZPn65N+0VERETkOCafz+czuggRERERkSO054SIiIiIhBUFVBER\nEREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwEvYBdcWKFSxYsICSkhIWL15MZWWl\n0SVJhFm2bBmFhYWD/rdw4UKjy5IIsH79er7+9a8zd+5cCgsLefvtt4875pFHHuGCCy5g8uTJfPWr\nX+XAgQMGVCpD3al67Qc/+MFx49ztt99uULUylD3++ONcf/31lJWVMWfOHL71rW9RVVU16Bin08l9\n993HzJkzKS0tZenSpbS0tPj1PWEdUFetWsWDDz7I0qVLefHFFyksLOS2226jtbXV6NIkwowbN44P\nP/yQNWvWsGbNGv74xz8aXZJEAIfDwcSJE/nRj3408LCSYz3xxBOsWLGCH//4x7zwwgvExcVx6623\n4nQ6DahWhrJT9RrAvHnzBo1zDz/8cIirlEiwfv16brrpJl544QV+97vf4Xa7ufXWW+nt7R045v77\n7+e9997jscceY8WKFTQ2NvJv//Zvfn2P30+SCqWnn36aG264gUWLFgFw3333sXr1alauXKl/+UlA\nRUVFDTwNTSRQ5s2bx7x58wA40TNRnn32Wb75zW+yYMECAH7+858zZ84c3nrrLc3ii19O1WsA0dHR\nGufkrP32t78d9N8PPPAAc+bMYcuWLUybNo2uri5WrlzJL3/5S2bMmAHAT3/6UxYuXEhlZSUlJSWn\n9T1hO4PqcrnYunUrs2fPHnjNZDIxZ84cKioqDKxMItH+/fuZO3cul1xyCd/73veoq6szuiSJcNXV\n1TQ3NzNr1qyB1xITE5k8ebLGOAmKdevWMWfOHK644gruvfde2trajC5JIkBnZycmk4nU1FQAtmzZ\ngsfjGZTfRo8eTV5eHhs3bjzt84btDKrdbsfj8ZCRkTHodZvNdty9DiJnY/LkyTz44IOMGjWKpqYm\nHnvsMW688UZeeeUV4uPjjS5PIlRzczMmk+mEY1xzc7NBVUmkmjt3LpdddhnDhg3j4MEHMJdqAAAD\nQklEQVSDPPzww3zta1/j+eefP+ktASKn4vP5+OlPf8rUqVMZO3Ys0D+2Wa1WEhMTBx3r79gWtgH1\nZHw+n/4wSUDNnTt34Ofjx4+npKSE+fPn89prr3HdddcZWJmcizTGSTAce8vIuHHjGD9+PJdeeikf\nffTRoFl8EX/ce++97Nmz57TWbfg7toXtJf60tDQsFstxabu1tRWbzWZQVXIuSEpKYuTIkRw8eNDo\nUiSCZWRk4PP5NMaJIQoKCkhLS9M4J2fsxz/+Me+//z6///3vyc7OHng9IyMDl8tFV1fXoOP9HdvC\nNqBarVYmTZpEeXn5wGs+n4/y8nJKS0sNrEwiXXd3N9XV1WRmZhpdikSwgoICMjIyWLt27cBrXV1d\nbNq0SWOcBF19fT1tbW0a5+SM/PjHP+btt9/m2WefJS8vb9B7RUVFWCyWQfmtqqqKQ4cO+TW2hfUl\n/ltuuYW7776boqIiiouLeeaZZ+jt7eXaa681ujSJID/72c9YsGABeXl5NDQ08Nhjj2GxWLjqqquM\nLk2GOIfDwcGDBwdWVVdXV7Njxw5SUlLIzc3lK1/5Cr/5zW8YPnw4+fn5PPLII+Tk5HDxxRcbXLkM\nNZ/VaykpKSxbtozLL7+cjIwMDh48yC9+8QtGjhzJBRdcYHDlMtTce++9vPrqq/zmN78hLi5u4CpQ\nUlISMTExJCYmcv311/PAAw+QnJxMQkIC//M//0NZWdlpr+AHMPlOth9FmFixYgVPPvkkzc3NTJw4\nkXvuuYfi4mKjy5IIcuedd7J+/Xra2tpIT09n6tSpfPe736WgoMDo0mSIW7duHTfffPNx910tWrSI\nBx54AIDHHnuM559/ns7OTqZNm8YPf/hDRowYYUS5MoR9Vq/de++9fPOb32THjh10dHSQlZXFBRdc\nwHe+8x1tOyV+KywsPOG9pA888MDAtqBOp5Of/exnvPLKKzidTubOncuPfvQjvy7xh31AFREREZFz\nS9jegyoiIiIi5yYFVBEREREJKwqoIiIiIhJWFFBFREREJKwooIqIiIhIWFFAFREREZGwooAqIiIi\nImFFAVVEREREwooCqoiIiIiEFQVUEREREQkrCqgiIiIiElb+fyq5ocPMu4sBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VFX+x/H3mfTeE0JCSEIPHUK30AREir2uws+C2Nay7i7rqquurrqWtawNFAVFBcXCIqKAIL33DgkBAqRDSALp5/fHHSCEhCRkZm4y+b6eZ55pd+795s7kk5Mz956jtNYIIYRwLhazCxBCCGF7Eu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4IQl3IYRwQq5mbTg0NFTHxsaatXkhhGiUNmzYkKW1DqtpOdPCPTY2lvXr15u1eSGEaJSUUgdrs5x0ywghhBOScBdCCCck4S6EEE7ItD53IYQAKCkpITU1lcLCQrNLaVA8PT2Jjo7Gzc3tkl4v4S6EMFVqaip+fn7ExsailDK7nAZBa012djapqanExcVd0jpq7JZRSk1VSmUopbZX87xSSr2jlNqvlNqqlOpxSZUIIZqkwsJCQkJCJNgrUEoREhJSr/9matPn/hkw4iLPXw20sV4mAB9ccjVCiCZJgv1C9d0nNXbLaK2XKqViL7LIWGC6NubrW62UClRKRWqtj9WrsmrsWvMLGTuXs7XZ9ZS4eNtjEwD4ebrxfwNicXWR75yFEI2PLfrco4DDFe6nWh+7INyVUhMwWvfExMRc0sZy967gyoPvEHHge+4veYJDRFzSei7mzLSyPVoG0rNlsM3XL4RoeN555x0++OADevTowYwZM2y+/ueeew5fX1+efPJJm6+7Kg79QlVrPRmYDJCYmHhJM3P3vfMFSBpI+2/v5nf9PNz4CbQeatM6dx07ydVvLyPjZJFN1yuEaLjef/99Fi5cSHR0tNml2IQt+hyOAC0q3I+2PmY/rQbDfYvBPwpm3ATL3zrX3LaBMD8PADLyJNyFaAomTpxIcnIyV199NS+99BJ33303vXv3pnv37vz4448AfPbZZ1x77bVcddVVxMbG8t///pc333yT7t2707dvX3JycgCYMmUKvXr1omvXrtxwww2cOnXqgu0lJSUxYsQIevbsyeWXX87u3btt/jPZouU+B3hYKfU10AfItVd/+3mC4+DeBfDjQ7DwH3BsM4x9D9x96r3qIG93XCyKTAl3IRzq+f/tYOfRkzZdZ0Jzf/4xuuNFl/nwww+ZP38+ixcv5s0332Tw4MFMnTqVEydO0Lt3b4YONXoHtm/fzqZNmygsLKR169a8+uqrbNq0iccff5zp06fz2GOPcf3113PfffcB8PTTT/PJJ5/wyCOPnLe9CRMm8OGHH9KmTRvWrFnDgw8+yG+//WbTn7vGcFdKfQUMBEKVUqnAPwA3AK31h8A8YCSwHzgF/J9NK7wYdx+48VOI7AoLn4eM3XDDx9CsU71W62JRhPi4S7gL0QT9+uuvzJkzh9dffx0wDtU8dOgQAIMGDcLPzw8/Pz8CAgIYPXo0AJ07d2br1q2A8Qfg6aef5sSJE+Tn5zN8+PDz1p+fn8/KlSu56aabzj5WVGT7rKnN0TK31fC8Bh6yWUV1pRRc9jg06wLfT4Qpg+Gq56HPROO5SxTq60FmvoS7EI5UUwvbEbTWzJ49m3bt2p33+Jo1a/Dw8Dh732KxnL1vsVgoLS0FYPz48fzwww907dqVzz77jCVLlpy3nvLycgIDA9m8ebNdfw7nOc6v9RB4YCXED4T5k2DGjZCfccmrC/F1J7ug2GblCSEah+HDh/Puu++ird/jbdq0qU6vz8vLIzIykpKSkiqPuvH39ycuLo5vvvkGMP6YbNmypf6FV+I84Q7gGwa3z4SRr0PKcni/H+z95ZJWFerrQba03IVocp555hlKSkro0qULHTt25JlnnqnT6//5z3/Sp08fBgwYQPv27atcZsaMGXzyySd07dqVjh07nv3S1paUtuFRJnWRmJio7TpZR8YumH0vpG+Hfg/D8Jfq9PJ/zt3Jl2sOseufFzs5VwhRX7t27aJDhw5ml9EgVbVvlFIbtNaJNb3WuVruFYV3gHsXQeebYNV/IS+9Ti8P8XXndEmZtN6FEI2S84Y7gJsntLW2vAtP1Oml8aHGIZX9XvmNB2dsYP72NApLymxdoRBC2IXzD/nrGWBcF+bW6WUjOkXy3YP9mbP5KHO3HmXetjT8PF0Z2SmSsd2a0yc+BBeLDHYkhGiYmlC41/3EiB4xQfSICeLpazqwIimbHzcfYe7Wo8xcf5gIfw9Gd2nO2G5RdIryl1HthBANShMI90DjOnsftLm0MWhcXSxc2TaMK9uGcfraMhbtTufHzUeZtiqFj5cfID7Mh7FdoxjTrTlxofU/Q1YIIerL+cM9pDXE9IPF/4L2oyCwRc2vuQgvdxdGdWnOqC7NOXGqmJ+3p/Hj5iO8tWgv/1m4l67RAYztFsUtvVrg4+H8u1cI0TA59xeqABYLXPch6HL44QEoL7fZqgO93bmtdwxfT+jHykmDeWpke0rLNS/M3cm0VSk2244QouFasmQJo0aNMruMCzh/uAMExcKIVyBlGax+3y6biAzwYsIVrfjpj5cT4e9BcmaBXbYjhBC10TTCHaD7H6DdNbDoeeMEJztqGezDoewLh/kUQjRMKSkptG/fnvHjx9O2bVvuuOMOFi5cyIABA2jTpg1r165l7dq19OvXj+7du9O/f3/27NlzwXoKCgqqHC7YDE2nU1gpGP02vNEOtn0LQ+p2SnFdtAj2Zvn+TLutXwin9fMkSNtm23U26wxXv1LjYvv37+ebb75h6tSp9OrViy+//JLly5czZ84c/vWvfzF9+nSWLVuGq6srCxcu5KmnnmL27NnnreOll16qcrhgHx/HH2jRdMIdjLFnAqLhxEG7bqZliDezNxZxqrgUb/emtYuFaKzi4uLo3LkzAB07dmTIkCEopejcuTMpKSnk5uYybtw49u3bh1KKkpKSC9ZR3XDBZgyv0PSSJ6glHE+x6ybahPsC0P+V3xjcPpxhCRFc0TZMgl6ImtSihW0vNQ3n+8wzzzBo0CC+//57UlJSGDhw4AXrqG64YDM0nT73M4Ji4bh9W+7DOzbjozt7Mrh9OIt2ZTDxi410f2EB905bx6x1h8mS8WqEaHRyc3OJiooCjCn3qlLf4YJtqek1JYPjoSADNn8JXW+r14Qe1bFYFMM7NmN4x2aUlpWzNiWHBTvT+XVHOgt3ZaAUJLYMYlhCM65KiCBWTnwSosH7y1/+wrhx43jxxRe55pprqlzmmWee4bHHHqNLly6Ul5cTFxfH3LlzHVypwXmH/K1OQTbMuhMOroCO18Go/4BXkEM2rbVm57GT/LojnQU709l5zBgSoW2EL1clRDAsoRmdowKwyJg1ogmRIX+rV58hf5teuAOUl8GKt2HxS+AbAdd9BHGXO7yMwzmnWLDTCPq1KTmUlWua+XsyNCGcYQnNuKx1qAS9cHoS7tWTcL9URzYaE3rkJMNlj8HAp8DV3ZRSjhcU89vuDBbsTOf3vZmcLiljdNfmvHVLNxl9Ujg1Cffq1Sfcm16fe0VRPWDiMpj/N1j+H0haDHd8axwy6WBBPu7c0DOaG3pGU1hSxpSlybyxYC/uLhZeu7GLtOCFU9Nay8iqldS34d30jpapzN0HxrwDN0+HY5th2yyzK8LTzYVHhrTh8aFtmb0xlWd+3F7vN1qIhsrT05Ps7Gz5jFegtSY7OxtPT89LXkfTbrlXlDAWvEPtPjRBXfxxSGsKS8v4YEkSHq4uPDOqg7RuhNOJjo4mNTWVzEw5q7siT09PoqOjL/n1Eu4VhXeAzN1mV3GWUoq/DG9HYUkZU1ccwNPNwp+Ht5OAF07Fzc2NuLg4s8twOtItU1FYe8jcAw3o30OlFM+OSuD2PjG8vySJtQdyzC5JCNEISLhXFJEARSdhziOQc8Dsas5SSjG+fywA2QXF5hYjhGgUJNwr6nob9LoXts6Cd3vCd/dD5l6zqxJCiDqTcK/IzQuueQMe3QJ9H4Bdc+C93vDNeEjbbnZ1QIPqMRJCNGAS7lXxj4ThL8Fj2+DyJ2DfQvhwAHx1G6RuMLs6IYSokYT7xfiEwpBn4fFtxtmrB1fCx4Ph8+sgfadDS3G1nsS0JfWEHA8shKiRhHtteAXBwL/C49th6PNwdDNMvhKWv2WMU+MAcaE+XNc9islLk3nl590S8EKIi5JwrwsPP2MMmofWQpthsPAf8OlIY2waO1NK8cZNXbmrX0s+WprMpNnbKCuXgBdCVE3C/VL4hsEtX8B1k40zWj8YAOs+tvu3nRaL4vkxHfnj4NbMXH+YR77aSFGpY/5zEEI0LhLul0op6HoLPLgKWvSBn/4EX1wPuUfsvFnFE8Pa8fQ1HZi3LY17p62noKjUrtsUQjQ+Eu71FRAFd35vHEJ5aDVMGQzFBXbf7L2Xx/PvG7uwYn8Wj35t3lReQoiGScLdFpQyTn664xvIT4NNMxyy2ZsTW/DokLYs3JXB/ow8h2xTCNE4SLjbUuxlEN0bVv3XYUfR3NE3BncXC5+vsu+k30KIxkXC3dYG/BFOHDTObnWAUF8PrukSyeyNR8iXvnchhFWtwl0pNUIptUcptV8pNamK52OUUouVUpuUUluVUiNtX2oj0W4kBMfDinccNlbAnf1akl9UyvcbUx2yPSFEw1djuCulXID3gKuBBOA2pVRCpcWeBmZprbsDtwLv27rQRsPiAv0ehqMb4eAKh2yye4tAOkcF8NbCffxr3i7WHsihtKzcIdsWQjRMtWm59wb2a62TtdbFwNfA2ErLaMDfejsAOGq7EhuhbreDT5hxBqsDKKX413WdSWjuz6crDnDzR6vo9dJCnpi1mXnbjkl3jRBNUG1mYooCDle4nwr0qbTMc8CvSqlHAB9gqE2qa6zcvKDP/fDbi8Zoks062X2TnaMD+PyePuQVlrB0bxaLdqXz2+4Mvtt4BHcXC31bhTC0QzhDOkQQFehl93qEEOZSNY1RopS6ERihtb7Xev9OoI/W+uEKyzxhXdcbSql+wCdAJ611eaV1TQAmAMTExPQ8eNCJj/A4fRze7AgdRsH1k00pobSsnA0Hj7NodwYLdqZzIMs4/r5DpD9XdQhnaEIEnZoHYLHItH1CNBZKqQ1a68Qal6tFuPcDntNaD7fe/xuA1vrlCsvswPgDcNh6Pxnoq7XOqG69iYmJev369bX5WRqv+U/Bmg+NAcf8m5tdDUmZ+Szalc7CnRmsP5hDuYZwPw+GdIjgqoRw+rcKxdPNxewyhRAXYctwdwX2AkOAI8A64Hat9Y4Ky/wMzNRaf6aU6gAsAqL0RVbeJMI9Owne7WEMG3z5n8yu5jw5BcUs2ZPBwl3p/L4nk4LiMrzcXHh+bEduTmxhdnlCiGrUNtxr/EJVa10KPAz8AuzCOCpmh1LqBaXUGOtifwLuU0ptAb4Cxl8s2JuMkFbQ8jLY9EWDm0Ip2Med63tE8/4dPdn47FVMv7s3Ph4uLN2baXZpQggbqM0Xqmit5wHzKj32bIXbO4EBti3NSXT/A/ww0ZjoI7Zh7iIPVxeuaBtGdJA3uadLzC5HCGEDcoaqvSWMAXc/o/XewAV5u3HilIS7EM5Awt3e3H2MgN/zE5Q17OPNA73dOX6q2OwyhBA2IOHuCG2GQWEuHGnYXyAHeruRcbKIdxftY11KDsWlcparEI1VrfrcRT3FDwTlAvsWQExfs6up1oiOzViVlM0bC/bCAvB0s5DYMpi+8cH0axVC56hA3F2lPSBEY1DjoZD20iQOhaxo6ggoOQ33/252JTU6XlDMmgM5rE7OZnVyNrvTjLHivdxcSIwNom98CH3jQ+gSHYCbi4S9EI5U20MhpeXuKK0Gw+KX4PQJ8Ao0u5qLCvJxZ0SnZozo1AwwjolfeyCbVUnZrE7O4bVf9gDg7e5CYqy1ZR8fQueoAFwl7IVoECTcHcUv0rguymvw4V5ZsI87IzpFMqKT8TNk5Rex1tqyX5WUzb/nG2HvYw37fq2Mln2n5v4S9kKYRMLdUVw9jevSInPrsIFQXw9Gdo5kZGcj7DPzjLBflZzF6uQcXvl5NwC+Hq5c2S6Mf9/QBR8P+agJ4UjyG+corh7GdWmhuXXYQZifMRvUNV3Ohf3q5GxWJmXx1drDNA/w5O/XVJ4CQAhhTxLujnIm3Msaf8u9JmF+Hozu2pzRXZsDiqkrUhjbLYpOUQFmlyZEkyEdoo7iHWpc5x4xtw4HmzSiPUHe7jz1/TbKyhvW+DpCODMJd0eJ6AgWVzi6yexKHCrA241nRyewNTWX6atSzC5HiCZDumUcxc0TwhOMuVWbmNFdIpm9IZXXf9lDWbmmT1wIHSL95EgaIexIwt2RmneHnT8Yw/+qpjP7kVKKF6/txD3T1vHiT7sA47DJnrHB9IkLpndcMF2iA/BwlYlChLAVCXdHat4dNk6DE4cgqKXZ1ThUi2Bvfn38StJyC1mbksPaA9msO3D87AlR7q4WurUIPBv2PWKC5PBJIepBfnscyTfCuD6d0+TC/YxmAZ6M6dqcMV2NaQePFxSzLiWHtQdyWJuSw/tLknj3t/24WBSdmvvTOy6Y3nEh9IoNItDb3eTqhWg8JNwdycPPuC7KM7eOBiTIx51hHZsxrKMx1EF+USkbDx43wv5ADtNWHWTKsgMAtG/mR6/YYGvgBxPh72lm6UI0aBLujiThXiNfD1euaBvGFW3DACgsKWNrai5rD2Sz5kAO321M5fPVBwGIDfGmf+tQJl3dHn9PNzPLFqLBkXB3pDPhnrXP3DoaEU83l7Mt9YeB0rJydh47ydoDOaw5kMNXaw8R5uvB41e1NbtUIRoUORbNkQKiIaw9LPwHzLgZMveYXVGj4+pioUt0IPdeHs+UuxK5sm0YX609REmZTCwiREUS7o7k6gETfoerXoBDq+H9fjD3ccjPMLuyRuvOvi3JyCtiwc50s0sRokGRcHc0N08Y8Cj8cRP0ugc2Tod3esDS143JPESdDGwXTlSgF5+vOmh2KUI0KBLuZvEJgZGvwYOrIe4K+O2f8G5P2PI1lEsXQ225WBR39I1hVXI2v+1Ox6yZxYRoaCTczRbaBm77Esb/BD5h8P398NEVsPcX40xWUaNbElsQ5ufB3Z+tZ/Abv/PBkiQy8pxvaGUh6kLmUG1Iysth+2xY/CIcT4GYfjDkH9Cyn9mVNXinikuZty2NWesOszYlBxeLYnD7cG5JbMHAdmEyjo1wGrWdQ1XCvSEqLYZN0+H3f0N+OrQZBkOehWadza6sUUjKzGfW+sPM3nCErPwiwv08uLFnNDcntiA21Mfs8oSoFwl3Z1B8CtZ+BMv/A4W50OlGGPQUhLQyu7JGoaSsnN92ZzBr3WEW78mgXEPf+GBu7RXDiE7N8HSTgcpE4yPh7kxOH4cV78CaD6GsGHqMg8FPg3ew2ZU1Gmm5hXy74TCz1qdyKOcU/p6ujO0WxSODWxMuwxiIRkTC3RnlpcPSf8P6T8HT3+iq6TEOLNICra3ycs3qA9nMXHeYn7enEe7nwRf39JHuGtFoSLg7s/SdMO/PcHA5RHaDa96A6Brfa1HJ1tQTjJu6FheLhel39yahub/ZJQlRo9qGuxxC0BhFJMD4uXDDJ5CXBh8PgR8fhoIssytrVLpEB/LNxP64uShumbyKdSk5ZpckhM1IuDdWSkHnG+GR9dD/EdjylXES1NopUF5mdnWNRutwX759oD9hvh7c+ckaFu+WoSCEc5Bwb+w8/GDYizBxhXGo5Lwn4Ze/m11VoxIV6MU3E/vROtyX+6av5+u1hygrlxPIROMm4e4swtvDuP9B4j2w5gNIWWF2RY1KiK8HX93Xl8TYICZ9t40r/r2YD5YkkVNQbHZpQlwS+ULV2RQXwAf9AQUPrAR3b7MralRKy8pZuCudaSsPsio5G3dXC2O6Nueufi3pEh1odnlCyNEyTdqBZTBtFPR9EEa8bHY1jdbe9Dymr0rhu41HOFVcRrcWgYzr35KRnSPxcJXDT4U5JNybup+ehHUfw//9LGPT1NPJwhK+25DK9FUHSc4qIMTHndt6x3B7nxiaB3qZXZ5oYiTcm7qifGMyEDcvmLgcXN3NrqjRKy/XrEjKYvqqgyzalY5Siqs6RDBxYCu6tZAuG+EYcpx7U+fha5zclLUHVr5tdjVOwWJRXN4mjCl3JfL7nwdx3+XxrDmQzS0frSIzr8js8oQ4T63CXSk1Qim1Rym1Xyk1qZplblZK7VRK7VBKfWnbMsUlaTsMEsYaszxlJ5ldjVNpEezNpKvb892DAyguK+fTFQfMLkmI89QY7kopF+A94GogAbhNKZVQaZk2wN+AAVrrjsBjdqhVXIoRr4LFDX76k0z+YQdxoT6M7BTJ56sOcrKwxOxyhDirNi333sB+rXWy1roY+BoYW2mZ+4D3tNbHAbTWcppfQ+EfaQwwlrzYmMpPAt7mHhjYiryiUmasPmR2KUKcVZtwjwIOV7ifan2sorZAW6XUCqXUaqXUiKpWpJSaoJRar5Ran5mZeWkVi7rrda8xeuSyN2D+3yTgbaxTVACXtwnlk+UHyD0lrXfRMLjacD1tgIFANLBUKdVZa32i4kJa68nAZDCOlrHRtkVNLBYY/Ta4+8Dq96GkAEa9JUMF29BDg1pz6+TVdP/nr3SOCqBvqxD6xYfQKzYYHw9b/ZoJUXu1+dQdAVpUuB9tfayiVGCN1roEOKCU2osR9utsUqWoP6Vg+L+MgF/6mjHL03Ufgoub2ZU5hb7xIXz3YH+W7M5gVXI2U5cf4KPfk3G1KLpEB9CvVQj94kPp2TIIL3f5oyrsrzbhvg5oo5SKwwj1W4HbKy3zA3Ab8KlSKhSjmybZloUKG1DKmMHJzRsWPQ+lhXDTNHCRlqUt9IgJokdMEGBM2L3h4HFWJWWzKjmbD39P5r3FSbi5KLq1CKRffAh9W4XQIyZIpvsTdlGrk5iUUiOBtwAXYKrW+iWl1AvAeq31HKWUAt4ARgBlwEta668vtk45iclkqz+A+ZNkiAIHyS8qZV1KDqutYb/9SC7lGtxdLfSICaRffCj9WoXQrUUg7q5y+omonpyhKmr28yRjBMnRb0PP8WZX06Tkni5h3YEcViVnsyopm11pJ9EaPN0sJLYMpl+rEPrGB5MQGSDdOOI8Eu6iZmWl8NUtkLwE7vwB4i43u6Im68SpYlYn57DaGvZ70vMAoyetZbA3bSP8aN/Mj7bNjOvYEB9cXaSF3xRJuIvaKcyFj6+Cggy4dxGEtDK7IgFk5xexLuU4u9NOsjc9j91peaRkFXBmDhF3Fwutwn2NwLcGf7tmfkQGeGL0kgpnJeEuai8nGaYMNlryve+Dfg+BT6jZVYlKCkvK2J+Rz560vLOBvyctj7SThWeX8fN0pV3EuRZ+uwgj9AO9ZeA4ZyHhLuomcy8seRl2fA+unpB4tzE3q3+k2ZWJGuSeKmFPep5xSTvJnjQj+PMKS88uE+HvUaGF70+7CD/aRPjKkTqNkIS7uDRZ+2DZm7B1pnGSU/c7YcCjENTS7MpEHWitSTtZyB5r635PmhH++zLyKS4tB8CioGWIz9nWfbtmfiRE+hMb6mNy9eJiJNxF/RxPgeVvwaYvAA1dboXLn5A++UautKyclOxTFbp1TrI3PZ+U7IKzo1L8dUR7Hhgo73NDJeEubCP3CKx8BzZ8BmXF0HsCXP2q2VUJGztdbPTnf/D7fuZtS2PynT0Z1rGZ2WWJKshkHcI2AqKMMH9sG7QbCWs+hKI8s6sSNubl7kLn6ADevLkbXaMDeGzmZnYePWl2WaIeJNxF7fiGQ4cxxu28dHNrEXbj6ebClLsS8fd0477p62WGqUZMwl3Unp/13/S8o+bWIewq3N+TKXclkl1QxMQvNlBUWmZ2SeISSLiL2vNvblznpZlbh7C7ztEBvHFTNzYcPM7Vby9jytJksvOlFd+YSLiL2vOLBBSkbTO7EuEA13SJ5IM7ehDk7c5L83bR9+VFPDRjI0v3ZlJeLtMxNHRytIyom5l/gANL4fEd4OFndjXCQfam5zFz3WG+25jK8VMlRAV6cUuvFtyUGE1kgJfZ5TUpciiksI/UDfDxYBj2onEGq2hSikrL+HVHOjPXHWb5/iwsCga2C+eWXi0Y3D4cNxnMzO4k3IX9TBttnMn66BZw9TC7GmGSQ9mnmLX+MN9sOEz6ySLC/Dy4sWc0tyS2kLNc7UiOcxf2c9njkHcM1n9qdiXCRDEh3jw5vB0r/jqYT8Yl0q1FIJOXJjPw9SX8uLnyTJzC0STcRd3FDzIuv/wNtsw0uxphMlcXC0M6RDDlrkRWThpMbIg3325INbusJk/CXdSdUnDrDIi9DL6/3zr+jBAQ4e/J0A4RrEnO4VRxac0vEHYj4S4ujbsP3D4LWg2CHx+SLhpx1sB24RSXlbMqKdvsUpo0CXdx6dy84NavoM0wmPsYrJ1idkWiAegVF4SXmwu/7800u5QmTcJd1I+bJ9zyBbS7BuY9CV/fYQwXLJosD1cX+rcK4dcd6eSeKjG7nCZLwl3Un6sH3DwNhjwLSb/Be31g8b+g+JTZlQmT3H9lK7ILirhv+noKS2RsGjNIuAvbcHGDy/8ED6+H9tfA768aIb9zDph0LoUwT++4YN68uRtrU3J47OvNlMlwBQ4n4S5sKyAKbpwK438yhieYdSd8fi1k7jG7MuFgo7s259lRCczfkcZzc3Zg1gmTTZWr2QUIJxV7Gdy/FNZPhcUvwgf9IWEsNO8OzTpDsy7gHWx2lcLO7r4sjvSThXy0NJkIfw8eHtzG7JKaDAl3YT8urtBnAnS63uiD3/MzbJ997nn/KGvQV7gExoJF/qF0Jn8d0Z6MvCJe/3Uvob4e3No7xuySmgQJd2F/PqEw6k3jUpBlDBlc8bJvAWjrl27uftCs0/mBH9bBOCpHNEoWi+LVG7qQU1DM377fho+HK6O7Nje7LKcnA4cJ85Wchoxd5wd++nYozjeeVy4Q1u78wI/oDD4h5tYt6uR0cRnjpq5l46HwHrjiAAASzklEQVTjTL6rJ4PbR5hdUqMko0KKxq28HI4fuLCVX3GKv8rdOq0GyxjzDdzJwhJun7Kafen5TLu7N33j5Q90XUm4C+dUVbdO1h7Q5dBqCNz5ndkVihrkFBRz80erOHbiNF/e15euLQLNLqlRkXAXTUfJaVj8Eqx8Fx7bDoEtzK5I1CAtt5CbPlpJ7qkSBrYLJy7Uh/gwH+JDfYkN9cbP083sEhus2oa7fKEqGj83L0i8xwj3bbOMk6lEg9YswJMZ9/Tlhbk72XT4OP/bevS8c93C/DyItwZ+XKgPcaG+xIf50CLIG3dXOZqqNqTlLpzHJ8Pg9Al4aI0xLLFoNApLyjiUc4rkzAKSs/I5kFnAgawCkrMKyCkoPruci0XRIsiL+DBfa+j7WP8I+BLh74FqAu+7tNxF09PlFvjpCTi6CaJ6mF2NqANPNxfaRvjRNuLCL8RPnCo2gt4a+AeyCkjKzGdlUhaFJeVnl/N2dyE25Ez3jg9x1m6euDAf/JtgN4+03IXzOH0c/tMZWg+Gm6ebXY2ws/JyTdrJQmvw55NsDf7kzAJSj5+i4nA2ob7u1la+EfZxoT60CvOhRbA3Hq4u5v0Ql0Ba7qLp8QqCPvfDstchbbtxMpRwWhaLonmgF80DvRjQOvS854pKyzicc4qkM619a3fPot3pZK0/181jURAd5E2bcF/6xAfTv1UoCZH+WCyNv3tHWu7CuZzKgbe7QvyVxjjzQlSSe7rE2r1j9O0nZRWw69hJkjMLAAj0dqNvXAgDWofQv3Uo8aE+DaovX1ruomnyDoa+DxhDDqcsh5j+MlaNOE+AlxvdWgTSrdLx9Wm5haxKzmLF/mxW7s9i/o40ACL8PRjQKpR+rYywjwr0MqPsOqtVy10pNQJ4G3ABPtZav1LNcjcA3wK9tNYXbZZLy13YzekTRuu98AS4+UB4B4joCBGdICIBwhNkREpxUVprDmafYmVSNiuSsliVlH32qJ3YEG/6tQplQOsQ+sWHEOLr4dDabHYSk1LKBdgLXAWkAuuA27TWOyst5wf8BLgDD0u4C1OdOATJSyB9h/Wy3fjC9Qz/KCPkIzqeu4S0AVd300oWDVd5uWZPeh4rk4xW/ZoDOeQXlQLQvpkfA1qH0r9VCL3jgu1+ApYtw70f8JzWerj1/t8AtNYvV1ruLWAB8GfgSQl30aBoDXlpRtBn7DgX+pl7oNw6z6fFDULbnh/4ER3BL1KOmxfnKS0rZ+uRXFYlZbMyKYt1KccpLi3HxaLoEh3A40PbckXbMLts25Z97lHA4Qr3U4E+lTbWA2ihtf5JKfXnOlUqhCMoBf6RxqXN0HOPl5VA1r7zQ//gSuNM1zO8giD8TNgnGN074R3A3cfxP4doEFxdLPSICaJHTBAPDWpNYUkZGw8dZ+X+bOZsOcojX21i4RNXEubn2C6b82qs7wqUUhbgTWB8LZadAEwAiImRAftFA+DiZg3sBOCmc4+fPg7pOyFjp9Glk74DNs84NwwxCoJioe0IGPw0ePiaULxoKDzdXOjfKpT+rUIZ260517yznBfm7uTd27qbVlNtwv0IUHEkpmjrY2f4AZ2AJdbDhZoBc5RSYyp3zWitJwOTweiWqUfdQtiXVxDEDjAuZ5SXw4mD1lb+Tji2BdZ8CHt/hus+gpi+5tUrGow2EX48NKg1/1m4l2u7NWdIB3PGra9Nn7srxheqQzBCfR1wu9Z6RzXLL0H63EVTcXAlfD/R+AJ3wKMw6ClwNe9fcdEwFJeWM+rdZeQVlrLgiSvx9bDdUee17XOv8QBgrXUp8DDwC7ALmKW13qGUekEpNab+pQrRiLXsDw+sgB53wYq3YPIgY4x50aS5u1p4+foupJ0s5OV5u0ypQc5QFcJW9v4CPz5s9NcPegr6/9GYJFw0WS/9tJMpyw7w3OgExg+Is8k6bdZyF0LUUtvh8OBqaD8SFj0PHw+Go5vNrkqYaNLVHbgqIYLn5+7kp63HHLptCXchbMknBG6aBjd+ahxXP2UQzH8KivJrfq1wOi4Wxbu3dadHTBCPz9zMqqRsh21bwl0IW1MKOl0PD62FHuNg9Xvwfl/YM9/syoQJPN1c+GRcIjEh3kyYvp5dx046ZLsS7kLYi1cgjH4L7v7FOOHpq1tg1l1Gi140KYHe7ky7uzc+Hq6M/3QtqcdP2X2bEu5C2FtMX7h/mXGy05758N9esPlLs6sSDhYV6MW0u3tzuriMZfuy7L49OVpGCEfKToI5j8DBFdDlVrjmdfC4cGo54byy84vqNZKkHC0jREMU0grG/Q8GPmWMX/PRlcaZrqLJcNQQwRLuQjiaxQUG/tUI+ZJT8PFQWPORMXKlEDYi4S6EWWIvg4krIH4Q/PwX+PoOyM8wuyrhJCTchTCTTwjcPhOGvwz7foU3Oxghv+dnKCs1uzrRiMm50UKYTSno9yC0GQYbP4MtM2H3XPAJh663Qvc/QFg7s6sUjYwcLSNEQ1NWAvsXwqYvYO98KC+F6F7Q7Q7j5CjPALMrFCay2TR79iLhLkQt5GfC1plG0GfuAlcvSBhjtOZbXgYW6VltaiTchXAmWsPRjbBpBmz7FopyISAGontCcDwEt7Jex4NvuMz56sRsOYeqEMJsSkFUT+My/CXY/RNsn20cI79zDuiyc8u6+RghHxJ/LvDPBn8zae03ERLuQjQ2bl7Q+UbjAkYffe5hyE6GnAqX9J2wex6Ul5x7rauXNejjLgx+/ygJfici4S5EY+fidi6gKysvM4L/bOgfMK6z98O+BVBWVGE9HpVCP+5cl09AtHHylWg0JNyFcGYWFwiKNS6tBp//XHk5nDxyfmv/zCVpMZSerrAeN2MdFVv64e3lS90GTMJdiKbKYoHAFsYl/srznysvh/y0C0M/OxlSlkNJgbFcZFcY+tyFfziE6STchRAXsljAv7lxib3s/Oe0NoZJSFoEi1+Gz6+DuCuNkI/qYUa1ogry/5QQom6UAr8I6HY7PLIeRrwC6duNKQVnjYOs/WZXKJBwF0LUh6sH9H0AHt0CV04yvqR9rzf87zGZccpkchKTEMJ28jNg6Wuw/lOwuELsAONIG/9o4zogGgKijMMuXR0zrrmzkZOYhBCO5xsOI1+Dvg/C8jfh2FbjRKuCzCqWjbAGfxQEtDgX/AHRxn3vUDkSpx4k3IUQthccB2PePXe/5DScPAq5qRUuh41DMTN3GwOllVSaNNrFw/hC90zYnw3+Cv8JePg69udqRCTchRD25+ZlTDEY0qrq57WG08fPD/+TFW4fWAp5R0GXn/86z8Dqgz8gGvwiwaVpxlzT/KmFEA2LUuAdbFwiu1S9TFkp5B2zBv8Ro+Wfmwq5R4zrQ6uh8ESl9VqMgD8b/NYuoOA4YwYsJw5+5/3JhBDOxcX13ElX1SnKrzr4cw/D0U2w639QVmwsG9beGISt9VDH1O9gEu5CCOfh4WvMWlXdzFXl5XAqCw6uhIXPwRc3QOurjJB3stmu5KtoIUTTYbEYR/R0vBYeWgPDXoTDa+H9fjDvL3Aqx+wKbUbCXQjRNLl6QP9H4I8boed4WDcF3ukOqz8whlFu5CTchRBNm08ojHoTJq6A5t1h/iTjLNvFLxvH6Zt0omd9yRmqQghxhtaw71dY/hYcWgVoCIyB9qOMS0xf08e1lzlUhRCiPvIzYe/PsGsuJC8xJjbxDoF2VxtBHz/QOH7fwSTchRDCVoryjLNod/8Ee3+BopPGXLWthxhB33YYeAU5pBQZW0YIIWzFww86XmdcSoshZZkR9Lt/gl1zrIOkXWYEfddbjeVNJi13IYS4VOXlcHSjcXLU7rnG3LThHeH2mRc/2aoeattyl6NlhBDiUlksEJ0IVz0Pj2yAP8w2zob9eAgc2WhuaaZuXQghnEnroXDPr8aIlp+ONFr0JqlVuCulRiil9iil9iulJlXx/BNKqZ1Kqa1KqUVKqZa2L1UIIRqB8A5w3yKI6Agz74SV75pyrHyN4a6UcgHeA64GEoDblFIJlRbbBCRqrbsA3wL/tnWhQgjRaPiGw/i5kDAGfn0alr3u8BJq03LvDezXWidrrYuBr4GxFRfQWi/WWp8ZaX81EG3bMoUQopFx84IbP4O4K2DL1w7ffG3CPQo4XOF+qvWx6twD/FyfooQQwilYLMbJTtn7jclIHLlpW65MKfUHIBF4rZrnJyil1iul1mdmVjGnohBCOJso61GLRzY4dLO1CfcjQMUDNqOtj51HKTUU+DswRmtdVNWKtNaTtdaJWuvEsLCwS6lXCCEal+bdAQWpjj2vpzbhvg5oo5SKU0q5A7cCcyouoJTqDnyEEewZti9TCCEaKU9/aNYZtn/n0KGEawx3rXUp8DDwC7ALmKW13qGUekEpNca62GuAL/CNUmqzUmpONasTQoimZ9BTkLUHVr/vsE3K8ANCCOEIX91mjC758Dpjsu5LJMMPCCFEQzLiFeNkpvl/c8jmJNyFEMIRglrCFU8ao0juW2j3zcmQv0II4Sj9HzEm5Hb1sPumJNyFEMJRXD3gjlkO2ZR0ywghhBOScBdCCCck4S6EEE5Iwl0IIZyQhLsQQjghCXchhHBCEu5CCOGEJNyFEMIJmTZwmFIqEzh4iS8PBbJsWI6tSF11I3XVXUOtTeqqm/rU1VJrXeOEGKaFe30opdbXZlQ0R5O66kbqqruGWpvUVTeOqEu6ZYQQwglJuAshhBNqrOE+2ewCqiF11Y3UVXcNtTapq27sXlej7HMXQghxcY215S6EEOIiGnS4K6VGKKX2KKX2K6UmVfG8h1JqpvX5NUqpWAfU1EIptVgptVMptUMp9WgVywxUSuVaJwvfrJR61t51WbebopTaZt3mBRPUKsM71v21VSnVwwE1tauwHzYrpU4qpR6rtIzD9pdSaqpSKkMptb3CY8FKqQVKqX3W66BqXjvOusw+pdQ4O9f0mlJqt/V9+l4pFVjNay/6ntuptueUUkcqvF8jq3ntRX9/7VDXzAo1pSilNlfzWrvss+qywbTPl9a6QV4AFyAJiAfcgS1AQqVlHgQ+tN6+FZjpgLoigR7W237A3irqGgjMNWGfpQChF3l+JPAzoIC+wBoT3tM0jON0TdlfwBVAD2B7hcf+DUyy3p4EvFrF64KBZOt1kPV2kB1rGga4Wm+/WlVNtXnP7VTbc8CTtXivL/r7a+u6Kj3/BvCsI/dZddlg1uerIbfcewP7tdbJWuti4GtgbKVlxgLTrLe/BYYopZQ9i9JaH9Nab7TezgN2AVH23KYNjQWma8NqIFApFenA7Q8BkrTWl3ryWr1prZcCOZUervg5mgZcW8VLhwMLtNY5WuvjwAJghL1q0lr/qrUutd5dDUTbYlt1Vc3+qo3a/P7apS5rBtwMfGWr7dWypuqywZTPV0MO9yjgcIX7qVwYomeXsf4i5AIhDqkOsHYDdQfWVPF0P6XUFqXUz0qpjg4qSQO/KqU2KKUmVPF8bfapPd1K9b9wZuyvMyK01sest9OAiCqWMXPf3Y3xH1dVanrP7eVha5fR1Gq6GczcX5cD6VrrfdU8b/d9VikbTPl8NeRwb9CUUr7AbOAxrfXJSk9vxOh66Aq8C/zgoLIu01r3AK4GHlJKXeGg7dZIKeUOjAG+qeJps/bXBbTxP3KDOYRMKfV3oBSYUc0iZrznHwCtgG7AMYwukIbkNi7earfrPrtYNjjy89WQw/0I0KLC/WjrY1Uuo5RyBQKAbHsXppRyw3jzZmitv6v8vNb6pNY633p7HuCmlAq1d11a6yPW6wzge4x/jSuqzT61l6uBjVrr9MpPmLW/Kkg/0z1lvc6oYhmH7zul1HhgFHCHNRQuUIv33Oa01ula6zKtdTkwpZptmvJZs+bA9cDM6pax5z6rJhtM+Xw15HBfB7RRSsVZW323AnMqLTMHOPOt8o3Ab9X9EtiKtT/vE2CX1vrNapZpdqbvXynVG2M/2/WPjlLKRynld+Y2xhdy2ystNge4Sxn6ArkV/l20t2pbU2bsr0oqfo7GAT9WscwvwDClVJC1G2KY9TG7UEqNAP4CjNFan6pmmdq85/aoreL3NNdVs83a/P7aw1Bgt9Y6taon7bnPLpIN5ny+bP2NsS0vGEd37MX41v3v1sdewPjAA3hi/Ju/H1gLxDugpssw/q3aCmy2XkYCE4GJ1mUeBnZgHCGwGujvgLrirdvbYt32mf1VsS4FvGfdn9uARAe9jz4YYR1Q4TFT9hfGH5hjQAlGv+Y9GN/TLAL2AQuBYOuyicDHFV57t/Wzth/4PzvXtB+jD/bMZ+zMUWHNgXkXe88dsL8+t35+tmIEV2Tl2qz3L/j9tWdd1sc/O/O5qrCsQ/bZRbLBlM+XnKEqhBBOqCF3ywghhLhEEu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4of8HOxEhzr3d4vsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -396,7 +393,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_33772694934.event_col_event.time_col_t.pkl\n" + "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_14209590808.event_col_event.time_col_t.pkl\n" ] }, { @@ -425,19 +422,31 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -445,72 +454,67 @@ " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -518,19 +522,19 @@ "" ], "text/plain": [ - " age sex rate true_t t event index age_centered key \\\n", - "0 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "1 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "2 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "3 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "4 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", + " sex age rate true_t t event index age_centered \\\n", + "0 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "58 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "65 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "72 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "73 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", "\n", " end_time end_failure \n", - "0 20.000000 False \n", - "1 12.827519 False \n", - "2 10.462045 False \n", - "3 0.196923 False \n", - "4 9.244121 False " + "0 1.013855 True \n", + "58 0.808987 False \n", + "65 0.377535 False \n", + "72 0.791192 False \n", + "73 0.009787 False " ] }, "execution_count": 7, @@ -560,7 +564,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_15125303112.pystan_2_12_0_0.stanmodel.pkl\n" + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_17281568671805165521.pystan_2_18_1_0.stanmodel.pkl\n" ] }, { @@ -581,50 +585,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_15125303112.pystan_2_12_0_0.stanfit.chains_4.data_89490385305.iter_5000.seed_9001.pkl\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Starting execution\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:stancache.stancache:sampling: Execution completed (0:11:49.722646 elapsed)\n" + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_17281568671805165521.pystan_2_18_1_0.stanfit.chains_4.data_75284643319.iter_5000.seed_9001.pkl\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:sampling: Saving results to cache\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stancache/stancache.py:251: UserWarning: Pickling fit objects is an experimental feature!\n", - "The relevant StanModel instance must be pickled along with this fit object.\n", - "When unpickling the StanModel must be unpickled first.\n", - " pickle.dump(res, open(cache_filepath, 'wb'), pickle.HIGHEST_PROTOCOL)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:228: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", - " elif sort == 'in-place':\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:246: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", - " bs /= 3 * x[sort[np.floor(n/4 + 0.5) - 1]]\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:262: RuntimeWarning: overflow encountered in exp\n", - " np.exp(temp, out=temp)\n" + "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } ], @@ -655,8 +623,8 @@ "name": "stdout", "output_type": "stream", "text": [ - " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ -299.460663 1.927055 26.352078 -347.240375 -301.398746 -241.969884 1.024231\n" + " mean se_mean sd 2.5% 50% 97.5% Rhat\n", + "lp__ -287.781216 1.521948 25.841239 -337.843663 -288.32069 -236.827395 1.006161\n" ] } ], @@ -676,84 +644,81 @@ "output_type": "stream", "text": [ " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "log_baseline_raw[0] -2.209853 0.034962 0.734208 -3.565018 -2.224091 -0.741190 1.002523\n", - "log_baseline_raw[1] -2.304993 0.034925 0.723383 -3.649586 -2.321536 -0.871592 1.002825\n", - "log_baseline_raw[2] -2.421687 0.034973 0.714164 -3.764226 -2.433190 -0.983894 1.003320\n", - "log_baseline_raw[3] -2.557284 0.034873 0.708698 -3.931550 -2.562017 -1.136746 1.004044\n", - "log_baseline_raw[4] -2.689425 0.035061 0.709934 -4.057182 -2.689985 -1.251838 1.005177\n", - "log_baseline_raw[5] -2.813966 0.036343 0.717710 -4.206290 -2.816301 -1.371240 1.006522\n", - "log_baseline_raw[6] -2.932749 0.037675 0.727616 -4.344685 -2.932417 -1.462858 1.007257\n", - "log_baseline_raw[7] -3.040481 0.038382 0.735284 -4.483020 -3.043742 -1.547476 1.007836\n", - "log_baseline_raw[8] -3.142247 0.039402 0.743432 -4.567630 -3.151716 -1.609923 1.008075\n", - "log_baseline_raw[9] -3.238616 0.039946 0.751576 -4.693920 -3.248983 -1.687828 1.008705\n", - "log_baseline_raw[10] -3.326796 0.040820 0.759294 -4.797918 -3.344459 -1.765842 1.009117\n", - "log_baseline_raw[11] -3.405642 0.041976 0.767142 -4.887675 -3.406443 -1.848447 1.010037\n", - "log_baseline_raw[12] -3.476969 0.042417 0.772868 -4.974952 -3.463678 -1.899816 1.011136\n", - "log_baseline_raw[13] -3.542576 0.042853 0.779642 -5.057991 -3.535582 -1.934427 1.011025\n", - "log_baseline_raw[14] -3.604198 0.043344 0.781402 -5.132122 -3.598852 -1.993619 1.011672\n", - "log_baseline_raw[15] -3.663888 0.043606 0.782475 -5.185663 -3.665758 -2.050194 1.011964\n", - "log_baseline_raw[16] -3.717827 0.043542 0.781329 -5.245613 -3.724172 -2.108292 1.012058\n", - "log_baseline_raw[17] -3.772938 0.043684 0.780217 -5.290728 -3.768361 -2.185687 1.012156\n", - "log_baseline_raw[18] -3.824103 0.043831 0.782841 -5.319356 -3.824092 -2.233574 1.012159\n", - "log_baseline_raw[19] -3.871339 0.044298 0.787467 -5.402883 -3.869259 -2.247521 1.013038\n", - "log_baseline_raw[20] -3.918442 0.044859 0.791091 -5.452807 -3.922432 -2.303807 1.013615\n", - "log_baseline_raw[21] -3.964726 0.044814 0.791565 -5.483688 -3.960975 -2.337881 1.013660\n", - "log_baseline_raw[22] -4.004692 0.045198 0.793219 -5.552627 -4.003068 -2.386289 1.013792\n", - "log_baseline_raw[23] -4.041575 0.045697 0.795442 -5.578184 -4.045911 -2.413009 1.013758\n", - "log_baseline_raw[24] -4.074303 0.045213 0.792187 -5.603216 -4.069042 -2.451408 1.013534\n", - "log_baseline_raw[25] -4.106607 0.044978 0.794469 -5.661048 -4.102975 -2.479499 1.013116\n", - "log_baseline_raw[26] -4.139667 0.044627 0.795811 -5.689198 -4.140985 -2.492719 1.012234\n", - "log_baseline_raw[27] -4.172902 0.044663 0.796452 -5.717805 -4.172481 -2.519271 1.012157\n", - "log_baseline_raw[28] -4.203341 0.045068 0.796062 -5.748268 -4.198260 -2.547859 1.012530\n", - "log_baseline_raw[29] -4.225360 0.045499 0.795909 -5.764089 -4.225801 -2.574596 1.013533\n", - "log_baseline_raw[30] -4.244890 0.045181 0.796781 -5.799618 -4.244009 -2.570214 1.013194\n", - "log_baseline_raw[31] -4.260373 0.045487 0.796995 -5.841010 -4.259303 -2.602916 1.013388\n", - "log_baseline_raw[32] -4.272444 0.045207 0.794659 -5.828616 -4.266997 -2.627563 1.013189\n", - "log_baseline_raw[33] -4.284438 0.045231 0.793800 -5.840478 -4.281586 -2.627900 1.013242\n", - "log_baseline_raw[34] -4.295121 0.045215 0.793523 -5.857232 -4.285296 -2.668900 1.012945\n", - "log_baseline_raw[35] -4.302797 0.045207 0.793372 -5.856606 -4.298698 -2.686706 1.012605\n", - "log_baseline_raw[36] -4.306231 0.045391 0.791416 -5.829722 -4.300618 -2.678529 1.013334\n", - "log_baseline_raw[37] -4.311709 0.044862 0.791156 -5.867720 -4.301373 -2.673927 1.012985\n", - "log_baseline_raw[38] -4.315251 0.044282 0.789655 -5.853074 -4.303313 -2.701019 1.012537\n", - "log_baseline_raw[39] -4.317223 0.044279 0.788357 -5.855086 -4.306719 -2.703429 1.012997\n", - "log_baseline_raw[40] -4.318599 0.044355 0.788473 -5.861453 -4.314772 -2.702005 1.013257\n", - "log_baseline_raw[41] -4.323167 0.044185 0.784199 -5.835683 -4.319204 -2.697464 1.013198\n", - "log_baseline_raw[42] -4.328650 0.043971 0.781649 -5.863121 -4.322219 -2.714264 1.012836\n", - "log_baseline_raw[43] -4.331192 0.043861 0.780927 -5.868070 -4.329463 -2.730403 1.013090\n", - "log_baseline_raw[44] -4.335847 0.043651 0.778409 -5.853302 -4.326692 -2.744025 1.012835\n", - "log_baseline_raw[45] -4.340444 0.043448 0.779641 -5.840163 -4.333709 -2.749720 1.012509\n", - "log_baseline_raw[46] -4.345613 0.043007 0.780068 -5.842220 -4.334844 -2.755490 1.011630\n", - "log_baseline_raw[47] -4.347367 0.043069 0.780010 -5.863569 -4.332582 -2.765254 1.011127\n", - "log_baseline_raw[48] -4.348232 0.042741 0.777596 -5.871084 -4.335639 -2.797367 1.011092\n", - "log_baseline_raw[49] -4.350068 0.042516 0.778174 -5.881712 -4.336420 -2.780095 1.010770\n", - "log_baseline_raw[50] -4.349913 0.042314 0.779078 -5.911215 -4.336043 -2.767829 1.010429\n", - "log_baseline_raw[51] -4.349424 0.042508 0.776856 -5.900156 -4.341521 -2.785123 1.010256\n", - "log_baseline_raw[52] -4.348648 0.042346 0.777374 -5.876766 -4.337048 -2.768534 1.010006\n", - "log_baseline_raw[53] -4.347363 0.042586 0.779449 -5.891009 -4.328330 -2.775428 1.009957\n", - "log_baseline_raw[54] -4.350424 0.042582 0.778207 -5.886586 -4.336106 -2.773579 1.010369\n", - "log_baseline_raw[55] -4.347044 0.042418 0.778689 -5.890802 -4.328797 -2.769821 1.010304\n", - "log_baseline_raw[56] -4.348723 0.042249 0.776741 -5.864335 -4.333924 -2.775254 1.009930\n", - "log_baseline_raw[57] -4.345926 0.042328 0.777045 -5.881462 -4.329267 -2.749512 1.010466\n", - "log_baseline_raw[58] -4.345933 0.042102 0.777455 -5.886590 -4.327736 -2.743760 1.010318\n", - "log_baseline_raw[59] -4.341379 0.042107 0.775280 -5.856886 -4.317274 -2.750124 1.010689\n", - "log_baseline_raw[60] -4.337038 0.041876 0.774429 -5.838974 -4.321691 -2.772782 1.010865\n", - "log_baseline_raw[61] -4.332934 0.041668 0.771707 -5.838879 -4.315197 -2.757346 1.011286\n", - "log_baseline_raw[62] -4.331704 0.041587 0.770194 -5.839632 -4.316723 -2.752762 1.010277\n", - "log_baseline_raw[63] -4.331096 0.041297 0.768172 -5.833093 -4.316674 -2.751622 1.010207\n", - "log_baseline_raw[64] -4.330946 0.041052 0.766915 -5.803078 -4.326373 -2.758759 1.010366\n", - "log_baseline_raw[65] -4.334928 0.041518 0.767797 -5.795742 -4.324844 -2.750788 1.010279\n", - "log_baseline_raw[66] -4.337154 0.041747 0.766377 -5.830106 -4.329792 -2.765804 1.010298\n", - "log_baseline_raw[67] -4.341754 0.041943 0.767691 -5.835078 -4.344604 -2.768967 1.010708\n", - "log_baseline_raw[68] -4.350062 0.042011 0.770077 -5.852077 -4.336741 -2.776915 1.010704\n", - "log_baseline_raw[69] -4.356494 0.042362 0.773027 -5.904633 -4.337998 -2.797574 1.010953\n", - "log_baseline_raw[70] -4.366050 0.042435 0.777850 -5.899477 -4.346893 -2.794871 1.010286\n", - "log_baseline_raw[71] -4.375275 0.042612 0.778763 -5.913698 -4.357084 -2.799853 1.010616\n", - "log_baseline_raw[72] -4.388638 0.042797 0.780964 -5.930415 -4.370979 -2.796530 1.010651\n", - "log_baseline_raw[73] -4.400346 0.043051 0.786794 -5.962885 -4.386232 -2.794786 1.010310\n", - "log_baseline_raw[74] -4.418921 0.043276 0.794434 -5.998846 -4.402173 -2.820150 1.009907\n", - "log_baseline_raw[75] -4.438898 0.043396 0.803697 -6.046008 -4.423531 -2.809893 1.010078\n", - "log_baseline_raw[76] -4.458039 0.043689 0.816187 -6.075599 -4.441154 -2.802135 1.009674\n", - "log_baseline_raw[77] -4.485210 0.044765 0.837476 -6.172687 -4.468687 -2.803093 1.010143\n" + "log_baseline_raw[1] -2.266052 0.022797 0.757871 -3.781383 -2.264353 -0.801449 1.002332\n", + "log_baseline_raw[2] -2.364431 0.022200 0.747522 -3.852205 -2.352824 -0.913209 1.002224\n", + "log_baseline_raw[3] -2.469519 0.022284 0.742275 -3.943979 -2.457068 -1.035849 1.001857\n", + "log_baseline_raw[4] -2.566836 0.022849 0.744848 -4.040161 -2.548941 -1.108471 1.001946\n", + "log_baseline_raw[5] -2.662735 0.023252 0.749227 -4.152525 -2.639411 -1.206405 1.001873\n", + "log_baseline_raw[6] -2.754253 0.024026 0.759507 -4.251543 -2.735682 -1.266185 1.001951\n", + "log_baseline_raw[7] -2.843475 0.024597 0.768474 -4.378099 -2.824548 -1.343800 1.001972\n", + "log_baseline_raw[8] -2.924604 0.025082 0.776434 -4.479474 -2.907346 -1.419350 1.002177\n", + "log_baseline_raw[9] -3.003173 0.025526 0.782436 -4.581052 -2.986473 -1.474753 1.002179\n", + "log_baseline_raw[10] -3.073193 0.026218 0.791575 -4.648971 -3.066341 -1.511074 1.002226\n", + "log_baseline_raw[11] -3.139566 0.026516 0.796587 -4.732211 -3.129224 -1.578292 1.002020\n", + "log_baseline_raw[12] -3.209124 0.026946 0.799748 -4.801769 -3.197802 -1.646758 1.001927\n", + "log_baseline_raw[13] -3.270523 0.027736 0.804584 -4.867368 -3.257556 -1.714762 1.001913\n", + "log_baseline_raw[14] -3.324910 0.028008 0.806302 -4.952066 -3.322625 -1.770464 1.002156\n", + "log_baseline_raw[15] -3.375416 0.028060 0.808821 -4.986150 -3.358505 -1.787048 1.002112\n", + "log_baseline_raw[16] -3.418015 0.028232 0.809641 -5.020435 -3.403251 -1.825160 1.002190\n", + "log_baseline_raw[17] -3.460291 0.028885 0.812362 -5.056463 -3.444036 -1.880696 1.002066\n", + "log_baseline_raw[18] -3.498345 0.028933 0.812367 -5.117012 -3.495259 -1.892893 1.002061\n", + "log_baseline_raw[19] -3.535051 0.028993 0.814328 -5.132985 -3.522936 -1.952877 1.002407\n", + "log_baseline_raw[20] -3.568242 0.028936 0.815294 -5.190021 -3.565835 -1.994228 1.002462\n", + "log_baseline_raw[21] -3.596620 0.028745 0.812500 -5.214018 -3.583318 -2.004260 1.002160\n", + "log_baseline_raw[22] -3.627828 0.028897 0.816340 -5.249507 -3.621776 -2.027126 1.002112\n", + "log_baseline_raw[23] -3.664812 0.028823 0.817502 -5.285838 -3.660719 -2.057037 1.002035\n", + "log_baseline_raw[24] -3.694122 0.028644 0.816023 -5.313456 -3.679695 -2.101070 1.001962\n", + "log_baseline_raw[25] -3.726449 0.028639 0.817342 -5.351640 -3.718952 -2.122747 1.001737\n", + "log_baseline_raw[26] -3.754691 0.028893 0.819345 -5.393803 -3.751139 -2.151594 1.001739\n", + "log_baseline_raw[27] -3.783266 0.028977 0.821166 -5.411232 -3.778064 -2.168727 1.001889\n", + "log_baseline_raw[28] -3.808153 0.028980 0.821477 -5.440836 -3.796426 -2.203063 1.001925\n", + "log_baseline_raw[29] -3.835505 0.028949 0.821662 -5.474397 -3.827508 -2.242330 1.002038\n", + "log_baseline_raw[30] -3.860725 0.028877 0.817381 -5.478707 -3.848681 -2.272787 1.002150\n", + "log_baseline_raw[31] -3.885441 0.028842 0.816953 -5.513805 -3.874989 -2.308918 1.002068\n", + "log_baseline_raw[32] -3.908965 0.029221 0.816717 -5.532251 -3.896064 -2.326129 1.001938\n", + "log_baseline_raw[33] -3.931273 0.029425 0.818813 -5.564209 -3.914277 -2.364230 1.001907\n", + "log_baseline_raw[34] -3.953029 0.029330 0.820281 -5.578620 -3.943326 -2.385194 1.001686\n", + "log_baseline_raw[35] -3.973201 0.029288 0.821152 -5.607299 -3.967871 -2.381836 1.001760\n", + "log_baseline_raw[36] -3.995195 0.029151 0.819997 -5.641221 -3.982282 -2.410138 1.001859\n", + "log_baseline_raw[37] -4.013542 0.028848 0.821193 -5.670351 -4.006696 -2.440001 1.001911\n", + "log_baseline_raw[38] -4.032756 0.028732 0.821102 -5.672715 -4.031058 -2.435735 1.001869\n", + "log_baseline_raw[39] -4.054814 0.028657 0.821730 -5.677297 -4.052578 -2.462860 1.002034\n", + "log_baseline_raw[40] -4.077615 0.029048 0.820922 -5.714226 -4.078718 -2.484970 1.002175\n", + "log_baseline_raw[41] -4.100401 0.029174 0.822995 -5.752051 -4.096290 -2.507281 1.002144\n", + "log_baseline_raw[42] -4.120889 0.029157 0.823284 -5.771448 -4.114912 -2.524585 1.002094\n", + "log_baseline_raw[43] -4.139251 0.029130 0.822729 -5.767588 -4.132056 -2.544751 1.001926\n", + "log_baseline_raw[44] -4.163014 0.029071 0.821213 -5.812907 -4.159177 -2.570496 1.002177\n", + "log_baseline_raw[45] -4.179724 0.028949 0.820050 -5.835372 -4.163769 -2.615221 1.002185\n", + "log_baseline_raw[46] -4.197610 0.028892 0.822176 -5.823872 -4.189961 -2.597658 1.002236\n", + "log_baseline_raw[47] -4.212008 0.029008 0.819808 -5.849129 -4.202241 -2.633780 1.002305\n", + "log_baseline_raw[48] -4.225084 0.028957 0.818729 -5.848362 -4.215952 -2.643008 1.001915\n", + "log_baseline_raw[49] -4.241355 0.029079 0.818991 -5.863295 -4.227776 -2.670875 1.001969\n", + "log_baseline_raw[50] -4.256881 0.029008 0.818179 -5.891835 -4.254293 -2.664914 1.002075\n", + "log_baseline_raw[51] -4.270769 0.029369 0.818646 -5.904414 -4.265443 -2.694613 1.002035\n", + "log_baseline_raw[52] -4.282680 0.029372 0.818056 -5.931432 -4.278622 -2.698225 1.001975\n", + "log_baseline_raw[53] -4.294047 0.029321 0.816835 -5.942168 -4.289579 -2.713233 1.002032\n", + "log_baseline_raw[54] -4.305103 0.029514 0.818933 -5.933277 -4.298894 -2.706766 1.001916\n", + "log_baseline_raw[55] -4.312760 0.029303 0.818738 -5.933212 -4.312261 -2.728168 1.001963\n", + "log_baseline_raw[56] -4.324978 0.029258 0.820226 -5.964142 -4.319273 -2.726846 1.001836\n", + "log_baseline_raw[57] -4.337596 0.029456 0.822980 -5.957788 -4.334267 -2.729425 1.001769\n", + "log_baseline_raw[58] -4.350086 0.029573 0.823873 -5.990426 -4.349105 -2.740828 1.001933\n", + "log_baseline_raw[59] -4.363347 0.029452 0.820318 -5.998213 -4.363577 -2.763006 1.001743\n", + "log_baseline_raw[60] -4.376516 0.029280 0.821438 -6.019750 -4.373609 -2.763041 1.001752\n", + "log_baseline_raw[61] -4.381173 0.029498 0.821282 -6.026957 -4.378750 -2.777419 1.001712\n", + "log_baseline_raw[62] -4.390519 0.029471 0.821330 -6.018604 -4.387542 -2.796227 1.001823\n", + "log_baseline_raw[63] -4.394140 0.029188 0.822449 -6.040613 -4.391103 -2.784246 1.001807\n", + "log_baseline_raw[64] -4.400284 0.029012 0.820515 -6.045551 -4.401524 -2.807080 1.001888\n", + "log_baseline_raw[65] -4.410931 0.029522 0.823018 -6.024781 -4.408396 -2.811094 1.001875\n", + "log_baseline_raw[66] -4.417436 0.029669 0.823858 -6.064181 -4.411878 -2.834595 1.001887\n", + "log_baseline_raw[67] -4.427447 0.029746 0.825849 -6.073543 -4.427379 -2.846127 1.001931\n", + "log_baseline_raw[68] -4.438940 0.030008 0.828293 -6.087548 -4.432626 -2.846181 1.001923\n", + "log_baseline_raw[69] -4.450288 0.030352 0.833324 -6.133451 -4.438808 -2.833132 1.002091\n", + "log_baseline_raw[70] -4.459671 0.030378 0.836460 -6.138809 -4.454855 -2.830563 1.002030\n", + "log_baseline_raw[71] -4.470068 0.030428 0.839366 -6.146245 -4.471940 -2.844583 1.001988\n", + "log_baseline_raw[72] -4.481865 0.030131 0.841145 -6.155597 -4.480798 -2.860652 1.001826\n", + "log_baseline_raw[73] -4.496755 0.030241 0.853279 -6.209481 -4.500568 -2.843853 1.001606\n", + "log_baseline_raw[74] -4.515678 0.030588 0.864968 -6.246099 -4.505534 -2.848791 1.001712\n", + "log_baseline_raw[75] -4.541684 0.031342 0.883239 -6.323431 -4.536108 -2.856660 1.001737\n" ] } ], @@ -770,12 +735,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHyCAYAAADx4OY1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8XPV9//v3ObNIo2W0L5a8y4tsvBsbY2xSCJAUmhZa\n0tuGJC3NIzQ3uUD7IE1+CRAcEiAhCb2U/h65bm6bNA1puGnSpgnZGpKwGINjgjdABtmyJWuXRtJo\nNJJGM3PuH6MZW8GbrJHOzJnX8/HwA6E5OuczOh75re98vt+vYVmWJQAAAMABTLsLAAAAANKFcAsA\nAADHINwCAADAMQi3AAAAcAzCLQAAAByDcAsAAADHINwCAADAMQi3AAAAcAzCLQAAAByDcAsAAADH\nmFa43b17t2699VZt2rRJ27dv18c+9jG1tLRMOeYDH/iAGhsbU39WrVqlXbt2TTmms7NTd9xxhzZs\n2KCrrrpKjz76qOLx+IyfDAAAAHKbezoH79+/X+9///u1du1aRaNRPfbYY/rQhz6kH//4x8rPz08d\n96d/+qf6m7/5G1mWJUlTHovH47rjjjtUXV2tp556Sj09PfrEJz4hj8ejv/3bv03T0wIAAEAumla4\n/drXvjbl/x955BFt375dR44c0eWXX576vM/nU3l5+VnP8fzzz+v48eP613/9V5WXl2vlypW6++67\n9ZWvfEV33nmn3O5plQQAAACkzKjndnh4WIZhqLS0dMrnf/jDH2rbtm16z3veo8cee0xjY2Opxw4e\nPKgVK1ZMCb87duzQ8PCwmpubZ1IOAAAActwlD5NalqWHH35Ymzdv1rJly1Kf/8M//EPV1dWpurpa\nR48e1Ze+9CWdOHFC//AP/yBJ6uvrU0VFxZRzVVZWSpJ6e3vV2Nh4qSUBAAAgx11yuN21a5eam5v1\n7//+71M+/973vjf18fLly1VZWam//Mu/VFtbmxYsWHDecxqGcdHXtyxrWscDAADA+S4p3D744IN6\n7rnn9OSTT6q6uvq8x65fv16S1NraqgULFqiyslKHDx+eckxfX5+k0yO4F8MwDAWDo4rFWGXB6Vwu\nU36/j/udI7jfuYX7nVu437kleb/n2rTD7YMPPqhnnnlG3/rWt1RXV3fB419//XUZhqGqqipJ0oYN\nG7R7924FAoFU3+2ePXtUXFyshoaGadUSi8UVjfLiyBXc79zC/c4t3O/cwv3GbJpWuN21a5eefvpp\nffWrX5XP50uNuBYXFysvL09tbW364Q9/qHe84x0qLS1VU1OTvvCFL2jLli1asWKFpMTksYaGBn3i\nE5/Qxz/+cfX29urxxx/XbbfdJo/Hk/5nCAAAgJxhWMnFaC9CY2PjWftcH3nkEd18883q6urS3/3d\n3+mtt97S6OioamtrdcMNN+gjH/mICgsLU8d3dnZq165d2rdvn3w+n2655Rbdc889Ms3pLd4wMDDC\nb345wO02VVZWyP3OEdzv3ML9zi3c79ySvN9zbVrhNtPw4sgN/DDMLdzv3ML9zi3c79xiV7id0Tq3\nAAAAQCYh3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAA\nAMcg3AIAAMAxCLcAAABwDMItAAAAHMNtdwEAAOS6eDyuQCAwp9csLy+XaTLGBech3AIAYLNAIKCf\nv9SkoqKSObleKDSkG7Y1qrKyck6uB8wlwi0AABmgqKhE/tJyu8sAsh7vRwAAAMAxCLcAAABwDMIt\nAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAA\nHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINw\nCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAA\nAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMdw\n210AACD7xONxBQKBGZ/H7TYUjYY1ODiiaNQ677Hl5eUyTcZkAJwf4RYAMG2BQEA/f6lJRUUlMzqP\naRry+bwaHY0oHj93uA2FhnTDtkZVVlbO6HoAnI9wCwC4JEVFJfKXls/oHC7TUEFBnrx544qdJ9wC\nwMXi/R0AAAA4BuEWAAAAjkG4BQAAgGMQbgEAAOAYhFsAAAA4BuEWAAAAjkG4BQAAgGMQbgEAAOAY\nhFsAAAA4BuEWAAAAjkG4BQAAgGMQbgEAAOAYhFsAAAA4BuEWAAAAjkG4BQAAgGMQbgEAAOAYhFsA\nAAA4BuEWAAAAjkG4BQAAgGMQbgEAAOAY0wq3u3fv1q233qpNmzZp+/bt+tjHPqaWlpYpx0QiEX32\ns5/VFVdcoY0bN+quu+5Sf3//lGM6Ozt1xx13aMOGDbrqqqv06KOPKh6Pz/zZAAAAIKdNK9zu379f\n73//+/Xd735XX//61xWNRvWhD31IY2NjqWMeeughPfvss3riiSf05JNPqqenR3feeWfq8Xg8rjvu\nuEOxWExPPfWUvvCFL+g///M/9fjjj6fvWQEAACAnTSvcfu1rX9PNN9+shoYGrVy5Uo888og6Ojp0\n5MgRSVIoFNL3vvc9fepTn9LWrVu1evVqPfzww/rtb3+rQ4cOSZKef/55HT9+XF/60pe0cuVK7dy5\nU3fffbe+/e1vKxqNpv8ZAgAAIGfMqOd2eHhYhmGotLRUknTkyBHFYjFdeeWVqWOWLl2quro6vfrq\nq5KkgwcPasWKFSovL08ds2PHDg0PD6u5uXkm5QAAACDHuS/1Cy3L0sMPP6zNmzdr2bJlkqS+vj55\nPB4VFRVNObaiokJ9fX2pYyoqKqY8XllZKUnq7e1VY2PjRdfgcjEfLhck7zP3Ozdwv7OD223INA25\nTGNG5zFN84z/nnvuhWkacrsNud3O/HuRru/nxbLr+8nrO7fYdZ8vOdzu2rVLzc3N+va3v33BYy3L\nkmFc+AV7Mcecye/3Tet4ZDfud27hfme2aDQsn8+rgoK8tJwvP99z3scj416VlhaqrKwwLdfLNOn+\nfl6I3d9PXt+YTZcUbh988EE999xzevLJJ1VTU5P6fGVlpSYmJhQKhaaM3gYCgdRobWVlpQ4fPjzl\nfMlR3eQI7sUKBkcVi7HKgtO5XKb8fh/3O0dwv7PD4OCIRkcj8uaNz+g8pmkqP9+jsbGJ866aMzoa\n0eDgiNzughldL1Ol6/t5sez6fvL6zi3J+z3Xph1uH3zwQT3zzDP61re+pbq6uimPrVmzRi6XS3v3\n7tX1118vSWppaVFHR4c2btwoSdqwYYN2796tQCCQ6rvds2ePiouL1dDQMK1aYrG4olFeHLmC+51b\nuN+ZLRq1FI9bisWtGZ4pcY/j8fh5zxWPW4pGLcf+nUjf9/Pi2P395PWN2TStcLtr1y49/fTT+upX\nvyqfz5cacS0uLlZeXp6Kiop066236pFHHpHf71dhYaE+//nPa9OmTVq3bp2kxOSxhoYGfeITn9DH\nP/5x9fb26vHHH9dtt90mj+f8b0sBAAAA5zOtcPud73xHhmHoAx/4wJTPP/LII7r55pslSZ/+9Kfl\ncrl01113KRKJaOfOnXrggQdSx5qmqd27d2vXrl368z//c/l8Pt1yyy2666670vB0AAAAkMumFW6b\nmpoueIzX69X999+v+++//5zHzJs3T7t3757OpQEAAIALYi0OAAAAOAbhFgAAAI5BuAUAAIBjEG4B\nAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADg\nGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRb\nAAAAOAbhFgAAAI5BuAUAAIBjuO0uAACAmbAsS68c7VVH/4h8Xrfy81zyed0qLcrT0jq/TNOwu0QA\nc4hwCwDIWqHRCf3L02/oQHPfWR9fVl+iv7pplWrLC+a4MgB2oS0BAJCVmk8NadfX96WCrdv19hHa\n5vYhPfAv+/Szfa2Kx625LhGADRi5BQBklbhl6acvt+r7zx5X3EoE1t/bUKc/e+dyuV2mxiIxjY5H\n9eJrXfrvF1o0EY3rqV8265WjvYziAjmAkVsAQFb57xda9B+/Pqa4ZSnf69JH/ugyffDdjfJ6XDJN\nQwX5blWU5Os92xfrgb/cokU1xZISo7gPfXO/TvWEbH4GAGYT4RYAkDW6AmE9vfekJGlBdZF23b5F\nW1fVnPP4+dVFuveDm3XL1UtlGoZGxqL68lMH1BUIz1XJAOYY4RYAkBUsy9KT//OmYnFLbpehj968\nRtVlF24xcLtMvWf7Yn3oplWSpOBIRF/+zqvqHxqb7ZIB2IBwCwDICkdOBPVaS0CS9O4rFqpmmr2z\nV66p1QduWCFJCgTH9aXvvKqh0Hja6wRgL8ItACDjRWOWfvhyhySpwp+nm65cfEnnuWbTfL339xok\nST0Do/ryUwc0MjaRrjIBZADCLQAg473ZHtZgKBFC/+ydK5TncV3yuX5/2yL9wfbFkqT23hHt/sFr\nLBMGOAjhFgCQ0YIjETV3JiaArVlark0rKmd8zlt2LtE7NtRJko60BPQfvz4243MCyAyEWwBARvtN\nU4/iluQyDd123QoZxsy30zUMQ7ddv0Ir5pdIkn66r1UvHumc8XkB2I9wCwDIWIOhcbX3jkiSrl5b\nOe1JZOfjdpn66C1rVeHPkyR94ydH1dIZTNv5AdiDcAsAyFjH2hNh05C047KZtyP8Ln+hV//XH6+T\n120qGovrie8d0iArKABZjXALAMhI8bil4x1DkqSaMq+KCzyzcp1FtcX6q8k1cAdDEf3v7x/WRDQ2\nK9cCMPsItwCAjNTRN6LR8UTIXFiVP6vX2rqqRjdduUiSdKwjqH/96VFZFisoANmIcAsAyEjN7YlR\n23yvS7Wl3lm/3i1XL9WGZYnWhxePdOln+9pm/ZoA0o9wCwDIOGORqE71hCRJS+b5ZZozXyHhQkzD\n0Iffs1r1VYWSpO/+qlmHjvXN+nUBpBfhFgCQcVo6hpXcV2HZ5HJdc8GX59Zdf7JORT6PLEm7//s1\ndfSNzNn1Acwc4RYAkHGSLQkV/jyVFefN6bWrSn362C1r5DINjY7H9A//cUhDI5E5rQHApXPbXQAA\nAGcKBMc0MJxYjquhPjFqG4/HFQj0z1kNFQXS+65brn/7+ZvqGRzVY08d0Cfft1EF+bOzYgOA9CHc\nAgAySnLU1jQMLZnnlySNhIb03IFuVVfPzQhqKDSkG7Y16sZti/Tjl06qrSek//s/Dume/2OD8jyu\nOakBwKUh3AIAMkYsbqmlY1iStKCmSHne00GyoNAvf2n5nNbzJ+9YqvB4VL9+tV3Np4b0v79/WHfd\nuk5uF119QKbi1QkAyBjtvSGNTyTWtl1WP3cTyc7FMAy9/4YVumJ1jSTpSEtA//TD1xWPswYukKkI\ntwCAjNHem1iZIM/j0rzKApurSTANQx+6aZXWNVRIkvY39eir/3VEkQl2MQMyEeEWAJARLMtKLbtV\nV1kg05j9tW0vlttl6qM3r1HjwlJJ0itv9upL33lVwTCrKACZhnALAMgIQyMRjYxFJUl1lYU2V/N2\nXo9Lf/Pe9dq8skqSdKw9qIf/7RV1D4RtrgzAmQi3AICMcOZmCZkYbqVEwP0/b16jG7YskCT1DIzq\noW++ordODdpcGYAkwi0AICMkw225P0++vMxdzMc0DP3ZO5frz69bLkNSaHRCX3zyVf33Cy2KxeN2\nlwfkPMItAMB20Vhc3YFRSZk7avu7rr98gT72x2uV53Upbln6rxda9IUnf6se2hQAWxFuAQC26wqE\nFZtcXqs+S8KtJG1aUaXP/tXW1LJlx9qDeuDrv9HzBztkWSwXBtiBcAsAsF1yCTCPy1RVqc/maqan\nutSnT962UbfsXCKXaWg8EtPXf9Kkx546wCguYAPCLQDAdslwW1tRINPMnCXALpbLNPWeq5bo0x/Y\nrJryxPq8r50Y0P3/vE9P7z2haIxeXGCuEG4BALYKjkQ0NJJYLzabWhLOZsk8vz57+xb9wfZFcpmG\nJqJxfe/Z43rwG79RS2fQ7vKAnEC4BQDYqrV7OPVxtkwmOx+vx6U/vrpBu27fkurFPdU7oof/7RX9\n6MUTbN0LzDLCLQDAVq1diRHNkkKvigo8NleTPvVVRfpf79+kD7xrpfI8LsXilr7/3HF98du/Vd/g\nqN3lAY5FuAUA2CYWt3SqJyTJGaO2v8s0DF2zsV6f/astaqjzS5LeOjWkz/zLPr30WpfN1QHORLgF\nANimd2BUE9HEZCsnhtuk6rIC/a/3b9If7Vgi0zA0Fonpn374un6+r9Xu0gDHIdwCAGzTPrkrmcs0\nVFOeXUuATZfLNPVHO5boU+/fpLLiPEnSd37ZrB/uaWFNXCCNCLcAANskt9ytKS+Q25Ub/yQ11Jfo\nU7dtUlVpviTpP59v0U/3dxFwgTTJjZ8kAICME43F1R8ckyTVOnzU9ndVlvr0v27brHkViTVxf3Ww\nV4dPjhBwgTQg3AIAbNE3OKZklqspK7C3GBuUFefpk+/bpAXVRZKk412jOnw8YHNVQPYj3AIAbNE7\nuRyWaUiVk2/R5xp/oVefeN9G1VckRq4PNvepZ4BlwoCZINwCAGzRMxluK0t9OdNvezaF+R594LpF\ncrsMWZb0/MEORSZidpcFZK3c/WkCALCNZVnqnRyhnFfh3CXALlZ5sVcbliTaE0bGonrptW76b4FL\nRLgFAMy5oVBEkcn1bWsdvL7tdMyvzE9t9HCia1jH2oM2VwRkJ8ItAGDO9Zyx/Swjt6dtXV2j4skt\niPe90a3gSMTmioDsQ7gFAMy5ZEtCkc+jQp/H5moyh8dt6ur1dTINKRqztOdwJ+0JwDQRbgEAcy45\ncltdllvr216MipJ8rV9WKUnqHRxTe++IzRUB2YVwCwCYU6PjUQ2HJyQRbs9l9eIy+fLckqQDzX2M\n3gLTQLgFAMyp3jP6bWsIt2flcpla21AuSQoEx9XaHbK5IiB7EG4BAHMquUmBx2WqtDjP5moy1/L5\nJSrMT4zeHmzuU5zRW+CiTDvc7t+/Xx/5yEe0c+dONTY26plnnpny+Kc+9Sk1NjZO+fPhD394yjFD\nQ0O65557tHnzZm3ZskX33nuvwuHwzJ4JACAr9KY2b8iXaRg2V5O5XKapdcsqJEmDoYhOdg7bXBGQ\nHaYdbsPhsFatWqUHHnhAxjl+KF199dV68cUXtWfPHu3Zs0ePPfbYlMfvueceHT9+XN/4xje0e/du\n7d+/X5/5zGcu7RkAALJGLBZX/9C4JKmqlJaEC2moK0ktDXawuU/xOKO3wIW4p/sFV199ta6++mpJ\nOmeDu9frVXl5+VkfO3bsmF544QV9//vf1+rVqyVJ9913n/76r/9an/zkJ1VVVTXdkgAAWaI/OJZ6\ne53JZBdmmobWNVRoz+EuBcMTaukMqqG+xO6ygIw2Kz23+/bt0/bt2/Xud79bu3bt0uDgYOqxAwcO\nqKSkJBVsJWn79u0yDEMHDx6cjXIAABmiZ3BMkmQo0ZaAC1tS51dJoVeSdLC5n9Fb4AKmPXJ7ITt3\n7tQNN9yg+fPnq7W1VY899pjuuOMOPfXUUzIMQ319fW8b1XW5XCopKVFfX9+0ruVyMR8uFyTvM/c7\nN3C/s4Pbbcg0DbnM6fXM9k3225YV58nndcs0E/c58d/4Ob/OMBLXmu71LpVpGnK7Dbndc/P38Hzf\nT5cMbVheqWcPdCg0OqFTvSEtmeef0fXm+vkl8frOLXbd57SH2xtvvDH18fLly7VixQpdf/31evnl\nl7Vt27Zzfp1lWefs4T0Xv5+3tHIJ9zu3cL8zWzQals/nVUHBxa92YFmWeidHbuuqi6Z8bX7++Xcp\n8/m8crk907reTETGvSotLVRZ2dxsDXyh7+fqhkq9crRXodEJHe8Y1mUNM2vhm+vn97t4fWM2pT3c\n/q4FCxaorKxMra2t2rZtmyorKxUIBKYcE4vFFAwGVVFRMa1zB4OjisXO/Zs+nMHlMuX3+7jfOYL7\nnR0GB0c0OhqRN2/8or8mOBLR6HhUklRe5FU4PC7TNJWf79HY2ITi8XPf79HRiFxuKRy++OvNxOho\nRIODI3K7C+bkehfz/Wyo9+tgc79au4fV0x9S0Qy2LZ7r55fE6zu3JO/3XJv1cNvV1aXBwcHURLEN\nGzYoGAzq9ddfT/Xd7t27V5Zlaf369dM6dywWVzTKiyNXcL9zC/c7s0WjluJxS7Fp9H/2nLF5Q7k/\nf/JrE/c4Ho+f91yWlbjWdK43E/G4pWjUmrO/gxfz/Vxalwi3kvTWqSGta5jegNCZ5vr5/S5e35hN\nl7QUWFNTk9544w1JUltbm5qamtTZ2alwOKxHH31UBw8eVHt7u/bu3auPfvSjWrx4sXbs2CFJamho\n0I4dO3Tffffp0KFDeuWVV/S5z31ON910EyslAICD9Q8lWhI8bjO1vBUuXnGBV7XliZHWY+1DbMkL\nnMO0R26PHDmiD37wgzIMQ4Zh6Itf/KIk6eabb9auXbt09OhR/eAHP1AwGFR1dbV27Nihu+++Wx7P\n6R9kX/nKV/Tggw/q9ttvl2maete73qV77703fc8KAJBx+oOJcFvhz5/2HAskLJvvV1cgrOHwhHoG\nRlVTPrdtBUA2mHa43bp1q5qams75+D//8z9f8Bx+v19f/vKXp3tpAECWsixLgWCin7SihCXALtXC\nmmJ53D2aiMbVfGqIcAucBWtxAABm3XB4QhOTPZYV/rlZ8cCJ3C5Ti2uLJUknu4dT31MApxFuAQCz\nrm+y31Zi5Hamls1P7FAWjVk60RW0uRog8xBuAQCzLjDZb+v1mDNawgpSZUm+SooSO5Y1nxqyuRog\n8xBuAQCzLrlSApPJZs4wDC2rT4ze9g6OaSg0N2v/AtmCcAsAmFWWZaVWSij305KQDkvr/Er+jtDc\nTmsCcCbCLQBgVgVHIorGEmuyVtJvmxa+PLfqKxNb57b1hGyuBsgshFsAwKzqD55+27yclRLSZn51\nkaTELw/BkYjN1QCZg3ALAJhVyX5bJpOl1/yqotTHjN4CpxFuAQCzip3JZkdBvju1rNopwi2QQrgF\nAMyauGWllgFjfdv0WzDZmtAzOKqxSMzmaoDMQLgFAMyaMyeTVbBSQtrNr0pMKrMsqaOP0VtAItwC\nAGZRPzuTzaqy4jwV5rslSW09IzZXA2QGwi0AYNYEJldKyPO4UiEM6WMYRmrVhI7eEcXils0VAfYj\n3AIAZk1fcmeykjwmk82SZN/tRCyu7kDY5moA+xFuAQCzIm5ZGhg+vVICZkdNuU9uV+IXB1ZNAAi3\nAIBZEgydMZmMfttZ4zJN1U3uVnaqd0SWRWsCchsNUACAWZFc31bKvpHbeDyuQKB/zq4XCPTLmkG/\n7ILqIrV2hxQandBgKKKyYnaCQ+4i3AIAZkVyMlm+16WCLJtMNhIa0nMHulVdPTfb2nZ1tKqopEIl\nqrikr6+vKpQhyVKiNYFwi1yWXT9tAABZI7l5Q1lxdk4mKyj0y19aPifXGg4OzOjr871uVZX51DMw\nqraekNY2XFpIBpyAnlsAQNpZlqXAcGLktjzLWhKyVXJDh76hMXYrQ04j3AIA0m5kNKqJaFySVM5b\n5HNi3uSkMkksCYacRrgFAKRdYPj0ZLIyP+F2LpQX58nrSfyz3kW4RQ4j3AIA0i45mcxlGvIXem2u\nJjcYhqGasgJJjNwitxFuAQBpNzDZb1tWnCczCyeTZava8kS4HQxFNDoetbkawB6EWwBA2p25UgLm\nTm2FL/Vx98CojZUA9iHcAgDSanwippGxxKhhOf22c6q0KE95Hpckqauf1gTkJsItACCtBib7bSWp\nvJhlwOaSYRiqKU+M3tJ3i1xFuAUApNWZKyWU0pYw55J9t0MjEYXH6LtF7iHcAgDSKjly6y/wyOPm\nn5m5lgy3ktQ9wOgtcg8/dQAAaZXcmayMnclsUVLkVb6XvlvkLsItACBtYnFLQ6HJbXdpSbBFou82\nMXrLZg7IRYRbAEDaDIXGFbcSH7NSgn2SrQnD4QmFxyZsrgaYW4RbAEDaBM5YKaGMlRJsU1t+er1b\nRm+Rawi3AIC0Se5Mlu91yZfnsrma3OUv9Ka+/10BNnNAbiHcAgDS5sydyQy23bXNlL5bJpUhxxBu\nAQBpYVlWaqWEclZKsF2y7zY0OqHQKH23yB2EWwBAWoyMRjURjUtipYRMMGW9W/pukUMItwCAtDhz\nZ7IyVkqwXXGBJ9V32ztI3y1yB+EWAJAWyZUSXKYhf6HX5mpgGIaqShOrJvQOjl3gaMA5CLcAgLRI\nrpRQVpwnk8lkGaFyMtwODo+nWkYApyPcAgDS4syVEpAZqkoTE/ssSX1DtCYgNxBuAQAzFpmIaWQs\nKol+20xS4c9XchCd1gTkCsItAGDGki0JEislZBK3y0wty8akMuQKwi0AYMYCw2y7m6mSrQm9g6Oy\nLMvmaoDZR7gFAMxYcuS2yOeRx80/LZkkuWJCZCKu4AibOcD5+AkEAJixgWByZzJaEjJNMtxKtCYg\nNxBuAQAzEo9bGgydXgYMmaUw3y1fnlsS4Ra5gXALAJiRYDiiWDzRy0m4zTyJzRyYVIbcQbgFAMzI\nwJTJZITbTJRsTRgMRRSJxmyuBphdhFsAwIwk+209blNFPo/N1eBszuy77WO9Wzgc4RYAMCNnbrtr\nsO1uRqrw58mcvDV9tCbA4Qi3AIAZCQwzmSzTuaZs5sDILZyNcAsAuGRjkahGxye33SXcZrRka0Lv\nEJs5wNkItwCAS8a2u9kjuWJCZCKu0BiTyuBchFsAwCVLTiYzJJUSbjPamZPKAsNRGysBZhfhFgBw\nyZL9tsWFXrld/JOSyQp9HhVMbuYQCLENL5yLn0QAgEs2wGSyrJJsTRgg3MLBCLcAgEsSj1samtx2\nl37b7FDsWtwIAAAgAElEQVQx2ZoQDMcUicZtrgaYHYRbAMAlGR6NaXLXXUZus0Tl5HJgktTRx3q3\ncCbCLQDgkgyFT09KKvMTbrNBecnp+9TWF7axEmD2EG4BAJckOBluvR4zNVEJmc3rdqmk0CtJOtXL\nyC2ciXALALgkyZHb8uJ8tt3NIhUlidYERm7hVIRbAMC0WZaloRF2JstGFZN9t31DEYXHWO8WzkO4\nBQBM2/BoVJFoYjYZ4Ta7JEduJelkV9DGSoDZQbgFAExbZ/9Y6mMmk2WXcn+ekk0kJ7qGba0FmA2E\nWwDAtHUEEpORDEMqLfLaXA2mw+0yVVzgkiS1dDJyC+ch3AIApq2jPxFuS4vy5DL5pyTblBV6JEkt\nnYzcwnn4iQQAmLaOybYE+m2zU2lRYum2/uCYguGIzdUA6UW4BQBMy3gkpr6hyW136bfNSmWFp9cl\nPsHoLRyGcAsAmJZTvSFN7rqr8uL88x6LzOQvcMtlJqaVnWDFBDgM4RYAMC2tPaHUx6yUkJ1M01Bd\nReIXE0Zu4TSEWwDAtLR1J8KQz2sqz+OyuRpcqvmVBZISKyZYlnWBo4HsQbgFAExLcuS25Iy+TWSf\nBVU+SdLQSESDISaVwTkItwCAixaPWzqVDLcFhNtslhy5lVjvFs4y7XC7f/9+feQjH9HOnTvV2Nio\nZ5555m3HPP7449qxY4fWr1+v22+/XSdPnpzy+NDQkO655x5t3rxZW7Zs0b333qtwOHzpzwIAMCe6\nB8KKROOSGLnNdtWlefJ6EjGASWVwkmmH23A4rFWrVumBBx6QYRhve/yf/umf9OSTT+rBBx/Ud7/7\nXfl8Pn3oQx9SJHL6LY977rlHx48f1ze+8Q3t3r1b+/fv12c+85mZPRMAwKw72X168hEjt9nNNA0t\nqimWxGYOcJZph9urr75ad999t6677rqzNqB/85vf1Ec/+lFde+21WrFihR599FH19PToF7/4hSTp\n2LFjeuGFF/TQQw9p7dq12rRpk+677z79+Mc/Vm9v78yfEQBg1rR1J1oS8r2mCvLobMt2S+b5JUkn\nmFQGB0nrT6a2tjb19fVp27Ztqc8VFRVp/fr1OnDggCTpwIEDKikp0erVq1PHbN++XYZh6ODBg+ks\nBwCQZsnJZHXlvrO+e4fssrg2MXI7MhZV7+CozdUA6ZHW95T6+vpkGIYqKyunfL6iokJ9fX2pY8rL\ny6c87nK5VFJSkjrmYrlcjBrkguR95n7nBu535rIsS62TbQn1VT6ZppHaCOBSmaZ5xn/j5zzOMBLX\nmun1LpbTr2eahtxuQw3zS1KfO9U7orqqolm9Lq/v3GLXfZ6ThinLsi74G/7FHPO7/H7fTMpCluF+\n5xbud+YJBMc0HJ6QJC1fUKrx8TEVFKRnE4f8fM95H/f5vHK5PWm73oU4/XqRca9KSwtVUVEpX55b\no+NRdQ6MqqyscE6uz+sbsymt4bayslKWZamvr2/K6G0gENCqVatSxwQCgSlfF4vFFAwGVVFRMa3r\nBYOjisXO/Zs+nMHlMuX3+7jfOYL7nbkONZ9+d62swFTLYETevPEZndM0TeXnezQ2NqF4/Nz3e3Q0\nIpdbCodndr2LlQvXGxwckdtdoIU1RTraOqijJwIaGBiZ1evy+s4tyfs919IabhcsWKDKykq99NJL\namxslCSFQiEdPHhQ73vf+yRJGzZsUDAY1Ouvv57qu927d68sy9L69eundb1YLK5olBdHruB+5xbu\nd+Y5MbkWqss0VFHs1bG4pVh8ppOQEvc4Ho+f91yWlbjWzK93cZx+vXjcUjRqKRqNa1FNsY62Dqql\nM6iJidic9FLz+sZsmna4DYfDam1tTc2qbGtrU1NTk0pKSjRv3jz9xV/8hb761a9q4cKFqq+v1+OP\nP67a2lq9853vlCQ1NDRox44duu+++7Rr1y5NTEzoc5/7nG666SZVVVWl99kBANKmdXKlhLrKQrnp\nmXSMRWdMKusfGlNlKS0DyG7TDrdHjhzRBz/4QRmGIcMw9MUvflGSdPPNN+uRRx7Rhz/8YY2Njekz\nn/mMhoeHdfnll+trX/uavF5v6hxf+cpX9OCDD+r222+XaZp617vepXvvvTd9zwoAkHbJlRIWVs/u\npCPMreRat1JiHWPCLbLdtMPt1q1b1dTUdN5j7rzzTt15553nfNzv9+vLX/7ydC8NALDJWCSqnkBi\nJ8kFZ4QhZL/a8gLleVwan4jpRNewNq+strskYEZ4XwkAcEGnekeU7AZl5NZZTNPQwprEPT1zBzog\nWxFuAQAX1HpG6FlQQ7h1mmRrwsmuYXYqQ9Yj3AIALig5mazCn6/CC6xJi+yTnFQ2HJ7QwPDcLEcG\nzBbCLQDggpJvVy9k1NaRkuFWSozeAtmMcAsAOK9oLK723sTI7eJaJpM50byKAnndiUhwgnCLLEe4\nBQCcV3vviKKxRB/molq/zdVgNrhMM9VLzaQyZDvCLQDgvFq6gqmPGbl1rjMnlQHZjHALADivZNgp\nK86Tv9B7gaORrZJ9t0MjESaVIasRbgEA55XswWTU1tkWn9FyQmsCshnhFgBwTkwmyx3zKgrkdiVi\nAa0JyGaEWwDAOTGZLHe4XaYWTO4+R7hFNiPcAgDOiclkuSXZd0tbArIZ4RYAcE5MJsstyV9gBobH\nNTQSsbka4NIQbgEA58RkstySXA5MojUB2YtwCwA4KyaT5Z76qkK5XYYk6eQZLSlANiHcAgDOislk\nucftMlVflZhUxja8yFaEWwDAWZ1gMllOSt7rViaVIUsRbgEAZ3WCyWQ5Kdl32x8c13CYSWXIPoRb\nAMBZMZksNy2qZVIZshvhFgDwNkwmy13zq4rkMicnldGagCxEuAUAvA2TyXKXx22qvrJQEpPKkJ0I\ntwCAt2EyWW5L7VRGuEUWItwCAN6GyWS5LfkLTd/QmEKjEzZXA0wP4RYA8DZMJsttC8+cVEbfLbIM\n4RYAMAWTybCgqkimkdypjHCL7EK4BQBM0dodSk0mWzyPyWS5yOtxqY5JZchShFsAwBTHOoZSHy+t\nI9zmqkW1iW14Wwm3yDKEWwDAFMfaE+F2XkWBCvM9NlcDuyyeXAKuZ3BU4TEmlSF7EG4BAFMc70gs\nA9ZQV2JzJbATO5UhWxFuAQApQ6Fx9Q2NSZKW1tOSkMsWVBdpck6ZTnaH7C0GmAbCLQAg5VjH6c0b\nljFym9PyPC7VVSQnlQUvcDSQOQi3AICUZL9tvvf0bHnkLnYqQzYi3AIAUpIjt0vm+WWahs3VwG7J\ncNs9MKrR8ajN1QAXh3ALAJCU2LzhROfkZDL6bSFpUc3pSWWt7FSGLEG4BQBIktp7RxSJxiWxUgIS\nFtYUKTl+z2YOyBaEWwCAJDZvwNvle92qrSiQRN8tsgfhFgAg6fRkspoyn4oLvDZXg0yR7Ltl5BbZ\ngnALAJB0ejLZUloScIbFk3233YEwk8qQFQi3AAAFwxH1DIxKkpYxmQxnWDwv8ffBEq0JyA6EWwBA\nastdiZFbTLWopji1UxmtCcgGhFsAQKrf1usxNb+azRtwWt4ZG3q0dLJTGTIf4RYAkBq5XVLrl8vk\nnwZMtaQ20ZpAuEU24CcYAOS4eNzS8dTmDbQk4O2WzEtMKusbGtNwOGJzNcD5EW4BIMe1941oPBKT\nJDWwvi3OIjmpTGJSGTIf4RYAclyy31aSljJyi7OYX1Ukl5mYVUZrAjId4RYActzRtkFJUnWpTyWF\nbN6At/O4TS2oLpIktXQycovMRrgFgBxmWZaaTg5IkhoXldpcDTLZksnWhBNdjNwisxFuASCHdQXC\nGhpJTBBaubDM5mqQyRZPbsM7GIpoYHjc5mqAcyPcAkAOa2odTH3cSLjFeSw5Y1LZCfpukcEItwCQ\nw462JloSasp8KivOs7kaZLJ5lQXyehKxoYXWBGQwwi0A5CjLslIjt42LGLXF+blMU4tqEq0JJ5hU\nhgxGuAWAHNXZH1Yw1W/LZDJc2OIzdiqzLMvmaoCzI9wCQI5KtiRI9Nvi4iR3KhsZi6p3aMzmaoCz\nI9wCQI56Y7Iloba8QKVF9NviwphUhmxAuAWAHGRZVmrktpGWBFyk6jKffHluSfTdInMRbgEgB3X0\njWg4PCGJyWS4eIZhpNa7ZRteZCrCLQDkoDPXt125gJFbXLzUTmXdw4rHmVSGzEO4BYAc1DTZkjCv\nokAl9NtiGpKTysYjMXUFwjZXA7wd4RYAckzcsnQ0ub4tqyRgms6cVEZrAjIR4RYAckxH74hCo4l+\nW9a3xXSVFeeppMgrSTrWPmRzNcDbEW4BIMc0nbG+7UpGbjFNhmFoWV2JJKm5nZFbZB7CLQDkmORk\nsrrKQpUUem2uBtmooT4Rbtv7Qhodj9pcDTAV4RYAckg0FtcbJxMjt7Qk4FI11Cf6bi2LvltkHsIt\nAOSQY+1DqZG2dUsrbK4G2WpRTbFcpiFJOtZBuEVmIdwCQA452NwvSfK6Ta1i8wZcIq/HpYU1RZKY\nVIbMQ7gFgBxy8FifJGnVojJ5PS6bq0E2a5icVHa8IyjLYjMHZA7CLQDkiJ6BsDr7E4vur1tWaXM1\nyHbJSWWh0Ql1D4zaXA1wGuEWAHLEwWP9qY/XN9Bvi5lJTiqTaE1AZiHcAkCOODQZbhdUF6ncn29z\nNch2Ff58NnNARiLcAkAOGB2P6ujk5g3rGLVFGhiGkeq7ZcUEZBLCLQDkgNdPDCgaS0z6WU+/LdIk\n2ZpwqpfNHJA5CLcAkAMOTa6SUOTzaOk8/wWOBi5OcuTWsqQTbOaADEG4BQCHi1tWqt927dIKmZOL\n7wMztbj29GYOzbQmIEMQbgHA4Vq7hzU0EpEkrV9Gvy3Sh80ckInSHm7/8R//UY2NjVP+3HjjjanH\nI5GIPvvZz+qKK67Qxo0bddddd6m/v/88ZwQAzERyVzLTMLRmSbnN1cBplrKZAzLMrIzcLl++XC++\n+KL27NmjPXv26Nvf/nbqsYceekjPPvusnnjiCT355JPq6enRnXfeORtlAAAkHWxO9NuuWFCignyP\nzdXAaZKTykKjE+phMwdkAPesnNTtVnn520cHQqGQvve97+nv//7vtXXrVknSww8/rBtvvFGHDh3S\nunXrZqMcAMhZQ6FxnegaliSta2CVBKTfssmRW0lqbh9STXmBjdUAszRye+LECe3cuVPXXXedPv7x\nj6uzs1OSdOTIEcViMV155ZWpY5cuXaq6ujq9+uqrs1EKAOS03zT1pD6m3xazoaIkXyWFk5s5MKkM\nGSDtI7fr16/XF77wBS1ZskS9vb164okndNttt+lHP/qR+vr65PF4VFRUNOVrKioq1NfXN+1ruVzM\nh8sFyfvM/c4N3O/0evmNbkmJWe0LaorTdl6325BpGqmZ8pfKNM0z/hs/53GGkbjWTK93sZx+PdM0\n5HYbcrvT8zpbNr9ErxztVfOpwfOek9d3brHrPqc93O7cuTP18YoVK7Ru3Tpdc801+slPfqK8vLyz\nfo1lWTKM6b+g/X7fJdeJ7MP9zi3c75nr6AvpWHtiJO2dWxeqrKwwbeeORsPy+bwqKDj7z/Xpyr9A\nL7DP55XL7Unb9S7E6deLjHtVWlqYtr8Tmxpr9MrRXp3qHZHpcauk6PzPg9c3ZtOs9Nyeqbi4WIsX\nL1Zra6uuvPJKTUxMKBQKTRm9DQQCqqiY/ttlweCoYrFz/6YPZ3C5TPn9Pu53juB+p89P97RIkgxJ\n65aUa2BgJG3nHhwc0ehoRN688RmdxzRN5ed7NDY2oXj83Pd7dDQil1sKh2d2vYuVC9cbHByR252e\n/tiFVadD8suHO7Slsfqsx/H6zi3J+z3XZj3cjoyMqK2tTdXV1VqzZo1cLpf27t2r66+/XpLU0tKi\njo4Obdy4cdrnjsXiikZ5ceQK7ndu4X7PjGVZevFwYr5D46IyFfs8af1+RqOW4nFLsfhMl35K1BSP\nx897LstKXGvm17s4Tr9ePG4pGrXS9ndiXkWBCvPdGhmL6o2WgDZeYItnXt+YTWkPt1/84hd17bXX\nqq6uTt3d3XriiSfkcrl04403qqioSLfeeqseeeQR+f1+FRYW6vOf/7w2bdrESgkAkEYnuobVPbks\n07bLamyuBk5nGoaWzy/VgeY+NbUO2l0Oclzaw213d7fuueceDQ4Oqry8XJs3b9ZTTz2lsrIySdKn\nP/1puVwu3XXXXYpEItq5c6ceeOCBdJcBADlt72tdkiSP29TmFWd/ixhIp5ULE+G2vTek0OiEinys\nqQx7pD3cPvbYY+d93Ov16v7779f999+f7ksDACTF4nHteyOxBNj6ZZUqyJ/1DjRAjQsTg1iWpLfa\nBrVxRZW9BSFnsRYHADjMGycHFByJSJKuXE1LAubGguoi+fISv0jRmgA7EW4BwGH2HkmsbVuY79ba\nBjZuwNwwTUMr5id2KzvaNmBzNchlhFsAcJDxiZh++1avJOnyxmq5WSwfc2jlZGtCW3dI4bEJm6tB\nruKnHgA4yIG3+jQeiUmSrrys1uZqkGtWLiyVlOi7fbNtyN5ikLMItwDgIM8d7JAkVfjztGzyLWJg\nriysKVK+1yWJ1gTYh3ALAA5xqiekN04mAsXVG+plXsK25sBMuExTy+cnRm+PMqkMNiHcAoBD/M/+\nNkmJtW3fsaHO5mqQq5KtCSe7hxUei9pcDXIR4RYAHCAYjmjva4lVEq68rEb+Aq/NFSFXpfpuLam5\nndFbzD3CLQA4wLOvtisai0uSrrt8gc3VIJctqilWnmey75bWBNiAcAsAWS4ai+uXv22XJK1eXKb5\nVUU2V4Rc5naZWj45mZHNHGAHwi0AZLnfvNGjockdya5n1BYZINV32zWs0XH6bjG3CLcAkMUsy9LP\nf5OYSFZT5mNHMmSExkWJzRzilpVawQOYK4RbAMhib50a0snuYUmJXluW/0ImWFLrV5HPI0k6fLzf\n5mqQawi3AJDFfjG5/Jcvz62r1rIjGTKDaRq6bEm5pES4tSzL5oqQSwi3AJClTvWE9MrRXknSO9bX\nKd/rtrki4LS1SxPhNhAcV0ffiM3VIJcQbgEgS/3Hs8dkSfK6TV2/hYlkyCxrllQo2SRz+HjA1lqQ\nWwi3AJCFmk4O6NCxRC/j9VsWqKw4z+aKgKn8hV4tnlcsib5bzC3CLQBkGcuy9N1fN0uSinwe/f4V\ni2yuCDi7tUsTq3e82TbIkmCYM4RbAMgyv2nqUUtnYoWE92xfrIJ8em2RmZLhNhZnSTDMHcItAGSR\naCyu7z97XJJUWZKv39tYb3NFwLktmceSYJh7/LoPZLBYLKZodO7eynO5XHK7+bGQDvF4XIFA+ifR\n7HmtTz2Do5Kk6zdVaWjw9DXKy8tlmoxZIHMklwR7+fVulgTDnOFfMSCD7XvlgLoGY3N2PVd8RH/4\n7mvm7HpOFggE9POXmlRUVJK2c05E4/qfA4kwW1roVjg8qhePjEmSQqEh3bCtUZWVlWm7HpAOa5cm\nwm0gOK72vhGVlxfZXRIcjnALZDLTpbLquVuYf2zg1JxdKxcUFZXIX1qetvO9/Hq3ItHEyNeW1bUq\nKStM27mB2bJmyektoQ8192vtihobq0Eu4P0rAMgCHX0jOto6KElaWFOkeRUEW2QHf6FXi2sTS4Id\nOtZnczXIBYRbAMhwkYmYXjzSJUnK87h0xWpGvpBdkqsmHG0dVHhswuZq4HSEWwDIcL9p6lF4LDGx\ncNtlNfLl0VGG7LKu4fSSYAffYvQWs4twCwAZ7FRPSMfag5KkJfOKtWjy7V0gm5y5JNhLRzptrgZO\nR7gFgAw1Folp72uJdgRfnktbV9GOgOxkmoY2rUis5PHykU5NROM2VwQnI9wCQAayLEt7j3RpdDyx\nFNyVa2qV53XZXBVw6bZM/nI2MhZlQwfMKsItAGSgA2/1qa0nJElaNr9E86tYGxTZrXFhqYoLEq0J\nL7/WbXM1cDLCLQBkmGPtQzp8PLFZQ2VJvrauqra5ImDmXKaZGr199a1eRSbmboMa5BbCLQBkkO6B\nsPYeSYxqFeS7dc2merld/KiGM2ybXMZuLBLToWO0JmB28BMTADLEcDiiX/+2Q3HLkttl6NpN9Sz7\nBUdZsaBU5f48SdK+ph6bq4FTEW4BIAOMRaL65W/bNT75Vu3O9XUq9+fbXBWQXqZp6Kr19ZKkQ819\nGotEba4ITkS4BQCbjY5H9fN9bRoKRSRJm1ZWaUE1E8jgTDsnw20kGtfBZloTkH6EWwCwUXgsqp/t\na9PgZLBdvbhMly0us7kqYPasXFR2ujXhDVZNQPoRbgHAJiOjE/rZvlYFRxLBdm1DhTavrJJhGDZX\nBswe0zR0xeTEssPHAxodpzUB6UW4BQAbDIcj+tm+Ng2HJyRJG5ZVaOPySoItckIy3EZjcb36Vq/N\n1cBpCLcAMMc6+kb09N6TCo0mgu2mFZVat6zS5qqAubNknl9VpYkJk/veYNUEpBfhFgDmiGVZeuPE\ngJ555ZQiE3EZkrauqtaapRV2lwbMKcMwtHVyQ4cjxwMKBMdsrghOwgKKADAHYvG4Xn6tR83tQ5Ik\nr9vU1RvqVFdZmJbzx+NxBQJzN/M8EOiXFbfm7Hpwnp3r6/TjvScVtyz9+kCH/vjqpXaXBIcg3ALA\nLAuORPT8oU71DyVGp0oKvbpmU738hd60XWMkNKTnDnSrujqStnOeT1dHq4pKKlQiRp1xaapLfVrb\nUKFDx/r13MEO/eFVi9mND2lBuAWAWWJZlt5sG9T+ph5FY4lRzvqqQu1cN09ejyvt1yso9MtfWp72\n857NcHBgTq4DZ7t2U70OHetXcCSi/Ud7tG11rd0lwQH4FQkAZsFweEIvHQ3qpde6FY1ZMg1p44pK\nXbOpflaCLZCN1iytUGVJYmLZr37bbnM1cArCLQCkkWVZevFIpx77/pvqHky0CJQUevX72xZp7dIK\nmSz1BaSYhqFrNiV2LHvr1JDaekI2VwQnINwCQJp09I3oS//+qv7fH72hkbGYJKlxYalu2r5IFZOj\nUwCm2rmuTh53Io788renbK4GTkC4BYAZGo/E9L1nj+mBf9mnptZBSVKl36vtq0q0dXUNk2SA8yjy\nebR1VbUkae9rXQqPTdhcEbIdE8oAh4rG4opMxDURjWsiFtNENC7TMOR2m/K4THncprweUy6T4HWp\norG4XjjUqR+80KKhyS103S5Tf3DlIm1ZVqjfNHXbXCGQHa7dNF97DncpMhHXnsNdun7LArtLQhYj\n3AJZLm5ZCgyNqT84rqHQuAZDEQ2GxjUWiV3U1xfku1Vc4FFxgVc+I6L64/1aMs+vIp9nlivPXpZl\n6ZWjvfrec8fVHQinPr9mSbluu2GFasoK1NfXZ2OFQHZZMs+vJfP8aukM6pevtuudl8+nPx2XjHAL\nZKHwWFSd/SNq7x1RR/+IIhPxGZ0rPBZVd2BUknS47aAkqbIkX0vm+dVQX6LGhaWaX12U8//YxC1L\nr77Zp6f3ntCJruHU5+dXFem91zRozZJyGTn+PQIu1bWb6vXPTwfVHQjrUHO/NixnS2pcGsItkCVi\nsbhOdofU3D6krv7wWY/x5blVWuRVaVGe/IVe5XlMedwuedymPG5D8bg0EYsrGo1rIhbX2HhMw+GI\nhsMTif+OTsia3HSqb2hMfUNj+k1TYt/3Ip9HKxeUqnFRmdYsKVd1mS9nglw0FtfLr3frxy+dVOcZ\n3/sKf77++OqluuKympwP/sBMbV1Vre8/d1wDw+P6/nPHtG4Zq4vg0hBugQw3ODyuo22DaukMvm2E\ntjDfrfqqQtVVFqqmrEB53pmtnzrS36bVq1erpTM4+WdYHX0jkqTQ6IReebNXr7zZKykxsrt2aYXW\nLClX46Iy+fKc9+NkaCSiFw516Nevtqs/OJ76fLk/T+/eulDv2FCfmuUNYGY8bpfec9ViffOnR3Wq\nd0Qvv96tKy9jUwdMn/P+NQIcoqUzqJ8fHNbJ3sCUzxf5PFpW79eiWr/8hZ60jp66TCPV+5YUDEf0\nZuugmloH1NQ6mAq7fUNj+tWr7frVq+1ymYaWzy/R2qUVWru0QvVVhVk7qmtZlo62DurXB9r1ytFe\nxeJW6rF5FQX6/SsWadtlrIAAzIYda+fpZy+3qntgVP/1/HFtaazmtYZpI9wCGabp5IB+tPeEXj9x\nentT0zS0qKZIy+aXqLa8YE6Do7/Aq8sbq3V5Y2KpnoHhcR1p6deR4wG9fiKgkbGoYnFLTa2Damod\n1Hd/fUylRV5dtrhcly0p1+rF5fIXeues3kthWZbaekLa90aP9r3Rrb6hsSmPNy4s1Ts3z9fGFVW8\nTQrMIrfL1C1XL9X/84PX1Ds4pucOdujaTfPtLgtZhnALZIi2npC++6tmHWk5PVLrcUkrFpZr9eLM\nedu/rDhPO9fVaee6OsXjllo6gzp8vF+Hjwd0ojMoS9JgKKI9R7q050iXJGlBdZFWLizVivmlWrGg\nNCPCbjQW1/GOoI609Gt/U6+6AlP7mAvy3Nq+tlbXbKzXvIpCm6oEcs/ljdVa+NJJtXaH9MM9J3TV\nmnkzbrlCbsmMfy2BHBYIjum/nm/RnsOdSr4BXpjv1vVbFshvDki+KlvrOx/TNNRQX6KG+hLdvHOp\nguGIXmsJJP6cCGgolFj7ta0npLaekH6xP7H7UG15gRrq/Vpc69ei2mItqC5Snmd2//GKTMTU1hvS\n8Y6gXm8JqKltUOO/s1yayzR02ZJyXbGqRptWVs16TQDezjQM/ck7GvT3/99BDY1E9ItX2nTTlYvt\nLgtZhHAL2GR8IqafvHRSP325VZFoYqKY12PqXVsW6t1XLJQvz629+4c0foHzZBJ/gVdXXlarKy+r\nlWVZ6ugb0WsnBvTGiYDeOjWk8HhUktQVCKsrENaew4mRXcNIBN7a8gLNqyzU0vll8ue7VOybXH83\nz3VRrRiWZWl4dEL9kys99A2NqqNvRCe7htXRF1bcst72NW6XoZULy7S1sVqbVlapMJ/1fQG7rVlS\nriC2J3QAABcjSURBVJULSnW0bVA/ealVv7exntcmLhrhFphjlmXp1bf69O+/eEv9wURvp2FIO9fN\n0x/tWKqy4jybK0wPwzBUX1Wk+qoi3bBlgeKWpfbeEb3ZNqi3Tg3qROewegYTa+taltTZH1Znf1iv\nvtUn6eSUc7ldxmTIdctlGok/LkOGDI1FYhqLRFP/jcbeHmB/1/yqQq1eXK41S8q1fEEpI7RAhjEM\nQ3/yew16+N9eUXg8qv9+4YT+/LrldpeFLEG4BeZQVyCsb//Pm1P6alcvLtOfvXO55lcV2VjZ7DMN\nQwuqi7Sgukjv3JyYIDIyNqHWrmGd7A7pVG9I3QNh9QyMajg8dW/5aMzSwPC4BoanN45tGoYqS/K1\nsLZYi2uLtai2WItqitl9DcgCy+pLtHF5pV59q0+/2N+mTSsqtXJhmd1lIQsQboE5EJmI6Ud7T+qn\nL59MjSyW+/P0Z9cu1+aVVRmzbFY8Hp/TbWPj8bgqCqSqhgJd3lAg6f9v797joqzzPYB/hrlwG1Fg\nQEXxBsqgXLMNGtDKW6XWMUvc9iV78lZtrr1OnWOSGhKGJ2XTYmlfm6/2SGu4KVtu5aKZtlrijUxE\nMU0JARPE4T6Mwwwzv/NHOTWBgu1cYPy8X695vZjffOd5fj++zzO/Lw/PPA8gk0kg9/JEeVUjmnQm\ntF3rgM7QAd21DrSbLLBYBMwWAYsQsAjAU+YBT7kHPBVSeMo94Ocjh79SDv9+Cvj5yCH1kPxkfR3Q\ntzbC0Ob4Sws1NNRDWLo/ikxENzZvWgS+qW5Cm6EDb+/8GpkL7+o1X66l3otbCJGDlZZr8e6eb6yX\nl5JJJXggYThm3D281/07XKdrwZ4jZ6FU9nfK+movV8FDJkdw8GBrm4eHBN7eCly7ZoTlh+LQUwp4\nKiUAbvb7EgDMaG83o7bdgNr6nq3PUWovV0HZPxD9EejwdRG5K/9+npg3LQJvfVSG+hYD/rbvPBZM\nj3R1t6iXY3FL5CANLQb8be956x29AGDcCH/MmxaBgQE+LuzZzSmV/eE3IMAp62ptaYREqrBZn9RD\nAh8fTyg8221uoOCo9TlKa0tj90FE1K2EsQNx4vxVHPu6DgdLaxAfrkL8mN57FRlyPRa3RHbWYbZg\nT3E1PiqqsN4ut79Sgccnj8av1MG95hQEIqK+4vrpCU06I/J2n0XYkP694nrZ1DvxnnZEdvT1xQas\n/r9j+Pv+chhNFkgkwJTxQ7F2cSLuihzIwpaI6BdQesuxYMb3pyO06k3I23W2y0v7EQE8cktkF9rm\nayj4VzmKz9ZZ28KH9Me8aWMwbGA/F/aMiMg9RI0MxKQ7huCzr75DyQUt8j/9BvOmjuFBA+qExS3R\nv8Fg7EDhkSp8cqwKph9uxNDPR44594ZDEz0IHvzQJSKym5T7wlFVp8OFS83411ffwddLjtkTR7m6\nW9TLsLgl+gUsFoHDZbV4/0A5mn64xayHRIL74odg1sSRvJMOEZEDKORS/NdjMVi39QSq63TYeegi\nfL1kuP+uYa7uGvUiLG6JboEQAl99o8U/vvgW32nbrO1RIwMwd/JoDFH5urB3RETuz8dLjufnxuF/\n3z2OusZr2PbZBfh4yTAhJsTVXaNegsUtUQ8IIVB2sQE7Pv8WFTWt1vZBAT749eRwRI8K5HlfRERO\n0t9Xgf+ZG4e17x7//goKu86i3WjG5PFD+VlMLG6JbsZiEThxXovdRytRfrnF2h7g54n/SBoJTfQg\nSD140REiImdTDfDGf/86Hq++exxthg5s3Xse5Zdb8MQDangqetcNcsi5WNwSdcHUYcah07XYfawa\nVxr01nY/HzlmaEbg3rghkMtY1BIRudIQlS9WpI5H7genUFOvx9EzV3CpTocls6MxqBffLIcci8Ut\n0U98p23DFycv49DpWuiumaztAX6emHZnKCbGhcBLwd2GiKi3GBzoi5f+807k7TqLY1/X4TttGzLz\nivH4lNFIihoMDw+epnC74SxNt702gwlfnbuKL0prcOG7ZpvXhgb54sGE4fhVZDBkUh6pJSLqjbwU\nMjz18DiEDemP7Z9dgMFoxubCs/i0uBqP3RuO6FEBPBf3NsLilm5LzW1GnDh/FcfPXcXZykaYLT/e\n6UbqIUH8aBXuiRuCsSP8+YFIRNQHSCQSTL0zFCMH+WHzrq9RU6/HpatteL3gJNTDBuDRe8IwKsSP\nn+m3AZcVt/n5+fjLX/4CrVYLtVqNVatWISYmxlXdITfXbjLjwqVmfF3ZiK8rG3GxtgU/v3PjoAAf\nTIwNgSZqEO9ZTkTUR4UP7Y/MhXfhYGkN/vFFBZrbjDhb1YSsLccxROULTfQgJI4dBP9+nq7uKjmI\nS4rbwsJCvPrqq1izZg2io6PxzjvvYNGiRdi9ezcCAgJc0SVyI2aLBTX1elTWtuJibSsqa1tRUdNi\nc3T2usGBPhgfEYw7I4IQGqzkX/RERG5A6uGBe+KGIHHsIOwprsKuo1UwGM34TtuGgn+V4+/7yzF2\nRACiRgZgTOgADBuo5JVv3IhLitu8vDzMnTsXs2bNAgC8/PLL2L9/P95//30sXrzYFV2iPsbUYUZj\nazsaW9uhbTagtkGPKw161DZcw5VGvfVWuD+nkHlgdOgARA73R1y4CiG86QIRkdvyVEjxUNJITB4f\niuKzV1B0uhYXLjVDCKCsogFlFQ0AAC+FFOFD+2PEID8MDvRBSKAvBgZ48wvEfZTTs2YymVBWVoan\nnnrK2iaRSKDRaFBSUuLs7pATmTrMMHUIdFgsMJsFzGYLjB0WmH54GDvMaDeZYTD+8GjvwDVjB/SG\nDrR3CDQ0X0Or3ogmndHmSgY34+cjx/BBfhgV4ofI4f4YOdiPl/AiIrrN+HjJcE/cENwTNwRXGvU4\ndKoWJRe0uFSngwBgMJpx+tsGnP62weZ9/ZUKDFB6wl/pif5KBVT9vTAhJoSnrvVyTi9uGxsbYTab\noVKpbNoDAwNRUVFxS8uS8tvrfcaWT87h0+Jqhy3f21OKwYG+GBTgg0EBPggdqMTIwX7w7+fZp081\nkHpIIHXiZWw8PCS4pm9x2qVzrulbIZUqoGtp/EkfPGBsl6G9vQMWS9dH4O25Pkdx5rr68vp6mu++\nOr7eu74WyGQhkDn5j/3r87Yr5+8hQUrMmRSOOZPCobtmwjfVTThX1YhzVU24rG2DwWi2xjbrjGjW\nGVGJH+9MWVOvx9OzolzR9T7HVXmWCPHzr9U4Vl1dHSZOnIht27YhNjbW2r5+/Xp89dVXeO+995zZ\nHSIiIiJyI04vqf39/SGVSqHVam3aGxoaEBgY6OzuEBEREZEbcXpxK5fLMW7cOBw+fNjaJoTA4cOH\nER8f7+zuEBEREZEbccnXAJ944gmkpaUhKirKeikwg8GA2bNnu6I7REREROQmXFLcTp8+HY2NjcjJ\nyYFWq0VkZCTefvttXuOWiIiIiP4tTv9CGRERERGRo/BaWkRERETkNljcEhEREZHbYHFLRERERG6D\nxS0RERERuQ0Wt0RERETkNljcEhEREZHbcElxm5+fj0mTJiEmJgYpKSkoLS29YWxHRwdyc3MxdepU\nxMTEYNasWfjiiy9sYtra2pCVlYVJkyYhNjYWjz/+OE6dOmUT8+KLL0KtVts8Fi9e7JDx0Y++/PJL\nPP3005gwYQLUajX27dvX7XuOHj2K2bNnIzo6Gvfffz927NjRKaa7bchoNOLll19GQkIC4uPj8eyz\nz6K+vt5u46KuuSrfqampNvt2ZGQkMjIy7DUsugFH5Luny3zjjTeQnJyM2NhYzJ8/H5WVlXYZE92Y\nq/LN+ds1HJHvt956C4899hjuuOMOaDQaLFmyBBUVFTYx9pi/nV7cFhYW4tVXX8Wzzz6LHTt2QK1W\nY9GiRWhoaOgyfuPGjSgoKEB6ejoKCwsxd+5c/P73v8fZs2etMStXrsSRI0eQnZ2NnTt3IikpCfPn\nz0ddXZ3NsiZOnIhDhw6hqKgIRUVF2LBhg0PHSoBer0dkZCRWr14NiUTSbfylS5fw9NNPIzExER9+\n+CF++9vfYtWqVSgqKrLG9GQbysrKwoEDB/DHP/4R+fn5qKurw9KlSx0yRvqRq/INACkpKdb9++DB\ng1i2bJndx0e2HJHvnixz06ZNyM/PR2ZmJgoKCuDt7Y2FCxfCaDTabWzUmavyDXD+dgVH5PvLL7/E\nvHnzUFBQgM2bN6OjowMLFy6EwWCwxthl/hZONmfOHLFmzRrrc4vFIiZMmCA2bdrUZXxycrLYunWr\nTdvSpUvFsmXLhBBCGAwGMXbsWHHgwAGbmEceeUS8/vrr1udpaWliyZIl9hoG/QIRERFi7969N41Z\nv369mDlzpk3bc889JxYtWmR93t021NraKsaNGyf27NljjSkvLxcRERHi5MmT9hgK9YCz8i2EEPPm\nzRNr1661U8/pl7BXvnuyzKSkJLF582br89bWVhEdHS3++c9/3nrH6RdxZr45f7ueI/IthBD19fUi\nIiJCFBcXCyHsN3879cityWRCWVkZ7r77bmubRCKBRqNBSUlJl+8xGo1QKBQ2bZ6enjh+/DiA709b\nMJvNnWK8vLysMdcdO3YMGo0GDzzwADIyMtDU1GSPYZEdnTx5EhqNxqYtOTnZun30ZBs6deoUzGaz\nTcyoUaMQEhKCEydOOGEU1FP2yPd1H3/8MRITE/HQQw9hw4YNNkcCqHfoLt89UV1dDa1Wi8TERGub\nUqlEbGzsLS2HHM8e+b6O83fv90vy3draColEggEDBgAATp8+bZf5W3aLff+3NDY2wmw2Q6VS2bQH\nBgZ2OufiuuTkZOTl5eHOO+/EsGHDcOjQIXz66aewWCwAAF9fX8TFxeFPf/oTRo0aBZVKhY8//hgl\nJSUYPny4dTkTJkzAtGnTMHToUFRVVWHDhg148sknsW3bth4dbifnuHr1KgIDA23aAgMDodPpYDQa\n0dTU1O02VF9fD7lcDqVS2SlGq9U6dgB0S+yRbwB4+OGHERISguDgYJw7dw7Z2dm4ePEicnJynDIO\n6pnu8v3zgxRd0Wq1kEgkXW4T3L97F3vkG+D83Vfcar6FEFi7di3Gjx+P8PBwAN/v3/aYv51a3N6I\nEOKGG+jKlSuRnp6OBx98EB4eHggNDcWjjz6KDz74wBqTnZ2NFStWYOLEiZDJZBg7dixmzpyJM2fO\nWGOmT59u/Xn06NEYM2YMpk6diqNHj9ocAaC+6Wbb0K3EUN/w81zOmTPH+vPo0aOhUqkwf/58VFdX\nIzQ01BVdJCfj/u2+OH+7p4yMDFy4cAFbt27tNvZW92+nnpbg7+8PqVTaqfpuaGjoVO1fFxAQgNzc\nXJSUlOCzzz7Drl274O3tjaFDh1pjQkNDsWXLFpSUlGD//v3Yvn07TCaTTczPhYaGwt/fH1VVVfYZ\nHNlFUFBQp29F1tfXQ6lUQqFQ9GgbUqlUMJlM0Ol0N4yh3sEe+e5KbGwshBDcv3uZ7vLdEyqVCkKI\nW94myPnske+ucP7unW4l35mZmfj888+xZcsWDBw40Npur/nbqcWtXC7HuHHjcPjwYWubEAKHDx9G\nfHz8Td+rUCgQHBwMk8mEPXv2YPLkyZ1ivLy8oFKp0NzcjIMHD3YZc11tbS2ampoQFBT0ywdEdhcX\nF2ezfQBAUVER4uLiAPRsG4qKioJUKrWJqaiowOXLl7vdzsi57JHvrpw5cwYSiYT7dy/TXb57IjQ0\nFCqVCkeOHLG26XQ6nDx5kvt3L2OPfHeF83fv1NN8Z2ZmYt++ffjrX/+KkJAQm9fsNX9LM5x8MUhf\nX1+88cYbGDx4MORyOV5//XWcO3cOWVlZ8Pb2xgsvvIBTp05ZTyYuLS1FaWkpFAoFzp8/j5deegkt\nLS1Yv3699S+BgwcPorKyElKpFKdOncKyZcsQHByMVatWwcPDA3q9Hhs3boRSqYTZbEZZWRlWrlwJ\npVKJ5cuXQyqVOvNXcFvR6/UoLy/H1atXsW3bNsTExMDLywsmkwn9+vXDa6+9hg8//BBTp04FAAwb\nNgx//vOf0draisGDB6OwsBB5eXlIT0+3/nu5u21IoVCgrq4O+fn5UKvVaGpqwurVqxESEoJnnnnG\nlb8Ot+eKfFdXVyM/Px8+Pj4wmUwoLi5GRkYGIiIisGjRIlf+OtyeI/Ld3TIBwGw2Y9OmTQgLC4PR\naMQrr7wCo9GIVatW8fPcgVyRb87fruOIfGdkZGDnzp3IyclBUFAQ9Ho99Ho9pFIpZDKZ/ebvHl9X\nwY7effddcd9994no6GiRkpIiSktLra+lpqaKtLQ06/Njx46J6dOni5iYGJGYmCjS0tJEXV2dzfIK\nCwvFlClTRHR0tEhOThZr1qwRra2t1tcNBoNYsGCB0Gg0IioqSkyaNEmkp6eL+vp6xw/2Nnf06FER\nEREh1Gq1zeN6jtPS0kRqamqn9zzyyCMiOjpaTJ06VezYsaPTcm+2DQkhRHt7u8jMzBR33XWXiIuL\nE0uXLhVardZxAyUhhGvyXVNTI+bNmycSEhJETEyMmDZtmvjDH/4gdDqdYwdLDsl3d8u8LicnRyQl\nJYmYmBixYMECcfHiRccOllySb87fruOIfHe1PLVabRNnj/lbIoQQjqj4iYiIiIiczSW33yUiIiIi\ncgQWt0RERETkNljcEhEREZHbYHFLRERERG6DxS0RERERuQ0Wt0RERETkNljcEhEREZHbYHFLRERE\nRG6DxS0RERERuQ0Wt0REdpKbmwu1Wm19JCQk4De/+Q0OHDhgE6dWq7F582a7rbOkpMQuyyIicgcs\nbomI7Mjb2xvbt2/H9u3bkZWVhfb2dvzud79zWAGam5uLEydOOGTZRER9kczVHSAicicSiQQxMTHW\n59HR0bj33nuxY8cOxMXFubBnRES3Bx65JSJyoIEDByIgIAA1NTU27RaLBbm5uUhKSkJiYiJefPFF\nGAwG6+tXr17FihUrMGXKFMTGxuL+++/Hxo0bYTQarTFqtRoSiQTr1q2DWq1GZGQkiouLnTY2IqLe\niEduiYgcqK2tDc3NzQgNDbVpz8/Px/jx47Fu3TpcvHgR69atQ1BQEJ5//nkAQGNjIwYMGIAVK1bA\nz88PFRUVyM3NhVarRVZWFgBg+/btSElJQWpqKh566CEAQFhYmHMHSETUy7C4JSKyM7PZDAC4cuUK\nsrOz4evri9TUVJuYoKAgZGdnAwCSk5NRVlaGTz75xFrcjhkzBi+88II1Pj4+Ht7e3khLS0N6ejo8\nPT2tpz+EhITYnApBRHQ7Y3FLRGRHer0e48aNsz6XyWR48803MWLECJs4jUZj8zwsLAyFhYU2bXl5\neSgoKMClS5fQ3t4O4PtzequrqxEeHu6YARAR9XEsbomI7Mjb2xv5+fkwm82orKzEa6+9huXLl2Pn\nzp1QqVTWOD8/P5v3yeVym/Np8/LysH79eixevBgJCQnw8/NDaWkp1qxZYy10iYioMxa3RER2JJFI\nMHbsWADfXylhxIgRSElJwZtvvonVq1f3eDm7d+/G5MmT8dxzz1nbLly4YPf+EhG5G14tgYjIgaKi\nojBjxgx88MEHqK+v7/H72tvbIZfLbdo++uijTnEymYxHcomIfoLFLRGRgz3zzDMwmUx45513evwe\njUaDvXv3Ij8/H0VFRVi+fDmqqqo6xYWFhWHfvn0oLi7G6dOn0dbWZs+uExH1OSxuiYjsSCKRdGob\nOXIkZsyYgffeew86nQ4SiaTLuJ9asmQJZs6ciZycHDz//PPw8vLCSy+91Clu9erVsFgsePLJJzFn\nzhycOXPGbmMhIuqLJEII4epOEBERERHZA4/cEhEREZHbYHFLRERERG6DxS0RERERuQ0Wt0RERETk\nNljcEhEREZHbYHFLRERERG6DxS0RERERuQ0Wt0RERETkNljcEhEREZHbYHFLRERERG6DxS0RERER\nuY3/BydLYCI3LMDLAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8XNWd9/HPb0a9d1lWly0XGXe5GzC9BwKEGjAEQgohD0l2U3fDJmT3IdmQPCGFLAsEh2AglIDpOKbaxnKV5Y5lq1tWlyyrS3OePzROBFi2yszcKb/36zUvjc7cufOdsa5/c++59xwxxqCUUirw2KwOoJRSyhpaAJRSKkBpAVBKqQClBUAppQKUFgCllApQWgCUUipAaQFQSqkApQVAKaUClBYApZQKUEFWBziVpKQkk5OTY3UMpZTyKdu2bWs0xiSfbjmvLgA5OTls3brV6hhKKeVTRKRiJMvpISCllApQWgCUUipAaQFQSqkApQVAKaUClBYApZQKUFoAlFIqQGkBUEqpAKUFQCmlApQWAKWUClBefSWw8k+riyrd/ho3Lcpy+2so5et0D0AppQKUFgCllApQWgCUUipAaQFQSqkApQVAKaUClBYApZQKUFoAlFIqQGkBUEqpAKUFQCmlApQWAKWUClBaAJRSKkBpAVBKqQClBUAppQKUFgCllApQWgCUUipA6XwAyq84jGFnVStbK5rZXtFC34BhfnY8SyYl8vm56YQF262OqJTX0AKg/EZrZy/PbaumrLGDpKgQ5mbFExJkY9PhJtbsPMJj68v4xbWzmJcVb3VUpbyCFgDlFw41HOepogocBq6Zl8EvvzALEQHAGMP7Hzfwwxd3ce3DG/nXi6bxtRWTLE6slPW0D0D5vPr2bp4qqiAmLJh7zpnM/Oz4f/znDyAirJiawlvfOotLZ6bx8zf388f3D1mYWCnvoHsAyqd19vTz548qsNtsrFyaQ3xEyLDLRocF85sb5mIT4YE39hNit/Gl5bkeTKuUd9ECoHyWMYZntlRxrKuPO5fnnvI//xPsNuFX182mb8DBT1/dS25yJOdMTfFAWqW8jx4CUj6ruKqV0objXDYrjazEyBE/L8hu49fXz2F6WgzffraYI61dbkyplPfSAqB8UlfvAK/vPkpmfDgLchJG/fywYDu/v2kuvf0O7nl6B30DDjekVMq7aQFQPmntvqN09vRz5Zx0bEM6fEcjLzmKB66ZxbaKFn73TqmLEyrl/bQAKJ9T29ZF0eFmFuUlMjEufFzrumL2RK6aM5E/vFfKx3XtLkqolG/QAqB8zrv76wkJsnHB9FSXrO/HV8wgOiyY7z5fwoDDuGSdSvkCLQDKp9Qd62bPkWMsyUskPMQ1wzokRIZw3xUFFFe1smpjuUvWqZQvOG0BEJFMEXlXRPaKyB4R+T/O9gQRWSsiB50/453tIiIPiUipiJSIyLwh61rpXP6giKx039tS/ur9jxsIsgtLJye5dL2fmz2RFVOT+dXaj2lo73HpupXyViPZA+gHvmOMKQAWA3eLSAHwfWCdMSYfWOf8HeASIN95uwt4GAYLBnAfsAhYCNx3omgoNRJNx3vYWdXKotxEokJdewmLiHDfFTPo6R/gwbcPuHTdSnmr0xYAY0ytMWa78347sA9IB64EVjkXWwVc5bx/JfBnM2gTECciacBFwFpjTLMxpgVYC1zs0nej/NoHBxux24Tl+a799n9CblIkK5fk8OzWKvYcaXPLayjlTUbVByAiOcBcoAhINcbUOh86CpzokUsHqoY8rdrZNly7UqfV1TtAcVULczLjiAkLdtvr3HNePvERIfz0lb0Yox3Cyr+NeD9aRKKAF4B7jTHHhg62ZYwxIuKSrUVE7mLw0BFZWVmuWKXyA9srB8f2X5yXOKLlVxdVjvm1zsxP4uXiI/zob7s5Iz122OVuWqR/n8q3jWgPQESCGfzP/yljzIvO5jrnoR2cP+ud7TVA5pCnZzjbhmv/BGPMI8aYQmNMYXJy8mjei/JTDmPYdLiJrISIcZ/3PxKF2QmkxoTyxu5a+vUKYeXHRnIWkACPAfuMMb8a8tAa4MSZPCuBl4e03+o8G2gx0OY8VPQWcKGIxDs7fy90til1SocajtPU0cui3NEP+TAWdptw6cw0Wjr72HioySOvqZQVRnIIaBlwC7BLRIqdbT8EHgD+KiJ3ABXAdc7HXgcuBUqBTuB2AGNMs4jcD2xxLvdTY0yzS96F8mubDjcTEWJn5ikOx7hafko00yZE8+6BeuZmxRHtxn4Hpaxy2gJgjFkPDDfYynknWd4Adw+zrseBx0cTUAW2tq4+9tce48z8ZILsnr1u8dIz0vjNuoP8fV8dn5+b4dHXVsoT9Epg5dWKq1oxwIIcz18ykhQdyuK8BLaWt3C0rdvjr6+Uu2kBUF7LGMP2ihayEyJIjAq1JMM501IIC7bzxu7a0y+slI/RAqC8VnVLFw3He5iXbd0F4xEhQZwzLYWD9cd1tFDld7QAKK+1rbKFYLt4tPP3ZBbnJZAQGcLru2p1tFDlV7QAKK/UN+CgpLqVGRNjCQt2zaifYxVks3HxjAnUt/ewraLF0ixKuZIWAOWV9tUeo7vPwbws7xgvcMbEGLITI1i7r46evgGr4yjlEloAlFcqqW4jJiyIvOSRT/buTiLCpWek0dHTz/sHG6yOo5RLaAFQXqe7b4ADde3MTI8d83y/7pCZEMGsjFjWH2yktbPX6jhKjZsWAOV19tYeY8BhmJkRZ3WUz7hoxgQA1u6tsziJUuOnBUB5nZLqVuIigsmMd//Ab6MVHxHC0klJ7KhqZVe1zhmgfJsWAOVVOnv6Ka0/zqz0WMSLDv8MtWJqMhEhdn72ms4ZoHybFgDlVfYcOYbD4JWHf04IC7Zz/vRUisqa9VCQ8mlaAJRXKalpJTEyhImxYVZHOaUFOQlMSo7kv17fR0+/nhaqfJMWAOU12rv7ONzQwawM7z38c4LdJvz4ihmUN3Xy6IdlVsdRaky0ACivsfvIMQwwy4sP/wx19pRkLp4xgd++c5Dqlk6r4yg1aloAlNcoqW4lJTqU1BjvPvwz1L9fUQDAz17dZ3ESpUZPC4DyCm1dfVQ0dfrMt/8T0uPCuefcfN7cc5R399ef/glKeREtAMor7KpuBWBWhrUjf47FnWfmMjklin97aTcdPf1Wx1FqxLQAKK9QUtPGxLgwkiya+GU8QoPsPHD1TGpau/jV2o+tjqPUiGkBUJZr7uiluqWLWem+dfhnqMKcBG5elMWfNpRR4tybUcrbaQFQljtx+MfqiV/G63uXTCM5OpR/eW4n3TpktPIBWgCU5Upq2siMDyc+MsTqKOMSExbMz6+Zxcd1x/nlWwesjqPUaWkBUJZqaO+htq3b587+Gc6KqSl8cXEWj20o46NDTVbHUeqUtAAoS5XUtCLAGT5++GeoH146nZzESP7luZ0c6+6zOo5Sw9ICoCxjjKGkuo3sxEhiw4OtjuMyESFBPHjdbGrbuvjJmr1Wx1FqWFoAlGXqjvXQ0N7jk+f+n868rHi+cc5kXthezZu7a62Oo9RJaQFQlimp9r/DP0Pdc14+M9Nj+cGLu6hv77Y6jlKfoQVAWcIYQ0lNG5NSoogKDbI6jlsE2238+vrZdPYOcO8zxQw4dPIY5V38c8tTXq+mtYvmjl5WTEm2OopbTU6J5v6rzuC7z5fwm3UH+fYFU0b1/NVFlW5K9k83Lcpy+2so76R7AMoSu6rbsItQMDHG6ihud11hJtfMy+C37xzkw4MNVsdR6h+0ACiPczgP/0xOiSIiJDB2Qu+/agb5KVHc+0wxR9u0P0B5By0AyuOqmjtp6+rzy7N/hhMREsQfbp5HV98A33x6B/0DDqsjKaUFQHleSXUbQTZhepr/H/4ZanJKNP/36plsLm/mQR01VHkBLQDKowYcht01bUxJjSYs2G51HI+7ck46Ny7M4uH3DrFuX53VcVSA0wKgPOqjQ0209/QzO9M/xv4Zi/uuKGDGxBi+9WwxVc06l7CyzmkLgIg8LiL1IrJ7SNt/iEiNiBQ7b5cOeewHIlIqIgdE5KIh7Rc720pF5PuufyvKF/xtRw2hQTamTYi2OoplwoLtPHzzfAzw9ae209OvQ0cra4xkD+AJ4OKTtP/aGDPHeXsdQEQKgBuAGc7n/EFE7CJiB34PXAIUADc6l1UBpKt3gDd31zIzPZZge2DvfGYlRvCr6+awq6aN+1/V8YKUNU67FRpjPgCaR7i+K4FnjDE9xpgyoBRY6LyVGmMOG2N6gWecy6oAsnZfHR29A8wJ4MM/Q11QkMpXzs7jL5sqeWlHjdVxVAAaz9ewb4hIifMQUbyzLR2oGrJMtbNtuPbPEJG7RGSriGxtaNCLZvzJ37ZXkxYbRk5SpNVRvMa/XjiVhbkJ/ODFXRysa7c6jgowYy0ADwOTgDlALfCgqwIZYx4xxhQaYwqTk/17mIBA0ni8hw8ONnLlnHRsIlbH8RpBdhu/u3EukaFBfO2p7XT29lsdSQWQMRUAY0ydMWbAGOMA/pfBQzwANUDmkEUznG3DtasA8erOIww4DFfPO+mOX0BLiQnjoRvmcKjhOD99RfsDlOeMqQCISNqQXz8PnDhDaA1wg4iEikgukA9sBrYA+SKSKyIhDHYUrxl7bOVr/lZ8hIK0GKakBu7ZP6eydHISX18xiWe2VPFqyRGr46gAcdqBWETkaWAFkCQi1cB9wAoRmQMYoBz4CoAxZo+I/BXYC/QDdxtjBpzr+QbwFmAHHjfG7HH5u1Fe6XDDcXZWtfKjS6dbHcWr3Xv+FDYeauIHL+5idkYcmQkRVkdSfu60BcAYc+NJmh87xfL/CfznSdpfB14fVTrlF14qPoJN4HNzJlodxasF2208dMNcLvnNh/zr8ztZfediqyMpPxfYJ2MrtzPG8NKOGpZNTiI1JszqOF4vMyGCH19ewKbDzaz6qNzqOMrPaQFQbrW9spXK5k6umqOdvyP1hcIMzp2WwgNv7KehvcfqOMqPaQFQbvW3HdWEBdu46IwJVkfxGSLCA1fPJCzYzgvbq3EYnUpSuYcWAOU23X0DvLKzlgsLJvjtvL/ukhITxo8vL6CyuZMt5SO9EF+p0dECoNzm7b11tHX1cf2CzNMvrD7j6nnp5CVH8taeoxzr7rM6jvJDWgCU2zy7pZLMhHCW5CVaHcUniQhXzU6nf8DwWkmt1XGUH9L9cuUWVc2dbCht4tsXTMFm88+hH1YXVbr9NZKiQ1kxNZm/76unsL6d/BS9kE65ju4BKLd4bmsVInDt/Ayro/i8M/OTiY8I5rWSWgYc2iGsXEcLgHK5AYfhuW3VnJWfzMS4cKvj+Lxgu41LZ6ZR397DZu0QVi6kBUC53AcfN1Db1q2dvy5UkBZDXlIkf99bpyOGKpfRAqBc7slNFSRHh3L+9FSro/gNEeGyWWl09w3w7v56q+MoP6EFQLlUVXMn7x6o58aFWYQE6Z+XK6XFhjMvK56ismZaO3utjqP8gG6hyqX+UlSBTYSbFmZZHcUvnTc9BQO8o3sBygW0ACiX6e4b4K9bqriwIJUJsTrwmzvERYSwKDeB7ZUtOk6QGjctAMplXiuppaWzj1sWZ1sdxa+tmJpCkM3G3/fVWR1F+TgtAMplntxUwaTkSJZM0it/3SkqNIilkxPZVdNG3bFuq+MoH6YFQLnEruo2iqtauWVxNqKTvrvd8klJhNhtvHdA+wLU2GkBUC7x5KZywoPtXK1X/npERGgQi/ISKKluo+m49gWosdECoMattbOXl4uPcNXcdGLCgq2OEzCWT07CbhPe/7jB6ijKR2kBUOP2/LZqevod2vnrYdFhwRTmDJ4RpNcFqLHQAqDGxeEw/GVTBYXZ8RRMjLE6TsA5Kz8JgA2ljRYnUb5IC4Aal3f211Pe1MmtS3OsjhKQ4iJCmJURx9aKFrr7BqyOo3yMFgA1Lo+uP8zE2DAu0Tl/LbNschI9/Q6dOlKNmhYANWa7a9rYdLiZ25blEGzXPyWrpMeFk5sUycZDTTpfgBoV3WrVmD22vozIEDvXL9Bxf6x25uQk2rr62FXTZnUU5UO0AKgxOdrWzSs7j3Ddgkxiw/XUT6tNmRBNclQoGw9pZ7AaOS0AakxWfVSOwxi+tCzX6igKsImwOC+B6pYuqls6rY6jfIQWADVqHT39PLWpgovPmEBmQoTVcZTT3Kx4gu1CUZl2BquR0QKgRu2F7dUc6+7njuV5VkdRQ4QF25mTGU9JdStdvXpKqDo9LQBqVAYchsfXlzE3K4752fFWx1Gfsig3gb4Bw/bKFqujKB+gBUCNyrp9dZQ3dXKnfvv3ShPjwslKiKCorAlj9JRQdWpaANSoPLq+jPS4cC6aoRO+e6tFuQk0Hu/lUEOH1VGUl9MCoEaspLqVzWXN3L4shyC98MtrnZEeS0SInaKyJqujKC+nW7EasUc/LCMqNIjrF2RaHUWdQrDdRmF2PPtqj9HW1Wd1HOXFtACoETnS2sVru2q5YUEm0Trmv9dbmJuIMej4QOqUTlsARORxEakXkd1D2hJEZK2IHHT+jHe2i4g8JCKlIlIiIvOGPGelc/mDIrLSPW9HucuqjeUYY7htWY7VUdQIJESGkJ8axdbyZh0fSA1rJHsATwAXf6rt+8A6Y0w+sM75O8AlQL7zdhfwMAwWDOA+YBGwELjvRNFQ3u94Tz+rN1dyycw0MuL1wi9fsSg3kWPd/eyrPWZ1FOWlTlsAjDEfAJ/ej7wSWOW8vwq4akj7n82gTUCciKQBFwFrjTHNxpgWYC2fLSrKSz23tYr27n6+fKae+ulLpk6IJi48WA8DqWGNtQ8g1RhT67x/FDhxTmA6UDVkuWpn23DtnyEid4nIVhHZ2tCgc51abcBheHxDGYXZ8czJjLM6jhoFmwjzs+MprT9OS4dOGak+K2i8KzDGGBFx2UFGY8wjwCMAhYWFevDSw1YXVX7i9901bVQ1d3Hm5OTPPKa83/zseN7ZX8+2yhbOn67XbqhPGuseQJ3z0A7On/XO9hpg6DmCGc624dqVl9tQ2kh8RLDO9+uj4iIGO4O3VbTg0CuD1aeMtQCsAU6cybMSeHlI+63Os4EWA23OQ0VvAReKSLyz8/dCZ5vyYlXNnVQ0d7JschI2EavjqDEqzE6grauPg3XtVkdRXua0h4BE5GlgBZAkItUMns3zAPBXEbkDqACucy7+OnApUAp0ArcDGGOaReR+YItzuZ8aY7RnysutL20kLNjG/Cw9YcuXTUuLJjI0iC3lLUydoHty6p9OWwCMMTcO89B5J1nWAHcPs57HgcdHlU5Zpq2rjz1H2lg6KYnQYLvVcdQ4BNlszMuKY0NpI+3dfXohn/oHvRJYndSmw00YA0vyEq2OolygMDsBh4Edla1WR1FeRAuA+ozefgeby5opmBhDfGSI1XGUCyRHh5KTGMGW8mYdJlr9gxYA9Rk7q1rp6htg6aQkq6MoFyrMSaCpo5eyJh0mWg3SAqA+wRjDhkONpMWGkZOowz74kzMmxhIWbGNruc4WpgZpAVCfcKihg/r2HpZNSkL01E+/EhJkY3ZGHLtr2nTOYAVoAVCfsvFQI5GhQczKiLU6inKDBTkJ9DsMxdXaGay0AKghyhs7OHC0nUW5CTrjl5+aGBfOxLgwtmpnsEILgBriiY3l2ERYlJtgdRTlRoXZCdS2dVPT2mV1FGUxLQAKgGPdfTy3tYpZGbF6oZCfm5MZR7BdtDNYaQFQg57bWk1Hr576GQjCgu3MTI9lZ3Urvf0Oq+MoC2kBUAw4DKs2llOYHU96fLjVcZQHFGYn0NPvYFeNdgYHMi0AinX76qhs7uRLy3OtjqI8JDsxgqSoULboYaCApgVA8acN5aTHhXNhgU4YEihEhAU58VQ2d+ow0QFMC0CA21d7jI8ON3HLkmw99TPAzM2Kxy7Cs1uqTr+w8ku6xQe4JzaUEx5s54YFmadfWPmVqNAgpqdF8+KOGnr69crgQKQFIIA1d/TyUnENn5+XTlyEjvoZiApzEmju6GXt3jqroygLaAEIYE9vrqSn38HtS3OsjqIsMjklivS4cD0MFKC0AASovgEHf9lUwfLJSeSnRlsdR1nEJsJ1hZl8eLCRyqZOq+MoD9MCEKDe3lNHbVs3t+m3/4B3/YJM7DbhqaIKq6MoD9MCEKCe2FhGVkIE50xLsTqKstiE2DAuLEjl2a1VdPdpZ3Ag0QIQgHbXtLGlvIVbl2Rjt+mY/wpuWZxNa2cfr5bUWh1FeZAWgAD0xMZyIkLsfKFQT/1Ug5ZMSmRSciRPbtLDQIFEC0CAaTzew5riI1w7P4PYcB31Uw0SEW5ZnM3OqlZKdLKYgKEFIMA8s7mS3gEHty7JsTqK8jJXz88gIsTOExvLrY6iPEQLQADpG3Dw5KYKzpqSzOSUKKvjKC8TExbMF+Zn8MrOI9Qf67Y6jvIALQAB5I3dR6k71qMXfqlh3b4sl36H0b6AAKEFIIA8saGMnMQIzp6SbHUU5aVykiI5f3oqf9lUoaeEBgAtAAFiZ1Ur2ytbWbk0B5ue+qlO4Y7lubR09vHi9hqroyg30wIQIFZtLCcyxM618zOsjqK83KLcBGZMjOGx9YdxOIzVcZQbaQEIAPXt3bxScoQvFGbqhO/qtESEu87K41BDB2/rKKF+TQtAAHi6qIq+AcOtS7KtjqJ8xGUz08hOjOAP75VijO4F+CstAH6up3+AvxRVsGJqMnnJeuqnGpkgu42vnj2Jkuo21pc2Wh1HuYkWAD/38o4jNLT3cIdO+K5G6ep56UyICeN375RaHUW5iRYAP+ZwGP7ng0MUpMWwfHKS1XGUjwkNsvPls/IoKmtmS3mz1XGUG4yrAIhIuYjsEpFiEdnqbEsQkbUictD5M97ZLiLykIiUikiJiMxzxRtQw3tnfz2HGjr4ytl5iOipn2r0blyYSVJUKL9864D2BfghV+wBnGOMmWOMKXT+/n1gnTEmH1jn/B3gEiDfebsLeNgFr61O4X8+OER6XDiXzkyzOoryUREhQdxz7mSKypq1L8APueMQ0JXAKuf9VcBVQ9r/bAZtAuJERP9ncpNtFS1sKW/hjuW5BNv1SJ8auxsWZpIeF85/616A3xnv/wwGeFtEtonIXc62VGPMiVkljgKpzvvpwNCZp6udbcoNHvngELHhwVy/QMf8V+MTGmTn3vPzKalu4609R62Oo1woaJzPX26MqRGRFGCtiOwf+qAxxojIqL4yOAvJXQBZWVnjjOdfVhdVjmi5xvYe3t5Tx9lTk3m5+IibU6lA8Pm56fzx/UP8/M0DnDstlZAg3av0B+P6VzTG1Dh/1gN/AxYCdScO7Th/1jsXrwGGfh3NcLZ9ep2PGGMKjTGFyck6aNlYfFjaiN0mLMlLtDqK8hNBdhv/dnkBZY0dPLGxzOo4ykXGXABEJFJEok/cBy4EdgNrgJXOxVYCLzvvrwFudZ4NtBhoG3KoSLlIe3cfOypbmJsVr8M+KJc6Z2oK501L4aF1pdS363wB/mA8ewCpwHoR2QlsBl4zxrwJPABcICIHgfOdvwO8DhwGSoH/Bb4+jtdWw/jocBMDDsOZet6/coN/v7yA3n4Hv3jzgNVRlAuMuQ/AGHMYmH2S9ibgvJO0G+Dusb6eOr2u3gE2HW6iYGIMSdGhVsdRfignKZI7zszl4fcO8YX5GSzSw4w+TXty/MjGQ4109zk4Z2qK1VGUH7vn3MlkJUTw3RdK6OrVSWN8mRYAP9HVO8CGQ40UpMUwMS7c6jjKj0WEBPHza2ZR0dTJf7+lh4J8mRYAP7Hx8OC3/3On6bd/5X5LJiVyy+Js/rSxTMcJ8mFaAPxAV+8AG0obma7f/pUHff+SaWTEh3PvM8W0dPRaHUeNgRYAP/DhwQa6+xycp9/+lQdFhgbx+5vm0dDew3ee26nTR/ogLQA+7lhXHxsONTIrI1a//SuPm5URx79dPp139tfzPx8ctjqOGiUtAD7unf31OBxwYcEEq6OoAHXL4mwum5XGf7+1n7U6h7BP0QLgwxrae9ha0cyC3AQSIkOsjqMClIjwy2tnMzMjjnue3s7OqlarI6kR0gLgw97cc5Qgm41zpuqYScpa4SF2HltZSHJ0KHes2kJZY4fVkdQIaAHwUQfr2tlXe4xzpibrmD/KKyRFhfLE7QtxGLjhkY841HDc6kjqNLQA+KABh+HVkloSIkNYpmP+KC8yKTmKp7+8mAGH4YZHNlFa3251JHUKWgB80EeHm2g43sPlM9MI0tm+lJeZOiGaZ+5aDMA1D3/ExkM6laS30v89fExbVx/r9tUxJTWKqROirY6j1ElNTonmha8uJSU6lFsf28yzW0Y2mZHyLC0APsQYw8vFNTiM4YpZExERqyMpNaysxAhe+PpSlkxK5Hsv7OJfnttJR0+/1bHUEFoAfEhJTRv7j7ZzwfRUEqN0uGfl/WLCgvnTbQv45nn5vLi9mst/u54dlS1Wx1JOWgB8RHNHL6/sPEJGfDhLteNX+ZAgu41vXzCF1V9eTHffAFc/vJEfv7yb9u4+q6MFPC0APsAYw/deKKGnz8HVczOw6aEf5YMW5yXy9rfOYuWSHJ7cVMG5D77Ps1sqGdAxhCwjgxN1eafCwkKzdetWq2NY7slNFfz7S7u5dGYay/Xbv/IDVc2dvLarlsrmTibEhHHutBQKJsaM+cvNTYuyXJzQt4nINmNM4emWG/OUkMozDhxt52ev7uXsKcksnaTT7yn/kJkQwVfOymP3kWO8vecoqzdXkhwdyoopyczKiMNu071cT9BDQF6svbuPu1dvJzosmF9+YbYe+lF+RUSYmR7Lty6YwvULMrGL8Ny2an7994/ZXNZM34DD6oh+T/cAvNSAw3DvM8WUN3bw5B2LSNZJ3pWfsokwOyOOmemxHDjazrsH6nmpuIa1e4+yOC+RRXmJRIXqf1XuoJ+ql3rw7QOs21/P/VfOYIke+lEBwCbC9LQYpk2I5nBjBxtKG1m3v573P25gblYcyyYlkRITZnVMv6IFwAs9vbmSP7x3iBsXZvHFxdlWx1HKo0SESclRTEqOor69m42lTWyvbGFLeQtTU6NZnp9EXlKkXgixrG0FAAALYklEQVTpAloAvMyrJUf44d92sWJqMj/53Az9I1cBLSU6jKvmpnN+QSpFZU1sOtzMY+vLSIsNY/nkJGZmxBJk067MsdIC4EXe2V/Ht54tpjA7nodvnk9IkP5hKwUQFRrEedNSOSs/mZ1VrawvbeS5bdW8tecoS/ISuWxmGrEROiz6aGkB8BKv7DzCt54tZlpaNI+uXEB4iN3qSEp5nWC7jcKcBOZlx3Ow7jgbSht5a28dHz6wjusKM7l9WQ7ZiZFWx/QZWgC8wOqiSn700i4Ks+N57LYFxOgEL0qdkk2EqROimTohmtq2Lmpau3iqqIJVH5VzUcEE7jwzl/nZ8XoI9TS0AFiof8DBf72+n8c3lHH2lGT++MX5+s1fqVFKiw3nOxdO5XsXT2PVxnKeKqrkzT1HmZMZx5fPzOOiGak6b8YwtABYpOl4D998ZgcbSpu4bWkOP7psOsH6R6rUmKXGhPHdi6fxjXMn8/y2ah5bX8bdq7eTER/O7ctyuX5Bpl5P8Cn6aVhg3b46vvdCCce6+vnFtbO4rjDT6khK+Y2IkCBuXZLDzYuyWbu3jkc/PMz9r+7l/639mBsXZXHb0hwmxoVbHdMraAHwoKbjPTzwxn6e21bNtAnR/OXORUybEGN1LKX8kt0mXHzGBC4+YwLFVa08+uFhHltfxuPry7hsVhp3Ls9jZkas1TEtpQXAA3r7HTy9uZIH3z5AZ+8AX1sxiXvPzyc0SI/3K+UJczLj+N1N86hu6eSJDeU8s6WKl4uPsCg3gVuX5HB+QUpAbo9aANyob8DBi9ur+e07pVS3dLFsciI/+dwMJqfoXL5KWSEjPoJ/u7yAb56fz1+3VPGnDeXcvXo7CZEhXD03nRsWZgbU9qkFwA0a2nt4enMlTxVVUHesh9kZsdx/1RmsmJKsp6Up5QViwoK588w8bl+Wy/rSRp7dUskTG8t5dH0Z87PjuXxWGhfNmOD3fQVaAFzkWHcf7+wbHMXww4ONDDgMZ01J5oFrcvQ/fqW8lN0mnD0lmbOnJNN4vIcXt1fzwrYafvLKXn7yyl5mZ8Zx8YwJXFCQyqRk/xt/yOMzgonIxcBvADvwqDHmgeGW9eYZwTp6+tlZ3cqOylbWH2xkS3kz/Q7DxNgwrpybzrXzM5iUHOXS11xdVOnS9SnlL1w9I9jhhuO8uecob+4+Skl1GwAp0aEszE1gUV4ii3ITyE+J8tqC4JUzgomIHfg9cAFQDWwRkTXGmL2ezDEafQMOalq6KG/qoKKpkwN17eyobOXA0WOcmMp0amo0Xz4rj/OmpTAvKx6bzmaklE/LS47i6ysm8/UVk6lp7eK9A/UUHW6mqKyJV0tqAYgODWLKhGimpEYzzfkzJymC5KhQn7nwzNOHgBYCpcaYwwAi8gxwJeDSAuBwGNq6+uhzOOgfMAw4DH0DDudPQ7/DQXefg47efjp7Bujo7aejp5+Wjl4aO3ppOt5D0/Fe6tt7qGnt+sSk1dFhQczJjOOCc/OZlxXHnMw44iJCXBlfKeVF0uPCuXlRNjcvysYYQ2VzJ0WHmympaeXjo8d5reQIT2/u/8fydpuQEh1KWmwYaXHhJESEEBse/I9bTHgQocF2QoNshAad+Dl4PyTIhs0GdhGCg2xuHxbG0wUgHaga8ns1sMjVL9Lc2Uvhz/4+6ueJQEJECIlRISRGhjI7M47PzZ5IdmIEOUmRZCcOVndv3e1TSrmXiJCdGEl2YiTXLRi8gNMYQ317D/uPtlPd0kltazdH2rqobe1m75FjtHT2cqyrD8coj7bPyYzjpbuXueFd/JPXdQKLyF3AXc5fj4vIARe/RBLQONyD5S5+MRc6ZW4v56vZNbfnjSn7zW4IMkou/8wrAPnGmJ8+opmkPF0AaoCh4x5kONv+wRjzCPCIuwKIyNaRdI54G1/NDb6bXXN7nq9m99Xcnu6p2ALki0iuiIQANwBrPJxBKaUUHt4DMMb0i8g3gLcYPA30cWPMHk9mUEopNcjjfQDGmNeB1z39ukO47fCSm/lqbvDd7Jrb83w1u0/m9viFYEoppbyDb1ytoJRSyuV8qgCIyOMiUi8iu4d5XETkIREpFZESEZk35LGVInLQeVs5pP0/RaRKRI4Ps85rRMSIyLh6+D2dXUSuE5G9IrJHRFb7Qm4RyRKRd0Vkh3Ndl441tzuyi0iEiLwmIvudn+sDQ5YPFZFnnesqEpEcH8n9beffSYmIrBOREZ0+6A3Zhzxv3Nuop3O7avscN2OMz9yAs4B5wO5hHr8UeAMQYDFQ5GxPAA47f8Y778c7H1sMpAHHT7K+aOADYBNQ6CvZgXxgx5DlUnwk9yPA15z3C4Byb/rMgQjgHOcyIcCHwCXO378O/NF5/wbgWR/JfQ4Q4bz/tfHk9nR2V26jHv7MXbZ9jvfmU3sAxpgPgOZTLHIl8GczaBMQJyJpwEXAWmNMszGmBVgLXOxc5yZjTO0w67sf+DnQ7WPZvwz83rk8xph6H8ltgBNTpMUCR8aa2x3ZjTGdxph3nevuBbYzeC3LiXWtct5/HjhPZGyXjHsytzHmXWNMp3O9m4a8nzHx8GcOLtpGPZzbZdvnePlUARiBkw01kX6K9mE5d/EyjTGvuTrkMFyWHZgCTBGRDSKySQZHYHUXV+b+D+CLIlLN4Jli97gu5kmNObuIxAFXAOs+vS5jTD/QBiS6JbVrcw91B4Pfct3JZdk9vI268jP35PZ5Sl43FIQ3EBEb8CvgNoujjFUQg7uZKxj81vGBiMw0xrRamur0bgSeMMY8KCJLgCdF5AxjjMPqYEOJSBDwNPCQcQ5s6AtOlVtEvggUAmdbke10Pp3dV7bRYT5zr9k+/W0PYLihJk47BMWnRANnAO+JSDmDx/zWjKeTaQRclR0Gv4WsMcb0GWPKgI8Z/INzB1fmvgP4K4Ax5iMgjMExVtxlrNkfAQ4aY/7fydbl3OhjgSY3ZP7Ea30q31hyIyLnAz8CPmeM6XFL4n9yVXZPb6Ou/Mw9uX2emqc6G1x1A3IYvqPmMj7ZUbPZ/LOjpozBzpl45/2ETz33M53AQx57j3F2AnsyO4PH2lc57ycxuIua6AO53wBuc96fzmAfgHjTZw78DHgBsH1qXXfzyU7gv/pI7rnAISB/vH/fns7+qfW+x/hP1PDUZ+7S7XNc79mKFx3HP9DTQC3Qx2AVvQP4KvBV5+PC4IQzh4BdQ/8ggC8Bpc7b7UPaf+Fcl8P58z/c9MflsezOdf2KwXkWdgE3+EjuAmADsBMoBi70ps+cwW93BtjnzFcM3Ol8LAx4zrn8ZiDPR3L/Hagb0r7GVz5zV26jHv7MXbZ9jvemVwIrpVSA8rc+AKWUUiOkBUAppQKUFgCllApQWgCUUipAaQFQSqkApQVAqSFEZEBEikVkt4i84ryMHxFZISKvjnJdt4nIRPckVWr8tAAo9Uldxpg5xpgzGBwc7O5xrOs2QAuA8lpaAJQa3kd8cmCvKBF53jnG+1MnRvsUkR+LyBbnXsMjzrHjr2VwbJ2nnHsU4Va8AaVORQuAUichInbgPGDNkOa5wL0MXrGcByxztv/OGLPAudcQDlxujHke2Arc7Nyj6PJceqVGRguAUp8ULiLFwFEglcHx3U/YbIypNoOjkxYzOHYMwDkyOAvYLuBcYIYnAys1VloAlPqkLmPMHCCbwTFbhvYBDB0pcwAIEpEw4A/AtcaYmcD/MjgukFJeTwuAUidhBmfJ+ibwHefwzsM58Z99o4hEAdcOeaydwWGLlfJKWgCUGoYxZgdQwuBENcMt08rgt/7dwFvAliEPPwH8UTuBlbfS0UCVUipA6R6AUkoFKC0ASikVoLQAKKVUgNICoJRSAUoLgFJKBSgtAEopFaC0ACilVIDSAqCUUgHq/wOnWGRJpW3quwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -792,12 +759,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuYAAAH0CAYAAABxb+heAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt4VPW59//PmmQCCooQMgSrFuQgJ5FidSuKtWDVBobj\nT6BaRoymW/ER3Gg9bH3qdlcLrWILirSCEQepWsUAEaT28dp92lqeFpqqFTwiyDGZBCICAWaSmd8f\nIWtmZa1kJkOSmSTv13Xt61rr/q615puo3fd8c6/7a0QikYgAAAAApJQr1RMAAAAAQGIOAAAApAUS\ncwAAACANkJgDAAAAaYDEHAAAAEgDJOYAAABAGiAxBwAAANIAiTkAAACQBkjMAQAAgDRAYg4AAACk\ngbRKzLds2aLbb79do0eP1qBBg/TOO+80ev0f/vAH5efn6/LLL9fFF1+sGTNm6C9/+UsrzRYAAABo\nPmmVmFdVVWnw4MF65JFHZBhG3Os3b96sK664QsuWLVNRUZH+7d/+Tbfffrs+/vjjVpgtAAAA0HyM\nSCQSSfUknAwaNEhLlizR2LFjm3Tf+PHjlZeXp9mzZ7fQzAAAAIDml1Yr5qcqEono6NGj6tatW6qn\nAgAAADRJu0rMly9frqqqKn3/+99P9VQAAACAJslM9QSaS3FxsZ599lktXbpUPXr0SPV0AAAAgCZp\nFyvm69ev109+8hMtWrRIl112WZPvT9MyewAAAHQgbX7F/M0339TDDz+sp556SldddVVSzzh48Khc\nrvhdYAAAAJAa3bt3SfUUWlxaJeZVVVXatWuXuYK9e/duffzxx+rWrZt69+6thQsXKhAI6Oc//7mk\n2qT8gQce0EMPPaThw4eroqJCktS5c2d17do14c8NhyMKh1k1BwAAQOqkVbvEv//97/L5fLYe5pMm\nTdL8+fP14IMPau/evfL7/ZKkmTNnasuWLbbn1F2fqPLyw6c2cQAAALSonJwzUj2FFpdWiXmqkJgD\nAACkt46QmLeLlz8BAACAto7EHAAAAEgDJOYAAABAGiAxBwAAANIAiTkAAACQBkjMAQAAgDRAYg4A\nAACkARJzAAAAIA2QmAMAAABpgMQcAAAASAMk5gAAAEAaIDEHAAAA0gCJOQAAAJAGSMwBAACANEBi\nDgAAAKQBEnMAAAAgDZCYAwAAAGmAxBwAAABIAyTmAAAAQBogMQcAAADSAIk5AAAAkAZIzAEAAIA0\nQGIOAAAApAEScwAAACANkJgDAAAAaYDEHAAAAEgDJOYAAABAGiAxBwAAANIAiTkAAACQBkjMAQAA\ngDRAYg4AAACkARJzAAAAIA2QmAMAAABpgMQcAAAASAMk5gAAAEAaIDEHAAAA0gCJOQAAAJAGSMwB\nAACANEBiDgAAAKQBEnMAAAAgDZCYAwAAAGmAxBwAAABIAyTmAAAAQBogMQcAAADSAIk5AAAAkAZI\nzAEAAIA0QGIOAAAApAEScwAAACANkJgDAAAAaYDEHAAAAEgDJOYAAABAGiAxBwAAANIAiTkAAACQ\nBkjMAQAAgDRAYg4AAACkARJzAAAAIA2QmAMAAABpgMQcAAAASAMk5gAAAEAaIDGvp6Rks0pKtqR6\nGgAAAOhg0iox37Jli26//XaNHj1agwYN0jvvvBP3nr/97W+aMmWKLrzwQl133XUqKipK+vODwaD8\n/kKtXFmoYDCY9HMAAACApkqrxLyqqkqDBw/WI488IsMw4l6/Z88e3X777brsssu0du1a+Xw+Pfzw\nw3r33XeT+vzi4iKVlwcUCJSpuHhNUs8AAAAAkpGZ6gnEuuqqq3TVVVdJkiKRSNzrX375ZZ1zzjm6\n7777JEnnn3++/vGPf2jFihW64oormvTZgUCpJRkvLi7S6NHfkcfTq0nPAQAAAJKRVivmTfX+++9r\n1KhRltiVV16p9957r8nP8vsLFQpFy1dCoaD8/udPeY4AAABAItp0Yl5eXq7s7GxLLDs7W0eOHKFG\nHAAAAG1KWpWypIrLZeiWW27Thx/+y1w1d7uzlJ9foMzMNv3dBQAAAG1Em07Mc3JydODAAUvswIED\n6tq1q7KyshJ+To8eXZSd3U/Tp0/TSy+9JEmaMWO6Lrjg/GadLwAAANCQNp2YjxgxQn/6058ssXff\nfVcjRoxo0nMOHjwql8vQddd59fbbf5BhSNdeO16VlUebc7oAAABIUvfuXVI9hRaXVol5VVWVdu3a\nZXZk2b17tz7++GN169ZNvXv31sKFCxUIBPTzn/9ckjRjxgytWrVKTzzxhKZOnapNmzbp97//vZ57\n7rkmfW44HFE4HJHLlamZM2+RZMjlylR1dbi5f0QAAADAkRFJpC9hK/n73/8un89n62E+adIkzZ8/\nXw8++KD27t0rv99vuWfBggX6/PPPlZubq9mzZ2vSpElN+tzy8sPNMn8AAAC0jJycM1I9hRaXVol5\nqpCYAwAApLeOkJjTcgQAAABIAyTmAAAAQBogMQcAAADSAIk5AAAAkAZIzAEAAIA0QGIOAAAApAES\ncwAAACANkJgDAAAAaYDEHAAAAEgDJOYAAABAGiAxBwAAANIAiTkAAACQBkjMAQAAgDRAYg4AAACk\nARJzAAAAIA2QmAMAAABpgMS8npKSzSop2ZLqaQAAAKCDyUz1BNJJMBiU318owzA0bNhwZWVlpXpK\nAAAA6CBYMY9RXFyk8vKAAoEyFRevSfV0AAAA0IGQmJ8UCJRakvHi4iIFAmUpnBEAAAA6EhLzk/z+\nQoVCQfM8FArK738+hTMCAABAR0JiDgAAAKQBEvOTfL58ud3Rlz3d7iz5fLemcEYAAADoSEjMT/J4\ncpWX5zXP8/K88nh6pXBGAAAA6EhIzBtkpHoCAAAA6EBIzE8KBEq1YUOxeb5hwzq6sgAAAKDVkJif\nRFcWAAAApBKJOQAAAJAGSMxPoisLAAAAUonE/CSPJ1de7yTz3OudTFcWAAAAtBoS8xhe72Tl5Hjk\n8fSyJOkAAABAS8tM9QTSSVZWlny+fEmGsrKy4l4PAAAANBcjEolEUj2JVCsvP5zqKQAAAKAROTln\npHoKLY5SFgAAACANkJgDAAAAaYDEHAAAAEgDJOYAAABAGiAxBwAAANIAiTkAAACQBkjMAQAAgDRA\nYg4AAACkARLzJiop2aySki2pngYAAADamcxUT6AtCQaD8vsLZRiGhg0brqysrFRPCQAAAO0EK+ZN\nUFxcpPLygAKBMhUXr0n1dAAAANCOkJgnKBAotSTjxcVFCgTKUjgjAAAAtCck5gny+wsVCgXN81Ao\nKL//+RTOCAAAAO0JiTkAAACQBkjME+Tz5cvtjr7s6XZnyee7NYUzAgAAQHtCYp4gjydXXu8k89zr\nnSyPp1cKZwQAAID2hMS8CbzeycrJ8cjj6WVJ0gEAAIBTRR/zJsjKypLPly/JoIc5AAAAmpURiUQi\nqZ5EqpWXH071FAAAANCInJwzUj2FFkcpSwsoKdmskpItqZ4GAAAA2hBKWZqopGSzJEMjR37bcTwY\nDMrvL5RhGBo2bDglLwAAAEgIK+ZNUJd0r1xZqGAw6HhNcXGRyssDCgTKLDuFAgAAAI0hMW+CeEl3\nIFBqiRcXFykQKGvNKQIAAKCNIjFPUCJJt99fqFAoupIeCgXl9z/fanMEAABA20ViniCSbgAAALQk\nEvNm5PPly+2OvuzpdmfJ57s1hTMCAABAW0FinqBEkm6PJ9eyI6jXO1keT69WmyMAAADarrRMzFet\nWqUxY8Zo+PDhmjZtmj744INGr1+xYoWuv/56XXTRRbr66qs1f/78BrumJCvRpNvrnaycHI88nl6W\n6wEAAIDGpF0f8w0bNmjBggX66U9/qgsvvFAvvviibrvtNm3cuFE9evSwXV9cXKynnnpKCxYs0IgR\nI7Rz507df//9crlcuv/++5t1bl7vZP35z3+UYRgNJt1ZWVny+fIlGfQwBwAAQMLSLjFfsWKFpk+f\nrkmTahPfRx99VH/84x+1evVqFRQU2K5/7733dPHFFysvL0+SdPbZZ2v8+PFxV9mTkWjSPXLkJc3+\n2QAAAGjf0qqUJRQKaevWrbr88svNmGEYGjVqlN577z3He771rW9p69atZiK+e/du/d//+3/1ne98\nJ6k5lJRsVknJlgbHR468pMFdPwEAAIBkpdWKeWVlpWpqatSzZ09LPDs7Wzt27HC8Z/z48aqsrNSN\nN94oSaqpqdGMGTP0ox/9qMmfX7ezp2EYGjZsOKUoAAAAaDVplZg3JBKJyDAMx7G//e1v+s1vfqNH\nH31Uw4cP15dffqnHH39cOTk5mj17dkLPd7kMuVyGiorWqLw8IElav36tbrhherP9DAAAAEBj0iox\n7969uzIyMlRRUWGJHzx4UNnZ2Y73LF68WBMnTtTUqVMlSQMGDFBVVZUeeeSRhBPzHj26qLS0VOvW\nFZmxdevekNf7ffXu3TvJnwYAAABIXFol5m63W0OHDtWmTZs0duxYSbWr5Zs2bdLMmTMd7zl27Jhc\nLmupvMvlUiQSaXSlPdbBg0e1aNHTlhaLwWBQixY9rfvvf+gUfiIAAAA0h+7du6R6Ci0urRJzSZo1\na5YeeOABDRs2zGyXePz4cU2ZMkWSdN999yk3N1fz5s2TJI0ZM0YrVqzQ4MGDzVKWxYsXa+zYsQkl\n5ZIUDtcm8fVFIhFVV4eb74cDAAAAGpB2iXleXp4qKyu1ePFiVVRUaPDgwVq+fLnZw7y0tFQZGRnm\n9bNnz5ZhGFq0aJHKysrUo0cPjRkzRnfffXeTPtfny9eHH/5LoVDtqrnTzp4AAABASzEiTkvFHUx5\n+WFJ0urVr+qNN34nSZoyZbqmTp2WymkBAADgpJycM1I9hRaXVn3MU83rnaycHI88nl4N7uwJAAAA\ntIS0K2VJpUR39gQAAACaG6UsipayAAAAID1RygIAAACgVZCYAwAAAGmAxLyekpLNKinZkuppAAAA\noIPh5c8YwWBQfn+hDMPQsGHDeQEUAAAArYYV8xjFxUUqLw8oEChTcfGaVE8HAAAAHQiJ+UmBQKkl\nGS8uLlIgUJbCGQEAAKAjITE/ye8vVCgUNM9DoaD8/udTOCMAAAB0JCTmAAAAQBogMT/J58uX2x19\n2dPtzpLPd2sKZwQAAICOhMT8JI8nV17vJPPc650sj6dXCmcEAACAjoTEPIbXO1k5OR55PL0sSToA\nAADQ0uhjHiMrK0s+X74kgx7mAAAAaFVGJBKJpHoSqVZefjjVUwAAAEAjcnLOSPUUWhylLAAAAEAa\nIDFvopKSzSop2ZLqaQAAAKCdoca8CYLBoPz+QhmGoWHDhlOHDgAAgGbDinkTFBcXqbw8oECgTMXF\na1I9HQAAALQjJOYJCgRKLcl4cXGRAoGyFM4IAAAA7QmJeYL8/kKFQkHzPBQKyu9/PoUzAgAAQHtC\nYg4AAACkARLzBPl8+XK7oy97ut1Z8vluTeGMAAAA0J6QmNfTUDtEjydXXu8k89zrnSyPp1drTg0A\nAADtGIl5jGAwqOXLl2r58qUKBoO2ca93snJyPPJ4elmSdAAAAOBU0cc8xpo1r+vQoUPm8bRpN1rG\ns7Ky5PPlSzLoYQ4AAIBmxYr5SfZ2iGsc2yGOHHmJRo78dmtODQAAAB1Ak1bM9+3b16SHn3322U26\nPpWWLVuqcLjGPA+Ha7Rs2bN66KFHUzgrAAAAdBRNSszHjBkjwzASvv6jjz5q8oRSZc+e3QnFAAAA\ngJbQpMT8mWeeMY+rqqq0cOFCnXfeebr22muVnZ2tiooKvf3229q9e7fuvffeZp9sSzrnnHO1bdsh\nWwwAAABoDUYkEokkc+PDDz+smpoazZ8/3zb24IMPSpLjWDoqLz+sQKBU99xzl8LhsCTJ5crQwoVP\n0xIRAAAgDeTknJHqKbS4pF/+3Lhxo8aPH+84Nm7cOP2f//N/kp5UKtT2KZ9sntOnHAAAAK0p6cQ8\nIyND27Ztcxzbtm2bXK621/Bl0qT/T2ee2U3dup2lSZOmpno6AAAA6ECS7mM+YcIELV68WCdOnNA1\n11yjHj166ODBg/rDH/6g5557TjNmzGjOebaKrKwsFRTcIfqUAwAAoLUlXWNeXV2thQsX6uWXX9aJ\nEyfMeKdOnTRjxgzdc889crvdzTbRllRefjjVUwAAAEAjOkKNedKJeZ1Dhw7p008/VXl5uXJycjRw\n4EB169atuebXKkjMAQAA0huJeQNOnDihuXPn6tZbb9Ull1zSEvNqVU1JzEtKNksy2P0TAACgFXWE\nxDypNzQ7deqkzZs3q6amJv7F7UgwGNTy5Uu1fPlSBYPBVE8HAAAA7UjSrVOuuOIKvfvuu805l7RQ\nUrJZJSVbHMfWrHldhw4d0qFDX2nNmtdbeWYAAABoz5LuyjJ16lQ98sgjOnr0qL7zne8oOztbhmFY\nrhk6dOgpT7A1BYNB+f2FMgxDw4YNt3RmCQRKVVy8xjwvLl6jq68eS69zAAAANIukX/4cNGiQ9UEx\nSXkkEpFhGProo49ObXatpK7GfPXqV/XGG7+TJE2ZMl1Tp04zr3n88Ue0bduHlvuGDBmmhx56tPUm\nCgAA0EF1hBrzpFfM/X5/c84j5QKBUq1bV2Ser1v3hkaP/o65Ir5nz27bPU4xiRdEAQAA0HRJJ+aX\nXnppc84j5fz+QlVXh8zz6uqQ/P7nde+9/ylJOuecc7Vt2yHLPeecc67tOY2VwwAAAAANSfrlz/Ym\ndpMkp1hBwR0yjOivy+VyqaBgtu2e4uIilZcHFAiUWWrSAQAAgMYkvWIuSWvXrtUrr7yinTt3Oia2\nJSUlp/L4tOLx5GrAgIH69NOPJUkDBlxge/HT/oJokaUcBgAAAGhI0ivma9eu1cMPP6wBAwaosrJS\n3//+93XdddfJ7XYrOztb+fn5zTnPlAsESrVjx3bz/IsvPlcgUGa5xu8vVCgU7W8eCgXl9z/fanME\nAABA25V0Yv7CCy9o9uzZeuSRRyRJN954o+bPn6933nlHPXr0UJcuXZptkq3BacOg2CS7NukOxYyF\nSLoBAADQbJJOzL/88kuNHDlSGRkZysjI0JEjRyRJXbt2VUFBgVauXNlsk2wN9Ve/JamszB5rjM+X\nL7c7+rKn250ln+/WU54bAAAA2r+kE/OuXbuaq8y9evXS559/bo7V1NSosrLy1GfXipzqwGNjeXkT\nbOPjxk2sd32uvN5J5rnXO5n6cgAAACQk6Zc/hw0bpk8++USjR4/WmDFjtGTJEkUiEWVmZuq5557T\nRRdd1JzzbHFObQ1jYxs2rLONr1+/VoMHW3c39Xon689//qMMw7Ak6QAAAEBjkk7M//3f/1379u2T\nJM2ZM0d79+7V/PnzVVNTowsvvFD//d//3WyTbEuysrLk8+VLMuhhDgAAgIQlnZiPGDFCI0aMkCSd\neeaZWrp0qYLBoILBoLp27dpsE0wXPl++PvzwX+YLoY3Vj48ceUlrTg0AAADtQNI15mvWrLH1Kc/K\nylLXrl118OBBrVnTvjbX8XhylZfnNc/z8iY0WD9eUrJZJSVbWmtqAAAAaAeSTswfeOABzZw5U889\n95xtbPfu3XrwwQdPaWKtLV67RLtIg8/x+wu1cmWh4zMBAAAAJ0kn5pJ0ww036Omnn9bdd9+tY8eO\nNdecUqK0dL8ttn9/NBYIlGrDhmLzfMOGYscWi8XFRSovDygQKLPsAgoAAAA05pQS8ylTpujFF1/U\nli1bNGPGDO3Zs6e55pV2EtnVMxAotSTjxcVFjsk7AAAAUN8pJeaSNHLkSL3++uvKyMjQ1KlTtWnT\npuaYV6s777xvJhRrTCLJOwAAAODklBNzScrNzdXLL7+sK6+8UgUFBXrppZea47GtqqDgDhmGYZ4b\nhksFBbPNc58vX5mZ0SY2mZmZ7OoJAACAZtMsibkkderUSQsXLtScOXO0fv365npsq/F4ci07eY4b\nZ+264vHkqlu3s8zzs87qbuvK4vPly+2O9i5vqKUiXVsAAABQX9KJ+TvvvKNBgwbZ4j/60Y+0cuVK\n/exnP0t6UqtWrdKYMWM0fPhwTZs2TR988EGj1x8+fFiPPvqorrzySg0fPlzXX3+9/vSnPzX5czMy\nMmKOrS3et237UAcOVJjnFRXl+uijrZZrPJ5cy26fXu9kW/JO1xYAAAA4STox/8Y3vtHgzpYXX3yx\nJk+enNRzN2zYoAULFmjOnDkqKirSoEGDdNttt+ngwYOO14dCIc2aNUv79+/XM888o40bN+qxxx5T\nr17OPcYbEgiUav36deb5+vVrLS9uPv30U7Z7Fi9eaIt5vZOVk+ORx9PLkqTXoWsLAAAAnCS986ck\nff311/r973+vHTt2OK7+Pvzww01+5ooVKzR9+nRNmlSb1D766KP64x//qNWrV6ugoMB2/euvv67D\nhw/rd7/7nbniffbZZzf5c/3+QlVXh8zz6uqQ/P7nde+9/9mk52RlZcnny5dk2L64OHVtGT36Ow1u\nVAQAAICOI+nEfOfOnZoxY4aCwaCOHTumHj166NChQ6qurla3bt3UtWvXJifmoVBIW7du1b//+7+b\nMcMwNGrUKL333nuO9/zP//yPRowYoUcffVTvvPOOevToofHjx6ugoEAuV+J/EDhx4kSjsbvumqfH\nH3/EMj5nzj2Ozxo58hLHeENdW5qa/AMAAKD9SbqUZcGCBbrooov017/+VZFIRM8995zef/99PfHE\nE+rSpYsWLVrU5GdWVlaqpqZGPXv2tMSzs7NVUVHheM/u3bu1ceNGhcNhLVu2THfccYcKCwv161//\nukmfHW/nzyFDhmngwGhN/QUXDNbgwUOb9BkAAABAQ5JeMf/ggw/0+OOPm+UaoVBIGRkZ8nq9qqys\n1GOPPaZXXnmlWSYZiUQsrQxjhcNh9ezZUz/96U9lGIaGDBmiQCCg559/XrNnz3a8pz6Xy3DcCKis\nrEyZmdHvLoMGDdann34sSbrggkGWsUTccstt+vDDf5kJv9udpfz8giY/BwAAAO1P0ol5MBhU165d\n5XK51K1bNwUCAXNswIAB+vjjj5v8zO7duysjI8O2On7w4EFlZ2c73uPxeOR2uy2J+/nnn6+KigpV\nV1dbeo83pEePLurbt4/ef/99S7xv3z7q3r2LJGn//v3auDHaBnLjxvWaOnWSevfubXvepk2bZBiG\nLrvssno/Xz9Nnz7N7PM+Y8Z0XXDB+XHnBwAAgPYv6cS8T58+2rt3ry655BINGTJEv/3tbzVq1Chl\nZmbq1VdflcfjafIz3W63hg4dqk2bNmns2LGSalfLN23apJkzZzreM3LkSL355puW2I4dO5STk5NQ\nUi5JBw8e1UUXjbQl5iNGfFuVlUclSYsWPW0pdwkGg1q06Gndf/9DlnuCwaCWLHlWhiH17XuB7QXQ\n667z6u23/yDDkK69drz5fAAAADSsbrG0PUs6MR83bpy5Kj537lzdeuutuvTSS2UYhiKRiObPn5/U\nc2fNmqUHHnhAw4YN04UXXqgXX3xRx48f15QpUyRJ9913n3JzczVv3jxJ0g9+8AO99NJLeuyxx/TD\nH/5QO3fu1HPPPaebb7454c8MhyN66SW/Lb5y5Qpde22epNovCPVFIhFVV4ctsaKi1WZZTFHRG5o6\ndZpl3OXK1MyZt0gy5HJl2u4HAABAx5R0Yn7LLbeYxyNGjNCbb76pP/3pTzpx4oQuu+wyDRw4MKnn\n5uXlqbKyUosXL1ZFRYUGDx6s5cuXq0ePHpKk0tJSy0ZAubm5Kiws1Pz58zVx4kT16tVLN998s2Nr\nxcaEwzWNxvLyJuif//yHZTx2p1Ap8XaIDXVtAQAAQMdlRJyWgjuY8vLDuummqY5jq1atliQ9+eTP\nbIn5t751saXVYSLXSFJJyWZJhkaO/HYzzB4AAKD9y8k5I9VTaHGntMFQTU2N3n//fZWWljq2G6zb\nJKgtOP30LqqqOmqL1Tl8+LDtHqdYPMFgUH5/oQzD0LBhwxvcPRUAAAAdS9KJ+datW3XXXXdp//79\njvXXhmG0qcT8P/7jPtsGQvPm3W8e79u313ZP/ZjPl6/333/PLIFxuTLk891quaa4uEjl5YGTx2ts\nNegAAADomJJOzP/rv/5LXbt21Ysvvqj+/fvL7XY357xaXf1NjSQpOzsaCwbtO4M6xSKRcMyx9QtL\nojXoAAAA6HiS3tnm888/1z333KNLL71UPXr00BlnnGH7v7ZkyRL7TqVLlvzKPO7Tx95vvH7M7y+0\nJOORSFh+//OW8djdREOhoGUcAAAAHVfSiXmfPn109Gj76cG9c+cXjcbuvHOubfzOO++2nDdXHToA\nAAA6nqQT8wcffFC/+c1vtH379uacT8pkZXWKG4vdXTT2uE5p6f5GYz5fvjIzoyU/mZluWw06AAAA\nOqYm1Zh7vV7LeXl5ubxerzwej610xTAMrVu37tRn2ErOOqu7rStL9+7dzWN7mUpEfv/zllaILpf9\ne05szOPJVf/+A/Txx9skSQMGDKS+HAAAAJKamJgPHTrUcaW4PSgra3y1OxF33TXP1tllzpx7zONA\noFTbt39mnn/++acKBMpIzgEAANC0xHzBggVJf9C+ffvk8XiUmXlKrdNbjFPLx9iYz5dv2zyofhnK\nkCHDlJ3dUwcOVEiSevbM0eDBQ83x2pc/Q+Z5KBSyrboDAACgY0q6xrwpampqNHbsWH3yySet8XFJ\nCYfDjcYqKips43UJeJ1AoFSHDn1lnn/1VaUCgbJmnCUAAADaq1ZJzCXnFel0kpGR0Wjsl7/8hW38\nqad+bjn3+wtVXV1tnldXV1vaIfp8+XK7ozt9ut1ZvPwJAAAASa2YmKe7GTNm2mI33nizeXzsWJVt\n3CnWGI8nV15vdDdUr3cy9eUAAACQRGJu+stf/miL/elP/2Med+7c2TZeP3b55Vfarhk16irLudc7\nWTk5Hnk8vSxJOgAAADo2EvOTdu360iG20zx2Wtn2eHIt535/oe2aF19cbjnPysrSFVeM1qhRo5WV\nlWW7HgAAAB0TiflJhmH/VcTGysvLbePl5QHL+fHjx2zX1I8Fg0G9/fZbevvttxQMBpOdLgAAANoZ\nEvOTcnOS0AblAAAgAElEQVRzbbHevXubxydOHLeN14/16XO+7Zq+fa2x1atfVVVVlaqqjuqNN15N\ndroAAABoZ1olMTcMQ5dccom6dOnSGh+XlCNHjthihw8fNo9PO+1023j92J13zrVswGQYhmbPvts8\nDwRKtX79WvP8zTfX0k4RAAAAklopMXe5XFq5cqX69OnTGh+XlK5duzrEzjCP58691zZ+990/tpx7\nPLm69trvm+fXXZdnqU1fsmSRpW1kJBLRs8/+6pTmDQAAgPYh6W04Bw0aZFkdjmUYhs444wwNGjRI\nN998s8aMGZP0BFtLWVmpQ2x/k5+zY8cXjse159tt13/xhT0GAACAjifpFfP77rtPubm5Ou+88zRr\n1izNmzdPN998s8477zx5PB7deOONqq6u1p133qn169c355xTYtGiJ22xX/3qCcv5tm0f6tNPPzbP\nP/nkI3300dYWnxsAAADavqQT80OHDmnYsGHauHGj7r//fhUUFOiBBx7Qxo0bNWzYMB0/flyrVq3S\n9ddfr2XLljXnnFvEOeeca4ude+555nFV1VHbeP3Y008/Zbtm8eKF5nHfvv1s404xAAAAdDxJJ+av\nv/66brjhBls5i2EYmjZtmtasWSNJGj9+vL744gunR6SVLl3sNeann960l1XD4XCjsTvvnGsbv/PO\nu22xkpLNKinZ0qTPBgAAQNuWdGJ+7Ngx7d/vXIO9b98+nThxQpJ0+umny+12J/sxrcapp3goFI05\n1dPXj2Vn97Rd07NnNFb7cmieeV7/5dC6efj9hVq5srDF+pyT+AMAAKSfpBPzMWPGaOHChSouLjZb\nDR45ckRr167VwoULdc0110iSPvnkE33zm99sntm2oL17d9tie/ZEY06lLuecc57lvLLyoO2agwet\nsS+/3GEe79y503Z9cXGRyssDCgTKVFy8Ju68m6o1En8AAAA0XdJdWf7rv/5LDzzwgH784x/LMAxl\nZmaqurpakUhE3/ve9/STn/xEknT22Wdr3rx5zTbhlnLsmH3XztiYU6lL/b7sHk8vff31IVuszrZt\nH+qTTz4yzz/5ZJs++mirBg8eKqm2z3lsMl5cXKTRo79jW1U/FXWJf+3xGk2dOq3Zng0AAIDkJZ2Y\nd+3aVc8884y2b9+uDz74QOXl5fJ4PLrwwgvVr1/0hcZrr722WSba0lwul61G3OWK/kGhU6dOtnvq\nx7KysmzXxMYaejl06dJCSZLfX2gpnwmFgvL7n9e99/5ngj9F41oj8QcAAEBykk7M6/Tr18+SiLdV\n5557nr78cme9WLQEZ8iQC/XPf/7DMj5s2EWW80SS91Rq6cQfAAAAyTulnT+rqqq0atUqzZs3T7fe\neqvmzZunVatWqaqqqrnmlzZeffUlW+zll/2W87y8CbZrxo2baB7fdZe9pGfOnHvMY58vX253dIXd\n7c6Sz3drUvMFAABA25J0Yr5//35NmDBBjz32mHbs2CHDMLRjxw49/vjjmjhxYoMdW9JV7Iue0dgu\n8zgcjtjG68eKil6zXfPGG78zj4cMGWbp3NKzZ45ZXy7Vdm3xeieZ517v5GYtMyHxBwAASF9JJ+bz\n58+XJK1fv15FRUVavny5ioqK9Oabb8owDC1YsKDZJpkOMjPtVT9utzXmnNxHY4FAqQ4d+so8/+qr\nSgUCZZbrvd7JysnxyOPpZUnSm0NLJ/4AAABIXtKJ+V//+lfNmzdP559/viV+/vnna+7cuXr33XdP\neXKtqVev3rZYbm40VlNTbRuvrrbGunfvYbumR49ozO8vtNxTXV0tv/95y/VZWVm64orRGjVqtOPL\npKeqJRN/AAAAJC/plz9ramoafLGxU6dOqqmpSXpSqXDgQLktVlERjXXq1FlVVUct4506dbac17Uh\njBUI2GONCQaDevfdP8swDE2cOLXZk/OsrCz5fPmSjBZJ/AEAAJCcpFfMR44cqaVLl+rrr7+2xA8f\nPqxf//rXGjly5ClPrjXV7VTaUKxPn7628fqxYND+jNiYz5evzMzoLqiZmW5bjXdLbzAkSSNHXqKR\nI7/dIs8GAABAcpJeMb///vv1wx/+UFdffbUuu+wy9ezZUwcOHNCmTZvkdrv1s5/9rDnnmXJXXz1W\n27Z9aIl997vfs5z36XO+Pv/8U1usjseTq/79B+jjj7dJkgYMGGip8abPOAAAQMeV9Ir5wIEDtXbt\nWt1www0KBAL6f//v/ykQCGjatGlau3atBg4c2JzzbHGGYf9VxMb8/kLb+IsvLrec33nnXNs1d955\nt3kcCJRq+/bPzPPPP//U8vJnQ33Gm6qkZLNKSrY0+T4AAACkziltMNS7d289+OCDzTWXlMrJybF1\nSPF4PObxsWP23uz1YxUVFbZrDhyoMFe8axPvkDkWCoWafYOfYDAov79QhmFo2LDh1JEDAAC0EU1K\nzL1eb8LXGoahdevWNXlCqRL7omed2Jc5MzIybS+0ZmRYf32//OUvbM946qmfa9kyvy3uxOfL14cf\n/stcNU+mz3hdjXrt8RpNnTqtSfcDAAAgNZqUmA8dOlSGYbTUXFIqHA43GnNql1g/Fm9VPS9vgv75\nz39YxmN3Bq3rM163KVFT+4w3V416SclmSQYviAIAALSiJiXm7W3ToKZIpF1iVlaWrbtLbClJQzuD\nPvTQo+b59deP05o1r0sydP31eU2aY0M16k0plaEUBgAAIDWSfvmzozn77G/EjdUvbakfi7czqCRt\n3Lhe4XBY4XCNNm7ckOx0k9Ya7RoBAABgR2J+ktNmSQ1toNQQl8v+64yNOZWU1G+XuG5dkXm+bt0b\nthdSG+Pz5cvtjq5wN7VG3akUpimfDwAAgOSRmJ8UiTQeKy3dbxuvH8vN7W27JjbmVBYSG/P7C1Vd\nHe3aUl0dcmyX2FA7xLoa9TpNrVFvrnaNAAAAaLpTapfYnsTbtTORlz/jJd7xxNt9tHZOjdeAe72T\n9ec//1GGYViSdAAAAKQ3VswTdPx4YklzfU6xUxGvBjwrK0s+X75mzsxv8oubp1oKAwAAgOSRmJ8U\nm5A6xSKRxtspSnKsx46NxatjjzeeaA34yJGXJNXq8FRLYQAAAJA8EvOTEilViSfey50+X77lZVCX\ny2VZkfb58pWZGa0uyszMtIy3Rg241ztZOTkeeTy9KIUBAABoRdSYnxRvg6FExCbNdWJf5rSzbtbk\n8eSqb99++uyzTyRJffv2b/UV67pSGMmghzkAAEArYsW8Ge3du8cWi+1T7vcXWpL9cLjGsuIdCJSa\nSbkkff75J5ZSldaqAU+2FAYAAADJIzFvRllZ9hpxp1hDlixZZDmPRCJasuRX5rnHk6u8PK95npfn\npQYcAACgnSAxb0Y5OTm2mMfjMY/z8ibYxseNm2ge79z5hW3cKRZlNDIGAACAtoTEPEGG0fiunpJU\nWVlpu+bgwYPmcVHRa7bxN974nXkcb8U9ECjVhg3rzPMNG9ayMycAAEA7QWKeIKcXIeu3WDznnHNt\n18TGdu360jYeGzv77G/YxmNjtV1Zoi+ThkLOO4MCAACg7SExT1C8nUElqaDgjnrtEDNUUDA74c+I\n19UlkZ1BAQAA0DaRmCcoEonEjdW+nBmtI8/Lm2B5OfO8875pe0ZsLLaDS53du3clNV8AAAC0LSTm\nzaympibm2LpB0dVXj7Vd/93vfi/hZ8fbGRQAAABtF4l5gtxud9xYIFCqt94qNs/feqvY8nLmSy+t\nsD1j5cpC87hXr1zbeK9evc3jyy+/0jY+atRVtlhJyWaVlGyxxQEAAJC+SMwTlJFh3yS1fqx+H/La\nWLQPebzdRY8cOWIbP3LksHns9xfaxl98cbnlPBgMyu8v1MqVhQoG7TXriSCxBwAAaH0k5gk6ceJ4\n3Nj27Z/ZromN5eb2to3Hxpw2C+rVKxo7dqzKNl4/VlxcpPLygAKBMhUXr7FdH09zJPYAAABoOhLz\nBCXy8me8a8444wzbeGwsXkvGTp0628ZjY4FAqSUZLy4uanKf81NN7AEAAJAcEvNWFG/nz3j69Onb\naKy2z3l0lTsUCjr2OW+oVKU5EnsAAAAkJy0T81WrVmnMmDEaPny4pk2bpg8++CCh+9avX69Bgwbp\nf/2v/9XCM3RmGEajsXg7fzqVjsQm2gUFd1ieZxhGk/qk131GQ6Uqp5rYAwAAIHlpl5hv2LBBCxYs\n0Jw5c1RUVKRBgwbptttus2xt72Tv3r36xS9+oUsuuaSVZmoXr5TFqU95bMxpdbqsLBrzeHI1YcIU\n83zChKmWunSfL18uV4Z57nJlyOe71fI8atABAADSU9ol5itWrND06dM1adIk9evXT48++qg6d+6s\n1atXN3hPOBzWj3/8Y82ZM0fnnHNOK87WyqlGPDbm9HJnbKx79+628e7de1jOx42bIMMwZBgujRvn\ntV1v/XJg/aIQr1TF58u31LS73VnNntgDAADAWVol5qFQSFu3btXll19uxgzD0KhRo/Tee+81eN8z\nzzyj7OxsTZ06tcXmdtppp8WNhUIh2zWxMeeuKsfM4wMHDtjGDxyosJxv3LhekUhEkUhYGzdusIz5\n/YWKRKLtF8PhsKUUJV6piseTK693knnu9U62fHGgBh0AAKDlpFViXllZqZqaGvXs2dMSz87OVkVF\nheM9//jHP/TGG2/osccea9G5nXFGN1vszDOtsXilLHv37rGN790bLWWprq62jcfGAoFSrV0b/cvB\n2rWvWxLjEydO2O53ijXG652sbt26qVu3syxJupR4DXo81KgDAADY2XfNSUORSMTxxcqjR4/qvvvu\n009/+lN162ZPnBPlctmfXSczs/a7SyBQahsrKys1xxsT75q68WDQnkQHgyfM8ZUrX1BNTY05VlNT\no5UrC3X//Q9Jkqqq7BsUHTt21Lzf652of/7zH5bxCRMmW+YXDrskGTKM2nnFjjX0cmsiv4PozxPU\nypUvyDCkESNGOJb/AAAAdERplZh3795dGRkZttXxgwcPKjs723b97t27tW/fPt1xxx3mynTdTprD\nhg3TW2+9pXPPPTfu5/bo0aWROTU8lsh4U57R0M6gdeOHDlXaxg8dqjTH9+yxr8jv3r3bHP/979fb\nxjduLNYVV1xqnvv9q3Xo0FeSpLffflMzZ840x+bOvUsFBQXmS59ZWVmaO/euhH4Hsc+vW+Wv/3wA\nAICOLK0Sc7fbraFDh2rTpk0aO3aspNrV8k2bNjkmcOeff76Ki4stsV/+8peqqqrSww8/rN697Ttt\nOjl48GiDY5WVtWMul8uWOLtcLnO8MdFnZCgcrrGMZWRkmOOGYdjKYQzDMMd37txpe/bOnTvN8c6d\nT9ORI4ct4507n2aOh0I1tvtDoRpzvKysVK++Gm3f+Morr+rSS68w68w7dz5TEyZM1uuvvypJmjBh\nijp3PjOh30EizwcAAGhIUxYC26q0SswladasWXrggQc0bNgwXXjhhXrxxRd1/PhxTZlS2ybwvvvu\nU25urubNm6esrCz179/fcv+ZZ54pwzDUr1+/hD8zHLbXhteprq5NxjMyMmyJeUZGhjnemLprcnN7\na98+66p2bm5vc7yhxLxuPLaMpU5NTY05PnfuvXr88Ucs43ff/WNz/Pvf99pqu/PyJpjjL7yw3FZD\nXli4TPfe+59mbNy4SfrDHzZKMjRu3MSEfv46iTwfAACgo0q7xDwvL0+VlZVavHixKioqNHjwYC1f\nvlw9etS2DSwtLVVGRkacpzS/eB1XpIYT6zoVFQHbM8rLyxOeQ6dOnXXixHFbrM6QIcM0YMAF+uyz\nTyRJAwcO0uDBQ83xDRvW2Z65fv1ayzWJiEQkh3JzAAAAnIK0S8wl6aabbtJNN93kOOb3+xu9d/78\n+S0xpYTES8ydNuSJfeHz9NO72EpRTj89+mcbpy8k9WP9+w80E/N+/QY2Yfa1fcw//PBf5qp2Q33M\nv/760MnjNZo6dZrtOSUlmyUZGjny201+PgAAQEeVVu0S27qGXt5M1MSJ9j7skyffkPDzA4FSbdz4\npnm+ceOblnaKeXkTbPePGzfRPG6OPuaN7Qwa7/kAAAAdGYl5q3Kq/4jGiouLbKOxfctj67OdYsuW\nLbWs2EciYS1b9qx53lApSyyvd7JycjzyeHol1cc83s6gjT0fAACgI0vLUpb2qlOnTg414p3M43gr\n4p06dVZVlbUDSmyN+a5dX9rud4o1JisrSz5fviSjyT3GnVbUR4/+jmVV/FSeDwAA0J6xYt6MsrN7\n2mI9e+aYx0415rEr0KeffrptPLbGPCcnxzbu8XgSnl+8UpY6I0deYqsPl2prxDMz3eZ5ZqbbUiOe\n6M6gDT0fAACgIyMxb0YHDx50iB0wjyOReDXiZbbx2B1HKyvtGwzFfmZurr1ve2wv90RKWRrj8eSq\nf/8B5vmAAQOpEQcAAGgmJObNKF7ifaq6d+/uEOthHjuVhrjd0diJEyds406xhgQCpdq+/TPz/PPP\nP7V8mfD58i2fR9cVAACAxJGYt6LOnU9LKNaQeCvqsfXqjcWSVVuqEu3dHgqFLKUqHk+u8vK85nle\n3gRW1AEAABJEYt6KevWyJ6m5ubkJ33/s2LFGY7UvVVqldsW64R1VAQAAYEVi3orKyuwr3mVl0RVv\n5w2Eoo1zDIftNmNjn332qW3888+jpSfOGxzZYw2pLVWJvvzpdltf/gwESrVhQ7F5vmFDseMqPwAA\nAOxIzFvR8eONr3j36mVfPY+Nde7c2TYeG/vNb56xjf/614vNY+dSmMQTZ48nV/36RV/+7N/f+vJn\nol1ZSko2q6RkS8KfCwAA0BGQmKeR2NXzaGy/eVxTU2Mbj43FGz/nnHNt406xhgQCpZZV+U8//aTJ\nK+KN7QwKAADQkZGYp5Gamsa7usQrRXG57P84Y2MFBXfI5cqIGctQQcHshOfn9xeqpqY6Zr7VlhXx\nRPqkx9sZVGJFHQAAdEwk5mnF/rJkJJL4C5Txur7Yu6Z4HbumNJQYx2u3GK9PutPOoPVX3BNZUSdx\nBwAA7RGJeRtiGPZ/XLGxs846yzZev/d57AumTi+bBoNBLV26WEuXLm72UpNEatDjrahTCgMAANor\nEvM2xKEpiyVWWrrfNr5//z7zuLZrSnRVe8OGdbYV69WrX1VVVZWqqo5q9epXLWPx+qT7fPmW0hmX\nK6NJ7RoTWVFPpBQGAACgLSIxb0PiJcZOu4zGxuJtEBQIlOrNN6PJ7ptvrnXY2bPhdom1HL49xNxv\nj0Xvj7einkjiDgAA0FaRmKcRp1KUs86KlqLE9jR3isV7+TNejfiSJYvqjUa0ZMmvzDOPJ1de72Tz\n3OudYmuXGA5Hu8CEwzWWxLqiosL2+QcO2GMNSbQdIwAAQFtEYp5GvvrqK4dYpXl83nnftI3HxuKt\nmMfr6rJjx3bbeP2Y1ztZ3bp1U7duZ8nrnWS7vjGLFj1pi/3qV0+Yx6daCgMAANCWkZi3IVdfPdYW\n++53v5fw/fE2GAqH7R1gnGKhUMhSElOnttQlyzx3u7MsibXTBkv2WOOlMI09HwAAoC0jMW9DXnjh\nOVussPDXCd/v1BoxNmY4vF1aP7Zmzevmy6Fr1rxe71m5llV0r3ey5fl9+pxve37fvtFYvFKYeM8H\nAABoy0jM25Bjx+wrzrGxTp0628ZjY7H12XWqq6Mr3263vYY9NmZ/+XKNbRXe652snByPPJ5etlKX\nO++ca0n0DcPQ7Nl32z6zMY09HwAAoC0jMU8jmZn2xNgp1pDs7GyHWE/zePfu3bbxXbt2mcehULVt\nPDa2bNlS24r2smXPWq7PysqSz5evmTPzlZWVZRnzeHItO4GOHz/RsuKdyM6hjT0fAACgLSMxTyPV\n1fbEODYWr9TEqY95aWm0j3lsUu0Uc7nsz4+N7dljT+ydYtu3f6bt2z+zxSVp6tTp6tSpkzp16qQp\nU6ZbxoqKXrNd/8Ybv7PFRo68RCNHftvx+QAAAG0ViXkaiZd4x1tRj9eVxeWy7/QZG5s+/Ye28R/8\nwGce199FtDbWw3J+9OgRrVtXpHXrinT06BHb9VLtjqNOrR937foyoRgAAEB7RGKeRiIReweU2JhT\nJxSnWEN69+7tEDvbPP7b3/5qG9+06S/mcXl5uW28vDxgOX/qqZ8rHA4rHK7RL3/5C9v1jb08CgAA\n0JGRmHcgBw4ccIhFN/jZufML23hsLBi0b1AUG9u27UN9/PE28/yjj7bqo4+2mufxXh6N16cdAACg\nPSMx70Di9RHv3Pk023hszKndYWzs6aefso0vXrzQPI738mhBwR22+wsKZttir732W7322su2OAAA\nQFtGYt6BxO6q6RSbO/de2/jdd//YPL7zzrm28TvvjLY7jPfyaryXRysqKmzjsSv6UmI17AAAAG0R\niXkHEu/l0CFDhmnAgAvM84EDB2nw4KHmebzEOd7z421wFG/FXYpfww4AANBWkZjDom/ffuZxnz79\nLGOLFj1pu/5Xv3rCPI7drMgp5tR3PDYWL7GPV8Neh1IXAADQFpGYtyFutzuhWLICgVK9/fYG8/zt\ntzdYXs48dqzKdk9szKkGvW9fe6wh8TZISmRFnVIXAADQVpGYtyHx2iXG64Mez5Ili+pFIlqy5Ffm\nWadOnW33xMacatBnz77bFmtIIu0Y46HUBQAAtFUk5h3IaafZu67Exr74YrttPDbWp09f27hTrCHB\nYLDR2PHjx23jsbEf/nCWbXzmzHzzONFSFwAAgHREYt6OxNug6BvfONc2HhuLbWXoFPvWt75tG7/4\n4kvNY/uKuywr7vv27bWNx8acFvdjY3/84zu28f/5nz+Yx4mUugAAAKQrEvMOxKkUxumFzYa88spK\nW+y3v33RPHZacd+xIxqL10c99sVTp9jOnTts404xAACAtojEvB2JV2O+a9dO2/iXX9pjDampsa+o\nx8acVtyt9zjVu0dj9WvUDcOw9Ek/ccJe6hIbi1fqAgAAkM5IzOOoqjqa6ikkLF7XlnilLi2tc2f7\ny6OxMY8n19JHvX//Cyx9zuO9fLpp019s43/965+Sni8AAEBrIjE/yeXKSPUUTlm8lytPldPvKDYW\nbzwnJ8c27vF4zONAoFTbt39unm/f/pmlXWP37t1t93fv3iOBmVuVlGxWScmWJt8HAADQkkjMT1q4\ncLEt9rOfLdTpp3dJwWzSU25uri3Wu3dv89gp8c7JiSbeTu0QA4FoO0S/v9BSDhMO18jvf948Lysr\ntd1fVrbfPM7Lm2AbHzduouU8GAzK7y/UypWFzfqlBQAA4FSRmJ/k8eRaNsjp0+d8ffObfVI3oTT0\n1Vdf2WKVlZXmsVPP8fLy6Ip3vBrxw4cP28ZjY50729s9xsY2bFhnG1+/fq3lvLi4SOXlAQUCZSou\nXmO7HgAAIFVIzGPEvjzo9CJhW5eVlZVQrCFOfcZjE+t4NeynnXa6bTw2Vlq63zYeG5s7917b+N13\n/7iRGVsFAqUqLi4yz4uL37CUygAAAKQSiXmM2Bclm3Or+3QRDjeeODuV7cQr5YnNxXv3Pts23rv3\nN8xjn8/eIeXmm28zj10u+7+OsbGePXvaxrOzo7F4pSx+f6GlZWQoFLKUygAAAKQSiXkH4tSzPDZR\nnTXrNtv4Lbf8yDyOv+Lu1K4xehyva8pdd82zjc+Zc495HG8Do5deesE2vnJlNHbixAnbuFMMAAAg\nFUjMYapfj10bi9ZhRyJh23hsbN++PbbxvXujsXiJce2KeDSTNwzDsiK+c+cXtvtjY7t2fWkbd+rd\nDgAAkI5IzGFy2mwodmfNU11xduqCEgpFY35/oaRobUwkErGUmsR7+TNeKUxLt5OsQztGAACQDBJz\nNJtOnTo1GnN60bKsLPGXL+PVqM+YMdM2fuONN5vH8V4ubQ60YwQAAMkiMT9FbWln0Jbmdttr0GNj\nsbt4OsVqE29rKYvPd6t5Hq9Gfdu2f9nGP/zw/fgTb0a0YwQAAMkiMUezOe+8bzYai/fyaEVFheqX\nshw4UNFs88vOznaI2Tu9vPbab/Xaay83+fmBQKnWrYu2Y1y3jnaMAAAgcSTmCRo1arQtdtllV7Iz\naIzJk2+wxaZMmWYeHz16xDZ+9Gj0Lw5PP/2UbXzx4oXm8eWXX2kbHzXqKvM4XrvEAwcO2MbrJ/5H\njx7RunVFWreuyHG+UsM15H5/oaXzTXU17RgBAEDiSMwTdOedd9tid931HymYSfqKt/Pmnj27beN7\n9uwyj6urq23jsbGXXlphG1+5sjDhz0/EU0/9XOFwWOFwjX75y1/YxhurIU/05VheDgUAAE5IzJvg\nttvucDxGLaeyjUAg0GzPj5e4Hz582DYeG8vN7W0bj41t2/ahPv54m3n+0Udb9dFHWy3XN1ZDnkjX\nl2AwqOXLl2r58qUt+nIoyT8AAG0PiXkTnHvueY7HqBXbszwai66Sd+/ewzbevXu07jteu8Oamhrb\neDgcjcV+llMsXo17vFKaeDXkzl9MrLE1a17XoUOHdOjQV1qz5nXb9c2BzjAAALRNJOZoNU4vch44\nUG4en3nmmbbxM8/sZh6fOHHcNn78eDR27Ngx23hsLF6NezzxasjPOedc2z2xsUCgVMXF0cS+uLio\nRV4OTaQzDCvqAACkHxJzJCwjI9MWy8y0xxoSiUQajZWVldrGy8qifcbjrajHs3v3LodYdLfQu+6a\nZxufM+ce8zheDXm8l1+XLVuqcDi6U2o4HNayZc8mMPPE2ZN/e2cYVtQBAEhPJOZImFMpSXW1PZas\ncNieuMfGzj+/v228X79ozKlDTpcu0VhsUuwUq6w8aBuvrKxsZMZWRUWv2WJvvPE783jXri9t406x\nRDTWGSYUiq7qh0L2zjD0WgcAID2RmKMJ7Imzc6xlnj99+k220enTf2geX3PN9bbx730vL+FPX7r0\naVvs2WcXmcfxSmGcu87YY6eqsRdI463q166oR5PxliqnAQAATUdijrQRr9RlyZJf2caXLPmlebx+\nvVxRI5gAACAASURBVH31t7j4DfPYMAzbeGwsErGvqMfG4rV7jFdjHq8rTKJO5QXS2hX1aDIfCgXp\ntQ4AQJogMUeb8dVX9rKS2FITp1Kb2Fi8xN8w7P85xMbi3V9QYG2haRiGCgpmm+fxusLUaezFTPuK\n9xrLinenTp1s9zjFAABA+iExbyZVVYl390BquFwZjcZycnJs4zk5HvM4XmIuOa/K10kkaY73Ymbt\nC6TRLxvhcI3lBVKfL1+ZmW7zPDPTLZ/vVsu42x39MuB2Z1nGAQBA6pCYo83IyLAn1k6xhvTubS8b\n6d37bPM4XjvHeIn5smVLLeeRSMSWNMd2kXG5XLakON6LmfHq2D2eXI0bN8E8HzduojyeXpZxr3eS\nee71TraMJ4p2iwAANL+0TMxXrVqlMWPGaPjw4Zo2bZo++OCDBq997bXXdNNNN+nSSy/VpZdeqltu\nuaXR61vK6ad30UUXjbTFv/3tf2v1ubRXzjXciW/0dODAAYdYNBk/1VKXRF7+jP2I+h8XbwMjKX4d\nu2Qt3wmH7bulXn/9OLlcLrlcGbr++sRfjq1Du8X4X0z44gIASEbaJeYbNmzQggULNGfOHBUVFWnQ\noEG67bbbdPCgvZWdJP3973/X+PHj5ff79eqrryo3N1e33nprs24Fn6j77nvIFvuP/7iv1efRXjm1\nLoxtcRivhttpg6LYWLx2irGtF51iTivPsTG/v9DyMmkkEra8eBlvAyOpto499suAy+Wy1LEHAqXa\nsKHYPF+/vtiW3G/cuF7hcFjhcI02btxgm3M87aHd4qkkzvG+mPDFBQCQrLRLzFesWKHp06dr0qRJ\n6tevnx599FF17txZq1evdrz+iSee0A9+8AMNGjRIffv21eOPP65wOKxNmza18sxrzZpV4HiMU9e9\new9brEeP2FjjXVeysk7txciJE6faYk6bCjUkXivDeONSbSnKgAEDzfMBAy6wJP/xatATbZfYUOKa\nyKp+ujvVxDneF5P28MUF6Aj4yxbSUVol5qFQSFu3btXll19uxgzD0KhRo/Tee+8l9IyqqipVV1fr\nrLPOaqlpNqpv3/Mdj3HqnHbu3LUrGgsGG09snerRnV4IbcjatfYvh7GbCpWW7reNO8Ua4pQkxrY2\nlGoT4x07tpvnX3zxuSUxjldOk0i7xGAwqGXLnPukJ7Kqn+5OJXGO98WGPvFA28BftpCu0ioxr6ys\nVE1NjXr27GmJZ2dnq6LC/mKekyeffFK9evWyJPdoH2JXghuLNSQzM7PRWLwa8qqqKtu4U6wh8RJv\npyR+/35rLN7OnvHKaRKxZs3r+vrruj7p1i8jiazqS+m7EpVo4vzaa7/Va6+9bIvH+2JDn3igbeAv\nW0hX9kwlDUUikUbb0NV57rnn9NZbb+mll15yrDduiMtlyOUylJERTcIyMlzKzLQmavHGE72mvnjX\nMN4842PHfk9FRdYNea655jpz/LTTTrO1vTzttNPM8Ya+GNSN9+7dW599dtgyfvbZZ5vj+/bttd2/\nd+/eJv18DSX3ddc4leZ07tzJHL/lltv03nv/NGvdXS6X8vMLzPGyslKtWxfdlGndujd0zTXXmMm9\n03+HLpdhm+Py5b+WYUgjRvymSf8ttrSVK1+wJc4rVxbq/vuj74ccOXJE69atkWFIXu9Ede3a1Rxr\naJOqup8/3nidf/xjsyTp4osvObUfCEiRtvzvcFmZ/Qv6d7/73aQ6VAHNLa0S8+7duysjI8O2On7w\n4EFlZ2c3eu/zzz+v5cuXa8WKFRowYECTPrdHjy4yDENnnNHZjJ1xRmd172592S/eeGPXxG7dXp/T\ncxhv/vHY2ug6a9eu1u233yZJysnpqS+/tP5zysnpmfDzMzOd2jm6zPHjx4/Zxo8fP2aO9+/fz1ay\n1b9/P8vnN/RlMDqHxsePHz9dkrWl45lnnmaO/+xnv67X8jGs5cuX6oknnpAkud32nzEzM8Myxxde\n+J0OHfpKkvTWW2s1a9Ys2z2p4jR/t9s6/8ce+4n5JWzRoif05JNPmmNz596lW265xXwpOCMjQ3Pn\n3mXeP3fuXbrtttvMv2q43W7LuBT9E7phGLrqqlFp9cUl1qZNm2QYhi677LJUTwVppq38O9yQp55a\nYfuC/tJLL+inP/1pCmcF1EqrxNztdmvo0KHatGmTxo4dK6k2cdi0aZNmzpzZ4H3Lly/Xb37zGz3/\n/PMaMmRIkz/34MGjcrkMHT4c7dBx+PBxVVZak7R4441d09gGRE7PYbzp44ZhOG74Uzfe0M6gdeN7\n9uyxje/Zsyfhz9+9237/7t17LPOrL3Z+o0dfbUvMr7pqjOXzq6rsnWWOHYv+e1Zdbe8sU1MTNsd/\n8Ysnbb3Wn3jiSf3v//3fkqTt27+w3b99+xfm/aGQ/XcYCkV/h2VlpXrllVfNsVdeeUWXX35Vs69E\nJbtad9NNs1RS8k/z/ym73Vn64Q9vMee/deu/9K9//cu8/oMPPtC77/5dQ4YMlSQdOlSl2JeMIxHp\n66+PqXPn2vs7dz5T/fsP1EcfbZVU+3Ju585nWv4ZvvbaKyotLZUkrVjxkm64YXqTfobWEAwGtWTJ\nszIMqW/fC9pc4oWW1Rb+HZYa/t+JeP87hvQVb6GsPUirxFySZs2apQceeEDDhg37/9s78/Aoquzv\nf6vT3dk7eyAhgUBYwg5BYAARRB0QZARReUUBcUCBQdx1GHkG3HCXRbYRUEBxHQdERfQnoOOCy8im\nQcGERRIISSAb2dPd7x9N3a7ldt9qOksTzud58jyVe6qrb1fdqvrec889Fz179sSGDRtQXV2NG264\nAQDw8MMPo3Xr1rj//vsBAGvWrMGyZcvw0ksvITk5mXnbw8LCEBYWZug7HQ4nHA4n7Ha3qLHbHTqR\nI7J728dqDUVkZCTKy9WhDjZbFPc4SshuzO5JmLs/L0HpLZbLZLsn4W70+z2lW5TtoaFhOHdOff1D\nQ8OYfd26NbrPr137LwwcOIT9n5fH7zy425leQFksVmY/elQvvI8cOaI4B/q853Z7PbN7yvUu21ev\nXqFKCelwOLBq1XI8+uhjus9dKLW1tXjttbWQJAldu/b0STTGxSVi7Nhx+M9/3gXgWmApNjaB1X/J\nkhd1n1m8+HmsWvUqAOC119bqst68+uoaPPjgPwC4Ytizsw8z+++/H8LJk6dYx6SgIB9btrhDhbZs\neR9DhjR8x8VfNm9+n8Xeb978H0yYcHMz14hoavbs+RGAhMzMy1TlBQX5+OAD9+jjBx/8p9HasKc6\nGMHbc2Ly5Gn4+ecDqg765Ml3CJ/1RNPiz/W/mAmoyZ8AMHr0aDzyyCNYtmwZxo8fj0OHDmHt2rUs\nLV5+fj4KC92rMb711luor6/H3LlzMXToUPb36quvNtdP8Mjq1et1ZfILn/AfUR5yq9WiszekJ9CT\nqJURpVvkjapoy0S52EWri3oKp3Efy/vkTk95u2X++OO4zs4r82dyqL+TtkaNGgNJkiBJpgtaYMkb\nosm5RrPaNOfkWX9TahIXP94yljTVBGcjWVO8tUFvz4mGWgGZaDwu5aw5ASfMAeDWW2/Fzp07ceDA\nAbzzzjvo2bMns23cuBFPP/00+3/nzp349ddfdX9z5sxpjqoLGTlyDHebMAJvArB4UrAMX1TqhajH\nb/cQiiIjErUffsiPcfcF0SJKgLozou+seD+Hot/ob0pIQJ4cyk/HKOMtj7q/ovHjj7fC6XTC6XTg\n448/VNluu+123f6TJ9/BtqdMuUNjlVQdHxFGstp4S1fZFBhNqXmpvjQvBZoqY8mFCmvAexs08pzw\ndwVkwn/8uf4tmYAU5i2ZwYMv524TRtCHUfDLAhNRukSRKAZcMc1alGVr1qzS2ZULDPFyuSvL4uMT\ndPb4+ES2LRqVaN06SWfXlm3Z8m+UlsrpGP+t299fb503Yet6Ybs7SNoX9u7dX+vq8+23/2Xb+rSt\nTpw54y4bPfovus+PGXO9rswb3tJVBgpGXpqB7lEP9Po1FyJRO2XKHbBY3M4Ai8XqU+dUxl9h7a0N\nGnlO+LsCMtD8bai5v98f/L3+LRkS5gRhEE/x1UYRLYAkyrPu2t97KMuxY0d1dmWZdsEibVlRUaHO\nXlRUwLaVYTK8MpFHX//A3eLTC9cI3oSta2VU5YiCemVUEUuXvqArW7Lkeba9bdtWnf3jjz9g27x0\nlsoy7cqqH37IX1nV3xeyt8/rw6GCVMJL37nR1zHQPer+hkkEAo1VP5GoNRoGIqqfP8LaX+HWECNv\nzd3Gm/v7/cXfjlVLhoQ5QTQRIm+zMjbZU5mocyAS7iJEXvu2bdvp7MoykfB0CWP15EmlMPbXWyfy\niItWRtWGqkiSOlSlqkq/oJSyTBSqIvKor1mzSjd5Vttx8PeFbCxUxnOImCiOHmiaYWiR8GusMIlA\noLk7FqJ5GqI2ZqRz5w2RcBM9J4yOvHkLuWuKUaNAD/W40N93qXvERZAwDxC8pVMkCKOEhuozESnL\n2rRJ0dnbtEll23fe+Ted/a677mbbM2bMUgl1SZIwY8Zs9v+gQfrwrMGDr2DbImHsr7dO5BEXrYyq\nDVVxOtWhKsqXPa9MNDlW5FE3Mnm2MUcUANc10HaelNdA1PloqJeuP97KxgyTCAQas2NhJFTF2zwN\nwFgb89a58zdcpiEmd3oLuTPShhqiAx3IoR7+dA797Vi1dEiYE8RFRHR0NKcshm2PGPFnnf3qq0ex\n7ago/eejoqLYdqdOnXX2jh29Ldil9qy+8cZ63R6vv+7OPCQSxka46qprFNtXq2wi4S8KtRGFqojC\njXiruyrLRKJWNKrSMEP4nkcUjCDqfBgdhvZHeIuEaXOGSTQ2jd2xEIlaURtyhWOpVw/W1k90H4jq\nYES4jR07HgkJiUhMbKU6lvx5s9mdpctstnBG3jyH3Blp4/561Jsi1KMxs2P50zG51LPmkDAPEMLC\nwhEbq1/dlDcZj7h0KSkp4ZQVs+2PPtJnftm61e2xMiKqtGjT/WlXBvXlhSASxlOm3KHzyGtfuEuW\nuMXz0qXqvOO8h3erVsYf6LwVepVlolAeUSiR6PyLYvj9Fb1GYuzFokUvUi9E3F+o8BYJU3+FdUN0\nLIzYL5Sm6Fh4E7WiNuQKx1I/I3yZxyHjLWtKYmJrjB49lv0/evRY3b1vtVoxZMhQDB48VPfcSUxs\nrXI4dOrUmTPy5jnkToS/HvWm6Bz6I5z97Rwa7VhFRUUhKipa1wZbOiTMA4iXX35FV7Z06epmqAlx\nsSLyuObm/qGzK8tOn87X2U+fdj9wRZ6uu+++X2efO/cBLzXWo12ZVMnBg7/g998Psf8PH/6NrbIJ\neF5gyfh368+fsmzGjFm6PPHKUB5RKJEo3aTNFqWzK0c0jOAtNlY0ogCIRUtKSiq0KMuMZKbxR3iL\nhKmRYXKTyZ2JSDu51Qj+hNIY5UKFfUN4U61WK6ZMuQOTJ9+hu6dEbchIOJZoLgogzpqiXBBOubCf\nTG1tLb755it8++1XXOGbk/M7+z87+7BPc1FEbdxfj7qRNuyt82wEf0ZVjHQOlZPYtaMmRj3iPuRW\naFGQMA8wxo4dz90miIagulrv0VWW8UMx3KuNKr3zMqWlei++JyoqznHK3B7pp59+XGdXli1e/JzO\nvnjxs4a/X4QonWRiYmukp7tFa8eOnXVD7FqmTp3OtkUdp/z8kzr7qVPuMlHGFMB7bKxIVANi0TJj\nxixoc98rOyeiOHrRxL+mycjg+Y1vxJvnTyiNEbwJ+4ZIyQlcuPA30oZEuEbGPC+EZmRURNnOtm3b\negHpFD3HuIt+4+bN7+ns8mrCRvDXIy7qPMv4ux7EhWJkITVRHvkPP9zM5ikE4jyPxoSEeYBx2WUD\nuNsEEQjwhHtenlu4i2K0+Z4ot8eeHybh9uLzJkkrhT1P+Cs/I+oY3HWXfmGymTPnquqSnX2Y/f/7\n74d8yoMuEuYiux61wBTF/7om77of+5Kk9vgDxrKumEzeF6XyhpHje0MkTEUTkF2TW9WhGNoJxuow\nib/oYqy9eQMbIhWfN1Ep6vgYGREQZRzx1jFwjRqpj69sQ6JwLxlvzUbUOROF0/ib9cXV+dSWuX+j\nkexO3lZgNjaq4z1lqbfnENAwq7d6aqOie9DIQmreRkQKCvKxebPbqbB583sBNc+jsSFhThAEw8gi\nR97gC193mb+54EX1U3YSZJQvTJ49L89tHzLkCtVcj7i4eNVCYPr4WadKEIheSKI88krRzCvTi0qH\nQLA4NFlpWqNz5y7s/86du+g8baLfIKqDaJi9vLxcd/xz59xl2nkGWlEjEqa8eRIbNqzVlRlH3T5F\n3kCjqfhWrlyGVauW+RxfbET0KMOvePeXaJEv35azH6dqQ+PH36Q73g033Kz6X9SGRBjL7uS58ycS\nlvqFxKDKzmRk1ED5+3x5xrnxnrK0vr6e/V9fX9/gKUtra2uxfPliLF/+kq6Niu5BEUbC1dRt2Lf2\ncbFDwvwigdIpEk2Bv8JZ9HnRyqWDBw/V2S+/fDjbDgkJ0dmVZSEhoRy7u8xq1ce2assyMy9j2337\n9lPZeAs4HT+uL/OEKAY9Pb2jzt6xo7vs7NmzOntxsbtMFN9bUJCPI0ey2f9HjmT77IkS1SExsTXa\nt+/A/u/QIV0l3Hii6sQJdZmyzWhHDETCXpRrXiTKCgry8fHHbuHx8cdbfRbGIt5//x1UVVWisrIC\n77+vDoHwN5RHNEFblDVFNCIAAOPG3YiwsDCEhYVj3LgbVTYjok10DkUeY5EwFh1fVMeXX35JZ1+2\nzD3RXNT50K7ArO3A60PeJJ1HvTFTlhoJ13rvvTdRU1ODmpoavPfem7rv84ZoDoGojYvmOrV0SJjD\nFUOZnX1YNaSem/sHK8/OPozq6qpmrCFBBAbKIWwZXly2J0STK/ft26Oz79nzo+K79OkKlWXXXz9B\nZ1e+RBMS9FmOEhIS2XZBQT4+//xT9v/nn3+qEWXeY/R5WV2UnWpR/SZOvFVnnzjxNrbNm7x74oS7\nzFgqQ+9hJKKX6h9/HNPZjx93l4mG2UWZa1asWKqzr1y5hG2LvKXBwd47b0Y87qL4WG8YEf4ffeQW\nTR99pF/91hui6yMSbaJRH6O/32y2wGKx6MqNdFxE7VSPukcvWk9BdHxRHZXeaF6ZKMZc1Eb1Hnn1\negn+YmQ9iGuuGcn+v+aakbpwrW3b3Pnpt237UCfstfNMlMLe38mporlOLR0S5gAWLJiHBQvmqXq5\na9asYuULFszj3mhNSVhYOKZPn6kr/9vf7muG2hCXKrw83jyxfKHwRoaUZXFx+pSicXHxbPuDD/SL\nmShfooWFhTp7YWEB2xaJQp7oU5adOOHdYy2qn0g0ikYkamv1gkNZZkQ0paam6fZp187tARfVYcWK\npTrhpzyHolGPY8eO6OxHj7rLeE6Sqip3WVpae0793WUij7voHImEsega6tuYEytWuM+PSNiL4pdF\nopQ36qMsM9JG/J2YJ0q56XuoizrsoyFSenpDNDIlStsqmoujTxurvsZGstqI+O67b7nbrrro67d0\n6fOaEs/ZsxITW6vskgROHnq3cLdY1MLd35DKix0S5hcRV155jUoEmc0WVfwrQTQ2Sm+rt7ILRfRA\n5g1nKoc9eaJNWSbKSqMM85DJyXGXKb3rMomJ7jLR5E1Rx0MkivhZY4x3jIqK9B0Trafuww//o9vn\ngw/0ccieOHIkR1eWk+MuU640yytTetp4ZaJc76KUlryUladOuctEE4T9zYpy9Kj+/CjL3njjNZ2d\nV+ZGfc+IUnKKQn14wl7pfRWFuhjxhouEq5F5Dt7CdWJiYnWfj411l4mErWghMd8naatD9kTXwLW/\nUuyqha9ogrOo8/bNN//F2bNn2P9nz57Bt9+6J67zwvOUnTeRcN+27UPVCENdXR22b/+Y/Z+Y2FqV\nGtZmi1K1iUmTpuqOf9tt03RlLRUS5gpm9B2EeUOuxrwhV+OxYddiRt9BzV0lHffd9xDbvvfeB5ux\nJsSliCgUxf/je/fGioQ3T/T5kspN9MLlxT7m5+vLLvT4IlHD7xgZz5PN8xpqf5PoGii9zzJKL7Uy\nNpZXFhkZqbMry3iOMWWZSFQlJrZGZKSN/a996YuugWiCsL9ZUUTnVxkWJKMURaKsMiJE389vI2pv\ntrdQF1HHwHO93Nv+hqLwwkKU4SOizpVoPQbxCr3ePfa8tRWU+eJFMepGJjh7y/b0r38t131+9epl\nujJPiMLZ3nxzg86u7FwePPiL6hqdOVOkWo9CmRVJZtSoMYbrd7FDwlxBii0aPRKT0SMxGR1jE5Bi\n0y9f3twoXzjKbZocShAALz+18oVvseg9Ycoy0eRRUcdAhChGnx9bqS9rTESjFuHh4Tp7WFg4d5v3\nGZG3TzQqI8pcc/DgL6rc+iUlxaqXvghe3LSyzNjkT8/eTtEEaH8RhXuJ4HmzlWUNMflVJFwbOxRF\n1LmKj9efL+U5FGVXEk1OFYUEikZVRB53rbB3lbmFvXJxJl6Zv6NWos6fKJRHGd8uo/S4t3RImBME\n0WJQToR0l7ljP+vq9JO6lGWtWrXW2Vu3dpeJXkgiO/+F756Q6q/wbwj8zcxz330Pc8oeYdtvvLFe\nZ3/9dbcHsE2bFJ1dORIiOscvvviMzv7CC0+zbVGYgkg4i0I9xPHRvHPpLhN1DETeXtE8iuTkNjp7\ncrL+nHtC5M1u3TpJZ09KUpeJQk1EoS4ieB0R3r3nCd5cE+U8AFF2pY4du+jsnTt3Zds2m01nV4Z2\nKOdM8MpEc11E8whCQ/UOCGWZckSEV/b//t9knV0ZfiJqY6Ln3KZN63V25TOipUPC3CC5uX8EdNaW\nsLBw3HzzJF355Mn6lQgJ4mJF5M0Vx356F0VKASNTUOAuE6VbFIlGZVynu8w9pHshsatKRC/chuBC\nJhcqh7lFn+cP87uFKU/4KctEL33eisrKbDkib6go1EM0uVTk8ReNGIhi0EWiTiT8RRlFRKEqypAM\n9/HVZaL7rKysVGcvKyvTlXlCdHxR54Y3AVlZds89+jDSe+91h5lu3aqf5L1li3uSNz8doDjcR4Yv\nfN1lork07dun6+zKMtEKyAcP/qyz//LLfrbNc3AoO1bKtSLcZcY7Ti0dEuYGWbNmVUBnbQH4qdgu\npbgsouXDH2bXvwQ8IRLWIlEnEt6iNGu87/clm4Jo8qe/5wcQ/0ZRuM2mTet1dqW3SxQKIZqcycOX\nhA3KFSFllNlyeB0DZZko1EOUp50njJUdDxGiGHTRPJDjx/UZRZTHFN0DIm+qaPVdQJw9SDQXQtS5\nE/2Gd97ZpLO//fYbbFv0nFDm7XeXFevKPCEalRG1QX4oi/v3iUa9RHnYRR5x0T18IQs4KSemizqP\nLR0S5i0MZa9duU0x6ERLwF9Pk3jyKk/hucvsdr3w5pV5gpdHPT5en+nFE/zYUPf387LWFBQYn5wK\niL32Im+cCNE1EOU553UM8vLcZSJRI/p9vI5JUJD3V6WyYyAShTyPvFJUtmuXprPzUkBeON5HjUSI\nrj+/Y6IOMfN3kra/czFEHvHoaP38spiYGLa9evXLOvuqVfrwF0+IPNKi54xogrLoHhN1TPbu/Z/O\n/tNPP7BtUeeLd/x33nEfXzRBXBRu1tK5dH5pAzAjsz/iz09sCjFbkFtWgjWKxU8CAWXsHi+OjyAu\nZUSeHlFGEH8nvjWEcPaGKMd3Q+BvuI0IUSiHKOWkaGJbWFiYKrQE4E9oVaJ0QIo6BpIk6TyW2sVw\ntCjLevfup/OK9+lzGS4WHA69yNeXeZ+kPXjwUHz77Vcqu3IFYNHkx+DgYF27V45MBQWZdaNbypEn\n/qjNSbbt7z0gCpcSOQj8RdQxEYUziTpforSzVqtVN+qhDIGqqdGfH15ZS4U85j7gytrSGj0SW6Nj\nbFxAZm3xBMWgE4QYkagTIRJdTSGcGx//PK7NjShMwt+OgSiMIDo6RmdXemNF8ckieA6ZmBh3TK8o\n44YIURs3klKVL/zcwk674A0AlVD3d4KyaFSmsTufIngjNEqPur8LDImyT4myyoiek+K0sPp7TFnW\n3Oe/uSFhfglBMegE0bj4KxgIMaIYeH+HwcXeTP8Q5dj2F378s3vSsShGXERDrMooFnbeQx1ENERK\nR2+IwqX8RbReAW9RMWUZP0bbXb8pU/QOualTp7NtUQy6/4g69xd3599fSJg3EHKWFk+ZW5o7a4sM\nxaATBNGYiCbO+Qs/HV8y225sYX2pc2HezKZdTr2xO8j8kDdlYeOGoogmmYuE/WeffaKzf/qpO0/4\n5s36EZr//Oddn+tJXBgUY95A8BP6u8see+xpdOzYuSmrxIVi0AmCaExE3lCTKUjn/eRNhvMEf/VV\nd0ywv6JMFCMe6IjqHxISqnMUKcMYgoLMusmHPA+tbzStt7OxhTk/K4zSI9+4Hl9RVhsR2dm/ey07\nckS/wBGv7EIJDg7WjWD4EorT0iGPOQHAFYM+cOBgXblywg1BEIQIUUYJXkiCL3H8/s4DEKFMCydz\n223T2La/qdxEoSC8jCC8uHRPiERpeLh+cRzl5Fd/Mw8RFwPeOw6Nv9CZ/+FQLRnymDcgMzL7IsVm\nQ/X5IaWiykqs2bO3mWtlnLlzH8Ctt6on3cyadTcA76EulZUV3GW4CYIgLja+/vpLXdlXX+1i83FE\nk0NFiIRzaal+cZ3S0hK2bbFYdaE5vEV9PHHmjH6RK17cO0F4wmzWZ7XxZR4Hb/KtLylXWzrkMW9A\nUmw2dIyNRY/ERPRITEQKZ9ndQGf69FncbYIgiKaAJzJ9EZ7+cvy49+XMGxuRcBdNfiWIxkYU4074\nB3nMmwh5Uqh2cqhMSkoqN4VRU5Oa2pa7HRYWjoSEVigsVKcaS0xsjbCwcPKoEwTRIIhWdbzUIW8j\nQbRsSJg3ERfL5FBvLFmyErfeqk65uHjximaqDUEQBEEQRMuCxr8Inxg37kbutjePOHnLCYIgUCtg\n4AAAIABJREFUCIIgxJDHXEFuWYnX//1lemZ3pNgiFJNDq7F2T1aDfkdj07dvP2zZ8m+2rWTTpvd1\nHvVNm1yr2FGoC0EQBEEQhHdImCtYs3d3ox4/xRaBjrHuVFjZZ93C/2KJQRcRF5eAM2cK2TZBEARB\nEARhDBLmAUJLiEEHgLlz78eCBfPYtkxYWDjCw8NRUaH2nIeHR9DkUYIgCIIgCJAwVzGj7yCk2Nwe\n7dyyEpUXPbdMnV9W+z/hnVde2agLdXnllQ1+H5eEO0EQBEEQLQES5gpSbNHoGOs5/GLNnh8a9fv/\n2rcjUmzhqK53rWJXVFmNdXuzAbScUJerrx6Fzz/fzrZlwsLCsWjRC/jHPx5U7b9o0YskugmCIAiC\nuCQgYR5ApNjCkR4byf7POVvOtltKqMvQocOYMB86dJjK1q5de4SHR6Ci4hwAV5hLu3ZpwmOKhDt5\n1AmCIAiCuBigdIk+MCNzAB4bfg37m5E5oLmr1OK4776HuduAO8OLqMxXvMW3EwRBEARBNBXkMfeB\nFFsUOsbGebTnlpV5/d9fpvVJQUpkiDvUpaoOr+3LdX1XCwl1sVgs3G2Z1q2TkZ9/km0bgbzlBEEQ\nBEFcDJAwb0DW7NnbqMdPiQxBemwY+z/nbKX7u1tIqIuIWbPuZllfZs26W2XzlkfdGxQKQxAEQRBE\nIEChLJcIubl/IDv7sM6jnp19GNnZh1FdXdWMtWs40tLSudtA44XCEARBEARBNATkMW9AZmT2RYrN\nxv7PLStTedFzy86p9tf+3xDc3jsKcaFBAIAzVXas3+9K6XipeNSnTZvOPOrTpk3X2Vu1SsLp06fY\nthHIo04QBEEQRFNAwrwBSbHZ0DE21qN97Z6sRq9Dm0gLOsRYAQBHimsNf66lxKiLmD17LhPus2fP\nVdkuNBRGBAl3giAIgiCMQMJcQW5ZCarr6wAAIWYLcstKmvj7K7z+3xDc1tuCuFAJAHCmyok39rt+\n76XiUReRktKWdUhSUtqqbJ06dcHvvx9SlaWnd/FbdJNwJwiCIAgCIGGuQrnKZ2MwPbM7UmwR7P/c\nsnMqL7q8mFBjkhxpQvsY19SCo8UOw5+7VDzqM2bMYh71GTNmqWwLFy7SedQff3wR2w4KCoLdblfZ\ng4KCSLgTBEEQBGEIEuY+4K9HPcUWgY6x0Y1RtQbj//UxIybM5VEvrnTi7X31AMQe9RkzZqm8zUDL\nFO633DIZb731OttWsnHjuzrhvnHju2w7La09jh07qrK3bdvesOgW5VunfOwEQRAEcXFDwhyuMA3A\nJSRlsakUmnLZmj0/Nmo9/tq3I1JsbpGWW1ah8qLnlVWr9tf+3xC0tpmQFuvyqB87a9yjfqmEwmRk\ndONuywwYMAg//LCbbSt56qkXdML96adfEH5nQ3nLSdgTBEEQRGBDwhzgCsaUlLZNLiRTbOFIj430\naH91f24T1obPhEwzYs6nUi+uBN7fU2/oc95CYWpqaiBJgNUafNF73MeM+QsT5mPG/EVnv/nmSXj3\n3TfZthLR5NOwsHD07p2J/fv3qPa57LKBzN6YkHAnCIIgiMaFhLmAlJRUwx51eaXP6nqXWC2qrOQc\nsXHJK6/jbjcUrW0S2p73qP/B8aiPywxC9Hl9WFIBbNnjirkWedR5tMRQme7de3K3Zbp164mDB39m\n21oefvhRnXi/776H2bY3cS8S7g0RC++P3V+8HZ/i9AmCIIiLARLmAkJCQg171Bt75c87eqegjS2E\n/Z9XVq3zost5yz1xstzB3W4oEqMkpJ4X7id8CIURcanEuE+cOIlNPp04cRJ3n9tvn4H169ewbS1W\nawhqa6vZthKRV94fYe8vImF9oZ9tqOM35u+njgNBEAQBkDBvUuQFhdwedd9ixNvYQpAeG+ZXHeT0\niM3FdZcFIfr8TyipBD76nzqLybWXBSEq3AkAKK2Q8InG7olLRbgDQPv2HbjbMo8+uoCJ+0cfXaCz\n9+rVFwcO7GXbWsLCIlBZeY5tKxEJ99TUNJw4cYxb38YWnt6OHxYW3qgee5Gw9ld4+3t8o3Z/O0CB\nbr+Yaao20Nj25m4DLbmNEC0DEuZ+ogx1AfThLoBbIIoWGJLzllfXu8Sor8IdcK382SbSAsAVyiLy\noGs5VebgbjcUiTYJbeJcHvW8M/rjJ0QByXGulUtPcux/7m+CPD+2rAL47EdjdbyUhLuICRNuZsJ8\nwoSbdfZHHnmUCftHHnlUZ+/YsQuysw+xbSXPPPOiTrg/+eTzbFsk7IcPvwpffLFDZb/yymsMh+Fc\nqMe/scN8RJC3vGnwR7Q1hWCkdtD8NGfHoLnbWHPbCRckzP3EU6gLoF+gRkRD5DFXrvzJ47beFiRH\nuoTxyXKHzoP+zj7vkznzFWI9vxGEu4j4KAlJca50jqfOOHX2q/pLiDx/35dXADt+1O/Dwx/hXlNT\ng8LC00hMbIWCgtM6u0xKSqqhugQ6kyffzoT75Mm36+zeJrgCQGRkFMrLS9m2khkzZuuE+fTpM9m2\nv6uz+hPKAwBWqxW1teoVda1WK3vZhIaGoapKPbckNDTMUMfByPGjo2NQUlKsskdHxxi2i1J2hoWF\nIympDU6dylPtI7ddfzswzW2/mGnuc9dQ9kCpBxF4GBH2gOcEGS0FU3NXoKUje9TlP+WiNTNmzNIt\nYuON3PJq5JytRFZBObIKypFb7rtHXV5gqH2MiQl0X3h/jx0rvqjDii/q8P4efZhJQakTJ846cOKs\nAwWlelFcUOpE3hkH8s7w7f4SFy2hbWsT2rY2IS5a0tmHDZBw3XDguuGubaOsWbMKCxbMU4l1uWzR\nooVYs2YVnnpqIdcu/3333Tc6YZ+dfRhZWT/jiy8+x8GDP3Pt8l91dZVvJ6OZEE1wffDBv3O3ZWbO\nvJu7LZOa2o67LaMcwVJuyyg7A9qOgYjXXnvLa9nata/r7LyyCz3+ihVrdXZlmcj+1FP69JzalJ0v\nvLBMt8+zzy5h27yOkLZzE6j2sLBwDBw4WGe//PLhzD56tD6b0pgx4xAWFi4cdQkLC0dUlH6tCrlz\nJI8KaVGOCgXy+WsIeyDUQdRG1qzZ6NW+aJH+Plq8eKXhz1ssFp3dYrGwNtK7d6bO3qfPZYbboDe7\nN5rbTrggj3kjI/Kop6Skqjzr3kJhXtsnTpeYV16H6nqXJ/tMlbH4bCUT+5iRZHMJ9lNlDqEHXcsW\njlhX8tFP3u2FpU4ADsV2wxIbBbSKd/2+00X6418+QEJEmKv8XKWEr39ouDpovfK+ZKUBPHvtlR57\nXspJkV0mUMJ1kpKSudsy06fPZB57pTfdKA8++Hf2eV7H4LHHnmZ2nrC//PJh+PrrL9m2liuvvAa7\ndv0f227o448e/Rds27aVbftqF41oAMCECRPx/vvvsO2WxNy5D+DWW79Vlc2a5e4A3nrrVHb+ZCZN\nci8mJhr1WLlync6u7ByJRoUuFSyWYNTV1bBtLd5G1hobkYBs1669riwxsZXhz69f/7aujaxf/zbb\n5mXfeuiheWzb35G/5rZ36tQFv/9+SGVPT+/CzpvFYkFdnXo0X+64XAqQx7yZkYW7/KcU6S7h7ls4\nzPr9pXjxu7N48buz3Pjyk+UO/FZox2+Fdm5WlqTzCwylxZqYQFcyITMIfxtuwd+GWzAhM8inuhnh\nk/85sHGHHRt32PHJ//T1Kyp14tQZ118RR7ifKXUi/4zr78wFCPuYKKBNkgltkkyI4bwLBg0Err7S\n9Xftn13/KxkwEBg+wvV3zUjX/w2FJ6+90mN/IXalRz87+7BHr/7Bgz83mv1iGhG45ppR3G2Z4cNH\ncLcb6vgDBw7ibhu1i0Y0AKBXrz7cbRnRqESg26dPn8Xdlpkz5z7utkyHDp242zLKDhGvcyQaFWru\n89PYdgCYP38hd1tGNLLW3L9h/vzHudtGPz948FDutowy4xYv+5aoDWq1hBZlxi5t9i4AkKQg7nZD\nsHDhIl3Z44+7y5SdFG9lLRXymAc4osml2lzqIkRZWfLLHKipdwna4kq9sG1tM7E85i7UHvBxmUFI\njHKFiBSUOnUe9Ov6qe0iD7oW0WTPHT84AXgW5GcVYv0sR7gXK8qKecLeCahGITW7REUD8fGe69fv\nT4Dc6TdbgLIS4Kfv3PY+g4BQhb28BNi32/PxGhJ/c837axfF8XtbhOpSsHubx9CQ9othVMVfUlPb\ncrdlEhISudsyU6fewUY9pk69Q2cfOHAQ87rzOkeiUaFLkerqKuTmnmD/B3obVIaj8EJTRIwcORrf\nfvsV29Yiyr4laoMzZsxidl7IrCh718KFTzL7woVP6uyikT+R/ZZbJuOtt15n21oGDx7Kzg+v49KS\nIWEe4IhCYVxednc4jL/C/W3h5E8nas5njSn2sH5Sbb1nYZwY5c7KIoesKLn2MhMSzgv3wlIn12vu\nD1/+AHgT7l8L7Lt/8H780hLv/zvhEtzK/32x9xgMRMYA9ef7V1XngF8Uo/JdLwfCo932mgrg16/d\n9o5DgbAYwC7bzwHZX3n/TU1Fc3cMyC7epzHDqQKh83Op25uz8+ftPUVtsOXY5WsQEeFOxRsREYHs\n7MMqe/fuPZgw7969B7KzDwMAEhL6oaUjOZ3Ohg/kvcgoLCwHAGRnH1b18LSCWGRviGM0hl3pifBX\nuPuLv3nMB3SVEH7eWVJRBfzwq7r5XjVAQtx5YX+m1Hneg95ykIW5THmxWphnDAEiFPZzxcBv37j/\nl4W5TGWxWpi36gME2wDH+f5ZXSVwep+6Dq2GSTBHus5rfbmE01+qz3HEcAkmm6vMUSbh3Bdqu3Rl\nCBB5fuJtuRPOXb5PYiYIgiAuPT777LPmrkKjQx7zSwDR6qUN6XEXoRXiWkQLCmmFuA4nUFvnZNta\n+nYDws6H01VWA3sPqu29uwGh5+1V1cB+jX3QACBakXShpETsRW9IfvnWu10pwnmIvONaEc7DCSdM\nFolt6+ySE5Jsl3jXywnJYjq/xRkRyYwCws/HNFbYgT3quRJSZgIQfv7RVVEP555CjT0ZCDs/7FBZ\nB+eekxp7KhB2frJZZQ2ce06o7KbMNDjP26XKGjj2HFPb+6ar7XtzNPZOGvvvGnsXOM83MqmqGo69\nhzT2rnCGunqfkjkIKD8Hx95fFfbuQOj545vNcJZXwLHXvUaCqU8PICzUbS8rh2PfLwp7L479gMLe\nG5LNBuf5hdBQWQnHvv0giKbi8u7XIyYyEXX1rsmh56pK8XXWB81cK4JoGgJSmG/atAnr1q1DUVER\nMjIyMH/+fPTq1cvj/p988gmWLVuGvLw8pKWl4YEHHsCwYfpsBgQff4W7dviqOT3yorzlWiGuRSvE\ndUiAPFncYnH9r6RbdyDkvLA3m4Fz54CDinWlMroDwec9/kFmoLIc+E1h79RDb//drakCgoIvAW/h\nPhW7vNudu2q8WKET4rrPa4S43n5SYD/h1a4U4rx6KoU43/67wH5IYP9VYPe+UJlShPPtBwT25hfh\nQX0GQDo/GcNZWQH7PnXv19xnECCvSlt5DvU+TsSw9B0KKdSVD9lZVY66veoeq7XvcEihEeft51C7\n9wuVPbjvVUCozfVPVRlq9u7Q2EfCFOaaPe6oLEXN3k9Vdlvf0TCft9dXlqJs7zaf6p+WeR2sYS4P\nQW1lCY7t+cinz3fvez1Czn+/2RyMc2UFyNobOMK3JYjwsWnXIjrYdY5Lakrx4bFP1Pb2IxEdbDtv\nL8OHR9VtZGyHqxFtPW+vLcOHRz7X2K9EdHDk+c+X48Mju9T29CvU9pz/qu0dL0d0cMR5+zl8mP21\nxj4Y0cHh5+0V+DBb7RX6S8eBKvvW7O819v6IDnENj1uDLCioKMXW7B/d9k6Z7PPWIDMKKkux9fc9\nCntvRIfI9iAUVJRh6+/N/2xqCgJOmG/btg3PPPMMnnjiCfTs2RMbNmzA9OnTsX37dsTGxur237t3\nLx588EE8+OCDGDZsGD766CP87W9/w5YtW9CxY0efvru62j2knpv7B5KT26jS84jsLRWRcPdEQwn7\nQBL+u7/3bj/oXTOpRDiPxhbhKb2BEBtgV4Sq5CqedUZCWQiisdEKcS2+CnEtWiGuRSvEtWiFuN7+\nqVe7r0Jci69CXEsgifCWilaI6+xHvbcRrRDX23d5t2uEuM6uEeJ6u/fhWa0Q19t/9G5XiHC+/dIQ\n4TwCTpivX78eEydOxLhx4wAAjz32GL744gu8//77mDFDnzJo48aNGDp0KKZNmwYAmDt3Lr755hu8\n8cYbWLhwoeHvrayswOLFz7L/16xZhU2bNmLp0lUICwsX2uVjKCc8KIW8EXtLxV9hL7K3JOHf2OQK\nnnUkwgmCIAii+QgoYV5XV4esrCzcddddrEySJAwePBj79vEVw759+5gol7n88suxY4d3jwYPk8l7\nWndv9srKCtxzz6zzS8a6WLz4Wbz88itM2Huzy8fwR9g3tV07auCv/UIJBOGvzEbQmHZe5yEhoZVX\nO2As+wZBEARBEM1LQAnz4uJi2O12xGsSQcfFxeHo0aPczxQWFnL3Lyoq8um7w8LCsXTpahw54oof\nDQkJUYlGkZ2HL0LfX2HfHHblqAEAv+zyd4iEu7/hRhdqlwW8trPi/rxroRaHw9modu05io9PPL9I\njGd7x46dWMeiuroaBw/+jA8++A8AV/7bNm3aMmHvcDh19g4dOrFRhaa2X3/9DejWrSckSQoIu9Ua\njCNHfseGDa82uV2+Rrm5fzSqnXeNRG3EX3tztrFAa4PUxi69NthUbayoqICcNBcBAZUusaCgAFdc\ncQXeeecd9O7dm5U/99xz2LNnD95+W7/yU48ePfDcc89h9Gh3gv5NmzZh1apV+Ppr7zFUMmfOnIPJ\nJIl3FFBZWYG8vDy2gmF6ekeV6PNmr6yswJw5d6Giwi1cw8LCsGKFWxgHmh0AwsPDsXz5vwCgUe1y\nHWbNmqFaIfJSs2vPUUhIKFatWtNi7cpzADRuGxPZA6UNUBtruW0wUNoAtbGW2cZeeGEpzpw5g+rq\nKjz33NOora1R1fHuu+9DaGgIHA5Ho9nLykoRFRWFJUte9Nn+4IOP4IorBqOlE1DCvK6uDn369MGy\nZctw1VVXsfK///3vKC8vx4oVK3SfufLKKzFt2jRMmTKFlb388svYsWMHtmzZ0iT1JgiCIAiCIAh/\n8R5r0cRYLBZ0794du3e7Z9w7nU7s3r0bffv25X6mT58+qv0B4JtvvkGfPn0ata4EQRAEQRAE0ZAE\nlDAHgNtvvx3vvvsutmzZgpycHCxYsADV1dW44YYbAAAPP/wwXnrpJbb/lClT8NVXX+G1117DkSNH\n8PLLLyMrKwu33XZbc/0EgiAIgiAIgvCZgJr8CQCjR49GcXExli1bhqKiInTt2hVr165lOczz8/MR\nFBTE9u/bty9efPFFLF68GIsXL0a7du2wcuVKn3OYEwRBEARBEERzElAx5gRBEARBEARxqRJwoSwE\nQRAEQRAEcSlCwpwgCIIgCIIgAgAS5gRBEARBEAQRAJAwJwiCIAiCIIgAgIQ5QRAEQRAEQQQAJMwJ\ngiAIgiAIIgC4oDzmmzZtwrp161BUVISMjAzMnz8fvXr14u6bnZ2NBx98EIcPH4bdbkdycjKuvfZa\nbN++nX1+woQJ2LVrF7KyslBQUICUlBScOnUKdrsd0dHRSEpKQl5eHqqrqwG4VgMNCwuDJEmorq5G\nly5dUF5ejiNHjqi+OyQkBGazGVVVVbDb7QAASZIgZ4iUJIkdT4u8n8lkgtPpZPuYzWbU19dfyGkz\njLKOPCwWC+rr673uQxAE0VRERETg3LlzzV0NgiD8IC4uDmfOnOHaTCYTHA6Hx8+GhISgS5cuOHv2\nLE6cOMHdZ+TIkThy5AiOHz+O2tpaj8ey2WyIiIjAyZMndbb4+Hi89NJLePbZZ/Hbb78xbSeTnp6O\nLVu2YOnSpfjoo49w+vRpnVYym82488470bZtW8ybNw+AXgeGh4dj6tSpOHToEA4cOICysjIAQF1d\nHRwOB8xmM/r164d169bBYrEAAM6cOYPnn38e33zzDcrLy9G/f3/Mnz8f7dq18/hbefjsMd+2bRue\neeYZzJ07F5s3b0ZGRgamT5+Os2fPcvf//PPPcfjwYUycOBGxsbGwWq1Yt24d7rjjDvb5Z555Bmlp\naViwYAEA4OTJk2x/SZJw9OhRZGZmIiEhAYMGDYLT6YTZbEZ5eTn+/ve/IycnB0eOHEGHDh1gtVrR\ntm1bWK1WBAUFoWPHjrjqqqvQrVs3AIDVakVwcDAA14Xo3r07LrvsMphMrlMREhICwCV+k5KSEBER\nAafTifDwcACAw+FAREQEAKBt27b405/+xP3dVquVHVOJJEkwm139oVatWunsJpMJVqtVVSbXScaI\nKG/btq1XuxK5USmJj4/H8OHDhZ8NCwvzaJPPWUMgSRJbZEpGudCUzWZj+/lyTIvF4tNnvKGsD+A6\nh77Auw4AuO3IXzx9l4y2zWlpiDrJ94GMJEncaxEZGen1OBkZGbpzL5Oamqr6vvDwcFXdlZ9Tfrf8\njNCSnJzstS6+0qFDB78+b7Vadc8LT/h6zUwmk+F7w4goj4mJAeB6+fuLJEmGny/enlFGv8sTISEh\nwnN0+eWXe7Rddtllqu/wdCzlvWL0ehtFdK8bQX7+Wq1WVlft/S3C0/6e7m0e2uea1WpFaGiooe/k\n3R/KsujoaN0+shbwhNF7Tnvdfb1Xlb/DbDZf0PN50KBBOlGuPPeyKNe+a+XzW11djf379yM1NVV1\nHZTbn376KfLy8tC1a1dWFhYWpnsmp6SkICoqSlUX+fuKioowf/58HDx4kNmCg4PZfZGTk4P7778f\n33//PQoKChAfH8/auMlkQufOndGvXz9s2LABFRUViIyMxPXXX8+OP3v2bLz66qvIyMjAO++8g4yM\nDCxfvhzDhg2D3W6H0+nEQw89hL/+9a/44YcfMGPGDFaP2bNnIy8vD6tXr8aWLVuQlJSEadOmMaey\nUXy+euvXr8fEiRMxbtw4pKen47HHHkNISAjef/997v47d+7EpEmTsGDBAoSGhqK2thahoaGoqqpi\nn4+MjERcXByuvvpqAMAVV1zB9p81axaioqLwyy+/4KabbsLSpUtRX1+PcePGISMjAzt37kRlZSWs\nVisqKipw55134rPPPoPJZEJaWhreeecdvPzyy3jjjTcAADNnzoTD4WAviQ0bNmDTpk245pprAICd\nwNTUVLRp0wYAMHXqVFZ+/fXXo7a2FpIkoUuXLpg3b56q4SkfsKmpqTCZTAgKCoIkSYiKisINN9zA\nPO7l5eWYM2cOu7mDg4PhcDhQU1PDhH1wcDDMZjNuuukmAK5GzBPlcl1l8vLy2AvphRde8HpN//KX\nvwAAhgwZwsosFgusViv7HTLKbQC49tprdceTzwHvBax8gGgfRsr/ldvytaqoqFDtb7fbmVivq6uD\nJEm49tprPT7IteX33HMPxo4diyuuuIK7v1yPm2++mWvTPvxk0WYymTB48GDceOONHo+rRD4n2hek\nyWSCzWbTvYjHjx+vewHxXq484ZKUlAQAuhGuoKAg1ffI7Yl3LsPDw+FwONC6dWvVvoBa0CqFXYcO\nHXRtVH7Qy997/fXXY+zYsap9goOD8eabb+rqAACdOnUC4Fr9V+vJkV8Wy5cvR//+/QG4Xqxmsxnd\nu3dH7969ERoaCrvdzjpn8ghZnz59uPdYSEgITp48iYSEBFW5J6HJuybys0Bm8ODBun2UQkK57Um4\n3HXXXV7FlclkQmhoKPt9cj14SJKE6dOnM+9YZmambh+RIE5PT9fVJzQ0FMXFxcjMzPT4wgWMibng\n4GBMnToVu3fvZmXaTrtMq1atVB41nmCRz7F8TrROGrmd86ipqdE9t7QiY//+/cwGqIVKamqqaoQ0\nOjpadfyUlBQAUI3SytvyuRIJV+21aN++vep/pbBQHku+L7XHl9u7ssNTXl4OSZIwadIk9rweOnQo\nAHV7MZvNuutvsVgQHh4Op9OJ5ORk3fcpz5fot2qP3apVK/butlgsuutvt9vZeZS9oMpjXHHFFew8\nlJWVwWQyqX7PuXPnVPULDQ2F1WplZYmJiarv49U/KChI1X6vueYabmdSPu9ms5k9ZwcNGgRA3T76\n9esnFOY8h4TsEVYie5OVlJeXIzo6Gj/99BMkScKtt96qsoeEhKCurg6A69oPHz5c1a7r6uqQm5sL\nwHVvbdy4UfW8tdvteOSRR/Drr7/CarUiPDwcFouFXZfk5GTk5+ejW7du7HNPPPEEHnnkEeZs27lz\nJ0aNGoXo6GhIkoS6ujpcc801cDqdKCkpwYYNGxAREYH//e9/qK+vx65du9ixRo4ciSFDhuCVV15B\ncXEx+vfvjz59+qCurg7jx4/HsGHDcPToUdx///3o1KkTu7+PHTuG/fv3Y+HChejevTvS0tLw2GOP\nobq6Gh999JHX66HFJ2FeV1eHrKws1hgA10UdPHgw9u3bJ9zf6XQiPz8fvXv3ZvsrPy9fzIyMDN3x\ng4ODsXPnThauUlZWhuPHj6O0tJS9lE+fPo0VK1agZ8+eqK6uRk5ODm666SYMHjwYV111FQCgS5cu\ncDqd7DNyA9d6yMxmM44dO4bU1FRMmTKFPdzlsBhJkmC32zFnzhw4nU72MJJxOBzIz8+Hw+FgvSyr\n1Yri4mK2T2VlJdatW8e8TbW1tbDZbJAkCbW1tUyknzt3Dv/+97/ZPjzy8vJU/9vtdvZAeuKJJ1g5\nz1Mqd6qUL7ra2locOXIEZrMZJSUlrDw/P59ty6MZWuQGLu+rfEgoX5Lal7Dy5lRej9LSUjidTtTU\n1Oi+Sx6pqaqqgtPpxKFDhzyOJmgfVv/617/w3XffoaCggLu/XKf33nuPW1+tGJSH7xwOB37++Wcc\nO3bM43GVx1J21LTH79Wrl663vXnzZnavyGj/DwoK0nVkAODUqVMAoLtfg4KCVA/3nJyijcc+AAAZ\ndUlEQVQcANANEwKuDlJqaiobEdC2PWX95Wtx5MgRVFZWcveTH7hbtmzB1q1bVbb6+nqsXr2a+7nf\nf/8dAHSfAVztAQBuuOEG/PTTTwBc17+mpgY///wz9u/fz/apq6tj9XQ6nairq2P3mVJ0yftoRwc9\nefR5njptmJrsMODVXQsvhE7+Dt7zS0bZiZLbLO+6Aq7fuHbtWrYfz9Pj6TrK5OTk6D4n37s5OTn4\n448/dN8pYyRMsKamBuvXr1d1LuV7R+vBPH36tOq5wRuKl8+3fE7kfWRx5MnjLnc8tcdU/m+321nd\n5N+pvFc//vhjJlqioqJU7wdA39aCgoLY8bXX0pP3Vls/7XNp5cqVXE+9fA9o24pcJ2U7kMM9169f\nj8LCQgDArl27AKgdKvX19SgtLVUdr66uDhUVFbDb7Th58qSuvsrrJ797PVFUVKT7rPK8a4+tPVZ9\nfb1KoH7xxRfsPERFRSEkJIT7XJWpqqpi73FA/b6U66/FbrerPNVffvkldwRK3sdut7NzwnsnRkVF\nebyP5Pe/8jzI5+f06dO6/Z966ildmSxu+/XrB0mSsGfPHmYzm82qutfV1aGoqEh1Tuvq6thvqaio\nYM8D+VokJSVh69atCAoKQkxMDCoqKlBfX8/O+6lTpxAdHY2ysjL2nIuIiEBwcDB7ftvtdsTExLD7\nyW63M/FdUlKC5557DgMHDkROTg4qKytV1/S2227D2LFjsXHjRkiSxN4fffv2xe7du1FYWIioqCj8\n9ttvyM3NZR0m2WGrdHDJ/8vHMIpPwry4uBh2u103RB8XF6e7IXj7OxwOOBwOJCYmqvaXPy+fRO2L\nLi4uDnFxcUhPT8cNN9wAAHjvvfdw7733suPIN4/yBVVdXY2srCyMHz+eXcDs7GxERkayhvLcc89h\n165d+Oyzz1TfWVZWhoqKCvTr10/1e7/88ksm7Hfu3Inc3Fw4HA7m7ZcbufLmkS9UYWEhdu7cCcD9\n4lS+hJ1OJ8rKyrgeGvm49fX1wuEzGfnmUz4ItQKOt7/JZMLZs2dx5MgR1NXVqQSj8vMWiwVZWVke\njydfE95DQFQX5YvdW1yblpycHI/7azsldrsdhYWF+PXXX70eU3nuvaEMSygvL8f27ds97isfS+R9\nNHpDax/4noSXJ7vcETTKqVOnVEOJMrwXhYxWdMjfJ7/IPdXz448/9hhaArge7k6nk+sFstvtqu8R\nDSnabDZVm1a2V/m3ac/dsWPHuGJB+3sBdRuyWq0ICwvzOtTuSaTLVFRUYP/+/bpOo7atlpSUeP0e\nT/Dub17HV+TJlD+j7QD6g7KjLT9LlN5Oo2Fqns6LLEA9ddzl9xmv8+aNtLQ0tl1bW8tEgVawAvpO\nkNLz6GmUSIvWmaN1UMieYkD83PCVCwkjUp5Ds9msO6e+zK3ieYGVOBwOXXv0dPzi4mImOpXtXW57\nFouFeb49xWkbCYXzFnutrF/Pnj1VolhGqWW019rbvLqioiLdc8Tb6IWsg5R1GDNmDP744w/2udra\nWuzdu5fbIZIkCREREbj//vtV8/jat2+P7du3IykpCZIkIT4+ngluwKXx7r77bpw8eZJpq3379uG1\n115TfUdISAgSEhLY/StrJ7PZjH//+99MWI8aNUo1slFbW4sbb7wRq1evhsPhYO+nO++8E126dEFW\nVhY2bNiA8ePHo76+HjNnzgTgev8nJSXhpZdeQllZGWpra/HKK68gPz/f6zuOR4MErzqdTp/idLX7\niz7vdDpRVFSEL7/8EuHh4Vi4cCHatWuHJ598knnr5AfWtGnTcNdddwFwvfjatWvHJqsCrh5wTU0N\na4AbN27EzJkz2c0gD/sVFBSgY8eOuoYt9xLlfa+88ko4nU7VzZ2ZmYn09HT2v/JGCw0NxaJFi1jn\nQ66H8qEqezU7deqEoKAg3fBcUFCQKkbLE9HR0V4fjMnJyUhPT9fdfA6HA2lpaawTpUR546akpHgV\nYjKiGEbRS12SJG48PuB+8BiJqVOGHJhMJiQlJek6B/J1uJAYPfm6yXgbApfx5n0B+HHq4eHhhs4Z\nD1ms8ISuL/dwfX29VyHvS5yp3Ma6dOnCrVNGRga3nWlDfJTfJT8slSjFu/aekrn33nuF9eXBe9Fp\nR9FMJpMqjKC2thaVlZWoqalRXU9e7L0n+vXrh71796pGtQB3O5ZfpMXFxUJPN+Bqb9p6y3h7logE\nnfwbPM1FkucTefocD54QVU4WmzFjhm4f3n3jqbMmf7d2JEuJnByANwfGE9oRptraWuHzxtv5Uzp+\neCQmJrL7XZIk9q70JtK8IYfXaLHZbLrfoT227MBS4u1ZJrcrT21ShPbahoaGctuUp3eUp7k4vDp3\n69aNda7k54v2fPg670j+Ll77+Pnnn4Wf1T6jlVqE10mor69XPX8iIiJU360cTfrTn/6ke1Z98MEH\nuP766w3NI3E6nSgoKEC7du3Qo0cPVi5HWZSXl7PJqKGhoezZXF1djR07diApKYm9P1955RXd6H1B\nQQHOnDnDrlWrVq2QlJSETp06QZIkHD58GACwePFiWK1W1sZqamrwzDPPMP0lf37p0qXYuXMnbrvt\nNqxbt47tr3zXLV++HMeOHcOAAQOQmZmJH3/8EcOGDfNpngTgozCPiYlBUFCQzjt+9uxZ7oXQ7m8y\nmWAymVBYWKjaX/68/EO1D8LCwkKcPHkS1dXVeOONN3DLLbfgs88+ww033MC8x/LDKT09nV1kSZIQ\nExODqqoqTJgwAQCwZ88eVFZWMiH93//+F99//z0mT54MwO1pstvt+OWXX7BhwwZVnOXu3bsRGRkJ\nSZJQU1ODnTt3wul0YvPmzWyfPXv2IDs7m/1mJbNnz8aECROYcJC/r76+nj0wevfuDUmSEBISAofD\ngaioKNVxqqurdReaJ1y1sbBaTp48iXPnznFvUHm4U/vCV3ZA5LAi0WQkkZdS9FJ3Op3cYTbALRaM\neHuVM8UdDgeOHz+u20f2UPriPdZ+FnC9pJSeNjmcSx7iNIpW7EuShOHDh6vqJ0mSTth5etnKYRta\noSsPAzYUynYtQj5Phw4d0tmsVisL49Ki9Swpf5On8BdZoHiaJS+HxzQEvBECXuiXHO4mY9SDB7he\nzuXl5bp76MUXX0Tbtm1VxwoODhaO0BQVFek8t/KzRTu/xBe0nmUtxcXF3N/p7bfzOrXK/VeuXKnr\njPCeVdrvkOvpbZRGRr4PnU6nx06HFt5IobfrovT8886HyMNaVFTEvtPpdLJ2aXT0UovshZbneMho\nnylWq1X37E9OTtZ1liRJ8ijk5DryRp8uBDnkUUl4eDji4uK47XPUqFGq/+VrwXuu7d+/n92H8j0k\nz2+ROXDggE/1NZvNbNRP2TGWOxKe5icZgZfxBFA/f0pKSnShWYBLoyxbtkz13JHP37/+9S/2TFfO\nueCNLFksFrz33nss5lySJJSWlmLXrl0oLS1FVlYWnE4nqqqqsGTJEvb5L774Av369WOjT0uXLsWz\nzz6r+h3fffcdbDYbezc+9NBDeOyxx3DgwAF2fSorK9GzZ08cO3YMJSUlrI6tW7fGPffcg/r6eiQn\nJ+OHH37A6tWrMXbsWNx5551YsGABhg0bhtmzZ+OVV15h39mtWzds3rwZ//vf//DVV19hzZo1KC4u\n9tiZ9YRPwtxisaB79+6qWGSn04ndu3ejb9++wv0lSULr1q1x4MABtr/y83Lv9LffflMdXw7/uO++\n+1h2Ffn4cnB/UVERbDYbjh49ygSXHA928803swlk4eHh6NGjB/r27YuIiAi0atUK4eHh+OKLLwC4\nG2Vqaip69OiBP//5z4iIiGAX7NFHH2UZT7p27QpJklQx94DLWxcSEoLZs2erPOeA+2Gm7DnLkyXk\nTka7du0QFxeHX375BSaTicWqy9jtdtaQZbRDZ5GRkRgwYIBHL5k8sfP06dNcr6by4ZWYmAiLxYKg\noCBVB0A+J88//7zHiZuA2rMldxbkCaeAyyPgyZMh/xZPNqNiMjg4WOfB5oUE3XbbbYaGwLUdLm1H\nqby8XHXNfvzxR1gsFtXQqtx2PYlE+QWgPbetWrVS/W55voOMLD54L3u5PcqTQGW0L3dZlCg7EnKo\nzrBhw7j1DQ0NZZ1rby9b2S4j15MnmtLS0rjXQm4zAH90w1Nnsbq6GpIkeXxBysOybdq0wXXXXcfd\nx8gogDIzglLgySNlJpMJDz30EAYOHKjzosmTkb21QeVQsSeUw8OAy4sne3UlSdJ1yM1ms2qSlfa7\nlOKN5wEym81o1aoV93rEx8cjIiJCJS6UnqYxY8aga9euHsWwfC7kiay80aiYmBjVZHQ544kSngDV\njgTI9ZdFpTdvtlwvs9mMtm3b6gRScnKy6jq2b9+em8lr0qRJADxPGOY5CqxWKxISErxm9jGZTFi4\ncKHQ0cBr0507d0Z6errqnQu4Bbh2EqnoPSJJEnbs2KF73slZz+TfzhsJ6d69u+o4ym1Z9Mj6QW6b\n2vsnMjKS+0wMCgrCyZMnue8S7b1ZX1+PqKgo7vmUJ7EC7nPRp08f3X6871d+n/IeUP4G5TNevgay\nXpFHHYOCghAdHY1//vOfiImJ0Xn85eNpJxkDrrZnVOD/8ccfbDKlMuMJ4HbIAq7J7X/605+QmJjI\nzm9kZCSrV6tWrfDbb78xB6DT6USXLl3w5JNPsmP26NEDqampGD9+vKoOvXv3Zh2AmpoafP3112x0\nQdYrtbW1sNvtMJlM+Omnn1gd5efw1KlT8cEHH+Dmm29GfHw806hXXHEFmyORkJDAJth36tQJU6ZM\nQc+ePbFo0SKPKSQjIiIQExODY8eO4ZdffuGOFHlDcvroJtu2bRv+/ve/4/HHH0fPnj2xYcMGfPrp\np/jkk08QGxuLhx9+GK1bt8b9998PAPjwww/xj3/8A7NmzcLrr7/OMhvMmTMHo0ePxqxZs5Cfn481\na9bAZrNh3LhxkCQJt9xyC7Zt2waLxYLCwkKkpKTAarUiPj4eZrMZHTp0wLvvvouxY8eyyYtdunTB\n0aNH2TC77Ens2rUrsrOzUVVVhVGjRrFZtHIe9SNHjkCSJOY9PnnyJJspXVRUBKfTiaioKJSWlqJ7\n9+5sYqnValXFPsmkpaXh+PHjuPHGG9nEQcDVYEeNGoXDhw/jt99+03l85IlhXbt29Rr3bDab2Uxj\nT8gZYXheYe33efsewLvXUzkBSh7SNdKkePngvX1WHv0w6pUS5VwFXA8xbY+/TZs2uk6PktatW+sm\n9FwoF5oTX85q1Nh4uh68ehtpK4D+nIu+c/To0fj888+ZALVYLF7bvdVqFXoQPaE8r1FRUTh37pyu\nrqL6a/cLCwvz2Dm+5ZZbUFJSgk8++YSVSZIrnarIg6msB+86ab9X+7+R+0O5r7bzZ7RuSmw2Gzfm\nNyoqClVVVbDZbNy5SkbqbDKZYDabuTHD/hIeHs71zivrk5iYiPLyct19GRUVpeuka5HfI9qQSCW9\ne/dm7y0loaGhLEmAP3i619u2baubrCsjuhe1x/T2vJNjjnnnSXbaGAnF4h0XcAk+T+1PJjY21uv7\nRbumiYy3Z4LoHDUGcvpBUQpT7fWRtY8S7W+TM8fxfpP8W7t3744TJ06wcx0cHKxqn0lJSSgtLWXX\nMz4+nt33kiRhypQp2LVrF4qLi9n9FBYWBrvdzu7D9u3bY8SIEXj77bdRUVGBkJAQ1UTf0aNH49Ch\nQ8jJyWF6qb6+nrUBuWMwZcoUDB48GKGhoZgyZQrq6upgsVhw3XXXYcuWLejcuTNOnDiBKVOm4PDh\nw/jyyy/Rvn17PProozh16hSee+45jB07FvPnzwcAbN++HbGxsUhKSsKhQ4ewaNEi9OzZE0uXLhVd\nNvW18VWYA+oFhrp27Yr58+ejZ8+e7Ie2adMGTz/9NABXPN2IESN0x5A9thaLBZ06dcK+ffs83pg8\n5LCY2NhYZGZm4rvvvlOFXZjNZrRp0wbl5eWGxRzhxqgAIQh/0D60LwVsNhvLQtFSiI6O1oW9KZGH\ntFvSb5Yx6owgiEAnODgYJpOpSRw/PLSjHLz7ql+/fpg8ebLX+UDyPenp3kxISMCyZcvw6aef4v/+\n7/+YA1Z26pjNZgwdOhTR0dH44IMPAHgOb5UkiUV5vP7661i3bh3OnDmDhIQEjB8/HrNmzfI5p/8F\nCXOCIAiCIAiCIBqWhl9SkCAIgiAIgiAInyFhThAEQRAEQRABAAlzgiAIgiAIgggASJgTBEEQBEEQ\nRABAwpwgCIIgCIIgAgAS5gRBEARBEAQRAJAwJwiCIAiCIIgAgIQ5QRAEQRAEQQQAJMwJgiAIgiAI\nIgAgYU4QBBEA9O/fH8uXLze0b3l5OZYvX46cnBxVeV5eHjIyMvDZZ581RhUviBEjRuDJJ5/0uk95\neTkyMjKwZcuWJqoVQRBEYGJu7goQBEEQvlFWVobly5ejc+fOSE9PZ+UJCQl49913kZaW1nyV07By\n5UrYbLbmrgZBEMRFAQlzgiCIiwyn08ktt1qt6NWrVxPXxjsZGRnNXQWCIIiLBgplIQiCMMjevXsx\ndepU9O3bF5dddhkeeOABnD17FoA7jGTr1q144oknMGDAAFx++eV49tln4XA4VMf5/PPPce2116JX\nr164+eab8fPPPxuuQ15eHq6++mpIkoS5c+ciIyMDXbt2xcmTJ7mhLCNGjMATTzyBDRs2YPjw4cjM\nzMS8efNQW1uLX3/9Fbfccgv69u2Lm266CYcPH9Z937p16zBy5Ej07NkTV199NdavX+/TOeOFsrz7\n7rsYMWIE+vTpg2nTpuH48eM+HZMgCKKlQh5zgiAIA+zduxdTpkzBlVdeiSVLlqCyshJLlizB7Nmz\n8fbbb7P9lixZgquuugpLly7Fnj178PLLLyMtLQ0TJ04EAPz666+45557MGzYMMybNw+5ubm49957\nUVdXZ6geiYmJWL58OebMmYMHHngAAwcOBOAKYykoKOB+ZseOHejcuTMef/xxnDhxAs888wwsFgv2\n7duHO+64A7GxsXj++edx7733Ytu2bexzTz75JN5//33MmjULPXv2xN69e/HCCy8gNDSU/R5f2bVr\nF/75z39iwoQJGD16NLKysnDPPfdAkqQLOh5BEERLgoQ5QRCEAV588UX06tULy5YtY2WdO3fGdddd\nh//+978s1rtPnz549NFHAQCDBg3Cd999h08//ZQJ2VdeeQXJyclYsWIFE6PBwcHsMyIsFgu6du0K\nAGjXrp2h0BVJkrBy5UqYza5H/vfff4/33nsPa9euxZAhQwAADocDs2bNwqFDh9ClSxecOHECmzZt\nwuOPP46bbrqJ/Z6qqiosX778goX56tWr0b9/fzz11FMAgCFDhqC6uhqrVq26oOMRBEG0JCiUhSAI\nQkB1dTX27t2LkSNHwm63s7927dohKSlJFYoyePBg1Wc7duyI/Px89v+BAwdw5ZVXqjzEI0eObNT6\n9+/fn4lyAGjfvj1MJhPztgNAWloanE4nq+s333wDSZLw5z//WfWbBw0ahKKiIpw6dcrnejgcDmRl\nZeHqq69WlY8cOdJj3DxBEMSlBHnMCYIgBJSWlsJut+Ppp5/GokWLVDZJklTCW5uBxGKxoKamhv1f\nWFiIuLg41T4REREIDg5uhJp7rlNwcLBKrFssFgBgdS0pKYHD4VCJdxlJknDq1CkkJSX5VI+zZ8+i\nvr5e9/vj4+N9Og5BEERLhYQ5QRCEAJvNBkmSMHPmTJ23FwBiYmIMe3wTEhJw5swZVdm5c+dU4j0Q\niIqKgslkwltvvaUS8DLt27f3+ZixsbEwm826319UVHTB9SQIgmhJkDAnCIIQEBoaij59+iAnJwf3\n3HMPd5+8vDxDx+rVqxd27dqFefPmsXCW7du3+1QfrXe7MRg0aBAAoLi4GMOHD2+QY5pMJnTr1g2f\nf/45pk6dysq3b99Okz8JgiBAwpwgCMIQDz/8MG6//Xbcd999GDNmDGw2G06dOoXdu3djwoQJSE5O\nNnScO++8EzfeeCNmzZqFSZMm4cSJE3j11VcREhJiuC4JCQmw2Wz4+OOP0aZNG1it1gbPF56WloZJ\nkybhoYcewl//+lf07t0bdXV1OHr0KH744QesWLHigo47c+ZMzJ49G/PmzcOYMWOQlZWFrVu3Nmjd\nCYIgLlZo8idBEIQB+vbtizfffBNVVVX4xz/+gbvuugurVq1CaGgo2rZtCwAevb7K8q5du2Lp0qU4\nfvw47r77bmzevBmLFy+G1Wo1XBdJkrBo0SLk5uZi2rRpuOmmm1iqRG0djNTJU9n8+fNZCsW77roL\nDz30ED755BMMGDDAp7oqGTFiBB5//HF8//33mDNnDr799lssWbLE8PEIgiBaMpKTpsITBEEQBEEQ\nRLNDHnOCIAiCIAiCCAAoxpwgCCLAsNvtHm0mkylgJkp6q6ckSTCZyPdDEAThCxTKQhAEEUD88MMP\nmDJlCtcmSRLGjRuHp59+uolrxScjIwOSJHFTRbZp0wY7duxohloRBEFcvJAwJwiCCCAqKytx9OhR\nj/aYmBjDGWAam6ysLI82q9WKTp06NWFtCIIgLn5ImBMEQRAEQRBEAEABgARBEARBEAQRAJAwJwiC\nIAiCIIgAgIQ5QRAEQRAEQQQAJMwJgiAIgiAIIgAgYU4QBEEQBEEQAQAJc4IgCIIgCIIIAEiYEwRB\nEARBEEQAQMKcIAiCIAiCIAKA/w8SYmxLfmoFUAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAELCAYAAAC79N20AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt0HNWV7/85ej9sS3bbso0VBDY4kAQDwTwS2QYsJ4A9gTznJtHNzZ14TVZMXvdOmB9hSJiZEMaQSe5kZoLJj0QkIaOQXyYh4MQGG0smtkRgMPjGdrDBshKBLPnVsiRLLbX6cX5/VFer6lRJ3ZIld0ven7V6Sef07qrT3VJ9a++zzz5Ka40gCIIgCKnJyfQABEEQBGGqIKIpCIIgCGkioikIgiAIaSKiKQiCIAhpIqIpCIIgCGkioikIgiAIaSKiKQiCIAhpIqIpCIIgCGkioikIgiAIaZKX6QFkE3PnztUXXXRRpochCIIwZXjllVdOaa3nZXoc5woRTQcXXXQRe/bsyfQwBEEQpgxKqbZMj+FcIuFZQRAEQUgTEU1BEARBSBMRTUEQBEFIExFNQRAEQUgTEU2DYDDIV77yFbq6ujI9FEEQBCHLENE0qK+v58CBA9TX12d6KIIgCEKWIaLpIBqNsn37drTWbNu2TbxNQRAEwYWIpoOuri7i8TgA8XhcvE1BEATBhYimg97eXqLRKGB5nQ0NDRkekSAIgpBNiGg6mDVrFkopAJRS1NTUZHhEgiAIQjYhoumgrKwMrTUAWmvWrVuX4REJgiAI2YSIpoOenh5Xe8uWLRkaiSAIgpCNiGg66O3tdbVlTlMQBEFwIqLpYMaMGa52dXV1hkYiCIIgZCMimoIgCIKQJiKaDvr6+lzt5ubmDI1EEARByEZENB3MmjWLvDxrX+68vDxZciIIgiC4ENF0MGfOHHJyrI8kJyeH2traDI9IEARByCZENB3k5eXx/ve/H6UUt9xyC3PmzMn0kARBEIQsIi/TA8g2amtraWtrEy9TEARB8CCiaRAIBPjOd76T6WEIgiAIWYiEZwVBEAQhTaasaCqlblVKva6UalFKfdXn+QuVUjuVUnuVUvuUUmszMU5BEARh+jAlRVMplQs8DNwGvAP4hFLqHYbZ14BfaK2vBj4ObDq3oxQEQRCmG1NSNIHrgBatdavWegj4OXCHYaOBWYnfy4COczg+QRAEYRoyVROBFgFvOdrtwPWGzT8A25VSXwRKgTXnZmiCIAjCdGWqeprp8Angx1rrSmAt8FOllOf9KqU+q5Tao5Tac/LkyXM+SEEQBGHqMFVF8yjwNke7MtHnZD3wCwCt9e+BImCueSCt9aNa6+Va6+Xz5s2bpOEKgiAI04GpKpovA5cqpS5WShVgJfpsNmzeBGoAlFKXY4mmuJKCIAjCuJmSoqm1jgJfALYBB7GyZP+olPqGUur2hNlXgL9WSv0BeAL4n1prnZkRC4IgCNOBKSmaAFrrrVrrpVrrJVrrBxJ992mtNyd+f01rXa21vlJrfZXWevt4zhMMBvnKV75CV1fXRA5fEARBmIJMWdE8V9TV1bF//37q6uoyPRRBEAQhw4hoGjg9y2AwSGNjIwANDQ3ibQqCIJzniGgaOD3Luro64vE4APF4XLxNQRCE8xwluTHDXHXVVXrBggXE43FycnJQShGLxZLP5+bm8swzz2RwhIIgCNmFUuoVrfXyTI/jXCGepoNTp065PEunYNp9giAIwvmLiKaDM2fOjPq8UuocjUQQBEHIRkQ0x0BNTU2mhyAIgiBkEBFNBzNnznS1V61alfQulVKsX78+E8MSBEEQsgQRTQdz57pL0955551J73LNmjXMmTMnE8MSBEEQsgQRTQOnZwnw4Q9/mJKSEj7ykY9kcliCIAhCFiCi6aCrq4vc3FzAWl5SX1/P1q1bGRgYYMuWLRkenSAIgpBpZJ2mg/Lycn3dddcl28XFxUSjUSKRCAUFBTz++OMSohUEQXAg6zTPY2bNmuUKz1ZUVBCNRgGIRCLU19dncniCIAhChhHRdFBWVobteWutOXbsmKu9Y8eOTA5PEARByDAimg56enpc7fz8fFe7oqLiXA5HEARByDJENB309va62n19fa72iRMnzuVwBEEQhCxDRNOB6VnOmDHDNce5Zs2aTAxLEARByBJENB1EIhFXOxqNkpeXB0BeXh61tbWAe89NQRAE4fxBRNPBjBkzXO2VK1dyyy23oJTi1ltvTS43qa+v58CBA5JNKwiCcJ4hopmC2tpa3vWud7m8zO3bt6O1Ztu2beJtCoIgnEeIaDowE3+am5sJBAJ85zvfcXmZzj03xdsUBEE4fxDRdDBr1izXHKbfVmCNjY3JggfRaJSGhoZzOkZBEAQhc4hoOpgzZ04yWzYnJycZknWyevXqlMIqCIIgTE9ENB3k5eVxwQUXALBw4ULfOrO1tbXk5Fgf20jCKgiCIExPRDQdRKNRjh49CsDRo0d9k3wCgQCrVq0C4MYbb5QC7oIgCOcRIpoOurq6XPOVIyX5hMNhAIaGhs7Z2ARBEITMI6LpwCyjt2PHDk8hg2AwSHNzMwC7d++WJSeCIAjnESKaDuwNqG3Ky8s9hQzq6upcS07q6uoAqRIkCIJwPiCi6cAso9fZ2ekpZPD888+7bHbu3AlIlSBBEITzARHNFJiFDOz9NW201lIlSBAE4TxBRDMFZiGDm2++2fX86tWrpUqQIAjCeYKIZgrMQgbr1693bRe2fv163ypBMscpCIIw/RDRdGCLoV+fXcggEAiwYMECABYsWMCcOXN8qwTJHKcgCML0Q0TTgTlfCXgqBAWDQY4fPw7A8ePH6erq8lQJWrt2rcxxCoIgTENENFPQ0dGR/NnV1eW75MSsErRlyxaZ4xQEQZiGiGimwPY+tdbU19ePuOTEWSXobHZCkblQQRCE7GVKiqZS6lal1OtKqRal1FdHsPlLpdRrSqk/KqV+Nt5zmeI30pKTpqYmAHbt2kV1dXVaO6H4CaTMhQqCIGQvU040lVK5wMPAbcA7gE8opd5h2FwK3ANUa63fCfyvdI49c+ZMV3vhwoWuTNmamhre+973umyqq6upq6tzeaThcDitnVBMgZT1noIgCNnNlBNN4DqgRWvdqrUeAn4O3GHY/DXwsNb6NIDW+kQ6B543b56r/eUvf9klhuvWraOwsNBlU1hYmAzR2jQ3N/P+978fpRS33HKL704ofgIp6z0FQRCym6komouAtxzt9kSfk6XAUqVUs1LqRaXUrekcOC8vj+uvvx6AG264IRlytdmyZUuyWLtNU1MTsVjM1ReLxbjiiivQWnPllVf6nstPIM9mLlQQBEGYfKaiaKZDHnApcBPwCeAHSqlyP0Ol1GeVUnuUUntOnjxJQUEBAAUFBR7R2rFjB2VlZa6+8nLfw/Lv//7vAHz3u9/1fd5PIP3WewqCIAjZw1QUzaPA2xztykSfk3Zgs9Y6orX+E/AGloh60Fo/qrVerrVePnv27KQn2dTURCAQcNlWVFRw7NgxV19nZ6dndxSAvr6+5M+9e/cC7sQfv7nR2tpa1xzqSHOhgiAIQmaYiqL5MnCpUupipVQB8HFgs2HzFJaXiVJqLla4tjXVgU+dOuUKmdprNG3sogYmZj1a21u0uf/++wFrW7H9+/cntxMzCQQCyWIKF1xwge9cqCAIgpA5ppxoaq2jwBeAbcBB4Bda6z8qpb6hlLo9YbYNCCqlXgN2An+rtQ6mOvaZM2dcbVtAbebOnUtpaamrr7S0lPXr17uyZe2wq01fXx/BYJDGxkYAGhoaPHOjzc3NBIPBpFB3dnZK9qwgCEKWMeVEE0BrvVVrvVRrvURr/UCi7z6t9ebE71pr/Tda63dora/QWv98Is7b2dnpm/QTCARYuHAhYHmIM2bMcNnMmDHDU0koEAgkw7q5ubnJerV2tq5kzwqCIGQfU1I0JwszrOrHmjVrXO33ve99BINBTpywVrUcP36cL33pSy6br3/9655KQs650NzcXGprayV7VhAEIcsR0XRghlVNCgsLWbt2ratv3bp1Lg9Ra83+/ftdWbBXX321bzF4cy2nZM8KgiBkNyKaDvyEzUkoFOInP/mJq+/HP/6xx0PcsWOHy2a0bNl3vetdySxZc7cUyZ4VBEHILkQ0x0BlZSUvvfSSq+/FF1/0eIgVFRUum/r6et9KQoFAgO985zvJLNlAIJCykpAgCIKQOUQ0x8D8+fN9+2tra5MJQrFYjBMnTnjmJl944QXXa8zsWeexnN6nIAiCkD2IaI6BV199lZKSElef3XbOaa5YscJT6H316tWu0OtI85Wm9ykIgiBkDyKaDmyhGwmtNV//+tddfX//93/vKVbQ29vrKfRueo6T7UnKvpyCIAgTT8ZEUyn170qpfxvpkYkx5efnj/p8UVER11xzjWupyNVXX+3Z5eSll15yeZpbtmyZnAGPguzLKQiCMPFk0tPcA7wCFAHvBg4nHlcBBZkYUKolJ4ODgwSDQZcXOZIn57RpaGigvr7eFZ5NV8zG4zHKvpyCIAiTQ8ZEU2v9E631T4BlwE1a63/XWv87UIMlnOccv8LrJn5bei1YsMBlU1pa6llvOd7CBePxGGVfTkEQhMkhG+Y0ZwOzHO0Zib5zTiQSGfX53NxczxrM5557zuPJxWIxz3pLv8IFLS0tfPCDH6S11b+W/Hg9RqksJAiCMDlkg2g+COxVSv1YKfUT4FXgnzI8Jl+01p5Se3l5eSxbtszVd/XVV3vWW/pt+/XQQw8RCoXYuHGj7/nG6zH6CbQkBgmCIJw9GRVNZanIDuB64NfAk8B7EmHbrCMejyf3ybTp6+vjwIEDrr59+/axdu1aiouLWbduHeDd9qurq4u2tjYA2trakt6mU9zG6zH6VRaSxCBBEISzJ6Oiqa1sma1a62Na66cTj2MpX5hBFi1a5GpXVlbS39/v6uvv7+fJJ58kFArxq1/9CrDEsL29HYCjR4/yT//kdqZtb9O55+Z4a9GalYW01pIYJAiCMAFkQ3j2VaXUtZkeRLqYJfIqKio8W4GVlJS49s7s6uqivr4+WTUoGo0mBdSmra2NYDCY9CYbGhpYt26dJ6QL3oxav9Crs7KQJAYJgiBMDNkgmtcDv1dKHVFK7VNK7VdK7cv0oEZi7969rvarr77Kvffe6+q77LLLXCJVV1fnSSAyqaqqoq6uzrWf5pNPPukK6dpVgsxQq1/o1VlZSBKDBEEQJoZsEM1bgCXAauADwF8kfk4ZrrnmGpdH+Ic//MH1fGNjo2c5S1FRkat9zz33eIokNDQ00NHRAVj7b3Z1dXkyao8cOZIy9CpbjgmCIEwMGRdNrXWb1roNGAC045F1jLSOs6WlxVXMwEQp5Zn3HBwcTIZ1Z8yYweLFi5PeqU08Hnd5nvX19Z5Q64MPPpgy9CpbjgmCIEwMGRdNpdTtSqnDwJ+A3wF/Bp7J6KBGwJ6TNHnooYdcbdOLvPnmm33r2g4MDACWgHZ1dSWFzYkZVjVDrW1tbSlDr7LlmCAIwsSQcdEE7gduAN7QWl+MVRHoxcwOaWzYS0dsTK9y/fr1XHfdda6++fPnuxKD6uvrufnmm102lZWVnrCquZm1n40fsuWYIAjC2ZMNohnRWgeBHKVUjtZ6J7A804MaCdMbzMnJ8SxDWbhwoed1M2fOdLVPnjzpau/YsYP169e75kbvvffelGHVxYsX+9qYGbWy5ZggCMLZkw2i2a2UmgHsAuqVUv8K9Kd4TcYwBfGCCy6gsrLS1Tc0NORq19XVeTadNucvA4EAgUAg6SmuWbOGJUuWsGrVKgBuvPFG5syZ49nMes+ePb6hV+d6T0EQBGFiyAbRvAMIAf8beBY4QhZnz5rZqcFgkD179nj6nDQ0NHjWd5p0dnYCVij3iiuuYP369QCEw2HXz9WrV7u2JqupqfGEXoPBoGedqCAIgnD2ZINo/g2wSGsdTex88m/ARzI9KD8uuugiqqurXX0rVqxI+bp4PM6JEydGtbHDss4wajAYpKmpCYDdu3fT1dWVViZsXV2dZ52oIAiCcPZkg2h+EXhWKeXMgvlcpgYzGseO+Vf4S+VFAp4EHTOkaycBOecincUOtNbU1dURCASS55s/fz5z5szxFDd4/vnnXcc2138KgiAI4yMbRPMocBvwoFLqbxN93vUZWcDg4KBnbrKpqSmlFwmwdu1aV/uLX/yiy2O0w7FOATTFrrGxkWAwmAzldnR0cOTIEbZt24bWmmeffZauri7PWlG/taN+yE4ogiAIo5MNoonW+k3gRuAdSqn/BIozPKQRKSkp8bRHWr/p5IknnnC1t2zZkgz1rly5MhmOtQVw27ZtvsUOzNDrAw884Fqn6bd0ZfXq1b5jMkVSdkIRBEEYnWwQzT0AWutBrfVfAc8DBRkd0SiYST5meyTsuUmb3bt3J3+3PcH6+vqkAEYiEY+HmJOT4wm9tre3u0K49tIV04v18yKdIjneDa8FQRDOJzIumlrrvzbaD2utF2dqPJPB/PnzfUOmdqi3qamJrq4uGhoaXAJoVhGqrq5OGWqtqKggEAgkvcuamhrfeU9TJB977DHZCUUQBCEFGRdNpdSlSqlfKqVeU0q1Jh5HMj2uicSvAEJxcbEnw9VMKDJDwYWFhZ7Qq1ls4fjx44B76YqfF2nWsN25c6fshCIIgpCCjIsm8CPgESAK3Aw8DkwrN6ezs9OzfZhZAKGxsdGTUGSW42tqanJVDcrJyUluHWYzf/58z/n99tM0a9hqrWUnFEEQhBRkg2gWa60bAJXY8eQfgHUZHtOYyM/PH/X5qqoqLrnkEldRAjP0qpSipqbGVUbP3NzaDr0699g051Rt4XWGY/320zS3C1u9erXshCIIgpCCbBDNsFIqBzislPqCUupDwIxUL8omZs+e7WrPmjXL1f7Upz5FS0tLMss2FouxbNkyl011dTW1tbUuYbWFzubEiRMEg8FkCPbYsWNce+21LpsVK1Z4wrHV1dUeL9IskrB+/XrZCUUQBCEF2SCaXwZKgC8B1wCfAj6d0RGNETOs2tvb62r/9Kc/9WwfdujQIVe7oKCAQCCQnPtctGgRa9ascXmea9asob6+3iW+R454p3/NcCzg8SL9tguTnVAEQRBGJ+OiqbV+WWvdp7Vu11r/ldb6w1rrKbU1mBlGNWlra/NsHxYKhVztpqYmgsEgHR0dgDUPum7duqSHmJ+fT21trSfD9ujRo67jNDc3e8Kxzc3NnsLv4N0uTHZCEQRBGJ2Mi6ZSaqlS6gdKqe1KqUb7kelxjYVIJDLq83PnzmXBggWuPjsMaxMIBKivr08KYjweZ+vWrdxyyy0ubzBVhm11dbVnvnKkpB4RSUEQhLGRcdEE/hN4Ffga8LeOx6gopW5VSr2ulGpRSn11FLuPKKW0UmrS9ug0BdHk9OnTnuo+ZhWhzs5O34SdtWvXUlxczLp1Vm6UGQq2dz9xYs5Xrl27ll27dgHwu9/9TgoXCIIgjJNsEM2o1voRrfV/aa1fsR+jvUAplQs8jFWz9h3AJ5RS7/Cxm4k1Z/rSZAzcZqRC7jaxWCyt+rTvfe97Xe3q6mqeeOIJQqFQsgyf6TWaWbjNzc2e+cotW7ZI4QJBEIQJIGOiqZSao5SaA/xGKXWnUmqh3ZfoH43rgBatdavWegj4Oda+nCb3Aw8BgxM7+onHzIIFy4u0y+/t2rWLrq4uT+H39773vb6hWOd8pZ8HKwiCIIydvAye+xVAM7yjiTMkq4HRSuktAt5ytNuB650GSql3A2/TWm9x7J5y1pSXl9Pd3Z1sz549m9OnT5/1cf/0pz/R09Pj6mtqanIl/TzyyCPMnDnTZVNYWOi7vtKerwSrYPszzzxDLBZLblwtCIIgjJ2MeZpa64u11osTP81HUjCVUu8b67ET6z7/D/CVNGw/q5Tao5Tak86xzSo9Znu8HD9+3JMcZM6D7tq1y+MlNjU1pVxfWVtb6xLfsSwpke3CBEEQhsmGOc1UPOTTdxR4m6NdmeizmQm8C3heKfVn4AZgs18ykNb6Ua31cq11WolCZqasWQ7vbEglwFprjygGAgHf9ZUTJXZ+hd5FRAVBOF+ZCqLptyH1y8ClSqmLlVIFwMeBzfaTWuserfVcrfVFWuuLgBeB27XWaXmT2UplZaUn6aizs9N36UhdXR379++nrq6O+vp6Vwg3XQH0K/TuPK4gCML5xlQQTc9eWFrrKPAFYBtwEPiF1vqPSqlvKKVuP9cDTAc7WWc0iovde28XFRW52l/72tc8S1X8NsAOBoM0NlpLXRsaGmhoaPBNBEq16bRZWaiurs51XPE2BUE435gKoumL1nqr1nqp1nqJ1vqBRN99WuvNPrY3ZdrL3LBhQ0qbgYEBV3twcNCVGbt4sX9u1CuvvMKtt97K3r17AcvLdIpdIBBwleOrqakhGAzyzDPPoLXmmWee8RVAM+u2sbHRI6KCIAjnE1NBNP+c6QFMBAcPHkxpYyYCKaVcotXa2uqxyc3N5YEHHiAej3P//fcDsHPnTpfN0aNHXYlA69atc9WwjUajvt6mWVnITEwyzyMIgjDdybhoKqU+7POoUUpVAGitP5zpMU4E6QiMGWq1hc5m48aNnk2oly1bRl9fHwB9fX3s3bvX8zqttcvT3LJlC88995zLZvv27Z7x1NbWujxLc8Nr8zxTCUloEgRhPGRcNIH1wA+B2sTjB8DdQLNS6lOZHNhEYnpp46GtrY0Pf9h9D/H666+72vfff79nbhRweZoNDQ1pzY2ar6uurnY9t3r16rG9AQeZFq1U87mCIAh+ZINo5gGXa60/orX+CFZZPI1VrODujI5sApkIr6ykpIStW7e6vEZzt5S+vr6US1eqq6s9e3WabcBVQF5r7SmksH79+rTHbopkJkXLLytYEAQhHbJBNN+mtT7uaJ9I9HUBo28fMs0wdzAxCYVCNDY2uoTMJC8vj6qqKlefuROKbWe2W1pa+OAHP0hrayuAbyEF27usqakZ0+4oTpHMhGg5RdvMChZvUxCEdMkG0XxeKfVbpdSnlVKfxlpv+bxSqhToTvHaacM111xDMBhMabd69WqXp2nOM+bk5PC5z33O1WeGXpubm30Tih566CFCoRAbN24EvCJeUVHB+vXrueKKK8bsZTpF8rHHHnMlOJ2LwglO0ZZavIIgjJdsEM3PAz8Crko8fgJ8Xmvdr7W+edRXTiPy8/PTslu7dq3L05w7d67r+YqKCpqbm119CxYsSIqkXXt25cqVLpurrroquVF2W1sbra2tnp1Z0tmpxQ/Ts9u5c6erne660XQxxdcU7erq6rT2GxUEQTDJuGhqSwGagEagAdilp3Ja5jh58cUXPZmxZnH2yy67jK1bt7r6TCGz9+U0bVLVnj1w4ICrvXHjRo+YrFmzZlzCZnp2pue7fPlygsEg27Ztc4Vsx+t5mmM0RRvwLXIvCIKQioyLplLqL4H/Aj4K/CXwklLqo5kdVWYwM2PNhJ7Dhw+nFUo09+W89tprPaLxwgsvjHqutrY2zzZkK1as8J2LTCVu5npPc461tbWV+vr6pLBGIhHq6+t9BXo8pf9M0W5ubk5Z5F4QBMGPjIsmcC9wrdb601rr/4G1V+bXMzymjPCDH/zA1TaXqcRisZQXeK014XDY1Xfo0CFXu66uziNkZsm++fPnezJ1N23a5JtAk6oebW1tbfI4OTk5HoFub2+noaHB5Q0/99xzvgI91tJ/9fX1nvdaU1PjW+ReEAQhFdkgmjlaa2eMMUh2jOucY5fBG42jR4+O+nw8Hvd4kWYIt7GxkdraWleI0hY1m97eXk+mbltbmyeBxqxz6+cBBgKBZFJRRUWFJ7u3qqrKk3TkrEBki186Wbd+ST7me62trfUtcm8y3vBwptegCoIweWSDOD2rlNqmlPqfSqn/CWwBtqZ4zXnJrFmzJuQ4sViMQCDA9ddb+3bfcMMNnrq3AwMDnkzdqqoqj8dm1rmtq6vzTcTp6OgALNE36/Dec889HmHv6+vziF86S0X8vMpAIDCucOx4E5OkcIIgTF8yLppa678FHgWWJR6Paq2nTVGDiaS3tzelzTXXXJP28ez1mK2trZSWlrqeKy0t9WTq3nnnnR6PzSwP2NjY6BGNuro6T0Ui29usqqpi8eLFnmpDlZWVnozfdJaK+HmVdv9YwrHjXUsqhRMEYXqTcdEE0Fr/Smv9N4nHrzM9nqlMQUHBiCXxbJRStLS0JEO97e3tVFZWumze/va3e+Y0m5qaWLVqFQA33ngjc+bM8S3HZ4rG888/77LZuXMnd999NyUlJdxzzz2+Y1y8eHHSq7Qzfk3P12+pyEheZTrhWCfjLYAghRMEYXqTMdFUSp1RSvX6PM4opVK7VIIvL774YkobrTUPPfSQq8+sYfuHP/zBM6fZ0NCQTDIyk42c2EIai8Vcpfic57/kkkt46qmnktudmfOwL7/8sssevGtU161bB3jnEMeb5OM8zngLIEjhBEGY3mRMNLXWM7XWs3weM7XWEzN5dx6S7hJXu5DBSMRiMU9B9urqanbv3g3A7t276erqYtGiRS4bpZRLNBsaGjzrT/0KvZteZCAQcAlkXV2dx/PdsmUL4J1DHKtXaeM8jt/caDqM93WCIEwNsiI8K5xbcnNzmTFjRkq7K664wtU+fny4RLAtZPfee6/L5uqrr3a1r732Wk/JvfXr13u8Q9OL7OzsdL1m586dvp7vRM0hmsdZt25dWgUQ/LzcySqcIFm5gpB5RDTPQ6qrq4lEUtfC/+53v+tq79u3z9VuaGjgkksucSXs2FmyNm+88Ybvsc21naYXaa5R1Vr7enHOzbTtcPB4MOcit27dmlbGrZ+Xa75uosROsnIFIfOIaJ6HFBYWsmDBAlefuQfnqlWrPMtQTOLxOC0tLS7ROnbsmMums7PTU/Rg06ZNybm+HTt2JOcQnV6kuW509erVvl5cY2OjJxw8HkZa32nOjToFcCQv13zdRIidZOUKQnYgonkesmvXLk/409xP884770zrWA888EBKG3NZyq5duzzzleY8pzkXuH79el8vziwZaC5dSZeR1neac6NOARwpU9b5uon3MXcNAAAgAElEQVQSO8nKFYTsQETzPGRoaMg3/GlX5Zk/fz5z5syhsLAw5bFSVShauHChx2s0aWho8NS5ve6661zt7m5rl7i1a9dSXFyczJwdL35zkc5Sf35zkaYANjQ0pMyUnSixk6xcQcgORDSnIam2GdNaezzLaDTKqVOnADh58iRdXV0MDQ2d9Vi6u7u56aabUo7nySefdPWZ86n2Hp9PPPEEoVCIn/3sZ4B3qUpzc3Nac4h+c5EXXHABYAm93xymKYAVFRW+mbITsXTFRLJyBSE7ENGchqST5GNWAMrNzfWUw0tn+UoqL/K6667z7N7it3G2GcL123UlGAwml7zs2rWLrq4u3/BsqjlEv5Cps9RfR0dHWnVtT5w44frM/OYwV69e7alsNB4mMytXEIT0EdE8T1m6dKmrbVb2aWxs9IibSW5uLvPmzXP1mSL6xhtveLzIgoICV7uiosITLjaprKxk06ZNrj6zDVbRhVTbl/mFTJ1FGLTWadW1XbFihWfLNXNf0HXr1qXcyzQdxls/VxCEiUVE04F9QTwfSLWjSiwWSzmnGYvFOHnypKvP9E47Ozs9XuTg4KCrfezYsZQea2VlZdLLtNm1a5dveNZvCYpziYtfyDTdurZOkTRrAW/atMmzL6h5w2AznmUosp2ZIGQeEU0Hdkk3wfIYUy05yc3NTbsCUSquvfbaUZ//r//6L99+MzwLeJagmNuXVVdXe2rYplPX1uSll15ytXft2uXZF7SxsdF1XFvE01mGYgrreCsdCYIwcYhoGtgXODPseL6RjhjG43HPek8/zA2uTXJycmhvb095rnQIBAKu9rXXXuvZvqy3t9dTw3akurZO6uvrXQLoh7kvaDwe9xVxvzlV0/OUYgajIxWShEwgomlwxRVXsGzZMrlQpYHWmrlz56a0M5N6TBYuXJhy6Qp4BWn+/Pk0Nze7+sx9Od944w3PLium17plyxbfurbmRdkspGCilPKc35wXthOV/OZUnQIpxQxSIzcVQiYQ0RTOigMHDqS0STVfGQwG05pPfvvb3+5pz5w5c9TXdHZ2+q5JdbJjxw7furbmRdkM4S5cuNB1nFWrVnmKK5iebzgc9syf7tixwyOQE1UecLoyVW4qxBuefohoCpNOqlDvmjVrPOtG/XBuFwaWx2h6diZKqZQJTRUVFR5BrK6u9lyUzRDuxz72MddxzAIN4PV8m5ubPVm4zuxh2/OcqPKAE0k2CUA2VkiazBD7eD/7bPrOpgsimqNgzsWZ9VmFieHKK69MabNq1SqPN5qOd/rud787ZULTiRMnPIIYDoc9F+WtW7e6XvfYY4+52ps2bfKEi02UUp41lydOnPBk7k5UecCJxE8AzIuy30U6HZuxko0VkiYzxD5e8ZUQ9sQjojkKmzdvdrWffvrpDI1kevPd736X66+/3tX37ne/29W+88476evrc/WZbT/MGrt+rFixwiOIL7zwgu+ylNHO39bW5pl3NW+0qqurPWsua2pq0qr2k0mvYSQBMC/Kfhdpc0ebibiQZ0OFpFTF+yfKGx6v+E6VEPZUQ0QzTcTLnDz8xC8UCrnaI22anep7MbcqG4kdO3a42uY8aHV1tcf7M6sqVVVVecKx4XDY1bYLOzhr6PpV+/Fbf2qKz7nETwDMi/KRI0d8s4Kdy338bGDsNwTpVkiazBuNVMX7J8obHq/4ZmMIezogopmCZcuWsWzZMvEyJxlzzeOhQ4dc7W984xu+r0sVek2HpqamZKk7G7/kJVMAL774Ylf7zjvvTBlGbWpqAuDJJ58kFArxq1/9ikAgkPS0b7jhBt/dW5YvX+4SH1sEWlpa+OAHP0hraysweSLhJwDmRfnBBx/0XKTN5T4PPPCA74V8rOtW062QNFnhyXSK90+UNzxe8c3GEPZ0QERTmBKMtGylqqrK1TbFrqKiImUxgJkzZ3qOby4paWpq8nh/ZuZwU1PTiJ6lTSAQIBgMJi9gtgC2tLQAcPjwYd8xHj582FMbGOChhx4iFAolC9qnM+84HvwEwLwot7W1eS7S5nKf9vZ2j026YUTzvaWqkDSZ4cl0ivf7ecPj+S7GK77ZEMKejohoClMGUxCVUnzuc59z9ZmZuidPnky5TjRVBi5YYpeqwEJDQ4MnEcgsGWhvym2PMx6P8y//8i/JudfOzk5aW1s9xzHnZnfu3ElLS0sybN3W1sbevXvTmndMB7+t00wBMDOOq6qqPBfpVJ+ZvW411fIaPwH0q5CUqsbwROFXvN/8fPy84XS/C+f7GG+xfinyPzlMSdFUSt2qlHpdKdWilPqqz/N/o5R6TSm1TynVoJSq8jvOeHjPe97jaq9YsWKiDj1tSbWWErxFAPx45zvf6WpfccUVPPXUU6O+xs6EPVs6Ojp8l844L0o1NTUpl9dorT21eM3Q9De/+U1PQpFJPB7noYcecvXdf//9KecdR/JwTJH02zrNFAAz4/jOO+/0XKTNtax+c9DpLK9JVwCd457M8KTpxa1Zs8Y3XOz0hsfi+Trfx3iL9UuR/8lhyommUioXeBi4DXgH8Aml1DsMs73Acq31MuCXwLcm6vz/+I//6Grfd999E3XoaUsqTw/SK5N35MgRV7ulpcUjOJPFSOMztwZLJf7z589P+V7b29tTer8XXHCBJzmqr68v5byjLaSjrScc6eJuhkPNKkpNTU2ei7QpDOYcdHNzs+/yGnOu1k8A/ZayOMddXV09aeFJPy/OL1zs9IbTFX6/z3+8xfrN18m6zbNnyokmcB3QorVu1VoPAT8H7nAaaK13aq3t9MsXgcqJHICdNSleZnqkWzd2NHJycjwXXDPDNtN0d3d7KgCZnDhxIq26vuYF3gxNnzx5kkWLFrn6zGxev3lHv0pH5kX6scce8724m+FQvypKzqxgewxmCDed/UXNuVq/gvp+y13Mrdr8wpMTIRx+Xlyqgvojeb5+Xr75+Y+3WL/5Olm3efZMRdFcBLzlaLcn+kZiPfDMRA5gyZIlLFu2TLzMc8hE7aYyEmb27Hj45je/mdJD9KtZazJ//nyPR2GGNfPy8pg9e7arz9xkYMWKFZ5NsKurq5P7fT777LO+Jft27tyZVljTT8i2bt3KwMAAW7ZsASxPx+ntffWrX3WNp7a2NplRbPO73/3ONVfb2trqCQWvWLHC442ZotTc3OzJSoaJE46xen8jJeaY4xlvWNn0zk3GG6oX3ExF0UwbpdR/B5YD/zyKzWeVUnuUUnvMvSHTxZznFCYerTXl5eWuPlM0RsLMYPUjHW84VQ3dVDu1pMupU6fYt2+fq8/0qvv7+z3Zu3/+859d7U2bNlFbW+spMh+JRJI//Ur2mTcoIy2j8RMy5wbcdrLOBRdcAFgh5SVLlrBq1SoAbrzxRubMmeOp7GSPz2bjxo2e4hObNm3yJA/5iZItIM4lOaZwpBKbkRir9zdSNq05nvFmvZreuf1+UyVGpZrPFtxMRdE8CrzN0a5M9LlQSq0B7gVu11qPmAmitX5Ua71ca718vNuBmfOcwuTQ3d3tap8+fTqt1w0NDY36/MKFC9PyZK+77rq0zne2xONx/vmfR7zPS5u2tjbPZ7Rr1y5Xe8eOHZ45Rb8i8+C9uJpzmps2bXJtwG3Pj9o72HR0dNDV1ZU8nv29mMUtzO+ira3NU42pra3NkzxkilJ1dXXy3O3t7bS2tvpm6vqJzWQwUjatKWTjKdxgZlLbNwDpJEalM58tDDMVRfNl4FKl1MVKqQLg44Cr3p1S6mrg/8USzNTrCSYAmeecuqR7s5ROQlM6pCogr7VOq4B9KkpLSz0ZtuZxy8vLPdnFfkXmwVsOz5zTbGtrc7V37NjhEqloNEpdXV3yeLt376arq8szN2smUy1cuNAj7GZWrl95wkceecRls3HjRo9X/dxzz/mKzWSFKM2Qrp+Qjadwg/k9b9y40SOAy5cvd9lUV1enPZ8tDDPlRFNrHQW+AGwDDgK/0Fr/USn1DaXU7QmzfwZmAP+plPq/SqnNIxxuwnDOc1500UWu5xYvXjzZpxdGIVUY1wyFjkQ626Clw0QsgUmHUCjkybA151Q7Ozv5/e9/P+pxYrGYpxyeHUZ0eppmIlIgEKChocElpI2NjZ4iDeb/R35+vqudKizuxJmIZL73trY2j/iac9m2t2neIKRTiD4dzJDuSKHYsRZu8HuvphdrZp+DN+ko3fns85kpJ5oAWuutWuulWuslWusHEn33aa03J35fo7Wer7W+KvG4ffQjTiyPPvqoq/3973//XJ5eMEg3jJtNpDMPmyp5SWudluCkE5o2y+HV1dV55jTNedeOjg7PelNTtBsbG3nllVdcfeZNRUdHh6cak1nswfZeneUJzWpRZhu80YO2tjbfGwS/eb6JmPsbKRSbar7UFLsZM2a4nq+qqvJ4seZG783NzR4brbVUEUrBlBTNqYB9tyxepjAeUs3DFhcXp5WJm44gpkpkUUp5yuHt3LmTJ598ctRzxePxtLKJTe+vpKTE1a6srGT16tUucamsdK8is0ONTrHbsGGDy+aee+7xZOqazJgxw3ODsGnTJt9C9BMx9zfeAgSm2Jlh93vuucfjxfot9zFtVq9e7Vl7LLgR0ZwkLr/8cpYtW5b0MidiSYMg2AwMDFBWVpbSztwT1o9UWeNaa092cTwe9wipH+PxVEyvafHixdTW1rou5uY8aDgc9ohdQ0ODSxAWL16c8v8wGo163tfu3bs9yUMTWaLPLxSbKvRrit373ve+pCddVVWV/MycNxp+y33Mz/XDH/6wZ60rwCuvvMKtt97K3r17x/0+pwsimueIZ56Z0KWigkBPT09Km4koLDFSiDeVF2uvC3VielILFy701Nk1vdOXXnrJM+/88ssvu9ovvPCCR+zMnUdaW1tTJnNdd911nveltfZk6vol8Ezk0hW/AhSpagHffffdlJSUcM899ySP6/RilyxZktKrfeKJJ1xte07X3p3m/vvvH9N7m46IaGYAc12aIEwWqcK86TBv3jxfT/OSSy5x9Zl/1xUVFXzve99z9ZmiVVVVlTIkGYvFPEtwzPForX3Dw07SWVLS2trKggULXH1mYYnly5d7ikbU1NT4Ll1JR0j9tnczQ79mYpJfWPeSSy7hqaeeck0JmV6s2a6vr3clc+3evds1NnvO2V4W1NfXd957myKa5xB7b86tW7d6/hHNzENBOFekCuGONC/5+uuvu9rmvNrx48c9ySdmks+ePXs4duzYqOf3m7MzufLKKz1iZ9LW1pZy0/L29naCwaCrzyzf2Nra6glrVldX+y5duf/++wmFQsm13H5hV7/t3cykKzuLdceOHcnXVldXo5RKLnNLJ5vXrxTiaIUtlFI88MADrr7z3dsU0cwQ5qbWv/71rzM0EuF8x9y+bKJIJzScToZvOjeUhw4d8oidSWVlZcpNyysrK1PWD7YrPzkzh02PeuPGjbS0tHi2fPvWt77F/v37+da3rD0k/IoSmKFfcz2s7W1+//vfTyYqgX82r+mhmphzo2aC1c033+wpPmG2zzdENLMA+6IgyULC+cY73/lOTxnKWbNmudpLlixJudY2FAp5Xmeu96ysrPQIsFlIYfHixZ7lLCaVlZUeETJLKLa1tXk8svvuuy8Z2nz11Vfp6uryLUpgZhP7LdNJZy9Vv6UzZii4trbWFZ699957Xe3169d7ErNmzJgx7vnb6YCIpoP29naOHDnCkSNHuOuuuzwVRSYaO1xre5mSLCRkI6lCmmfDgQMHPJ5Lb2+vq71//35Pnx9mGNmsYfvyyy971pKa3vDLL7+c0kOuqKjw7IlqsnDhQo/4muP71re+5VuUIFXxi1gsltZeqn5ra81QsF9tYLu9aNEi5syZw7333us619e//vVzVnowG5GMFAeDAwMUxKwwSMvBgxkdix0ycc7l5Ofney4EgjDZpAppng3xeDxlYokze3UkrrjiCvbv35/yXKkyfsvLy1O+3717907Irjuvvvqqb79ZyMEkNzfXdy9VGzub10wCa2hoSIqoHQouKyujo6MDsIpIHDlyJCnuJ06coKuri2uuuQalVDKUPnPmTJeXm5OTM3l3VVmIeJoOCvPy+N5tH+V7t32UqrLM7HLuTBYyd3awt1sSBMGNmXDkRzpClyo0O5HHGYlUNwgrVqxIOZVTU1Pjm/HsZOPGjdTX17t2vXnwwQeTdvaa1JaWFtecqhl2Li4uvjj1u5o+iKc5Ch0dHcm7zrvuuoslS5Z4qoycK+z5mby8vAkp5i0IU4Xc3NyUQpJtu3HYntlkcObMmZSfx7p169izZ8+o4t3W1uYJGTs9WHtNqrlG1jymeJpCkoGBAcIDAxTE4rQcPOhb8HiysT1P28s0vU9BmO6kUy4w25jMTdNHCus6efTRR1OWMAQ8VaXM+WvnUppROPsKGlMIEc0UXDonwPfW3kFVWTkdHR3cdddd5zRZaDTy8/M9BbFTrVUTBGH68+qrr6Z1s2GukR3n/PV5pSPn1Zs9WwYGBmg5+BoFsRgFsRgtB1/LuPf5H//xH67nHn/88XM+HkEQpidmhSBBRHPMVJWV8b21t/K9tbdSlUbB7HOBvdbM9jLNdW+CIAjjQfInvIhoniVmyDYT4dp3vetdLFu2LOll2iW7bJYtW+ZqX3XVVedsbIIgTF1ENL2IaJ4lwyHbKOGBELt3786KeU+78smKFSv49re/7XrOLuElCIIgjA0RzQngwrKZ/NttN3LJnPKEiP6RgliEgliEloN/zMi855IlS1i2bBn33XcfMFyU2/Yyt2/ffs7HJAiCMNUR0ZwELiwr5V9vW86/3racC8tKsyKEu3TpUpYtWzail2mKqIiqIAiCFylu4CAcjfLN3dsAaOvuYggNxSVnfdyBgQEOv3aAorwcesPRjHiefthznWb41mb79u28//3vT7bNwgpS1k8QhPMN8TTPEReWFfEvtyzlkjklWbfe08ZeyjKSl+lX1m8yi3kLgiBkGyKaDgrz8vjaylv42spbqCq3as+2dXfzzV0NtHV3p9x9IF0sz3M/+bEQ+bEQh1/b70kgygYRhZGF1C7rZ+4LKmFeQRCmMxKeHQOxWIy27h6+ucta8NvW3cMQQHHBmI/1trJc/p/3Wus8v/VCD0cHBjj82j4K8+BM2FpUbAsoZL72rc1oId2RNgs2w7yCIAhTFfE0R6GwsJCq8nK+tqqGqvLySd8kurIshwfeX8ziOTkMDAzwxmv7yIv1kxfr543X9mW9N2rvC5oqzOvnjYpHKgjCVEBEcwxYIlrG11at5GurVlJVbnmKbd1neGD3y7R1n5mwEC7AojLF399axN/fWsSiMmUJ6cF95Mb6GRzoz5o1oemQSkhN/ITVnD8dybMVBEGYLCQ8O8FYIdx+/mn3AQDauvuJoKBo7CFcPxaWKT67qoBHdw1xIiGi+QkH+I2D+5Ibydph3U9+8pMAWbPFmY1fmDdVNu/TTz/tCvPanq2z76abbuL5559PtmtqamhoaJiwcQuCcH4jnuZZYnmfM7l35bVUlc/0DeHGYjHe7BlkY9OfebNncEK90QVlirv+ooC7/qKABQlv9PWD+8iJ95MT7ycYPMWZnlOoeD8q3s/rB71h3mz1UEfzTkfyMv/u7/7O1b777rtTJif5ebGCIAh+iKfpIByN8oVnfmn9HougCsbuHRYWFvK24lz+buW7APin3Qdo6Q7h3HIuFovxVo/mWy/0APBWT5QIQNHZvgOL+eWKT91kfbXffipCRTl8/Gar/fOdUbpCAxw6uI/8xLd/4MA+19rRu+66i/7+fkpLSz2JSJkmHQ915syZnDlzhpqamrSPa3qxZvLS9u3bueWWWyZ1n0RBELIfEU0HRcXFDOUqAC5ZejkdHR0c7gryha1PE45FxyWiYAlpZZHmnhUXsbHpzxzpGQLchZBjsRjtPZrvNodp74kTITxhIurHvHL42Grr69/0ZJTIUH9SRA8d3Ed+QSmRoX7yHH0dHR2uMK+fsPb39yf36MtUKPjiiy8GLC/TxhTW8WQBb9u2LaWwAiltJJNYEKYuIpoOKisrk97Ut7/9bR555BG2b9/OEMMi2tbTzRe2PguQENLCMZ+nsLCQRUW4lpy09oBTSGOxGEd7NA/vtkK5R3s04ViIzrDm0V1DdHZrooRhgqKKc8vhQzVWaPnXDTF6QhCYDX9RY0Xwf9sQp7d/gIGBfooK4eDBfRQUlDLkEFa7b2Cgn8KEjTnH6ies2eLVjkVY7e3YxkMqIfUT349//OP8/Oc/T7Zra2upr68f9xgEQRgfIpqjsGHDhuSF3BZRpwBcsnQpHR0dvNnTzZee+R1nhoYoHGfZvcLCQi4oivO/qgv5bnOYP/XkYHqjJrFYjM5uzY+et0rZdXZrYoTh7Cv/jci8uXDbGsUzOzR9/TB7NqxZYz23Ywf090NgLtz0fsXz2zWh/gFeO7iPPKsWAq8d3EdhQSmhgX4Kiobb4Ug/OYm/xtcOpe/VOvs2bNjgK74T6emmI6xjEd90+cxnPuMSzU9/+tN8+tOfHrP4VlZW0t7enmxfeOGFvPnmm+MelyCcb4hojgH74nvXXXcBXiEtLM6juLiYN3tO8+Vn9gAQjsVQBUW82TPI/972Br3hKEUlqZdKFBYWsqAoxudXWp7sw7vDHBssoaI4lMyefas7F78w7/FuzU+ft/rDETgatOYyAU50w1A0RGQI/rPR6otEoafv7D+fkSibAytvscLeu7dpBvtg9jy44TbFi89own0wYw4sv82y2fOMZuDMAKGBfvKL4I+H9lGUX8qgQ1jtvoFIPyoPYoNw7NgxQpF+SAj0/kNeT9dPWNMRX9PmkUceOSsxHo/4BgIBgsEgtbW14z7vY4895hLRH/7wh0DqkLKfjdn3mc98hsceeyzZ/uu//mt+8pOfMDQ0NO7xCkK2IaJ5lphCumTJEsMbvcx1wS0qKaS4uJi3ukPc9VwXAOEo5Iw9ykthYSHzimP81U2WSvzo+QjtPkKaCq1hIGyFZQFOdUMkIay/bbASmIKnrb6hIXhmh6brNGgdZjKXSs6sgGXrFPu2aGJnoDgAS//CCou+8ds4uhcKA/C2O3J46+k49ELuXCj/oGXT/VScgZ4B9h3aB/kKBjTHjh2jPzJgtYF9hw5Qml+c6MuBgWjCZhB7Lc++Q3+kNL9ouG8g4luxyRRWv+U+47Gx+wYHByktLWX//v1J0R6P+NqF9y+88MKJ+qoAK4TsFM2PfexjfOxjH5uQeeB0bB5++GFXWcfCwkJXpvqCBQuS0wKCMF5ENCcYP2/UZiRhvXTpEjo6Omjv7ufe7QOcCUNRiTWP+Y/PDgKWsOYWQmePZuPWMP1DUOQzn1lYWEigJJYie7aE8pL+ZCLQv/1nlLxxFDuKxWKcPm2FZQFOn4ZoQlif367pTrTDQ5aHCdDTBbFE34vPaHoT7Zwhy8MEOBOEeKJv3xZNfxCUDo8/L2puLrkfmkns12egB5hbQO6HFlnv4ddHE33F5H3wUqJPHU60S8m7450ARJ/+I/TEYO4M8u64mujTexNi/Br2B7fv0GuU5hfSHwkn+/qDpyA/D3vSd9hmyGETNGwOUppfkLAx+gYGoKiIfYcOjnuuuL+/n8LCQgoLCykvL0961Xbykx3O9muP1rdgwQLuuuuupCDPnz/fdZxzwec//3mXaP7mN79xCevjjz8OTIxAT5TNY4895pmrNsPuxcXFyZsqsBLVhoaGsmmHoXhqk+mDiGYGSBXmLSqxLkLOC97SpUvcHmux9c90rKefb//WCn9FYpBbAMe7Nf/2W+sfaihqhWQf+c1wKDbPSALOy/VLBCphVmm/kQhUwozS/uScZrBr7F7teInFYoSClocJEAqCjoRQEXjr6TjhRFtHLA8TIHoKYpEQRLQlmKdihCIhiCTEEuBUmFAEiChLME8NEIpoiORYYglwqp9wXGH+u6jATPLuuNY619MvQ+8QKjCLvDveC0DksWdRgTLy7liZsNkNvYNW3+03WTY/egoVKCf/dmt5TGRzA/SGUIHZ5N/+/kTfdujtR82fR/4HbiXym2cZ6O1j36FDDmE9RGl+vkNYE+1IBHtC2W1T7LCJOmxepzQ/j/6BwYRNou34wxnui1mvGwwlvPMYqqAEVQDHT/fQ19dn9ZWUoQf7mDtnNnfddVda4juaTXFxMZ/85Cd9bXJycojH4xQWFia9eIDc3FxfETdD7Jm2efHFF9m/f7+r79JLL2Xfvn3Jtn1tcPYtW7bM1f7Qhz7Ehg0bzon4nzlzZi/nESKaWcJIHupYPFZTWAECAcsdte9U33655dWe7O7nB5uHhfRUN/z46ViynV9ghWTrbQFK9J08Bb/4tSYStbzaoaEoZ84Mv4+SkhIGBvrpOzPcLprRb8xpllA4o98xp1lC/sx+15xm5EwJuTP7k+HZ0Klc4udIoP2IxWJwqo/o03vhVB+hSBwdCVtiCejgGUKRWKLvBetFQ1H08S5LLAEd7Bm22fy8wyZoiSWgg92EIlF0ZMgSS0AHTw/3/eZZdLCLUCQK+XmoslkJmyChUAjy81FlZZ62ZXOKcDiMmr+Qwg98hPBvfgW93eQE5lH4gb8EIPybX0DvaXLmX0DRBz7J4G9+Br1d5ATmU3z7/wBgYPPj0BskJ7CAktv/itDmH0HvSXIDCym9/bMA9G9+FHpPkBtYxIzb76Rv8yYGeo+x/9BhyLPmIvYfOkxJfg6hSJycvEJig2c4duwYg5E4OflWXOGPhw5TlJ9DOKLJzbdedyrYRX5+EbmJ4xw81EJBvmIooiksst7r4EAPvb0hSkpmAxCNhjl27BiRiKY00RdJ9OXm5FFcNDPZjg5pZiZshiLDNiWFwzaxIc2s4oSN4zgzCmYSjlnteFhTXmTZhG0blcdMh40OxymggCGGyCUn2Te7sJwzQ2coLCmi5bXDrr9Fyybm6lV5uOoAABMASURBVGt57Q1X254+cGJfN2z8RDsdG+fNyPnIlBVNpdStwL8CucAPtdYPGs8XAo8D1wBB4L9prf98rsc5maQTCvYTXzML2BTWyy73iq/dZ4f/LvexudzHpqOjg+6ufp79pRV6jUagsABOn4SGX2hiiXZfF+z6/yybeBQK8+HMCfivJzSxKBQVFjIYiRK26kGggOKSEgYi/Qz1WK8pLSkhFOkn5rApKSmhP9IPPXGI2u0B6LFDW4qSksScZk8YonFKSkqt+cueweTnmZubS5SpX9ggFouhgycJ/+ZX6OBJQpEIOhKxxBKIB08k+qIM/uZnifYQOhK1xBKIB48n+joJbf4R8WBnst2/+VHrPMFOQpEwOnKUvs2biAWPWu38IvLK5gEQDbYnhL2IvLIK4tEwoVCInPwiisoqAAidepNQKERufhElZfMBCPefJhodoixgzcl2B9sIhQbIyy9mZtkCAAZClk0gUAVAMNhGKBQiP6+Y8lmWzUmj70SiXZBXzOyZls3xruG+wMwFdJ622oV5RQRmWOPp7LbOX5hbxNwZ8zmaaBflFjGv1LJp7xnuqyiZz1tnEu2cIhaXW+uK285Y77Uot4j5JfMYjIUT7UIum31JwqZ9uG/OYtp6OxiMhdHAZXMSx+ntpLu7m1D3GWYXzuTMUCghvq8zu3Cm9RnGhhLiG2V20QzOhAcSNoeYXWSJZDgaSdhEkn09gyFC3b3MLipJ2GTuRjZTTEnRVErlAg8D7wPagZeVUpu11q85zNYDp7XWlyilPg48BPy30Y578uTJCcuOzGbG49WO18YU6KWGsL7dR3yXXOa2ueyykW2SfcXekPb4bAp9bC6jo6ODU72noWcgIawl9EfC6J5Q8nMY7uu3OhSQlzvcTtoMoe10ZaUSNn0+NmfcfQMDyT7LJoLu6cU+2bBNj2HTkzxObm4u0aEh9PFOKwMMIBIhfrzD+t3uGwoTP37UYTNktQF03NH3FsRj1vuIhIkdf9OwCRM7/meXTfR4q+tcOhImfPwIxGMopYhFwvQdO5IwiaOAaCRM97GW5PvQ8SjB4y2uc0Ujg5w6PuyVxeNRjifaOmETiQ7SecLdNxQJ0XHi8HA7OsjRk5ZNPNEXjoR469Th4XY0zJvBFpdNNhGLxdC5ucwvncNgbCghtAXML7U837be4ww4+gajkYRNPvNLyy2bnpMJm3zml1oe/OnBfoZiUS4sCyRsgpl5gxlkSoomcB3QorVuBVBK/Ry4A3CK5h3APyR+/yXwPaWU0inqoJk1SO31graI2iIAePrs156tjbNvqjPZAj2Zxx5R/IvzfYT17R5hLw5Yd/W2B7/ksqU+NgHD5nKfG4TLXTcR/jaXGTaXpbZZ4nMzsmRJ2jbOPs/nMYk2xcXl7s9snDZjea+pbDo6Ojjd1c2pvuOgrBuYeFhzsv944q/L6hsMhTkROp5s63Cc46ETloXC0XeSSGzI1baOYr8uxvH+U0RiEUc7mLCxbo7C0SFaTrcT1dbNiNW2bnziOg4Kq6/rKFEdT9hEaOnqTNjohE2Elq7hrOOojtPSdXzY5jxjqhZsXwS85Wi3J/p8bbTWUaycyMBoB503bx4/+9nP+NnPfpa82JeVlXmEtLi42LevLDF3dLY2prA69840+6aiDZDM/jxbG7uvo6NjQmxGeh8bNmxwVSlatmyZq71kyRIeeeQRV9/KlStZuXLlWdssWbIkuWzkbG0eeeSR5N/X2drYfcXFxRNiM5U/15UrV6Jy4MxQDzPKSizxLy+hd6iH3qEeSsutPpULvZHhdkl5KT3RHnqiPZSUlw73RXohVznaZ+iJnHHYzKAn0uewsdo9kT5KymdQVVXFnLkB4kqTk5PDrFmzku240syZG2Dx4sWJPgwbiCs8NnEFRUVFFBUVuWzON6aqpzlhKKU+C3wW8F23Zu7+sWHDBt8sOGffRNk4L15O/IR2qtk4bx7OxsbuM29GxmuTzrmmuo189hNvs2HDBvbt20dPTw8rV65MRo5277aSwOy+DRs2pLSx+8rKypI3cGdjY/cBk2LzxBNPeD6b6Yyairs2KKXeA/yD1vqWRPseAK31RofNtoTN75VSecAxYN5o4dnly5frPXv2TO7gBUEQphFKqVe01sszPY5zxVQNz74MXKqUulgpVQB8HNhs2GwGPp34/aNAY6r5TEEQBEEYjSkZntVaR5VSXwC2YS05eUxr/Uel1DeAPVrrzUAd8FOlVAvQhSWsgiAIgjBupqRoAmittwJbjb77HL8PAh871+MSBEEQpi9TNTwrCIIgCOccEU1BEARBSBMRTUEQBEFIExFNQRAEQUgTEU1BEARBSJMpWdxgslBKnQTagLnAKcdTZjvdPrE5NzaZPv/5bJPp809Xm0yffyw2VVrreZwvaK3lYTyw1nqO2E63T2zOjU2mz38+22T6/NPVJtPnH6/N+fCQ8KwgCIIgpImIpiAIgiCkiYimP4+maKfbJzbnxibT5z+fbTJ9/ulqk+nzj9dm2iOJQIIgCIKQJuJpCoIgCEKapFWwXSl1K/CvWDuK/FBr/aDxfCHwOHANEAXyAQ38EFgK/PeE6U+xtvW6G6hMHC+MtQtJFJgPFBqn10AEGAJKAeUzxDDWDUC+oy+WOL4gCIJwbomTvlNmhzu7gVmMfN3WDF//NdY13u7rATqxlsEsAEJAEdAC3AD8DfBJ4CKgH3gT+AUwANQmjpkHXI6173LXyKNNkV6beANHgMVAAfAH4B2GzZ3A9xO2x4HfJmwPYYndZVjiGQbeA7wFvI61XVcv8HvgEuCLwBYsYY0lXvsw1trJo8ALWF9GW+JYMSyxfRX4E/CNxIeogQPAs8AJLNGNJcYeS7w2DgxibS82kHjNAMMCHUn0vZXojzvsdOKc9pcWcnyJ7Q6beOLnKUefBvYabds27tOvE+PRiffq7A+PcJzICMdJ9Rjp/GdznLM55njfh/O8sRQ2fs+P9JrRjhVN0848nt9n5exP9/t0nnNwhM/COcZ0xxsZ4TXj+a5jI9g6j9s3wuvMv/WBFOeKAyfT/B7S+VtK9zt1PkY6/2ifU6rv2u/5VN+leb5TjuPYrw0DOxP9fteioHH83sRxYo5jvYQlSIOJ159OHD+eeH08cZ5o4tGXsNFYjlMI2A+8ljhuZ+J1S4CGxOcZSbwuiOWE3Yclmr8CvpY4RgfwPeAY8CDwEJYY34SlTV8Cvu+jdR/A2nf5rJecXAe0aK1btdZDwM+BOwybO4CfJGz/gKXsEaw7h16t9SGt9RtYYve3iTfclHizncAZ4MPAJ4DvAsWJDzUXeB5LMN8ALk2c78+JDzmWOMYcLJGuTHwBYH1xOViCg+OnZljkAEqwhNV+TV/idfbdzv912NuvASh3HLPfcY5S47PRWDcITo7jj32cuNEfS/zsMPrP+JxriPQiCNqnz8+LH81+JJzHSfW60Z4f7Y4zFfZF1u892a+Pkt7nMJjG+Todv+eMcFxwf7fKOJdKvM75+kH8v09t/B41zu9n6zyX0z4ywlhh+G8P/L8P5/9Fqr8f57jsC63zuKaNdvw0P4MTjI7C+79oHncs2N9NusSwrkkjHcsP+33GRngOLLEa7Xg5eK8f9nhsygx7sL6Pyxn+WzDH2J74aR/7BDA7YWeP+SKsaJ9tO4thUZ3F8PXSHmMP1rVeY31Xp4BFjtccSNh2Adcnjh3GumE6jeVohRPnLwBuw9KWcizNOIIVIf2g1tr5uZXi/11+AnjCp99NGp7mR7FCsnb7U8D3DJsDWIL1UayQ7BEsN/kPQLvD7nksD+3VxAd4FLgH64Lz48TPXKwP3b6gnQZqgFbcHt23GL4whhLndN4d9TB8VzTSnZ1f/0h39qat827sbDwieWT/Y6I88On4kM8m+x6pvHC/RxRLCEf6jlNFbMzzO+3t39/0sXdeR6NYNwVDjr4BoBkrOhcHDjre3xCW0IawnJ0hrEhmFHga+AKWqHcn9OenibEMADuAdzq0qQRLnOdka3GDV4ENWKJ3N9YbvwT4JbAc667BdsNPYn0AhxP9Q8ArWKFdO2xzCCuOHQP+LnGOw1ji+32G75rsuyj7S1EMh1OdX2Qe7j8AsLxb5x3cK47j2nfBdhjVxvyjIjHekdDGz+nAeN6L351yJhnNg7KZrO/sbI87GZ+lfSEEb1ThbMfrfP1Yxm7+36WyHes4x/O+0vlfT4exfodFYziW3c7FcnTAf2zOa5MtWHZkTDmOE8LKS7E9wgjDUQ3bi/xzwv4V3A5HBGjEiq4o4B+xnKXrgQsTx5uReK4eS0Afx4rADWCFYe9PnOtG4D+1pYj22D+P5WV/Ayva95Tj/X0AaB51LjNBOqJ5FHibo12Z6POzOZp4c2VYbvIA7i/wAqwP7G1a6zosoSwiUb8QyzX+ONaHkg8c1VovxboDegfDc5O9WB9mbuJxQeJnHtaEL8CVWN7nm1jCG2N4ntR5V2TfBdkhMfsioLD+KGyPtwx3GGu58RmEsUTe+Y+iE31Rx3ELGfkfRhk/x3PByzbBTUdwTM7lzdxEfV7jeZ8mfmMZLSyYztiHUpv4Yv9f+F34Ff6hWjPcPB7MUGM6mCKYagzjGed43tdI0zAjHW+k//ez/Uz9Phu7L8d4TuP9m4v62JxheLxdjv5irOt+MdZ1Pdc4Vxzr2j7E8HXb/j6KgJXAzIT9+xLHzsG6/hYn+vOwRO73WLky+YnnvowlljmJ9tuUUgtJhPK11r1a6z4swb0SyFdK2TcKHyed0Czp/VG+DFyqlLpYKVWQOPhmw2Yz8OmE7ZVYE8L5WLHlWUqptyullmIJ448Sx1uONReqscRTAy8Cf8nwBLNWSl2OdXcxG0uU84AAcC3WB25PMsf+//buJbSOKo7j+PeXWqhQEQQf4MJIEQUtFiJIWwQfFUShCw2Ij4UbRdBNwIVaESkW1I1UURFBGywiiIuCxWoV0SIt2mjToLaUUroSFbHS1Dya5Lj4n+FO0pmbuWluwPj7wMDkzuOcuXdm/pk5f84h2kwHcp1+IZKXhnM9epj9BAmt4NxD3BxO0ToRpoh332N5vdVE8CVvX+64eIp4Cr6IVgZvUc5qWtnEhaYXQfH71D2BVt00pzi3TaRYr9MgPFMzP8nsC6mdfyrqMXefdce1WAGtqo2o2H+7Ns+5zhBvMKrWa1fXuhtQO+Vtfq1Zp+48Kh9vOWiWf8Py/sc4V3Ejq2qXm3sMc3/Hqu+leDoplNvjy23GUw3mIa7VchlV97KFnD/zbVN1LtWdX/Nl75fLOl3xWeFkaVndNV9Vl+J+VT5Pxol//ovv/K/SsiI5snxdFPPl77eHVhtlIh4ElMs+QwSsv4HHaeVYFOdIEWwvyMuL/U/lZaO02kSfJOLJdK7Xj8BtxD8jfxD31SKvZTfwJhEgx4B9KaWDRFzaJekaSVdIEhF3fsvH8aeki4lgu4smmnRQC9xNJOIcB7bkz7YCm/P8KuAjIr33KJHJehzYQiQIFVmuO4iG2SI4FRlug0Ri0LOUAmZpOpW3r2s7nClNVcs7ndxO48mTJ08Ln+raQOvySGZo5azMbfM8SsSJY3mdIu9kigjKE3n5fmBTXjaU1/+CSBT9mHiNO04E9CFgQ45fjwAfNu2w3T0CmZmZNeQegczMzBpy0DQzM2vIQdPMzKwhB00zM7OGHDTNzMwactA0MzNryEHTbAlJGm2zrFfSg6W/b5L0WhfrslXSporPb5X0SbfKNfsvazSeppktiV5izL8PAHKPJge7VVhK6flu7dtsufKTplmHJD0s6TtJhyS9LWmFpFFJ2yQNSzog6fK87tWS9ksakfTiPLt+Cbgl73eg/MQn6QVJg5L2STop6V5Jr+T97pG0Mq/XJ+lrSUOSPst9b9Ydxw5J/Xn+LklHJP1ADNNnZhUcNM06kPtCvh/YmFJaR3QX9hDRT/GBlNKNwDfAo3mT7cBbKaW11PchW3ia6DNzXUrp1Yrla4Dbgc3ATuCrvN8x4J4cOF8H+lNKfcC7wLYGx7QKeIfoBLuPGDHIzCr49axZZ+4gAsv30fczFxKdRE8So8JD9Gt5Z57fCNyX598nhi9aqE9TSmcljRCdge/Jn48Qr3avBW4A9ua6rWD+QA1wHXAipXQMQNJO4LHzqKfZsuWgadYZAYMppWdmfSg9lVodOU8z+9parA6eJwBSSjOSzpbKK0aNEPBTSmn9IpVnZnP49axZZ74E+iVdBiDpEklXtVn/W2I4PYjXuO2cpjWW4EIcBS6VtD7XbaWk6xtsdwTolbQm//3AedTBbFlz0DTrQErpZ+A54HNJh4G9QG2yDTEw7hP5leqV8+z+MDCdk4kG5lm3qm6TQD/wsqRh4BCwocF248Tr2N05Eej3Tss2+7/w0GBmZmYN+UnTzMysIScCmS0xSWuJTNqyiZTSzV0q7w0ii7dse0rpvW6UZ7ac+fWsmZlZQ349a2Zm1pCDppmZWUMOmmZmZg05aJqZmTXkoGlmZtbQv4o8xmTokWMJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -814,12 +783,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAAHrCAYAAACEiNEsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl0U3X+//HXTdOWLlBKadlEBxFp2cEBWX9oBatFthll\nRhBEwKGCogyIIkhZyqKAOODCpiKIgHxHFi24z3FBhCIDMijIIlDK2lIRWqBbfn8wZPjYAg0kTUqf\nj3M45+be+/nknX5Ibl65m+VwOBwCAAAAgP+yebsAAAAAAL6FkAAAAADAQEgAAAAAYCAkAAAAADAQ\nEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAACD3dsFwPc5HA6dOJGlggLuu3e9s9ksVaoUwniXEYx3\n2cJ4ly2Md9lis1mKiAh1b59u7Q3XJcuyZLNZ3i4DJcBmsxjvMoTxLlsY77KF8S5bPDHOhAQAAAAA\nBkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZC\nAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGu7cL\nAABcm7Nnzyot7aDL7ex2S+XLB+nUqTPKy3N4pC5JKleunNv7vlY1atzgk3UBgK8gJABAKZeWdlAT\nJ47xdhmlyqhR41W79i3eLgMAfBaHGwEAAAAwsCcBAK4jgdWayy+worfLUP65kzp3eKMkKbBaC/kF\nhnm5Iin/3K86dzjF22UAQKlASACA64hfYEX5BUV4uwyDX2CYz9UEALg8DjcCAAAAYCAkAAAAADAQ\nEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIA\nAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAA\nABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAY\nCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJ\nAAAAAAyEBAAAAAAGQgIAAAAAg93bBQDwHdnZ2QoI8HYVAFBYdna2JCk4ONjLlQBlA3sSAEg6vwH+\n+9+fUP/+/Z0bYwDwBdnZ2RoxYohGjBjC5xNQQggJACRJhw8fUnZ2lrKysnT4cJq3ywEAp/OfT9nK\nzs7W4cOHvF0OUCYQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAA\nAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABg\nICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAk\nAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAA\nAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyGhCLGxsYqOjlZMTIxOnz7t7XIKWb58uVq2\nbOlSm/bt2ztf05kzZzxUGQAAAK4Hdm8X4Kueeuop9ejRQ6GhoRo5cqRWrFghy7LkcDgKrVujRg19\n/vnnJVqfZVkurb9y5Upt2LBBQ4cO9VBFvmnLlu8lWWrSpJlH+ipu/xfWkxwu9XHxsgvTe/fulmVZ\nqlXrZmefe/fu1c03175kH3v37pVlOVSr1i1av/5rHTx4UJIUGhqqihXDdfBgqux2P9f+IADgBe+/\nv0y33FJHmzZtlGTpgQce1IXP1r17d+v771MkSX/8Yws5HA4dO3ZEUVHVnJ+Be/fu1tGjR9SqVVvn\n52n37g9c1fbCndsYT9i4caNOnz6rhg2bersUlEKEhEsIDg5WpUqVJEmjRo3S8OHDncvatGmjKVOm\nqF27dpIkm833d8iEh4crLCzM22WUqNzcHL377kJZlqX69RvI3z/ArX0Vt/8L60mSw+GQzWYrVh8X\nL7v11lv/24dDGRkZsixLFSuGy2azyeFwKDPzhCpViiiyj8WL31Zm5glJUlhYRec0AJRGP/20XTt2\n/Oj80W7Rojdks53/kSMz84QKCgokScnJq+RwOJyfu5JUsWK4fv01UwUFBdqz52f9+uuvkqTY2A4u\nby/cuY3xhJycHM2dO1cOh0MTJtT3ufrg+3z/2+0lfPTRR+rcubMaN26s22+/Xf369dPZs2clnT8c\nJz4+Xo0aNVJ8fLzeffddZ7uVK1eqadOmOnDggHNeYmKi4uPjlZOTU+RzhYaGKiIiwvlPksqXL+98\nHB4eXmS7l19+WX/+85+1fPly3XHHHWrWrJmSkpJUUFCguXPnqm3btmrTpo3mzZtntHvjjTfUuXNn\nNWnSRHfccYcmTJhwxUOEPvnkE3Xv3l2NGjXS3Xffrddee835QVlWJSevVnr6cR0/fkxr1nzg9r6K\n2/+F9dLTjysjI73YfVy8bNasGf/tI10Oh0MFBQU6cSLD2WdBQYHS048X2ceF5QUFBQQEANeFi/fq\nZ2ZmKiMj3flZd0FBQYFzvQufgSdOZDjXOXHihHN+UlKiy9sLd25jPOHDD1fp6NGjOnbMN+uD7yuV\nexKOHz+u4cOHa8SIEerQoYOysrK0adMmORwOrV69WrNmzdKYMWMUExOjn376SaNHj1ZwcLC6deum\nbt266csvv9SwYcO0bNkyffXVV1qxYoWWLVumgAD3p+xffvlF3333nd544w3t379fQ4YM0b59+3TL\nLbfonXfeUUpKip5//nm1adNG9erVkyTZ7XYlJiaqevXqOnDggMaOHSubzaZRo0YV+RwbNmzQ6NGj\nNXr0aN12223av3+/Ro8eLT8/Pw0cONDtr6k0OHbsqNau/d+H4po1q9W6dTtFRka5pa+6dWOK1f/v\n2xa3j9+327nzp2LVmpxs9rFmzepiv86L/fTTduXlFT60Dr4pLS3V2yWUOmXxb2a3WypfPkinTp0p\nde/vTZs2eLT/jIx053Rxthfu3MZ4wrFjR5Wc/L/Pf1+rD6VDqQ0J+fn56tixo6pVqyZJqlOnjiTp\nlVde0bPPPqsOHTpIOn++wK5du7R06VJ169ZNkjRu3Dh17dpVEyZM0KeffqrHH39cMTExHqnVsixN\nmjRJgYGBql27tpo3b67U1FTNnz9fkvSHP/xB8+bN04YNG5wh4eGHH3a2r169uoYMGaJJkyZdMiS8\n8sorSkhIUJcuXZyv+YknntDMmTPLbEhYsmShcnNznY9zc3P17rtv68knn3ZLX7NnzyxW/79vW9w+\nLtXuSvLyzD7y8vJc7kOS3ntv6VW1g/c5Clz/f1NWXPy3WbBg3mXWRFlWnO2FO7cxnuDr9aF0KJUh\nITo6Wq1atdJ9992ntm3bqm3btoqLi5O/v78OHDigUaNGGV+oCwoKVL58eefjChUqKCkpSf3791ez\nZs30t7/9zWO11qxZU4GBgc7HERERCg4ONtaJiIhQRkaG8/E333yjefPm6ZdfftGpU6dUUFCgnJwc\n5ebmyt/fv9Bz/Pzzz9q2bZtmzZrlnFdQUKC8vLxLtgEAAAAupVSGBJvNpjfffFP//ve/tW7dOi1a\ntEgvv/yyXn/9dUlSUlKSGjVqVKjNxTZu3Ci73a5jx44pKytLISEhHqnVbjf/xJZlFTnvwjGSqamp\neuyxx9S7d28NGzZMYWFh2rhxo8aMGaO8vLwiv/BnZWVp+PDhuuuuuwotK6sB4cEH++jHH//j/CXF\n399fPXs+fIVWxe8rIWGIZsx44Yr9/77tBVfq41LtrsRuN/vYvn3bVe1N6NHjr6pTp57L7eAdaWmp\nzl/GLVvZfM8Xx8V/m759H1WNGjW9WE3JK+2HG338cXKJPFdxthfu3MZ4gq/Xh9KhVIaEC5o2baqm\nTZtq0KBBuvPOO7V582ZVrVpVBw4cUKdOnS7ZbvPmzXrzzTf1+uuva9q0aZowYYKmTJlSgpVf2rZt\n22Sz2TRixAjnvNWrL39ceb169fTLL7+oZs2ytcG7nKioKrr33s5avfp9SVJ8fJerPhazqL6io+sV\nq//ft73gSn38vl3dujHFOi+hUyezj/j4LoWeuzhiYurrpptqu9wOKC1q1Kip2rVv8XYZJcputyk8\nPESZmVnKyyt9F7bwZEiIiKjsPC+hONsLd25jPCEqqoo6deqilSv/Kcn36kPpUCqvbvTDDz9ozpw5\n+s9//qPDhw/r448/VmZmpmrXrq3Bgwdr7ty5WrRokfbt26eff/5Z77//vhYsWCBJOn36tJ555hn1\n7t1b7dq109SpU7V27Vp99NFH11zX1KlT9dxzz11THzfddJNycnK0ePFipaamasWKFXrvvfcu22bw\n4MH65z//qddee0179uzRnj17lJycrJkzZ15TLaVdp05dVLlypCIjoxQf39ntfRW3/wvrVa4cqYiI\nysXu4+JlTzwx9L99VJZlWbLZbKpUKcLZp81mU+XKkUX2cWG5zWZTeHila/o7AIAvuPheQeHh4YqI\nqOz8rLvAZrM517vwGVipUoRznUqVKjnnjx49zuXthTu3MZ5w331dVaVKFUVF+WZ98H2lck9CSEiI\nUlJStHDhQp0+fVrVq1fXs88+67xvQXBwsObPn6+pU6cqKChIt956q/Nk4EmTJikkJMR5U7Fbb71V\nQ4cO1dixY9WsWTNFRV05aV/qRmbHjh0zzi0orov7q1+/vkaMGKHZs2dr2rRpatGihYYNG6aRI0de\nsn379u31+uuv69VXX9XcuXPl7++vm2++WX/5y19cruV64u8foJ49+0iyrvn60EX1Vdz+L17vwg1/\nitPHxcuCg0Od05e7mVpRffTq9XCxb6aWmnpAAODLYmLqu/1mamFh4S5vL9y5jfGEgIAA/e1vf9Pp\n02d9sj74PstR1C2Ey7jY2Fj17dtXffr08XYpbvXtt9+qf//+2rx5s4KCglxqW1p3T6P49uzZrYkT\nx0iSEhMncLhRKXLx2AX/oaP8giK8XJGUfyZD2fs+leSbNY0aNZ7DjUqRi/+Pl8Wxuxqlebzhugvj\n7U6l8nCjkjBt2jQ1a9ZMp0+f9nYpbnHPPffoscceu+ReEAAAAOCCUnm4kactXrzYeUWY0NBQL1fj\nHm+++aby8/MlyeW9CAAAAChbCAlFuHCDtutJ9erVvV0CAAAASgkONwIAAABgICQAAAAAMBASAAAA\nABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAY\nCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJ\nAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAA\nAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYLB7uwAAvqFateoKDg6RZUnVqtXw\ndjkA4HT+8ynYOQ3A8wgJACRJwcHBeumlWapYMVg5OVJeXoG3SwIASec/n158caZzGoDnERIAOAUH\nByskJEQ5OVneLgUADIQDoGRxTgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAA\nABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAY\nCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJ\nAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAA\nAAAMhAQAAAAABkICAAAAAAMhAQAAAIDhqkLCrl27NHToUHXo0EENGjTQ9u3bJUkzZszQl19+6dYC\nAQAAAJQsl0PCunXr1L17dx06dEidO3dWXl6ec5ndbteSJUvcWiAAAACAkuVySJg+fbri4+O1bNky\nDR482FgWExOjH3/80W3FAQAAACh5LoeEXbt2qWvXrpIky7KMZRUqVFBmZqZ7KgMAAADgFXZXG4SF\nhenYsWNFLtu3b58iIyOvuSgAwNXJP/ert0uQJOWfO1nktDf5yt8GAEoDl0NChw4dNGvWLDVu3Fg3\n3XSTpPN7FI4fP6433nhDcXFxbi8SAFA85w6neLuEQs4d3ujtEgAALnI5JAwbNkzbtm1Tly5ddOut\nt0qSnnvuOaWmpqpWrVp6/PHH3V4kAAAAgJJjORwOh6uNcnNztXr1an377bfKzMxUWFiYWrdura5d\nuyogIMATdcLLMjOzlJdX4O0y4GF2u03h4SGMdylz9uxZpaUddLmd3W6pfPkgnTp1Rnl5Lm8KilWX\nJJUrV87tfV+rGjVu8Mm6PIn3d9nCeJctF8bbna4qJKDs4UOmbGCjUrYw3mUL4122MN5liydCAndc\nBgAAAGAo1jkJTZs2LXS500uxLEvff//9NRUFAAAAwHuKFRL69etX7JAAAAAAoHQrVkh44oknPF0H\nAAAAAB/h8iVQL3bkyBEdO3ZMUVFRqlq1qrtqAgAAAOBFVxUSli1bptmzZ+vIkSPOeVFRUXrsscf0\n17/+1W3FAQAAACh5LoeEOXPmaMaMGeratavi4uJUuXJlpaen66OPPtK4ceN08uRJDRw40BO1AgAA\nACgBLoeERYsWqX///nr66aeN+bGxsYqIiNCiRYsICQAAAEAp5vJ9ErKystS6desil7Vt21ZZWVnX\nXBQAAAAA73E5JLRt21bffvttkcvWrVunli1bXnNRAAAAALynWIcbbd++3Tl9//33KzExUSdOnNBd\nd92liIgIZWRk6LPPPtN3332ncePGeaxYAAAAAJ5nORwOx5VWio6ONm6mdnETy7IKPf7pp5/cXCa8\nLTMzS3l5Bd4uAx5mt9sUHh7CeJcRjHfZwniXLYx32XJhvN3aZ3FWWrhwoVufFAAAAIDvKlZIaNGi\nhafrAAAAAOAjXD5xGQAAAMD17aruuLxq1SotXbpU+/bt07lz5wot37x58zUXBgAAAMA7XN6TsGrV\nKo0ePVp16tRRZmam7r33XsXFxcnf318RERHq16+fJ+oEAAAAUEJcDglvvfWWBg0apMTERElSz549\nNXnyZH3++eeqVKmSQkLce2Y1AAAAgJLlckjYv3+/mjVrJj8/P/n5+en06dOSpNDQUD366KNatGiR\n24sEAAAAUHJcDgmhoaHKycmRJFWpUkW7d+92LsvPz1dmZqb7qgMAAABQ4lw+cblBgwbauXOn2rVr\np9jYWL366qtyOByy2+2aO3euGjdu7Ik6AQAAAJQQl0PCwIEDdejQIUnSkCFDlJaWpsmTJys/P18N\nGzbUhAkT3F4kAAAAgJJjORwOx7V2kpOTo5ycHIWGhrqjJvggbuteNly4rTvjXTYw3mUL4122MN5l\ny4Xxdmuf7ugkICBAAQEB7ugKAAAAgJcVKyQkJSWpX79+ql69upKSkq64/ujRo6+5MAAAAADeUayQ\n8MUXX+j+++9X9erV9cUXX1x2XcuyCAkAAABAKVbskFDUNAAAAIDrj0v3STh37pwSEhKUkpLiqXoA\nAAAAeJlLISEwMFApKSnKz8/3VD0AAAAAvMzlOy63adNG69at80QtAAAAAHyAy5dA/fOf/6zExERl\nZWWpffv2ioiIkGVZxjr169d3W4EAAAAASpbLN1OLjo42O7goIDgcDlmWpZ9++sk91cFncDOWsoGb\n75QtjHfZwniXLYx32eITN1NbuHChWwsAAAAA4FtcDgktWrTwRB0AAAAAfITLJy4DAAAAuL65vCdB\nklatWqWlS5dq3759OnfuXKHlmzdvvubCAAAAAHiHy3sSVq1apdGjR6tOnTrKzMzUvffeq7i4OPn7\n+ysiIkL9+vXzRJ0AAAAASojLIeGtt97SoEGDlJiYKEnq2bOnJk+erM8//1yVKlVSSIh7z6wGAAAA\nULJcPtxo//79atasmfz8/OTn56fTp09LkkJDQ/Xoo49q0qRJeuSRR9xeKADPOXv2rNLSDsput1S+\nfJCOH89UXp5D5cqVc65To8YNxmMAAHD9cjkkhIaGKicnR5JUpUoV7d69W7fffrskKT8/X5mZme6t\nEIDHpaUd1MSJYy67zqhR41W79i0lVBEAAPAml0NCgwYNtHPnTrVr106xsbF69dVX5XA4ZLfbNXfu\nXDVu3NgTdQIAAAAoIS6HhIEDB+rQoUOSpCFDhigtLU2TJ09Wfn6+GjZsqAkTJri9SAAlp1zdMJ3d\nebLQNAAAKDtcDgm7du3S3XffLUmqUKGCXn/9deXk5CgnJ0ehoaFuLxBAybKF+Bc5DQAAyg6Xr240\nbtw4tW3bVgkJCVqzZo3OnDmjgIAAAgIAAABwnXB5T8K6dev08ccfKzk5WcOHD1dgYKBiY2PVuXNn\ntW3bVnb7Vd2fDQAAAICPcPkbfVhYmHr06KEePXooPT1dycnJWrt2rRISEhQWFqa4uDiNHz/eE7UC\nAAAAKAEuH250scqVK+vhhx/W0qVLNX/+fAUGBmr58uXuqg0AAACAF1zTsUFHjhxRcnKykpOT9dNP\nPzn3MgAAAAAovVwOCSdOnNDatWuVnJysLVu2KCgoSHfddZeefPJJtWnThnMSAAAAgFLO5W/07dq1\nk5+fn9q3b6+XXnpJd955pwIDAz1RGwAAAAAvcDkkJCUlqWPHjlzyFAAAALhOuRwSunfv7ok6AAAA\nAPiIa7q6EQAAAIDrDyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQA\nAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAA\nAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAG\nQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAZUR2drays7NLTb8AAMB7CAlAGZCdna0RI4Zo\nxIghbv1C76l+AQCAdxESgDLg8OFDzl/8Dx8+5PP9AgAA7yIkAAAAADAQEgAAAAAYCAkAAAAADIQE\nAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAA\nAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAAAAAMhAQAAAAA\nBkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZC\nAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBAAAAAAGQkIZ\nM3LkSD3++OPeLgMAAAA+zO7tAsqS2NhY9e3bV3369PF2KSgDtmz5XuvXr1NKygZJDo8/38SJY2S3\n+6tp09tUpUo13XxzbTVp0szjzwsAANyPkFAK5ebmyt/f39tlwIfl5uZo8eK3lZGR7tHn+fbbr43H\neXm5Skn5TjabTZUqRah+/Qby9w/waA0AAMD9fOZwo6+//lo9e/ZU8+bNdfvttyshIUGpqanO5Zs3\nb1a3bt3UqFEj3X///frss88UHR2tHTt2ONf5+eef9eijj6pp06Zq06aNRowYoczMzGI9v8Ph0Lx5\n83T33XerYcOGio2N1Zw5c5zLjxw5oqeeespZ36BBg5SWluZcPnLkSA0ePFhvvvmm2rZtq9tvv13j\nx49Xfn6+JKl37946dOiQJk+erOjoaMXExDjbbtq0Sb169VLjxo115513KikpSWfOnHEuj42N1Wuv\nvaZnnnlGf/zjHzVmzJhi1VRQUKDJkyerefPmatmypaZOnSqHw/O/KMP7kpNXezwgSNK//vVpkfML\nCgqUnn5ca9Z84PEaAACA+/lMSDhz5oz69eun999/X2+//bZsNpsGDx4sScrKytJjjz2m6OhorVix\nQk8++aSmTZsmy7Kc7U+dOqW+ffuqfv36WrFihd544w1lZGRo6NChxXr+adOmaf78+Ro8eLDWrFmj\nadOmKSIiQpKUl5en/v37q3z58lqyZImWLFmikJAQDRgwQHl5ec4+NmzYoNTUVC1atEgvvviiVqxY\noffff1+S9Morr6hq1ap68skntW7dOn3zzTeSpAMHDujRRx/VPffcow8//FAzZszQ5s2bNWHCBKO+\nt956SzExMVqxYoUGDRpUrJreeOMNrVy5UpMnT9a7776rkydP6tNPi/5Sh+vHsWNHtWbN6ksunzo1\nSXv27Db+paWlXnL9C9LSUo02jz3W74ptkpNX6/jxYy7VDwAAvM9nDje6++67jcdJSUlq3bq1du/e\nrZSUFNlsNo0fP14BAQGqXbu2+vfv7/xFXZLeeecd1atXT0899ZRz3sSJE3XHHXdo//79uummmy75\n3FlZWVq0aJESExPVtWtXSVLNmjXVrNn546nXrFkjh8NhfHGfOHGiWrRooY0bN6p169aSpLCwMI0Z\nM0aWZalWrVpq3769vvvuOz3wwAMKCwuTzWZTcHCwM3xI0ty5c9WlSxf17t3b+bzPPfec+vTpo7Fj\nxyog4PyhGq1atVLfvn2d7VavXn3FmhYuXKiEhAR16NBBkjRu3DhnOMH1a8mShUZ4/b2cnBxNnDjm\nksuVX1Dk9IIF81yuJS8vV++++7aefPJpl9sCAADv8ZmQsH//fs2cOVNbt25VZmamCgoKZFmWDh06\npH379qlu3brOL8yS1KhRI+PQmR07dui7775T06ZNjX4ty9KBAwcuGxL27Nmj3NxctWzZssjlO3bs\n0P79+wtRYWOKAAAT8UlEQVT1nZOTowMHDjhDQp06dYy9G5GRkdq1a9dlX/eOHTv0888/a/Xqwr/8\nHjx4UDfffLMkqX79+i7V1KhRIx0/flwNGzZ0LvPz81ODBg0uWw8AAADgMyFh4MCBuuGGG5SUlKSo\nqCgVFBTovvvuU25urhwOh/HlW1KhY+uzs7MVGxurp58u/ItlZGTkZZ+7XLlyl12enZ2tBg0aaNq0\naYWWhYeHO6ftdvPPaVmWCgoKft+kUN9/+ctfirziUbVq1ZzTQUFBV1XT7/9uuP49+GAfbd++7ZJ7\nEwICAvT006ONeWlpqf/bU+B30VGIF0337fuoatSo6Xw8bdoknTt39rK12O3+6tnzYRdfAQAA8Daf\nCAm//vqr9u3bp4kTJ+q2226TdP5k3gtfcG+++WZ9+OGHxlV9tm3bZnwBrlevnj799FPVqFFDNptr\np1r84Q9/UGBgoNavX6/777+/0PL69etr7dq1qlSpkkJCQq72Zcrf379QaKhXr552796tmjVrXqJV\n0YpTU2RkpLZu3er8m+bn52v79u2F9krg+hIVVUXx8V20evX7RS5/+unRql37Fpf7rVGjptHu9dff\nVL9+PS/bplOnLoqMjHL5uQAAgHf5xInLYWFhqlixot577z0dOHBA69ev1wsvvOBcft999yk/P1/P\nP/+89uzZo6+//lpvvfWWpP/9Ut6rVy+dPHlSQ4cO1bZt25Samqqvv/5aI0eOvOIVfQICAjRgwABN\nnTpVK1euVGpqqrZu3ar/+7//kyR17txZ4eHhGjRokDZt2qSDBw9qw4YNSkpK0tGjR4v9Om+44Qal\npKTo6NGjzqsuPfroo9qyZYsmTJjgPITos88+K3Ti8u8Vp6Y+ffpo7ty5+uyzz7R3716NGzdOv/32\nW7HrRenVqVMXRURU9vjz3HlnxyLn22w2Va4cqfj4zh6vAQAAuJ9PhATLsjRjxgxt375dnTt31gsv\nvKBnnnnGuTw0NFRz5szRjh071L17d/3jH/9w3jU4MDBQkhQVFaUlS5bI4XBowIAB6tKli6ZMmaKw\nsLBiHXLz+OOPq1+/fpo1a5bi4+M1dOhQnThxQtL5w5EWL16s6tWra8iQIerUqZOef/555eTkKDQ0\ntNivc8iQIUpLS1PHjh2d5zHUrVtXixYt0r59+9SrVy91795dr7zyiqpUqWL8fX6vODX169dPXbt2\n1ciRI/Xggw8qJCSk0AniuD75+weoV6+H1bx5S0meO+Ssdet2xmO73V/Nm7dUfHxX9ez5MPdIAACg\nlLIcpfTC+atXr9aoUaP0/fffGyc0wzMyM7OUl3f58yvgu/bs2e28otGoUeMLHW508fLgZpWVvTm9\n0PSV2hW1HL7NbrcpPDyE93cZwXiXLYx32XJhvN3ap1t786CVK1eqZs2aqlKlinbs2KHp06crPj6e\ngAAAAAC4WakJCenp6Zo5c6YyMjIUGRmp+Ph4454Il3P48GHFx8fLsqxC5ydYlqU1a9aoatWqnigb\nAAAAKHVKTUgYMGCABgwYcFVto6KiirwPwcXLAQAAAJxXakLCtfDz83P5EqMAAABAWeUTVzcCAAAA\n4DsICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAY\nCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAAGAgJ\nAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgICQAA\nAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADDYvV0AAM+rVq26goOD\nndO+3i8AAPAuQgJQBgQHB+vFF2c6p329XwAA4F2EBKCM8NSXeMIBAADXH85JAAAAAGAgJAAAAAAw\nEBIAAAAAGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBAS\nAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAA\nAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAAAGAgJAAAAAAwEBIAAAAA\nGAgJAAAAAAyEBAAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgI\nCQAAAAAMhAQAAAAABkICAAAAAAMhAYChICu3yGkAAFB2EBIAGM7uPFnkNAAAKDsICQAAAAAMdm8X\nAMD7atS4QaNGjZfdbql8+SAdP56pvDyHypUrZ6wDAADKBkICAJUrV061a98iu92m8PAQRUVlKS+v\nwNtlAQAAL+FwIwAAAAAGQgIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAAMBASAAAAABgI\nCQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADAQEgAAAAAYCAkAAAAADAQEgAAAAAYCAkA\nAAAADIQEAAAAAAZCAgAAAACD5XA4HN4uAgAAAIDvYE8CAAAAAAMhAQAAAICBkAAAAADAQEgAAAAA\nYCAkAAAAADAQEgAAAAAYCAkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIgOHkyZMa\nNmyYbrvtNjVv3lyjRo1Sdnb2Zdv07t1b0dHRzn8xMTEaO3ZsyRQMly1evFixsbFq1KiRevTooR9+\n+OGy669du1b33nuvGjVqpC5duujLL78soUrhDq6M94oVK5zv4Qvv58aNG5dgtbhamzZtUkJCgtq1\na6fo6Gh9/vnnV2yzYcMG/elPf1LDhg0VFxenFStWlEClcAdXx3vjxo3GdvrC+zwjI6OEKsa1mDNn\nju6//341a9ZMrVu31uDBg/XLL79csd21br8JCTAMGzZMe/fu1YIFCzRnzhxt2rRJY8aMuWK7Hj16\n6Ntvv9W6dev0zTff6Omnny6BauGqNWvWaMqUKRoyZIjzC+GAAQN04sSJItf/97//reHDh6tHjx5a\nuXKlOnTooMGDB2v37t0lXDmuhqvjLUnly5fXunXrnP/+9a9/lWDFuFrZ2dmKiYlRYmKiLMu64voH\nDx5UQkKCWrZsqVWrVqlPnz4aPXq01q1bVwLV4lq5Ot6SZFmWPvnkE+d7+5tvvlFERISHK4U7bNq0\nSQ899JCWL1+ut956S3l5eerfv7/Onj17yTZu2X47gP/avXu3o27duo7t27c753311VeOmJgYx7Fj\nxy7Z7qGHHnJMmjSpJErENXrggQccEyZMcD4uKChwtGvXzjF37twi13/qqaccAwcONOb16NHDkZiY\n6Mky4Saujvf777/vaN68eUmVBw+pW7eu47PPPrvsOi+++KLjvvvuM+YNHTrUMWDAAE+WBg8oznhv\n2LDBER0d7Th16lQJVQVPysjIcNStW9eRkpJyyXXcsf1mTwKctmzZorCwMNWrV885r3Xr1rIsS1u3\nbr1s2w8++EAtW7ZU586d9dJLL1023cI7cnNztX37drVq1co5z7IstW7dWlu2bCmyzZYtW9S6dWtj\nXtu2bS+5PnzH1Yy3dP4XytjYWN1xxx0aNGgQe42uU1u3buW9XcY4HA517dpVbdu2Vb9+/bR582Zv\nl4SrdOrUKVmWpYoVK15yHXdsv+1XXSGuO+np6apUqZIxz8/PT2FhYUpPT79kuy5duqh69eqKiorS\nzp07NXXqVO3bt08zZ870dMlwQWZmpvLz81W5cmVjfkRExCWPbTx+/HiR61/u/wN8w9WMd61atTRx\n4kTVrVtXp0+f1vz58/XXv/5VycnJqlKlSkmUjRJy/PjxQoeaRERE6PTp08rJyVFAQICXKoMnREZG\navz48WrQoIFycnL03nvvqU+fPlq+fLliYmK8XR5c4HA4NGnSJN1222265ZZbLrmeO7bfhIQyYPr0\n6Zo3b94ll1uWpTVr1lxyucPhuOwxjw888IBzuk6dOqpcubIeeeQRpaamqmbNmldXNErMlca3qPVR\nel1uvJs0aaImTZoYj+Pj47Vs2TINGTKkpEoE4Ga1atVSrVq1nI+bNGmi1NRULViwQC+88IIXK4Or\nxo4dq927d2vJkiUut3V1+01IKAP69eunP/3pT5ddp2bNmqpcuXKhExrz8/P122+/uXRyU+PGjeVw\nOHTgwAFCgg8JDw+Xn59foV8RTpw4ccnxjYyMLHL93/86Ad9zNeP9e3a7XTExMdq/f78nSoQXRUZG\nFrqyTUZGhkJDQ9mLUEY0bNiQQ45KmfHjx+urr77S4sWLFRUVddl13bH95pyEMiA8PNz5K8Kl/tnt\ndjVp0kS//fabfvzxR2fb9evXy+FwuHQZxB9//FGWZSkyMtITLwdXyd/fX/Xr19f69eud8xwOh9av\nX6+mTZsW2aZJkybG+pK0bt0649dm+KarGe/fKygo0K5du664MULpw3sbO3bs4L1diowfP16ff/65\nFi5cqOrVq19xfXe8x/3GckF7/FelSpW0detWJScnKyYmRgcPHlRiYqLatWunbt26SZKOHj2qBx54\nQI0bN1aVKlWUmpqqxYsXKzg4WLm5uUpJSdHYsWNVt25dDRgwwMuvCL8XEhKif/zjH6pWrZr8/f31\n8ssva+fOnZo4caKCgoI0YsQIbdu2zXmya5UqVfTyyy8rKChIYWFheuedd/TRRx9p0qRJhc5fge9x\ndbxfffVV5ebmyrIspaWlacqUKfrhhx80btw4xtvHZWdna8+ePTp+/LiWLVumRo0aqVy5csrNzVX5\n8uU1ffp0rVq1Sh07dpQk3XjjjZo9e7ZOnTqlatWqac2aNVqwYIHGjBnDHuBSwNXxfvvtt5WRkSG7\n3a5jx45p9uzZ+uijj/T888/rhhtu8PKrwZWMHTtWH374oWbOnKnIyEhlZ2crOztbfn5+stvPHxT0\nzDPPuH37zeFGMEyfPl3jx4/XI488IpvNpri4OI0aNcq5PC8vT/v27XNevcjf31/r16/XwoULdebM\nGVWtWlX33HOPEhISvPUScBnx8fHKzMzUzJkzlZ6erpiYGM2fP9/5gXHkyBH5+fk512/atKmmT5+u\nGTNmaMaMGbrpppv02muvXfZkKfgOV8f7t99+0/PPP6/09HRVqFBBDRo00NKlS1W7dm1vvQQU03/+\n8x/16dNHlmXJsizncebdunXT5MmTlZ6ersOHDzvXv+GGGzRnzhxNmTJFixYtUtWqVZWUlFToaijw\nTa6Od25url544QUdO3ZM5cqVU926dbVgwQI1b97cWy8BLli6dKksy1Lv3r2N+ZMnT3b+iHv48GHZ\nbP87QMgd22/LwVmIAAAAAC7COQkAAAAADIQEAAAAAAZCAgAAAAADIQEAAACAgZAAAAAAwEBIAAAA\nAGAgJAAAAAAwEBIAAAAAGAgJAAAAAAyEBABAmbBx40ZFR0dr+/bt3i4FAHweIQEAUGZYluXtEgCg\nVCAkAAAAADAQEgAAPm3FihWqX7++Tpw4Ycw/efKkGjRooOXLl2vLli167LHH1K5dOzVt2lTdunXT\nqlWrLttvWlqaoqOj9cknnxjzJ06cqNjYWGPe0aNHNXz4cLVs2VKNGzfWQw89xGFLAK5rhAQAgE/r\n2LGj/Pz8tHbtWmP+xx9/LMuydPfdd+vQoUO67bbbNGnSJM2ePVtxcXEaPXr0FYNCUSzLMg5L+u23\n3/Tggw9q586dGjNmjGbNmqWgoCD17du3UHABgOuF3dsFAABwOaGhoWrfvr2Sk5PVq1cv5/zk5GS1\nadNGYWFhio+PN9r88Y9/1OHDh7V06VJ17dr1mp5/wYIFOn36tP75z38qPDxcktSqVSvFxcXpzTff\n1PDhw6+pfwDwRYQEAIDP69Spk/7+97/ryJEjqlq1qtLT05WSkqJp06ZJOv9r/8yZM/XFF1/o6NGj\nys/PlyTnl/pr8e233+r2229XhQoVnP1alqXmzZtr27Zt19w/APgiQgIAwOfdeeedCgoKUnJysvr3\n76/k5GQFBgbqzjvvlCQ988wz2rp1qwYPHqxbbrlFoaGhevfddwsdonQ1MjMztXXrVtWvX9+Yb1mW\nbrzxxmvuHwB8ESEBAODzAgMDdddddzlDwtq1axUbG6ugoCDl5OToq6++0siRI43DkQoKCq7YpyTl\n5uYa80+ePGk8DgsLU7t27fTUU0/J4XAYywICAq7lZQGAzyIkAABKhU6dOikhIUHffPONtmzZooSE\nBElSTk6O8vPzZbf/b5N2+vRpffHFF5ftLyIiQv7+/tqzZ49zXk5OjlJSUowTl1u1aqUPPvhAN998\ns8qVK+fmVwUAvomQAAAoFS6cpPzcc88pLCxMbdu2lXT+xOaGDRtq7ty5Cg8Pl5+fn+bNm6cKFSoo\nIyPD6OPiPQGWZaljx45avHixbrzxRoWHh+udd94p9LyPPPKIPvzwQ/Xq1Ut9+vRR9erVdeLECW3d\nulVVqlTRww8/7NkXDgBewCVQAQClgt1uV1xcnI4fP664uDhjz8FLL72kG2+8Uc8++6wmTZqke+65\np8irGv3+jsujR49WixYtNHHiRCUmJur//b//p44dOxrrVKxYUe+9957q1aun6dOnq3///poyZYoO\nHTqkxo0be+bFAoCXWY7fH2AJAAAAoExjTwIAAAAAAyEBAAAAgIGQAAAAAMBASAAAAABgICQAAAAA\nMBASAAAAABgICQAAAAAMhAQAAAAABkICAAAAAAMhAQAAAICBkAAAAADA8P8BOjxTpxYgFNEAAAAA\nSUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEKCAYAAACPCivzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGZNJREFUeJzt3X98XXWd5/HXp01AJYhQoIOADWxARLEKcUYcR8pYR4rOuCoPcR/OWhTWcdRMFcXRNQ5F4oyOqwh1H49ZllWKziDqji4oBVoR3UUZTZHa0kJ6KSljEKihohUJafrdP+5Jvfl929ybm37zej4e95Fzv+d7zv3k5J687/l1T6SUkCQpR/MaXYAkSfViyEmSsmXISZKyZchJkrJlyEmSsmXISZKyZchJkrJlyEmSsmXISZKy1dToAua6I488MrW2tja6DEk6oKxfv/6XKaWjpupnyDVYa2sr3d3djS5Dkg4oEbG9mn7urpQkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly4vBpQZYtWoVpVKpbvPv6+sD4Nhjj63bawC0tbXR0dFR19eQpsOQkxqgVCpxz6YtDD3riLrMf/6TTwDwyED9VvH5Tz5et3lLtWLISQ0y9Kwj+N0p59Zl3s+872aAus2/8jWk2cxjcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlyqqlVq1axatWqRpchzQquD43X1OgClJdSqdToEqRZw/Wh8dySkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLO4MfwPr7++ns7CQiuPzyy1mwYMG4fT7+8Y8zODhIc3Pz3n79/f1ccsklbNu2jWOPPZadO3dy1VVX0dbWBpTvaPy+972PlBKLFi3iwx/+MJ/97GfZvXs3Q0ND9PX1MTQ0xO7du5k/fz579uxh4cKFPPLIIwCsX7+eM844Y0aXhzTbDA4O8sADD7BkyRKam5s54YQTeN3rXscVV1wBQHNzM0cffTQPP/wwCxcu5NFHH+X444+npaWFiy++mKuuuopLL7107zo7vC5HBADz58/ngx/84Ih+w/r7+7nsssvGtM8WM1WfW3IHsNWrV7NlyxY2b97MddddN2GfzZs3s3Xr1hH9Vq9ezbZt2wDo6+vjySefpKura+90XV1dPPXUUwwMDNDT00NXVxdbtmxh69atbNu2jYGBAXbv3g3A0NAQKaW9AQdw6aWX1uvXlg4Yjz76KAMDA0A58Hp6evj85z+/d/zg4CB9fX1715+UEg899BCbN2+mq6uLjRs3jlhnh9flnp4eenp62LJly5h+w1avXj1u+2wxU/UZclWIiEMi4jsRsSEiNkXE+RFxRkR8PyLWR8StEXFMRDRFxE8iYkkx3T9ExCfrUVN/fz9r1qzZ+3zNmjX09/eP6XPLLbeMaFuzZg2lUombb755zDx7e3splUqUSiV6e3vHjNsXu3btYv369fs0jZST/v7+MeskQEqpqul7e3tJKXHLLbdQKpXGrMvj9Rt+veF1f3T7bDGT9bm7sjrnAA+nlF4HEBGHAWuAN6SUdkTE+cAnU0rvjIgLgG9EREcx3R/Vo6DVq1fv3ZKC8ifC6667jg984AMj+gwODo6YbnBwkK6urhHTVqrcmpuuSy65hNNOO61m88tJqVRi3tPV/bObreY99WtKpd+wYsWKRpcyK/385z+vyXyGhobo6uoasy6P12/4f8Dq1avZs2fPmPbZYibrc0uuOhuB10TEpyPiT4DjgRcBayPiHqATOA4gpXQv8GXg28A7U0pPj55ZRLwrIrojonvHjh37VdC6detGfCJMKbF27dpJ+wz3m2yrrLe3d5+32iYy/CaW5qKdO3fWZD67d+/eu7U2Vb/h/wHr1q3b+0G2sn22mMn63JKrQkqpJyJOB84FuoDbgXtTSmdOMMlpwK+AoyeY39XA1QDt7e379XF+6dKl3HTTTXvf+BHBa17zmkn7DPdbtGjRhEHW2toK7PvuyfG0tLRw5ZVXTns+OVqxYgXrtz3a6DKmZc8znk3biQv9G0/gc5/7HDfeeOO059PU1MRxxx3H9u3bJw26pqamvf8Dli5dys0338zu3btHtM8WM1mfW3JViIjnAk+mlL4CfIbyLsijIuLMYnxzRLywGH4TcATwKmBVRDynHjUtX76cpqbff0Zpbm7m7W9/+5g+zc3NI9qam5vp7OwcMW2lzs5OOjs7a1LjZZddVpP5SAei5cuX12Q+8+fPp7Ozc8y6PF6/4f8By5cvZ968eWPaZ4uZrM+Qq85pwI+LXZOXAn8HnAd8OiI2APcAr4iII4FPARellHqALwB1+Zi7YMECli1btvf5smXLxpyGu2DBAs4555wRbcuWLaOtrY1zzz13zDxbW1tpa2ujra1t7xZd5bh90dLS4iUEmtMWLFgw7qnxw6f/T6W1tZWI4JxzzqGtrW3Mujxev+HXG173R7fPFjNZn7srq5BSuhW4dZxRrxqn7eSK6a6qW1GUPw1t3bqViJjwk9Dy5csplUp7r5Or/KS3adOmEdfJVW7BdXZ2Tus6ObfiJFi4cCG7du1iYGBgv6+Tq1xnh9fl8a6TG29PTm9v76zbihs2U/VFtaezqj7a29tTd3d3o8uomeEz7TxOM7nhY3K/O2XsFnUtPPO+8iUi9Zr/8Guc4TG5Sbk+1E9ErE8ptU/Vz92VkqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbHnTVNVUW1tbo0uQZg3Xh8Yz5FRTHR0djS5BmjVcHxrP3ZWSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbBlykqRsGXKSpGwZcpKkbE0ZchGxMCL+V0SsKZ6fGhEX1r80SZKmp5otuWuBW4HnFs97gPfXqyBJkmqlmpA7MqX0NWAPQEppNzBU16okSaqBakLutxGxAEgAEfFy4Im6ViVJUg00VdHnYuBG4D9ExJ3AUcB5da1KkqQamDLkUkp3R8RZwPOBAO5PKQ3WvTIpc/OffJxn3ndznebdD1C3+Zdf43FgYd3mL9XChCEXEW+aYNTJEUFK6V/rVJOUvba2trrOv69vNwDHHlvPEFpY999Dmq7JtuT+fJJxCTDkpP3U0dHR6BKkOWHCkEspvWMmC5EkqdaquRh8QURcFRF3R8T6iLiyONtSkqRZrZpLCL4K7ADeTPmsyh3ADfUsSpKkWqjmEoJjUkqXVzzviojz61WQJEm1Us2W3G0R8daImFc83kL5a74kSZrVJruE4DeUz6IMyt9V+ZVi1DxgF/ChulcnSdI0THZ25aEzWYgkSbVWzTE5IuJw4CTgGcNtKaUf1KsoSZJqYcqQi4iLgBXAccA9wMuBHwF/Wt/SJEmanmpOPFkBvAzYnlI6G3gp8Ku6ViVJUg1UE3JPpZSeAoiIg1NK91H+smZJkma1ao7J/TwingN8C1gbETuB7fUtS5Kk6avmVjtvLAZXRsT3gMOAW+palSRJNTDZdXLPTin9OiKOqGjeWPxsAR6va2WSJE3TZFty/wK8HljP7y8Kr/x5Yt2rkyRpGia7GPz1ERHAWSmlh2awJkmSamLSsytTSgn4zgzVIklSTVVzCcHdEfGyulciSVKNVXMJwR8Bb4uI7cBvKY7JpZReXNfKJEmapmpC7rV1r0Jz1qpVqyiVSvT19QFw1lln0dHR0eCqJOWimuvktgNExNFUfEGzVAulUomt9/6UlGBgKCiVSo0uSVJGpjwmFxF/ERFbgQeB7wO9wJo616U55HktQyw6dIiD56dGlyIpM9WceHI55TsP9KSUTgBeDdxV16okSaqBakJuMKXUD8yLiHkppe8B7XWuS5KkaavmxJNfRUQL8H+Bf46IxyifZSlJ0qxWzZbc8Jcyr6D8xcwPAH9ez6IkSaqFakKuCbgNuAM4FLih2H0pSdKsNmXIpZQuSym9EHgvcAzw/YhYV/fKJEmapmq25IY9BjwC9ANH16ccSZJqp5rr5N4TEXcA3wUWAP/Fr/SSJB0Iqjm78njg/Smle+pdjCRJtVTN13p9dCYKkSSp1vblmJwkSQcUQ06SlC1DTpKULUNOkpQtQ06SlC1DTpKULUNOkpQtQ06SlC1DTpKULUNOM2rVqlWsWrWqbv0lqVI1310p1UypVKprf0mq5JacJClbhpwkKVuGnCQpW4acJClbhpwkKVuGnCQpW4acJClbhpwkKVuGnCQpW4acJClbhpwkKVuGnCQpW4acJClbhpwkKVuGnCQpW4acJClbhpxmRHd3N0uWLGHDhg1s2LCBiy66qKrptmzZwoYNG1iyZIk3UJW0zww5zYiVK1eOeF5tYD399NN7h7u6umpZkqQ5YE6HXEQsiYhX1HH+10bEefWa/4Giu7ubXbt2jWmfamvuggsuGPG8t7fXrTlJ+6Sp0QU02BJgF/DDaieIiKaU0u66VZSh0Vtxw0qlEocccggHDc5j4bP2MLgnKJVKrFixAiiH2mhdXV1ce+219StWUlbquiUXEd+KiPURcW9EvKtouzAieiLixxHxPyPiC0X7URHxvyPiJ8XjjyeZb0tEfCkiNkbEzyLizUX7n0XEjyLi7oj4ekS0FO29EXFZ0b4xIk6JiFbg3cAHIuKeiPiTiWqIiJUR8eWIuBP4ckTMj4jPFH1+FhF/VfSLiPhCRNwfEeuAoyeo/10R0R0R3Tt27KjV4p61xtuK21/jBZ8kTaTeW3LvTCk9HhHPBH4SEd8BPg6cDvwGuB3YUPS9ErgipfT/IuJ5wK3ACyaY78eBJ1JKpwFExOERcSTQCSxNKf02Iv4WuBj4RDHNL1NKp0fEe4APpZQuioh/AnallP5bMZ9/maSGU4FXppR+VwT2Eymll0XEwcCdEXEb8FLg+UXfhcBm4Iuji08pXQ1cDdDe3p72aYkegFpaWiYMura2Nga2dwPQPC/R1tbGlVdeCcCSJUvG9G9tba1XmZIyVO+Q+5uIeGMxfDzwn4Hvp5QeB4iIrwMnF+OXAqdGxPC0z46IlpTSeP8dlwJvHX6SUtoZEa+nHC53FvM4CPhRxTT/WvxcD7xpgnrHraEYvjGl9Lti+M+AF1ccbzsMOAl4FXB9SmkIeDgibp/gdeaUlStX8qEPfWhMe1tb26TTtba2jtly6+zsrGVpkjJXt92VEbGEcmicmVJaDPwUuG+KWl6eUnpJ8Th2goCb8CWBtRXTn5pSurBi/EDxc4iJw32yGn476rU6KvqdkFK6bR9qnVPa29tpaWkZ037NNddMOt3oY2+tra1TBqMkVarnMbnDgJ0ppScj4hTg5cAhwFnF7sUm4M0V/W8DOoafRMRLJpn3WuC9FX0PB+4C/jgi2oq2QyLi5AmmH/Yb4ND9qOFW4K8jornod3JEHAL8ADi/OGZ3DHD2FK8/Z4w++aTasDrooIP2DrsVJ2lf1TPkbgGaImIL8CnKIdQH/D3wY+BOoBd4ouj/N0B7cSLHZsonhUykCzg8IjZFxAbg7JTSDuAC4PqI+BnlXZWnTFHjTcAbh0882YcarqF8vO3uiNgE/A/KW4ffBLYW465j5O7SOa29vZ077riDxYsXs3jx4im34oa94AUvYPHixdxxxx1uxUnaZ3U7JpdSGgCWjW6PiO6U0tXFltw3gW8V/X8JnF/lvHcBy8dpvx142TjtrRXD3ZQvHSCl1AO8eFT3MTWklFaOer4H+K/FY7T3TVG+JGmGNOJi8JURcQ+wCXiQIuQkSaq1Gb8YPKU09jS7CUTEO4AVo5rvTCm9d7z+kiRVmtXfeJJS+hLwpUbXIUk6MM3p766UJOXNkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRly5CTJGXLkJMkZcuQkyRla1Z/QbPys683PvVGqZKmw5DTjOro6Khrf0mq5O5KSVK2DDlJUrYMOUlStgw5SVK2DDlJUrYMOUlStgw5SVK2DDlJUrYMOUlStgw5SVK2DDlJUrYMOUlStgw5SVK2DDlJUrYMOUlStgw5SVK2DDlJUrYMOUlStgw5SVK2mhpdgPTQrvmkBAND0ehSJGXGkFNDtbW1AdDX18chFc8lqRYMOTVUR0dHo0uQlDGPyUmSsmXISZKyZchJkrJlyEmSsmXISZKyZchJkrJlyEmSsmXISZKyZchJkrIVKaVG1zCnRcQOYPsMvuSRwC9n8PX2hbXtH2vbf7O5Pmub3KKU0lFTdTLk5piI6E4ptTe6jvFY2/6xtv03m+uzttpwd6UkKVuGnCQpW4bc3HN1owuYhLXtH2vbf7O5PmurAY/JSZKy5ZacJClbhlyGIuKIiFgbEVuLn4eP0+clEfGjiLg3In4WEedXjLs2Ih6MiHuKx0tqUNM5EXF/RJQi4iPjjD84Im4oxv9bRLRWjPto0X5/RLx2urXsR20XR8TmYjl9NyIWVYwbqlhONzagtgsiYkdFDRdVjFtevAe2RsTyBtR2RUVdPRHxq4px9V5uX4yIxyJi0wTjIyKuKmr/WUScXjGu3sttqtreVtS0MSJ+GBGLK8b1Fu33RER3A2pbEhFPVPzt/q5i3KTvh4ZJKfnI7AH8I/CRYvgjwKfH6XMycFIx/FzgF8BziufXAufVsJ75wAPAicBBwAbg1FF93gP8UzH8VuCGYvjUov/BwAnFfObPcG1nA88qhv96uLbi+a46/h2rqe0C4AvjTHsEsK34eXgxfPhM1jaqfwfwxZlYbsX8XwWcDmyaYPy5wBoggJcD/zYTy63K2l4x/JrAsuHaiue9wJENXG5LgG9P9/0wkw+35PL0BmB1Mbwa+I+jO6SUelJKW4vhh4HHgCkvrNxPfwiUUkrbUkpPA18tapyo5m8Ar46IKNq/mlIaSCk9CJSK+c1YbSml76WUniye3gUcV8PXn1Ztk3gtsDal9HhKaSewFjingbX9J+D6Gr7+pFJKPwAen6TLG4DrUtldwHMi4hjqv9ymrC2l9MPitWFm32/VLLeJTOe9WleGXJ4WppR+UQw/AiycrHNE/CHlT18PVDR/sthlckVEHDzNeo4F/r3i+c+LtnH7pJR2A08AC6qctt61VbqQ8hbAsGdERHdE3BURYz5MzFBtby7+Vt+IiOP3cdp610axe/cE4PaK5nout2pMVH+9l9u+Gv1+S8BtEbE+It7VoJrOjIgNEbEmIl5YtM225bZXU6ML0P6JiHXAH4wz6mOVT1JKKSImPIW2+PT6ZWB5SmlP0fxRyuF4EOVThf8W+EQt6j6QRcRfAu3AWRXNi1JKfRFxInB7RGxMKT0w/hzq4ibg+pTSQET8FeWt4T+dwdevxluBb6SUhiraGr3cZr2IOJtyyL2yovmVxXI7GlgbEfcVW18z5W7Kf7tdEXEu8C3gpBl8/X3mltwBKqW0NKX0onEe/wd4tAiv4RB7bLx5RMSzge8AHyt22QzP+xfFbpwB4EtMf/dgH3B8xfPjirZx+0REE3AY0F/ltPWujYhYSvkDxF8UywWAlFJf8XMbcAfw0pmsLaXUX1HPNcAZ1U5b79oqvJVRuyrrvNyqMVH99V5uVYmIF1P+e74hpdQ/3F6x3B4Dvkltd91PKaX065TSrmL4ZqA5Io5kliy3cTX6oKCP2j+AzzDyxJN/HKfPQcB3gfePM+6Y4mcAnwc+Nc16migfwD+B3x+UfuGoPu9l5IknXyuGX8jIE0+2UdsTT6qp7aWUd+WeNKr9cODgYvhIYCs1PNheZW3HVAy/EbirGD4CeLCo8fBi+IiZrK3odwrlkyVippZbxeu0MvEJFK9j5IknP56J5VZlbc+jfOz5FaPaDwEOrRj+IXDODNf2B8N/S8oB+1CxDKt6PzTi0fACfNThj1o+lvXd4p/HuuGVlPKutmuK4b8EBoF7Kh4vKcbdDmwENgFfAVpqUNO5QE8RFh8r2j5BecsI4BnA14uV+8fAiRXTfqyY7n5gWR2W11S1rQMerVhONxbtryiW04bi54UNqO0fgHuLGr4HnFIx7TuL5VkC3jHTtRXPVzLqQ9IMLbfrKZ8xPEj5+NCFwLuBdxfjA/jvRe0bgfYZXG5T1XYNsLPi/dZdtJ9YLLMNxd/8Yw2o7X0V77e7qAji8d4Ps+HhN55IkrLlMTlJUrYMOUlStgw5SVK2DDlJUrYMOUlStgw5SWNExK5G1yDVgiEnScqWISfNARHxqYh4b8XzlRHRWdwf7+7iHmVjvjW+uH/YtyuefyEiLiiGz4iI7xdfFnzr8FfJSbOJISfNDTcAb6l4/hbKX+b8xpTS6ZTvmffZ4vZGU4qIZmAV5fsOngF8EfhkbUuWps+7EEhzQErppxFxdEQ8l/J9A3dSvtPEFRHxKmAP5VujLCzap/J84EWUvwkfyjfN/MWkU0gNYMhJc8fXgfMof8nuDcDbKAfeGSmlwYjopfwdopV2M3KPz/D4AO5NKZ1Z14qlaXJ3pTR33ED5Dg/nUQ68w4DHioA7G1g0zjTbgVMj4uCIeA7w6qL9fuCoiDgTyrsvK26gKc0abslJc0RK6d6IOBToSyn9IiL+GbgpIjYC3cB940zz7xHxNcp3pHgQ+GnR/nREnAdcFRGHUf5f8nnK31AvzRrehUCSlC13V0qSsmXISZKyZchJkrJlyEmSsmXISZKyZchJkrJlyEmSsmXISZKy9f8BYQlOAknq3xwAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -837,7 +808,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 14, @@ -846,12 +817,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPW9//HXmX2yTDYCCftOgIAoi4i4W/eqldbue7VW\na63aanvr1Z+3tertra20au1KW7F2cavWtSqiQtlkFdkhCyQh2+zLWX9/TGaSSSYhQAKBfJ6Ph4/K\nme2cSeh85uv7+/kolmVZCCGEEEIIIdJsx/sEhBBCCCGEGGikSBZCCCGEEKITKZKFEEIIIYToRIpk\nIYQQQgghOpEiWQghhBBCiE6kSBZCCCGEEKITKZKFEEIIIYToRIpkIYQQQgghOpEiWQghhBBCiE6k\nSBZCCCGEEKKTAVMkr127lhtuuIGzzjqLiooK3njjjUM+ZtWqVVxzzTXMmDGDiy++mGefffYYnKkQ\nQgghhDjZDZgiORqNMnXqVO655x4URTnk/Wtra7nhhhuYP38+zz//PF/4whe46667eO+9947B2Qoh\nhBBCiJOZ43ifQMrZZ5/N2WefDYBlWYe8/1/+8hdGjhzJHXfcAcD48eNZt24dS5Ys4cwzz+zXcxVC\nCCGEECe3AbOSfLg2btzIggULMo4tXLiQDRs2HKczEkIIIYQQJ4sTtkhubGykpKQk41hJSQnhcBhV\nVY/TWQkhhBBCiJPBCVskCyGEEEII0V8GTCb5cJWWltLc3JxxrLm5mby8PFwuV6+fx7KsrBsFW5uD\nrHjsz9AWj47pFtH9dagoGIkIS4a+Tp2rEQBdMdjvTp7Lxw+exUX+uSiWhQJgU1CAhOJgr280qVdy\n5+dhs9sYPXcmHq+7V+d6wdzRHGyJMmFkATkeJwDRuMbu2kDGsY4OdbsQQgghhOjqhC2SZ82axfLl\nyzOOvffee8yaNeuwnqelJYLNlqWbhs3O+KsvJxaOt9+3KUAirhIKRvhK7AJqWhMMdxs4FZMHYvew\ny9zBi0PXMrrok0zMKybX6yInzwuArthpjdiYXOqhIN+NOy+XLdUBTpsyjILc9qI+EtPQzcyNi+GY\nysZdTezY28Sm3c0Ymp5+TCCi8t7mOgxNp9jnJj8n8wuCP5Rg9ZYD5LlsFOb3rhjvjt1uw+fzEgzG\nMAzzqJ7rRCHXLNd8spJrlms+WQ22ax5s19tXiopyD3mfAVMkR6NRqqur050tampq2LZtGwUFBZSX\nl/PTn/6UgwcP8uCDDwLwqU99iqVLl/KTn/yERYsWsXLlSl599VV+/etfH9brmqaFaWbvpjFkWAkM\na//zqAkj0v8ejmms/PAgZ0wdSp7XyaiGMi5++jzixFg99A1u+OivKcxrL0r94QSR/+yisqKUglwX\ngYiKV2nFk4jgcWjJ54zrvLf5YJfzSGgG1Y1RVM0kruqs3FyHw5FMysRVnX31IUzTxONycOGcUeR5\n21eMdcPENC10w0TX++Yvj9GHz3WikGseHOSaBwe55sFhsF3zYLveY2HAFMlbtmzhC1/4AoqioChK\nuhi++uqruf/++2lqaqKuri59/5EjR/L444/zwAMP8Oc//5mysjJ+9KMfdel4caycOmw2n6r4LE9t\nW8p7rc+xy387c/Jmpm+3VJXiD1cTa83HctmJqwZF9UFiQR+Wyw5AUFOI+13MyNfItbcX7gnNoCQQ\nYcoFl1NQmJfxusGICijMnFDCjho/unyLFEIIIYQ4agOmSJ43bx7btm3r9vb7778/62OeeeaZ/jyt\nQ/KHE+nC9KbK7/HMjn+gmgl+ueFn/LzwV+n7hTSomzibUROLUXJcmDGN1t1NVFSWt8ctIhqerY2U\nTyulMLd9NTgQUdn5YSMFhXkZq9MpHpc9Y/W4O8GoypoPDzJ36lB8Ob3PbQshhBBCDDYDpkg+0Zht\nsZD3dzRmxDXm+a7kXf/feaX6OX79708zvmA8DoctGYto0YjsCuFpWznG4SXuzsXuSP4Yog47hq4T\niSZQaH/ORn+cRFylta4JvVNxG4xqRENR/A0tqKFw28pyu0hcbz9n0yIUVbuNlwghhBBCiCQpko9Q\nsc/DxfPHEAzEMiIO5SO+w4pXnsHE4J3wn7h2/iMU5nnwhxNA5gZBm01hzYcN6LqJP5IgR7HIWf8u\n+7a7cNjbMseWja2aD4B3DxzA3mmToW5CULexttogHEmwwuHC420vpOOqjs0mnf6EEEIIIQ6HFMlH\noaTAi83MDMpPYTzziy5nRes/WRX8J1e/+j4fn3wtiyZfy8XzJpCl2xzBiMqKLfXMGF/MVttCxk4s\nJq9txTgY1Ti4s4VZYwsoLfB2ey4NrTHW7W5hxqTSdIeLcExjzYcNoJjpFea4anRZbXbYbb2Kawgh\nhBBCDBZSJPcxt9POLbPuYM+qtdRHD3AgUsvi9Q+xeP1DTCup5OOTP8k1kz7O8LwRGY/zuOzk57hw\n5uVRUF6azh7bwwm89QnKRw/LmkeGZDG8eZufA2ED156WdJwjrhrsb4pQmOdm9dYGdNNkX30IVdNp\nDiYYPiQXtzN5385dMYQQQgghBjMpkvuY1+3gvKkzebV8Jb985yl2W2+y/MAb6KbO1uYt/M/KLfxw\n5d0sGL6Qj0/+JFdMuBLofoW4N1Jxj/KSXBZUluFr2wiYXDG2WFBZji/Xle6EMWN8MZv3tHDG9DIU\nRWHd9oPSFUMIIYQQogMpkvuJ15HD3MKL+e6pX8Gwh/nn7mf5x46/sqZ+FRYW7x14h/cOvMP33rmd\nc0ZcyAQuYKZ5TdbnsiViGIEAup69I4Ue0bAScXJMnVw9Rp5uAGDoKjmWhi/XlV6FTq1Ye1z2dDEt\nhBBCCCEySZF8DJR4S/hy5df4cuXXqAru45kdf+cfO/7KTv8OEkaC16r/BfyLZxp/wsKCTzKx5Xqg\nFIBAaxjflv/gP5hHrC0a0VlIV4i3uhiptdAc3kPAkbxfQjPwNEYIVJQByZXluGoQiqoZ2eS4qqf/\nvbf55EO1k1M1g0Z/jNJCL65uzlsIIYQQYqCSIvkYG+Mby61zvsu3Z3+HzU0b+fuOv/LMjr/TGDtI\nQ6yOp2M/58WXHufMoqu5cMjnyGMY+wsraPJ5cdgUglEVX0579wuAmGbSmIjjKhxOi9uNs20aX0Iz\nqFajtGxvweMKoOsm4ZjK+h1N1DaFAQtQ2FcfApR0lrk3+eRDtZNzOe2MKM3LepsQQgghjq3169fx\nrW/dwCuvvEVu7on/+XwsrkeK5H5isynk57iw2bK0swAURWFm6Sxmls7i2zP+m8XLn2RN/G+sPfgf\nEmaMN5v/wrKWv3Lu8Es4ZcgnmDf3IgBWbKnntA65Y0iuEBtb6pk1aQjbqlqZPWUo+TlOghEVZUtd\nRk45df8VW+pZUFnWdsRiQaXkk4UQQoiTmZKtxdYJrL+vR4rkfuLLcXHB7JG9uq/T4eDs8ku4feoX\n2BXaxOMbH+Gfu5/DsAze3P8Sb/ISb0Xn8OVpN+ByzsrIGKfkWCruRBQzHserxcjTdQxdJU+PZeSU\nAXRdw2Vq5OhxFKx0bvlYiiV0qupDjCnLx+uWX0MhhBDiZKPrOg7HifsZf+Ke+UmkY0F9Ws4cHr/o\nD9wVupffbnqcP29dQlgLsaFpLbcs/xrjvTOZOfVJCvNGpx9vqSrFH64m3ugjHvESDOwgokBUNXAf\nDHOwZReBDrngkK4QCLjY37wTl6Wnc8uK00Vc1YnEtG7bzfVGb8Zfa4bJ/qYIw0tzj7K3hxBCCCEA\nNE3jkUd+zhtvvE4kEqGiYirf+tZtVFRMS99n06YN/OpXj1BTU82kSZO58867GD9+AgD19fX87GcP\nsmnTRnRdo7x8ODfeeAvz5y8AYM+eXTz66GI2btyA1+tl7tzT+da3bqOgoBCAm2/+OuPHT8But/Pa\nay8zYcIkioqKsSyLe+/9cfocdF3n6qsv4Vvfup2LLroUy7J44okl/POfz9HS0sTo0WP44he/yrnn\nXpB+zMqV77J48UMcPNhAZeVMLrnk8n5/P6VIHqBG5Y/m3jPv47qpt3L/24/wbuCv1EVr2RPbxDUv\nXsSvL1jK1OJKAEIa1E2cTeEIH0ptiNjoAjZVB1AdJg0FUZoK8tL9kCHZMk5zaWzPcWKYVjq3DLTl\nk+u4YsHYI+6b3Jvx1x2/GMiqshBCiIEsmAiw07/jmL7mpMLJ+NwFh/WYRx55mOXLl/Hf//0/DBtW\nxtKlf+T222/mqaeeA8CyLB59dDHf/vZ3KSoq5vHHf8mdd97GU089g91u56GHHkDXDR599Ld4PB72\n7duD15sDQDgc5pZbbuTKKz/GLbd8h3g8zmOP/YK77/4+Dz/8WPocXnnlX1x99cd57LHfA1BTU809\n93yfeDyOx+MBYNWqlSQSCc455zwA/vSn3/P6669yxx3/xciRo9iw4X1++MO7KSoq5pRTTqWhoZ4f\n/OBOPv7xa/noRz/Gtm1b+eUvf3bU7/GhSEUywOU68/nIkM9zfsmnefbAo7zW8nsaYge49qXL+Oqo\n+6nMOZuD/ij+sEqUGHWtKqoSoa5Vpbwkl9GjvJx1yghyPdl/1B1zy5Dc7Acc01xyQjPYVt1KWUmO\nFMlCCCEGlGAiwOwnZhBI+I/p6xa4C1n3uc29LpTj8RjPP/80d911L/PmzQfgjjt+wCc+sYoXX3ye\nioqpAHzlK9cze/ZcAH7wg3u55prLWL78Lc4770IaGho477wLGDduPADl5cPTz//0039l8uQKrrvu\nG+lj3/veXSxadAW1tTWMHDkKgBEjRvGNb9ycvk95+XDcbg/Ll7/FRRddCsC///0qCxeeg9vtQdM0\nnnhiCT//+WNMn16ZfsymTRt4/vlnOOWUU3nuuacZOXIkN954CwCjRo1m9+5dPPnknw7/jT0MUpEM\ncEX5bs6ZNQJFgblTfsjQ98bw14P3kTBjPFZ1K9+s/C9Gua8k1+tizpRSNu9pSQ8LWVBZRrHPc8gV\nYY/Lkc4ku522jNvCMS1dMDvsNiy7nUAokW4n13nENbS3movE9aOKbQghhBCid2prazEMg8rKmelj\nDoeDqVOnU1W1l4qKqSiKwvTpM9K3+3w+Ro8eQ1XVPgA+8YlP8n//9wCrVq1kzpx5nHvuBUyYMBGA\nXbt28v77a/jIR87OeF1FUdi/vzZdJKeK8Y7ncN55F/Laay9z0UWXEo/Heffdt/mf/3mg7bxriMfj\n3HrrTVhW+3+BNgydyZMrAKiq2se0aZUZz1tZOYP+JkXyCaAov73QPLv0Ki6fNZtvLvsizfFmfrHl\nPqbk/JuLSr7Cud7LybFUcvR4emOeJ2GgJ7p/biOi4oiGMAIBAGyJOKY7mRIOxzT+vbYmfV+bTcHr\ndRGLqaiqQTimsnprAw5HZmEdV/W22IbFFQvGHbJIP1QnECGEEOJ48bkLWPe5zQM+bpEqMDt3fLAs\nq9ddIK644mpOP30BK1a8y5o1/+GJJ5bwzW/eyqJF1xKLRTnzzLO58cZvZRSzAEOGDEn/u9fbdafR\nRRddws03fx2/38/q1Stxuz3p1e5YLArAT37ycMbzALhcrsO+hr4kRfIJJFVMzi2bzysff4vPv/RJ\ntrV8yPboKrZHV/FGaCaXN89m/MGFxKO5BAM7wNl9LhggrhoU1QeJBX0AFNZFaamYB7RHLlIt5Rx2\nGwWFOQT80R7jGMGISjimUd0Qxh9OHLJI9uW4WFBZRlV9CGeZTSIXQgghBhSfu4DZw+Ye79Po0ahR\no3A4HGzatIELL7wYSG6Q2779Q6699tNAstj84IPNDB06DIBgMEhNTTVjxoxNP09p6VCuuuoarrrq\nGh5//BFeeOE5Fi26lsmTK1i+/C3Kysqx2WxdXr8nM2acwtChw3jjjVf5z39WcP75F2K3J/dKjR07\nHqfTRUNDHaecMivr48eOHceKFe9kHNuyZfNhncORkGrkBNJxs5uPsbx0zb/56eqH+MOW3xA1g2z1\nb2KrfRNPqW9yduGnOWfeFyj09dxgOxBRad1SR0VlOQD+jfVgz5yQl5/jpDDPjcNho8jnQTEMdL3n\nzLLTbkfVjR4373UkuWQhhBDiyHk8Xq6+ehGPPrqY/HwfQ4cO48kn/0QiEeeKK65m587tACxZ8lt8\nvgKKior49a8fpbCwiLPOOheAxYt/yvz5ZzJq1GiCwSDvv7+WsWPHAXDNNdfy4ovPc889/8VnP/sF\n8vN91NbW8MYbr/H97999yJXeCy+8mOeee5ra2hp+8YvH08dzcnL49Kc/x+LFD2EYBjNnziISCbN5\n80Zyc/O45JLLufrqRfz1r0/y6KMPc8UVV7Nt24e8/PKL/fNGdiDVyAksz5XPLbO+x9jYVawMPM+7\nwb9wMH6AmmgVS6MP8Mrrv+OL067nM1O+jM+V/T/ZRJ0O9Jx87AXJ20137zYmdMwqdxaMqCR0A8NI\ndrnwh7vmPXo7/loIIYQQvXPDDTdjWfCjH91DNBqhomIaDz30CHl5yQUzRVG44YZv8vDD/0dtbS2T\nJ0/hwQcfSvcyNk2Thx76XxobG8jNzWP+/AV885u3AslIxWOP/Y7HHlvMbbfdjKapDBtWzumnn5Eu\nkHsqlC+66FKeeGIJZWXlGblpgOuu+wbFxcUsXfpHfvKTH5OXl8/kyVP4/Oe/AsCwYWXcd9+DLF78\nEE8//TemTp3ODTd8k/vv/58+fw87UqzOwZJBprExdESPczhsFBXl0toaOeSqan/yhxO8/J8qFEXB\nsDRerfknG/S/Ua/tSt/HreTwlSH/xVzfOd0+z1mnDEc3LN5aX4tld/CRs6YAsGz9fs49dUT7SnJR\nLtX7W3l1VXW3z6XrJrVNYWoOhpk5fggFedl7JXccf32o3srHq03cQPk5H0tyzXLNJyu5Zrnmk9Fg\nu96+Ulqaf8j7yEryScDrdjBr0hBsioJdWcQdI7/A6688xCueZaw3dpCwojzR9GM+YfootHWNX9hs\nCtqqPcRVg9L9fizFhnX6OBRX9uLWMJLfq1JZ5Wz2N4Z59p09zKkoZURp5muGohorttSxbP1+zp41\nHF+O65ATCiWOIYQQQohjSaqNE1xqM1+xz4NpWnhcdnyF+UyY/mWenHoHb9W/yY2rridkRflj8Vru\nn/ujbp8rEFFpbFtJ7q5A7iiVVc4mGFFx2G3k53QdoQ3JzQPhmNbrzLIQQgghxLF0eNsTxYCTWoHt\nHFEw3V7sBQVcOOVjzCu4BIA/73qCbXoNjsLCrP/YCwrQvXkYroE7KDqu6myraiWW0I/3qQghhBDi\nJCYryYPAovJb2RxZTkyPcte7d/LsVf/qdb9BWyKGEQig6y4shw3VUtGCAcx4nMDBFvRA9l8hf3MU\nI6Fm3bgXjKiomonLac/62Kzn0bZirhmWxC6EEEII0e+kyjgJdZ6G57VK+NKUb/LYB//LigPv8tbe\ndzlt6LwujwtFtYw/W6pK8YeribXmY7ns2GwKca+LQFAj2OTkzT1VuO3Z4xJx3YKQwfptBeysDWTe\nphpUHwwxZlgyNH+oTXvQvmKerVOGEEIIIURfkyL5JJLqU7Jlb3N64h0o7KsPMX7oR3HbfknCjPLz\nlb/iK6NHdPs8qcl3istFy9R5TJ1aSkGuC7vDRmFBDvEDflzr6gCFBVOKyfN03bwXiqqs2dnM/NNG\npUdepxxoirBrv59UHNk0k63i+iOffLy6YgghhBDixCZVw0mkKN/NObNGEIqqgMKCyrK2WywWVJZz\nmfYxnt23lPXh1zlt+s+y9k6OxHXWfNiQ/nMq2+xoawHnKsrFGbawuVsAhcJhJVk35jnCCVz1CXy5\nXTfupVa4jwXpiiGEEEKIIyFVw0mmKN+NopDscpHrwmZTKC3MoTDfzWenfZFn9y0lYcR5eNN9fHbq\n55kx5BSc9v4b6hGJaV2OhaIqumGiau2RkI7xkJRsA0dS2eTUarcQQgghRH+QIvkk17H/8IySWYz0\nTKY2voM/b/0Df976B7wOL6cNncPp5fOZV34Gk/JO6dXz2hJxDBT0QBBd71pkGxEVIxhg+ZoI7k4b\n9IJRjXA4QTTPw+qtDeimya79AaobkrGIjvfvOHCk8/UcKYlgCCGEEOJQpEI4iQXCmSuzoajGotLv\n8nLwZ+wMfIiFRUyP8d6Bd3jvwDsAKCiM8EximXomc4bOR1XHAJn5ZVNNULhzA/WeEoLR3eDsmiWO\nqwa+AxHqPEOoLNTJ7bDBrzlm0pxQuOCUyYwcXpQcY62aoMAZ08vw5boIRTXWbT/Y7ejroyERDCGE\nEEIcilQIJ7hsnSFSG/jW72zMuG9cNbAHJ3JD6R9pzW+hWdnO3vhGdkU3sC+6Bc1KYGFRG9/Bk9t3\n8OT2PwDwcM0IzhhxBvOHn8FFFReQ6xiOf9IsnCj4TimjMLfrSnIgouJfvx+nzUF5p/sojRH0FbX4\nCnLTeWW3ywYoWTPMQgghhBDHmhTJJzin3caIIbk47e1zYVIb+Dq3Qk5mfi1mjC9h8x4bV1VW4sv9\nNACqobK1ZRPrDq5ifeNq1h1cRXO8GYC66H6e2fkPntn5D+54G/Kc+Yx0VjIpZw4Lvd9mSGFhl/Oy\nOxIYXj8KCo4CH3G7Lb0qHHUYaIot3UO540pyKpecbGOnp/+cLZ/cG73JMEv8QgghhBCdSUVwgvO6\nHVSMKepyvCg/+2qsx+UgP8eV3tjXvmrrZmjBmZw77kwgOTZ6/YGtPLn2VSKe7WxoXsNu/y4AwlqI\nbdpKtkVXsur5v3HfWQ9y5YSPdTugJBLTWLPtYPrPgYiKP6yydnsjO2sD6LpJJJ48tmJLHR6Xg7hq\ntLWxU/C47CQ0g/wcFwtnlnfbSzmb3mSYJX4hhBBCiM6kIhhEUquqSi86QyiKwviCiSws9nLuqSMo\nzHPTqjbxQXADL33wBq/tfovq+FYOxhq47rUvsbT8D/x4zg8Zmz8WSG7cs8ci6DYHCX8QMx7ntPGF\n5Hmc1DdHqNtvMWdKKSNK84DkyvGKLfUsqExmklOr3gsqy1AUhfc2HyAY6Z9eykIIIYQQnUmRPIgc\n6dS61AZAp72Ac0ZcyjjOYGrwM9Tv/gNPeJ6lzmxmWd3bnPvC+Xw15wq+mHMp6DYKG+PUeYYQCu4h\nHnZiBlRwWngjKhV1LeQ5pmbkjzuvbntcji6DSI4niWUIIYQQg4d80otudd4AaLMpeL0uWgNR9jbH\nsNxX8p2hi3gzvpRX/E+hovNY9Dme1d7nS6V3MGrCTNx2J/kTi/Hs82OfUARuB7HmCNtitUzSSRfs\nnUdpd84kq5qJq1MruSN1pL2WJZYhhBBCDB7ySX+Sy9b9orc6bwB02G0UFOZQvd+PP6xS1wSnnTqB\nj5b+jJv8N3DPqu+ypmEl9Vo1v2j8Hv+8dCW79xo4fPno9ggr94bxuOwEIipNCSWdSQbQdZNwTGX1\n1gYcDltGJhmg+mCIMcPyCcc01m1vPKLrSemLXstCCCGEOLlJkXySM02LUPTIs7wdNwA6HDaKfB4C\nfhduhx27PbkiW5jnZk7eTF4c8QpLPvgddy6/jYgW5sPgOlzMSp6HZQEKs6cMJRhJUHMwlJFJ7qxj\nJjkc09i1349pHf31CCGEEEL0hu3QdxEnm/4a7awoCl+Y9mVyHDkAbG3ehC0RwwgGMRMJzEQCrxYj\nTz/0P7l6jBxLw5frOqLWbwNRLKGzraqVWEI/3qcihBBCiEOQleSTnNtpp2J0Ucao5/6MG9htdqYP\nmcGa+lVsadrAhbVjiDf6SIS8YCkEo7uw1ATjDjSjr6nD32FjXkRXMNoWiBOagacxQqCijLAGumGi\nagahaGZ2OeVI+yhD/31p6EwyzUIIIcSJQz6pT3Ld9VHuC7phpQeCdFRRmCySVza8i71oCDdMvA7l\ngBtQUKYNIR7X2BuvZtbc8RS2xS3CcZ11m9t7KSc0g2o1Ssv2FhKaQSiqEY3rrN/RRG1TGLDwuDJ/\nfS+cM6pLodybTLZklIUQQgjRmRTJ4rCZbW0vwjGNtdvaN9+lFEVno/A7NFPlreDfWL7mWaY6Lma2\n61N4qr0AxN25OIqKcBTmJh8UTmDzBJk9ZSj5OU6CERVlSx0LKssIRVVqDoa4cM5I8nNcGf2UAUJR\njXXbD6Yn+mWcq2SYhRBCCHEEpEgeRI6m00VHxT4Pp00ZQk1jiDkVXTffnRa5Eo9SwKrEEyyvfxkD\njS36i2zVX6YxdjVfnnIzNlsBuZ6uv375Oc6sfZIddhv5OS58udmmBR4bxyqWIYQQQojjT4rkQaQv\nV1UL8z3kepz48txZi9WJvmlcO/k3/GvTataoT/JS1TOYGLxU/TQvVz/D7NxzKB96K2eMOBUAPaJh\nxuPogSC67iTYEkULBGitcxOK6RgJlVA0mUPunEnu3FP5aPLJPemvWIYMKRFCCCEGHvlEFkck3+tk\nXLmP/EMUo+WecdxT8b+cv2s6f3e9y1prGRo6ayPLWPT2Mh4oup4rc84kqCnE/S6CgR1EFHi7yUkg\nnOCd/QdQTQiHFNZurSc3x53RTxnI6KnscSU3KGbLJ6f01Yp6X5ENfUIIIcTAI5/Iot8pLheuSRfy\nKT7C/ZMVluz+LU/ueRLVivPj8FNcfO51+MxiPFsb8U0rBcC5sZ5iVWXB9DJCMZ2GtQeYM60sa1/l\njj2VFUXpNp+cIjllIYQQQhyKFMniqATCapdjqfhDql1bKKoSU1ygQF7+CG4+9UcMs87hf/d8iaAW\n5O5N9/HTM3+DzRPCUeADQHH7sbvdFJUPwR5Rsbub0oNLsumYXx6oJNMshBBCnDikSB6E+mK0c1uD\nC9bvbOxyW1w12HMgSH1LlGhcJ6Hq1DSGAVixpQ6Py8GE3FP4XMVX+PO23/HC7ue4bPQi7Mw4onOJ\nxLSMTHLHf08W7NkyzMlj/ZVfzqanTLOum+yqDTB9XLFELoQQQogBQD6NB5HUYBGHTTnquEFRvptz\nZo1AybIoGoyoJFSdhG5SlO9hzpRSQMGuxTljdA55OS4cdoVz7Lfx76p/URer596V3+UHI/6GHsgH\nwErEcZg6RiCAFVVxavGs5xGOabyzqS6dSQYy8sm6bmbJMOtt90n2Wj592jC27ms9rhll3TTZtT/A\nxJEFUiT6DxHGAAAgAElEQVQLIYQQA4B8Gg8iqcEinYd/HKmi/OzRB5tNoaTAS0swjstpJz/Hhcdm\nMGzPOuyJAiyXHa3tvrd7PsZ3Yo9RH69nd9XbzA2NAUBrdjIk3kQsthtdM5hQ24KlVnR5rVT2uLwk\nlwWVZW1HrYw+yp0lV5UVZk4oYUeNH003JaMshBBCiAxSJIs+58txsXBmOa+sqkofsxxOGqfMZcbM\nMgo6FK/nRivguccACJaY+OafCSQ37vnN4XhPHYERVdmtVnGaq/tVXrfTli6KU/nknvooe1z2Yxaz\nEEIIIcSJR4pk0e+S8QsTFBcRhxe7o73Yzcsfi9vuIWHEOZioIRJNYKKgaiYOe/tz2E0DKxhAdxsZ\nz61HNKxEHDuZq8CRmEZ3Upnk5MbC9g2Gh+qz3F+t42w2hTyvi0g885ylf7IQQghx/MgnrzgivSkY\nLQsUBbbsbaamMQS0b9zTdRN/JEFhrptix3DqjD3saHyDjf8ajVcpIqjnM9wRIpHYg57QGXegGX1N\nHf5OEYqgpqA1OylJNGPNH4ficqFqBu9sqkv3TO4slVNev7OJ2sYwCdWkriVCKqMM2fss91fruNTK\n+7L1+zOOS/9kIYQQ4viRT95BKLWBz+3MXkT2Rm8KRq/bwaxJQ7ApSttKMiyoLMeX6yIYUVmxpZ55\n04YxKzqDuqo97HDu5Zu2+1k06tNMNa9hyvT5DC3OYX9jmL3xPcyaO57Czn2SI1oymsEolLY4hmlZ\ngMLsKUPJz+k+UpE8hzpmjC9h8x57r/ssCyGEEOLkJ0XyIJTawHcspHLBbpcNUDKywh6XHV+ui/vO\n/jHaMo1/17xE3IyxtOr3uJQn2ZP/FW4ruw3FV0DcnYviK8BRmJ/x/A5HAsXtx6RrsZ6f4+wxl5w8\nB0dyY2HbuQxEcVVnW1VUYhdCCCHEMWQ73icgTk6HMzhjZP4oHj3vj/z3xKf4yOjLAVCtOL/f+ihz\nn5jBzzbdS8RsOepzCsc0/OFE+p/OQ0+CETV9LBhRk/cLJWgJxglFuw5NOVzBqMob62oJZnmunt4v\nVTPZVt1KQjO63CaEEEKI/iHLUqJfdByckWo5l+iwOa5jMZr6c6l9EvfP/TVfnvQB/7vyx2yILiOm\nx1i689c4WIJr0818f+4tGa+T2riX6qkMYEvEMd3ejPuFYxr/XluTcSyuGuyrD6EbFnFVZ/XWBnTT\nyuizbLMpeL0uYjGV2VOGHtV70lNEpadBI0IIIYQ49qRIFv0uNZ2vriWS3riXKlBBwWFTOOiP4g+r\ngIWi53Nj7SUE8+fwtON1Viob0VH5xc6fMrvVyTz31PRzpzbupXoqAxTWRWmpmJdxDqmMcceccrJA\nt9I56cxjyT7LDrsNHHbeXF2FITllIYQQYtCQIln0uc6dL4ry3ZwxvRxQ0sVnx2IU4K3395PrdbGg\nshyAVeZCzplYzOU5N7ChYQtfW/1FImaAB7Rnee3C63HY2n51Uxv32noqA/g31oM9+6bEzjnlzj2V\ns7WOsyyytorr7FiOuO5IWsUJIYQQfU8+UUWfyxYrKMhr3xzXvnHPkV7B7bixD8CZl0dBeSmFeW5m\nF5zJx2pu5on9P2JbYDt/rv071838BtC+cc/Awl5QkHx9t/+IzrvziOtU3AKbjb11IVTNTMcyUiOu\nO8vWOu5IpXLKyiFy3dIqTgghhOh78okqjsjRtpHruFGtN32HFxZ9jA3xF9jSvJEHVt/H5KIKFo44\n+4heuzudR1yn4haW3U48rjJ/WvejrkNR7Yhbx3XXczqVU+6rMeJCCCGE6D0pksUROdI2coFwe1Rh\n9pRSTNNqm8hngKKkowwdYw2hqIZNsXP3vAe49uVLCalBPvHCVZTnDufysdcwNDyHkfax6Y179lgE\n3eZADwTR9eSqrh7RMOPxjGNGRMWWiHU5x9SI68I8Nw5HskjuzajrI9VfQ0qEEEIIceSkSBbHRGrz\n3vqdjV1ui6sGVQ0hEpqJXVFwOJS2yEP7BDyAOWXzuG/hgzy4+scE1QB1kQP89oNfAjDGLGd780Iu\ncZ9OYYObOs8QgtHd4Ey+cFBTiPtdBAM70sfiqkFxQwjrtNFA3xS/vRmH3TnTnDoeietZi/DDaad3\nvEguWgghxMlGPs3EMVGU7+acWSNQstR5yf7ECeqao5w6eQj5OS46bvKD9k1x1838Bp+f9mVer3qV\nf+z4K/+uehXN1Kiy1fFw5O8sjvyDSXmnMjvvEs6ecy2FhcXJF4loeLY24ptWSmFuciU5EFFp+bAx\nPanvaPV2HHbnTHNc1dNfCq5YMK5LpvlEaA8nuWghhBAnG/k0E/0ioRm8u6mOs2cNT+dsi/K7X611\nO+3Y7Tbyc1z4crtu8uvI4/Dw0QlX8dEJV7GvuZ7/W/YH1gZfYk9sIxYWOxLvsyPxPs+8+hCXjruM\nG2d9i7EF07F5QjgKfDjantPuSGC6w312zb0dh91ZMKISjmlUN4TxhxPHpUOGEEIIITJJkSz6hWVZ\nhGNar3K2NptCjsfJkYQJCt1FLCz8OAsLFzFtmsWLe5/myQ+e5KBWTcKI89yuZ/jXnhe4a8b/Y1j8\ngi6ZZEc0hBEIoOuu9GASe5YR14ejN+OwO3Pa7ai6IblkIYQQYoCQIln0ObfTzsQRheyrD/bq/r4c\nF6dPG8buA4GsG/d6EoyoqJqBy2ljdP5Ybpx5O+ODVxLe/nc2+zbzfPxdomacezb+gIW2t6n0fwra\n4hBx1aCoPkgs6MNy2dODSUoSzVjzx9FXOeX+NpAyy3FVZ1tVVLLJQgghTnjyKSb6nNftYOLIAmob\nex9lMNt29m3Z2wJYXTbu6bqJP5KgMNfdJc97oDnC2LJ8HHZbsgWb00XB5EXcPfMmrtf28uXlX2Nf\nuIp3zde41Qzw+9N/RYmnhEBEpXVLHRWV5RTkutoHkzCqz3LKKeGY1m17uGBEJaEbGEayy0W2lm89\nDSoZSJllVTMlmyyEEOKkIJ9iYkAozHMzZlh+egJf5417wYjKii31zJs2LKNXcXK1WeGsU4aT53Wm\nC0zD5cVeUMD0vNN5textvvLyl3ivbhlrmldx2etXseTSJxlVMAU9J4y9oABHnjs9mMQ8yrhFZ+GY\nxr/X1nR7u66bROMawajK2m2N7KxNtrJLaAYHmiIMH5KL22nv00ElQgghhOiZFMniuMg2QMPrbp/A\nl23jXneb+TwuO7me7n+VizzF/OaCv3DLv27j9da/UBOq5qPPXMRDcxbjik7pkkl2mHr6mOWwYdlt\nWfsp91ZqBbmnDX37G8M8+84e5lSUMqI0L/ketX0xmDG+hB01/iMaVCKEEEKIIyNFsjguOg/QyDaB\nr+PgkWQvYb3bHsMdB49kY9dNvtE0n7MKc/lhaAlRPcpN/7me682PMyt4SUYmeUi8iVhsN1aHsdRF\n+1qwZo3iaHLKPW3oC0ZUHG3dPTp/MTgRVo8PNUJb+igLIYQ40cinlRgQOuZqW0PJyETHwSNx1WBf\nfQjdsIirejqb3LHHcMfBI503sSkuFy1T5/GJqZczI3IxX17+NfxqgMdsf8MsLOHuOd+DqJ7MJJvD\n8Z46goJcF/a2leTWldVHnVPuadBIKKqiG2ZGJjn1BaChJcqOGj/TxhT1y8S/vnCoEdrSR1kIIcSJ\nZkB9Wi1dupTf/e53NDU1UVFRwV133cXMmTO7vf+SJUt46qmnqKuro6ioiIsvvpjbb78dVx9vuhKH\nz+20UzG6CLcz+2CNnmQbPJJcKbaYMb6EzXta0tnkVCa5Y345EtdZ82FDl+c13cmc8pkjLuZfpW/w\nyReuoTZczeM7H6ORJu6d9xCK24OB1SGnnBxLbbq7Tgo8HIcaNBKOaaiayfqdTelMcuoLQDCictAf\nY+UHDQwvzTshVpaFEEKIE92AKZJfeuklHnjgAX74wx8yY8YM/vjHP/K1r32NV155heLi4i73f+GF\nF3jooYd44IEHmDVrFvv27ePOO+/EZrNx5513HocrEB153Q4qxhQd8eOzDR7xuBzk53QdNNLT4JHu\nTCqazN8ufZlPv/gJqmJbeWbn33m39h3O8FzNWbmXYwQKMzLJ9g79lLMxIiq2RBzT7c16+6EGjSTj\nFgoLKsszNiuCwrjyfOqaIwCSSxZCCCGOkQFTJC9ZsoRPfvKTXH311QDce++9LFu2jKeffprrrruu\ny/03bNjA7NmzueyyywAYPnw4V1xxBZs2bTqm5y2OXrZNfMfCEO9QvjP+dzwb+H+8WfsqB2P1PB/7\nFa+2/IH3m8/my75LGOUqTWaS9zYT8+djdbMSHFcNCuuitFTM6/E1e8ole1yOrJsV87xO7Pbj3wO5\nNwZSz2YhhBDiaAyIIlnTND744AO+/vWvp48pisKCBQvYsGFD1seceuqpvPDCC2zatImZM2dSU1PD\n22+/nS6yxYmj8ya+bA61MazrJr/MYSTZjoWiGm6bl0fP+xNrm5fx8Lqfs6ZhJXElwZOx1/lr/E2u\nHHMFN8z4Bq2usUyZVpbsp5zt9SMq/o31YD+8eEmqf3K2jYmpcw7HNAzDIqFlnn+qd/Lx+pKRTU89\nm3XdZFdtgOnjiiWXLIQQYsAbEJ9Ura2tGIbBkCFDMo6XlJSwd+/erI+54ooraG1t5TOf+QwAhmHw\nqU99iuuvv77fz1cce91tDGubQdJpk1/7Zj6HzYY/ksDjdFDbFKbzBj8Al8PBRWMvZd6Q83l82Uu8\n2foEG8NvYFgGz+57nmf3PU9F3lxuG3UrHy2/FLutayFsdyQw3f7DuqaO/ZNTGxNBSeeWdd0kHFPZ\nsreFQETFAlZsqc/INV84Z1SvvmQMBLppsmt/gIkjC6RIFkIIMeAN6E8qy7JQlOwrh6tWreLxxx/n\n3nvvZebMmVRVVXHfffdRWlrKjTfe2OvXsNmUI/pPw3a7LeN/B4O+vOZcr5Pp44rJ9TpJqAY2m4LD\nbsuYppeNw27LuG9pkZfzZ4/E1uH3JBBRsdnqOHNGOQDvba5j5oQSXLvtnDmjPGM12G5PrlCnnntc\n7gy+mvsAM6YrLN35G5Zu/RMRLcK28Bquf/MzFL5XxMKRZ3H2yHM4a9Q5TC6agqIo6fOCrtfR0202\nm8KciqFYFthscOaM4V1Wq2sbw9Q2hhk+JI+zTknenhw8cjDre3K0+uN3u6f3YCCQv8+Dg1zz4DDY\nrnmwXe+xNCCK5KKiIux2O01NTRnHW1paKCkpyfqYxYsXc9VVV7Fo0SIAJk2aRDQa5Z577jmsIrm4\nOLfbQrw3fL7sG7VOZn1xzUXA8LICAFqCcbxeFwWFORT5PD0+zrLbu9y3qCg34z4twThbq/2MHlEI\nwNZqPyPKCqhpijJ6RCHF3byGZbfj8SQ31VWOmsjj0x/l/ot/xM/ee4Rfrl6MX2vCn2jlxd3/5MXd\n/wSgPK+c88edz+llZxFVxjKUYnJIkGu1/06plooTEyzIsdT0baql4sKgzAvhuEoOJj6fl4JOmxb9\nMR2H3Y7bZU/fbtntYEt23rDblV6/f4ejL3+3bU4HpcW5hGNaxnlG4xq7awNMGFlAjuf4d+2Qv8+D\ng1zz4DDYrnmwXe+xMCCKZKfTyfTp01m5ciUXXHABkFxFXrlyJZ///OezPiYWi2GzZX5rstlsWJbV\n4wp0Zy0tkSNeSfb5vASDMYxB0nGgv645EErgD8R44e1dnHvqiIyx052FIipOG4SCMRTD6Pb5YjGV\ngD8KQCymEgzG0sd6elw8rgFW+n4Ou5db532XUeHLMEs+YF3TeyyveZsdrdsBqAvXsXTzUpZuXgrA\nMKuEF/ZO50zvdE73TKXUXkhQUwg0Ja+p2r8NvzMZiwhqCq2tLrYd+IB1rQ78YZWIYeH1ZhbJ4ZhG\nLKFRVRfk5ff24HHZiasGe+uC6fO1KUqP13Y4juTnHIyorP6wgXlTh3X785s7uZQ336/NOE9/KMHq\nLQfIc9kozNLR5FiRv89yzScrueaT/5oH2/X2lc4LbNkMiCIZ4Etf+hLf+973qKysTLeAi8fjXHPN\nNQDccccdlJWVcdtttwFw/vnns2TJEqZOnZqOWyxevJgLLrjgsFaGTdM6qiynYZjo+uD6pezra9YN\nE8NMbl5TNaPH585xOzh31ojk47q5n26YmKZFcyCOoiRXK/2hONG4Tksw3m0btWBEJZ7QcTlt6B2v\n0W7HjpPzRl7GooqPAdAQqefd/ct5p/Zt3tn/NjWh6uRxpZlnY8t5NrYcgCkFk5lTPB930VQmek4l\n77RJ+HKTK6ZmRMO9tRHP2EIcO5sp1A3OmNH1S0IwoqJpBqAwv0N/aNM0qRxXzKbdTZht192XP5fD\n+TmrmoE/lOjx55f6uXQ8z2zHjif5+zw4yDUPDoPtmgfb9R4LA6ZIvuyyy2htbWXx4sU0NTUxdepU\nfvvb36Z7JNfX12Pv0DngxhtvRFEUHn74YRoaGiguLub888/n29/+9vG6BDFAdNzMl9oQl1BN6loi\ndNzMl5ralxJXdQ40Rxhblo/jENmuYbllLJp8LYsmXwvA5rod/HbFc+yIrqVaf5/GWDIvvD2wg+2B\nHQAo2Hjf/WnuO/s+ijzFOBwJbJ4QDl8+ijuC02112+/Z7bIDSqf+0A4ZLCKEEEL0kwFTJAN89rOf\n5bOf/WzW2/70pz9l/Nlms3HTTTdx0003HYtTE/3I7bQzcUQh++qDffJ8HSf2ZU7qs7OgsgxIdolI\nTe1LSQ3vOOuU4YddfI7KH8MZhVdzRuHHuHjeKA5q+3h3/9u8U7ucd/cvJ6gGsDD5x66lvFXzCvee\ndjfnlV6OGY+jB0NYiTgOU886sCQ1qCRud6VbwKVaxoWiKgnVAEXJaA/XWapdnBBCCCF6Z0AVyWJw\n8rodTBxZQG1juM+es+PEvs6T+pLHsk/p87js5HqO7q+FoihMKa5gSnEFX53xdZqa/Dy99BGec61g\nnfUOzYlmvrnyFk53/YaPWF9jQnMJWsDBkHgTsdjuLgNL4qqB90CcHQWTWeGwpzPJ++pDJDST/U0R\nCvPcrN7a0GPXiAvnjOr3Qjkc01i3vTFrz+buBo1I/2QhhBADkXwiiRPCkQ7MONQQkmPB4fFSNOmj\nfIEr+Ub5bn60+b/ZF65ilbqF95U7aSm+iYn5V+G3huM9dUSXFnCBiErr2gMQ0Jk5oYThQ3IzVsjd\nTlvGOOvOQlGNddsPHpOR1j31bO5u0Ij0TxZCCDEQySeSOCEc6cCMzkNIAmEVRaHLdDvIPpXPYbeB\n4/Cm6GU9f7cHBYWzJ13K2zMu5mdrf8Iv1/8czUrw6K6HGO15lVtG/Rp7QQGOTqvbdkcCy9UM6OR5\nnRmZ5OQKeddx1kIIIYQ4OlIki0Eh22a+1HQ7XTe7ncpnsyV7EAOH3MzXW16Hl/+afzcXjriSW964\nmd3RjVTHP2Bj+C0+yuQ+eY3+kBqhnU3qC0Yo2vWLRkq2XLTNppDndRGJa/1yzkIIIcSRkiJZDAhu\np52K0UW4nUe/aptNts18CyrL0u3UVmypZ8b4YhwOW/o4JAu7gsIcwqEYXtfR/XWxq7GMjXnjbSO4\nffhjfK/qUoJagNrwxm437tnjEWzG8SskO47QziY1Qnv9jqas478TmsGBpgifumAS5SXtvSl9OS4W\nzixn2fr9/Xn6QgghxGGTIlkMCF63g4oxRYe8X08bww6l82a+zHZq9ozNfanjDoeNIp8Hxei5f/Oh\nKLpG6fY1xMIF6Y15QU1B9buYZI1mHZvZH1hHbMXyrBv3SmpDNBkFWNrxWWlOrSDPnjKU/JzuN/+l\nvnB0/KIBcKApwt66IFoP72Fc1dlWFWVMWb5kk4UQQhx38kkkTihHmk3uqLsuCymBcGYm2bLbCYQS\nPW58C0V7XuW1HE4ap8xlxsyy9o15EQ3P1kZm6Geybu9m9toPYD/9dAp9+ZnnE1FpXl1N1K+hOA/v\ni0Ffy89xHjL7nK1zSE/t6VJUzWRbdStlJTlSJAshhDju5JNIDDrddVkw24LL63c2po+lMsmxmIqq\nGlmHkHTU04hzw+XN2JiXGiZySv582PsrVCvO19fewBOXP4nPXZB+nN2RwPDkYtojR3S9/aG7fHK2\nzY8AoaiKbpiEoirhmCY9m4UQQgx4UiQL0aYwrz23nJLKJAf8UVqC8axDSFIicZ01HzYc1mvaEjFO\nHzaHSu9CtsTe5T/173Dl0xfxxLl/pCwnOfgknUnWEhjBILrbaBswEjuq6z1SPeWTU9nkzj2bA2EV\nf1hl7bZGdtYGMno299SmL5bQqaoPSQRDCCHEMSefOuKEkNrY5+phWEZf6Jhbhk6ZZMPsdgjJkbBU\nleIPV6M1+vh84gZeNg2W2Vay1f8hV7xwGb8uuZ3xzuHpTHKz7iO+th5/jo24alDcEMKqKDvq8zhc\nvc0nd7S/Mcy++gCGaZLQjIxV6M5t+jpKaIZEMIQQQhwX8qkjTgipjX3ZCqmeHOkQkmNBcblomTqP\nEWMK8exs4ePG/UzPeZpHtv+CA0YTn/c/yBPn/onx3mk0r64m0pLAM2cshaW5BCIqLR82Mvo4ZpR7\nk09OCUZU7HYbhmlhWUeeJxdCCCGOFSmSxUmtNxv9DrWR73B13PgHyQIxoZqgZG5gC0ZUooqLqMOD\nZnOiuN3ccvrdjC+fxHff/jatqp8b//Mt/vXRd5OZZCfYfT4chfnYHQlMd9+N8e4LPfVRTmWSVc0g\nodq6ZJb7qge1EEII0VekSBaDXncb+Q5Xx4ElHcVVnZrGEKYJL67Yy9DCHBwOG3FVZ199iISq09TQ\nwpghXpRwkE8Pvxplnsptq75DVXAff9zwS8rjF3XJJDuiIayg67hlkzs6VB/lcExD00wO+mO0hhOs\n2FKPx2VP908ePiSXhTOHH8MzFkIIIXomRbI4ofT30JGj0XFgSUeplWRVN3A57OmNf8nVVIUZo/Jo\n3L6CMe58tFVV+IGLrSHMck1kg7qLx7Y+zP3xfHL14RmZ5KL6IHpzLsUtUazTRgPHbyz1oXLKwYiK\nYZiouomrw8CWYERl2fr9WFYyhtGbFf2Om/kA2dgnhBCiX8inijih9HboyPHSeeNfittlAwXcTlvX\nISYFeeyunI9vaml7D2XgR01FXPHaVYStGH8ufJf5xk145kxIZ5Jbt9QxcnwJLVUBFNfAyFv3lFN2\nu+ygKF3eA5fTDljkeZ29WtHvuJkPkI19Qggh+oUEAcWgE4yqvLGulmD00AMuOurr7HJHpruth3Jh\nYfqfeRPP45pJnwBgdexl/qzdxGv+f4MvD3tBAXpOPoqvANPt7fPzEUIIIQY7WXoRg86RTu072uxy\nQjXAstKb1lKDN0LR7AM4AG495W7er1/PvtAuWq0q/nvNzfxh20NcN/EbDInMxQq6cERDGIEAup59\nNflY9lSOxLJPHkxGTgxU3ezyHiS09vfFYbdlDBo51BeTPK+T808bSY5H/q9MCCFE35JPFiH6WWpD\n30F/DLDSm9ZSG/ciMY2qhhC6bpKXJc97x5i/sPzAc7zZ+DgH7U3sCe3l++vvYJhVwlfrruDU8Exi\nwSIsV/acdrqncj/nllXN4J1NdXiynEdcNdjfFCHX46QxrmW+B3VBwnENRVHw5boyBo1098VE1012\n1QaYPq4462AXIYQQ4mhJkSxOagNho19RvpszppeT0JKrqB03rYHCuPJ86lqinDp5CCNK87I+R+XY\n6xn1xhnkT/iAP1X/hl3BXTQozfw49kdK3GV8fdh1zC2byai80QzzDMVua7/eVE/l/s4tJ8d6K1k3\n7yWv1WLG+BI272nOeA+CUY26pggVY4o40BTpto1cR7ppsmt/gIkjk+O7ZfOeEEKIviafKOKkNlA2\n+hXkudoKdavLxr08rxOHPRkr6G7TWzCiYrhyuWzK57hu4fU89cHf+cnqBzmQ2E2zXs+Pt/wQtiTv\n67Q5GZE3klG+MYzJH0OpezjBaB65B5uZrkxiaM4wbEr/bUfovHkv3E0EozPLsoirekbspHP8Ihun\nw8bwIbk4+3kaoxBCiMFFimQx6B2rqXyKAjbFRqitaExlklNDOEJRtduJgh0LTbvNzuXjPoa3dQ6B\nvLX8YsP/URvfkb5dMzX2BfeyL7iXdzo8x+9qk//rsrkYmT+KUfmjGe0by+j80YzyjWZ0/hhG+cYw\nPD/7qGtbIoYRCGChYMbj6IEgup4sYPWIhplIAErG8XBc583NB0loBtWNURKaSV1zBFDwuOzoukk0\nrhGMqmzc3UxLMJ6+LaVj/KKzuKpT3xxlTFm+DCQRQgjRp6RIFoPekW7kOxyWRTrysW7bQYB0JjkY\nUWkNJXh9bQ0jh+ThyLIiGld1AOwdCkGbYuOCEZdTGJ7LjKkuAmY9NcFqqkPVVAerqAlVUROqpjpY\njWq2F9+qqbInsJs9gd1Zz9Vj9zCmcAwj80YzMm80o/JHU2IrRf1wF/ubR5NrKyIecBMM7ABn8j0L\nagqJFhdYCsHorozjcb+LyZ4EJYEQw8+4iC3O9j7JAPsbwzz7zh5OmVDC3rpg+rZQVGPd9oNd4hc2\nm0Ke10UkrqFqprSAE0II0S/kU0WIYyDboJGMTHJzhByPMz1opLNgRMVms5GbpYuDoigM8Q5lYt4o\nZg+b2+X2llCMf67ZxJhxGq16XVshXdVWSFdTG6pBNdsjDnEjzvbm7Wxv3p75RHagOVlEF9rLmKyM\nZVzOaEbljqTYUU7ENZxiRzm+U4ZRmNu28hvR8GxtpGRsAQeq/PgKcvE0RDMiJ6muFjZFoa45is2m\ndBs7geRmvoUzy1m2fn+X2zoOGpGiWQghxNGQTxEx6ByvzXzZBo2kMsl2u4LbYc8oHjtzHWHm1qbY\nKHSWcmrpiKzPbVomDZF6qkPV1ISqqA1X05A4wK6m3VQFqqgN16Cbevr+cSNOvbGP+oZ9LG9ofx6n\n4uaOsU/iKJiEo+11HI4ENk8Iu8+H6c4eJWk/D4uEZhzVir7kk4UQQvQVKZLFoHOkm/mOVXb5WLMp\nNpxQbPkAACAASURBVMrzhlOeN5zTy+fjcNgoKsqltTWCrpsYpsGOxipeXP8+peUxasPVrK3ehulu\n5kC0lv2hGgzLQLMSPHvwIb7I2VlfR9VSPaEzN+eFoiq6YRKJZ2azk5ltPWv/5JSEZtAUiLXFUdw4\n7DZpCSeEEOL/s3ff4XHVZ97/32fOmSbNqFiSbcm4U9xtsLEpphkIJUAoWQghBEJCClmSJ/kl2RRC\nFnBCNrtPng1puwRSScIS2ISEEggYEoPpGBtjY2ywXNWl6eXU3x+jGc9Ioz4qtu/XdfmyPaPRnDOW\nju/56vO975KQIlmIQRqt7HIsZeJSFHSz+EAROLjJL3t/NDG4jhGloLpU6suncUw5nDl3GgD/SO7k\n1O4x2qZtctur3+XenXezNf48T7/zMB+Y8z6ge0NfKkW0rYvGPe0ko3GaQ5kNftnNebFkJlu8fU+I\nUEzn1bfb2LEvTEq32Lk/zJ6WGDOnBnn/ybNyhXJ2yIhh2bSHU+hG8bZxEr8QQggxXPK/hhDjJDtk\nZNeBMLYDLV2J3JANyAzMCMXTVJV7MW2bxuYo4ODzHPy2Vceho4Oj60za9jLJrmBugMk16RU8wB+I\n0sV3X/kmp+xRcCtabuNeojmFvwOOwaY+kuC4s99PZVWmJ3RmpVhhdn0FHZEUK+bVMa0u0D2lz0Q3\nbRzHKdjAlx0ysqcl2u+xpg1LNvYJIYQYFvlfQ4hxkt3MF03ovQaNQKZ43LClmZULpnQ/Qim4X1Nd\ngxq8UWqKx0Pn/JXM715JBiBucPHzn+V37WvZbTXxXf/f+M6KOyDlwre1De+UcpKvH6DihHraW+NU\nVgUK8tE+j9bdL9pV0C/a61Ep2O1YhG077GqKUFfll0JYCCFEycjuFnHEG8+pfNVBLxXlmUEjXs/B\njXtVgcztvu7b8v+cvX+gIRujyfb6USsr0aqqMr8qK1g56RJm+ZYA8Pt37+fyZ66iRQ3j8vlQgwFs\ntwclGMT2+kt2HIpLQVNd7G6JkjasXvcH/G7WnHDUiF6rZNrk7d1dJNPmwB8shBDisCFFsjjiZTfy\njfYqZCSh8/Rr+4gkeueOFQVUV2bQSCiW7rVxLT+TnL0/FEuPaTZ5IJqu88m6f+O0yWcAsLH1dS79\nyxo2d6zDisZwGTpONIoVCdPV1E77/jba97fR1dSOHo31GqqSiVtY6IZFuvvce07vC/rdzJgSwKMV\nf4OT3cg3kkEj2chGsSJcCCHE4Ut+NinEGOlr41+xQSMAKd2isTmKaTlE4mlCMZ2emeSs8Z425+g6\nVTveIOWr4d8mfYz7gzX8MPpHwkaIHx/4/2hvv5i54UuJvr6fAx0u4vsOoKmZGIVpOZmC31TQDZuN\nO9pzG/f2tsWwLAdVVXJ57VULprC1sYsT508ek3PLrkaXFelRLYQQ4vAlV30hxlmxQSOQHTbisHhO\nDa++3Ua538Mpi+p7tTjrqz3aWFI8HkLHLMONQtXSqXy1fA2nNF/BZ567mS69k/v1P7MgkGDVgu+R\n3NrGmSumUV+diV1EEzqv7Ohg4fwGyt/ryJ1j/sY9j+Ziydwa3tkbwjDtPruMjEY3C0114dZc7NwX\nli4ZQghxBJGrvRCDNJrZ5WKDRiCzoS1Y5sHrcQFKv8NGxpvt9aGgoFVWoAW8rKm6mIerF3H9Y9fy\nXnIzW62nCHlS2G4PlXXV1E4JApBui2F74wN+fsdxSOlmd69lq3sKoYJbU3MbGEerm4V0yRBCiCOP\nXO2FGKThDiE5kk0tb+CjR32Lf91xBQAbO9ejsDJ3fyxpsH5zE43NUdKGTVNHnGwP5ZRusb89TrnP\nTVvKgO1tNHXESes2TZ1xstETw7RwuWR7hRBCiNKSIlmIcdbXJL/swAzFdTCHEY4VHzbSnzEdPKIn\nscJhTDNzHmbcYIrTwGRvPa3pJl5tXccqYxlWJILptUjFDZx0iunlsLTBx1Zb56TuNnf5cZM33+vo\n/t3F4jk1vLY9E4OYN6OaN3a2lXzAixBCCCFFshDjrK8NfdmBGaFYGsfJdMDYuKOt1+Pzh45oWt8r\nqqO9uU8xDeq2v0IyVpkbMhIxFNIhD8ud43icJjZ2Pseq5MWkXj1AqMxFxFAwOtzUp9rxJ3w0dCYI\nnjQ7FynJxk16/u5xuzAthzKfhqIolPvcuFzKqBXLfW3ek4l+Qghx+JKruhCHAL9XY9kxtUXzyPlD\nR3pu6ssai819juam7bgTWbxkasGQEd/WNla7/4nHtz5LjDj3lt3Jqvk/45hZiyBu4N7UTMhuQDuu\njs7dYRRP8XPoi9etsnpJPRVlHkKxdMF9pSpis63kepKsshBCHL7kqi7EGBnpxr/sEJFi8geNjCfL\n0z1kpPs4NC2Nyxfl5GkXsGznZbyh/5EuZz8ff+XD/LLuPhZVrkLxhrBwUCoqsb0H4yTxpJG3Ua/w\n97RugwItnQne2RviuBlVALl+0vGUSVXAK0WsEEKIYZP/NYQYI/1t/EsbFs9tbuL0ZQ0FuWQ4mE12\nufofzzwWwjEdRSHXXSIr064tU7j2vN2IxUh02JyjfZpVU4/l7j3/TsQIceWfL+XWpbdTmT4DzTZx\nImG0RBQrHCYUc/GP15vY05bIbejL/m5aDvGUTiiWGTbSGkry8tZWKgMeUrpJY3MUcLjolNklOedS\nrUZLNEMIIQ4tcqUWYgJwHIdY0iiaqc1mk8eT031YG3e0FRSi2cEmsYTBO3u78Ho0Nmxpyt2eTiTx\nvvYcHeV+/HYlp3Ec0fQXeNj7E+JOklvf+DrnKJfzMf0szIiP6o44yUgFuqJhdLiZn+pizsnnsMXt\nym3cO2VRPQAbtjQzuz5IayjBinl1TKsLEEsaaGoLlm3n2sKNVH+r0UMZNCKr2kIIcWiRK7UQYkD5\nA08yK8UKp3R3oQDY3xZj54Ew9TVlBQNPInGdl+zVHD2tgsj+GOXTgjS8Po17lp7Jv2y+iT3xvTzl\n/C+nzriCYxcdT9d7HcxbVI8PBfemZlJMp6KyHF9LIrdxL/u5fR6VgN+NproIlnlycZRzVrh5duP+\nMXld+soqCyGEOPRJc1EhxKBUBzNFaEW5pyADXRXwEizzoKkKHnfh7RXlHtyBABVTavAGylCDAWy3\nh2MaTuBPl/8VVcnks59LP4FSUYlZFsxkmisrMFQ3ScXdK5Mcieu57HFbKElHJEVLZ4JQLE0olu6+\nzySeHLvWd0IIIQ4/spIsxDjzulWOnlZFY3NkvA9lVLnSSZyoC5ehY0UiNHiDnDHlLNY1P8VLoT+j\nh76YyyTH0hZ79odwOTboaZpD6YJhI5pLIZbU2bY7RTxpsnFHO/vbM1P7UrrVHQdp4rSlDeN6zkII\nIQ5dUiQLMc78Xo2jj6pkX1us4Pa+hoz0NF4b+/IHm0QTOqZloxu9N/SldItoOEbFlhdJVZTj7/Lk\n+iRflFzKOp4iZodY98JPWRidTzJSQchyY0V8HOt0cKzHTX04ScPJ72OL21UQ89i+p4sd+8IsPbqG\n42ZU554zbVgAWCXKJZumzc59YRbOnjTsPPFQ8stZstlPCCHGj1x1hZig+hoy0tNYb+zL38SXFY7p\nROIGjhPjkQ27mFxVhqa5cpv80rpJe9U8plR6SboMylfNpGpSGefGTqb60fvoslp4yPMaDcd+hHmL\n6gkmTNT1e0hX1+I9ppbQnjDT3MX7PNuOw5ZdnUyrCxzsBe04pHWLVNosyRsI07bZuT/M0UdVDrtY\nHU5+WTb7CSHE+JGrrhBiSPI38WXtb4uxqzlMXaWfcp8nN9gku8lv8ZxJvOnRWDxnEp7GLiom16AF\nvHi1NKurr+Qv7T9kY+hV3q3dx+rKeWiaDppGWvPx8r4kTV0Gye1tubiFr3uiX0ckhWU77GmJ8tzm\nA/g8GindYm9bDFDw7lC56JRZoz5IRQghxOFHimQhJoCRDhoZa9XBwqElkbiOprrwuFW8HlfBYBOf\nR+3uTJH53dNjdPapVZfzRMfP0J0UT7Xfx3Wck7vP7l62rq8pZ8Vxdd0t4Aq7auxtjTKtNpDrqpHp\n2Wyim5moxUhbwblcCgG/h3hq7DcCDieiIYQQojSku4UQE0B20EixH6nHkgZPv7aPSEIv8siJQXEp\neDQVBpFqcKWTWOEwZiiEGY7gNz2cVH4BAK+G/sqB5u2YkSiYJq50EtIpyswkATNJmWMU6arhKuiq\nUVHuwetRM8dTAhVlHlYvqS/6BiaZNnl7dxfJtFmS5+opG9HQVLlUCyHEWJPlCSEmuMFmk8dT0O9m\nxpQAkbhBOm8aX27jXqJwA1+oNUDSrRI1FVJdHj5gLGK9+09YWHx63Yf5VuBLWJF6KsLthNwVVJsh\nurp8+LqShOdNzT1vzw2DsaTBi281E03oOE6mYo8njVEb1z1WmWHZwCeEEGNPrrZCiBHLbuZrDSUB\nhw1bmvF51NzGvXjSYHdL5vdQ1TzaK/z43CpJw6YtnWJ27TlcpTRy/+7f8La5h/+TupNzAv9KR+AY\nWmMm7UoNXRVlNNtpOrd34vOEgcwqu2HYNHUk2LClCYCd+yOYloWCgqq6WL+56ZDPJcsGPiGEGHty\ntRVCjFh10MvJC+tJGzY4Ti43nN24N7s+SFNngkVzJrHL72Zl/v2v7+Kk42o5y3MriYjKn7t+SUuq\niT/wBT6k/ytBljCl0s3y2VVs29PFihllBLtb4kUTOnYyieP15cZVpw2btG4CSm5zYalGVI+nUrSh\nE0IIMXhypRVigspu5uu50W2iqgx4unO7Tq+Ne5nx0QoBv7tgWp+j69TvfA0lFiQFfKx9GcdXfYy1\n0V+jk+C30a9xhvFpFkYXYSYbqepMkIoGcLrzwWnDorI1Sejo44sek+OAblojPrdS9KIeSWQi4Hez\nauFUXnm7ZURt6IQQQgyeXGmFmKCym/lCsXS/HzfYoSNjQVGg3Df4YlLxeOicv5L58+sA6NrSxIcW\nXcSkvav50us3YygJ1nl+TIfrMq4O3ky7ZdBeGchtoksbFo2pOJW6zctbWzBtm72tsVzcAkBVXSPO\nJZeiF/VIIhOa6iJY5saljO3AGCGEOJJJkSzEIW4ibezzulUWz6nBth1CsXRu414saWBaNrGkQarH\nxr6E4iGu+VEUBbMsiFpZyana+fzTtrt4JP11InYrm+w/YiX286H6Ozh12axcC7hIXEfZ0lTY/i0v\nbpFImezviBNJ6Ewbx9dFCCHEoUeKZCEmANOySaRMynzaIdvuq9gkvuzGvUhcpyua5h+bDmCYNuB0\nD/7I3J/9O5A7/1p1DjfW3MPv27/JAWcTW0Iv8x+xazn22F9x5pRTc8/h82gF8Q6vW+0+GAXdsLAs\ne0K8gRiO/IhGfz2TpfuFEEKUnlxNhZgADNPmQHucmVODvYrkQ2XQSLFJfAUb9zri+L0ak6s9BSu/\noOQ2+mmqi4DfTWckhcsyqDB9vN/1bV51fslG+0FCZivX/PUSvrn0W1wx40OZ7hbhMF1NXswyD5GE\nQSqWwDAsHI8Xw7SxHYdY0sjFVrLPMVj9xVlKkVXuT8+IRl9jraX7hRBClJ5cTYWYALL546HeN1H0\nV0j6PGpulZkBFnRNy87ENMJx/G0HqFSTHKCWNfYlvL+mlv9I/pwUOre+cQt7toSZ55xAOJZm/f4D\naKqCaUNYV0gn0yRr6kmbNmndYtO7HTR1JHLPc86K6YMulPuLs5QiqyyEEGJikiJZCDFifRWS2eL4\nnb2hXC45FNfZsKUJn0cjljB4Z18I07QJlB0sWsOxNM3+Wny1XojapJUg719xE97dp/DvzTcTMcJ0\n1u/ltHk38Or2VlYcN7mgLdz6rW2kFDfxpEEibbJ0bg3HzagmmjB4bXvrYdESLl/PKIbEL4QQYuTk\n6imEGDXZCEY0oeMAad3E69FycYv9bTEaW6Icf2wt0+oCucftb4uxty3OggX1tLy+HwdQgkGmVC1h\nkb6cDS3r2Kvvprq+Fndzmur62lwmWYul8eyJ4+iZSXwuJdN6brSm7k0E2fHVWRK/EEKIkZOrpxAT\n1OGwmQ8yhbKiHNxQ53Uf7JMcietoaibXm1/ERuI6fjuNN50E00LBxolG0RJRZvlmsgHY0fU2ZiiE\nlohihcOYZqZItOI6WjKGYbuAifO6jSS/nNJN3t6dkJVhIYQYQ3K1FWKCiiUNnt24nzOPn9bvKuih\nsrFvKBxdZ+6+TVhMxooF8ZtJzE0HqA5FmR7MFJkhvYu9z/0Ff6tGa+dOwnm9k8ubIyhotNcvLNi4\nl2lJZ+Za0EFmFbYq2P8qc9qweG5zE6cvaxh2L+qR5Jd1w5aVYSGEGGNytRVighps8TuRNvbFkgav\nbW/rc7BJyrBAUXJFajShY1o20YReMDQlZsL2+iVUzK2FbZ2klQDa0ml0NYVZNnkOvPBzAP42uR1S\nZ9DaY8DIrkQE01FIR3Qsy2HLrk6aOhKkdKu75ZyCz3PwdT1v1Qyqq8v7PC+nu9A+VFvJ9ZRMm+zb\nF2OZf3yHzwghxEQmRbIQE9REKn4Hq78NfIoC4ZhOu5nKbdwLxzL9k//26l6Oqg2gdY/gDsfStKUV\ntramSSZ13GUaru7IyZzAMcz0LmB3eisP7f0fLndOZ9GMSuqr/UCm8LbSaQzDJum4cLtdnLRgCtPq\nAt3FuZNrOZfdyBeJ6XRGUoSj6V6b+iJxnbRug0LBCnTWUFvKDUU2oqG4FEzTZue+MAtnTxpwNbm/\nnsqQeSOxbXcX8+bWITP8hBCiOCmShZjgDodscnXQy/tOnEE0obNhS3OuSN3fFqOxOUKZz83KBVNy\nm89yG/eOCpJ8910qNA/K5haq28OkOis5yVzNbrayK/4uHen1aG8eDWWZ18atW0zfH8K0HEIuH53V\nxxVknnsOH9ENi79vOkB1YxfJZO8C3zRt4imdUOxgV46ehtJSbiiyEY1QLI1p2+zcH+booyoHLJJ7\nbuQTQggxdFIkCzHBDTabPJ6y0RCP1ncRn93A5/MUbtxTVQWvphYUrtkNfeXBMvTaerw1ZfgW1NL1\nXjsNc2o5+b2ZPLL7d8TNGC+XvcRnVnyEqrpMXCIc12nbuA9dt0k4Loj33+7NdhxcisLJi+vBtIq2\nh4vEC4v7rOaOBI+/tJtQLD1qq8lCCCHGhxTJQkxwh8LGvGw0JD9X3J9wLBNbiKUMXIqCbloFUYZM\nVtkhnjIwFBXDpZF0+zHLgqgVFZSVpTl3xoX86b0HOOC8jVpRgVYVBEDV0pj+EIZqYxsWkBzUMVUG\nvCiWhWkWL6rzi/usSFwnbVjjnlUeal/kgN/NOSumZyInkYOvj/RXFkKIg+QqKMQEdyhmk3vKTuQ7\nZnolABt3tAGZ1ma2Ay1dCf6x6QAp3aSq3Es8lelGsXVXJ5G4jgJsfrcdn0dD7Y6cTAvMACBph8bl\nnCaSofZF1lQXPm/v+I70VxZCiIPkKiiEGHXZDX0VZR7OWDYNpXu3WGYl1gbH4fhjannzvU5WLphC\nNKFnMsmzJxHuiDA5qLFqRjmTgh6MdAI7laLalxk+kiZGMtSO6bWAg32Sbd3GNm1cljWoY4wldCzd\n7DNukdKtXhv3st05EiljBK/OwFwuhYDfQ3yUn0cIIcRBUiQLcYg71Db2VffoSZyJkTgEyzy5SAOQ\nySSrDnNbt5I0G3A27cFwO0QMhVTIg9/Xnvscza8+RU2gFoCUblHXvXEv6aiEqcIxju33mHTD4m8v\n7wHbLhqdME2bWFLn5a0tuQ4ckImNhGI6L21t5ajJwX5zydnV9L7a4/WnoszD6iX1PLtx/5AeJ4QQ\nYvikSBbiEDeRNvaVPD/t9tBYv5D62gAVK6ZRVe6GuIFvaxs1UxR47kcAdB07lapjTgMKN+6lTZtE\n3EJx91+UZuviFfMmUzaEmEG2OwdQdAW64Dn6aI83kQzUOg4ktyyEOHLIFU6IQ9xE2tg3nPy0ooBL\ncRFLGblpePkb91IuD7ZpEU+kUXCIJgzShsVcbWbuc+yMbgdO6/25cVDtwcUtILNiO5QuFdnuHGNh\nKGOth1vIDqZ1nOSWhRBHCrnCCXGIO1Q29hUb7ew45Ir7zTs7ctPw0rpJKJbmzXc7CIdiBHdvpXGv\nD011kbBV2s0grTui1GjVdChdbN+1nlB0LlAYt7Ash4q0iaPPH/Zxx5JGn6vE0URmol/a6J1XhpEP\nGukZ0RjsWGspZIUQYuQm1NXzt7/9Lffeey/t7e3MmzePW265hSVLlvT58dFolO9///v87W9/IxKJ\n0NDQwNe//nVOP/30MTxqIcRgctHFRjtXB725jXz50/CyG/fmHlXJrqYoHfNXcuIJDQTKPEQSBu07\nOjn6mEnM3/gQz7U/S2NZiKozzgIK4xa6adESNVjhGd5gjVjS4KlX9/Z7v25aNHcm2LCluWDUddZI\nBo0cChENIYQ4XE2YIvmxxx7ju9/9LnfccQeLFy/mV7/6FZ/4xCf461//yqRJk3p9vGEYXH/99dTV\n1fGjH/2IyZMnc+DAAYLB4DgcvRBHtpHkovM38mWn4UFm416ZV8PlUnCVlVNZX0dVwIsaS+NvTlNd\nX8uylhN5rv1ZNnVt5MHmR/nQvGsK+iTrhoWRGlyf5GKyK8jLj5tMsKx3oRuJ61iWDSi9Bo1kR14P\nlFUuhaFEMSATx9i3L8Yy/9DfPAwmt5x9DskuCyEOZRPmyvXLX/6Sq666iksvvRSA2267jWeffZaH\nHnqIG2+8sdfHP/jgg0SjUR544AFUNbN609DQMKbHLITIGCgX7XWrHD2tKrfJLSs/TlCs0EukTGzb\nQc+LM0TiOkYsRripjQurLuE+9deErBa++MzN+JNejg+enGsB55gWvnQKJxLG9FpYcR1XeuhFc7DM\n3Wfx7/WogNJr0MhYGkoUAzJxjG27u5g3t46hJqoHO/JaIh9CiEPdhLhyGYbBW2+9xac+9ancbYqi\ncMopp/DGG28UfcwzzzzDsmXLuO2223j66aeZNGkSF110ETfeeCMu18RvgyXE4WSgXLTfq3H0UZXs\na4sV3J4fJ6gKeHOFXlckM7mvsSlK2rBo7kyyYUsTPo9GIpLA/co/eG+bD1N1c5V1M7/xfpsESW7e\n8Bm+bd/MDKsBy860bqtMGZivNBMq95DSLSa1RHFOmAGUvqDNzy9neiubBcV9sV7LWSPNLwshhCit\nCVEkd3V1YVkWtbW1BbfX1NSwa9euoo/Zu3cvL774Ipdccgk/+9nPaGxs5LbbbsOyLG666aaxOGwh\nxCipDHiYNbWCydU+du4PM3WSn1MW1VNR7mF/W4xHmpex4MRplPk9tO/o5D9qpvP5jZ8gZae5s+xX\n/PKk+9mzSyWWMGgPpzjhxLlU1QUIx3U6t7WhDDOj3J940uCVt1tzf0/pVm4jos+j9tlrOV9f+eVY\n0uC17W3D6rEshBBieCZEkdwXx3FQlOI/DLRtm9raWu644w4URWHBggW0trZy7733DqlIdrmUQef4\n8mVH46qHwPCGUpFzPjKM5Jz728CnqS5cLgVNdeWKxGK3ZW8v82lUlHtRXQpej8akCh9VQS/xlAn+\nMqoaJlNZ7qG8VWfNkov4Se1/c+MTN9CebuMLm27ixsn/jUGQdFpFq67GVxsk5U2DP557vuzzK0pm\nY5yryHEUO76e94MCSuZasmJeppANx3VcLjh1cQOVA8QTIgmdV7sL7GLPrygK8ZSBS1H6LLAHeq2L\nH3fhv3MybdLYFGFWfcWIIxJVQS/vWzljRENuSnk8IN/PR4oj7ZyPtPMdSxOiSK6urkZVVdrb2wtu\n7+zspKampuhjJk+ejNvtLiii58yZQ3t7O6ZpommDO7VJk8r7LMQHo6LCP+zHHqrknI8MwznnzkiK\n51/bz/knz6K6wldwn6Oq+P0eKqvKcvcVuy3/dltxZRopKwqOqmZ+uTK3OS4XjqpC9++XL7iaffED\n3PbcLewIbefn5le4fsp/omkqFRV+qqvLez2fo6r4fB5QTACCQV/R4+h5fPn3+3ye3Ovl93uY3lDF\npAofnZEUW/eEmDEt8/e+ROI6jprMnYejHsx1587P5Sp6f1/5YJdbY2ptgEmTyqkskpN2VBWv1507\n7tztkRSNrXHmza0rer5jbbSOR76fjwxH2jkfaec7FiZEkex2u1m4cCEvvPACZ599NpBZRX7hhRe4\n9tpriz7mhBNO4JFHHim4bdeuXdTV1Q26QAbo7IwPeyW5osJPJJLs3t1++JNzlnMeSDiaJpnUCYcS\nKFbhEI9U2mTW5HJSiTRd3feFo2lC4SR/+ftOzjx+Wq7g64qkSCZ1djeFSekme1oiPP78u/g8GqGY\nTltngofWvUNtpY+WAx2YXR143RoznTM4q/JSngn/ibdjL/MH81bOtj5HaF8zrXqMSCyN3tFB524P\nZsBLJJYmHY6QdnnweTWi0VTBcfd3Ptn7UykdUIhEkgUfO9BjIdNn+W+v7CWlW+xqipBKGQVt5AzT\nJhRL8/fX9tDYHGV7YwezplZ0bxbMOPfE6QSLRDBOWTgF2zDp6jKLHnc6bQAU/DsP5pjHUqmPR76f\n5ZwPR0fa+ZZKdXX5gB8z4iLZNE0aGxtxHIfZs2cPqUDNd/311/PVr36VRYsW5VrApVIpLr/8cgC+\n8pWvMHXqVL74xS8CcPXVV3Pfffexdu1aPvKRj9DY2Mjdd9/NddddN6TntW1nRD1ILcvGNI+sL0o5\n5yPDcM7ZtGxs28Es8li36uKYo6oyH9d9n2nZWLZNJK6jG1bu9ooyD6ctaeBAe4x9rTGm1ZZz0oKp\nuUzyrgNh/F6NZTMraHvrOaa7A7nOGovc7+eLnvd4Tt/Ma6mnCCbjLHv+fHzBmaQNm6rmCNFQBYZH\nJaVbVDYlSB69HAC7x3H3dz7592dfr/yPHeixAGndwrYdFs2ehG3bnLRgStGV4UhcxzT3gwKruj8m\n22IurVv4PcP7d8oed/6/x0DHPJZG63jk+/nIcKSd85F2vmNhREXyli1b+NznPseBAwcAqK+veDpm\niwAAIABJREFU5wc/+EG/A0D6cuGFF9LV1cVdd91Fe3s78+fP55577sn1SG5ubs61egOYOnUqP//5\nz7nzzjv5wAc+wJQpU7juuuuKtosTQoyNUo7Irg56iSZ0NFXB41ZzLdayo6C9mkqwMsC7i06ian5d\nQe73F8ZqPvDkB9kafotn/S/wbPQFavQalk9aQd2U+Vy56FyWT12IkjAJbWoGdXx/qBbwu3M9ovtu\nNeeiVK3mXK7M51FdCkOY2g2Mbf/jvnoySw9mIcRYGNHV5bbbbuPqq6/mmmuuIZFIcOedd3Lrrbfy\npz/9aVif75prruGaa64pet+vf/3rXrctXbqU+++/f1jPJYQovb5awfW1oa+v/sk9pfNap+WPgo4m\ndBKKh7jmR9XyVmA1P99ffR+feuo6dqc3A9CR7uDJpieAJ/jtM/9Jtbea5ZNPJpiaxxzXAsrdCzEi\nYcz0wcuiGTewUynMcATT7N11ItN3OYXtHd8sYM/x1QOpKPNwzorpVAa8ReMY/RnL/sd9Za6lB7MQ\nYiwM6upy5513cvPNNxMIBApu37NnD9deey0+n4+ysjIuu+wyPv/5z4/KgQohDl19TeTL759crM2Z\n052Eag0lcn2SI3GdWNKgqSPOi1tb2N0cxTRtAr0m4in8c8PP2N66hzkL23gn/hrr963n3fA7AHSl\nu3hq72PAY5ljaSlnxa5jOcl7HCd65zHPPYOEqZEKeYiE3wF371hWSreoakrQOW9lSV6neNIoensk\nrpPWbciN7+7dh7kjkpLx1UIIUUKDKpLD4TDnn38+X/jCF7jiiitytx9//PF85Stf4YorriCZTHL3\n3XezYsWKUTtYIcShaTAxjPzBIlmVAQ/T64KgkOuTHInrOACOw7yZ1TR1JDj+2Fqm1QV6fc7mzgRN\nnQneN/0UPjHlI4Riaf78ypt4Ju9iU+dLPLf3ObaHtgKQJM769EbWpzcCENACHD9pObXBhRx//Eep\nquk90TMc17vjGiOPl+iGxfrNTQUb97JM0yae0gnF9Nybhfw+zODQ2Bwlnqoft6l/QghxuBlUkfzd\n736XzZs3s3btWn7/+99z6623smTJEtauXcsdd9zBV77yFQBWrVrFLbfcMqoHLIQ49Aw0ka8/xbK4\nmWLbIeB3o6mZcdbFisNi0+0qtEmcOXMxH1r4T4RiaR58fhPbY6+z397MAWsT2zq34OAQM2Osb/07\n8Hd2vvoCT1/1916fS9XS2N7QsM6rJ9txAIXlx00m2GtVPHMuG7Y0c8qiqbk3C+BwyqKpxJIGjc3R\nEe9sLzYafLhGMzcsWWUhxFgY9FVkyZIlPPDAAzz44IPcdNNNrF69mi9/+cv84Ac/GM3jE0KIgkxy\nJK6TNixwnNwY6GhCJxRL93pcrI/4Qr6AVsXiwFmc4T2T0+bVYLjivNT6Mi+2vsTf9j3De7GdvNmx\nkf1N25nin1LwWCuuoyVjOCXa+KebFo4z9MiE4zhY1sijFhVlntxo8JEazdywZJWFEGNhyFeRD37w\ng5x//vn88Ic/5P3vfz+f/OQn+ehHPzrs1m9CiCNDf5v35s2oxlNkMly2XmzqjOfFDEz2tcZway6S\nuklbKMWLW1uoqQj3enxKz2xKG2gSlcs0qN75KvGOIB7NxSrcrGI1Z3rmcDVfA+CJZ3/GJWWn9vj8\nFnX7QziKC2fxtCG9Hj3ppsWeljgbtjT3GbnIH2udH7dI6xZdsTSJVHfv4yFu5BNCCNHboCvbXbt2\n8eKLL6LrOkuWLOFrX/saV155Jd/5znd44IEH+MY3vsFpp502mscqhDiEGabNgfY4M6cGC4rkbBSj\n2EqwqiqoLoWG2vKCTDIonLJoKk0dcd7ZG2bR7EkcN6N3nCMS13G5XJT7+r/U2ZqbroUnsWheDeW+\ng1GHJTGdyke/T9hq4/XqLj560lkFjwvHddo27sNRNea4R1aMOt1JiSVza2ioHbjJfX7corkzwZu7\nOrC689zF8t2iN4lnCCH6M6irwh//+EduueUWZs6cic/n43vf+x5XX301t9xyC/feey9PPfUUt99+\nO3PnzuUb3/gG06dPH+3jFkIcYoaTS7ZtB8t28GhqQSbZ51G7B2rouFwKAb+7zw1rxVaoiz6X149a\nWYXmP1gku7U084OreDH0CI/ve4KLQx/kvFkX5O5XtTSmP0Rm81xp9Hcu2XhJT46TGYoUSxqEYunu\nzhdWQSZbU10E/L2zzkNVytzyQIZaxPaVVe6LxDOEEP0Z1FXhrrvu4vOf/zyf/OQnAXjhhRe44YYb\nuOmmm5g0aRLnnHMOp59+Ovfccw8f/OAHeemll0b1oIUQh4f8CMZAwrH81mdWrhVcfnHYUzQxcCZ5\nIKcGzuPF0CNE9QjXPnYVHzn6w/zrCbdSppXlMskAVqSsoKdypodycsTPnxVLGjz16t7c3/PjFvGU\ngWU7bNnVSVNHgpRudt/n4PMcfG3PWTGdgN9NJKHz+jttvO/k2UM+jlLmlgcy1CK2r6yyEEIMx6CK\nZF3XmTlzZu7v06dPx3EcdP3gKoXH4+Gmm24qaBEnhBD9ye+f3FebOMcBRYGNO9oACgrAaNIg3d06\nbW9LDK2PVWNtgExyXxxd59TdNnMmfZF/jf6cNjvEfTt/x/pdT/Nvkz7Fscyibn9mJTkVrSIV9+d6\nKqd0i0ktUZwTZgAjb8uWXUHOdr/Ij1tEEzpNHXFOWjCFaXWBgkhK/gjr7OewbYdIXMeynRKugR96\nUrpJezjZnV2X1nlCiEKDKpI//OEP881vfpOXX34Zr9fLk08+yZlnnsnUqVN7feyUKVOKfAYhhOhf\nX3EMv1dj2TG1uQjCgY44e1piLDm6Fsd2ONAWp6Lcw8oFU4quIo4kZqB4PHTOX8ma+e/nDO06/uXl\nr/Lo3sfZbbVwTfu3+cyxn+U43yWoisaM46bgawxTsaCOqnI34bhO57Y2FE9pVzaDZe682ImWO2dN\ndRW0wstGUqRvct90w6Y9nEI3RtY6TwhxeBpUkfzZz36WpUuXsmHDBnRd5+abb+aiiy4a7WMTQggA\nqgLeXLEXievYjkOge4Odqip4tdErCDNZ5UpqApP5+UX38z/bf8fX13+FmBHlR9vvolr7H06suIip\nyvW4fEG0ygq0gLe7h3Ks5MdzqBjN7HKpNtyV+TRm11cMOsMshDiyDPrKsHr1alavXj2axyKEOMIM\nZhJfXyJxHUUBy3JIG1bRwSE9jTSjrCgKH5p3DSc3nMpnn/okLze/SJfZwpOd9/Lkk/cyt2wZrYGP\ncvXCKxmLH9/r3ecdTegF/aJ7btzrOcI6EtfRDavX5ytl67jRzC6XasOdprrwutVhx3GEEIc3efss\nhBg3fq/G0UdVkkiZuDV7UMWK3d08ecuuTnTDIpY0aOrI9BfWXAqheJqqcm+f+WQYfkY5a2bFLB6+\n9HEe2PoQ//3aL9gWfwEHm3cTb3DLC2+w9uWvc279eRxnncmpofdjmr6in8eMG9ipFFYkgqL33njY\nn3jS4L2mCLaTKRpDMZ1Xt7exY1+4357KPo9KSjfZ3RIjmtCp8B58gyKt44QQ4iApkoUQ4yp/817P\nuESxleaqgJf6mjJUl8KK+ZNxAJzMBjaADVua+8wnQ+laoakulQtmfQClZRlhs502z7P879ZfsE9p\nIWWl+Mu+h/kLD3PfI3dwaflqPlC2mpla4Z6NiKGQCnlItSepbE1C5bGDfv5sT+Qlc2twHIe9rVFW\nHFfHtLpAr4/N3+RXUe7hQHuc3S2xkkzpO5TJxj0hRH+kSBZCTFh9bebzulUsO5NL9rrV3GS9jP4L\nP9Oyc+3iStEiDqBSq+OCBTez2LyEyvpmHm36E39s/BMRI0Kz3cl/Rf/Mf0X/zNJJS7hg+vlccNT5\nHFN5NMQNfFvb8M2qJLy1DcLmwE/WQ7bg77lxD/rvq2xaNuFYGsWych+TH9Mo1ZuJkRhqrnmoWeXs\nayZxCyFEMVIkCyEOWdnoRXNngg1bmgEKYgWmaQ8qflGqvWWOr4xls07jzEXn8KXwt/nh+t+z3XqS\n9QfWYTs2mzo3s6lzM9/d9D2OqTqWNUddQG16CSc4J6HYFpgmZiSK6e2dF85GM3J9mCNxFLPvojq/\nr3LPuEUsaaAbFi+91YzbRS5e0bO/cravcr6xHHk91FzzcPoqSyZZCNEXKZKFEOMqG6nQXAqRuE6Z\nTxt00VIV8HLK4qkE/G6WHpNpCZcfK4jE9QHjF/GUyfNvHijhGWV4VR8rKt/Hl47/GCmlkz/ueIjH\ndv2Fl5texMFhR+gddoTeAeCevZNYaC4maJ9J6NUDVJT1rtqz0YxcH+aEjb9dwTGORikyEju/r7Lj\n9H5dPG4X71s1s9dKMigsmVvDO3tDRVehJbcshDhSDKpIfuutt4b0SRcuXDisgxFCHHmykYpQLN1n\nNjmf161y9LQqGpsjxJIGO/aGOX1ZAxVlHkKxdK538ETqFzy1vJ7PLPtnPrPsn2lNtPJE42M89t5f\n+Me+ZzFsgxankxb176D+nWdjVZxXfS4XHnU+p9efhk/t3vTXHc3I9mGOtsVJbthXtEDOFyzLrAT3\nfl00qoLeTJFsHiyGfR513GMWE1mp2s8JISa+QX2HX3HFFSjKwD+PdBwHRVHYtm3biA9MCCGKyXbE\n2NcWK+mqZjJtEo7rBaunPVup9TScTPPksslcu+B6rl1wPXs72/jp8w/QaD/PPw48je4kCRshHnjv\nDzzw3h8o08r55sm38fHFn0TT0rh80YN9mNMqjjb0Ii2WNHIt4ULR4pnkaKKwZVzWRIkllKoHcypt\n0h5OkUqbMMg3UaVqPyeEmPgG9R3+61//erSPQwghxkV3rJn9rTGef/MAHu1gJ42UbvLegQidkSST\nq8r6zDUPt1gLeipYWXUBnz72ozz56ru82PQMTu0mnu94ls50JwkzztfXf5kFvjkcU7a0VybZZehY\nkQhAv/nkrHjS4JW3W0npFrtbojzz2l6w7dybjGzruI072tnXFiObYc534vzBTVUdzexyqXowuzUX\nQb8bdz95dSHEkWtQRfLKlStH+ziEEEe4kQwWyRrOCmN10MvJi+rZuLOD5cfUUp43fS0S10kbNjj0\nmWuOp0xe2dYy7GPO8jguFnXN4LzyGXy75iJeSb/N/+n8EVEnwc3rPsOvJq0lFQ4WZpI7FFKvZvLU\n2Xxyf/LbxrlccNby6QUryfnnvWFLUy7DDJlV89e2t2IVySkXcyhkl1XVhdejok6QFXIhxMQiPysS\nQkwIxdq9mZZNImX22syXLah1w2JXU4QV8yZTFfAOe4WxOuDF79WoLPf0yuNminZn1HPNjuomUduA\nb8UMauvKuYBziL03lc+/+EX2WC38LPAPTq/6bGEm+fk9+FbMABhUPjkr4Hf3mUnO6plhFoMjmWUh\nDh/D+g5++OGHuf/++2lsbCSd7j0l6vXXXx/xgQkhRF+DRrIF9Z6WKGnDmtCrlUNhq27Uigq0qiAA\nHzr+4zze8jR/3fUov9v1G6bOPp01lZfmMsm224NaUQEwrHxyX+JJo1cmOZtjzuSV+85pj2d/5aH+\nJGE4w0QCfjdrTjiKMl/x11syy0IcPob8Hfzwww9zyy23cNlll7Fx40auuOIKbNtm3bp1VFRU8IEP\nfGA0jlMIIYZsqEVTKJbutXEvbVjgOCXdvNcXt5HCiYQL+iT/27LbeWn/83TpIZ5vf4hPhNf0yiS7\ncHAbqZIcQyxpsH5zU0FfZTjYa9m0HFK6mRt5Xcw5K6aX5FiGmmse6k8SdMOmPZxCNwYXIYHMm4C+\n2gkKIQ4vQy6Sf/GLX3DTTTfxyU9+kgceeIAPf/jDLFy4kFgsxsc//nHKy8tH4ziFEEegkeaUB1s0\nZYeSvP5OW8GqdEo32dsaw7ZtHtnQyOQqf5+F4UhzrS7T4JgDmzFf2U8orwhzAwuV6TxHiHCsicgL\nz/fKJHsck7n7OnH0eSM6BjjYX7m+prwgk3xwtHV9n0ViNrdcrL/ycBwKuWYhxOFryEXy7t27OeGE\nE1BVFVVVicViAAQCAW688Ua+853v8LGPfazkByqEOPIMlFP2aC4qy728tr2VqqB32F0UJlX4OO+k\nmUTCySIryTZp3cTr0frcvKeprhEXhrbmZkfDEpafOIuqukDh8T33IOx5k7TXouLkU3tlkl04vKvv\n5gRP6VY4vW5Xr0yy5JQnBsk9CzE2hvzdFQgE0PXMjx2nTJnCzp07WbVqFQCWZdHV1VXaIxRCiDz5\nOWWfV6M66CFt2CNebayp9OOy7V6b2LxuFRwHr7v/oSShWO/9GUNluH0oFZW5THJWVaAOgJgdxlUR\nQAv6e2WSDbdvxM8/VLGkUaSv9MEs80TNLmcpLgWvW0Up1VxyBs4sl4LknoUYG0P+7lq0aBHbt2/n\ntNNOY82aNfz4xz/GcRw0TePuu+9m6dKlo3GcQggxLhQFXC4XutF3wQe9B4+UMqtc458EQJu+l8v+\nfBb/uvwWZqnHF2SSfel4QZ7ZjBu5vsoKDq50smTHA5kC+alX9xbcls0tg4LmUogl9QGzy8MplEvV\ng9mtKgTL3LjV0hXJklkW4vAx5CL5U5/6FAcOZPpyfu5zn2P//v3ceeedWJbF4sWLueOOO0p+kEII\nMR4cJ7OS7DjQ2Bxhw5bmguEapmkTiqepKvdi2nZ3gejg8xy8tJZiSt1V867hj+/8L43R99gW3spV\n6z7MKm0xy2JX5TLJsw90YL7SlMszRwyFVMhDJPwOHsdkUksUZ97UER9LVnYFeflxk3Ojrw/mlqf2\nWyiONLtcqqzycDbuCSGOHEMukpctW8ayZcsAqKio4Kc//Sm6rqPrOoFAYIBHCyHEyHjdKsccVYVu\nWJT5NI6eVkVjc2bqXKmnvFUHvZyxbBrRRPHiLzN0o5mVC7JT6JSCjylVpGBO5Vwe/cBzfOfJ7/N4\n6Od06p28ZL7Jy763aPJfxqfm/jO7UvUsO3HOwTxz3MC3tY2KBXUoOHRua2PGIPsoD0WwzC255XEm\nGWUhRseQlzj+8Ic/EOkeg5rl8XikQBZCjAm/V2NaXTkbtjRjWg5HH1WZW60djW4I1UEvFeWeguIv\n+ytzeyarnP2zk/fUpmUTiqX7/JWNaMSSA0cz3C43Z0z5CE9d/ipfWP4lvKoPB5s/H3iIyzdcwNPO\n/2AG/GhVVZlflRW4fD60ygrUykpsr79kr0mpxZJGv69PJK73eftgXru+DCeTnEybvL27i2R64DHg\noyWbe86+ActmlNOGNcAjhRBDMeS3nLfddhu33347p556KpdccglnnXUWfv/EvfgKIcRYyBbHG3e0\nFb0/P5qRzeimdDMX0YBM/nkgAU+Qr626lXMmX8VXn/wGW6y/kbZSvGT9hi+v38uvz74bn+rrlUnW\nElGsiBc7lcrkmEucUR6uYtnmLNO0i+aa8183n0fLZZuH+pOEoN/N7PoKgkNY7Z8Im+Yk9yzE2Bjy\nd/jzzz/PE088waOPPsqXvvQlvF4va9as4eKLL2b16tVoJZz6JIQQxeT3T+5v9axU8YvBDCXJRjP6\nKnTzoxmFvYczEY1E2qRp/XuDPqbJWi03t63BP/Nk/m/i97xhvcNz7c9yzZ8u44eTPo9p+QoyydXN\nEVKdlaTiflLtSao7o9hr5qGO8zW7WLZ5INnXbcncGt7ZG8p9DumrLIQopSFfHSsrK7nyyiu58sor\naW9v59FHH+Xxxx/n05/+NJWVlZx33nncfvvto3GsQggBHOyfbFo20YTOMUdVFi2YS1U0DXYoSXWw\n/xxuNppRmOFVh7UqqHg8vHvUUj540kx+Yl/G9c98hnfsF3gh/RafNe/hhyfejW9HKpdJ7trSRMOc\nWnyNYXyzKunaG8bl9YI1MX5E3zPbPBCfRx33FnJCiMPbiLZd19bWct1113H//fdzzz334PV6+cMf\n/lCqYxNCiH7FkgYbtjQzrS5wSG9YCsd0ogkd08oU9YPJ58aSRq6vsqeqjgsCt3Pe9EsBeKntZT7x\n8g0k7S4Uir9BUCwTI9SFEQph5v8KR3DSKVzp0oy5Hq6+csr5r0U0cbAvc/7t8dT45YUnQmZ5qA7F\nYxZiLIzof5Xm5mYeffRRHn30UbZt25ZbZRZCCDGw/BxzuLsAfPXtVnbsCwP9t5hL6ZmCRlVdWJaN\nqmjcfuJdTCoP8Pu372Nz++vc0nY57zVfyIf851Ddki6MW3RECOmNYBcOYokYCkaHm5p0B85Js4Gx\n71LRX04ZDmaVN+5oZ19bDFDwedSCrPJFp8wecKU5kTI50JEgkTJL1o1jPDLLIx1gMhFy1kJMREP+\nbujs7OTxxx/n0Ucf5Y033sDv93P22Wfz+c9/nlNPPVUyyUKIw0p/uebBZJX7k59j3t8WY29bnBXz\nJjOtu41bfy3mInEdl8tFuU/LDTBRFZX/d9aPCLgD/OzN/yKuJPlh/CH+x3qO86d+lE8tORvfnngm\nbtHYQdXqOSiWjZU/ZTBu4N7UTIjpKCUccz0Ug80pZ16fpoLXJNvzeDA9mMt8Gg01ZaM6HW8syEY+\nIUbHkK8Mp512GqqqcsYZZ/D973+fs846C69X+mEKIcae5lKYPjmA1l2k5m/oK5X+cs2DzSr3J5tj\njsR1NDVTdPeVWe6ZafYUmWTnUlx8+7TvsWbaRXzzH99kZ2IjrakWfp36d5596SEumPQZlgevxirT\ncVdVo1gWSl6RrGlpFG8Iu4+YxlgaTE65Z19mj1uFCXDsh5KxGKUtxKFoyN8Ra9eu5dxzz5W+yEKI\ncWfaDntbY8ydVgkc3NB3KMvma7N/zmZugYKx1wP1Cl4+eRVfnvNzmLyV77/+bbaHtrIn9h7/Hfsy\n60O/5qLgjRihul4ryWbcwEmn0GwTKxzGNDMFuhXXJ0TbuFjSyK0S93x9InE9s3nTcYqOENdUF6pn\nZJv9RvrTg1Io9fAQWYkWorghf3dddtllo3EcQghxWBuouMrmk7fs6mDn/kwmOaVbNDZHMS2HSDxN\nKJaZ/JfNJOf3WIZMPjmfoiicedT7OL3hbL737D38teOnNCX3szXyJlsjn6PpwUf4cuWH0JyDK+/Z\nTHJtqp1k8l2c7jHcKd3KjLY+YQbjkVOG3lnl7OuTzSSbpk28e8NfzxHikPk38Ps9rF40Bb9HI5Y0\n2NUUYcW8yYPOJJfipwcjNdoZYpngJ0TGoL76165dyw033EBDQwNr164d8ONvueWWER+YEEIMZKB4\nxWjEL4ZroOKqMuBh1tSKgrHWmdVQh8Vzanj17TbK/R5OWVSfy99mM8pALp9cjOpSObn6Im5c8WHu\nev6H/DX0S0JGF7+JPsk2Xwf/depPaCirz3xwNpNsN+A/fhqV3ccSjut0bmsbt5wy9M4qZ1+fnq9Z\nfk45XyJt8tbuEJaVeWNh2w5pw5K+yj3IRj4hMgb11b9u3To++MEP0tDQwLp16/r9WEVRpEgWQowJ\nv1fj6KMqSaRM3JqdG0+df38p4hdpw+K5zU2cvqxhRENJBlK8j7JGsMyD1+MClIL78/PKxfLJPXlU\nL2umXscnVt3A5569ka2xF3m17TXOf+L9/Ne5P+f0o87MZZItHNTKSrTu51K1NLY3VvqTHob8rHLP\nTHJftwG9vj6EEKI/gy6Si/1ZCCHGWyxp8OzG/Zx5/LSStfHqyXEcYknjsFlxrPJO4v/M+Qk7/A/y\n7y99h/ZkO1f+5VK+tvKbXHvsTah6EsXqnUnWEtHcbfljr03TnfuYiZBbzpefYY6nTJJpk3Bczw2i\nye9NXYymuoY0tGQiZJaFEKUx5J+jNDY2MmvWrFE4FCGEEOHYwQ1n0aSBprqIpQzSugWKUnTjntLX\nLOx+uBSVr57yTVZMWc6nnvg4oXSIb790Gw9t/wNnty/jVHsZyeR7BZnk6uYIyUgFjkclYii5sde4\nndzHjHduOV/PDLNu2uxri5NKGXg0F7GEgW5YbHynPdebuphzVkwfdKE8HpnlUmeI++p2IVllcaQZ\n8lf5+eefz8KFC7n44ou54IILmDJlysAPEkKIQ5TXrXL0tCoamyOj+jz5g0V62ryzg90tUdKGjaoo\nBMrcBRv3fJ7MpXw4cYJzZ53HU/+0no8/8VE2tW3k7dBW3ta2cp/6BDfUXs8nFlxHtbeKcFyna0sT\n8xbVZ3LKcQPf1jYqFtRRVZ4pICdCbjlfzwxzPGXy2o52lh9TS7lPo6kjzoGOOMvn1VFfU97r8dGE\nwWvbWwfVc3k8lTpD3Fe3C8kqiyPNkL/Kf/KTn/DYY49x11138b3vfY/ly5dz8cUXc95551FZWTka\nxyiEEH3K35xnWjaJlEmZTytZ/jSbe85MdivU36CRocofLNLreeI6kXiapo4Exx9by7S6QMHGvYpy\nz5BjAflmVMzkkcuf5P63f8tPNv6QXZF3CVsd/L9t/5f/3vFTPjTvGq4++hOYZcFcTlnT0rh8UbTK\nigmZW86XzTBrqgu/V6Oy3EPAn9n4ZzsO5b6B+zEfzmSFWIjihvzdsGbNGtasWUM6nebpp5/mscce\nY+3atdx+++2sXr2aiy66iIsuumg0jlUIIXrJ35wXiqVHPZ+cr79BI8ORHSxSjNetoqqu3IpzT6Zl\nF+RqhxrH8Kperlt4AxfPuJrvr/sd6zrvY2fyNRJmgp9v+Rm/2HIPSyvOJNDwRc4uPx0AVzrZb265\nL2OdXY5395EeaiY5M8HPGrPjHKxS554Hu0J8OA4dkTcIoj/D/orwer1ceOGFXHjhhcRiMZ544gl+\n8IMf8Pe//12KZCGEKCGXS6HM50YBtuzqZOf+cEHcQnO5CMXTVJV70bq7XBSLY/Tso1z0uRQXiwKn\nsyhwGtOPDnHfO3fz8Lv/i2mbvBF5hg8/8QxL647nqtnXMnubRbKrps/ccl/ys8ujHc3QDYv1m5vw\nedQhZ5IzfZgjxJNG7k1XKX96MFzj1av5cBw6IhES0Z8Rf0W8+eabPPbYYzz22GO0trYv8nRfAAAg\nAElEQVQye/bsUhyXEEIMWc++yKMRvxiukRRXFWUezj1xOqZl5+IVPfskb9jSzMoFU3r0WC6MYww1\nW7uwZik/Pfcevnnybfz4tZ9w37ZfkLRjbGrbyKa2jZS5g1xVcSWfWHAds4OzeueW+zCW2WXbcQCF\n5cdNxuVSCjLJkbiOprmK9lQGONAep7E5gpX3k4JS//RACDFxDatI3rlzJ4888giPP/44u3fvpqGh\nIRezmD9/fqmPUQghBqVnX+RStYcrxVCSUhRXfq/WZ5/k4j2WC2/rq83ZQBoC0/jy8ltZ7FxNW+Dv\n/M+OX/JO13YSdpRfvHsvv3j3XtbMOIcr514P/vkF/ZWLGY/scrDM3SuTDMVft6xio62FEEeOIRfJ\nF198MTt37qS6uprzzz+f73znOyxfvnw0jk0IISaEUg0lOdT51DKunfcJ/nn5TTzx7jr+88Ufsyn6\nDJZjsW7PU6zb8xQ17gY+5vk4Nyz9GLX+2kF93p7Z5mI9mIvdPhH7MotDS8Dv5pRFU9nfFsPrViVy\nIQoM+ath0aJF/Mu//Asnn3wyqjr+o16FEOJIFo7pKEomg5y/8pm/ca/nbbHujWzDpSgKJ01dzadn\nzmbesQoP7/4dv9n6S1oTLXQYB/iP1+/grjf+jVOmrWZV/cmsnHoSJ0xZQbm7d5s1R9eZtO1lkl3B\nXI65WA/mYrcPti+zbmZeB1V1FWzcK/Ya5YsmdKwhRlTGI7Nc6o18R9JmNk114XGr7NgXZlpd4LA/\nXzE0Q/pqSKfTdHV14fV6pUAWQkx4pYhJjGeuOb/g6lkI5fdVzmwwiwIKPo+Kadq0hhKEYjr5G/fy\nN/OV+TLxA8saWfeGqeUN/MvKb/CF5V/mwW1/5Mev/Rc74q+h2zrP7l3Hs3szU1pVRWVx7RJW1p/E\nwqrlpI0ZwDQUj4fO+SuZP7/uYI65SA/mYrcPJtusmxZ7WuJs2NKMy6UUbNwzTZtYUuflrS25DY/5\nwnGdrphOImUO+vUYj8xyqTfyyWY2ITKG9NXv9Xp55ZVXuP7660fpcIQQonRKEZPoL9dciiK8P/kF\nV1XAW1AI5fdVzqyEOgWb+p55fT/lfg+nLKovupmvrtpPRbmHLn1kq8pZHtXDhbMupazrROpnhfnr\n3v/lpaYX2NS2EcM2sByLN9o28kbbxtxj7to3kxMmrySYOo6p9vtYUbkEl+Iq2oMZ6HX7YLLNTvdC\n8JK5NVQGvAUb9wbyzt4Qb77XgWVP7GEiIyWjtEvnSFqFPxIM+V/w1FNP5fnnn+ekk04ajeMRQohD\nxnhnlfP7Kvs8hZv6vB4XoPS5mS84ilGA46oXsGr68QAkzSSbWjfyUtMLvNz8Iq80v0QoHQJgX2w3\n+2K7AfjtgbVUeqs4ccpKFtesQOuaxomdZxAwK3Kft1gmuWdf5r5yygG/m8pyT6+Ne8XEkgamZeM4\nDrbtEEsauU2PA0U04kNYdZ4oBrsSfbgWgKXs/yyr8IeXIf8LXnHFFXzrW98iHo9zxhlnUFNT06tR\n/cKFC0t2gEIIIfrX30pgOFY8p6ypLhxV/f/Zu/P4psp8f+Cfkz1pm+4L+w4tZSkgoLghOo46ishc\nxRFRGHWccYHfdRT1Xu84jjPqODN6x21m3ECuO6OgjoIKgqIwsoOUrey00DVNsy8nOb8/QkKSJm3S\nJmnaft6vFy/tyUnynLSFb558nu+DFrMzpDWcfwMNlTJBOxYqtDi37zSc23caAMArebGt5ge8s+1z\nmNUHsb1+M05ajvnG6jRizYkvsObEFwCAZ6vlGKMagnuyrsM0zZiImeTwvsyd7cFssbuxZutJAECD\n0Q6Hy4Pdh5twuskGAO1GNBwuETJZcmM5XdWruacWgD2x/zMlRtw/5XfeeScA4O2338bbb78dUiBL\nkgRBELBv377EjZCIqAslKlLRmcex2N3YdqAhalEUaSZQkgBB8GWW/fyZZFH0wil60KcwC6JbDMnP\nOlwiTjVZMbgkKykZbJkgw4icUlyUl4XpE/oBAFZu3glN8QlUNm/D5tp/Y3fDLngkD0R4sNN1CL8w\n/AUPjV+MuQNvh2ZfY0gmObwvc2d7MPvfMEwaVYRTjRbsO96MccPyMWpg+58YmG1ufPfDqaTnkdmr\nmSg14i6Sly1bloxxEBGlJa1ageH9s2FziFAqvB0uHDsTzehIUaRVK1AxoiAkauHPJI8dmofKY824\nsKIfBI+n1UwyIODC8X3bjCQkUo6yENMHVeDG8usBAKeaDVj27y8h6g/h//a/jGZnM57Y+RS2N1fi\nqoyHQzLJos4S0pc5UT2Ys3RKZGqVkMkEZGqVKdnmnIjSS9xF8pQpU5IxDiKitJWoTUlSLSdT3Wq8\nGpX8TGeMtgtuj8cbsvmI2ZaYBX6x0CkzUJo5GdPHz8K8sXMxf9VcVDb9gNXHP8FuVSVG9nkZ44pH\nRs0k+49JEOB1OSGJIkSTGR7JAZmj832V/ZnlcCarC06XBxCEqJllhVyWsjcf1L5E56wTmW+mrsfv\nIhFRL+FvG7fnqAHH68xYt+0k4PUGZqijtY4Lluo2eIP0g/Hp7C9x3/p78GHVP3HKdQTXfzUTf8i9\nHRfIKyJmkv3HXIICrkYVPA4FzNu2QKMUkdVog7e8BOhgoRqcWQ7ncHlQ02hFTqY6amYZAC47Z0Ba\nF8q9qdtFonPWic4399TFkt1F3K94aWlpq4V64ZhJJqKeJNmt3tp7XlWUYiuaaEWOv22c2eaCTAZc\nMmlASNwiWus4v66aBdUpdfjbZa9hVPZ4/HHrb2GWbFhoeA5X9L0KPx56J0orykMyyf6csgYCVFtr\nIG9yIGvSGGRkKWE+0gKZquOfBgRnlrN0oa/F2VZ8rV87wDcbv+1AfcRZ6M5I9EK+RPddpo7rqYsl\nu4u4X/GHHnqoVZHc0tKCjRs3or6+HrfcckvCBkdElA6i5YmTvdGI/3mNFiecbg++3X0aF1X0bbcQ\naqvIyc1SQxB8LeNystS+Ilk8W7T5W8dJEdIYYlAEI1IrtGRGMgRBwILRv4SzqRhv1T2KOttprD71\nGb6Rfwtnv99jQd9bIQhCSE4ZAGSqRggKEQp9FuR6DbyayDGIeGXpIueUw1vxpQIX8hElR9xFcrSN\nRBYuXIjFixejpaWls2MiIuoWUplVliRfv95kF0KRumIEE0UvjFYnNEoFqhstiBTLSGYkozRzCj6b\n+i2e/+EJLK18DTaPCQ9tXIhPT3yIv1z8V+TI+4acL7icQFAmWW41wdOiguiMPCMe3IvZY7ZB6KKN\nRKLlnoHWb1DCv453xj/WmeieGsMQRS8OVbegfEgeZ2spREJ/GmbOnInFixdj0aJFiXxYIiJKkUhd\nMYKZrC5s3FOLsUPzoFDIArv8+aUikpGl0uPpi5/Fj/pfi/vWL0Sd8xg2VK/Hxe+di1+O/U/0dc8A\n0A+Sy4Xso3vgQWEgk5zZYIW1PgPuKBGW4F7MTrsXCpsGkjt1ixaBtnPPQOtezcHbjfvfsMSTe451\nJrqnxjBErxeHalowvH922hXJiV4IyIxzfBL6Ch07dgzeHr59JxGRXzxZ5c5EM9RKOYb3y8GxWlPE\n2+PNpMpkvp345DIBXk/r2yN1xQimUcmRpVMFdu/rqo4fk4vPw2+Gv4c9snfxSuXzsIt2PLvjCQh4\nCh8Yz8dPBl8H78ARkBvVyJo0FhlZSliqGpExogAZmigFpNUNzd4G6EcXwtJkg9hyAoIytTnstnLP\nkQRvNy4IQlJyz9Q1Er0QkBnn+MT9Ci1ZsqTVMbfbjcOHD2P16tW4+uqrEzIwIqJ0F0/v485EM/y9\nmqsbIvf/jTeTqtepcNk5A5CdqUZzc/fbRjmYUqbGf074L9xQdj0e2vBrfH96EyR48e/aDfh37QbI\nIMdA2STknpqNa4deEddjyyBBJnVdsRkt9xyJ/w0LESVO3EXyH//4x1bHVCoVSkpKcMstt+Cuu+5K\nyMCIiCj9BW97HatkLPArLxiDT677HNtrKvHSpmXY41yDIy1V8MKDY97NeKxyM56sfATnoBzXnTgf\nM3QV0MpaF6DBcQvR7kauWYLkHpXw8VJ68G0Wo4LVkZifScYZepa4v4P79+9PxjiIiKiLxbMwy3um\n/UV7C/xyMtRR+wUr5LKExwKGZg/H1cV34k8Vj+GAcS/+95sl2Gr6HCapFi6I2Ihd2NiyCxnWDPy4\n/+WYO+xnOK/43LMPEBS3sDVZ0Ww8nvK4RTRtbWISvHDP4RJDFvFJcjksNhe0Efpe93Z6nQoXjOuD\n9TtqEvJ46R5nSNVmJz3lzUL3HTkRUTfSkV7LwTnmVIhnYVZOpq/ncrS2+f4FflNGF0eMAfgX+AXv\n6pdIgiCgNLccV+bdhXLxFkyaYsc39Z9ixcEP0Oyuh1W04sNjK/DhsRX49sYtGJnnmy1WKJyQacxQ\nZOshuGTwyNPjn8m2FvMFL+QTvdKZRXwCNCo5ZDIBWq0KdrsLMyb2j2kxX6L7LlP6SHTGOZp0f7MQ\nq5hGbjAYUF9fj9LS0pDj+/fvx0svvYTDhw+joKAAt956K2bMmJGUgRIRdWfx5Jf9gnPM8RTZqSpy\ncrPazsvGs7AvOLYRqQdzpOOxxjYEQcCYvAm4aPB5uCTzHijzjuDjo+/j7f3/BwA42HwgUCSnq1gX\n853d0MTXdUQhlwEKOVZ/dwQGkyOmmWiT1YUGox1GszOQc+d22tQbxVQkP/PMM6isrMSKFSsCx2pq\najB37lw4HA6MGjUKVVVVuOeee/DGG29g8uTJSRswEVFvFE+RnczNJRLdK9e/aUlwbMPf0kwUvXC4\nxUBkI1KrM6D9vsxKtwOSqQUeyQGlzYJJ/UbjnHGPBIrkesNxiPlGAKF9kmG2QCUmZ6a7o2JZzBe8\noYlCIYPZ6cHhUyaIHgkaVes3WbG0lAPSfzvtjuqp/Z+7UqpiHckW0+i3b9+O//iP/wg5tnTpUths\nNrzyyiu44IIL4HA4sGDBArzyyisdLpLfeustvPbaa2hsbERpaSkeeeQRjBs3rt37ffrpp/j1r3+N\nyy67DC+88EKHnpuIKN101XbYbUl0r1z/VtnBsQ1/S7OxQ/PwwxFDILIR3OrM/5FxezOcMtGNEad2\nQ9xSA6taEeiTrFLIoBXUsEtO1OzfBuMp3zUFL9yTWW0Y09AEuMsSdr1dQfT43omMG5aPvgUZ7Z4f\n/jr7t9M2Wpz4fm9dj4thpHP/5+6a7W0v1tFdriumkdXV1WHEiBEhx9atW4eysjJccMEFAACNRoOb\nb74ZTz/9dIcG8tlnn+Gpp57C448/jrFjx+KNN97A7bffjtWrVyMvLy/q/WpqavD0009z9pqIehz/\n7LHo8cJkdUXtsZyOxXQ8IsU2ovVijrc3s1ehRFXfcZg0eTAystQhfZILPirCSetJWPvokXPOJb47\nBC3cq2uyYE/LUYxX9oyCMFMbf0u54PO5/XXq9ZRsb7jucl0xdbQXBAFC0Nv8xsZGVFdXtypMi4uL\n0dzc3KGBLF26FHPmzMGsWbMwbNgwPPbYY9BoNPjggw+i3sfr9eKBBx7AwoUL0b9/er4LJCLqLIvd\nja+2V8Nij5zB9RfTsf5jY7K5sGbrSbQkadFcoviysr5ODUaLMyQ7a7Q4I/6JlFN2KzUQ9NmQZ+fA\nk6GHPDsHipwcZKqzAABOuReKHN8xRbYeCkGCAF8hKJc8gNkE0Wj0/WkxBeIYgWNn/nhaWiBz2lP6\nGhFR8sT0N+qQIUOwcePGwKzxunXrIAgCzj///JDzGhoa2pz1jcbtdqOyshJ33nln4JggCJg2bRp2\n7twZ9X4vvPAC8vPz8dOf/hRbt26N+3mJiHojr1eCyeqCxyshHVOY/pzynqOGkE4N0bLKkcTWXk44\n83xnZ0Yllwt5+zbD3pwFmc2F0Q2NkO1ogPGoFkBoHAPK0BlVh8uDvDozpIkDAXTNLoTUtZhv7lli\nKpLnzZuHBx98ECaTCQUFBXjnnXcwcOBATJs2LeS8b7/9FiNHjox7EM3NzfB4PCgoKAg5np+fj6NH\nj0a8z7Zt2/Dhhx/io48+ivv5iIgouTpTLPhzymZbaKeGaFnlcLG2l5MJvgLbi7PFtKBSwVA2BWVl\nhWhpsmKv8RDGTRiOnIFnFk0GxTFyMkKz0C1WFwz7GiCoukc8I9a+y/4ZfbPt7PGe0u0i0Z1g0jnf\nDKRPFri7LOyLaXQzZ85EXV0d3nzzTZhMJpSXl+PRRx+FQnH27k1NTVi3bh3uvffehA1OkqSQmIef\n1WrF4sWL8fjjjyM7O7tTzyGTCR36S1x+Jhcob2dVdU/Ca+4deM3pJ0OrRPmQPGRolVFnToMp5DLI\nZAIUclnE8/23A6HXbLK6sHlfHaaURS4+45Gn1+DHUwd2+P6FuVooFTLoNErk6TXIyVJDIZdBp1Eg\nJ0sDnUYROB6NQi6DIBMgCL7rlJ25VtmZ10V25t+XdSfW4M9bn8SsEbNRohoKaHVQ5+VC7lHCodRB\nnpMDTYHvU1KN2gmFzgJNXg40Yc/tUDsBrbXd1z3a7W2d19H7+r+//tfAf1+zzYWvtldHfAy36IXV\n4caW/fVQKmRwuDw4XmeBS5RwuskKmczXQeNHkwcgKw0X8MXz+ywTBFgdbsgEIabfrVSL5fsez/V6\n7BIOVhvRvyizS69XoZBB00aRbneKOHbahMF99F1azMf8zHfccQfuuOOOqLfn5+dj48aNHRpEbm4u\n5HI5GhsbQ44bDAbk5+e3Ov/kyZM4deoUfvWrXwU+JvN6fe+Gx4wZg1WrVmHAgAExPXdeXkbEQjxW\ner22w/ftrnjNvQOvOX3kAigqzILF5kamTtluyzO1VoUpY/qiuCgLOk3r2T5JLoda7TsefM2SXA63\nF8jSa5Gr1yT0GjpCksuh1aqQnaNDrl4T+NorkwEy305ykjz6YkVJLvdVhxAgyWTwnvm7PitLg1y9\nBmP7jMEPjbtRZ6vD05ufxNObn0RZfjnKtTMwVroDmZnFkMlkyMzUIDc3I+KY2hpve9cT63V39r6N\nZhcUcjn0em2r6zhvbB9kt7OYz2h2Yt22k5g4qgjbD9RjUmkR9h41IDMrPX5Ooonl9znW17WrxDO+\nnnC9fpLJgWP1VpQOK+zScabFPLdSqUR5eTk2bdqESy+9FIBvFnnTpk2YN29eq/OHDh2KTz75JOTY\ns88+C5vNhkceeQR9+vSJ+bkNBmuHZ5L1ei1MJjs8Cd5WNV3xmnnNPVV3uGaj2YmvtldjxsT+bc6e\n+vXP18Jpd8Fpd7W6rcXshNPpW+AWfM0tZifsdhdajDYIHk9iL6ADzFYXlDLAbLJD8HjQbHLAbndh\n064aHD1tgsPhDun76xa9MFqcyMlUn5kBFXH0VAtMVhe+2nIceXoN1Gol7DYnmj0e/PnC5zC58Dys\nrPoQG6q/hlfyYl9TJfahEv9c+jyG60cjyzsZ++s0GFzkKy5bzE44jS0wHD8FMay4NFmccDU1wXBc\n1eo2/+1OY0u7r2+k70Os35vw8/yzi6LHA5PJjmadIuQ8iJ6QxzPbXPB4QrPWJqsLDocLFosDDocb\nZrMDzS02nKgxosV4diZZLhfSYmY5nt/ndPuZDxfL+NLxejs7E5yKcfrfMLYlLYpkAJg/fz4eeugh\njBkzJtACzuFwYPbs2QCAxYsXo6SkBPfddx9UKhWGDx8ecn+9Xg9BEDBs2LC4ntfrlTrVzsbj8UIU\n0/Mf1WThNfcOvOb0IpcJGNk/B3KZ0Okxih5v4O+94Gv2HxfbeB1SuWWxTq3A9Ip+vrGJXuh1Klw4\nru+ZNmRenBuWSfZvhT25tCiQYTaaXYAETBpZiEEleuTnZ8LjckMUvVBAhbmlt2Ju6a1osDXgs6Of\n4IMD/8T3tRshwYtDpr0A9uKmdW9g3J4KzBx2HaYXXI6cys0wN2XBHbYxh8PlQU6tCWajvtVtgdvr\nzHBXDIDYRp430vchlu9NW+dJUvvf62hbXztcHhyrNcHl9sLhErF1fz2qGyzwetFqc5J02nAklt9n\n0eOF3Sli/Y4aXFTRN+36P3slCRkaJbyS1O61xHq9sfwcdZbV7kblUQMKc7RQdiDGplHJMb2iHzQq\neWCcXZGnTpsi+aqrrkJzczOee+45NDY2oqysDK+++mqgW0ZtbS3kbXysRkTUk7W1457o8cLmEKP2\nUU6kru6Vm5ulhiCE7ioXLLy/r1rpy+Vm6VTIyVJDn6FCs6t1m7hCXSFuLf85rh00Fx9t3gWLfhtW\nHvoQuwybAUjY3bATuxt24vd4FKOzpuCR0vsxfcC5IY/RYnWhec9plI7pg+wIme50X9gXbevrs1td\n9wm8+di453TIpi7+DUfa7yiSfiRJgsXuTsv+z+m+EDBZIm1G0hW9ldOmSAaAuXPnYu7cuRFvW7Zs\nWZv3ffLJJ5MxJCKitOcWvTjVaMWgkqyYimS1Uo6yQbnQqORw2tPvI+aulq0swLWlP8f0/Bvw4qrv\n0KesCpuNX+D705sAAHttm3HThhtwyYBLsXjKf2FSsW/PALnCCVFngTw7G4oIcQu5wgmv2pLSa+mI\nSFtfh78pifYmhagnSasimYiI4tfWLHO088sG50GnUUbMLKe7eNvLeTxemG0uGM1OSHI5WszOqDOe\nwe3PrA4ROuRj9uDz8T9Dfo1Tlhq8vmspXv3hJdi8Zqw7uRbrTq7FpQN/hAcmP4yhGWMTd41OOzwt\nLRBF32yaaHWf3cREjB5n8Fhd3NAkTLRWd4Dv++10eQEBgZZ34XpKu7vurivaxrFIJiKibiXWj6D9\ne4SY7W5s3V+Pw6dM0GpVsNt9cRFR9MJodYZsSuLfsASQ4HT5Ztn9i9/6ZvbDPePvx1D3T3BY+S8s\n3fd3mF0mrD3xJdae+BLT+/0I0zTzAfTr1PUFb2gincn8trWJSTBuaBIqWs7aTxS9sDpcMFp8ERKN\nKnJZFGvWOpWZ/Y5Il81OOpIvjhTBSDYWyUREBMAXwygdmAu1svPrP9KhWMjNUmPSqCKcbLDinNIi\nDCrRIztHhxajDaLHG1joF7wpiX/DkmljSmC2uVDdaIUu7B9xnVyPe8c/gHsn3Y2/734RL+/6Gyxu\nM9bXfIn1+BIfNY9DeWE5RuWVYVTuKIzMLcVA/aCYxx28oUkg29zGJibB0j33nGrRctbB/D8HwRlr\nv3iz1l2d2W9PumScO5svTtUiPhbJREQ9TEcX8sUb22hLuhQL+gwVFGdak+VkqZGr10DweAIr5sMX\n+gUfA3xdRaLJ0eTioSmP4M5xd+Hvu17Ay7v+BqtoRaVhNyoNu0PO1Sq0GKofgUzvAOxXVGB8yRiM\nyivFoKzBkMtavynxqrUh2WaFwgmZxgxFtj5i3tmvu+SeUy1SzjpYpJ8DSl+pWsTHIpmIqIex2N1Y\nv6MG0yf061X/6Lf1UbKvHVxoJtm/3XJwFjU4k2yxt+6CEUmuJg8PT/0Nbhx2B576+kXY1Edw1FyF\nIy2HIXpFAIBdtJ8pnHfj+x2fBu6rlqsxPGckRuWNwqjcMozMK0Uf9VB4pNaznuE55Ug8VhcUNnPg\nPEkhg9shQhBju5aeLNZtuFvfJsJqd/eq36XOSpdYR2exSCYiopglMpLRnngjG5E+SvbnkvccbcKR\n06GZZIvdjYMnjRA9UiBvGpxJ9ot1u/JcTR6uLPp54M2Jy+PCkZbDOGjYjwPN+7Gnfi921e5Bg/sE\n3F5f0er0OFHZ9AMqm34IeSyFoMSw6hEoKyjFyNxS9FMNgrDvGEyGIZDU0Ys1h8uD3FoT7CY9JJUc\nMpkAk0cObaMIyT086v16Oqvdt812JKLohcXuwua9da22avb1iDYDOI2rpw3mAr4YdTbW0RU9kSNh\nkUxE1MMks5BNZCSjPYmIbGRnqjC4RI9pY0qQp9eEZJJrGiw4VmvChBEF6FeYCSA0kwwAMpkMGR1c\nTa+Sq1CaV4bSvDIAgNHixPodNTh/fBGMnlM4YNiPA837zhTRB3Co+SBcXt9spii5ccC4FweMe88+\noBxQNCkwVD8EMwdeg0Xl97aKaoT3apYrZIBDhN1UBUHZe3PKnjM/Q21lkyMxWV1wun0LOLuiB3Q6\nZPu7QntxilR1umCRTETUw7RXyIoeL2xOEVl6bQpH1XUCedOwTLLJ6oLCv9FIlEyySpH4zVmUMiVG\n6EdiRO5IXI2ZgeOiV8Rx01FsP7UHX+7bAq+uFkfMB3Go+SAcHofvHEnEwZYq/PmHZ7DfehgvXfYK\nNApN4DHCezUrFDIobSIUkgeSqQWi+kzBF6GlXLQ2cz2prVx72eRI1MrkbtDTlnTJ9qebVHW6YJFM\nRNTLWOxufLPrFK6boUX3TgzGrsXiK4iDM8lmmyvwX6PFCSA0nyoIqX11FDIFhuWMQL5iIJRN4wOx\nDY/Xg8q6KqzYvgna/Easrf4UO+q3419HPoLhX01448q3ka3Oifq4ksuJYdW7IG45CaO/i0eElnLR\n2syxrVyo9vouR8s3+7Hvcsf06m2piYiIYhHPR9D+TPKOqgbIZEJIJtlgdsDQ4sD3++qQV90CIDST\n7O+Zm+ytvtsjl8kxMGsIxutVmD6mH+495x788svbsOrov7Dx1LeYueJKvHv1B+iT2Tfi/QWVGof7\nj0fF5IHIORMridhSLkqbObaVOyuWvsvR8s3BYu273FN1ZGFfr9+WmoiIki/attQdbR0X7TmSlYuO\n5yPo3Cw1Lq7oB0HwFbvhmeRTjVZMLSuOmEn2tY9Lv1k/rUKL13/8f3jwm19j2d7Xsc9QiZ98+CPc\nd85iVORNA9D6NXcrNRD02VDkZAGI3FIuWps5tpU7K5a+y22Jt+9yoqVLxjld+jW3h0UyEVEvE21b\n6kS2jkvlAr/25Gb5i0BZzJlk/wy06PEGohhA2x+nm22pa7Mml8nxp4ufRUlGCZ7e8gSqLSdx3/p7\nAQCFqgG41DkDlw2egemDpkNAdsrG1Vt0JNucDphxjg+LZCIiojOC4xmRWGxuHFIqeIwAACAASURB\nVKw2QhS9yIwyk5iqeIYgCLh/8kMYkDUQf9n6RxwzHQUANLhO4t2Db+Ddg29AgIDR+eOgs4/GkLpr\nUJA3AzqlDkDrvsttLdwL7r3ckxbyEbWFRTIREcUskZGM9sQb2Yj3o2RBJkCtlEMIykUGxzMiqWmw\n4FidGRNGnm0bF6wr4hlzSm/CnNKbcNx0DJ8fXoOP9n6Bw86tMDgaIUFCZdMuALuw5dt3cN9GFab0\nOReT885D8T4XzIbRkNTRF/MBrXsvcyFfYnV2IaBaJUdubkayhtchnY11pMtmJCySiYgIQGxFaSp3\n84s3shHvR8lZWiWG9NEjK6yo9cczIvFFNIRWEY10MEg/GDeMmIciywxcVNEHp5yH8N2pb7Dm2Ff4\nrnoDRDjg8rrwbc03+LbmG0AOZBmzcH7JNFwz8GpML7gSmn2NERfuBfde5kK+xEnEQkCZTMD1OelV\nJHc21tFeZjlVnS5YJBMREYD0yhGnO5PVFZJVjkUqM8syQYYxBWNRUTIeN5X+Cs8v34LR4004YNuM\nb6rXY3vdVngkD8yiGaurP8fq6s9x2+i7cS7mQkD7hY3MI4ZENRjB6JhELATcUdUA0ePtNe0cgdR1\numCRTEREMUvlttTpyHsmtLznqAGHalpa3S6KXhitTuRkqKPO/HVFSzm5oMTEwnMxq/hHeHDKf6Pa\n0IjXNn0Ci64Sa05+hhpLNV7b+yJOeXdjQvOtkNRnC7ZIcYvgr/3nMILRcd11IWAqBUcwUrXwkEUy\nERHFLB1mmxNVqHck95iTqcag4qxAi7hwJqsLG/fUYsro4oi3p0tLuUxVFsbrL8b0CTfhoXMfxvWf\nXIs9jbuxSrYBOl0J/nfa04EtryPFLYK/9p/DCEZ66EzGOV1+PiMJjmDE+ylOR7FIJiKihEvmAr+u\nLtS1aoVvm+soM3+BbbC7ycxgvjYfH878BNd/PBu7GrfhgxPLIamB52f8HUq5stVW1+FfA+ylnC4S\nkXFOxUYn6dKvuT0skomIKOFSucCvo9K9Z2yL5exsXyxdDoCO555zNLlYctlyzPn4P1Bl244Pq5aj\n2nwSL1++BDoUdOgx04XMaYfHZIrY3q49vqy1A161NokjTJzOZJxTudFJuv/u+bFIJiIiilEqWlNF\n6tUcvF22QiZLSu45U5WFhUNexHuGh/Ht6fXYXPtvzHj/fPzx/BcBlHXgSrqe5HIhb99mOBr0cFi1\nrdrbtcfh8iDntA2G0ilJHGXipSrjHC3a0d6bOpPVBZfYNbsOxoNFMhERJVwicsPxRjZSsagwFdvp\nRurVHLxdNoCk5Z7VMi1evvQdvLr/WTy79U8wOAy4Y+3PcEXhApzv/QO626I8QaWCoWwK+g3KgeZY\nS6v2du1psbpg3FULyHvnQtW2tBXtaC/W4X/TZ3X0SdtPmgAWyURElASJyA3HG9mI9zktdjeOnjbh\nnNKitPuHOlKvZv922b7iOfpsaPBW2gq5DCaHGNdzK2QKPDTlEZzbZxruWnM7Gu2NWN2wBPWfV+J3\nF/wBWuTC7nFAktL7o3I/r1oLuV4PmcYJRbY+kKOOhS9rbUzi6LqvzkQ7TjVacazWDE+0BYbtZJZT\ntdkIi2QiIkpLyZ4Z9nolON2etM9FAqERDIfLcyZ6IUCjkrfZdk4mEwCZ75g8zgjG9AEz8NUN3+H2\n1QuwuW4jtjdsxtUrfhS4XblfiTxNPvI0+chW5cJt12K9sz9Ksgp8x7W+2/KD/l+n0EGItp1hkoVv\nwx0Lj9UFhd0CSc5yKZqORDvay9a3l1lOxSc6AItkIiJKU13dxaIjkjXDFRzB8BUYUqANXVtt5xRy\nGSS5HC6nGxma+P/JL8nog6U/+gAPfPEoVjW8Cq90dubP7XWjzlaLOltt4Ni21q2jQ2jkGuRq8gJF\ndL7//zX5yNfmB27LP3MsT5sPraLzi+b82WR7c1agt3MsHC4PCmuMkAQZpKlD2OKul2GRTERE3Uoy\n28t1VjJnuIIjGBpVaBu6aG3nFApfkazqxGy8QqbAtcV34b8uXgiDeAonm2vx76rDKCr2wuZtgcHR\nhDpLA44bauGVW2B0GWB0Ro4oODwOnLaewmnrqZifX6fQIU/jL6DzkH9mVvpsoR1aXBdlFgII3abZ\nn00uKysM9HaORYvVhYYd1ZDkChbIcWqrX7PZ5oLo8cJsi7xzpTVCRKgr2saxSCYiom4lUe3lXG4P\n3KIXLrcngaNLX+21lIvWkcDfVq5QW4wRmQMxKssJRVMNpo85+/obLc6Q74noFdHsaIbB0XTmj8H3\nX3sTmvzH7E1odhrQZPfdbnJFnoa2iTbYLDZUW6L3/w2XqcpEniYfemUuJKcOA40lcNk02HN8IPrq\niwOFdq4mD0Ozh0Gj0ER8HLnCCVFrBHrVps+d116/ZovdDZfbix1Vjaiqbv19d7hEyGShb4C7om0c\ni2QiIuqVVEo5lApZp2ZZuwP/Arv2WspplApUN1oASNCoWpcH8czaK2QKFOoKUagrjPk+Lo8Lzc5m\nGOytC2uD42xx3ewwoMlhgMHeBIvbHPGxLC4LLC4LgOMAgMoz+5ysbWp9br/M/vh6zibo1dkxjbMj\n2WY/X99le9z3627aW9RnsrqgkAuYNqZPq4iQ2ebGdz+cSou1AiySiYioW0lFq7d0Fm/uOT9bi+kT\n+oUUHZFayo0dmgeFQhZxy+1UbFeskqtQrCtGsa445vs4PU5f0Ww/W0AbXQbYYEZ182mcNtXjcMMp\nSAor6q0NsEstsIm2kMeosVRj1dFPMaf0pnafr6PZZj+Hy4O8OjOkiQPR3drpdURbi/rCI0PpiEUy\nERF1K9EW9KUiq5wO2+l2JPecp9dADNu8wZ9j9v9/lk7V7bbUVsvVKMnog5KMPoFjCoUMubkZaG62\notFox/odNZg4shDbDzZg+oR+UGu8Z2ajm7Bg1VycMB/HZ0f/FVOR3NFss1+L1QXDvgbmm8+w2lvv\nEGmyuuB0eQBBaDMOlIo3biySiYioR4g3q6xSyFCQrYUqyq51kXSX7XRj1WJxQRB88QuzLblbX6cL\nrUILbWY/9M3shyuHXo1/7HoR60+uhc1tg06pa/f+XrUW8uzsuPot+/n6Lls6Muwex+X2YMPu09CE\nzcg7XB7UNFqRk6kO2YwkOCLkjwNdds6ApBbKLJKJiKhX0qgVKMjWQKPu3v8UdqTtXKS+y06XF6cN\nVoiiFw632Oa210DHtr5ONz8Zcg3+setF2EU7Zq28Euf1vQDnlEzBOcWT0Sezb1cPr0fzShIAoVVu\n+WyLw9C8cnBEyOYQser74zBanCySiYiI2tNbs8odiV9E6rs8dmg+fjgix9ihefjhiCHqttdAaj7q\nToXJJVPRL7M/aizV2NmwAzsbdgC7fLf1y+yPcfkTobENw2DtOLg8xVDJEx9D6e0LAYNzy5YI8YtI\nPF4vrA43WsKK5ET/XLJIJiKiHiEdNh9Jh8xyrML7Lvszyd0xm9xRcpkcH8z8GMsPvodtdVuwrW4r\nzC4TAN+CvhpLdeDcF95RYXTeWBRIpbDmXIyLB5+Pfpn9O7WDYCIWAubWW+CdUQq5onuXdP62ceE7\nSvqJohcWuwub99bB6hBhtLiwdX9DqxZyiYxgdO9XlIiIqIMUcgEDijKhkCeuB25PyCz7FkiJ7WaT\ng3XnnPLQnOF4cMp/AwC8khcHmw9gW+0WbK3bjM2nN+OQ8QAkSHB7XdjVuA3ANqzd8BawASjWleCc\nkimYVDwZ55RMwfjCirh2CEzEQsDmA42QqdWAp3v3+/a3jRs3LB/BO0pGUtNgwckGM84pLUS/wkwA\nvp/BbQfqo25g0hEskomIqFcSPRJO1lswrF9s/XF7Kn+m2b9fxp6jhqgzeUars82scnfPKcsEGUrz\nylCaV4a5o2+B0eLEio2VOO6ohCL/BHY2bsXW2i2weXyzzXW2Wnx65GN8euRjAL7+0KPzx6CicCIm\nFE1ERdFEjMorhUIWvdzq/EJAa+g1dDC+kS7RjUytst32cL4+yzJk6ZL7aQeLZCIiol4sONOcpVXB\nbPMvnCpptXBq457aqFnlnpJTDqeVZ6I041xcMf4GAMBX209i8DAnDpp3YuuZGef9hr3wSl6IXhG7\nG3Zid8NOLNv7uu/+Ci3GFIzDhKKJGKkfB7uzL7xSn7aessM6E9/obT2cY8EimYiIeqWOLPRLh8WB\nycw952apIQjRN3roLVnltsgEGYZmD8fEfuW4sXQuAMDiMmNH/XZsrd2MHQ3bsbN+O2qtpwEAdtGO\nLbXfY0vt94HHePqoHhVFE1CaMw4y8yCMsMxAdsawTuWbgc7FN9jDuTUWyURE1CspFTL0LciAMo4+\nyemwOLAn5J5TLXwjiljFmrXOVGXhwv4X48L+FweO1VpPY2f9Duys34Yd9duxq2EHDA6D73HdJmyo\n+Robar4GAPzjBFCgLUBFoS+iUVE0ARVFk1CkK4prvEDH4xvp2MPZYndHzBibbS6IHi/MNheMFieA\n1ln6RHyywSKZiIh6pXg3H+ktOtJ3OV35+0HvOdrUaiMKILacNYAOvRYlGX1wxZA+uGLIVWfGImFP\nbRXe27oWXv1J7GvehZ0NO2B1+wrTRnsj1pz4AmtOfBF4jH6Z/VFRNBETiiZhYvEkjC+sQJZKH/dY\nkiVa/lm0uuF1OCC2mCCKrQtVX/7ZAa86+iJHq92NLfvrI95msbvhcnuxo6ox0N0iUleMzna6YJFM\nRES9UjpEJxIh0fGLjvRdTlf+ftC+nLUQd84aAKwOEVv21XV6LIIgYEDWIJyT8+PAGzOD2Y73/v0d\ntEWncdC0Gzvqt6Oy8Qc4PA4AZ9vQ+RcGChAwMncUJhRPwoSiSRiRNQ6iN6fTY+uItvLPJrcAh1EF\nU8tBQNn6Ew+Hy4Oc0zYYSqdEfXzPmU9KwjcbAfwL94SQDUfObkJSAkEQEtLpgkUyERH1SsmITnRF\n4c34RdvO5qzlgZnlUG2/bsl8XWWCDH00QzF92IXIyZwHAHB73NjfvA87633Z5h3127GvqRIeyQMJ\nEg4078eB5v14d/9bAACFoMKrjRWYWDQRI7LGweHsl7SFgcHazD9b3dDsbYB+dCFyMlrP5LZYXTDu\nqgXk7f+eBG82EixSbt5/LFFYJBMRUa8kerywOUToNIqEtS5Lh8wytRa8DXcwh8uDI6dMMJicKMrR\ntrsNdyJ78EajlCsxtmAcxhaMw7zR8wEANrcNPzTuxo76rdhRtw3b67fhuOkYAECUXNh6ejO2nt4c\neIw/HcvGhKKJmFg8CROKzsGE4kko1hUnfKzR8s8KhRMKoR5CG29ABK8HkvNsJMMf0fCYTGnRig5g\nkUxERL0UM8nx6c5Z5eBtuIOZrC44XSIgCDFtw+1fJJZqOqUOU/uci6l9zg0ca7I34bsT3+OTPV/D\nrjuG7bVb0GhvBACYXC34unodvq5eFzjfn28uzSvDiNyRGJ4zAkNzhiNTmZnw8bbXis7h8iDnlBWn\nNQUw2Q4DSikQ0XA02pHXZIJUWpLwccWLRTIREfVKPSWT3FmxZpq7e1Y5eBvuYGqVHIDQ7Vrb5Wvz\ncVG/S4HGMlw3YyQgithVcxDvblkDMes49jb7+jXbRBuA1vlmv36Z/TEsZwQGZgyFx1wI5alzMKFv\nOfpk9O1wS7r2WtG1WF0w7qiBUqaAfnyJL5JxJqKhGZwNw3EjBiq7vhUdi2QiIuqVOhKNSEZEI16J\nLu6Zae4ZBEFA/8yBIQsDRa+IA4b92Fm/Hdvrt2FXww4caj4YKJyBs8Uz4Jt1fueU73iGMhPDcoZj\neM6IwMzz8JyRGJozLKatt9tqRSdXOOHRGiFAgCJbD0WmGgqFEzKNGXK9Hl5118zYh2ORTEREFCO3\n6MWpRisGlWR1WZHM3HPXa7HE12/ZL9a+y4mikClQXjAG5QVjMHf0LQB8rehOW0+hqvkgDhkP4pCx\nClXNVThoOIBa26nAfa1uS2D3wGACBAzIGohBWcOgcvbBaV0FxpWMxvDckSjSFnV6Q5R0wiKZiIgo\nRixQexaZTECmVgWrI7biNdoCQL9Y+y531RsswDfj3DezH/pm9sPFAy4JHDdanFi9tQoDhthQ6zyG\nQ8YqHGquQpXxII4YDwXa0kmQcMJ8HCfMxwEAa5veCjxGlkqPETkjMDBzGNT2QTjHfRdy2tjiWu46\n22c5eOGewmaGx6SO2mvZ12c5+Yv7WCQTERF1Y4mOXyRz2+t0o9epcMG4Pli/oyam86MtAPSLpe9y\nInaCSxaNXIfy/BE4PzO0f7FX8qLafNI389xchSpjFfY37sf+poNoEc++YTC7TNhe7+u+AQBrVyzF\nQ1MfwU1l86CQhZacguhG4YEtsFuyIankIQv3chtb4DBkw2HVRuy17HB5kFdnhjRxINBGEd5ZLJKJ\niIgSpCsyy4me3WZGuW3RFgD6aVTyuBcBpnt8QybIMFA/CAP1gzBj4I8A+Gae1++owaTyLDS4j4fM\nPO9r2ocjLVVodDTg/q8X4ZXdf8Oj0x7HpQMvD8QxJIUSDaMmY+y4Et/ivqCFe81HGtF3aAE0x1oi\n9lpusbpg2NcAQZXcN3EskomIiBKEbeW6n65sbZeI+IZMJkAhl8Hj8SRrmG3KUukxIO8cTCw+J3DM\naHHixW+WY7XxBRww7sWB5v246dPrcVH/S/Dbab9Hf81IAIBHdXZxn7+3sqydzV38ZB4xZEvsZEQw\nWCQTERElCNvKdT9d2douEfEN9ZmZ62ZXahcFtqc8axp+ecFsfF7zAZ78/nHU2WrxTfU6XPr+BZg9\n7EaMk+YiV3l2Z0B/b2WxXofcJmu7cYvcWhPsJn2gD3NwBCNRM8wskomIiBKkOy7si7Ww701Z5VTq\nbHyjrQWCXU0uk+OmsnmYOfw6/G3n83hxx19hE2344PA7WInlmJJ9NUab/ws5maWB3soDBmWj+UhT\nu3GL5j2nUTqmT6APczIiGCySiYiIupFE555jLeyZVe4+OpJxTma+OVOZiQcmP4xbRi/AHzf/AW/v\n/z94JBGbWlbi8pUfY/aI6/Hz0nvhVWdC0GdD1Lkg1+sh0zgDfZSDyRVOiDpLSB9mucIJr9qS0HGz\nSCYiIupG0qFXM6WnRGSck/kzVZxRgmcueR63jPoVfrPuCWxu+RReyYN/HnwPHxx8HxP0l+K+ogcA\nFCdtDPFgkUxERNSNdMdIR2/RlYsAgc5nnFPVnm6wfhhuKvkNrsj/BaqUH+Kfh96C0+PEdtMa3Lx2\nDcZmXYhfFywGMCDpY2kLi2QiIqJuLNHxi960+DDROeuuXATol4wWdW2JFO0wWV1wuDwwWSPHPvzR\njjxlHzw69Y946NyH8OyW/8Vb+5fA6bXjB/MGzF+3Adfm34ELhiyGKIaO1WN1+TYcCetu4T8GICGd\nLlgkExERdWOJjl/0pplq5qw7rq1oh8XmxsFqI0TRi0xd9Jlp/4x7cUYJHjrnMZRL12OvtBJvHXwN\nDq8FHzW9AtfnP+CJ/NugFs6+iYnW3cJ/DEBCNhthkUxERNSN9aaitrfp6vhGW9qKdtQ0WHCszowJ\nIwvQrzAz4v2tDhFb9tWFHMtS5OJXIxdjJK7Ca6fvw8GWSqxy/hsNLjdev+gVFGgKAETvbuE/BiAh\nnS6Y+CciIqJey+n24Nvdp2GydWzXu2TyxzfSteVebpYaOZmt/2TpVFDIfQV+pNtzMtXI0ESfp81V\nFuPV6SswXj8dALC1cRuu/vI6VHlOQZGTA3l2NkRdlq+7RU5Oq2Py7Gx41dpOXx+LZCIiImpXT80q\nS5IEi93NyEUSmKwuGC3OiH+Cc8vBX1vsvryyTpGBXw18BneU3wsAOGE+jqtXXI69TZUpGz/jFkRE\nRNQuxjooVt4zgeU9Rw04VNPS6nZR9KLeaIPR4gIgQaNSwOEScazWHPhaLpdBJsjwwMTfoLyoFPd/\nvQhmlwm3fHYj3r/y85RcB4tkIiIiol4gVRnnnEw1BhVnYdqYkoit5kxWF9Ztr0GGVoVpY/pAn6E6\n0wlDwLQxJcjTayB6vIHzbyqbBwECFq27CyfMx7Hw659jfsFfk3oNAItkIiIiol4hlS3qtGpFm63m\n1CoZACHkHH97ukytEkaLM+T8n5XdjL2GSvxj14vYXLcRGvcfcan0UlKvgZlkIiIi6pXUSjmG98uB\nQp6YmVWTzYW126rTchFgumqxuNrMKAfnmheNfQQX9r0EAPCN4Z9YdfyjpI6NM8lERETUK2nVCgzv\nn43qBktCHo99l31iiXVIEiAIZ/ssB2eSFTJZq8yy309zHsPBpqOocx7DEVNVUq+DRTIRERERJUws\nsQ6tWoGKEQWBqEVwJhlAq8zyWf1wwbg12Fz3La4c/uMkXYEPi2QiIiLqtdK5tV2it81ON/6eyX4a\nlTwwwwxIACLPROtV2bhswE/gdgJGpy+77N/qOpFYJBMREVG7RI8XNocInUaRkO2v00U6t7brTfGN\n4G2uHS4PTjZYAAjYuOc0NCoFRNELo9WJnAw1FIroP38KuSykM0ZnsEgmIiKidrlFL041WjGoJKtH\nFcmUepEyy8HbXJusLjhdIiAIIS3iNu6pxZTRxRHbygG+AjlSZ4yOYpFMRERE7UrnGVfqXqJllnOz\nzkYv1Co5orWIi9ZWLtH4VpCIiIioF2CLuvikVZH81ltvYcaMGRg3bhxuuOEG7N69O+q5y5cvx9y5\nczFlyhRMmTIFCxYsaPN8IiIiomRK50WAQO/KOCdC2hTJn332GZ566iksXLgQK1asQGlpKW6//XYY\nDIaI52/evBlXX301li1bhvfeew8lJSW47bbbUF9fn+KRExEREZ2NpGjVTLN2hkwmIFOrgiCEbzYi\nhmwuEu1PojpdpM13cenSpZgzZw5mzZoFAHjsscewfv16fPDBB7jjjjtanf+nP/0p5Os//OEP+OKL\nL7Bp0yZce+21KRkzEREREYXqbOs6vU6F88f2wdc7a4I2G/Gc2WxEgEImxNzpojPSokh2u92orKzE\nnXfeGTgmCAKmTZuGnTt3xvQYNpsNoigiJycnWcMkIiIiSpl0j29Ek4hYR3C3C8C/2YgU2Gwk1k4X\nnZEWRXJzczM8Hg8KCgpCjufn5+Po0aMxPcaf//xnFBcX47zzzkvGEImIiIhSqrd3FAnudiGTCSjM\n0SEnSw2vV0pJp4u0KJKjkSQJghB932+/l19+GatWrcKbb74JlSq+aX2ZTGhzb/Fo5Gem8OW9qFck\nr7l34DX3Drzm3oHX3PPFc70KuQwymQCFXNZmTKGzkvE8eXoNfjx1IADAaHam5jqS9shxyM3NhVwu\nR2NjY8hxg8GA/Pz8Nu/72muv4dVXX8XSpUsxYsSIuJ87Ly8jpkI8Gr1e2+H7dle85t6B19w78Jp7\nB15zzxfL9UpyObRaFbJzdMjVa5I2lvaep8XixLc7a3BBRT9kd2AmOFXXkRZFslKpRHl5OTZt2oRL\nL70UgG8WedOmTZg3b17U+7366qv4xz/+gddeew2jR4/u0HMbDNYOzyTr9VqYTHZ4ErT9YbrjNfOa\neypeM6+5p+I19/xrjud6HU4Rg4sy4LA50ezxJG1MLWYn7HYXWow2CBGex2h2orbRAoPBCq9bTPjj\nxyI3N6Pdc9KiSAaA+fPn46GHHsKYMWMwduxYvPHGG3A4HJg9ezYAYPHixSgpKcF9990HAHjllVfw\n3HPP4ZlnnkHfvn0Ds9A6nQ46nS7m5/V6pU4Fyz0eL0Sx5/8SBuM19w685t6B19w78Jp7vliuVymX\nYUR/X4ODZL42oscLr1eCGGVM7d3e2cdPlLQpkq+66io0NzfjueeeQ2NjI8rKyvDqq68iLy8PAFBb\nWwu5/OzqznfeeQeiKGLhwoUhj3P33XfjnnvuSenYiYiIiKhnSZsiGQDmzp2LuXPnRrxt2bJlIV9/\n9dVXqRgSEREREcWhs63r2uuzLJMJyNKpOhSXjUdaFclERERE1L11tnVde32W9ToVLp3Uv8OPH6ve\n0R+FiIiIiCgOLJKJiIiIKK2ZbC6s3VYNk82VsudkkUxEREREKdORzHIitrqOFzPJRERERJQy3WW7\nbc4kExERERGFYZFMRERERBSGRTIRERERpY3O9llOFBbJRERERJQ2/JllrTry0rlUdbpgkUxERERE\n3UaqOl2wSCYiIiKitNYVEQy2gCMiIiKitBbcNs7p9qTkOTmTTEREREQUhkUyEREREVEYFslERERE\nRGFYJBMRERERhWGRTERERETdRqo6XbC7BRERERF1G8GdLpKJM8lERERERGFYJBMRERERhWGRTERE\nREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEYFslERERERGFYJBMR\nERERhWGRTEREREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEYFslE\nRERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGRTEREREQUhkUy\nEREREVEYFslERERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGR\nTEREREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEYFslERERERGFY\nJBMRERERhWGRTEREREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEY\nFslERERERGFYJBMRERERhWGRTEREREQUhkUyEREREVEYFslERERERGFYJBMRERERhWGRTEREREQU\nhkUyEREREVEYFslERERERGHSqkh+6623MGPGDIwbNw433HADdu/e3eb5q1atwpVXXolx48Zh5syZ\n+Prrr1M0UiIiIiLqydKmSP7ss8/w1FNPYeHChVixYgVKS0tx++23w2AwkDEotgAAFGhJREFURDx/\nx44duP/++3HDDTdg5cqVuOyyy3D33Xfj0KFDKR45EREREfU0aVMkL126FHPmzMGsWbMwbNgwPPbY\nY9BoNPjggw8inr9s2TJceOGFWLBgAYYOHYqFCxeivLwcb775ZopHTkREREQ9TVoUyW63G5WVlTjv\nvPMCxwRBwLRp07Bz586I99m5cyemTZsWcuyCCy6Iej4RERERUazSokhubm6Gx+NBQUFByPH8/Hw0\nNjZGvE9DQ0Nc5xMRERERxUrR1QNoiyRJEAQhrvPjJZMJkMlifw4/uVwW8t/egNfcO/Caewdec+/A\na+75etv1plJaFMm5ubmQy+WtZoENBgPy8/Mj3qewsDDi+eGzy+3Jz8+Mb7Bh9Hptp+7fHfGaewde\nc+/Aa+4deM09X2+73lRIi7cdSqUS5eXl2LRpU+CYJEnYtGkTJkyYEPE+FRUVIecDwHfffYeKioqk\njpWIiIiIer60KJIBYP78+Xj//fexcuVKHD58GI8++igcDgdmz54NAFi8eDGeeeaZwPm33HILNmzY\ngCVLluDIkSN4/vnnUVlZiZtvvrmrLoGIiIiIeoi0iFsAwFVXXYXm5mY899xzaGxsRFlZGV599VXk\n5eUBAGprayGXywPnT5gwAX/5y1/w7LPP4tlnn8WgQYPw0ksvYfjw4V11CURERETUQwhSR1a7ERER\nERH1YGkTtyAiIiIiShcskomIiIiIwrBIJiIiIiIKwyKZiIiIiCgMi2QiIiIiojAskomIiIiIwrBI\nJiIiIiIKwyKZqB0tLS148sknUVVV1dVDISIiohRJmx330l1dXR327duH+vp6OBwOaDQaFBUVoays\nDMXFxV09PEoii8WCZcuWYerUqRgxYkRXDyepTpw4gR07dsBkMiEvLw9TpkxBYWFhVw8rocxmM5RK\nJTQaTeBYS0sL9u7dC4/Hg1GjRvW4aw7ndrvhdDqhVquhVCq7ejiUZG63G4cPH0b//v2RmZnZ1cNJ\nOkmSYLVae8W1UnJxx712bN++HX/605+wc+dOAL5fvmCCIGD8+PF44IEHMGnSpK4YYsIdOnQIL7/8\nMg4fPozc3Fz85Cc/waxZsyAIQsh5H3/8MR588EHs27evi0aaGNdcc02bt4uiiKNHj6Jv377IyMiA\nIAj4+OOPUzS65HjzzTdRW1uL+++/HwDgcrnw8MMP47PPPgv5GVcoFLj99tvx//7f/+uqoSaMw+HA\nr3/9a3z11VeQyWS45ZZb8OCDD+Ktt97Cn//8ZzgcDgCATCbDT3/6U/z2t7+FTNYzPmwTRRErVqzA\nqlWrsHfvXrS0tARuy87ORllZGa688kpcd911PaZo3rRpE44cOYLc3FxcdNFFEQumnTt34r333sOT\nTz7ZBSNMnZqaGlx22WV48cUXMWPGjK4eTkIcPHgQTU1NOO+88wLHvv32W/ztb3/D7t27IYoi1Go1\nzj33XNx3330YOXJkF442cdasWYMVK1ZAo9Hg1ltvxbhx43Dy5Ek8++yz2L59O0RRRHl5OX7xi1/0\nmJqkK3EmuQ0bN27EL37xC/Tt2xf/+Z//ibFjx6KoqAgqlQoulwv19fXYtWsXVqxYgVtvvRUvv/wy\npk2b1tXD7pRjx47h+uuvhyiKGDFiBKqqqvDwww9j+fLl+Otf/9ojZ9iqqqqg0+lQXl4e8XaXywUA\nyMjIQE5OTiqHljTvvfceLrnkksDXTzzxBD799FPMmTMH11xzDfLy8lBfX4/ly5fjH//4B/Lz8zFv\n3rwuHHHnvfbaa1i7di1mzZqFgoICvPvuu9BoNPj73/+OWbNm4dJLL4Xb7ca//vUvLF++HP3798cv\nfvGLrh52pxkMBtx2223Yt28fBg8ejIsuugiFhYVQq9VwOp1oaGjA7t278Zvf/AZvv/02Xn/9deTl\n5XX1sDvM5XLhjjvuwObNmwNv+LKysnD//fdjzpw5IeeeOHECK1eu7PZF8pIlS9q8vaWlBZIkYc2a\nNTh+/DgAYMGCBakYWtI88cQT6NOnT6BIXrVqFe677z7k5OTgmmuuQX5+Purq6vDVV19hzpw5ePPN\nN6P+Hd9dfP3117jnnnug0+mg0+nw1VdfYenSpbj77rvhdrsxadIkiKKILVu24LvvvsOSJUswefLk\nrh529yZRVNdff7104403Sk6ns83znE6nNGfOHOn6669P0ciSZ9GiRdL5558vHTt2LHBs5cqV0qRJ\nk6RLLrlEOnz4cOD4Rx99JJWWlnbFMBPqxRdflCoqKqT58+dLBw4caHX7yZMnpVGjRklr1qzpgtEl\nR0VFhfT+++9LkiRJXq9XqqiokH7/+99HPHfhwoXS5ZdfnsrhJcUVV1whPfzww4GvP/30U6m0tFT6\n7//+71bn3n777dIVV1yRyuElzQMPPCBNmTJF2rhxY5vnbdy4UZoyZYq0ePHiFI0sOV566SWprKxM\neuGFF6QDBw5I3377rTR//nyptLRU+p//+R/J4/EEzu0pf4eNGjVKKi0tlUaNGhX1T/DtPeGap06d\nKi1btizw9WWXXSbdcMMNktVqDTmvqalJ+vGPfywtWLAg1UNMuJtvvlmaNWuWZDabJUmSpN/+9rfS\neeedJ82cOVMyGo2B806fPi1dfPHF0vz587tqqD1Gz/gsMUkOHDiA2bNnQ6VStXmeSqXC7NmzceDA\ngRSNLHl27dqFm2++GYMGDQocu/baa/Hee+9BJpPhpptuwu7du7twhIl31113YfXq1cjJycHs2bPx\n2GOPwWg0Bm4Pj5n0BCqVCjabDYAvhmC32zF16tSI506dOhWnTp1K5fCS4vTp05gwYULg64kTJ0KS\nJEyfPr3VuZdccgmqq6tTOLrk+frrr3HbbbeFfCwdyXnnnYef//znWL9+fWoGliSfffYZrrvuOtx9\n990YOXIkzj//fCxZsgSLFi3C8uXLcc899wQ+Heophg4dCo1Gg0WLFmHNmjVYu3ZtyJ8333wTkiTh\n8ccfx9q1a7FmzZquHnKn2e12aLXawP+fPHkSt9xyC3Q6Xch5eXl5uPHGG7Fjx46uGGZCHTx4ENdd\nd10gOjRv3jwYDAbMnz8f2dnZgfNKSkrws5/9rMf9W90VWCS3ITs7O/DRVHuOHz8OvV6f5BEln9Fo\nREFBQavjw4YNw3vvvYeSkhLceuut2LBhQxeMLnmKi4vx7LPPYsmSJdi+fTsuv/xyLF26FKIodvXQ\nkmLChAlYtWoVAECr1WLw4MHYvHlzxHO3bNmCoqKiVA4vKbKzs0Pe/Pj/P/hY8G09JVrjcrmQkZER\n07kZGRndvoCsrq5GRUVFq+O//OUv8Ze//AUbNmzAggULYDabu2B0yfHJJ59g4cKFeP3113H//fej\nqakJ/fr1C/zp06cPAF/B6D/W3Q0ZMiSwVkij0UCn08FisUQ812KxQKHo/ulSr9cLtVod+Nr//5F+\nv7loMTFYJLfhmmuuwdKlS7F06VJYrdaI51itVixZsgRvvPEGZs6cmeIRJl6/fv2izojn5+cHcl2/\n+tWvsHr16hSPLvkmT56MFStWYNGiRfjb3/6Gn/zkJ1i/fn2Pm02+9957UVlZiYULF+Lo0aN49NFH\nsXz5cvzud7/D1q1bcezYMXz//fd44IEHsHr1asyePburh9xpEydOxLvvvovDhw/DaDTiueeeg0aj\nweeff476+vrAecePH8dbb72F0aNHd+FoE2fixIlYtmwZ6urq2jyvrq4Oy5Yt6/aLfbKzs2EwGCLe\ndtVVV+Hvf/879u7di7lz54Z837szuVyOBQsWYPXq1RgyZAhuvPFGPPDAA+1+z7uzG264AStXrsTa\ntWshCALmzZuH559/Hj/88EPIeZs2bcLSpUvb/SSlOxg6dGjIJz3r1q0L+W+wL774IuQTYeoYdrdo\ng8vlwoMPPohVq1ZBoVBg8ODBKCwsDCzca2howLFjxyCKIq644go8/fTT7UYz0t3vfvc7fPnll1i3\nbl3Ud94ulwuLFi3CunXr8P/bu7uYpu4/juPvxgniw3SWqSjbUGKoUmogDoPGxMzMiKjLJhgD0Qsx\n6EIi0cxsPi2KT5iYaJYuXhguDG74UJFNZpZ4oVtIzHZhtBrFBwyoCFUIKpQpmp5dmHV/iw7/DnvW\n08/rjvZ3Dt/Pzcn3nP7O72ez2SJ+dYuXuX//Prt37+bIkSMYhoHb7WbmzJlml9Vnamtr+eqrr2hr\na2Pw4ME8ffo0uMLDXwzDYMGCBZSWltKvXz+TKu0bjY2N5ObmBp82GYZBSUkJY8aM4euvv2bixIkE\nAgEuXbpEIBCgsrKStLQ0k6v+9+rr6ykoKODx48fMmDEDp9PZ4zp28eJFTp8+zYABAzhw4ADJyclm\nl/3aPv/8c9rb2zl48OBLx3i9XoqKiujo6CAQCFjuGub1etmyZQvXr1+nsLCQ7OxscnJy+Pbbby1z\nDTMMg7Vr11JdXc2kSZNIS0ujpqaGBw8ekJiYiN1u5+7duzQ3NxMfH09lZSWJiYlml/2vnDhxgtWr\nV+NyuRg+fDi1tbV8+OGHjB07lubmZj766CMCgQAnTpzg999/Z8OGDRQUFJhddkRTk/wKvF4vP//8\nM3V1ddy7dy+4TvK7776Lw+Fg9uzZuFwus8vsExcuXGDfvn0sXbr0hT9Z/iUQCLBjxw7q6uqoqKgI\nY4Xh19jYiM/nY/z48bzzzjtml9OnOjs7OX78OGfOnKGxsZGurq7gGuCpqalkZ2czYcIEs8vsMy0t\nLVRXV+P3+8nMzGT69OkA/PTTT1RWVtLa2kpSUhLLli1j8uTJJlfbd3w+H3v37uXkyZO0tbX1+H74\n8OHMmjWLFStWMGrUKBMq7DtVVVWsW7eOgwcP/uM1rL6+nsLCwuAa+FZ09OhRdu/ezZMnT3j48KHl\nbvThWeO4f/9+vF5vjyVa4+PjmTNnDsuXL8dut5tUYd+qqKjgwIEDwWvYhg0bGDBgACtXrqS2thb4\nexnLzZs3W2YZS7OoSRYRiSI+n6/Hzb6VNkQyDIM//viD/v3797rms9/v5/79+5aYo/synZ2dlJeX\n09LSwpIlSyx10/u/Ojs7uXXrFn6/P3ijb4V3Kf4ft27doq2tjffffz+il3H8L1GTLCIiwLNG4+HD\nh4wePdrsUsIi2vKCMkeLaMz8Jug5vIiIAM9+yrXaz/H/JNrygjJHi2jM/CaoSRYRERERCRH5CweK\niMhLVVdXv/JYK7zAFm15QZl7o8zyujQnWUTEwhwOBzabrceb/y8T6cs6RlteUOZXoczyOvQkWUTE\nwoYOHYrD4WDNmjW9jvV4PBw6dCgMVb050ZYXlLk3yiyvS02yiIiFpaWlcePGDZxOZ69jrbDdfLTl\nBWXujTLL69KLeyIiFuZyubhz584LNxEJ9fbbb5OQkBCGqt6caMsLytwbZZbXpTnJIiIW1tXVRXt7\nOyNGjOh1cw0riLa8oMzKLG+KmmQRERERkRCabiEiIiIiEkJNsoiIiIhICDXJIiIiIiIh1CSLiIiI\niIRQkywiIiIiEkKbiYiIRBi3243b7QaebT07aNAgEhISyMzMJD8/n+TkZJMrFBGJfGqSRUQiUFxc\nHPv37wfA7/dz5coVDh8+zOHDh9m+fTvz5s0zuUIRkcimJllEJALZbDZcLlfw76ysLPLz8ykqKmL9\n+vWkp6eTmJhoYoUiIpFNc5JFRCwiJiaGjRs30t3dzZEjRwCorq4mPz+fKVOmkJmZyeLFi/F6vcFj\nrly5gsPh4MyZM8+dKxAIMH36dHbt2gWAz+ejpKSEadOm4XK5mDlzJmVlZeELJyISZnqSLCJiIcnJ\nyYwcOZJz584B0NTUxKeffsp7773HkydPqKmpYfHixfz444988MEHpKSkMGnSJDweD1lZWcHz/Prr\nr7S2tpKbmwvAmjVraG1tZePGjdjtdu7cucPFixdNySgiEg5qkkVELCYhIYHW1lYAiouLg58bhsHU\nqVPxer1UVVWxatUqAPLy8ti6dSsdHR0MGTIEgKqqKtLT00lKSgLgwoULfPHFF8yePTt4vk8++SRM\niUREwk/TLURELMYwDGw2GwD19fUUFxczbdo0JkyYQGpqKg0NDTQ0NATH5+Tk0K9fP44fPw5Ae3s7\np06dIi8vLzgmNTWV8vJyKisruXnzZljziIiYQU2yiIjFtLS0EB8fj9/vZ+nSpTQ3N7N27Vq+//57\njh49SkpKCo8fPw6Oj4uLIycnB4/HA8APP/xATEzMc0+N9+zZQ1ZWFnv27GHWrFlkZ2dz8uTJsGcT\nEQkXNckiIhZy7do1fD4fGRkZnDt3jrt371JWVsbcuXPJyMggNTWVjo6OHsctXLiQy5cvU1dXx7Fj\nx5gzZw5xcXHB7+Pj49m2bRu//fYbHo+HcePGsWrVKm7fvh3OeCIiYaMmWUTEIrq7u9myZQuxsbHk\n5uby6NEjAN566+/XT86ePUtTU1OPY51OJw6Hg23btnH16lU+++yzl/4fp9NJSUkJT58+1dQLEbEs\nvbgnIhKBDMPg/PnzAHR1dQU3E7l9+zZlZWWMHj2a2NhY4uLi2Lx5M0VFRbS0tOB2uxk1atQLz5mX\nl0dpaSnJycmkp6cHP+/s7KSwsJD58+czbtw4uru7qaioYOjQoUycODEseUVEwk1NsohIBHr06BGL\nFi0CYODAgYwZM4apU6dSUFDA2LFjAbDb7XzzzTfs3LmT4uJikpKSKC0tZd++fS8858cff0xpaSkL\nFix47vOYmBhSUlL47rvvaG5uJjY2FqfTSXl5OcOGDXuzQUVETGIzDMMwuwgRETGfx+Nh06ZN/PLL\nL9jtdrPLERExlZ4ki4hEuaamJhoaGti7dy85OTlqkEVEUJMsIhL13G43NTU1ZGRk8OWXX5pdjojI\nf4KmW4iIiIiIhNAScCIiIiIiIdQki4iIiIiEUJMsIiIiIhJCTbKIiIiISAg1ySIiIiIiIdQki4iI\niIiEUJMsIiIiIhJCTbKIiIiISAg1ySIiIiIiIf4EVyTheA9Jy7kAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd8FGX++N+zJZUkJCGAEqoUA4gURRD0gjTRkzsEwQREAZHyI8eBd1HJWXJeRPFAMXQP7s7TBBC+IIpITfTo0g4hgSAQQyimJ6Rvdp/fH8sMu6mb7G4KzPv12tfuTnnmmS3zmU+XhBCoqKioqKjUFk1DT0BFRUVFpWmiChAVFRUVlTqhChAVFRUVlTqhChAVFRUVlTqhChAVFRUVlTqhChAVFRUVlTrhNAEiSdI6SZLSJEk6U8V6SZKkTyRJ+lmSpNOSJPV11lxUVFRUVByPMzWQfwFPVrN+FNDl1uMVYKUT56KioqKi4mCcJkCEED8AWdVs8jvgM2HmMNBckqR7nDUfFRUVFRXH0pA+kDbAFYv3qbeWqaioqKg0AXQNPQFbkCTpFcxmLtzd3fu1bdtWWXel5FfltRBGTBgAgSRJSGgQJhPCIDAVm5TttB4uoNEiaTRohWuF45kE6IU3rT3N8jUpKUlZ17J9F9J+ueDoU7Sia9eudo9hMpnQaBo2RkKdgzoHdQ6Ncw41kZSUlCGECKhxQyGE0x5AB+BMFetWAyEW788D99Q0Zr9+/UR17Nu3Txy6ckjM2T5HBCwKELyD4DUEv0U8NecpgQbhMyhU+AwKrXKM8asOivGrDirvAeWxZNd5q/fOeEiSJHr06CFiYmKqPdfqiIuLq/O+jkKdgzoHdQ6Ncw41ARwTNlzjG1IMbgMm34rGGgDkCiGu2zuoJEkMCBxA9FPRXJ1/Fb4ALgAPwrctvkUKlyjscRBDwBUKDYW1Hn/+iG72TrFGtFotv//974mIiCA2Ntbpx1NRUVGpC04zYUmSFAsEAy0kSUoF3gb0AEKIVcC3wFPAz0AhMMXRc9Br9WbhceHWkTuBCBKU9biGb/dC7lvZhRZu7TCVtKWlx33KfjfLyhBC8NFufwBWxP3M7CGdHT29KikrKyMqKgovLy/Cw8MJCQmpt2OrqKio2IrTBIgQotqr3i016f856/gVMGA2kp0Hsa2Ugqd7UmDcx42ga+B1mJQvn0Zr8uHtt98GYNPx2/79+PNp9S5EAG7evMnNmzcJCwsjOjq6Xo+toqKiUhNNwonucEygy2oNB4AkaDmnJfoBGRgu/Mj7K/bw9ttv06lLJq4BZg3EJS+TYsOEW1pJUr2YsSxZtmwZjz76qKqJqKhYYDAYSE1Npbi42OZ9fHx8SExMdOKsmsYcZNzc3AgMDESv19dp/ztegPTo0YOzZ89Wus5nUCgmtwLSsrehd/HAtagf2nxfStKH8ai/llm972Nl/EVKM9I4nJHJR7uTOHwps57PwMycOXNUAaKiYkFqaipeXl506NABSZJs2ufmzZt4eXk5eWaNfw5gDqDKzMwkNTWVjh071mmMO16AJCYmUlpaaiVhDQYDLi4uynt3n0F4DU6GkcfhCmj9H0FodKw4BYcyM3FpYd5u3vA3Adg4sz7PwExWlnVOZmxsLFFRUSQmJhIUFERERIQqYFTuKoqLi2slPFSskSQJf39/0tPT6zxG4w5GdgBBQUHs37/faln59y6/tkdzIZzsc56k+aTx4e6vKEkfRkn6MEozhqHJHUlpxjA+2p3ER7uTGL/qYKXHEvXUHjg2Npa5c+dSUFAAQEFBAXPnzlUjtlTuOlThYR/2fn53vACJiIhg2rRpxMXFYTAYiIuLY9q0aVbb5B6IQeQUYlhzGY7CjZL9vPKbNswb3hWXFnsw+ezEpcUeXAPMj988cpLlJ5ez/ORy+ka/SvA/XleEh2WSoyVVLa8L4eHhGAwG4LbQMhgMhIeHO+wYKioqtSc5OZmePXs29DQqEBwczLFjxxw+7h1vwpLNOmFhYYq5JyoqitDQUKvtilN+Mr9IhLL+pUzYNIGJD0wkyOMp3HVme6WUo6XYYLTarzT9EqXuej7abc5Wf+OzON4eP9BKLWzbti0pKSl2S/uRI0eyc+dOUlNTad26NevWrSM1NZW33nqLnJwccnJyiI2NVU1ZKip3EGVlZeh0jfNSfcdrIGAWImfOnMFoNHLmzJkqL7A+g0Lxvvd5PLIeY+/FQ4T+XyhvHh3AomMv8mP6RtIKbuCm11rt4+1uHb2w/0I6GzduRAjBkl3nEUKQkpIC2G/i2rVrl/K6Y8eOjBgxgsmTJ3P16lUeeeQRACX5cO/evfTs2ROtVkvPnj1V85aKihNYsmQJPXv2pGfPnnz88ceA+YI/ceJEgoKCGDduHIWF5oTl119/ne7duzNw4ED+9Kc/AZCens7YsWN5+OGHefjhhzlw4AAA77zzDi+88AKDBg3ihRdeYMCAAVbBQLJGUVBQwNSpU+nfvz99+vThq6++AqCoqIjnn3+eoKAgxowZQ1FRkVPOv3GKtQYg90CM8tqHUN58azUD7s/iLzvXcbnkB/amR7M3PRo/1za83G8i7np3ADp1ySQ1p5B5wxcCMGH1oWqPI4RAq9ViMpmq3a4mDh26fRyDwcCRI0cAWLt2LZMnTyYtLY3S0lIAzp49y8SJEzl48KCaT6Ki4iCOHz/OP//5T44cOYIQgkceeYTf/OY3nD9/nrVr1zJo0CCmTp3KihUrmDJlClu2bOHcuXPk5+djNJotGXPnzmXevHkMHjyYlJQURo4cqYT4JiQksH//ftzd3fnoo4/YuHEjkZGRXL9+nevXr/PQQw+xYMECnnjiCdatW0dOTg79+/dn2LBhrF69Gg8PDxITEzl9+jR9+zqn3ZIqQKpAI2kZ1G4QozsEIEQ4wx4s4U/frGJ36kp+ODuC4DZTASjNyKQ0u1AxYaVmF7L9kpHg4KrHNhqNTnP+TZ48mdTU1ArLhRAsX75czSdRuSP543d/5NSNUzVuZzQa0Wq1NW4H0Lt1bz5+8uMq1+/fv58xY8bg6ekJwLPPPst///tf2rZty6BBgwCYNGkSn3zyCX/84x9xc3Nj2rRpDB06lOeeew6APXv2kJCQoIyZl5dHfn4+AKNHj8bd3XyjOn78eEaMGEFkZCQbN25k3LhxgNkqsW3bNv7+978D5si0lJQUfvjhB/7whz8A0KtXL3r16mXTOdcWVYBUQu6BGCIjYf6IGJbsOs+Ry1lIkj8GfLjXJ4ifCr7CK9cNSdLi0gLc9EW4BgQC4BJwhVLjkAabu6Xw6Nu3L0VFRZw7d04pfhYVFaUKEBUVJ1L+5lCSJHQ6HUePHmXv3r3Exsaydu1a9u3bh8lk4vDhw7i5uVUYRxZMAG3atMHf35/Tp0+zYcMGVq1aBZhvDDdv3ky3bvWb3CyjCpAamD+iG0t2nWfe8K6wewqrjmpJKouid4vTrB+3HhetCx/tTmJ2767mpMP0ZM5JpUrSoayZALjptcwKvq+aozmWEydOVFh29uxZ3NzcKCkpwdXVlenTp6tmLZUmT3WagiWOTOJ77LHHeOmll3j9dXMU5pYtW/jPf/7D3LlzOXToEAMHDiQmJobBgweTn59PYWEhTz31FL169eLBBx8EYMSIEURHR/PnP/8ZgFOnTtG7d+9KjzdhwgQWLVpEbm6uolGMHDmS6OhooqOjkSSJkydP0qdPHx5//HFiYmJ44oknOHPmDKdPn3bIOZfnrnCiV0Zd6/G30A7h45Efs+XcFsZsGEOpsVRZV2wwEujrwf1+WuYN78qGGQOZN7yr8rCM4Fqy67zd51BX3nvvPWbMmIHRaGTZsmXodDrCwsIabD4qKk2Rvn378tJLL9G/f38eeeQRXn75ZXx9fenWrRvLly8nKCiI7OxsZs2axc2bN/ntb39Lr169GDlyJEuWLAHgk08+4dixY/Tq1Yvu3bsrmkVljBs3jvXr1zN+/Hhl2ZtvvonBYKBXr1706NGDN980JzvPmjWL/Px8goKCeOutt+jXr59TPoO7VgOZPXs2y5Yts3l7WaPIc9vO1rOuPN5hLMfS/8tvY1+hTbPOrDjlx4m8TNJ0hbQ2VTRhrYy/aKWRHL6UyZJd5+u9rhbA5cuX+fTTT2nZsiW//vorRqORFStWkJSUxNWrV9XsdhUVG5k/fz7z58+3Wnbu3LkK23l4eHD06FHAWgtq0aIFGzZsqLD9O++8U2FZq1atKCsrs1rm7u7O6tWrK2zr7u7O+vXrbT6PunLXCpDo6OhqBUjugdthr/OGmzsEfrQ7idTjTzO6R1v+3xMdaP5+c7p3a87HT/4FgJL0JEozMkFzs8J4xQYjAzr5K2MpNIAQkc/7xo0byjIhBLt27WLfvn0MHjyY/fv3KwmXqhBRUVGpjLtWgNTM7ZwNy+S8PLftbEtx5cRWD9r738+WC7vILHgXgNScQjR6iUJKgBGVjroy/qKVKevwpUweXbiHcf3aNog2IiPnqAwdOhQhBK6urowaNapap7taj0tF5e5GFSA2EBoaSkhICPOGd2XTLQ1k3vCuLNhbxAcHPmTNzD/hrndXzFPJyclVjlVsMFbQQiasPsS84V2ZX8U+9YksSFxdXdm6dSsAPXv2rCAcYmNjiYiIYO3atarGoqJyl6IKEDsY1HYQJrGQ/v/oz7P3P8v/MnPw0vuTo81lxamfrbY9kWcuA9/Xe0JDTNVmOnfuzM8//4xGo0GSJIQQSrHGgwcPEhcXR2JiInq9nj/96U8MGWL29wwZMoS1a9cSFhamChCVekMIoRZUtAN7q2OoAsRG5B9pq5CFfHD6RyIjf+Ktt96ik+4PFBYf4t0f3kUg8HdrSzttfx70e5aBbQeikczRXiXpZu3kWHKWVWgvmJMPP9qdhN47AENe3UsrO4KLFy8CZkefh4cHBQUFrFu3jmeffZbly5ej0+kwmUyUlJSwdOlScnNzFaFy//33V9ooRzV1qTgDNzc3MjMz8ff3V4VIHZD7gVSWg2IrqgCpJXLRxdwDMbw6Mobxqw6yYcZS0grSCNvyKTelA+z8+SsG/3MzrTxb8duuv2V0t9H8mHsMraTnmqYQ1wDryrxy98NBS6bx31mLMd6qtNsQyHckRqNR6fQ2ZMgQjEYjQgjef/99Zs6cyX333ceNGzdYtmwZkiQRFBREnz59uHDhgpXPSDV1qTiLwMBAUlNTa9XPori42K4LpiNoDHOQkTsS1pW7WoB4enoqPTXspaVnSwa0eo55wyOYuXoLv3m0mK3nt/JlwpesPbkWncaVbj6P4mbsT96vfXDV+Cv7lmZkUuLtT2n6FcZGj2bjzEcdMid7kev1yImHAAsWLODVV1+1yqMRQpCQkEBCQgIPPfSQleM9KiqKtWvXqqYuFYej1+tr3UkvPj6ePn36OGlGTWcOjuKuFiCffvop06ZNq3WlSrd2DwDmcvAJ13Ktcjs+2p2El96TkAfGEPJACKXGUn745Qcid3/G2ex9ZJfEcfzwBzzW7jG+fO5LWjVrpYx7+FImAzr5s6UKU5Yje4rUBll4gDkJcebMmQQEBChVRi05duyYlTkhMTGRwYMHW20zePDgRtMTWkVFpe7c1QLE8i65qr7p5ck9EEPugdvve/x2qlWeyLzhXYmPv6asd9G6MKzTMH7q1I4xIoIvkz9Co7/GxfzjPPHF0/Rp8QzSrYIAPxtySUvR0+2Pn3H+48lWQkTuKdLQvP7667z66qvVbmOpncgdIWUNBMxF6IKCgpw2RxUVlfrhrhYgYBYiISEhdXbC/fLLL1bvP9qdRHJyKScNSYpGAWbtIrhbS9qJFxkQ6I+X/w9M/3o6E7s/y4LHFij7AmxKv8KYRea6/pUlHzZk5InBBv+MbPoCc3+SCRMm4OnpyS+//EL79u0pKChg6dKlzpymiopKPXDX1sJyBnLNqzFdXJg3vKty8ZdfWxZSnNZnGt19g1l2dBkr4n5WSqUcvpRJXpGB1OxCUrMLOXwpk5XxFyscSwiBn59ffZ5enbl58ybJyckIIUhOTiYjI4OJEyeqja5UVJo4d70GYi9luWmKNmBLTHWabhsn8jxY+T9/WjVvTUZ2Art/Xcbw+7vicitXpIWukJZlowGzBlK+ja5MZmYmHt7NKbqZqyzz8/MjKyvL3tNyGHPmzFGiuWSEEPj6+hIdHa1GZKmoNGFUDeQWI0ZUXnqkNtRkVvpodxKl6cMozRjG90f64HZzDGk5aVy97smBH/tiyhpOacYwStOHWWkgVWkhAFGbj1q1z83MzLT7PByJLMx8fX0BaNasGQDZ2dlKRFZUVFSDzU9FRaXuqALkFi+99JJTx5dNWYG+Hri02INLiz34tPyJls1b4uqbiMZvN4MePmFeF2CujRXo68GATv7VaiFNhezsbACl25rM4MGDSUhIUPu3q6g0QVQT1i3q8y5YLmcihOC7S8u4bDhH65JZlHi3V1rkHi7LvKWBmPfRaWx3mjel8g6RkZFoNBolH0cumwKqWUtFpbGjaiC3qGtegpyZXhtks9TXV/5F5+ZPU6bP5nDxHzma8x88Wu3FJWAPv3nkJC4BexQNpMxkX82axoiLiwvvvfceXl5erFu3juLiYtatW4dOpyM8PLyhp6eiolIDqgC5hWVegpzH4Iy7eFkgDOjkz+h2Uwjt9BZPt36TqznnOXFtD93df09p+jBK0s2+EFnYpGYXVukHqYy4uDiHz93RGAwGhBB06tSJsLAw3NzcCAsL48UXX7Tq7R4bG6uauFRUGiGqCesWERERhIaGWi2zt1KlrfT0G8bDPgs4mvMuCcWLadN8eoXcj8OXqLUfRAjBhNWHlHDixmbW0mq1GI1GTpw4gV6vx2QykZSUpOSI9OzZk4SEBDQajRKyrJq4VFQaD6oGcgv5YiRJEiaTSVnu7u5e7X65B2JqfSxZq5Afn59fQ5mukM6+w/g2+Vv+Z4jihc3vsi3ln8qjupwQW6kvgWgrlgmHL7/8Mjk5Obz88stKaZno6GjuvfdefHx8yMnJwWQykZycTHp6OlOmTGmoaauoqNxCFSAW9OjRgwULFtCjRw80Gg09evSo0O/YXuSkQstHZ/1YOuvH0sclkocDHiY5J46/PjGJ0e2mEDdtIaPbTVEisuyNxhJC4Onp6aCzcRw7duzA19eXHTt2KJrSqFGjuHr1KllZWUoG/P3330+fPn0oKSlh5MiRdh/X0jzWtm1b2rZtq5rKVFRsRDVhWRAREVFl6XFHc/jS7XyNhGu5uATsAaCTrjv+Pqd4cfuLtHcfzopT/pzIyyRNVwhMqdBPRC7gKD+76bVWGe+VkZ+fj4u7B4bi2hWRdCaenp5IkoSnp6eiKZWVlVXYLikpSfFR7d69265jWpaaT01N5bXXXkMIwb/+9S8CAwPVJEcVlRpwqgCRJOlJYCmgBf4hhHi/3Pp2wL+B5re2eV0I8a0z51Qd8oUiLCxMaX4UFRVVwTdSE5aFA2X9xdJ8NG94VyshkJpdSKB+LAAbxg9kylfp7Lq4izEP/IPZvbtSkp5EaYZZ4JSZRAX/CNwu5Fi+WVVVfLDtFOFP9aj0It0QyMUsLYtaVuaz+e6773j22WfJz8+32yQnf7dhYWGcPXuWDh06MHHiRD744APOnDmjlp1XUakBpwkQSZK0wHJgOJAK/ChJ0jYhRILFZn8BNgohVkqS1B34FujgrDnZglxc0ZLaCJCqHNVye9iqSNNtA2DFqZNkl2WDHk7krWfFqRZWGojMyviLVuas8prItSulBAdXP1eDwYBGp0MYG2eS4vTp01m1apXV5/b00087rBlPQkICaWlpiklPCMGaNWvIyMgA1LLzKio14UwNpD/wsxDiEoAkSeuB3wGWAkQA3rde+wDXaITodDqH3albChifQaG4tXuAgC698U4fRl6RgZJ2nXAvzuNa1lf4BXZgdu/JVhqITLHBWK0mMvfTZJvms3hHgqK5vDmmr8MabDmClStXVlhmMBgc9l1otVqKiooUAVJcXExRURFarRZQy86rqNSEMwVIG+CKxftU4JFy27wD7JIkKQzwBIY5cT51xhnCA+QIrlCyfVrSvXcQPzfbjGtAJwb6e3A0rxNH8law4lS+ooGcyPOgpo9I9pGcyzLy0e4kJZtdNm1V5yORy4w0lnDfqrQ2OdO+e/fudo1fVlZGYWEhYWFh+Pn5MXPmTKV5louLC25ubqxevdquY6io3Mk0tBM9BPiXEGKxJEkDgf9IktRTCGGy3EiSpFeAVwBatWpFfHx8lQPm5+dXu74u6PV6m/pg2MPP17MoNAzh/I96zmUZ8dcN4EhaDH2LF9Ba35m0DCN+Ji3ncnKIj48nObnUqnGVTEZWEX26FJPUzEgf/TWS/Y3ATfrozRfGLRdKieeKsn/5Z4A/rNnJJ6/YF+EUHx9foe5VbanO5CeEYMyYMTV+1zX9HoKDg4mOjiY5ORm4/V03a9aM3NxcNm7cyD333FOH2ds+h/pAnYM6B2fgTAFyFbDswRp4a5kl04AnAYQQhyRJcgNaAGmWGwkh1gBrAB566CERXI1xPz4+nurW1wVnO5rLctPo3DuInw2b6fZwJ7IuZtKxmRe/nGuJ9/0HaefTjmPHr5DV3INSTSHBwQs5aUgiOLiiCevNI/s4abiXS/kXOWm4lxsms+nrpMHc2CqDLIKDByj7l382b5ukXLxlk1httZLg4GCn/0lycnJq/K5r+j0cP35cqRTs4eGhlJ6/9957eeqpp9i0aRNbtmyxa57O+E2qc1Dn0BhwZh7Ij0AXSZI6SpLkAjwPbCu3TQowFECSpCDADajYDLyBsddUUh1yIuL333+PW/4oZveeTV/vCczoNYO0nDQ+iP+ARfGLSM44TVmRDo/ih6q9MzcJc5TW/X5a5g3vyoYZA60aW9W1plZjS0KEyn0ktcHPz4+8vDwlcbGoqAiTyaT0Ktm/f79VP3gVFRVrnKaBCCHKJEmaA+zEHKK7TghxVpKkvwLHhBDbgFeBTyVJmofZof6SaIRXKssyJ61ateLXX391ynGu3Miw6EwI4b23cyH3EBdzf+R86UHWX/yWls1b0nX163hq7+Hsjq509uuMt6u3MkZxs0vckskOx1Ir+eer4/jpp9oXknQkRjujxzw8PDCZTEq1ARcXFwwGA9nZ2YSFhdG5c+d660MfGxtLVFSUEj4eERGhhg+rNHqc6gO5ldPxbbllb1m8TgAGOXMOjiAkJISJEycihHCa8ChO+QmdT0urXI55wwcCTwGweNc50oousvtiHJ39U9hxYR//u/Zf3HRufBPyDUM7mYXGF9/tZWX8RcWJDrdDfMGcc/LR7iSOJdvXtfD06dONxtleV65du0b37t05c+YMgJW2cfbsWSUnJTY21qkXc8uExvIJrKoQUWnMqKVMbEQIgZeXF3q93uFjyyXhNa6eigay6fgVPtqdpDw8XPS09uhCF8+xbHxuI5EPHeDMrDN08evCM7HPEHf5dvXdYoNRMWHJZizLhlb2mLLuJNzd3RXhUR2hoaG0bdvWaaVNoqKiWLt2LUOGDEGv11fo1KhWI1ZprKgCxEYkSWLSpEmUlpY6ZfzcAzGYSgqYP6IbAzr5Kxd6+VE+9PbkzY18f+17Xuj3Ap1admLi1xMZsX4EeZ7/4UTeei5pdyrbroy/qAgiWQORn2XtxF6NpClia87Lrl270Ol0RERE1OriLV/4hw4dWu2FPzExkcGDB1stk5MYZe0kOjqa4uJioqOjaz0PFRVnoQqQWrBmzRqWLFnS0NMAzF0NZ/eezZ/7/5m40Dh+1+l3HLp8iDNZ/ybu8gYK84zkl5rDaOWkQ0sNZFy/tkphx7pqJFW5qxqhG8sutmzZQkpKSq36t1te+Hfu3FnthT8oKIj9+/dbLZOTGGvSTuRjqRqKSkPQ0HkgTYbu3bvTpUsXFixY4PCxLUvC+wwKVRpIyb08ZNz02kr3D/AMYOVvV/LB8A/ov2YiBu1Fzhhi6b7m/5j4wERS8zxYcco8zsWyy3y0279C6RNZI6nqGFUhhFDG2TBjYB3OvvGzcuVKtFotqampNpc2sayzJTvGQ0NDiYqKquDXiIiIYNq0aRV8IFFRUUyaNKlK7QRU/4lKw6IKEBuRK/Xu2LGDJ554winHKMtNI/dADAPefpvDl1C0A0viz6dVsTd4u3rjX/BHxvYN5Ifzm/kqM4K2Hm1p6T2M2b3N43zx3V7FUW859uFLmbUqxni3YTQamTJlCvfee2+FdZVFUCUkJFBYWMjatWsxGo1otVqmTZumJCxaUlURz5CQEKKioti/f79VgU7LEiuWGgqgaChqEUiV+kAVIDZi+Sd3JpYayOFLVNBCdJrqI5+Km+3g5E0fit1v0LJ5Sw7/ehhRkqloIMXNLrEyvoNVZBZg5RMBs9+kprLwtlBTEcmmhNFo5MaNG1bLqtIAtFotc+bMYciQIUri2Jw5c2rUYIUQ/Pzzz0ycOJGoqCiGDBlSpXYC1ftPVFScjSpAaoFcqddZ4au/xr4BwG6NhuETZyuCw1JTqElDcMsfRV/vtlzKvMhFzS52n9/NK92mM7v3Y4BZAyk2GCvVbiw1EHsbV8mYTCY0Gs0dI0TKVyWoSgN44oknWLhwIdHR0aSkpNCuXTvy8/MrDcKQhVBoaChpaWlotVpu3LjBuXPnOHv2LH5+fkyePJlr165ZaSdw239SlYaiouJMVAFiB82aNSM/P195dhQmk4kffviBAZ3GVLre0ndx+FKmlYaikSRO5G0gR5fDxB4TWXtyLTEps3E7HIqPmw/FzS5xIs/n1tZvAmZtw3K88sexVxuRWwRPWH2IjTMfrfM4jZHExETee+89hg4dqhR5HDrUnJMj10+ThafBYKBNmzYVxpCF0OTJk9HpdEydOpW1a9cq45WVlaHX6/n8889r5T9RUXE2ahSWHchCw5HCQ6aqO3Y5mkrWICzLlMwb3pV7m7vT13sCnYwjeWfQOywfvpzLGeeJ3BPJz7/+jPbmQPp6T6Cv9wRlTEuNZEAnf6vyJ45oo1v+vIQQLNl1/o7QStzd3dmzZw/NmzcHoHnz5uzZY+4u6eHhwbp169i1axfr1q3Dw8Oj0jESExMH1e0lAAAgAElEQVT58ssvSU1N5fr167z33nv079+f9PR0PvvsMzIyMqqMAJP9JGFhYbi5uREWFlapo15GjdhScSSqBmIHWq1WcZDaW1bDktwDMbi1W8jChe/xxhtV28wr00Rk30m7W/mOo7uN5o0+O7lq+g9LjywFsYrmKVMY2mZGpWPK5eDLaySW5eAdiXyX3VSRc0mys7OtngF69OhRQTPZt29fhTGaN2/OqlWrlPdCCLZtM5eNW7ZsGVC9X6OyJmiVoUZsqTgaVYDYgXwHXdmdtEajUez/sgmntpSWGli48D3mDf9XhXWy/8Kyle284V0VQSKXbwdILt3PwPseokNAB9Yd+4b/5W8iJfkgLscm46pz5USebLZ6U2mZaxmlNfHTw8pYchSYpS/G3iREeyv/Nlb27t1Ly5YtSUtLo2XLluzdu1ep/GtJTk5OldrYtm3bkCSJyMhIu/0aasSWiqNRBYgdyIKhvICQJAmtVovJZEKr1Spmm7pQWmp/HxJz0qFZGOz8YRAd250i9sJrxJ6MZcfEHZSkZ1a7v2Uf9vLhv2D2bTgSe4RuQyFHm1lGnVnWTpOfc3NzK+xrMpmqjFbz8PCgsLCQqKgoJEmiZ8+edS60aEvEllrUUaU2qAKkDsgmK7nVrfwsLxdCKCYt+b2MrWGtcn2sunD4UibJmlJOGiqaoEq8vkNy9Wb4fZM5nfUdIzaM4H6vZ9BIWlac8idNdwWoPiGwfD/21OxCq2NU1/XQFmSzYFMSItVpo5ZUZep88MEHOXXqVIXlhYXmz1YWJAUFBcydOxeovdmppogt1cSlUltUAVIHjEYj3t7e+Pn58csvvxAYGEhWVhZ5eXnV7lfX3uq1yaWQI7L66EsIDras7GvWGg5fepa+3v7gDVP7PMmETRNwbx3E2E5vMbt3V74/UrM2UVk/djkREWoONbYF+UKr0ekQDvQvNVYqEx6WyD1LwBzNFR4eXuuLek0RW6qJS6W2qAKkjsyePZuvv/4aSZLw9PTk+eef5/3331fWy3Z8S3u+q6ur07sbgrUGsun4FQJ9PZSLuk5jDvMFcA3w53c9f8eh1N18/ss1pOOjSdP9yopTJ2/5Rd50+lxrYvGOBOaP6NbQ02hwZPPYunXrCAkJITU1tdZjVJfxDmpSokrtUcN460BgYCD//ve/rSqk/vvf/yYwMBCAgQMHotOZZbNOp2P06NGAOWJn4EDb6kVZ1seqDXLo7ZguLkrxRMtQ34c6+ClhvLN7z2bTmE0EuT/NyavxLN2/FAraKF0Rq8Oywq+cOW/5fmX8xTrNvzLulqKNNSGEYNSoUXTq1MlqeW1Cc0NCQjhz5gxGo5EzZ85YaRbVFXVsCNSQ48aPKkDqwKJFiygrK2Pq1Km4ubkxdepUysrKWLRoEYGBgZw/f54dO3ZQWlrKjh07OHr0qCJc5CZFjQWdRkdb/4481WUGbu5uJIh3Gb1pNMdyv2DFqRWsOLWCNF35TsSw/4J15+FAX49q19uLnDsi54/cbcJDxsPDg0OHbpsZY2NjmTFjBklJSZhMJpKSkpgxY4ZysbW1pDyYTVwTJkygY8eOaLVaOnbsyIQJE4iIiHD6eZVHLWPfNFBNWHUgJCSEgwcP8umnn2Iymbh+/TrTp09X7uZefvllRo4cicFgQK/X4+7uzqpVqwgNDeXmzZs2Hyf3QAw+g0LrNMctF8wmrNTsQjYdL1SWy0714G4tlWWytrHxucU8+PGLfH12E/d4nOeNxzfTs2XPSv0i1UVmlc9ob6w0xRwUFxcXK5/YnDlzKCwsZNGiRcycOZNVq1YRHh7OnDlzAJg7dy6enp4IIWrlgG9oAa36Y5oGqgZSB2JjY9m+fbuVlrF9+/Yq744s/4x1/WPW5kI3b3hXKxOWZXOqAZ38GdDJv9IoKQ+9B4F+nfnj4D+idSthxPoRjP2/sVzVxCraiOw/uVNoatpMVlYWbm5uVu8XLlzI/Pnz8fDwYP78+SxcuJCsrCzCw8PRarVW2fD5+fmEhoYiSZKSuS4TFRXFhg0buHz5MiaTicuXL7NhwwaHlUXZu3evzSYp1R/TNFA1kDpQ3d1Rbm4ubm5ufPPNN0qkS2hoKOHh4QA8+uijHDx40OZj1dUXUh7L/uhgXeX38KVMRSNpWTaaj4YOxLd4PGeLPubLn74ENNxzYQxzHp5DsVdrm4+5/ZJZC5KR/STyMR1V8fduwmAwVAjE6NmzZ6XvU1NTGT16NKNGjaKkpMQqv0aj0eDr68uKFSsAiI6OdupFOzY2lrVr1/LFF1/YFCKsFolsGqgCpA5U90czmUx8+OGHVsLls88+Y8SIEQBcunSJDh06VNoXoibqWhrdsvKuZYit5bLyF3IvF382PL2BD4Z9wFMxL3M07SjjvxpPM70/HZr1wahty4pTJwGqjNgqNVIh3NfymI6ssXW3UP43oNPpeO655wgICFCq/qanpysh419//TWtWrUiLS3NKq+muLiY/fv3M27cOFatWkV0dDRBQUFERkaydetWJUrr97//vUMu2lFRUfz5z3+22SSlFolsGqgmrDpQ12iVwMBAioqKHFJ8US6eN39EN9zc3NixY4fN+x6+lKnUupqw+pDy+qPdSRX6jXRo3oEHtO+S+EoiCx9fSHGBYN/lGE7+upFA90BmPTiryoitC9lGZVzL+lrya0dHa9lD6w5da96oEVD+BuKJJ56goKCAlJQUTCYTKSkpFBQUWDU9E0JUSMqUzVfTpk1TNJohQ4awcOFCMjIyMJlMZGRksHDhQistoK4kJibywAMPWC0bPHgwCQkJlZq1alskUqVhUDWQOlDd3VF4eDgLFy6kX79+yroXX3yRwMBAFi1apDg1MzIy6nz8sLAwpcgeQElJCUePHiUsLIzo6Ohq97Xs+VH+NVSdBOih92Bqn6nkpA9ix69RnMs+xPTvphN4MJC27oNwPXW/sq1ZIxmGUVTUQGQc3XfEXsLXfM0/Xx3HTz/VvQJAQ5CQkGBVzFMun5OQkABYl1OxRHaqL1++XFm2detWvLy8cHd3R6PR4O7ujpeXF1u3bq3xd1UTQUFB/PTTTwwbNkxZFhkZiU6nIzo6ulKzlq1FIlUaDlWA1IGaErJmz57N1KlTFZNCWVkZixcvVqK3ZLtzXbEUHjK5B2JYdgCSkpLYuXOnXeNXhyRJPNX6LzQv+JXhDyfyZtybpBi38X8TPkYjmRXakvQkDmdYR2GVL39Svu+Io6v81oXTp0/TrFkzpcJuU6CyhEKj0VhjoqEQQtFa5ACN1NRUXn/9db7++muAShNk60pERASvvvoqvXv3VoTFokWLCA8Pr1OklVqzq3GgmrDqSFUJWSEhIcyZMwdPT0/A/CdcunQpISEhSvSWVuu8i+WuXbsYOXJkjdtZlms/fCmTCasPWZmZarqgayQdr/R7hU+e/ISM4l/YnrS92u3l8ifyQ+45IvtnGosmkp+fj9bFvaGnUS/IZi1Ls9jSpUutckqWLl3qkGOFhITwyCOPMGrUKFxcXBg1ahRlZWW8/fbbVttZOu2rSiRUc0QaD6oG4gSGDh3Ku+++W2G5HL31xBNPKELEkX1EZHbt2sUbb7xR5XrLcu3lneqVVdutjDTdNlacOolJmGjr35HFxxZzpegKYDZhpekKceHxasc4lpxFmUlU2ncEHN97xFbGfrKXDTMGVho63ZRCfmuLJEkUFRWh0ZjvK41GIwaDwSG5MrGxsRw5coQdO3YoGsjIkSOJjIzkb3/7m7Kd7EusrrCjmiPSeFAFSD0iR29JkoROp1NanjoD+c/lMyiUncD8ETHVXvwsNRLLEF+ggmMdzOG+s3uby7L848B2rmQmMbv3bMBswirNyCSHnGrnWGYSigZSmeByRFFGe1iy63ythGpTR/59lG9T4AihGRUVhZeXl1WDrQ4dOvD+++/zxRdfKObegoICli5dWq2QUHNEGg+qAKlHLKO3SkpKeOKJJyrtUOcsqgoDrkwjKZ9ZXh5ZAwHwbObC9dx8en7ak/Y+7Skt8adY44cHNZvSymPpKymvlRy+lFmpMGtImmI2e0NQvoSPEILLly9bvbekOiEh/49u3LhBeHi44u/R6XTExsaqWkg9ogqQekSO3mrfvj3Jycn1Kjxqg6yNyK/ButdHscFopYHkXO+PpvMe4pPj+f7n7ykwmJ3QntIWZm9/muAOwdwsDQRqvou3LBXfVEqklO+oCLWrHHA34evrS25uLj4+Pkr7X0tBEhcXR1hYWLWJhHLNLoPBgJubG4sWLWLx4sUUFxfXuVeKSt1QBUg9Iv+o5TpFcmZwXRMEbaG29bTKm2xs0Ujcdd7MG/w6rw9+HYPRwJ+/2sq+y3Hk6Q/y9eWv2fzzZgCOfvkwT3V5StnP3LxqSpVzkfuzy1hW/QX7G1c5k6o0kzvZh2ILlfWOd3Nzo6SkBFdXV6ZOnUpiYiKff/45EyZMwNPTk19++YX27dsr5i05UCUnx2wiffPNN5k+fTrPPvss48ePZ8qUKUyaNEmNzqoHVAFSz8gJUo8//rgSLtkULiqWF/JNx69YLbN0duu1etp7PUhQs0Bycp5h+5+Hc+L6CSZ9OZcjyUf4etzXyoW1puZVlgUbZSasPuTQxlXORP5e5366i6XTRzTwbBovJSUlyvPKlSvx8/MDzNnycr/4q1evKjXAYmNjycrKQqPRsHbtWiIjI1m2bBlffPEF2dnZSJJESUmJ2lGxHlAFSAOQmJjIyZMnmT9/PqtWrXJ6kyl762lV1n2wsuXlyWu2izWnzeaJNn7tyc2+xIIfFtDWpy1g1kBO5HlQVeOqazlFFYTEnVhP64EHHmhyCYzORC4EWf5/UVZWRnh4OD4+PgQEBJCVlcWUKVPQ6/UAivBo06YNer2+UUVnWeattGvXjvfee6/B5+QIVAHSAMg1h7Zv386uXbtITU1l8uTJ9XJsR5nLyl/ILaO2ZI3EO38Es3uPAiDjah8uZOxn9eHVfDfpO/q36c/3Rw6Z2+tWgUlU1EDgzqundfr0aXr16qUKEQvKJ0IaDAYMBgOpqalcvXqVFi1aYDKZ0Gg0TJkyha1bt5KWloYQQukjD9blUhrq4l0+JHnZsmVKj5WmLkRUAdIARERE8OKLLzJ+/HjmzJnDuXPn6vX4PXv2JCExkbVBQTwy7a9QyxDVAZ38OXyJKp3dAPHn06zeXyjew6yBs/jP6f8wdstYnrzvSX7V+nIiz4sVp/zrvYVuZZnxskBMzS6s9xpdp0+fBlTnuy24uLgwYsQIvvjiC4QQrFmzRlknJ+zKlC+X0hAX7/IhyX369Gk0mpG9qAKkAQgJCSE0NJT169criYReXl61ajZlD3JI5dmzZ0ndvJlhrUugRb9aj2OpgdSUO9LXewLzBnblpR4v8bv1v+MfR/+Bq8YXV2kiz3aeTkl6nh1nVHsso73Kc/hSZoNpNkt2nVd7wNdAaWkpX3zxRaXrNm82B2wYDIZKy6U0xMW7spDk1NRUzp49i1arbdLO/loJEEmShgIewHdCiBqz4CRJehJYCmiBfwghKhTVkSRpPPAOIID/CSHq1oKviaHT6fD29mbTpk2kpqby1ltv1ZsAKU9oaChLdp2v1T6VlYgvH6n1XVZ2hf3aeLfhx+k/svfyXmZ8+xqn8jfSd91mWrp3JuOHx0jJc2XFqRYAFDe7BAyt41nZRnlNBMwayOFLt8/jWHKWU+dQnhEjRrBr1656PWZTojozbGlpKWDWUlxdXWssl1IflA9J3rt3L8uWLUOv12M0GikoKGDGjBmEh4dz7dq1JiVQbK6FJUnSYmAQ8CDwlQ3ba4HlwCigOxAiSVL3ctt0Ad4ABgkhegB/tH3qTZuysjL0ej179+7l7bfftuoMV5/IDvbIyMh6O6YkSQzrNIyH9MuY1vE/jOsyjnM3jvNe3HvEXV6PpkzDC0Ev4JY/yulzKV+ja97wrozr19aqTleZqX6j5Hbu3EnXvoNUc1YVlC9NXx6NRoMkSdxzzz1oNBrGjx+v1NSaMmUKkZGR9dqYSs7/iouLw2AwEB0dzc2bNwkPD6e4uJiJEydSWFhIcXFxk6vtVaUGcktgvCuEkOtRtAPG33pti7evP/CzEOLSrfHWA78DEiy2mQ4sF0JkAwgh0iqMcgczZcoU/v73v1NaWsq6desaejq1drBbmrBSswut1tlaxyrAvQPvDf+Ee3iJ5i2OsPjHZbx94G3+duhvuHi0550D/6Wl5+3+7c7wldRUKfhaTpFDj2cLM99fx7zhXVUhUgeEEEoY79NPP83WrVtp3drcSTM3N5eFCxcye/bseptP+erdJpOJ119/XakBtnXrVhYuXEh4eHijix6riepMWP8HrJck6VvMmsRnQBzgBnxqw9htgCsW71OBR8pt0xVAkqQDmM1c7wghvis/kCRJrwCvALRq1Yr4+PgqD5qfn1/t+vrAljkEBASwZs0aSktL+fbbb0lMTGT+/PnV7uPm5ua0c5M1ERcXF2Yt/4b4+GsAJCeXKq9lkpNLGdPF5fZ7TSk5kpE+euvtNhuNzP3UbIo5l2XkuxMXud/vtmC5mWskOfkm8fHXuJFaykD3IJ7SLeH+wIt8ff1rdl6PI2rvUWZ0msHYNmORJInzWaXKZ5CcbDZXlJ+fJVV9F/J5yWNYnk+fbrDlgnl5H30JnxcV2fS5V/ZZgdmsYuv3Zjmv+Phr/GHNTj55pWJJmLi4OIf+Fmoaq6H/U7VBp9Nx4MABJElCr9dTVFSEEAIhBHq9Hg8PD9avX8/YsWPrbU733HOP0oZhyJAh+Pv7K59pYmIiJ06cAECr1dKuXTtCQkJITEy063Pfu3cvn3/+uVJnbNKkSQwd6mCTsPzBVvUAJgF7gNE1bVtuv3GY/R7y+xeAZeW2+QbYAuiBjpgFTvPqxu3Xr5+ojri4uGrX1we2zCEmJkYEBAQIvV4vANGiRQshSZLA7Auq8NBqtUKj0QghRJXbOOrh/5sXlHku2XW+wtzLL1uy67wYv+pghe3+sGan1TaV7ScvK/8shBC9o+eIwZ8NFi0/bike//xxsfjHxWLSpr+K5SeXi+Unl4tJm/5a6fwsqeq7sDxeVecoL3904Z5qj1F+zPJYfg62jlHZ51HZ+A888ECl32FVy6t6CFH978penP2brexh+X9ydXUVgNDr9WL06NEOOafaEBMTI3r06CE0Go3QarXCx8dH7Nu3T5SWloqAgAAhSZLyH+/QoYPw8fERgYGBdh2vY8eOyjH27dsnOnbsKGJiYmzaHzgmbLjOV2fC0gEjgTTg98A8SZJeBt4UQvyvqv0suAq0tXgfeGuZJanAEWF2yF+WJCkJ6AL8aMP4TRpZNZWLweXm5vLaa6+xfPlyK2e6RqPB29sbnU5Hq1atlOXOLH9SVtY4cis88n/PD//vE5YcWsJre14jQB/AIN/3mN3b7KwvSXdcJnpVZqyPdieRV2RQeqQ0tqTFynJIHnjgAU6fPn3Xm788PT2V9tHNmzfn119/pVmzZkoFiPoiNjaWqVOnUlxcrCzLzc1l/PjxZGaaf2dCCDw9PcnLy6OoqIibN2/a1TeovkreV+dE3wr0Bn6D2U/xLjATCJMkyRYT1o9AF0mSOkqS5AI8D2yr5BjBAJIktcBs0rpUqzNowoSEhHDlyhViYmIwGAx88MEHFSKxTCYTM2fOJCMjQ4lfB7Oa7ixyD8QgSZJDLkCWPdA3Hb9SoUd6db6S4mY7WPm/lbh7uDPy/pEc/vUwx3JjWHFqBStOreBE3gZO5G2we45Q0Zk+oJM/G2YMZN7wrni76xtV06vynD59GiEES3adRwih5JTExNhXgaCpU1R023clSZLS58RZN15VMX36dIqLi5k1axY5OTmMHj0agIyMDOVOXpIk/Pz8lFbCzZo1IyurdtF/lg24zp49WyEZ0xnRZ9VdhdoLIX576+J/GEAIcQ14WZKk3jUNLIQokyRpDrATs39jnRDirCRJf8WsHm27tW6EJEkJgBH4sxCi8ZVbdTJyfawuXbqwdetWZs2aRf/+/Zk/fz7Z2dksX76cwMBAqzsHZ/YSsSQyMpJ5wyuPua+JMV1cCA6+HeprmXwoL6vujt4tfxSze5tttve43sOzic/y9c0VnM9qR+tmrcnIdcfbJYDlR5fTullr7vG6h9bNWtO6WWs89B51mjOYtRHLxEJZA7Hs1tjYNJHKkH8vUVFRJCQkIkTl0UvOvBlpSCybtd24cQOwLuJYXxQUFPDKK68orayvXavoJxNCkJ6eDpg1p4EDB9YqCissLIzVq1dTVlZGUFAQ6enpzJgxg6lTp1JWVoarqyujRo1yePRZdb+c1ZIkydXulliuEEKcsmVwIcS3wLfllr1l8VoA82897moiIiIIDQ1l2LBhfPfdd3Tu3BkfHx/69u3L3r17Wb16tbKtq6srDz30EAcOHKgwjjNNW/ZSvvwJVF6QsTKe7vo07w55l6/PnqJFsyKu3bzGxexUbhoy2Z1a8cLo7epN62atcStzIygjSBEs9zQzC5nvM7+l7Ggg/8srQsKsaa04ZU6EPJSZiUsLmDf8TWWuVXVxbOyEhIQQEhKiFHTU6/VWNaac3dhMxUxqaqpSdRgq/58WFBRQUFDAqlWrCA8Pt3ns2NhYVqxYoYx54cIFTCYTRqMRX19fLl++zBtvvMHKlSsZMcKxRT2rFCBCiGXAMoceTaVK5Oz0q1evkpyczIIFCygtLcXd3V1ZL1NaWmp1FyOXhQfHq+dmc1aM3WPPG95VuRBD5cmH1eGideEvj/8FzxLrUvMmYWTSo37cyL/BjfwbXM+/bn6+eZ0bBTc4l3qOE9dPcCP/BjdLrc2DX50HDVqa6f0IbNaDJU9uJMAzwGbfSnXlUKBxlpuXhcWd3mVRjsCSEwv1ej0GgwGtVuuUNtI18e233+Lr64vBYMBkMlX5X2rWrBnt27e3EjY1MWfOHEwmE25ubkobYjB/BtnZ2fj5+REUFMTEiRPZtGmTw84J1FImjQpXV1defvllq3DeJUuWsGDBAqvtunfvTpcuXZRGPJaJVe7u7la2X0fiDO2mfL8Py2UaG3wwGklLq2ataNWsFQ/yYIX18fHxBAcHA1BQWqAImk8PnuChThKfn/2WEmMBNwrPExwTzORekzmTZ77oyBqJuW/JwApjV1YOxVKoxJ9Po9hg5FyWsdELFrizepgIIRThAbcFZ0MID5nKzGc5OTk0b95ceS9//u7u7lZFIatD9pXITvp27dqRkpKCEAI/Pz/FUV9YWFhlCZi6ogqQRsT06dN57bXXAJg5cyarVq3itddeY+bMmVbbDRkyhFWrVuHj44O7uztjxoxhzZo1PPPMMxw5csRpAgRu/8BlEWevVmJJea3E0d0HPV08uc/vPu7zu4+j5wOY078rhlyzSv9z7lE+uzCLNUfWMKVzDJ56XyXaq6a+JZZU1lGxj/6a4guSlzdW5O/zTtdQGhO+vr6KcDGZTCQnJxMQEED37t1r2NMad3d3WrZsSUpKirIsJydHqUTcsmVLh/u7bC5louJ8oqOjmTlzJgsWLMDT05MFCxYwc+ZMoqOjrbaLi4vjtddeIzc3lxs3brBu3TpMJhM7duzggw8+qNc5OyNUVI7SSs0uZMLqQ1aRW7ZmuNeWzj792Tx+M5eyL5GUa7vAULENR9ve7xSaN29eQTORJIn09HTy8mpXYLSoqIhffvnF6qbOZDLx4Ycf8v7775OWloaHh4dDS6RUlwdSrWNbCLGkuvUqdSM6OrqCwCiP3JBq69atREdHM2TIEKU/dGBgYD3N9DbzR3SjVchCpJmP2m3usLzrlfuMOPtOWA4F1uR407J5Sy4U70Hk3azRhOUIqvKjyM/1XcjRWezcuZOHH36Y48ePK6aypmgaqw80Gg1Go5ErV67UvLENPPXUU0iSRM+ePbl58yahoaFERUU5pGBjdfqMl10jqzgNubqnXKRt7dq1lJWV0a5dO6WFZ0PRFC8Mfb0nADC3X1c+O/4ZZ64fZnjAn5jdOxionQmrtlRVVl42IU1YfedoQx9++CHBwcHKuVXlKHZ1dbXZgXwnotFo0Gq1Vj4ce8fz8/PjzJkz+Pubb4oKCgqYO3cuYF9flOqisOqvPKtKrbAUHJGRkUydOpXk5GQCAwNZtGgRoaH1XxG/OMU53fQsI5sq63zoqOS+E3kbWHHKn9E9RrP6+KfEpszB//h09Fo9aborrDh10mlNryorKS+ftxz67CzTXUNSXFxcQYi4urpSXFx8V2fR1zWsuqqbN5PJREZGBmCO4OzevTvLli0jNDSU8PBw5wgQi0m5AdOAHpgLKQIghJha56Oq2EX56p5BQUHExMQoyxtCgFjiqFBJc+dDa0e6pRApNhgddmHt6z1BcZpfSW3NunOz2HBqA9tCtvH9kQvM7j3QoaVTLKmpuVVTyz2pDXLkUHmnfVUXw6ao4dYXVX0uW7ZsYcyYMQDk5eXxl7/8hSFDhvDZZ5/Z7ZuyxSX/H+Ac5rpYfwUmAvXXjUWlUuQEscZITf0abMUyeQ9qnztSV0p0aQy77wXOZO3msc8fw1cTrGggzm6/W14bkTUQWZCujL/YKEOAHY3c79zyoihJEiaT6a7WTuqCLDxkQkNDmTJlCiNHVqzyXFtsESCdhRDPSZL0OyHEvyVzVtl/7T6yyh2FXA7+TqCv9wTwhrcff4XR60dzrmgV1+Lb46d/gEfajiRA04MyU1nNA9WByrQRSw2ksdbjcgbyjYgaUmwflonG8nsPDw+2bduGp6enXWPbIkBkg1yOJEk9gRtAy2q2V2lgevToofQ9l2moDNzGjOWdvWVDrMOXMgnu1pJB7QZxcsZJfrd2CV0Dr7PzwveE7fgGgNWJHrT168r+m51o69OWQO9APPQeipYC9je/sqzJVb7JFTTehERnU1XCo0rllLcICCFwcXFBkiS7c8ZsESBrJEnyxTKou34AACAASURBVPxP2AY0w1n6u4pDGDJkCGfPnkWr1aLRaDAYDA0qPGJjY4mKiuKqb296Rk83VxVu0a/B5gNUMItZFnq0LPLYzqcdXT0nsGHcQD7ancS4/u5EfLsZ3+aX2XJ2H1+lfYVRmD/b4A7BtNIOZ1LQJLxdve32mRQbjEoYs2UdrvJzV1GpDUIIcnJyePrpp/nmm2/sGssWAfJPIYQR+B7oZNfRVOqFuLg4JEnCaDQ2uNYRGxurOPV9Bj3I2bNnCQ0NZeqSzdBIzBJyS175grzpuHX8vU5z+263rU9b+rR4innDu9JBl8SM4ECOXTtG3OU4Ys7EkGBcStCa5XTz74aL6Ij+ZB9SclJIOHW7k7OjfCjHkrMqlIJpCiVTHMHdHuprD7NmzeK5557j2WeftXssWwTIZUmSvgM2APuEGgLR6ElMTKR9+/YkJyfj5eVFQUEBnp6eFXqN1AdVRYRt3ryZtfPs/wHbi3xXb6mBWBZ9hOrv9D30Hjze/nEeb/84b/3mLeZt2USZ2/fEnoklqyiOE9cC6OzWGRdvFx5s9SAPtn6QojTHCPUyk6jWN3Anayh3e6ivPaxcuZI1a9ZgNBrtaloFtgmQ+4HfAv8PWCdJ0tfAeiHEfruOrOI0goKCOH/+PIMGDeLYsWOYTCarbmgNRWN2tFtqIAnXcivcyduCJEm093qQecOfY8nIJcza9A9KXQ7x35//y/v731dMXS4ad75M6cWDrR7kfFYWXvoWcKwrrjrXSnwoUBdtpXxPk/IFHe+EDPfyzmEV25H1AHstFDUKECFEIbAR2HjLF7IUsznrzstsukOQe4tEREQwbNgw9u/fz7Rp00hOTm40MfS5B2Jwc9vM9OnTayzd4mzKl5rfdPyK3VE/LloXevoNY97w2cTHxzNg8ADOpp3lf7/+j3/9GI9Gl8LGhI3kFOcA8M0F6OTbiZYuD7Pu9/9Br9Xb5UOx9J8AFQo63gkZ7kajEUmjgUbym25KmEwm/Pz87G6wZVNpRkmSfgNMAJ4EjgHj7TqqilMJCQnhhRdeYMqUKaSnpxMUFERUVBSTJk1SBIi3t3eti7U5mpKSEpYtM7ecaWghArdNPpYdCMtnvtcVN50b/e7tR797+5GbMZh5w7sihODt7d9zreA8He/J4MdrP/LV+Q2sPPYof3jkD3afjyXbL5Vy0nBbIFlqXNB0/SVLdp5TXv/z1XFWveFVqqYuLXMrw5ZM9GTgJGYt5M9CiAK7j6ridJ555hm++eYbPvzwQ6U0vMlkwsPDg5KSErRaLYsXL+bVV19t6KmybNkyRZDMp2G65FnercsaiLPzDyRJwtf1Xi6X/Bdfb3+Gew0nKSeVxccWU0SRVV8Sex3vpcaKCZi2+nmaCqdPn6ZXr16qELGB/Px8h4xjiwbSSwjRsLeqKrVm7ty5BAYGsmDBAl599VVcXV2V5QsXLiQ7O7tWbTPrk7KyMqWDXENhWRHXkZpIZViWUUlJ6ciys8+x/OByxndcRhvP+5ndu6vTyqjI1BTRBU1DSzl9+jRwO/lQdbQ7l+rKuYcLIRYBUZIkVTAyCiEcq2OrOJzypeHbtm3Lv/71Lzp06EBISAh///vfMRqN6HQ6qz7Z1VFftYhsnY8zCPT1qDL3wtlcKzvO/MfmE3smlpiU2TzgNxzXUw87vYxKTRFd0DS1lDupy2JjpDoNRK53daw+JqLifBYtWsTcuXMxGAwsXLhQWe7r60t6enqVd/3O7LleHeW7Hy7Zdb7ejm0r1bXkrYum0td7AvMe68qs3rMYsHokuy7+izZeEkEes5nd+yGnayLOQK7vlZxs9sNUlq/iTCy7LJqDCYKdery7ierKuX996+VPQogT9TQfFSciF18sb7ry9PQkKyuLp59+mlOnTpGcnIwkSUrxOq1W2yjCJSMjI3n77bcbehoKNbXktYd7ve7lsQ7PcjGvLd8mf4uLNp4be35LVp4/K04FAM5tdOVI5Ppe8fHWkWAyTVGzqQ13cukVW3wgiyVJag1sAjYIIc44eU4qTiQkJISoqCg+++wzbty4QUREBGvXrmX37t18+OGHtGjRAoDnn3+eTZs2IYSga9euFWprNQS5B2KIjIT5I2IatQmi/AXxuxNFVhFQtt5xP+QzkYd8JvJYjzye+TyU6APReOiaUyZG8mTnJ/EqafzCQ8WMpRY0f0S3Bp6N47AlD2TILQEyHlgtSZI3ZkHyN6fPTsUpJCYmMnjwYPR6PXC7r4jJZEKnM/8k1q9fT4sWLcjMzKSgoPEF3jXWvhCVaR/Jycl2aSUP3fsQ8x/8P9q2OcOSHzby/S/fs+HsBlo2b8kD/4igs29nOvt1pq1PW3Qa8/dnTxJifWBZtr686Q+ahsO+rnh5eTVIVQhnYFMeiBDiBvCJJElxQDjwFqAKkCaK3BJ3yJAhSl+RuLg4wsLCOHPmDGFhYaxYsULxfcgVO3U6HYGBgaSkpDSYSasxZ7PXFUufgGUdLrkqMIBO48LzPZ/n+vW+/HFYF07/eprJX6zBX5/I9oTtGEwGvF29eabrM4zrPo6enoNx0bpVerzGgGXZ+vJBCivjLxJ/Ps1KwNxJwmXbtm2MHTvWIXkYDY0teSBBmJMIxwKZ/7+9Mw+Pqjwb9/1MZrJDVvYQIrIIoUIRFzDfp4CItAVpXWhAUOHTIopW+4lA+tOiBjUW+ikolDaoCIkorUirKCoJFRDqAiiQCgiBsAZCWMKSZeb9/XEyw8xkss9MJuG9r2uuOfOec97zzBDOc5732TBqYjV98oCmwTi3xE1JSXFkqqenpwNGMcYZM2awcuVKjh8/Tnx8PMeOHcNqtXLo0KGA8IeAYTkFQgJiY3CP8nLOiHeuCuyMiNC3fV+uiryH5fcOpKSshJx9Oaz6YRXv/+d9ln2/jA4xnYgP7cKeNf3oHtedvUEFvL51j2MOXzbFaizuWfTutASfSVHRJaurunDjQLSw3amLBbIYeAcYrpQ67GN5NH7AU0vc9PR0x3heXh5btmzh+ecvGZn2sgdxcXEUFhYGhBKZP39+oxXI8OHD+fTTT1FK8TsRhg0bRvSv/uAdAf1EZHAkI3uOZGTPkSz4xQLW5a/j6TV/5bsTn/L9kY2EmcPoHjKMO7s/RdsIw6JpjtFcLRlnH0lzap5VowIRkSBgn1LqFT/Jo/ETNbXEdV7ismM2mzGZTISGBu6ySH0ZPnw4a9ascXxWSrFmzRqu6vYr/B3dZH+qdm9hW9+QYLPJzNCuQ/nuys78quvTDOhRyFvb3uLD/I+45o1rGJgwkIEJA/n2TImjaCM0n4gu9yKR7o22mvvyVkPIysqqtuq1r6lRgSilrCLSWUSClVJl/hJK0zTYGz/t3LmT4cOHM23aNJ555hnWr1/P8ePHueWWW/jiiy8CwvrwBs7Kw5kj2/6FyGTaDL6Xx4e96XM5nJ847UtY3ggJNkkQNyXdxE1JNzFhQSbn41bz3rb3WLdnHT1aDWd0r978d5f/pk1EG9Ztbh7FFT0tbzn/Vi1heau+pKamMm7cuCZZ8qpTPxBgg4isAhzhOEqpuT6TSuN3srOzHSG9KSkpzJo1i4yMDGbPnk3v3r2JjY1l+/btrF69mpSUFIKDg5taZJ9TVlZOZGQkz73v3zQoZwtkzJ+/9EoZlRhzZ5bcvYLNBzfz/BfPs2bPCu58720AktskU0EcD6/pQ5foLkQGR3qcI1D8Jp7KrsCl321B7o9NJVqT0VT5WnVRID9WvkxAK9+Ko2kq0tPTyczMdCxbPf/88wwdOtQRmdW5c2eX3gEtKRSxJvwdwuzcwtaON9fEr0+4nn+k/oOXP9lOSu+zrNu/jtz8XD7f+wU/HP8XAFfFX0VK5xS6RHehfWR72ke2p0NkB44dPE+5tRxLkMVr8jQET2VXnMvO2KO3Ljes1ks9X/yVa1KXPJBZ/hBE07TYc0OcSUlJIS/PqGhz+PBh3nzzTYfjPTo6uinE9AuBFCrsvt7vbI04t9qtL2ZTMAM7D2Rg54FMT5nOXQu/4MmRIazLX0fu/lze/8/7FF0oqnLec98I8eHxlxRLqw60j3DarlQ27SPb0zqkNSLCt2eW8/rWOPJP5Tta+1ZtnFU/y8Y5jwRwKXxpfL+WmfkdaNQljDcH8FRMcYhPJNI0CZ4c5+vXr6dXr16O/QkJCWzfbhQi6NOnT4uIY68JuyJZsHABjw/7k9+v7x7i6x6h4831fpOYua7TdVzX6TqevPFJAEorSjl27hhHzh7haMlRln61jeTONo6WHOVoyVGOlBzhh6IfOFpylDJrVRdpqDmUDpEdUNZozlUkYTtjo1VMK65udzX9Wg1mSj/jb6shEWHOeSTOeHKua3xHXZaw/tdpOxQjH6TpSqVqfEJtuSHu++2WCVwqtthSW4wWHivk6quvdpQKDyTcfQF2C8U5CbGhhJhDSIxKJDEqEYC9Bb143EMtK6UUxReLLymWSoVjVzL/PrCXXUW7KCgu4IPDHwCQFN+DPOt/0bddX749c8olIqwhWfR2i8SuODw1zNJ4n7osYX3jNrRBRP5dl8lF5DaMFrhBwF+VUi9Wc9wdGLW2rlVK6eq/TUBtuSHu+y0WC6WlpYSHh9O2bVsOHDhA27ZtOXr0aJN9B18SiE2KqvMD2Lf9Fc4qIsSGxRIbFkvvNr2r7LfLlZuby8CUgfxz1z/57UfPkPnvTBJaJ3BN7Hh+3fPXxIbFAo2zSC4pDc+RWpcL/irgWJclrFinjybgGiCqDucFAa8Bw4CDwFciskoptdPtuFbAY8Dmesit8QE15Ya478/Ozmbs2LFcd911FBYWAkZ27Q033MCmTZv8Iq+/sC9lBWr9repwvmmuP1QeEE/kIeYQ7uh9B/sP9iG5az6z18/mg/wXaPtyBimJKYzsMZKNJw8Tbo52sUrsfHumiELzeeB+/wvfzFBK+Twyqy5LWN9g+EAEY+lqHzCpDuddB+xRSu0FEJF3gNuBnW7HPQe8BDxZR5k1AYA99jw3NxcwfCT9+/cnOzsbk8lUpzkeeughFixY4EMpvU9zUSLu1snH3/4YUBnOIsLwbsMZ3m04T7z/d8KjvuUfu/7B/35qrJi3DbuC9q3uYFTPUQzqPIggk6HwSo/vouxE3fwbngo25psu9Ya/HJIOrVYrY/78Je9OHuST+euyhHVFA+fuBBQ4fT4IXO98gIj0BzorpT4UEa1AmhkPP/wwr732GiaTiby8PHbt2oVSiocffrhO5zc35VEdiYmJFBQYf+pPYHR+PHDgQNMK5YHq/CXQtFFLnSP78PiQX/H8kOfJP5XPE6sWs+PkWl7Z/Ap//PKPxIfHM6rHKH7Z65eU27rUeV5PBRtzc3MdPUkup2Wte2bMYekLVUsYZmU1LuKwppa21wIFlZV4EZEJGA70/cAflFKNCsERERMwF7ivDsc+CDwI0K5dO8dTrydKSkpq3O8PLhcZ7rjjDg4ePMiHH36I1WrFZDIxcuRI7rjjDnJzcykpKXEc68nBHhMTQ3FxMWBYI6NGjWLVqlX1Uiy1fUdf/A7O8919990cP37cZX9BQQFt27bl3XffBaCsrKzOMuTnl5Gbe7jKu/O+2s71RNdIKz+1XNqXbyrjp5bSS5+pXcbarl/bec7/FjV9r86lKXSOSOHWPuV8VfwV60+sZ/n3y1m8dTHtozsSJh0o2JvI/r8nEmwyElrzTlo5sjKIvJNWulqHO+Zyv0Z1MviKD/eWUeaUlvKfk1Z2RVp5f7dRBWF3sdu/SyNlys83ouGc5zh16gJXXdGH3//+9yxdupT9+w/QpUsi99xzDx06dGjc/w+llMcX8C0QW7n938BhDAXyHLCiuvOczh8IfOL0eQYww+lzFHACyK98Xay8xoCa5r3mmmtUTeTk5NS43x9oGS7JAKhWrVqptWvXKpPJpEREBQcHK0DNmTNHYSyPqpiYGGUymVRMTIxjzGKxOLare9VFhuqobe66XLOm42699VYlIgpQIqJuvfXWWuWdu+YHj+/u2zWd64lHF31S47Fz1/zg8rp74cYqY6/n7KlV/prkcv63qOl72a/nTGlFqfp498dq4IIxKvTZOMUfUJZnLWrZd8tc5nCXua4y+ApP13CW4e6FG2s9vr7Xc5/D/m9Zn2sAX6ta7vFKqRqXsILUJStjDLBIKfU34G8isrUOuukroLuIXAEcAn4NOCp+KaVOA/H2zyKSC/yv0lFYLQ4RYeLEidhsNiIjIx2WycyZMx3HnDp1CqUUp06dcoypZuBrqAlPhRqHDx/OJ5980oRSeaamiK5AIDgomOHdhrNz3xWEmJOIjDjD4YubmZY7jR/P/siuM/D61jhHCHD/1mOaWGLPLMj9kf/svuSHcQ83/jq/eeVW1ahARMSslKoAhlK5hFSH8wBQSlWIyCPAJxhhvIuVUjtE5FkM7baqMYJrmgdms9mlBIrFYiEiIoLS0lIuXrxIdHQ0p0+f5vPPP3fknwwdOtTZkm1RVFfA8eqrr3aECj8BdP/Vb5skedFX/OnTXeTnGzfOhlYattPWejs3xMdx1/XhXL3gav6585+MSVzClH49A75M/cVyK7/sHuzSG95ZUY/5c/MoammnJkWQDawTkRPABeALABHpBpyuy+RKqY+Aj9zGnq7m2JvrMqemeTF58mRef/11R1dDu8/jwQcfZO7cuZw9exaLxcLw4cMpLy93tNm1vzsrn5aKs/KwY09evH/OiiaSynvYb5C5uYe5+WbvVBr+9sxyQvbGcXuf2/loz0f86+RrhG69yikJMXCtEGfcC0N6SoAM5EixahWIUipdRD4HOgBr1KXHQRMw1R/CaZo/9oZPf/nLXwDDmS4iLFq0iJCQEG655Ra2bNlCREQEBw4coFOnTuTn5xMaGkpcXBz5+flNKL1/8JSkeHpDFt8Ds2bN4vFhy/wvlB9oTBZ9/9ZjmNKvB4XdC1nyzRKOBh9hUp+XKT2+36cyextPhSGbUwJkbf1AqmSEKaUC+xtpAo558+ZV2zmwT58+LF++3KUGV3BwMOHh4ezbt88v2bSBTnPJPakP3sqibxvRlgl9J/BR/kf85K8/oVN4fzqFX4WRx0yjCjY2BzwVlYSGLw/Wl7okEmo0PsNTFeCKigqOHTtGTk6Oz+trBQUFBfQymT0L3mKxkPHRjiaWxn/UZJ2456wsHrWYh1a8ydbTfyZ333JiQxK4JWEy/eNHMqXf1UDLbeHrqaikuzL2JVqBaJoUT1WAu3TpQklJCVOnTvV5cUaz2Uznzp0DfqmsoqKC5557jseHvd3Uovic+t4QRYSe0Tey4M77ePDdv/Bxwau8++Pv2VC8iE3n+jOg4wD+c8bmsaR8S7BKqittb98+fOqCz66tFYimSfFUBfjcuXOICPPmzWP8+PEcOnTIJ9eOiIjg3LlznD5dp5iQJqclVjpuCO4dCG/oGsemvUX832fQv91QesXcxJ4zm9lwJIt/7PgHH2z/gF4xNzHqqinYxMbgToOJDYvl3LHjtVypeVBdaXswfqMV3xR43OcNtALRNCmeqgC/8sorjjFfKQ8wHPvjx493RIYFOqc3ZCFiLGm1NJ9IXXHvF+/cidDZSukedQPdo27gruvDWfTNIv7vywXcveJuYxKnLLY/fBNOTGgMMWExru+extzeQ8whtcprb6Z16XMRR4LOOqygQnMBRs61d/BkjZy5UO5ilXgz10QrEE2TU10V4NTUVIcT3WKxUF5e7tXrbty40dFLOpD9IJ5wdqw3l1pcTUFC6wSeHfwsrcru5qY+58ndnEvn7p0pvljMP7fvpnenIIovFFN80XjtP7WfrRe3UnyhmLNlNbdsDjOHVa9kQmOIDYvFVhpKl/AuxIQZnzf+uLzKPK9vfd2x3dhlNXdrxK407K2Swbu5JlqBaAKahIQEDh48SEVFBRkZGfTp04cxY8Zw9uxZgoIaF2GycOFCYmJiWLFiBUOGNM8Gm87Kw05BQQGJiYktWok4t7C13xCdI4/c+6KbTcFc16kP52PPc/NPbgag9FTN2fbl1nJOXTxlKBe7kqnu/WIxB04fYNuxbVWUT9buS3O2DevKQ1eMZ3LfyZjExLrNXzKl3yULxBvOfvcqxAeLz7Np76Xf52DxeRbk/uiV/BKtQDQBTUZGBmPHGhVwpk2bBhi5JOHh4Zw/f75Rc1dUVLB06VIXB35zw1151DbeEnBfunIet+ON6CNLkIU2EW1oE9Gm3udW2Co4dfEUcz/7ltHXRFN8oZiCMwX8/rOXmLVzFh8s+oDnBj9HYdAGXt+6xXGec694++f6WiTuVYjBmM8+tmlvURUF21C0AtEENKmpqYwdO5a4uDhOnDgBQMeOHRk/fjwvvPBCo+ffvn07I0aMaPQ8gYpzHs2rlcWIWor/xG6BgPFU7YwnK8SfmE1m4sPjaROWxHWdLim20ydu5GTxUpYfW87I7JHEWpJ5MiKDEd1GICKUHt/FlH6Xjm+oReLe4hdcLZBNe/GKFaIViCbgSUhIwGq1snbtWkek1rhx40hISGjUvLGxsTz11FPMnTvXS5IGFtUlYYoIc9f84GdpvIt7WO+mva77c38odNkfKD3RTRLEsHbD+MOdf+CtbW/x24+e5udZP+eaDtfw9E1Po1TPes337RnDp+KaMGkw8Mo4gs8U0b/1GBfrzB655g0FqxWIJuDJyMjgscceY+LEiRw4cIDExEQqKiqYM2dOo+YdO3Ysr732WpV+HpcDT9zakycqt1uCReLsJAZcIrUCEUuQhf/p/z988u+ejLh+N+lfpHP7O7fTJjSJTaevpVtsN7rFduPH0yEcOhNBh1YdMEnVTp/2el92q8XZYpnSrwelx3d5rLdlV7jOCrYh1ohWIJqAxx6hlZ6eDhj5G7Nnz66xf3tdyMnJYebMmaxcuZIdO2rO8hYRwsPDKS0trfG45ohzRJdzD+0nMPxNzS1CzRn3jPb2bi1tmxqTmJn404lM6DuBZd8t48V1i9l6dCvv/+d9KmwVALy2w4j4ujL2SrrFduPKmCsdCubkRRPRIR1qvIanelt2GpuxrhWIpllQXahvY8jLy2PLli08//zziAhDhgxh7dq1Ho9VShEWFtZox30g46w87DTXMGfwnNH+U0upSyn1QMFsMnNvv3s5eXwgjw/rQYWtggOnD5Dx2Tr6Jl1kz8k97Cnew+6i3Xy852MuVlx0nNsuuj2Z+UaYcKy5H1HB7YBL/VEKzefxZq6Ji9w+mVWjaQY4l1GJiIhg7dq1jtpb9ncRQUSwWCz85je/YeXKlS5zmM1mx43XXo7eZDI1S0ulukx3b2XAjxo1irNnjfDWJzB8UEVFRTWfdJliNpnpGtOVntEVPHStq8KzKRuHzx5mz8k9LFi/gRMXDxAbdZJ1+evAdogn+/0DsynYsYRVdsJ3v7FWIJrLFucyKhMmTGDBggWOm6X9fdCgQRw6dIhx48aRlZXlWEazU1FRQVxcHNnZ2Q4Hf2pqKseOHfP79wlk4uLiHMrDzsmTJ4mLi2vxSsR5eWjFNwXkx1kdy2juhSHrgklMJLROIKF1Alt2dwQMa2v17tXc99F9vH94Ble2vpbXt8Y7LBD3UGFv9UrRCkRz2eJcRmXHjh3Ex8cTGhrKoUOHCA4OprS0lI0bNwKwcuVK0tPTPS6j3X///S6lWO6//35efPFFv36XQOfkSc/lM06ePOmIFmtJTn077stoRljtJUWaX3SuSgOphjKi+wjamfry5YF/cjL6FH8Y/Calx62UnSjyerKiHa1ANJc1dt9KUFAQhw8fdnRCBHj77beZMGECJlPV6Bc7CQkJvPnmm2RlZTksEHviI1BlSUxTOy2x/4mdG7rGufhhNu0t8mqk2ISe/8eqI0+z5/Qm/mvpf5HU6hpCgpKrWCDgnY6NWoFoNFQtK5+dnc1TTz1FUlISu3btYv369UyaNAnAxQpxDjHev38/Xbp0cTicg4ODUUo5HNFms5mysjL/f7lminMeS0u0TuxU1/sE6m+RBImZX3aczen4Y+w8P4/3dr7Hta37MqXfFMcx2gLRaLyMe1n5mTNnopRi9uzZWCwWBg8eTGZmJlOnTnVRIM4hxiLiCDEeO3YsYWFhxMTEsH//fjp16kRxcXG1CiQ5ObnWUOLLiZqSIFuSEvGUv+INi+THi7nc1O0mvjm+nWPWv/Palg6O39Q52bCx/VC0AtFoqFpW3mazsWTJEhdlkZKSQl5eXp3mS0hIoKSkxGVMRKrNnreXadHUDWcFE3WjsWTYUnvHN4T+rcfw8E97sG77Sd7b+zTJMcncnHQzoC0QjcYnOOea9OnTp8rNfv369fTq1ctlLDs7m7S0NJeGWJMmTWL06NEsX26UmXAuSZ+RkVHlumazuYqy0VTP5WKd1BXnXh8rvikgISYcMKyZGzv+ig3FmcxYN4Pxp8YDrhZIY3vGV+8d1GguY+xLWjk5OZSXl5OTk8OkSZNIS0tzOS49PZ3MzEwGDx7sstSVk5PDmDFjOHLkCDabjSNHjjBmzBiPUVyTJ09u0QmKvsbeN/5y5PFhPVx8JuBaWNJms9DOOpJN+Zs4U3KGyX0n07/1GMdrSr8pTOk3pcEOdW2BaDQe8NQp0VMYb15eHikpKS5jKSkp7Ny5k/Pnz7N69WqsVitBQUFMmjSJQYMGVZlj0KBBvPXWW1XyJDT1JzIy8rKz5twLJYKrb6Xc9iDdzhxjxuczWLtvLTfGPkPr4PqXqPeEtkA0mmpITU1l+/btWK1Wtm/f7tF6sEdvObN+/XqCg4MdlonZbHZYJu6JiGBYMY8++qhjySwoKKja0GGLxVLtEs7ljN0KOXfuXBNL0vQYxRKNZa0/fbqLD7YUckPUc9zV9Vly8v/FnG23U1Cy3SvX0gpEo2kE1S11lZWVebRMPDnhd+7cybJly1iyZAlLliwhPDzcY87Ifffdx7XXXntZrvPXh8tZwd7QNY6EmHCHRv8gZQAAFe5JREFUBfL4sB4kxITzxK09eXf8/2Prb77hpisGEh/axSvX00tYGk0jqG6pKz093SWvBDw74cHIF5k6dSqDBw8mOzu72lDfN9980+N4UlISR44cobS0lJCQEDp06EB+fn6jv1tzpqWVq68vzo71nYdPO+WaWBgSP8drDbe0AtFoGkl1lYLteSVWq9VhmXhawiorK2P+/PmcPHmSrKwsysrK6NKlC/v378disdC3b1++//57h4IYMWIEu3dfarR98OBBXnrpJSZPnszChQt56qmnfPp9mxuXW3SW3alu94Gs+KbAY26JN9r+agWi0fiAujrhAXr37s3o0aP54x//SFlZGcHBwaSkpBAZGcno0aPJyMjgxRdfJDMzk/nz57soopCQEAYMGMDMmTP53e9+R0hICNdffz1ff/11s6wI7Cvcl7UuB4ViVxBnLpQz5s9fVonW8ko/FKVUs3pdc801qiZycnJq3O8PtAxahvrIkJWVpa644gplMpnUuXPnVFpamjKbzSotLU2dO3dOAcpisSgRUcnJySorK8tx7iOPPKJERJnNZgUos9msREQ98sgjCqjzSylV6/7GUB9Z/PXyJ9Vdf+6aH1yOc/9cX+au+aHKHINe+KzWed33A1+rOtyPtQWi0TQxdqvk/vvvJzIykt69ezN58mRWrlzJCy+8QEhICG+88Ua1DbWUUlRUGN3r7O9g9NvwVAXXHuGVmJjIwYMHXc7ReJ9A6E3v7BNxr7cFDbdGtALRaAIAu3JIS0tj3rx5Llnt1S19ASxcuJDY2FhWrFjhOOfOO+9k4cKFTJ48mfnz51c5R0Sw2WwcO3asivJw9xdcbv4Df+MPZ79zVBZ4r94WaAWi0QQM9fGb2KmoqGDp0qWOaK/BgwezdOlSfvazn7Fy5Uqio6OJjo5m//79jhuUvVrwhQsXACPvxI5Sivbt21NYWEjbtm05evSoT76rpirOfVGaS7dGnQei0QQQdUledGf79u0ePx88eJB3332Xffv2sXbtWkQEs9n1mTEkJMSRcxIbGwvA0aNHsdlsDuVhH/cG9pvk5ZyrURfs3RoDHZ8qEBG5TUR+EJE9IjLdw/4nRGSniHwnIp+LiHeyWzSay4TY2FimT5/O3LlzOX/+PHPnzmX69Okeb/qdOnUiJCQEMG7gSUlJhIaG0qlTJwDGjh3romTMZjMi4tIgq7HYrSC9LFY71XVx9ERiYiIiwhO39mTWrFkkJib6ULJL+EyBiEgQ8BowAugNpIpIb7fDtgADlFJXAyuAqqVKNRpNtcyfP5/IyEimT59OREQE06dPJzIykvnz55OQkMCECRPIycmhoqKCixcvcuHCBeLj4yktLWXx4sWEh4c75srJyWHmzJn07NkTk8lEz549mTlzJjk5OV6T1+7Ar6nLo31Jzd1K0VaLZxITEykoKHAZKygo8IsS8aUP5Dpgj1JqL4CIvAPcDuy0H6CUcv7L3ATc40N5NJoWh3NDq7y8PHr06EFaWppj3LlbolKKVq1aERoaSmhoKL169eKll17ivvvuA4zCkFu2bOH55593zF9eXs4LL7zgFVntNb7sHRrtS2ft2rXj2LFjtGvXjsLCQoePRinlKI54ORZJrCvuysNeF8x93Bf4cgmrE+D8DQ5WjlXHJGC1D+XRaFok1flNUlNTeeWVV4iIiEBECAkJ4dFHH6WgoMBxbEJCgqO8SnWFIT2VX2kIVquVyMhITCYTkZGRjvHCwkLHe7du3VzOsSsNrTwahq+tkICIwhKRe4ABwE3V7H8QeBCMp5Xc3Nxq5yopKalxvz/QMmgZAkWGDh06MH/+fEpKSti8eTOZmZnExcXxk5/8hO+//56XX36ZSZMmkZubyy9/+UvGjRvHk08+6XF/Y2jTpg0nT56kuLgYwPEOMHLkSB544AH+8pe/sGrVqlrn8lZocVP/XdSFxspYUFBAr1OnyM8/S27uYQDy88sc242mLtmGDXkBA4FPnD7PAGZ4OO4WIA9oW5d5dSa6lkHL0HAZsrKyVHJysjKZTFWy2uuyv6FkZWWp6OholZSUpEREJSUlKUAFBQUpi8XiyLa3b9tf7du3VyaTSbVv377ZZqL7Wsba5oi6cayKunFstdnv1czZ5JnoXwHdReQK4BDwa8AlnENEfgr8GbhNKVXoQ1k0Gg3VF36s6/7GXHfnzp28//77iAgRERGA8QAbGxtLYWEhsbGxHD9+3HGOxWKhqKgIm81GUVERFouF8vJyr8t2OeHt7Hef+UCUUhXAI8AnGBbGu0qpHSLyrIiMqjzsZSASeE9EtopI7farRqNplgwdOtTFVyMiDBkyhPj4eESE+Ph4hgwZ4oi2Ki8vJy4uDpPJRFxcnFYeDeT0hiyftf31aR6IUuojpVQPpdSVSqn0yrGnlVKrKrdvUUq1U0r1q3yNqnlGjUbTUlBKkZuby8SJEzl79iwTJ04kNzcXpZRDiRQWFmKz2RyOdh3K23hmzZrltbkCwomu0WguP5KTk+nevbtLKfpf/OIX7N69mx07dgA4Qn3t70onIAYUupSJRqNpEtLS0ti2bRurV6+mrKyM1atXs23bNtLS0ggJCWHcuHEkJydjMplITk5m3Lhxjkx6TcM5vSELEfGKNactEI1G0yTUVDxy3LhxbNiwgcWLFzuqDE+cOJGysjLHzc9T33hngoODHe2B7aG/urqwK439PbQC0Wg0TUZ1UV/2Lo3OymXcuHGsXLmSnTt3YrPZiIqK4vTp09XO7dxb3n6T1MrDu+glLI1GE3CkpaWRlZXFvHnzuHjxIvPmzSMrK4u0tDR69+5Nq1atqs1Ot9fSslgsHvcHBwf7TO7LDW2BaDSagKO23iiPPfYYFy5cICMjg379+jFhwgSOHj2KyWRy1NJyxt7jJCoqyiULXtM4tALRaDQBSXXLW/axsWPHMm3aNAASEhIc5VfsREZGOpRFaWkpNputyXJJnP0xtdGc/DR6CUuj0TQ7UlNTSU5OZu3atSilKCgowGazceONNzqii86fPw9AWFiYY7u0tJRBgwb5Xd7y8nLmzJnDuXPnHFn41dFclAdoBaLRaJopaWlpTJo0iZycHMrLy8nLy+PQoUMsW7YMpRQXL14EjNa99lDhl156ib179/pdVqUU06ZNIyIiwtFK2B27z8ZisRAWFuZP8RqMXsLSaDTNEnc/icViYdy4cS7LXm3atOHEiRMMHz6c8vJyzGYzFouFhIQEv8oaFhZGRUUFVqvVJZy4rKyMjh07UlRURHR0NEVFRXTq1IlTp07plrYajUbjS5x7obzxxhtkZWU5LJKcnByHFWJv8duqVStKS0sZPXq032Q0m82EhYXxySefUFZWRrt27YiMjHQos1dffZWwsDCOHz+OzWbj0KFDWK1WMjICv0GrtkA0Gk2LwFPkVlRUFI8++igrV67k+PHjREVFMWXKFFauXOk3uaxWKyaTiYkTJ3LgwAFsNhtxcXEuYcgRERGcP38eEaFTp06cO3euzvM3pdNdWyAajabF4N6d8fDhwzzzzDMuVsozzzxDXl6e32Tq3bs3v/nNbxzOc4vFwm233Ubv3r0Box3x9OnTSU5OxmazsW/fPpYvX056enqd5o+JiXH5XFO/eW+jFYhGo2mx+LpNb11IS0tj0aJFDqsiPDyc7OxsRo8e7XD+z5s3j7S0NMc5KSkpdVZyp06dcvlsNvtvYUkrEI1G02Jxj9TasmULkyZNcrlZ+xOlFKGhoURERPDWW28RGhrq0flfHyVnPy4qKoqkpCQqKip8IrsntALRaDQtltTUVNLT05k6dSqhoaG8+uqrLhnt/iA9PZ3ly5ezb98+bDYb77zzDh988AFRUVHVOv/ro+TS0tIwmUycOXOG/Pz8WotMehPtRNdoNC0a54z23Nxcbr75Zr9ePy8vj5SUFJcx5yWq1NRUNm7cyIgRIygtLSUkJIQHHnigXkouIiKCc+fO+d2Zri0QjUaj8SG1+WGys7P58MMPXfqifPjhh2RnZ9dp/vT0dD744AOmTJlSpV9KUFCQT8OBtQLRaDQaH1KbHyY9PZ3MzEwGDx6MxWJh8ODBZGZm1jkKKy8vj4MHD7oooRkzZgBGCLG9Xhhcaglsd7Q3NmJLL2FpNBqND3HPT0lMTGT27NmO8dqWuGqjV69ePP300yxevJjBgwcDhmIwmUwEBQVhtVodfpG4uDiKiopISEiguLi4xn4qdUFbIBqNRuNj3DPmnf0bjQ01TktLIz8/n4qKCocTPiMjg2nTpmG1Wh3l7VNTUzl79iwiQkREBA899FCjv5dWIBqNRtOEuC9x1TcKKzU1lYSEBB588EFCQ0OZOnUqFRUVDBkyhI4dO9KnTx8A3nnnHUdZ+127dvHKK680uiaYViAajUbThLiHGk+dOrXeocYZGRmICJ999hlbtmyhS5cu3HXXXZSWljJv3jxuueUWlwityMhILly44MiGbyjaB6LRaDRNTHXNs+pzPlzys3Ts2JGSkhIyMjJISUlh3bp1REREEB4ezvHjx+nYsSM/+9nPWLFiRaPk1haIRqPRtACc/Sz2BluZmZmEhoZSXl7OvHnzOHToECaTie3bt7No0SJKS0sbdU2tQDQajaYF0rt3b+bPn4/VaiUkJITi4mIX5/zChQur5I3UF72EpdFoNC0Qu3M+MzOTiRMnMm3aNFq3bs2cOXOYO3cuTz31FJMnT27UNbQC0Wg0mhaIu18kOjqaM2fOMHHiREJCQpg8eTLz5s1r1DW0AtFoNJoWSmOd87WhfSAajUajaRBagWg0Go2mQWgFotFoNJoGoRWIRqPRaBqEViAajUajaRA+VSAicpuI/CAie0Rkuof9ISKyvHL/ZhFJ8qU8Go1Go/EePlMgIhIEvAaMAHoDqSLiXrlrElCslOoG/Al4yVfyaDQajca7+NICuQ7Yo5Taq5QqA94Bbnc75nbgrcrtFcBQsbfM0mg0Gk1A40sF0gkocPp8sHLM4zFKqQrgNBDnQ5k0Go1G4yWaRSa6iDwIPFj5sUREfqjh8HjghO+lqhEtg5ZBy6BlCGQZaqNLXQ7ypQI5BHR2+pxQOebpmIMiYgaigCL3iZRSi4BFdbmoiHytlBrQIIm9hJZBy6Bl0DIEsgzewpdLWF8B3UXkChEJBn4NrHI7ZhVwb+X2ncBa5dw2S6PRaDQBi88sEKVUhYg8AnwCBAGLlVI7RORZ4Gul1CogE3hbRPYAJzGUjEaj0WiaAT71gSilPgI+cht72mn7InCXly9bp6UuH6NlMNAyGGgZDLQMBoEgg1cQvWKk0Wg0moagS5loNBqNpkFoBaLRaDSaBtEs8kBqQkSuwshotycpHgJWKaXymk6qpkdEliilJjS1HP7EKdrvsFLqMxEZCwwC8oBFSqnyJhVQo2lhNGsfiIg8BaRilEk5WDmcgHETeUcp9aKf5LgKQ4FtVkqVOI3fppT62A/Xdw+PFmAwsBZAKTXKDzJcD+Qppc6ISBgwHegP7ARmK6VO+0GGZRgPReHAKSAS+DswFONv/d4aTtdoNPWkuSuQXUCy+5Nl5ZPoDqVUdz/I8CjwMMZTbj/gMaXUB5X7vlVK9feDDN9i3Kj/CigMBZJNZVi0UmqdH2TYAfStDN9eBJynsr5Z5fiv/CDDd0qpqyuTUg8BHZVS1sr6atuUUlf7WgZN9YhIW6VUYRPLEKeUqpKsrGkYzd0HYgM6ehjvULnPHzwAXKOUGg3cDPw/EXmscp+/CkMOAL4B0oDTSqlc4IJSap0/lEclpsp6ZgADlFK/VUqtV0rNArr6S4bKh4dWGFZIVOV4CGDxhwAiEiUiL4rIf0TkpIgUiUhe5Vi0n2RoLSIviMjblct4zvte95MMsW6vOODfIhIjIrF+kuFFEYmv3B4gInuBzSKyX0Ru8pMMA0QkR0SWikhnEflURE6LyFci8lN/yOBLmrsP5LfA5yKym0uFGxOBbsAjfpLBZF+2Ukrli8jNwAoR6YKfFIhSygb8SUTeq3w/hv//bbeLyP1KqTeAbSIyQCn1tYj0APzle8gE/oORuJoGvFd507gBY5nTH7yLsXR4s1LqKICItMeouPAucKsfZHgD2A38DZgoIncAY5VSpRi/hT84Aex3G+sEfIthJfvjoeLnSil7H6KXgTFKqa8q/yazMB68fM3rwDNANLAReFwpNUxEhlbuG+gHGXyHUqpZvzCsqBuAOypfNwBBfrz+WqCf25gZWAJYm+g3+TmG38Gf14wC3gR+BDZjKI29wDqMJSx/ydERY+kKjP+0dwLX+fH6PzRkn5dl2Or2OQ3YgFHp+ls/yfA74GPgJ05j+/z171B5vTzAXLm9yW3f936SYYvT9oHq9jXXV7P2gQQCIpIAVKjKp023fTcqpTY0gVhNhoi0Bq7AUKIHlVLHmlgkvyIia4DPgLfs311E2gH3AcOUUrf4QYY8DN+gzWnsPuBJIFIpVadKq16QIwGjUVwBxlP4NqWUv5YzEZGpwEjgReC/gRiMoIohQFel1Hg/yPAlxnePAv6I4SNdWbmENkc186KKWoFoNF5ERGIwItBuB9pWDh/DKBz6olKq2A8yZABrlFKfuY3fBsxTfggucbvuKGAmkKSUau/na98MPAT0wHioKQBWYtTmq6jhVG9dvy+QgeGTfbxSlnsxgjweUEpt9LUMvkQrEI3GTzj5iC47GSpDu69USm2/nH+HQJOhsWgFotH4CRE5oJRK1DJoGQJFhsbS3KOwNJqAQkS+q24X0E7LoGXwtwy+RCsQjca7tAOGA+6+DsEI49QyaBn8LYPP0ApEo/Eu/8SIdNrqvkNEcrUMWoYmkMFnaB+IRqPRaBpEcy9lotFoNJomQisQjUaj0TQI7QPRaOqJiFiB7zEKNFZglK35k3Pmt0ZzOaAViEZTfy4opfqBUaIcozBfa4ySFRrNZYNewtJoGoEy+ls8CDwiBkki8oWIfFv5GgRGh0gRGW0/T0SWicjtIpIsIv8Wka0i8p2I+LXMiEbTGHQUlkZTT0SkRCkV6TZ2CugJnAVsSqmLlcogWyk1oLJ43uNKqdEiEgVsBbpjFBvcpJRaVtnLJEgpdcG/30ijaRh6CUuj8S4WYL6I9AOsGEX8UEqtE5HXRaQNRtuBvymje+OXQFpl5dq/K6V2N5nkGk090UtYGk0jEZGuGMqiEKPi6jGgL0bDomCnQ5cA9wD3A4sBlFJZwCjgAvCRiAzxn+QaTePQFohG0wgqLYqFwHyllKpcnjqolLKJyL0Y3RHtvAn8GziqlNpZeX5XYK9S6lURSQSuxmhSptEEPFqBaDT1J0xEtnIpjPdtYG7lvteBv4nIBIyOfOfsJymljlU2e1rpNNfdwHgRKQeOArP9IL9G4xW0E12j8RMiEo6RP9JfKXW6qeXRaBqL9oFoNH5ARG7B6NE9TysPTUtBWyAajUajaRDaAtFoNBpNg9AKRKPRaDQNQisQjUaj0TQIrUA0Go1G0yC0AtFoNBpNg9AKRKPRaDQN4v8DwPoPLIYqk4MAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -870,12 +843,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHsCAYAAAAgvDD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmUXFd57v3be5+hqnoeNMuyLNmyPNuwSMAkGG4IkMQh\nDr6MAfNdEhwgiyEkYQGLQFgBA/EKIfBdpoUTg+0wxQFDwpQLCXyXBIwHSR7wPEhqtaaeu4Yz7f39\nsU9VV3VXq9VSt9SS9m+ts6r6zKfcsp569bzPK4wxBofD4XA4HA6Hw9FAnuwbcDgcDofD4XA4VhpO\nJDscDofD4XA4HLNwItnhcDgcDofD4ZiFE8kOh8PhcDgcDscsnEh2OBwOh8PhcDhm4USyw+FwOBwO\nh8MxCyeSHQ6Hw+FwOByOWTiR7HA4HA6Hw+FwzMKJZIfD4XA4HA6HYxZOJDscDofD4XA4HLNYMSL5\nrrvu4k1vehO//uu/zvbt2/nhD3+44DE///nPednLXsYll1zCi1/8Yr7xjW+cgDt1OBwOh8PhcJzu\nrBiRXKlUuOCCC/jABz6AEGLB/ffu3cub3vQmnv3sZ3PHHXdw3XXX8b73vY+f/vSnJ+BuHQ6Hw+Fw\nOBynM97JvoE6z3ve83je854HgDFmwf2//OUvs3HjRt71rncBsGXLFu6++25uvvlmnvvc5y7rvToc\nDofD4XA4Tm9WTCV5sezcuZMrr7yyZd2v/dqvsWPHjpN0Rw6Hw+FwOByO04VTViQfOnSIgYGBlnUD\nAwNMT08Tx/FJuiuHw+FwOBwOx+nAKSuSHQ6Hw+FwOByO5WLFeJIXy6pVqxgZGWlZNzIyQmdnJ0EQ\nHPV5jDFtGwXjqSn+78f/jqhaBUAbw3SxiBYQl0oYIAvD9ueUEqE1AF4cgwGDQVC/jiGoVBAGSuUy\nYmY1qQDDrPsxBoHBMwYlW7/XaCGICwWCWo1inHBRmhIo1dguOjspPP8qwmc/G4Bk132YC7YzWq0y\nODi4qM9qMejpaZJd9+Ffegmys3NZruFwOBwOh8OxXJyyIvnyyy/nJz/5Scu6n/70p1x++eWLOs/o\naBkp26VpSM793WtIRkcba6qHD5KUy0RTkySTU4wO70fQ2mRojCEuFAlqVaSUSGFFrRaCqlJIoxHG\nYJRCK4+gVMKTVtSmWUqUpqg0hUbzosFoQ6YUndUynm69Xup51Do68KKIBEEtLICfi/daFTO0n/hH\nP8bftBWA5Ec/Rnf3M1QtI2VIGBaO+rNSStLdXWRyskqtFjE2NkpfXz++78/Z14yOke64D2/NRkSy\ncFrJSqX5mbNMn+zbOSG4Z3bPfLrintk98+nImfa8S0VfX8eC+6wYkVypVNi9e3cj2WLPnj089NBD\n9PT0sG7dOv72b/+WgwcP8rGPfQyAV73qVdx2223ceOONXHvttfz3f/833//+9/n85z+/qOtqbdC6\nfZpG8axzKJ51TuPn7qZt8f4hyt/9Fl6mUWKmcmuqVaqVaYrdfYhisbE+zVKmlQStkcaghSBTEk8o\nPC//z1Cpsu7+u5Baz9SSDRit0UpSjCLkrFuNCyGRUvQ+9TQqSahuuwAdiPxQQWY0h4OAjUPDhJ6P\nni4jnt7Dxl07EVe9gKS3FwoFRFfXUX9mWaaJopgDB/ZTKnUimp5/5sPqRbz81WQA6an/hzbLNOlp\n8ByLwT3zmYF75jMD98ynP2fa854IVoxIvv/++7nuuusQQiCEaIjha665ho985CMcPnyY4eHhxv4b\nN27kc5/7HB/96Ee55ZZbWLt2LR/60IfmJF4sG2EBEYYwOQ06mVmfxKA1VMoU9w9TGxzEBIFdVwjt\nqzEgJQhpX3OM77PvskvxkqRhFtcGqmGA9jzCOJljIjdCkPoelc5OMs+jI4pQ9fvxFV5HCa88TfK1\n21DVCJ5+yi77h9EP/xJRKCB6+1DXv3lRQtmMjaPvvw/TOwjrigsfMPv4chnz4AOICy9CdCz8bc7h\ncDgcDofjRLJiRPKv/Mqv8NBDD827/SMf+UjbY/7lX/5lOW9rXkRnJ/4FF5BFCVo0Cd2xUXj8MViz\nluKOHdQuvBDd04uulNFDe63/WCqMwIrkpNlaAWmhgAmCGZEMRMUiBvBkhGFu1Vsag/Z9tOfhl8t4\nxn6TzJBEPd3Izi6EH4I3DWEBOjrta1c3SIEZH4NaDRYhktEZ1Kr2dRZJkjA+Pkpvb3srBgBRhHn8\nMcTWczHgBLPD4XA4HI4VhUu3OEY8T1Hq7kYHAbFSjSWRCi0EiRSMdXURCTmzXiky5ZEphZYKBYiF\n56YAILBiuO2iDVJrpNF4xuAZ8AwoDAiB8DxEqYQolSDwoViEwLc/FxZfBV6ILEs5fPggWZbO/zz9\n/ahXvQbR3w+VCvquO6FSWfJ7cTgcDofD4TgWVkwl+VTD9wOe8YxncPjwZItRvrZviD3D+1i9cTMH\np6bZsnUbhfUbqA4P89Bjj+Ibg5enT1iRy0xtOEtBSbuiXl0+ihHdLRgDWV7dFRKMwaQpplKhFkUM\nb9zAuiQhjBNMXZTWaph6UshR+pOFEARat00GOV4rhsPhcDgcDsfJxonk4yAIAorFYotR3oQFpJQE\nfoiUkjAsUCgUMV1deL6PV6nYWLgmRBxTOHyYcn8/pqebZtu9ZkZEaylo47YACVpKjBBQrkAc2fWe\nb0vQlQrm4UdBa+JzNmMeexwOHIDytD1fEpPd9DkrkI/Snxz6AedUIpTfJkLuCFaMtigFpQ70fTuR\nv/ocZ7lwOBwOh8Nx0nEieYkRyiMMi+C1OllEZyfivG02Fk61fuxqfJyOH/8nla3nEtfKtnmRekKF\ngTRDGE0q1ZzIObuTwQiBEQJZq6GS2FagtUYlAfg+hLmYLRZsA6Gn7DojrJDu7gHBsfmTjxPR34/6\n7avJ/vmrcMll4ESyw+FwOByOk4wTyUtMYe1azn3Fa6gO7Z270fcRYYjwWpvZRBxDECCLBYLpSSSm\nka9MHDOwcyfCgJemCNOulGwgThBG0zk2jsyFtBaSYmcH4+efT5TbIlIhiITAE4JUCJAKJSUBYLSx\n1ovyNGLVqiX8VI4fl4bhcDgcDofjROJE8kpCegilkEmCNLbpTQvBvksuRqYpXeMTdB46THmgH92c\nGpGmDD7yCEZKal2dVkjn1eXE9wkOHGC6VkV7HrUsY1RJhi6/lO7h/XhpipTQt2sHfppBEqNv/RLi\n7e9EdHVhpqZsZRkwniCLS5iJivUwVyozXuYmzOgYWa3Koe/9K2t/92UEq1cv/OxKIfr6rfWiHXlz\nn1y9xollh8PhcDgcy44TycuFVDY5QraKvjSd69M1WYLWGVpJTF8fBoHJ85NNkpBMTyIQZEJSeupp\nps47l6Rp1LM2midWrUJkKcXJKaTRkGVoqdCeR+/BQ5TXhaS+T9TTzdSGDZQH+sEPEJkmDXy6d+/F\nr9ZAp5iJcVtRBrLPf8ZaMLCCfSL0iKOULIlhfAL9xS/MqYxnaYryJKOlIoPjY0clkutpFwtSraLv\nuhO1+Rxny3A4HA6Hw7FsOJG8TIi+XuTFlyD6egFQShGGIVEUzYlGk7WIsUKBWhzZpj0pMPmobC2x\nMW4GhJQgha22NldcM0iLBTAQJAlG5yJZKTLPt7FvmQTPs6K96dUoQxaGdp3vQ9z0K1GrWYEchrng\nF8iCD7UEoQ0MtLdkhJUKZz3yELvP3QpR3HYfh8PhcDjOFEwSYx5+eFnOnSlJ3F0gm6yhm9K2xPnn\nI9o11y/Axz72YX784x8xPT3FP/zDbZx77nlLebtHxf79w7z85S/lH//xn07K9es4kbxMCCEIw7AR\nkeb7Adu3X0yWza0k1/YNsWffEJvO3oKeGCMIgsao6mRqmkOjYyhsJTcJAjIh5k3AIMsgTSHLEFoj\nMw1JYif95c18ZNnMa5YhpCAWgBQNf3ILhSKiowMhBbIYIFQM1Zq9zpHQGjMxhjl0aM4mU61i/uv/\nIl/0EpuVvBANO8bior2dl9nhcDgcJxvz8MOkr33lspw7Beb+LQverV9FXHzJos71s5/9F9///r/x\nqU99nvXr19PT07sk93gstIuYPdE4kbxMhGGBLVu2tazz/YB2A+jqsXFhEKKUwvM8vNzCkAlIlSIT\noIOAkfXrqeZCuXG8sgNM0BkqihrrRZYhs4zC6Cgqy/CUwsQxXrVKrVggGBvDi2OMEEwnsW0YDHz6\nOfIvhokizD13NbzKc9C5MK9Wyb55O2mxNGeXtFBgYmCA/iiaK8rbULdjtBPcRyT3Mjt7hsPhcDgc\nR2ZoaA8DA4NcdNHFJ/tWMG2DCk4sTiSvBOr+5TZNa9IPCIxBJinB9DQDu/egOztJc8En45jioUMc\nXruW1Pcp9/cj4wSRN+4hBQe3bUPqmV+2TClq3V1kfogw1pbROzmFQJBKQU95HvFbJ02JjGH4/PNY\nN7yfMG5jqdAFkBIKJTv+uplalaRcZmTdGnqONkt5CXHVZYfD4XA4Wrnhhg/y3e/+K0IIfv3Xn8Xa\ntev5+tfv4JZb/pFvfeubjI4eZtOms3n96/+Q5z//NwC49967edvb3sTf/u2n+OxnP8XTTz/FxRdf\nxl/91Yd56KEH+d//+xMcOnSQK6/8dd797r8kDEMAfv7z/+aLX7yJJ554HKUkF110KW9/+5+xYcPG\nee/viSce49Of/iQ7d+6gWCzyrGf9Km972zuXtdrtRPIKoO5fpqcXDu1v3RYGyP4BlBB4HdMETzyJ\nt2YtptsKT39ykoEHH2R81SqyUpFMFjFBiMhSjJAYJckybX3KOVpKtO+hCyFgyJQHUWwb9aSEhUQy\nYIQgLtprtR1wkll7hygU5ghRAy0jqM3oKPoH3zt668Xx4qrLDofD4XC08I53/Dnr12/g29/+Jl/4\nwi1IKfjiF2/i3//9+7zrXe9l48az2LHjHv76r99PX18/l112RePYf/zHz/POd76bMAz5y798N+9/\n/7sJgpC/+qsbqFTKvPe9f87tt3+V17zmOgBqtSqvetVr2br1XKrVKjfd9Fne+96/4Itf/HLbe5ue\nnubtb38LL33p7/P2t/85tVqNz3zmU7z//e/l7//+08v2mTiRvMREUY2hod1s2LCJMCwc0zmaEzDS\nNEULgVCqMVVPS4nOq852XT5tLx9AggBVqzWqyapabakkoxQyCJC1CGEyhFKQ2zSElKTZAl7jOsZA\nEttlNjqPoavVMOVy62GVCqTJzIosw4yNzozTPhILRcU5HA6Hw+FYNKVSB6VSB1Iq+vr6SJKEW2+9\nmU984jMN+8W6devZtWsHd9zxLw2RLITgjW98Cxfn/uerr34pn//8p/na1+5g7dp1ADz/+b/BPffc\n1RDJV131P1qu/a53vY+XvvRFPPnkE5xzzpY593b77V9l27btvPGNb26se/e738e1117N3r172Ljx\nrKX/QHAiecmRUtHV1YOUixdxSsk5CRhZlqJ1BhhSoxlbtYrU6MZ2qTO0sVXi+qARkSRsuO9+e1Ih\nkLPEp7VbdFOYnERlGUYIvHwfA0wnKR3T0/hNMXNz0BlMT8PwcEtVuI4IAoLuLsRTT8/1FSUpBD7m\nvHMX+QktIipuETj7hcPhcDgcrezdu4darcaf/umftPw9nmUp27Ztb9l369aZv8/7+wcIw0JDIAP0\n9fXzy18+2HLuL3zhszz44P1MTIyjtUEIwYED+9uK5Mcee5R77vkFv/mbz2tZL4RgaGivE8mnCr7v\ns2rVmmM8dm4CRq1W4+GHHyAIAhiEid4+enp6G+kXKggphUX8LIM0IRGCzPd58lnPygUwqCSPbGuD\nEXYsdbFmK8mZUnRozWDg06bHsOlAYxv0ZB4tN4swSdn84C9h3TrwZ23XZiZxo366apXsjm+gXvY/\nl9ZycTSVZ2e/cDgcDoejhWrVFsBuvPHvGRwcbNkWBK0t916TDhBCtPxcX2fMzN/573rXO1i3bgPv\nfvdfMjg4iNaG173uFaTN/8o8616e+9zn8Za3vG1O4W32vS0lTiSvAJrj4tolYNQTLwCklC3pF0r5\nGM8jLhXJlEcmBRjQYUhiDDLTeMkEcVdnw6Ix6+ogwFfTCAOJlC0i3cRxo1JspEBncW6XyKxQbtN9\nGhUKDG85h3UPP0Io20W2GVuJTlPM6BixlIyi6T0wjDx4cMZ2USgguroW/Xm2PN0SVp5dxdnhcDgc\nZwqbN2/B9wMOHBjmsssuX7LzTk5OsGfPbt797r/k0kvteXfu3HHEY7Zt285PfvIfrF27DtlWVywP\nTiSvANrFxS0GpSSFsEhaLGCmp8DQaNQLqlXWPfhL9l94IUnH3Cg2O91PIBDM7sAztRo8+QSEBUzg\n25xmT2EqVZiasmK2VoNqtfU4IYg93wrs/fvB6JbtpJkdXDIxQfr120hTzUjg0fHoo6jxcUTBerlF\nbx/q+jcft1Cew7H6ml3F2eFwOBxnCKVSiVe/+rV88pMfJ8syLr30csrlae67bycdHZ285CW/Ayw+\nqq2rq5uenh6+9a1vMDAwyP79w3z2s//vEXORX/ayV/Cv/3oHH/jAe/mDP7iOrq5u9u7dww9/+APe\n8573L1umshPJy8RSNPAtBqkk0vMbvyj1XxdhDH4cI42m7a+QaN571qZCgXTruWSdnYhiESkFMvSJ\nxyeJfvkgaaFA1NsLxWLLcVHRCva0oxMmJ8FT1pZRx9jqeVDqQBY60LUqZAn4oY2LK5WgVrXT/mo1\n6OpqJGBk/+OFTAhDb28/frvQ6aNgOXzNDofD4XCcbrzxjW+mv7+f2277IjfeeAOdnV1s23Y+r3vd\nGxr7LFagCiH44Ac/wic+cSPXXfdKNm06m3e84y9461v/eM5+dQYHB/nMZ27iM5/5JO9851tJkpg1\na9bxq7/6nGUdOuJE8jJhjCGKomUPwzZKkXV1zxKhxk7Xa9mR9lFtAMK0tU4kacqjZ28kKpYQvodA\noDxJ2tFJFngkUvJ4dxdy1nkzpSj39pAqxQX/9TN88vtpOn9YrbL54GFEfz+tdej8drWxY7FHRuzP\n09OYsVGyJObw5BhdXd3HLJJPFs6u4XA4HGcm4vzz8W796rKcWylJd3eBycka2ayx1IvlFa94Na94\nxatb1l177Su59tr20wKvuOKZ/OQnd7as+63fuprf+q2rW9a94Q3X84Y3XN/4+ZnPfBa33PK1ln2a\nz7N27bo5592wYSMf+tDfHP3DLAFOJJ/i6O5uxn/zN0kO7rfNeUKCSYG6KDW5QDaoKKLrwAGm1qwh\nazbdG2aa6IRoCOxMZ0SehzIGT2uEECht0zLExCSyUraWhVmCPPV9asUiGsiEwM+n7zWuobVd7t+F\nKRQgCGDzJjh0ECYnMJ5nEzCSmOymz0GhAEGI6J41lGSpOFGxcs6u4XA4HGckwg8WPSL6aFGeJOjr\nQI2VMale+ADHUeNE8umEklAsIrJsJrtYSmt3CEMU0LdvmMratWT51JuG3aKrqRJdaa3tKm3wjN3V\nA0Qc0/vII4gktqJ8lkiOCwWiwGdg9268chmyFOJ4Zr961drzoBBCGFoh7HsQBtavLJW9YHeP1fsT\nE4jSXE/1UuDsFw6Hw+FwOGbjRPIyoZTH4OBqlFqajzhNM4SwOYLZrGEfaZrmGYO5oyIXo60DRmYG\njZCPq55BzNg1jsIeYnyf8S1bEJWyPW5Wp2nq+9R6exnZtIlVQ8N4cWQrx/Uqtda26a/pOC0lY2vW\nsKpSmfNLaeqRcVixrB+4D9M7COuKnA44G4bD4XA4HCsPJ5KXiePJS25GKdUYMCLimN7RMWLlkeZ2\nCa01tVqFLEsRQqBzK4NuKGZI/ID6P8DU35s8N9kARtjzWGfG0Xmok0IBI0V7u4XnEYch8fr1TA8M\nwNRkLo7rsXGg4hj/4EFb5S6V0GvXMDY4QN+OvXjVqs1SzjLMvXfbm8xSzJq1BEKyeXSM4ARGwCw7\nzobhcDgcDseKw4nkFU67ASPN1Go1nnzyUTwvQCnF4cMHQQhMlgKGLAwY2Xw2cRiCMYxvWE+qFN7k\nJHFnB9rzMECUV5Y1EgLfWiDyUdWzyYDRNasRUYTUGbPTMYwQaCFIw5DdF24niCJI05YqtVersfWh\nh/G1RkiJH8ckYWitFkkC9eaDMLT+5FoV0hQpBKE2R52TGB88yNh//B/6XvBCgtWrj+qYeXEjsR0O\nh8PhOGNwInkFsFBcXLsBI814nodSkiAICHOvsQEkIApFql3dSMCfmqbv4EF0Ty8Djz7K/suvIA4L\naGMo5NdNdYrs7kV0dmLmEclGCIwxbNy1K28WnLtPXCgwevYmVj36GIVqNR8QYkWylhKtFJnn4WcZ\nYZJw1qOPsfuC7XNPVH+aLLOxcGOjUKk0Ui8azDN4JEtiDsdVuuse7ePAeZcdDofD4ThzcCJ5BbCU\ncXFCCLtIaZcmK4RUEj/NkFLYVyURnofQGpmLa5EI8BaOVtO+z/CFF+Cl2dy4OSDxPKq9PUytnyCu\nVVvGUGeBT1Qq0Xf/gzPT9Yy2leupKSiXcx+IhuFh0JoUw0S1TM/tX8XbvRu9f7gxdAQWN3iknrks\nX/SSpR2BfRyYOEbvvBf5nOc6X7LD4XA4HCsAJ5JXAEvd5HeiyMIQE9BWJKeeIvN90jDEw9gmvVwk\np4FPXCyyZ/v5bHr0McJarRFTZ5sKpX2vZcPznPo+I1u20jE5hXfg4MzQEZgzeGThG89sRXoeC8uy\ncSS7RpJgdu6Ay65wvmSHw+FwOFYAp5YqO005niY/MzYODz6IHByE/nBmvTFzKtOZlFR6e8ikJPF9\n28CX76dzAau1bryfOTCx5xJgtII0YSZKw7QfUpKvk0mCqtVaKskYjQoCkjC0582y+QVrXVBKAb6H\nKBYh8BGlUqPiamBe/3Q7kjRlNPDoT1OChXdfMhZr13CpFw6Hw+FwnDycSD7V0darK5pEphW9GVrr\nliJvGgbsvfwyVBQztm4tsZSkaZrbPWoAZFlGuTxFlqXIMEQEIVQqkNjtxpMQpygB3fv2URkYRAft\n7RlCa3r37KFYKVsRnIt2rRTFzk7Ka9bYISOVSl451laAJ0kjBaPR8KcNJCmmWoU4wVQqM89bqbRM\n52v2Jweez+ZKjaDJQpLpjJHAp0fbz2wl2i8Al3rhcDgcpwlaZ0xMjC/LuZWSJEmZqanWiXs9Pb1I\neXIbzW+44YNMT09zww03ntT7OFacSD6NSNMsz0sWCCGRszzJdfysSu/wMLW1azFKYYxpNAwmSUxH\nR5e1fnR2Is7bhpQSqTykFBQKPsnhUdT999Fz8CDV1avRxbnNhloqtO8zsmUzxYoVtuRBdKnnEZU6\nCI2BYhGMQfg+Qa2GkMoOGYljK5rLZetNLhXh4AF44kkYH4ddOzD1hItZ0/ma/clSyoXTME6W/aKO\nUojeXpicPDnXdzgcDseyMjExzn/+5w9O6DWf//wX0dc3cEKvebrhRPIpRLsUDFEqEW48i6xUItIp\nWrdWlOtLvaEPAG3w4thWZ7FZzCoXy1LKVkHp+4gwRHg+QgpEwYfpKkYKEj+g2lEiblPl1EKgpWR0\n40aUNnlGcr5NSbQQrN43bP3HShEmCZvv3WF/bgw+kdZmYSRgM5nTzg5GVg/SMz6Bl+ZDVeo5yn4A\nWmP2DyOHhmBgwFaXZ6VhmNEx6wEeHcN09yzJf5vjQfT3o37vZWT//NW2202lgvnFnc524XA4HA7H\nCcSJ5FOIdikYhb5+tv3GS0iSmHK5zMMPP4CUkvHxMVTu542iGmFYaIhfz4Do66fY1YXf0dkQ0ItJ\n1zCN6XkGMdvDDEghEMbgpSlSa1SlgswrtdrzicPAaub69L26HaN+D6aN11lJskKRkTVr6KjFeFFk\nR16PjVpP8kMP2mOaqsomTWB8Av3FLyByy0WaZZhCQPrYLWQDg2S/9zLGToJH+aipVp3twuFwOBzL\nylvf+sds3XouUkq++91/w/d9rr/+zbzwhS/h4x//GP/5nz+iv7+fd7zjL3j2s69Ea83f/M2Hufvu\nuxgdPcyaNWv5/d9/OS9/+avmvYYxhltvvZlvfeubjI4eZtOms3n96/+Q5z//N07gkx49TiSfJvh+\nQKGQNarCUgqkFKjpMv7QXtiwEdPdDYDu7ubgVVcBNkv52DEIDOII2lpmGi+OWX//Ay2e5Kijg7Sz\nE6pVImMY3n4+63bdR1it5qfORXJih6JgdPuR2Vpb37IQdvCIwTYYFos2ys4PoNjU4AcEWZWzH38S\nf9Uq9P5h0v37GBHQffgwvufNm7m8Yr3LDofD4XAsAd/73r/xmtdcxxe+8CV++MMfcOONH+HHP/4P\nrrrqBbz+9X/IV75yGx/60Pu5/fZ/QynF6tVr+NCHPkZPTw/33beTv/mbGxgcHOQFL3hh2/N/6Uv/\nwL//+/d517vey8aNZ7Fjxz389V+/n76+fi677IoT/LQL40TyaY7QGhnHaK2PcuB0K1pnpLmtQQiB\nUpBihW4aBGgh5pxXxjFdhw8ztXoVRkDq+wxdfBEytZXkzPOIiwV6xieIensBqPT3U+vuxtSnpiQx\nKsnwBdazDARxjJiv2i2lndaXV5J57FErntvtqrWNnRsfhywlMxrT3UX62C2kSs2fubyc3mU3zc/h\ncDgcJ5lzz93Gdde9AYDXvvb/4ZZbbqa3t4+rr74GgP/1v/6Ib37zn3n88Ue58MKLecMbrm8cu3bt\nOu6/fxc/+tH/aSuSkyTh1ltv5hOf+AwXXXQxAOvWrWfXrh3ccce/OJHsOLXIspSpqam8Mm2bAD1P\nEscJUU8vY2edRdLZSRaELccpKTGeIgsCKr5vvdC6J68EC7QUZEqhhOTxZ1yBkZJybw/VYhGV5cI2\n0wTlCuf94i78qEZYrbH5sSeo9fUtfOPG2MzkMAR/nl/xUhHiFOIIOjpts2Bn7mleTObyEnE80/xc\nVJzD4XA4loKtW89tvJdS0tPTw5YtM+v6+20j4NjYGAC33/41vvOdb3PgwH6iKCJNE8477/y25967\ndw+1Wo0//dM/abF3Zlk67zEnGyeSHfOilEdXVxe+H+B5HkLYdIvp6Sr6wH76hoao9fcjglYnrx/H\n9A7to9Kh9SO0AAAgAElEQVTXT1IIQWuE1njVKjLN0FJilKTnwAHCKCL1feJCSHF8HC9JAMiUJPN8\nMinxm73Ki8H3rN2iTpbOZDXPg9GmJU7OeIIsLmEimyUdSUFBa46l3rtou0ajuryAKeYUiIpzQt7h\ncDhWPp7XKgttcWyuVDRG88Mf/oBPf/rveetb38lFF11CqVTin/7pS/zylw+0PXe1aqNbb7zx7xkc\nHGzZFgQrsiPIieQzCW9qioF772XkiitIj7JKKqXC8zw8z7fjrH0fz0sQUqI9DwEI3Spgpdb4UW6N\nMCAMqChm0z07AIMRAiMlXWPjeGlKXCgQex59e/cSVG0es5aCzPPxatWmrOQjC9x2pEox0dtDz+gI\n3r5hm8NcR+eDTB55GM7dCk8+BeVKS+OfFoKJ0CMpdRH9zkt5qlRgS5pQXPSdsGi7Rr26bA4dOpar\nrSyCALF1K6zQ/xE6HA6HY3Hcd99OLrnkMq655trGuqGhvfPuv3nzFnw/4MCBYS677PITcYvHjRPJ\npyEzecmG1PfQ/f1I38OPE7ypKUyazp2qB23XzUfS2c2eZz0LmWVz0y20RqQJvXv2MLJpE8bz0L7H\nnssvQ+oMLSTaU6x5enejklzr6WFy7dqWSnJcKNJ76DBePQHjSFnH830WnsfIQD8dY2N4aWLPUT9P\nPXS9UIBivqQZCKC7x2Y4S4EwKWZsDKJ40dc/U1ioUix8H/pdXqfD4XCcLmzceBbf+953uPPOn7Fu\n3Xq+//3v8NBDD7J+/Ya2+5dKJV796tfyyU9+nCzLuPTSyymXp7nvvp10dHTykpf8zgl+goVxIvkU\nQimPwcHVdtBH2+2KMAypVMp5XrIh8zzS/j5rl6hVmezqJNUpWda+qU0pr+0Akrk7SpsC0Zy/nCOM\nrUD37t/P+MaNpL4PxpAWiyBs059WirRUxBOCzPPIgoDx9evp3bevIZTnkCSIOCKoVBFxZBv0msdd\nHw15LnN+p2AMgdacvWcI32Cb/3SGKJWgVLLZ0FkME9NHf41FsqAN41Ro6jsKy4ezXDgcDsfKpf3f\n/XPX2f0E11zzP3n00Uf4wAfeixCCF77wRfz+77+cn//8v+a9xhvf+Gb6+/u57bYvcuONN9DZ2cW2\nbefzute9YekeZAlxIvkUwvd9Vq1a07Ju9oCR7dsvbuQlB0HQ4iUyo4epDQ7S1z+A6B+cfXrAjqVO\n50mFaMYYgwE79W7WHyytJEkhxGiNliK3Vwg7HARhB41gUy7SfNECVBTRefAgQa2GFtZuQZaSCoEQ\noMbHCMvTbB4aar5hm5EssGJZLL7aLI0hjOOZ86WpHXVtDEYKtE4wtRpmomkIyaxmRWDe6LjG5zKf\np3kBG8bxNPWtKJzlwuFwnKH09PTy/Oe/aFnOrZSkq6vQdiz1YvjkJz87Z93Xv37HnHU/+cmdjffv\nec/7ec973t+y/Y//+E8a79/73g/MOf7aa1/Jtde+clH3drJwIvkUZ/aAkea85LqXuI6WNmnCr0Z0\n/+hHTD/7Oeg8O7mZhUSy1pokidE6y6f5zbonKRndsMFWj8OQTEmMKrRGxQnB2OrVeGnWiImLikXi\njg5klqGlQCvFocMjqCQlqFY458BBfN9vvViSQC2y76WcO4CkDanvMzE4SM+BgzNT+8A29h08AFGE\nufdu8DwyIDYaXa2RCTCrBkm/fhupafPter7ouJw4TY7P03wKcKTpgM5y4XA4zlSkVMs2ItrzJH19\nHfh+mTRdfO+OY36cSD4DEVqjJicRx5j3K6XE9wO0Niil5vwTjRfFdI+OIisVpgf6QSpSKfIGP9u4\nh5SoNEPl1gqZpkTFIpnvY5SyleQ8Ps74HpVCH9nEFH47X/Iivcqp5zGyfh0do6N41aYNsweT+B4g\nEEZDphG9fdDXj1D+jJ+5Tq16UqLjVhxuOqDD4XA4ThOcSHYcE3UvcjtPctbZyaFLL2X9z36GxI6n\nFggw2opeQEYRfbv3UO3tRQc+GInQBqkzO8Y6TvBrEYWpKTCGamcne87ayKZ9+2asEdDqSU4SW0nO\nsuPz79YHk+QiXegM4XmIYhER+IhSaU6ihwFbgS7P7102o+3tGmZkBDM6Sva1r6Be/QeLn+Z3KniW\nHQ6Hw+E4xXAi+TQmTVsrxZmniAcGSKS0k/SyhCxNjnjM8WErsqJUgji2HX0CEAIvSek5sJ+4vw8d\nhrZ6KwUohcwy1j34S4yUlCYnwBiKnZ2UN2zAjI5Ctan8W/ckA+TZxiQxLNKLtRSYJEHf+iVMVGu7\nPRUG0909x65hajV4/DFMGCJ/++pFi+TTxrPscDgcDscKwonk05B6ykUURS0pFpkU1Pr68FPNWKFA\nVIvQdYHZRBiGKKXIlmL8cm6tsOIYmt7MCGPZXIkWaM9n30UXghT0D+0Dral0dRGEBRgYmBHF0OpJ\nHhiwJd1qpWHBEMYQREcYZ70IgkyzuVLD1/OcK8swE+PQ0wOFua5joSR0d821a/j5/UZRy7MtevjI\nCsYlWzgcDofjVMOJ5NMQ3w/Yvv3iOSK3VquxZ8+TrA4KHNw/zJat2yi0yTNUSuH7AVlWnbOtcY3p\naVbffQ+HLru07WASIyVxR4dNv6ivM4DIUzHyRTcWm4KhpRXROvcn1zo7QWuSYpFACDtBbz6R2nyh\nNIUksWkYjz02Y8vIMvuqrc94MfFxEggXujZAoThHCJooAtP+WhpIwhB/ehozNtoYHmJGRjBDezEH\nD1rrx0r2Oi80HfAIEXFOQDscDodjJeJE8mmK7wfMDoIQQtDR0UkoPaSUhGGBQpuK59EgtCYol+cO\nEslJOjvZ8+xfBay4NAiMkrZpTwgQtoGuWiySKY/OgweorVtHtbMTAY14udENGwCDlpLi2PjcC2kN\ncWQPqNst6p7lWnXGp5tltqlOSvC8vAJdg6hGKiUTA/30HD68LH8gTBRh7rnL+pbP3Yp57HFrsciJ\ng4DdZ29i0913I798K7qnxx5Xq8HTT6H3DyPXrjticsbJ5rimA+YCWq5e48Syw+FwOFYMiw+Vdawo\nFhowEkU1nnjiEaKoRhgW2LJlG6G/NDm1mafQ5JnJR1qEFcjUM5WFrRoLKRGej2cMg3v2ElYqyHoz\noDEIY1BGIxF2ap+UxL7PU2dvIqpn7UoJQWjTKAYGbMRYdzd0dtjX3l67dHfbfN4wtK+eZ1/9gFQI\nRnp7SOujr49h/PURSVMryJUCT0EYQCGcWYoFe1/Kg84u66fu6YWubggLYAz63rsx+/cv7X2dYEwc\no3feiymXWzf09qJe+WoIfPRdd0KlcnJu0OFwOByOJlwl+RSn3YCRZmbnKANQLCLWbbBjl48RA4yt\nX0+sJDqdOyHPGDC5vaD+2hyonAUBWsqmZAxh+/pM0wkAqQ1aauo+ZiMEcRjYinSduqXD9+2NSQlT\nk7ai3FxJjmOQEuF5BFNTiFrNrhsbhco6GBtrHUyyxAQ6a5rs1/RFxQ8a47JFsdWqYQLfbo/jeYeN\nrCiOlLSRJJidO+CyK1osF4385CSxYrlrJrvbWTEcDofDcbJwIvkMRJRKiA0bbOrEsZ4D6Nu3j9r6\n9aSeP2e7MabhiZZS2vfWlAwCVBwjZwlRA9RDH0weFaelbEzty5QiDnxS5TVVkgWUSqg0pXEXUkJ3\nD5SKNDwnSdIQzaEQbH7kUbu+UIC+fiiVoK8PRsdmzrHEyDQlbBcRJwVGa+IgIKhVUXml1VQqEOe2\nkDTFVMpzj11hHE/SRtthI0cx7trhcDgcjuXAiWTHMaPSDMncee/+9DSrd+1i30UXkXR0WPsEIh+G\nZ6wSlpK4VMLUh3VgyAKfpMlIbRBUu+xxmVKUOzp46uxNVDs6qBZCVN0asflsgmqV8/btx0/yNA+l\n8qzjpoqtlHZ9o8oprHD3vNwK4S2LOAZsFXh0pH2FulQiW7OavedvY8sTj1PIHrHr0xTGx2HkMExN\noW//OvK8bSvWl3wsuEqxw+FwOFYqzpPsWJA0zUjThCSxS5qm6Pr0vDYeZLIMf3pWU18j/g3AEHd0\nsPcZzyApFkBrRJLSMzSEiiIrXLW2w0cynQ8Z0XRUKoRxjMoy/CQhiGOCOEKlKXGxSLaSh2nUEzfq\njYP1pcmnjaqLeGmXejyetK2P5vAhzNAQ5tAhu0xN2VOPjpJ95Z9shvSpRl4pXowP2ZTL6F/cOdfb\n7HA4HA7HEuIqyWcgQgjCMJxTAZ7N7LxlKQWQEccR2mSUu3vIjEHPqo5qbTCYvAmvcdU8D1k00itE\nvcpsrCWjb2gf42dtQheVrbwKicgzloWUKG3wsgxpNF6W4WWZ3S9Jybyj+FWuR8DVqUfApaldn6at\n0/swNpXDaEyWkQnBeODRm6R4xxq7XK9m1++nUrECOh/PzeioTeWAGWEdxdZy8eQTZDd9zlpEANHb\nh7r+zTafeWx0ZXuWlUL09sLk5PGfy1kwHA6Hw3ECcCL5DKSecrEQs/OWlZL09pbYv3+EXZNTjJ8b\nEXT3EM4SKn6aEfgBhUKRmoF6xblOozdPCIyUaCVJwhCt09yLbMW0aRlAcmxEQcDwurWse+opwiia\nGW4CNm9Z67mNe2Dj5JQEBNpoSBISrRkJfDrTDG8JhpM0Kub1SrJhxvZRx/chSUFI8D3rtS4WoVbF\njI9Z8XwKIPr7Ub/3MrJ//uriDqwnXzQ18zkcDofDcSJwdgvHEfFzsVsoFCkWi5RKJQqFIqJUpNbX\njykWkFLOWVSSsOquX0Ctmk/9mysqsywlTRMipTh8zmbGztpEGgYYATrPVNbG1nMNkAlIhUAjSEV9\nkaSeIvM8ojCgVghbfc31NAylbMxasWib9Eol+75QQPT2EigP0dtj96nHya1aBatWIVetgt4+hLc8\ndo6gVmPj/Q+g2qSEzIfRBlOr2YEj022aAU8wy2X5EL6P6B+wTX3N15svTs7hcDgcjiXCVZJPc5pz\nlKOoxtDQbjZs2EQYFpb3wloTTE8TJBlJ0SPLbHPe7HuTUoLnE61ew+q772J6cNWMdUJKMt+3fX5x\nDNPTTK4atAkXfb22vmxA6wzt+TzW0YFKU4LpMufddz9zMjfmadwLtWHz3qEjT/IzBlOtYuJOTKWC\nyWYlc1Qq1jIxe4LLUSCzjGBqEpGmUC7D7BQLbSCzTXzm3rvzYSgpJLG1X3T3ILpPcqX1aCwf88TD\n1QWvfM5zj755b544OYfD4XA4lgonkk9zmnOUa7V0bmbyMiOwHmghROO69ff19QBSCrw0RXoK6flk\nOrNH52OOvSShb3iYZPVqhOdDPXbOaESlCgL8JEVoTVwIyTw1VyQvxOzpfc12izjBPPE4SIN5eo8d\nM91MnEB5GrP5nHnNIanvM7F+HT2jY3jJrKpxPR5PzthBtJQkhRC/WrP/5KM8W+X2PZDKfrhhiJmc\nOK44vxPFvPFwueA1551/dEkXvb2o37sG/YPvL9/NOhwOh+OMx4lkx8pCipmhI2JmuEhdUEulkM2V\nyAxb5TXYRj6dkS0Q4xYVCgxvOYd1jz5O2GxVqE/vA2u38D1AII1GlyuILVthcBUiKCLaVZJHRxBH\nSNhIfZ+R9evpmJyaK5LrCNkQyXFHB7svvYRNO3ZRmJy0630/H5oiQGd2It9swX4SMePj6B/+O/JF\nL0H09y/u4Gr1qBryhO9Dbz9Iaav6v7jTRcg5HA6HY8lxItmx5GRhyPSWLZSefvr4TmSaXu0IP/vP\n+bMTKurbdGarwQuIZCMEcbGIkW1qvs3T+3zfinOdITzPTsMLfDuMpY01w0wde3JDUKly9l13H7n6\n3UjBMNZukaaYahWiyIrFkZH5jy0UTky+8mKTNo439eIohbXD4XA4HIvFiWTHcWDQuk0EXBAwcfbZ\nFPbutU13xsyMpsZO4/MrFdbuup+Riy4k7eggk5JKTw+ZlLZNT4i8Qmyb9gyANshKhe5Dh5heswYd\nBHmeci6S01yY1bOHTwImSeZk/ppKxUa5GT2TaFEX+/Xx21lGWC7bZsJ24t0YqFZheNhu1/kXhnSX\nFcvlMukXv2CtKG2ox8WttEEkx5x64XA4HA7HMuNEsmPReJ4iCEJAoHU6p2hojCHTKYloHU/djFaK\nck83CZClCUkYsvfyy2e0bR6LVq/XZoUCpqsL1T9Az75hahdeRNLdbf2sB/ajfZ9s/Xq7r4CoWAIM\nURDYMdZhaBMtPI+oWCD1PKJiEVWLjtq7LAwEWjcsIHPIMtj9NIyMYIKms8aJrZRKYSvB1aoV0vWM\n5vwLQf7hMTvyTktJVCrhVys2q9rzbAUdIAjA8xCbz7ECux3NcXErTCQfM3k03BxvuMPhcDgcS4QT\nyWcgURSxb9+eY0658P2A88+/kCzLCIIAb9YgjzRNmUpTws4uCmEBVeqgUimj82Y8IcDPMnr37yda\nv57E8zH5UJK6SG40+UkFGFSS2ua1+pQ6zwPfRxtDtRCilWI0v4/MGB676AIUVownQcDj552LXL8W\nhCTzPMq9vVRLJYpTU5w3NHxUQjnUmnMqRxBlSsGms6F/oKWRzlQqMDEOSWRtHMViq3VEiLwiTtsK\neFIosPeiC9l0zz0URH0YSS6sfR+yzF5vnuY9A0viWzZTU/PmMpuREahUrNWijfXDjI+j/+v/Q/3u\nNYvyKs83tlr4PvQPYJ5+GrNvCFOpHEeatsPhcDgcc3Ei+QzEGHPcKRe+H6CUwvM8vDb/xC+CkOj8\n8zGFECkFUkqM0XmahZ2y5ycJEhoJF6JlQh+NdXCEcSLGYIS1H8gsgzxX2a9FduCHkhSqVVt5rdRA\nClLfR6VJyzhrf5Zl5FgRvg+l0pwmMnME+0ca+EysW0vPvv14RoPO921YSebG551ozNQU2ec/YyvS\n7banCYxPwN7dMDSE3j+MKMx8ATO1GhzYj3zeCxbX0LfQdL1qFbNnN/quXyAGB13znsPhcDiWDCeS\nT3O01iRJnIvaemby8gzFaMZ4HrXztpGNHl6wwudPT7N61y72bt9O0tle5BgpSTo751ZapU2DEFoj\n09TuK8CLIzxtEFlGYXycWnc3JolteoQBmWbIJEUHPnEYsn/1Ktbt3k24BM8+597TFCYn7L23sVuk\nxQIjZ59Nx6ERvFpt5htBksxYMkzDmX1yqNWsQA5DKMy1dQiAgVW2an54xE7Ia65s61FbhW5X0W7k\nJx/DbKOebsS52zBPPAqVq1zznsPhcDiWDDdx7zQnjiOeeOJR4jhqZCb7xzDwYjkRWuOXy4gjVHPj\njg6Gf+3XSDs7WzcoaWPQCkXE2nV26RtADwySblgPa9ZQiGPMqkHS7h7Svl7S3h50sUjW003W2UlU\nKlIplagVCtRKJZIgWNrn8+w4aeH7BGmKqPuji0VrG1H5d1UhbOxcPebN92esJaIxo/vkUijaaq23\nyO/X2kAUkX3jn9G7d7dsqucni4HBtsNGZmPKZfQv7sSUy7ZRsVDIbTkOh8PhcCwdrpJ8mtM8ce+0\nJW/yq0+7M1nKWE83RkoCIQg8j9FSibiryzYDCkHmKWK/FyMlT0pJrVSi6nuotWsIajXO27d/8cNI\njoRShFHE5gd/2Tr1r37vQuSTV2Qj3SKIIs7euSvPfZ5fIGshSKTE58R86zVRhLnnrvb+ZK3t+l07\nMM1RfNUajI5g/vunZGmKeMefzUnamHfYyGyaLRgOh8PhcCwTrpJ8mrOSqsemHulmDEZA4vtoQGPf\nGzGzT7tjjvo6CLTvWQtGkiC0tVaoJEElCWG5zKrHHicsl5Fpil+roZIEv1qzPuVSiewEf15aKcY2\nbiBtuq7UmrBaRR5pXDYQhyFP9XQSt4uOWw7S1AphpaAQtixpdxcj284l7e5q3RYGjS8HZnJi3gbA\nRZNP3yP3PzdXmR0Oh8PhOB6cSHYcF2makabJrCVFa52/tmYpa20zk+OwwPCFF1DzfWIpGV+3ljRP\nuWgVybrxszGm4U02RxoYoiT09qHWrEWtXYfs6katWoUsFJAdHXhBQO+hw3h+gCyW8AYGkZ2deAP9\nKC9Pn1gO33ZzPnJzTrIxaCkZ27iR1Pfsfs1Lo3Hv5DbvzcH3wA9al/rIcM+fu17KGWtJjhkdJfvK\nP2FGR4/pFoTvI/Lpe0CjylzPqjZJghkdsfnVDofD4XAsAieSHceEUoowDMmylCiKWpY4jtFaUy5P\nkWUpWZY31DXEr7VGpIOrUIUCgdb0797DxnvvJahWG4kWAELIlvSLtKuLA897HulCeb9SWRFXj4yr\n+3tlHqEmxczPvpdXOf3lG0SiNcTxTNNepWLfpynknw8G+3OStC5paj292szkKa9EshSvVmVg/368\nWhWSeGZJm5oQowgzMoI5dAhz8CBmaC9mYmJRlzJxjN5578IV4/Fxsq9+GcbHj+PBHA6Hw3Emchob\nVR3zsRQ+Za01hUKRTZu2EIZzMyFqtRpPPvkoQVDF931GR0dIkggpVYvoBftNLYgivEoVpTVpi0iu\n73vMtzr7xm0FVxsbC6c1JskHetSFnNZWnMaJjSPGVsEjKdlXCllfjQkXK1altIM/fH+mSl2vJjca\n92jkPzcTJAln37sDv1aDrqVtKlwqtM5Ixsbwy2VkuwbMLP+SMHIYohrZTZ+DQsFGwz39lM05buNT\nnkm+mFXZTxLMzh1w2RXL91AOh8PhOKNxIvkMpO5TPh6MMaRpShiGFNpEggF4nodSEs/z7KQ4RJ6F\n3F7xZp5nTQWzPMnko6211vlAkhm01kfnVxYC7XmQZegswxh7Lp1l6EoFVTHoJEULQSYEEUDeS6c8\nD7pCjOcRS4kRHJvzoV7FniX4hNb41SpJof1gF6k1YaVibRcNy0b+foUQex67L9jOpgd/SaGd31jk\nmc9K2S8B3T3W1uJXWn3Kx9LMl0/fo6t7WSrG8w00cTgcDsfpzYoSybfddhs33XQThw8fZvv27bzv\nfe/j0ksvnXf/m2++ma985SsMDw/T19fHi1/8Yv7sz/6MYIkjvE4XmjOT5ZE8vSeYLAwZ3byZWAjb\nwDfLk5y/I44j0rT1vutiFwTGmDkCvO5hzjyPWk8PWmsCpUgKBWpdXURdnVR8n56HHmLyvG1EA/1o\nz+PxwUGUsQVmKSVepjmrFi/tg+dT98KpKc7asZPdz3jGjN2iZT9yQWygVoVE5daLlSWUjxlDw4JB\noTC3mnykQysVeOpJK2B9f3lc2wsNNHE4HA7HacmKUUrf+c53+OhHP8rb3vY2vvGNb7B9+3b+6I/+\niNF5Gnq+/e1v8/GPf5y3ve1tfPe73+WGG27gO9/5Dn/3d393gu/81KE5M3klkYUh02edRc/wMH6S\ntPUkB5UqZ+3YSUeaUSgUGksYFpBSIaVsW6FueJg7O9CAUAqpFELK/FWhgpDucgUvCFDYPxS+lARS\nEEhbCY89rzEIb8kQwlZW6znIzXaLliX3TEtpB3nUM5bDwkzD2krAGOu1npycu0xPQ7Vih4mMjmLu\nvRtz589gxz2wbwh23Ev6mU/ZqX5TU0e+jlKI3l77mVWrLY16DofD4XAsFSvmb9ibb76ZV77ylVxz\nzTVs3bqVD37wgxQKBW6//fa2++/YsYNnPvOZ/PZv/zbr16/nyiuv5Oqrr2bXrl0n+M4dS4VKUxsV\nPMuTLIRAak1xfBzPmFwUqxZxPJ+FYzb1fUWT9UPWX6VEGoPUGhUnqChBRTEyjjFpiqlWMXGCqVTs\nP8E3LdSqC147KhZ46qKLiJptFfWM5Dakvs/IWRtJgyPE0SUJzLKgnFS0rpffZy3CNlMWQvtFIJwV\nDQc25ePeuzH79x/xEqK/H/V7L7NfFGZTt1709i7DwzkcDofjTGJFiOQkSXjggQd4znOe01gnhODK\nK69kx44dbY+54ooreOCBBxqieM+ePfz4xz/mqquuOiH37Dh1MVISd3bMjZETwgo4Y6fDEdXsOOao\nZpvORsdgbBQzNgIT461LFCG6e44YHWeEJC4WMLNFsbHjs4NyGRHHjVSLVAhGNmwgFTJvNtRWjNeT\nMWo1GB8jOHCAs0fHCRbIUz5hzBbJR9t1mWmoVDCHD9nki0OHFqwqm2oVs2/I2i7II+H6BxBLnHN9\n1GkaDofD4ThtWBGe5LGxMbIsY3BwsGX9wMAATz75ZNtjrr76asbGxnjNa2xTT5ZlvOpVr+L6669f\n9vt1LI40zdB6pgGvHTNZyMufcpZ0djL0nOfYazZ7epVCrF6DSBPkuecjlUJKQeAJ4ukK6pm/grj3\nLrwX/y7e2rVzn2F6muwfPr/4GxKCsFpl81332OpqXeA1j6VWynqQC0Vrv8jyBr7ePqQxFMSK+L6L\nlpKoVMSPE5tyYYz9glF/P51/3sPDtrpsDNQi68V+/BEoV8i+fCu6pwcA0duHuv7N8/uUa1YkU124\nkn9cNKdpNPmSTZLA1CR0dS+5MHc4HA7HyWVFiOT5aNeIVefnP/85n/vc5/jgBz/IpZdeytNPP82H\nP/xhVq1axVve8pajvoaUIk9eWBxKyZbXU4EwDFizZi1hGOB5i7/v5mdWSiKlyNMr5p7L9xWlUgmt\nM6IowpgsHxSiqTfZ1f/7CiFIA5/RzZtza8GMSha5jhI2HAO/UmFg1y5GrriCtKsrP35mX/s6EzE3\nO25uNg23Q76vkf8/e28aI1l2nmc+595zl4jcl9r36i72vqhprbQ9gISRBUGWZEo2bXEMyIApj0lg\n7NEPwzAMGIT++JcBE8YMbIsDkiNZQ5kae2YAQZYsSLAtt8Qm2Qu7m+xFXV1r1pJ7ZkTc7ZwzP869\nsWVkVS6RW9V5gNsRcWM7NzI7671fvN/7CYzvo6MQLSVGCIxn0EGAGqljpKQYH6GYHN/4+VDgCQFZ\n0h4tDVghVxSdMwCtS5Gry0M1tKM0uiuv1XVRXpYP6xlRLQBtEElz88nVSQvyHCkFYgs/90G/20YK\ntBDt41Llm3c+V/sDyuMaN5/+BOe/+zZxo9E5XgRFGLJy7iwTd+4gpW/tF9Vzm812PJ43PoaYmrLr\nXmISSCIAACAASURBVFlGFilCTvSs0UQBzM7gBRIthI3DHnBsZnYa+UufhfHxBx77g/5/NlKgPVF+\n0dD7GZqlFfJ//3WCv/EZxLHjD/pYDx1H8W/YbnHH/HjwuB3z43a8+8mhEMlTU1P4vs/8/HzP/sXF\nRWZmZgY+50tf+hI/93M/xy/8wi8AcOXKFZrNJv/sn/2zbYnk6emRLftZBzE+Pjj+7LBy/PgkWmvS\nNCWKoh2lXIyP14hjH7jA7Oz4hjSRVqvF7dt3eOml5/F9n9XVVV577TVWVlYIggDf91FK0Wq1qNVq\n9vboKGtxjPQ8JJCmac/PxQiBCkOMMIg8RQiDEL1T6LrFsud5bTEPoJTBK4VOdVJk9ZtASr88WYI0\nTVBKsbQ03/5stNYopbi9vkp47y7XP/4Q1jY2lMaexxOnTyAXFqC13ll70iJVhfUOKwVFgdA2ho7y\npAFMlyiuDsQeTBEGLJw/y8St28gkAb+T5yxWVkBrvD//ELFJqovJMkyaMB56yKmtpzN0/26rrM5K\nJPFiWy1NpYeQPkJaoVtUjYflmjuXneMp4pCFC+cZWVoirKrjlFMVPYEXRZhWi2hyHDk7hV4P0EtL\nTEzU8fvXPTUCn/8VsrffYUX6jI3VCTc7tuNb9ycP+v9ZZXXWyuMe61uLyuo0aiEjg9Z4RDhqf8OG\ngTvmx4PH7Zgft+PdDw6FSA6CgOeee45XX32Vn/iJnwBsFfnVV1/lb//tvz3wOa1Wa4PA8zyvp0K5\nFRYXGzuuJI+P11hdbaHU0YrharVafPTRB1y+fIXaoOanTeg/5lptgkYjp9HojSxrtVosLa2ytNSg\nVqv1fNteFRar64NuVz/DbmtGISXzx4+RCI989hiNLEetN9p5zQCNhvWlaq0JwxDP8zFGtPdpbYWy\n1l1jro0hN5DVR8iNte3Y960UH6Wo13hCMtFosexJFL3eY6UKVrOM/DP/E7I/iGxhHta/BDdvWmF4\n/LgVy3lubQeirKRWv7PVcdvQaJQMWDh/gZH5eaTn2xHP5SASMzEBSqOfeBJq9YE/N9Nswvo6q5lG\nLD3cUzvod9usNMnSAhL7s1aFhkIhvLKmnOdc+PgaKs/LHyK9P1QEMs2ZuX4DmWVov4yxgzLODnQ5\n5CVLc/JWhklyzGqDha/8BvIX/wZienrDWvVakyzNWH71m8jJWcTI6EOPb6vH3P78RIT5qZ+h+E+/\nh15pIsLOZ2hWmuStjKJv/1HgKP8N2ynumN0xP4o8bsc7LKa2UNg4FCIZ4Jd/+Zf5x//4H/P888/z\nwgsv8NWvfpUkSfj0pz8NwD/6R/+IkydP8qu/+qsA/PiP/zhf+cpXeOaZZ9p2iy996Uv8xE/8xLYq\nw1qbtmjaCUppiuJo/VIqZQXjTtf+sOf1v75SuhSkGwXwIEEsRDV4xF43xuDnBdN37rEyc4ypu/fQ\n5y9QxDFa67ZIjiKbGlEUOd2Wjup9BmEM5COj3PlLfwmtFWZ9vXxvrx0/Z/vPFJ7vITzPTirsm1Zo\njCHPC3StjuobrmIKgwki8GQ79s0Ir+0jSWs15p56ilPvv0+UPiier7ReVF+pGWMFs1CYuL65SNa2\nEbEoDGIbP+/un7MpDNqYjrC1e9ufq2c0UatJ8oBvJmSaMnP9uhXQQQh+JZLLs6S8AK1RjRYiWrfi\nvtXC3LqNWVjCG99YEdbGAxlQvPMOfOp/QESDP4OdHHMb4WPGJtGIDZ+hKezfj+1+toeJo/g3bLe4\nY348eNyO+XE73v3g0Ijkn/7pn2ZpaYkvfelLzM/P88wzz/Drv/7rTJfVozt37uB3JQd8/vOfRwjB\nv/yX/5K7d+8yPT3Nj//4j/MP/+E/PKhDcAyRymtcnfCoIKB54QIiDAnyHF8IdOlpbY+3LgVa90mS\nXFtj5vXXuf/yS0Ocbb05ef8gEMBkKXkQkEahbWwLIysKPQH1Omm9TnNygjyKHiKSDxaTZZ084qKA\nvEsQ53kn/g06473LSrIWgjyOCLIMTylYMx0PtTbWirKwYEeDv/kdTBRb0ZwmmI+vUrRayM/9z4jZ\n2Z4mPjE5hXjq6V1ZphwOh8PhGMShEckAn/3sZ/nsZz878L6vfe1rPbc9z+MLX/gCX/jCF/ZjaY4D\nRkURK08+SW2bEVxCa4L1dYRSNiViD9Fa8+GH30epvtziJEFfOItXj6ktLXLt/Fl0rWZF5KULKClp\njE9QBAHP/Lc/Iciy9trDVgtxCKbqmSSBqx/ZASZgxz/LrhHbStnYvDjqWEna1gtDVq9x/ZM/wPnv\nvE68tm7FcL+9pCiF9uoa+A0rnovcDiF5/duo/+1LiJOn8P7638T89/+G95M/tXGdh3iEtEvCcDgc\njqPFoRLJjkcbO0LaAPbSGLPhdscWYdp+4r2OhNsyno8aH8dskoVsjCbLMsIwsukN1X6l0HmBbDSY\nvHMXMz5uG92UhmZCEUjE6Ch5HKN8SaBtNTlqNLn4nTdI6g/2jRdSshpHTAqQe/RZiTiGS5eh8vw2\n1u0gkErs5bnNbfZK4VxNC6xM5z0RJAaE35XGUUaY+GXiRRhaS0nlrateL4owy0s2S3lp0Yrxavre\n6qp97F6NkK6GlIxtTDXZMsvLqG98Hf8XPwPHjg1vbQ6Hw+HYE1xeiGPP8X2fMIwwxqBU0d5sakRB\nUeSkaVI219mt278M5kGD6dqP635+tSljyIMA1eV99tfXOfHaa/jr65t6lQehxsdZ/cm/gh5/sFCS\n0kfKoLNFMTII8IsCryjwkxSZpMg0RWYpQbNF0GrRGh8jC8OOVaFtWWDzeDesSF6oRVZ47yEiDBH1\nOqJe37l1pfvz7k6/6N58v7N5pQdbyk4Vu3tND5q+N0T2akjJwzB5jllcsFVoh8PhcOwrrpLs2HOC\nIOTJJ58qq6whUkqUKlhbW2NsbAxjYGlhnihJELU6xvdpNhvtkdNVvrIQHiqKWL1yBRVFAG1xDIY0\nTQDadgetCwqtWDh+jJYxKKXKx8L6+Di5wDbr7XGpWkQR3gsvwdISLC0hTp9GjIxY4TM3h6c1Ms3I\nRkYw42O2KttNvWYrqYfEd2uKApaXOkIW2naLUGsufPM1gjTdGFsCfZd7fzx7br8YRoX5Qbjqs8Ph\ncBwYrpLs2BE2azlpi85ufF8yMTHJjRsft4VrEIT4vo+UEikDoqjG7OxxoqiGlBIfw8j8PL4qyjzj\n3q0SVDqOWb1yBR3bqqJNn/DwPJ8oiomimCAICIKQKIqpez4z9+5TE6L9/qHWTM3dIVQaz/P3p+kr\ntNaEYmSkfR1ZTtRr/19YDuvwvZ5NCEGYJIfCmwwgpITJKZiZscLt2DF7PYrwhCDKc7xuy0VP9nPf\nJfTn/7Xj7dqjuJWGorAjqJMEs7SIWVxE/bvfQH/wQZlIsgml/aLdcDjsz+KAKswOh8Ph2HtcJfkx\nJAwjLl++QhAMHj6xFbIs5erVD7l06UnivsizIAiYnp5lZWV5y1VaIwNWL14k2IHY6E+3sJdWPPtC\ntNMwKsHtAUGe43U9d69RWqNGRkhfehkR2v/tjB3hBopysp8gi2OSAdaBM+99QNBqwdghEWNtEWx/\nhwopWTl3jonr15FKWfEPHT+ysMeY1euEjUbnvMAY+9yTJ5i4exeZZ7C+3p6vglb2PfIc3n7LRsT9\n1m/AzRv27pvXbcLF2bN2Tf1Nk0PgMDcDOhwOh2PvcCL5McTzvHamsAPk+jrH3njDxsTtAUopFlaW\nKMZGq3GA9g7PgxPHCZpN6nfvsnzmNFefe45wQAxc2Gxy5Y//mEMikTdQ+D4LZ04zcvs2sijKUdR0\nVYhtjN/Nl17k8n9/lbjZ6ho4Uj62+sbAE5155Pg2MUMbW4HXGkbHILR2G8IQkhb+T/9VxPQ05v79\n4R/cXjUDbgNTFLC44JIxHA6HYx9xItmxrxTFxkpfURTtiXj90/Cq69ul8ipnQcDiJz5BHoaYcpqe\nBvIgQFePK6yfVhfFpskVu8EY20AoPA+vKDrVTq0hz/GzjNH791k7cYJwdY2wrxqqpCSLY1QQERwS\nX/IGjC7tEWX8W3e820BPsgZthbBUiplr12wlWJQDU7wy/aN/emE/rQRz+yb66kd4gFlYsOkX6+uI\nR8nDu7KC+qP/7LzJDofDsY84kezYF3zfJ4oi0jRFqaLnvirhoiiynil7WuseK8VWrRF2+l2OUnZy\nXuv0KStUq8Y9z2Pp1Eky30MpRcvodnOf1opqWt9wPwAP//iJ3iaAPMfcmcNTCk8b4vV1Qt/riY8D\nQEqUDGzkWpZb8aiHbyvYFcLrRLh1NxmWEXBhq8XZN95k7vnnOo/3hB0yEgQESYInREcTGwN5Oc98\nvaw03ysbAfXbNpM5SWB1BdbWUL/xVfTEBCZN4fYtTJIg/pf/dd8/BofD4XA8OjiR7NgXgiDk6aef\n3zhoA0iShA8++B5LSwtMTc0gpWR+/j6+7/dM0duqSBZCEAQhUnaeb+PmNJ7nESYJU3N3SE6exMQ+\nNQMz9+5TnDtH1jfFb5gYD7TolskBJgzRDdtUZgQUnmcFJGC0JgkDpNYo36MIJLSSTjVWSvA8hDGE\nSiMOOk+6O8atz5PsGWMHo1RrLx+XjdS5/tLLnP/2t4mTpPNa7epz+VoGO7xEGxv3VothoSgzlX1r\nwZiYtO2d4+OQtKyIHhImy9Bvvo73o5/auS95r5MwHA6HwzFUnEh27BtBEDLITimEoFars7y8VKZf\nSDxPlNvOAli6Uy+69wkhMFHE+rlzmChCCLGhuW8z/NVVxr/1LdZ/5EcfmpXcjzGGVivZOBhlfJwA\nyMZGqa2ssvrkExTlwA7ZaCCXl0lmZ0jrI1z9sR/j6Xe/R1BFp3l24EaUJlxaXYd6fVtr2hMqcTvA\nk7zxceUlpndfP6LreDHlAJNy+IgAsgw80RavBmyleZjkOebNN+ClH9ixL1kEAUzP7HgJRinM0hJM\nTjpfssPhcOwDLgLOceBEUczZsxfwvIdXb4VSyLU1O2Z6h6goYvmJy+2s5S2jFf7q6o7eu5ou2BHv\n5ebbKX53nnuW2vo6Hla0t9M4AIG9nsWxXXMVrbYH/undUvgeC6dO2cEmfaOpgT5PsraV4YruXOXq\nsd1bNVylel2lIC893s2WTaFoNDDNpo2Ka6zbiXxT03v2WZlGA/3aNzHbHJe+Zarq88S4HW/+//1H\nOxLc4XA4HHuOqyQ7hk41SW9m5hi+P/hXLE0Tbt26zpkz57eVtCHX1znxJ3/C3U99inxiYlvr6h17\n3bndP5WvOgY76U+UGm04GcUDbSOlGMaApzWmFOGeVmAMQmsrzI2BXPXGnBWHaxKbimIWLl9iZG0N\n2V9Vhq6c5LI5r/vEqLJVCGFFdPX8LLP3V97kuTlbQS4KaDStd/m9dzE3r9v78wLyDP0bX8P/B7+K\n/zd/ae8OeI+TL9rV54ekdpg8h7VVl37hcDgcQ8RVkh07ospaDsON1dgsS7l+/WPGxyc2zT02xpCm\n6YYGuaJQZdqFKbfeMdN5ELD8xBM2naJMxHhoAgJVJde+tm0SzCmKYmDjntaKNE1IkoRWq0Wr1SJN\nM/Qum/mCRoOzr75K0D/8okp0wFjh195KYZymyJUVGwOWp5AmnU0piGPrTz5ARL/n2PPs1u1T7nlC\n937Ru6/CGIowZOHiBYowKl/P62Q012r2uIWwWcpxZLcoAt/DrCwPx5fs+4jJyUMz8XAgy8uor/+W\nqzI7HA7HEHGVZMeOGHbWsu97+L5E64IsK8qUCYMxZRNbOVbalz5Lly/ZJykbHWeMfX6VijEIa3Pw\ne1IyqgSNKAwJR0aJ4pissMkbURR3Tf6DPM9t+sIuEFoTNBobJ+d5HqJWhyBAHD9hBRkgVlcQWYY/\nNo6/uIAXR4jnX8TrPzGR0jawHSBRlnHxww9JBnnIS69x2Gxy4bVv2aEoiLYn2QjIajXCNMXTulNF\nBiuSL1xgZH4BWVWUB73+6qod312dLBgwaYpp7D4KTkxP4//cp1Hf+PquXsfhcDgcRwsnkh2HgiAI\nmZ09ztmzFwB47713CMMQWYqeoihYWVlmYmKyva/aPz9/HynlQJEslMJvNsnjqG/MdXm/EFCr03zy\nSdAKUVZ5K8+wFdeD852HiZE+2egopvIcA/hlldT3bLFV+LZqHG+cyHdo6Wrc84whqry7QticZG3s\nkJGXX+Lyn/4Z8fq6tUt0fztQeZHbtov1dvHZxuFpWF+D2+WkP22sDSXP0b/xNcQ/+FXE2Nh+HvXw\nmZzE/7mfR//+f9rSw539wuFwOHaPE8mOQ4EQgnq9Tq1WwxiD7/tl0kXnH3jP8zbss/vFpt+EVx7m\nuR/9kQO3JAyiEvXZyAg3fviHqdfr1osMVrQDGmMvhSAtcigdBL4xBHoLFpCktSdr3xKlhaIIQzt6\n+s4dZJpu4kkubSeBtMK6KJBZxszH12wVucpR9vpsGaq0dvh+OZq6FM5el+XiiItkEQQwOd2J1nsY\ny8uob3zdDR9xOByOXXD4VIPjsSSKYi5f/gQAyUGKun2kGnpiyhg0Y6DZbLQr3TLLmGg2aY2MEGpD\nox7zQRzjl02EUVFwZe4eMktheQUmJxBycNVQTE7ZKvRBIARFZL3FI0tLpUi2QjdsJZx94y3mnnum\ny6fsAfYYZZbZaXywtYQKre1JQenxHpblYhgpGabRwLz7DuLZ53aetexwOByOfcOJZMcjjYoiVq9c\nsdFpZSqEUArZapHH8YZmrM3SLbTWZDJg9dlnSKXckCpRjdbuzmXeCsYYWyA1AjA9nmk9NsbSiy/i\nr6zA6greyAjR2YtI36NQmlwrxF+9glpa4uar/5WzP/qXiE+cHPxGcXw4LAc98W42zSNsNRHG2Ep5\nrUZgNN6gCnmV6tHtTa7SM7IcTNkQWRSlnUPDB+8PxXIhpqd3n5Kxx0kY28HkOWZlHTN6sF52h8Ph\nOMw4kew4cHYaB7cVdByzeuWKbQQs/bBBo8GZP/smN3/oB1Gjo+3HVo18YEjTpC1WhQClFMsyYPXY\nMUiadut+H60pipyRke0LsaDR4NTb7zD33HNQDjjpRpQJEJ4fEIyNImWAKHLSNEXMzGCALI5gamr3\nFdNdIsoR1BuaE7vHTUOZkyw6t4E8irj50tOcf+NN4gcOAxEdT3J13eua8ldVo8uEjT21XOxDDnNV\nfR7qxL7lZfL/+7fRn/s7EI4+/PEOh8PxGOJEsmNPqCLewjAaODXP9yWzs8fxfYlSxaZxcJ3rRSlE\ni77HFOWQDgPoUuTujGrQB2xMt8iyfEPTYP86kqS1owmBXpl6gVID0zkqO0b38dv4uoIkSfCKTVIf\nDoCo1eLi629s9M5WorY/J7n7eKs4OCnt1vez7jy3WyR3Pa99ctE7GtvcuI5ZXt6TE4ihVJgfRFf1\nWYyM7Gpin8PhcDi2hxPJjqEThhFnzpzn1q3rXL58hXhAGkMQBBw7dgIApXrFkO/7RFFEmqbt+5Sq\nRGELpVRbfCu1MS7ORsntLI2iquL2p1t4nhrYNNjNwwSyCkOWLm+c9GfKBAhjNHme0asAIdAK2UpY\nL3Lm5+/jeaLMkFa899471JIm3i4znLdM0sJoYxMoPB9Muda8sKkS7QEifRP2KnqEbpeobe/DCuhB\nnZhdVg3bCHiSibk7yCTBZr61y9UdG4YqoNXqHcDyKDLMKrPD4XA4ACeSHXuAzVDeaBvYKkEQ8vTT\nz6O6hE2apty5c4upqRnu3r3NuXOXiOOYJEk2xMUppVhYePCEsm6EUshGgzze5pjqbaKiiOXLlwd+\nLh0puTGpIx8Z5d4zT+P7ktj3ywq3rS77vkeW5kR7LZLjGDE5hVlestaFPLOCtjwZSYVg7rlnOfXO\n20RpDqKs6HdFwGlfsnT2DMc+TJCFauckt4++fFx3TvJAlKLwfRbOn2Pk3n2k0bbPr7JoGAOUg1hU\nAWEL09z52GizuIj+/d/D+8mfQkxP7/h19pL2ZD6Hw+FwDA0nkh2HkiAI6Y53jeMaExOTJEmLhYX7\nxHHcrlAPiovbDnJ9nZOvvmpj4vbIW7pVKnvHgHvadhBbsdYYYwew7EeNVIyN4f/K34ckwSwsoL78\nr2F8AlGvA2BWV8haDUytDoHqfI5K2VzjMEAHPktnzzJ1/QYyb7Q9ydWQERVIeqYObsoAAS3KLGnT\nVVGubBhKdQT0TlAKs7R4oNVo02xiXvvmnidjuHxlh8Ph6ODGUjseO1QUDbQ9DIPKN9wZfZ23/dTG\nmMGbEBjg1NtvW2/yIUWMjSGOHUPMzNg4OUH7GB5Y+aWcNthsdQnYTmOdpzVRs1n+MeryJAPa80jr\ndXS3lUVs58+WtX6YlWXM/ft2W1vbzmEfDlot9Le+Cc3mwx8LHftFOb1xy7jx1g6Hw9HGVZIdh4Ki\nKLh27SMuXnxi6AkX/agoYvmJy1bc7aLRrx+tNY3GOmma9PiTtdbkeY7Wqh35BlXR01BIydLZswjM\nxlSILrrTN6wn2Qpyg0GHIWmRIzbJmPZ9nyAYUtxXt/WiqtC2miCMrbYmiR2TXcWwGU3UaHLuzbe4\n/soPAKI9EKQIQ1aOHWNibm7gW2X1Otc/+Qrnv/0dO40PwGhkmjJz9WObEQ32fatKckVRlPsF+j/8\nDuZP/itgM6P9X/n7+x+Jt8dJGN04+4XD4XDsHieSHYcEQ5ZtTLjYKhuTMDqJFwBadyq37Xfc7nsV\nBX6jiRoZGTi9z/M8RkbGiON4w+jsNE3akwQrT3IlemVRMHXjBp7WNE+faT8vaDQ4+fbbzD33PGkt\nRmvVHjZSHcvS0gJaa+pnzvD+3dt49+8MXHoURTz99PNDEcrd1osK/73vwe//LoyXwvPYcTteO89h\nbq7TqOf74Hf8JEUg7ZCRhYWy2W8rdou+ISNgn1elWpjqNp1mwJFRmJi0jYeVr3obItm0Wqj/5z/g\nf/oXd+xL3vMkjH3CWTIcDsfjgrNbOA4c35dMT88itvU1evVcm4RRxcilaUqWpWitUMraHtI0oSjy\ntiitNmPs8I4qS/lh9gt/fY3xP/h9/Ad8Xd89OruzyXZSxqBNBQFrJ44j+kS70Jqw0cQrq8u2Ci36\nkjd8fN9nbGycWq1GFEUbNt+XZVLI8Dy1betFtU1MWfuE8O1lIK1IDmRn/LRgY2pF1+0wSbjwre8Q\n5vmWR4gXYcjChQsU4dasM0YbTOmr3pb9QmtYWd5/X3K7+uxhsgz95uuYYVhyJicJ/uYv4e1E8DtL\nhsPheExwlWTHgWAtCFnZoBcwM3OM1dWVbb/OoCSM7sQLgJWVZUZGRlleXsL3/R4rhBACI0Rn4Ej1\nlf4+oqKI5XPnGL/38ESOSlhX1z3Pwxge2rjYH7O3V2Sh5M6zz3BqaYUoyzvRcJVAbse40XsJeMYQ\ntVoQRYMj4Eq055PHEUGSWJFcVqLb1osKo0FpK9rf/z7m5nW7njyzjYflmG4xOYX8/BdgavsNcXud\nfFFVn839+5DnmDffgJd+YNcT+0QQIGZmykrw4cnZdjgcjsOEE8mOPSEMIy5fvrLp1/tZlnL16odc\nuvTkwBzlzRBCbIiX60/CgE7iBXSqu54nyu1gvkARShG0Wqh6HXPAKRo7Ic+zTavRqQAdSNIgIqnX\nSVbWMEZZa0UcgTFWqLdj3vpzlLceF5jVa22f8kOphorEsV2H59u3Gp+AWq1tvzDz91GRwKw0MUVv\nRd8sLECrZZe9sLDhPnP3zoHnMHdP5tvL9AuHw+F4nHAi2bEn2Kzk4TfgRVHM5cufGPrr7jXGGPxm\nkxNvvsndV14hHxvr8kjbhIsiDEv9aEWaAYowwG+1OPv973Pv6adgi7aCYZPnGd///tukm0SpidVV\nglqd2y88hzKGj89fgHodUxSwuIBstph+/318bRCeD1FoUyrC0IpY6VF23tkXHFbuc+WFDgIIQjv8\nRCsbXVev2897fZ38//wqK0aRpQW6771NkcO9+7CyRLG6gog7v9cmSeDuHbyf/WsHOxK8azLfbqvM\nDofD4bA4kew4EqRpwq1b1zlz5vyep19sho5iWs8+i4639/6VtcRIn+VTJ8k8D1Xk7XQLMKggYOX0\nKfJAtkdr51KyfOoUWRzRnJoaahLHdlFKkaYpvi+RckAV/NgxzKf+IsGr/x2dZYSlD9kgIMsRGDyt\nOPP++0RJq4x/swJW+z5LZ85w7Oo1ZCXCdziIppctvoZSmJUVxPFZqMnOtMCuVzG1EfggsxPtymxo\nAPSibQLcTQ7zVvB9xOQkrK7u7fsMEdfg53A4jjqucc9xJDDGkKbbS78oCtXOKK4SL6rotMFb1/S3\nQWuo1UiefQ5T27o9BGxVPQhCZKGYnLtDqHW7oa/yGBtA+z5CeO3GvKAomJybI2olTN66tQ1Dwt4h\npd/XlNi1+RLfGCuIDUgD0hhkUeA/wI6gfY+ls2cpwq0Kqd5PQvt++fzdJXeIWg0xMjJ4q9chDBD1\nes9+9umETUxP4//cp61FZAuYRgP92je33+S303zlQQyhwc/kOWZxwQpuh8Ph2GecSHYcCnxfMjt7\nHN/f/Zcb3YkXWZaiVEGeZwMTL5QqejZjaCdHDBMhBB4Q5DkebEi40GXzni791kIIBCCzHE9r/IdE\noh0ahEBLaauzWW4j4LSmEB73nniCLIw6nmRtrE+7PWRk4wlKNY0v7BuiYYQgq9XQnmdF8rndi2ST\nZdbbO2hrNiHL7eS7rv20WlAUuxp7vSeU9ostDx8pEUGAmJ45PJVfl6ThcDgOEGe3cBwKgiDg2LET\nQ3qtTuJFkiTcuHGV48dP8fHHf96TeDExMbkhz3h+/n67wjtsijBk/sknycOwZ+JetzjsrpQXYcj9\nJy6ThVHbrzzweNfXmXzzD2h+6i+ix8eHvu4tIyV6YoLU94ibLWSa9Az0KIIAkaWgFeCD6B4y8koZ\ndSx6rMnVNL5erD3l5ssvcf5b32bqxk1WTp8asKAyO3kLmDwn+853UMkmSQ9aW1vFW29guhs/Vxl5\nYgAAIABJREFUWwksL6F/59/jXfnEAweU7HUShsPhcDiGixPJjgOnOw5uWMkTVeKFEIKRkVHiuDYw\n8aI/Ns3zxHDssH0YY8ilZPHMGfv6XZ5kYTRenqOltCOqS4Goy0l8fpaxfPoUKgjwBtlNtMZfW0Xs\nY8KCUgpj+jzSvod69jnM6gp6ZBTt+5Ak6O++ZYe9rK9iwpB8fIIA7GARpWwVWfoUI6MsnDrJxN17\nyNbgyYH9yDxn6uZN1k4cH/wArbc24U4rTCuxzX39nmul7OsEoxuf53uAwczfx9y6BTN9U+7iuCOc\nlcIsLe48CWOIE/tMo4F67130p36I7SSLAB1LxtgBnpA5HA7HPuBEsuPA2Wkc3Fao0jCSTcY17xdV\npvGgiXtRs8WpN97k1osvUIxPbBDpQV4weXuOxuzskBradodSivn5ewOzl40xKK1YbK7b4ywKzNQk\nXqtJlDRZmZ7mzpNPcOmd7xH0iUUVBCycPcfIwhKSIf28urOZt4Ish6C0F1XAnbtQbOKJVdpaSj6+\n2pO93H77XY7A7q8+D21iX7OJeu2bmJefg3CA+H8AbuS1w+F4XHAi2XEgdOcoZ/1DIB5Ruj3IPfuM\nQWYZopyot2EoHXYMc5cL4UAxRqNUUTYZbhTtsmdanh3WIrRB+T5oTRZFKCEI2lYM609G69KrrDck\nTHQTNpucfeNN5p57dmsL3s2JhdZWIHue3Ta8tgYT2QEoVfZyxQ5HYPew1erzEKvMDofD4bA4kew4\nEHaao5ymKbdv39hxFFxRKMC0Ey9677MJGEIYwFoJtluI3AvsVLmLFGHIYZJAdjDLQ1bk+XDqNEWr\nRVKL4eNrNhHixAkr/JpNWFyEMIDRESs2x0Y74tR6UnpfUhvCVgthDNrzKKIIM1AIi+FV3j1vEwEq\n7HFI2c5erjCw99Fw1SqGWWU+Arh4OYfDsR+4dAvHkaBKv/A8b9tRcPb5GxMvsiwlTVNarRYrK8sk\nSaudgNHZlB0EUsazHQQqili8dBEVHcwgka0g19Y48V/+C3JtbeOdvg++jxGC+XNnUdK3vt8ggEAi\njCZMElth90QnQ3kL5LUat194nvE7d5FZZk8oLlzYddKF45DjUi8cDsc+4CrJjiNBlX6xU2/xoMSL\nc+cuEcfxwASMyjIghCCOA7JM7ZlILsKQxfPn8PLcNt8NGtZxyBFaI9fWMEWO1hutAdrocqpggF8U\npFFkLRVFjiwKzrz3PmrL+dN9lWWlmLp5E5llJKOjLFy8wMjCAjLLekdgH2HM8jL6D/9g68kYO7Rf\nDHW8tWvwczgcRxwnkh2HgmpYSBhGQ0u46Kc/8aJWq7UtG1IGRFHcTsCoUi88TxAEQRlwMHyxZYyh\nCEPWjh/nzFvf5c7LL5ONjfY9pmtUdVd03Har6XuJ1pq8yGk2W2Ry458VXRR42qAQtMYm+PBKjG8M\ncn2d2Txj9cxZTn/8ccebXH7WRRCwcuoUE3NzVvRul7bHeX+mFZo0tbF3YLOVkwSzsGBvLyxAs9m+\nvYHuJIx+tpmMsWP7xRDHWw+lwW+bQtvZMBwOxzBxItlxKFCq4Pr1j7hy5ZmhJ1z0UyVeHDRVRrIx\ng8dSC2PwisIO5yhRqkDrKibOPleHIc1nntn2uOzhYtcStpqc/N673H3hBfLRjtgXvo+nNcbzEEYT\nJAlSacgL7l+8SLy2jqoEcqHa0XDWj91VGS6phozkYUgRBOjNTqyE2LzpbsiYLMN87x3bqAeQF5Bn\n7dQLU+SwvIL+6q8j5EYBt9skjEeRbQvt5WXUN76O/4ufgWPH9m5hDofjscCJZIejD9vcZxFC4PuQ\n5/kDK7fdz9kqNuXCpln4ec7E7Tlax09gSrEbrq9z+s03uf3iS7Tq9sTB9yWe57Xj44QQqDimdf7i\nhszng0AYQ9ho4pVJHW18n2J6msbUJHJtDRmEBL6PXlsjW16iNncHMT1NGEWIkydtlFqr2RvH1kU1\nZCQZG2PlzGnyWg1WV/fpKDehKKxA9n0IpG1aFLRTLwTAzEbhZrIMGuuYO3N4fVnL7erz0uLgKvSD\nqs8PwvetbWNA1f9hDNWS4XA4HIcYJ5IdB04YRpw/f5lbt64P/bXTNOHWretbSsPwfY8oikjTtJ0B\nbCPOFFlWUBSKLNvcEhKGEXm+SZ7uJlRCsh0D170PO5a6Z19XhNxeTAXcU4QA4QPCijMpwZflfkFo\nDBdv3rKPDTr7d8U+2y0Au/YgBCNAqw2pFz3LS1N46w1YW++pOrfvL6vP3LwO166hX/szOH8BUTZx\n7rT6LKankX/rs/hTI7C0zZHaQ7RkOBwOx2HGiWTHgWPj4KI9EX2V13kr/t3u5r4K3/eYnKyzvNyk\n0Wj2NPz1k+cZ77337o7WWdkKHptUhqLAaANaoX3ftuLleScfOS8Gxr+B/awqn3I/MsuY+fha25pR\nRBErZ84wEYaH849dd/VZhBuylqvqs2k2Ye6O3Tk6ZkX3MHKYH3Och9nhcDwIFwHnOFJUUXC+vzeS\nJwhC4rjW3mq1GvV6nVqtRhzHSBkQx3HPY6otCHYucFUUsVhmIbcb84AiDDBaEzQatnmrr3FPa32o\nGvgwBoPZsE65ts6pb30bkWVo36cwhiLPSKWkNTmJlj6ZUhRrK9ZmkWWbi+Qo2vSEQmYZM9e6RHIY\nsnDhPIUxkGdWiG9zLHQRBCycPkWxlyKqrKyLeh0xMrJxq9chtNMAq8fQ5d03i4uo/+vfYRYX926N\njyIuSs7hcDyAQ1lccTj60VqT5xlBEHLs2ImhvrYQYs8q2VuhW+Qao9u6MJeS5VOn0AJG791j5fTp\nnsY9Y0w5rdC0m/0OCivyL5F6Hkop8jwn62q0E1lCuLoKeUZWq7E0OYknBDovKJYWSUdGufmJpzj2\nwQdMn7uI32zC4gLU4i7LRZmj3PV5Ba0W47fnMID2PLz+z6ES2qsrpUDWoApMUbDVn7YVyacZWV1D\nbtNOs11MdXLQv7/ZhKwrNaO67E7PuHtn2ycARxYXL+dwOPYBJ5IdR4IsS7l69UMuXXpy6OkXB512\nIYRoC2UhvLYmDIqCybk58pFRJm/P0Th2DDM61tO4F4YRYPYsNm+r6Dhm9fIl5PJS6aHutxMLPKWQ\nGpTv44cRnicQCApg5dRJ6kKghKAQ4BtTZhz3vZGxr1XhaY0Abr/4AvGrf0q8vt77+Goh4xNWYGc2\ncULsoGFtz1EK89032xFyPWgNjYa1VmQpRsqe9AwDcPcO3s/+NcRuUh2GON56Lxv8hhIv53A4HA/B\n2S0cjiFTFIqiyLu2osxY3mhDsPs6z60a84QQ6DBk9cwZtC9tU1+ZGNG9eZ53OBv4utb4QMrpekUQ\noFWB1oqs1SLJU5JaDQWEjQZCazqqeav2EoHMc2au30AKYZvpgmBHAlB7Hksnju+t5cKYjj85jnq3\neg0mJ2xTYBTafVEEYeljDkP73HIM9k7tF1W+8pYGljyMssGPsvK9E0yjgX7tm5jGNpsLt/r6RYFp\nNTGDTkwcDsdjzyEspzgeR8Iw4vLlK7vy9W6V7SRebIdq9HV3OgbYbGNjFEpptDZtYWuFMpt6ilUU\nsXTpEuHqgFHPXQil8FdWYGJyR5Few6QIQztCu/QLVxVvrRUGg1L2pKHZbLQ/AyEDVBSyPjnF6J27\nLPzwD6GlxMxOU19Z5Yn//J/xi6KThOH7aF+ydPYc43fvPnA9MsuYuX4dnrxiheQO0b7P0okTTN29\nt+eWi3Y6xiD8apx3b3rGht+hbQ4fObRsN0ljuzaMlRXMO2/DygqcOrW7tTocjkcOJ5IdhwKbcLE/\nwzC2k3ixHQalYwAkScK7777F6uoyWmviuIbneWit22KxKHKqzOR+bPKFbeobVAOVjQaTr/4p6//j\nX0FNTQ31mLaLiiIWL13qqSBXn7OfZZx5/Q1uvPIKTE21H6NHR1mLIyaURvge4egoxvPItSaLIswA\nK4n2fZbOnWXi9m3OvvEmc889O2A1lWXDWD9ynlmLQlFYP68x9nKvRe920Grz9VRNh9X93cfSau2f\nIB6iJWPYOBuGw+EYJk4kOx5phpmGsZUGv2r09cZ1eKXfWON5ovQQmy5LwmCBDJXwvIgxBm9AuoXG\nkElJrhS62CiwrN3jEFQUjSFstewxbMh7FhghWDx5kronkEGI1gZd2SsqsQtlTJy97mlF2GohNjvh\nqXKSl5egsW4b94oC88F7tiKb5XaQx/Fj9iv3PKfHzpHnyDRl6vZtVk6etK/VLUbVEDOYtYKlJZu0\nMMhjboz1K9+5Yyvq2tiK8evftoJ5bRXT3JotwSwukv/hf0J95hfA297J6Y5HXjscDscRw4lkxyNN\nEARDS8M4yAa/qho7KN2iAO7NTJO1GmizUQxrrVFK9VhADivW82usNWJqqvToSgiMtZIIDyF9glaL\nvFa31cy2aBVozyePY4KkZZMuqrHUk1PW15sVkKWIK09BrWarsPfvwY1rmNVVaDTB7xKoSiHX1pj6\n+Bprk5O2YtvtsS2znocilEvRSxhubpvx/c7JQtUh6XmlgM4x9+5i7t/vTOrrntDXPZ1PKetXLgp4\nTKK5B1GdGDlPssPhGIQTyY4jhdaaNE0IgvDAEx32k8q/2z+WOgwjZJpwfGGRxnMvoicnNjy3KAry\nPNuzbOmtUIQhS+fOMXXnTs/+YH2d6Xff5dazz2JkgA7DciofVhB6Hu00C2Ej4KIk4dybb3H9L3yS\nnigNT5CNjnD9lR/g/LdfJ15f69w3wMdbTcEzcQxnztjPOK5ZT3BFntvM5ji2r1Gr9US0FZ7PyvQU\nE4ViaC19pe96A1pbgV4JcgMYDfPzVlxnOfr//Y+YP/mvmCSBax+j78whysE3O53O90gjDCDKS4fD\n4ejl8VEZjkeCLMv46KMPynzgo0WVgax11cy2MeVi0FZ9/d+fbFGlW3gIwqIg8H2kDAZsEs/bW/+o\nUIpwfR2xiS9WRRHL587a6Xrd6R5KIRtNMJosjlk9e5a0VqNQBYXnoTxBEUjycLAELYKApbP2dXe1\n/iCwsXCVmG5vgRXqlWCvrpdbEUcsnDtHEezDCUhlHamqx54AUa6nWvvklG3gHBuHKLaXE5MQRZ3p\nfI8Aw0q9EH4AgbSXDofD0YcTyY4jQZV+Ee7B2OY0Tfjoo/dJ070REL7vt/OMrfWhaG/GGJRSbeHc\nHxFXJWAcypi3LuT6Ouf+7JuED4n7ssdjB8NkWUae51DkkOdkWUJRFCwuLnB/eZHF0RHW6jUWz57h\n6g/+IPmAn70KAlZPnuD0d99+6HvvBpnnzNyeQx6Gr+UrkSy2/ufbaIMpB4+07Rhdw172hL1s8BtC\nvJzD4XA8DGe3cBwJqvSLJGkN/bX3Ku2iIghCnnzyKVqtFknSYmpqGiklRVEwP38fYwytVgMpg00t\nJHbi4ODUAx2GNJ95Bh3vbTqI1oqiFIla617hbowdod01GMXu7rre82qi45JQCl9p8HyMKfB93w4T\n0RphQMuAtF5HSUmQ5R27Q9m/J7QhbLbwlO56E3tFex55vU4gxEMrAqadHNHbuIfWyCRh5ubNjU9S\n2q5HHcDEw9KHzPq6tV1oDW+/Ze0jWtuq8Vtv2HSQrsEjxDEmSRD37qLXPgszo52XXFxE//7v4f3k\nT+06K3koDX6HMEnD5DmsrcLYuE3TcDgcjyxOJDseO4aZeLFVgiDE932CoGOBAPA8UWq+Bw/feFAl\nWcUxrfMXkXLv/sFWqmBtbQ2/FCtZltmJeWU1UxgDp05R+D5emqIDK5h7XiMM0aXH2B4rduhIz7GX\nFhIhML5PXou59slXiFdWyyY5DdpYe0djHaH6h4z0SvGsXuf6J1/h/NIKDzqFMErZVAkZbGjcI0k6\nVosNTwRUmSyx71Xm0o8jStuFKRse48jeXe+aTOn51r89PmF91XoRWi3rXe7mkOUrb1dob3vK38Q4\n3nMvwMQ2xlsvL6O+8XX8X/wM7Ga6ocPhOPQ4kex47Bhm4sV28H2fycmptkA+Svi+ZGxsrD3sxTYC\n+u3Kt5ckTM3NkdVrHP/wz7n98ktko6NdnmurJ5fOn7MV53Y12OBlKWe+8zq3fuSHKaLQ+rWlj5k9\nhm40KJIElSSkM9P4cUTQbBKtrHDxO6+zPjtLc3KSIo7KJAyvbHzztlV9FL6PmJzERPHgxr3Kh9xP\nFNv0jbFxhJRbngU4VET5n+4GxQpVDE7e0AZTFKiFBUxYxxTlz6g7FaM7DeOosM3hI0LaZkyxhyeY\nDofj6HL0/rV2OLaBtSlkj10axl7geX5XBdwrNyscfSGQWY6ntR2hzcbqt44iFi9eLG/YSqVSCqM1\nQbOByWwFutVqdhI80IjRUQop+fAvfJLa+jpXXv0zAiHAgPIlrclJlAx6C8nV9W1YuUV7ml2vYNKe\nR16rERSFjZUbhDGYVstGquXl71le9FRkCwHLgWQyL5D7oaZVAbfnrCWjO1NZSkgzaKzT+NrXKMIa\nujqR6UrF8E6eGpiGMUxLxqOIs2M4HI8OTjU4HmmyLB1aGsYwGvyKQlEUebkVZcNelW7x4O1RpxLW\nVYXaju8uNwN+GJDNzKDOnYPRMYhCG80msMI2iiCMbGU3jOxtuctGT63JPI9rTz9FZoxtFOva5Ooq\nM1evIhcX4eqfW8vGwgLcvw+LC7C81LZhFEKwEAYU+9WEqbUVyN2JHFFk7Ri1GoyP483OwuSkTcDo\nTsUIw83TMA6ZJePQsbyM+vpv2d8Fh8NxpHGVZIdji+ymwc/3faIoIk3T9lAPOxhEYYyNgysK27Q2\nyH9sjNl0It9hoBpHXWySPiKUIkgS8jjGlLYFIUQZDXeOidtzG+LtqscI7Nm8pw068MjqMXdefpFT\n77xrY9DsA8EThGnChTffJEjTMiJtlwfmedbnOyAjGUAqzczde1ZoXnoC0tSK9yCwg0vyzEbLHSRV\n1rQxnUq5EQit8Op1hB8idFeDZRhYoZzvcfrFIcCEIeITT9vLg16Mw+E4dDiR7DhSVFFwQXC0xoQF\nQcjTTz+P6qq+JUnCe++9U0ai3cPzPGq1+kBbiNaaVqtxaKLgqmEmFToMWbl0Ebm6QhGG5RTpTgU8\naLU489Z3ufXiC2SjnTQFFUUsnz/H2L17BM0mx9/5Hgs/8DLFA7ywRnhktRrG8xBG42c5olyLpzVR\na8gJKJ7XiV3b4EsWtqIqJaJWw3RnLZeDS3ZDGsfMXb7EqY+uEu0yE/iRYkipFyLL0O9/H+/Fl4a0\nMIfD8SjhRLLjSFFFwQ2T/Uq7CIKw3+5apkX4+GWigueJTbzT2zTY7iFaa7IsLSu+dq22Gq4opGT5\n1ClyKXtEtAoCVk6fQj3Aoym0Jmw22oK3hypmzdeQq9JzbAibCeP37tGYnqK+to7sj8kbkk3FCEEW\nR4RJgveg12zHyGE9yUVhR18bg/E9jPQxzSamjIwzzab1MXt6oKA2QtgTgmGeHKnOKGbdbGK8HFNW\nkk2zCVluky+KvHesNVh7yyFgKPFyRxjne3Y49gcnkh2PPQeVdlFho+FCimJwDvJhw/M8wjBq+4bB\nCueiUMiiYHJujuaJ45g4bleT/Txn4vYc67OzqCjqeb12+oUxZapZlxcbwBNoIVCeQAOZLyikj/J9\nCt+n8D2WTp1m6tYcMu3znhvaVozdoKTk5ic+weW3vku8SaXaFAUsL3X8v0pbkfzBexAEmCiCC+cw\n125gqnVmufWuCmH9w3vtPVcK7ty3iR1Kkf3ZN1HdQ0mqfOXVVVBFO1e5QkxO4X36r2/prVyD3x7i\nYugcjn3BiWTHY4dLvNg97ZHYXeOuhRAIYwamW7T394nAbn+31gaDoShysiwDDHK9wcz16yydPMny\nmTMY3+Pq1BRpklBbWyMZG6PwfaQQMDa64ev3EMOF732f4Nhxm+qwhwgpMZNTEAYdT3KWIq48ZWPG\nfA/GxxBhrcx3Liu3jXVr5UhamzZ7FVKycPoUE0kLWezCwtFu5hOAj4jjcnJf18+lXmuvvZ2rDJC0\nbDNf/4nIZgyhwW/bQnubNgzTbGJu38I0m1v/nmZyEv8zf8s2OTocjkcaJ5Idjx1ZlnL16odcuvQk\ncVx7+BOGRJom3Lp1nTNnzg/dMnIYMMaQ1utc+6EfpKjVejOShaCQEj9JoF4H32/fl4ch9y9fQoXV\n18Z20IgxAk9rJu7dY/XEcYTWGCEIioJUCG4//zwTd+4QNBro2uCfo6c1UZLufYW2oh0j1/Eki3od\n6nUCAbNAUKshupbTtlKYaliK7gjL8rbyfRZOnWLk+g1kXmYfG7Pz4xIeeAYRBAjP39iMWmy0vBht\nIEms8K2ylAcxzHzlbQrtbdswWi3M7VuwDR+7CAKYntn6ezgcjiOLE8kOxz6xWTpGUShbRTWUcXAb\nBYq93/RaEw4RVSOfFoK0Xrc7+zzJqydPUl9ZJR0fR3VV+nQUsXz+PNH6OsDGdAshEHh4xmCUwk/t\ntD+EQKYZs++9z/2nnmp7gDcg5eBpefuMNDCb9a6vbdFAWC9zXlouKl+zKPcnLXtZ+onLs4jyRcqp\ne8NCFXDvLqRpJ1cZOqOtf/u3IEnQX/31gUM4xOQU/q/8/eGtx+FwOA4IJ5IdjzTDTMMYdoNfFQvX\nbDYwRqG1RqkCY6pmOINSCr+sulZCtBKQNkd4/4qkD6KyXxije0Rutyd56sYNAFZPntjgS4aNbYnd\nvmQTR5jpGQwaMTpO8NGHZNPTZKdO0rozhwkC0jNn2h+GrxRBJZgHplJsnTBJOPvee8w9+eSG+7Qn\n7KARIdjJO7QtGkJAq2mtEFHUGWhSq9nrcXnpl+kZQnQqzsNOPNHWS40Q5VrK3/dytLWYnulYMPqp\nLBmD8pUfFw7AjuEa+RyOvcGJZMcjzTDTMIbd4FfFwjUaDd599y3yPGNiYqItwouiYGVlmYmJSQDm\n5+/3jIIWQpQV5U2mwO0zg3KOK1QQsHbiOJO359q+ZCEEFEU7P7kbK5B1mZqhUUqRFRnGwFraYmRl\nmbXjx1itxYxEEUk95uqTl9BRTB6GjKyt89T33rNCWWm7gRWh28TTmjBJB3pWszjm+lNPcf7mTXZs\n3PF9K0D9suLdLeqr22XlvL153vAryP14Xu8Ewj77yCAMbN2zfAgwWWor5kMYNlRxIHYM18jncOwJ\nB/8dpMPxGBMEIXEcE4Yh09MzRFENKYNyk3ieh5SyvC7aEXG2inw4IuG2QjU0RPc1z4XNJhde+xZh\ns0kRhixcvNgeSNJvKbHT9wS+LxldXsXTGq9QCK0R2hC2UsL1BmQpubDDWkiT3k0pm9Zw0AM+NqPy\nJSsFSiHTlJmbN5Fp1vEgV4/pvr0bf/JjjCgnM4pw4zcbDofDcUj/pXA49g+XdnE4UFHE4sWLZXZ0\nR/BVSRltm4mUeKOjiNFRCGOWzp8nMAY5O4MBwmYDb2wc75VP4qkBVXYp7RS9w4bW1m9cXWL/QM+s\nrJCMjAz2JBvT8WFX4nkfMWna4wM3zaZt7qua+vaowc/Fyw0XZ9dwOAZzqETyb/7mb/LlL3+Z+fl5\nnn76af7pP/2nvPjii5s+fm1tjX/xL/4Ff/AHf8Dq6iqnT5/mn/yTf8Jf/st/eR9X7TjqHFTaRUWa\npqytrSLlFHJAI9RRor/6233bCGGn8XX7lbv2basZUQgQHiaUFHHMqQ//nGRmlryajic965vVw6mu\nhknChXfeteOu94rK3lCNwe6mVkNHEUvnz3Ps+vVOwkU57Q+w1/fxJM+kKeY73+r1H1fNfV/+1xjp\nw/LKQxv8xNgYZm1toI/ZLCwMFNpmYQFz6ybm3j0IguGlaRwVhu17dnYNh2Mgh0Yk/+7v/i7//J//\nc37t136NF154ga9+9av83b/7d/m93/s9pgdUCvI855d/+Zc5duwY/+pf/SuOHz/O7du3GXvc/lg6\njjy2IU+R5wrf73hmi6Ioh3TYSp3WBiF6Pch6nyuHD6I7eWOQ4B00dW/QPmNM22pbWTDyILDpFsag\nu4aN5HGN5MRx1LVrKAFa2Bq0BnIhkMKwHEgm8wK5C71so+T2oRltk/HXUmsm5udZOXWKqTt3kUp3\nPMnVh7Xf9puisMLW9zc09zE+gajVYGYTwdXV4GcA9W/+d3u7D1PkA4W2SRK49jH6zhzeyVNtsb1t\nfA8R18Df+smFaTQw776DePY5xMjI9t9zCLgYOodjfzg0IvkrX/kKn/nMZ/j5n/95AL74xS/yx3/8\nx/zO7/wOn/vc5zY8/hvf+AZra2v89m//dvn1LJw+fXpf1+w4mgwz8WI7bJaO4fsevi/RuujpeVKq\nQKmCJGmR55n12GLa6RfdryvEwdtE+mPboFcwD5q65+c5EzdvkYyM0JqZwZRea2Os+FdRxPyF8wB4\nRY4x0Gq10GurTL/9DvNPPkHh+SS+z4KUaCGQQpB4Ph9Jn8srq8wHo4y0WviDrBfJ1vNxd4sGck8Q\naLPtZhCZ50zdvcfa6OheLG13BNLmQsOWmvugr8EvSaxAjiKb4tGFgMFCO2hCFEMYdtI0xsa2bcMQ\nk1OI519ATE5t6VABaDbR3/om/sVLcEAi2eFw7A+HQiTnec4777zD3/t7f6+9TwjBj/3Yj/HGG28M\nfM4f/dEf8fLLL/PFL36RP/zDP2R6epqf+Zmf4XOf+5zzlToeyDATL7bDZukYQRAyO3ucs2cvEHel\nPCRJwo0bVzl+/BS3b99AypBarYbsazoTwmufKB40m6VbAOS1GrdeerGdZFFN6IsaDS5853WufurH\nSEYfXg30hCBQism7d1h88gm09MlGRhBKWVFlDEIrMgNqaRnyDLO6agXcoDWPT8DSQsfv211xzgtr\n2VCajSF1bMsDnHmCa/WYC82EeDMbSHfjXj/VvkGNe9X+o0xc21Zl1oSBFcp51tk5hCl/jseLw/DN\ngOPwcihE8tLSEkopZmdne/bPzMxw9erVgc+5ceMGf/qnf8rP/uzP8m//7b/l448/5oub83w1AAAg\nAElEQVRf/CJKKT7/+c/vx7IdR4A8z1leXmRycppglw0pe9ng5/s+cRz3eKKFEIyMjBLHVhj7fpV0\ncTR9y8a3Yna72Mpyp1Kt45iVCxcZv3WTIMtQApY/+Qr++CT+6goiTfHGx/FOnsF/5QcRr38L+Vf+\nKvLkycHrKgrM//FvMH/+ga1udgusoqAQgpVjs0wsLiH7h5XosBPPtlsGNO71LtR0xkpXQ0cOuHHP\nsREnuhyOR4dDIZI3w3oTB//jo7VmdnaWX/u1X0MIwbPPPsu9e/f48pe/vC2RXMVqbRe/9LD52/Cy\nHXWO4jHnuWZx8T6Tk5NIOXjdvu/heaIUof1Whs4xK5Xz8ccfcvnyFcJweA1+m72/lHU+8YmnabVa\nPRXa7f6+Vs8ZdHybraf7snuNGybhdd3eLt2Ne1CNZzYDPc3dtlsVRqxeOM/YnTugNR7gCQ8RhggZ\nIFVBLgNEHONPTyPCEHlsmuDUAzKu/87fQbfWKeqjPYMyTLNJ8t23WLh0kZF6naCvQhkJwcV79wny\nAs8De2/5uZRr9uwC25+f54m23cJ4wj5H0NW4F21s3ANrR/A8kGV28YDGPeF77Q/L2FwQeirggs7t\nHitz5zGm67oQ3R9+7/G0107XNwd9j9kMU01MlOWJjxDgCcQWf7eNJ9DCPl6UryOkh5F2XdXtfvp/\nt00UwOwMMgoGPn7gez/kPUzWIv/Oa8gnLyMm9qdHxsxOI3/pszA+vmFNW/m73X9MJs9hddW+3hFM\nu9jWv1UTY/CjP7LHK9pbjuK/zUeFQyGSp6am8H2f+fn5nv2Li4vMzAxuTjh+/DhBEPT843z58mXm\n5+cpimLDV9KbMT09squ82fHx/U9DOGiO0jFHkSCOAyYn69Q38Uhu5THj4zWkNA993E7X6Ptw9+4N\nnn76aWp908yq9RWFxPe3PzxOawhDue11d/+co0gQhpI4tv9gWh+11/6jrJTB80Q5AK7Xk/wgspER\nrv3gX2Ds/n2U7+NnOSakpzLbk5DRbuozQHndYCfBCYMvPSYbTVLfw/MMcewjpc/4eI2xqc2reiqb\nZaVWI5ocx+vy/eooIAkkwvMIoohgwPGEWYbxBUEUkEsPIX2E9DHax0iPKArwamEpCn3iOKRWvo5W\nGam0jXraF2ivfH7ZCKeFII8igjRFBF0/+L6/WUUU8v+z9+ZBkp3lme/vO2sutVe3ultSbxJCDWqx\nCIsxqDG2wIYBSRhLFw8IEHgMGM0Y7nhsGYdlE4AC2UwE90J4cFiAWQIDBtsYriWBx8AslgjQakAS\njZbe1GvtS2ae/bt/fOfkVplVmZWZVZnV5xeRXV25ficzK/M973ne51nYvp0JTcOKQnxdZ35ygqGz\nZzCiiHj3A0PXCZPOd7wpRt0bSkY6gSaQ8WXC0MvnV29PsvZkextdpxlR6BHZBqOj6v24YBtomdrb\nSNdVxVqj20c+QRSiRwFEPkNeEd1bJvSKFEOPvBZhrvJ6J+/tMHIo5SyyYzn0Va5fTejlKGQt8qON\nb7PW5T3jgrFVL17tc7t+zeHZsxS++Xfk33oz+vjq99vPDNJ3VTc437Z3I+iLItk0Ta644gp+8IMf\n8KpXvQpQX4Y/+MEPeNvb3tbwNldddRX/9E//VHPekSNH2L59e8sFMsDsbGHdneSRkSyLiyXCRgNB\nW5BB3Gbf9xkenmB52cN1GxdspVIJx/GZny+uuE71Ni8vF5terxOSx3ccn7m5Ao4Trbjc80KE0CmV\nXEqlWhuyKIrwPBfLspvKQGzbZnnZbWndjV5ntYYAUEVLGGt0ZazzjaKIKKq4W7SMEAhg9PQZvHye\nC556mtMvehFOfmUxH8ZdXNd1wfMJwpDA9zGCgFIxQ2gsAjDz4hcRRRHF6RmeWCpg+D6LiyWCuULz\nZSwp5wrPC5ClisZVOj5hJJES/CDEaLRtQQhBhHR9wiCCIERoYfl81/VB93A0QSA0HMcrW9NJJ76N\nDCFU8gkZqROAk81w/HkH2PP4zzAch8kjRzGKxRVyiyBjM3PxxeSfOYLwA5xslnPbt5MJQoxSSdXD\nMiLwffXY5R0NCMKwRs4sg7C8viCMt6NqO5PtKa892d4G12mGdHxwAxYWiup5dwNwfER8G+m6RA89\niCw1GayMInAc/Nk5CAK8j/+/CDuDdBzk0SM4c4tYv/f7Kxwv6t/bcmYR/9kzeDOLCK21OQW5UMQv\neQQLRYS18j211uUbTSuf2/Vr7rdtaJdB/K7qhPNte7vFeAs7sR0XyUEQcPToUaSU7N+/v60CtZp3\nvOMdfOADH+DgwYNlCzjHcfiN3/gNAG677TZ27tzJ7/3e7wHw5je/mS996UvccccdvPWtb+Xo0aPc\ndddd3HLLLW09bhTJ8pf7egjDiCA4v96Ug7TNQuhMTKjp+GZr1nWTffueg66bTa8ThhFhqArB7m+/\nxvj4JHNzsw3vOwwjhNC45JLnNnTkSAb8du/eXzP4V42u6whhtLXu6rUk215v81b9e7sksdpCSgzP\nQ4sidM8rh4c0v09BomYQEnTPx9X1cgdb3U61l13XRYskYShX3XY91vJGxSJR1fVksQh+SCRgbmQE\nY3YWI6gbCoujrity4Ph5iZcfRUAkiUjs/iqfOUkxXDMsiKw6o/LTCHwmT05XZBnVcosk0npkVMkc\nbBtyWbCt8nOh2vxa5feqeb/a57q6c5/8w4rtKa+dKnlM3XWaISNV4AdB3FGXEiKJSJ4Xz1cFcrW9\nXD25LHgBeC5yaASZzSINE3SdcH6eYLmIyDb+Ekze2zJQr0UQSESLfxtr3WY999ku69E9r/a5JYdG\nEf/XfyAYGkGs83npRwbpu6obnG/buxF0VCT/9Kc/5X3vex+nTp0CYNeuXXziE59YNQCkGa973euY\nm5vjk5/8JNPT0zzvec/jM5/5TNkj+cyZMzUT/Dt37uSv//qvufPOO3nDG97Ajh07uOWWWxraxaWk\nrMZmuV0kmKbJ5OR2FhcX1rie1TTsxDDMFYN/WwERhpiOoxwxDKMywBefTNfBLCzjKJ1HAxs6iRVG\na0uqMlm0iQk4fQ5KVX7IjgOBTyQEc8NDjJ89i+E16JD2OOo6EgI3m8FcXlZ6Zk2r9UlOts804yLa\nUj/LnstiMN0vqu3lEsJg9QFFCbhuw6Q/aQgifRLowA1G1xHjE+3rnrpJl23oWvVdTpP5Us43OvpU\n/9CHPsSb3/xmbr75ZorFInfeeSd/+qd/yj/+4z+u6/5uvvlmbr755oaXffGLX1xx3gtf+EK++tWv\nruuxUs5fuul40Q7rdccQQmDbdkfa+UHFKhbZ89DDHH/JVbjxoXMpJYFpMrtvL6GmY4URyKhBlztC\nSMHupWXsNTyxxfAwI//3+4nOzJS7mxAnvn3mLyGbU8ETVxxEs+yVd2AYTfWz3cDP2Dy797ns+eGP\nyFRLEGLJheG5TB47jmFaYJmqmxxFVXZyotY9QzCYRXMYwKnT5e69sucLkY88pHZSogiWC7C4QPjZ\nv1I7L1VEQrC46wLkO94F2Txyfh75058gX/0aRItJc2JiAv0/vKXbWzYYpMl8KecZLX1T33nnnSwv\nL684//jx47ztbW8jl8uxbds23vjGN3LixImuLzIlpZuEYcD09Lk4nGPj8DyXZ555Es9rL9rYtjNc\ncslzN7Xb3QuSotbN5Tj60qvxcjkVUV11WTm2uup2URTiGQZTe/YQahpDU+diXbaH53nl4BXPc1ks\nLDHlu/hybd9cbWQEsf0CxPbtldPkpHKbSLqymYwKyag/WWsH01iRZF/RwepSVHa5yA0CjGKJySNH\nMKanYGoK4jhnXBdKJXVyHIiDN4IoYOaC7XjrmMfYVBILPE2LZSbxJKttQyaWmIyNqddpZBRGx2pP\nGZtodrYSIhOGSKeU+iqnpKQ0pKVO8sLCAq997Wv5L//lv3DjjTeWz3/xi1/Mbbfdxo033kipVOKu\nu+7iF37hF3q22JSUlM0lCEJArojIrtUrV67fUrNS1/FzOSLPY+HCXfimUb6vcmx1VRFaLcGITAO7\nUGRoapqCrhPk8/EwodLd+kPDnHnFL7FjZHTd2ywA0/fwsZBBCdls+KlYVOEjmq6CS4LazrIG2N0q\nkKEisaiygGNsPNYi23HxHmuXE03y0DB4HkFuiJl9+xidm0W4HjWi6KTb3M/Uy0hMs2Kbt1rqnyag\ntLLh01X6QY6R0jKphCRlNVrqJP/Zn/0Zn/rUp/jbv/1bbrrpJn784x8DcMcddyCE4LbbbuODH/wg\nF198MR/5yEd6uuCUlM0iibO2Gh1u7wGu6/DMMz/HdZ21r9xjdF3Htu1yhzaKwnJsdhgGBIFPFIVE\nUVQz1NfOQJ8Rx1abflCWliRR1nqVDtguldj3wIPYpRKRbePm82hhiBb7qtefOiKTITu5jd2Oj+H7\nsLwMC/Plkz83w/TsNP7cjPqi9T3wXHAdVZT2WKtco0kWIi4WLQyhMTk9o5wwXFedPA+Wl9RP34Mw\nJJqZUZ3n6tPMTHx9t/+L5RaQrqsG3QoFZLGILJWQM9PIqSmVzuf7yLlZ9Xuj09JSW4+XyDFaicXu\nFrJQIHrgR8jC4DlRbDrz84R/+xWYn9/slaT0IS1/er/gBS/ga1/7Gn/3d3/HrbfeyqFDh/iDP/gD\nPvGJT/RyfSkpfUMvB/x03WDbtgvQ9cqfpJQS13XX5RzRbUzT4sCBg4RhiOM4HD78GJZlld1sHMdR\nThKahq4bNT7Jvu/F0tnagqvewSJxuah2t6g+rxUS94g6u4h1I4aH0d/9XoyjRxEP3Idx9TU1yX3+\nmTPMPnAfo1dfg2GaSgc7Mqq6mKAK5BakGN3GCEMmZ2eVm0U2S7mTPDauEvpsVbxrk5Pg+qzoJDux\nJKjLyZIbjXRd5MMPKqkJKl3RC3349F1Iy0bOzsDxY4Rf+jxRk8E1MTaO/u73rrCT6yu6PMjH2Bj6\nb74Zhkc6v6+UlAGm7U/Am266iW9/+9uMjo7y+te/nr/+678mqI9qTUnpYxoVpJuNaZps375jXYOE\nGzXYl7hrZDIZdF0vR2SrU1IYN+rkipZSm71cjmNXK23yakgpy7plWaftMAoFRp59FrNQKA/vRR12\nQ8XwMGJiHEwTMTFeq1muPn9yUnWORdXwoO9XupiNTolEI2g89Gc5DnsfexzTcZFC4GWzRO0Uroks\nQdcr1nGJvloIhGEiLEs5SJRPVdcZdIJAFci6rjTLtq2SGUdGlEZ5ZExpzkfGVuqXR8fAtpGxjvt8\nQpgmYmIylR+knPe0/Cl45MgRvvKVr/CFL3yBJ598kj/6oz/ib/7mb7jvvvu47rrr+D//5//0cp0p\nKV2jviD1fZ+pqbP4PXQnWI0oinBdZ93F3KAO9tV3yCNNw8vniDRt5eDeKlW2CENyMzOEYYgMAnTf\ngygiDEM8z2VpaaHj11YIgRWtYSWXySDGxpVUoUqSkZzkzBTy6aeQM1OV8xOJhopFXHGXmpTYjoMm\nJaFh8OyVB/GyHdr8Ja4XUiIDH5nIL3yPQEbMjI0R6HrFDcNPLvcHd8AttpITpqlOuZzyF85mQVfd\ndpHPrzjRr5aKXdY9n+9yDRmGyLm5njrUpAwmLbXSvvGNb3D77bezd+9eMpkMH/vYx3jzm9/M7bff\nzmc/+1n+5V/+hQ9/+MNceuml/PEf/zG7d+/u9bpTUrpG4nYxPDyyoZZwCZ7ncuTIU+zf/5wt53O8\nHmSVnVt5cK/qdakurQPLYvHCXYydOo2gkchCEMUFcyfYmSyX2Hm0VV6fRJrRrOsoZ2aI7v4W2utv\nUF3n+LxEoiF9H86e7WidaxJFqog3DAgCpUkuuZTT97JZZnbuIC8lhusqfXIcPU4YQRggg6Bl+Uvf\nEIaAh/QDZOBDsYgMpXL9CCMolRoWiDJJN+wzum5D1225xqDhOET/3z+iv/2dqbVdSg0tFcmf/OQn\nef/738+73/1uAH7wgx/wW7/1W9x6661MTEzw6le/ml/6pV/iM5/5DDfddBM//OEPe7rolJSUzSeo\nSp4LgqCcdFfdIa6c1/r9CqEBqlAODYOlCy4grBp+EwBRhFks4uVyzO/ezei5qUrISPl+lK45CHy8\nRgEgbdBqUSKGh2E17Wouh5icrPXkzWRUR3OVJ8lyHC4+fJjTF1/c8PJI0/BtG1OI1Q8Pappyvmim\nSU5cMWxLSRUmJyuJd14Avofo5SBiLwhDmJ2JO+iSUIbw8EMqpdDzVKH8xGPIRtpxP1DymcJy+TWT\ns7NE//xttF977YYO5/UFqVY55TyjJbmF53ns3bu3/Pvu3buRUtZ88ViWxa233sq3vvWt7q8yJWUL\nsF53DNd1+8blAmqdLlzXxXVdfF/ZiKlY1IAwVE4Xyu2icWx1vXShXtMcPxh+LrfisLLu++x+9N+w\nisU115tokzcbPwiYtgz8RjMcTuxlHBdyqmtbOWlBiFUoIeLwEOJY5wQvm+XYVS/Gs1t4b2maGuw7\ndQoDsVKTvJoWWUrlEJHoqYOg/yUZUqp1lvXZRsVXOZupnDL2ypOuq0LaqfI2D0PlitFv27kBpFrl\nlPONlloCb3nLW/iTP/kTfvSjH2HbNv/8z//ML//yL7Ozaso7YceOHV1fZErKVmC97hj95HIBtU4X\nCQsL8ywvLyldsJRkMlk0TSOKIorFAkIIgsBv6HLRCSIMEVIyu2cPgWWh1x0aN4tFcvNzcGABduzq\n2uOuhzAKmbFMRqOq4irWMcv5OSgsVxLykp2EpMAzDHVKCuQoiq2g1yd8MHyfyZOnMPftJdDqdK1S\nqsKwkdwiCJBPHlbDfZ6vbLMMvbIT08+SDE0DBCICTBNpxIWerpet81ZgpEPpKe2R+i5vLVoqkv/T\nf/pPvPCFL+T+++/H8zx+93d/l+uuu67Xa0tJ6Ss2Os664sLRf6EEpmlR/RS4rothGPHwoUTTRBy9\nLetcLppLL+pjpZvh5nIcv+rF7Dz8c3TXY8eTT3LyhS8gsCy0qqNbUkpEFKJ7Hn6phBOnrOm6jrlG\nTHU1zpkzPPu/v8fFv3QtmbrGgNANbDuLWKdTSrWOOXrqScInf640oYnDh++rQjVxzjAtdblhqGK6\nsNywUI6EwLcsTE1r38JICDVEaDeQW3gu3oHnc3rbBDunZrALy0qakbwZ+lWSIWU5nlvKeCBRykrn\nu5nuOGg/WGVT5BhpgMn6GRtDf8OvE/3zd7pzf2l095ai5U+yQ4cOcejQoV6uJSVlU2jVEq6XA35J\nt9iy7Li4rLhwJMVdP2PbNvn8EJ43q5qdkUrjq07ia1WbXD241xBdxx0ZYf7ii/BzOeYvuqgysCcl\n2fl5licnUcmAag3PPnuMM55TXuuBAwdbLpRlGOC6JWSDGPPMzp08502dDVAlOmYxM1MpcipPWeVn\no6dEeeGt0DN7lsXxiy9kz5kzZNajxxZaxTKuLsmOXBYvm1HJfoZR24VNrtNPRKGSssQ7asgITp9W\nvyed+jNnGnflgxCiEFlsw/VhE+QY3R7kk4UC8vHHEM+/Qrl8bGGEacLYxNawPEzpOum7IuW8pxOP\n4m4RhgHHjz+D57lrX7kP0XU91lrL2E2iksYnpYw1yrXa4GZ1sBDamp7PSRKfWSwydvJk+dB+aFmU\nxsZqY6xRO0K2baPrBq7rdux20RNsW3Vwo0gl9rkOQRQys+MCgsCHxYWKHCMI1E8Za5gT6YXWmcjB\nCAImp6dVuuBWIdFvJ89Pok1OCvxsVv1MJC3VJyGUhMQdzL/LdRO7XdCC5j8lZSvTZ8fEUlJS2sV1\nHU6ePM5FF+3ZNK9k07R4znMupxTLGsbHJzAMgyAImJ6eQkpJqVRA103CMCAZ0FMJeapgVb9XBvhW\n6yYnSXxaFKFXDcKFts3svn2V6wkBgnLwCRA//iag6cp3t14DHCOGhhDPvRzyQ+XEvtBzmZEhedfH\nevLn7D12HHNsTBVwvq86oroO+VwcAqJ3FCVthCGT0zOt257VSxX8QOmWi0UCYN62GHM9jLrXUhaL\nSve8kQihOuRElXCVtThfuoupXKNvSTXOm0taJKekbDKWZbNnzyWcPHl8Xbfvl8E+07TQdQ1N02qK\nUk0Tcde4NoGvk4DAcsgIsQqhSWEopeqyBkFAEPix80aAU+VlrNIDV9+5CIBjZ0+xf9u2de+IiPEx\ntINXIsbHml8p6WwmmmRNgFcC20bTDWzHUa4LpglIdbmulYfSNhIZhDA/V0n0g5rhPn9oiJm9u8kf\nO4Fe34n1fPBcpOMgMn0YghOHrZRDVxbmkVNTgPK2plhUPxsgl5d7vrxu65677rs8aPSztV2qcd5U\n0iI5JaVFehVnrVwveh8rPUisVfCXQ0Zsm9LYKLJJdxYpyczPsby0wOI5jShSnevDhx8rD0Tats3B\ngy8AmmsvZRDi/uwJol27YVePXTKcUkWK7LlAROAFzIyNMrq8jOEFSvvrBxW7uA6jt9eDMHQYGwfL\nrB3c81zEZZcjhvIwMoywsoiwdn2yWITCcrlAlp5Xc2i/Yi9X18n1/YrkBHqz7VEES0vx46jHiv7x\n75H3qVRZGfgwv0D0hc8gjAadPctWsde9ZJNs6LaqVlmYJkxMbvYyUvqQtEhOSWmRRLu8XtbrjtGr\n4rw3iLj47KzgT6QYzUhCRuyFRXYc/jnzuy7EGx5qsBrIzS/gaDpC1xFC9Z4ty4rlICGu69YEozRE\nSqUT7mAoTQix+s5QtR1c0nkNQ8hYhK7DzMQ4+SNHMGSk1pHokgGrWGLvE09gTky2JBGINA3fstA7\n3TGrt0+LB/dELqdOVhwBHTV4LX0lt5COA0eeATuDtJJiu4G9HKjtdRy1jZoW6427XCgnHeREwxwB\n+SEYVUcABMBkk46eU0IuLJTlMluO8z2ZL+W8o6Vv3ccee6ytO73iiivWtZiUlK3Met0xOi3ONxJd\n1xkbG8fotQVYHDKSWVjEKhaxCwWKYYis01QGlsXsvn3ITAZN01FJftoKjbLv+xSLRUqlEmFd19N1\nndhxQ/1f1LmNtGopZ9sZLrnkuU0vbxRrbUydQzzyAPreS+DRh1RhcullaJOTKtTjkYeUFMM0sZPC\nsQW8TIbjVzyfSxcWMPzN9QIWmQzsv6RGi510mmvs5UB1kj2vIvGIO7090Q4nmiAhEJlMTedUuq7a\nSalDRhJcV702TeQYZDLK0SQlZRNINc7t0dI32Y033tjSoWAplSfqE0880fHCUlLOd6Iowvc9TNMq\n28INAvVx1RUbuOqf6vOkUxm1n82ytH07O37+cwrbt+HWFR+hbTO7fx8jmUzTD7soinjyySd45hmB\n5wWxfV0VxQJSaASlAk89dRhmp2oubtdSbjXqY6214SE0ESEyeXjs31RnVVR5SSeibEkloQ9U0RhW\npfd1UcljRJJJz8do1B1eJ8KyVGR3dSFaby+XUE7Oi49YbLAWX7ou8uEHa3ZmyvgBuA6yUCBoIscQ\nY+Po735vWij3CV2XkPSzvhlSjXObtFQkf/GLX+z1OlJSUurwPJcjR55i//7nkMlkN3s5q+K6DidO\nHMUw9PJwHKgubRSFSBnFxacqQiuBcpUCJ3Hpagepa4Sm2VENKGWE63oMD+ewLH2lzMO2kZdGyCee\nwLJNRFX0czA9Q+mhBymOTjC6Z18Hq2gBTQPLVp3UhXlVpPmeKoADX/2eyYCmYXmukl8UCrFsQFOO\nGF3Y2TKkZJunrP16XZ4GhsHC5ASj8wsY/WLbFwTqudb1StBKgqZ2YsS+/WoAsx6npOQ0jlOzM9Qp\nXQ8wOZ/cLrosIUn1zVuLlorkl770pb1eR0rKeY1l2VxyyWVd6UZuBlJKgiDg0ksvr9kGx3E4fPix\n+PIpVBqfRNf1su7Y9z0qzheVjIeWHjd2uUj+Txhiui6+bbf9BW+appK5NuiQRpqJEAJdM9GquoNS\nk7hxDHMvKOuYdR2RyyOefxDj+l9HTE4iZ2YIP/tXMDKq1vLkYTUwl8uhAXqxiHRc5b9smrGGd/VC\nsyapbxOGAWsIQwIpmRkbJT83h+F7zQf3fJ9y2oofbMxAm2ms7HJXabJpoEuW0BvP5S4P8p33bhcp\nKTGDMAmUkrLlUQ4X67PC6qfBPtO0VnS9dV1H13Vs28L3vXgmSlRJuFZawrVqZxeaJnO7dyPi/+tB\nwPC5cyzs2kXYZpEchiG+3zjtT0a+CkWJfKKg4gscBlF5B6EXJDpmxykhL3suc66LPTqKlRwmzWQq\nHct6+zgp48AMo6LrXaNILif1nTpNpsMgCUPGsox1yCFkECh7uTBQrhczMyo1Lx7cC2ybhe3bGT19\nBsN11eV63CUPI0h2XAa4EyqXlhpLOlhpQ7fCli7VPaekdIV1fat+85vf5Ktf/SpHjx7FbbBX/PDD\nD3e8sJSU84X1ul4kDMJgXxAkiXtVelpYoVGuIGicw1yL7vuMnzgBwOJO9RyMnjrN8rZthFWyiLWI\noohz587h+0HDItlYXGBkepq52ZmaglibX8AIAk6cOMro/ktWPRLQ6SHxSEbMWSbb+y32uQmGhG3e\n+nYehGEgx8ZhZFgV/ZOTqgMbD+4Fw8PMXLKffKGIsbSkLk+kD14AvqfuY5O9w9eLXFoivOsvlTSj\n0eV1NnTSceDYUaIzp9WQYZu6567LNQYM6XlE//YI2suu6T9ru37XOG9x2i6Sv/nNb3L77bfzxje+\nkUceeYQbb7yRKIr43ve+x8jICG94wxt6sc6UlIGnWcd3va4Xg4DqINsUiwWkDImiKE7ZixBCEEWJ\nVlnWDCe2Wtz42Sxnnv88LnzscUR8G8Pzyv9vlaQbLITWULYrsjnkjp2IbK7srwwgNA0B+L5HGIas\n+vJ1cEhcCIFlWLiNNsspKVcFz1euEMk2FYtKeqDpSgYAFW9luclSilZIoqN1Xcka2hkUlFI5TEip\nutEyjqYm2vBBv3XhOKpAtm2V0ljHChs6swh2RhVSmmhf99zqe3OrapV9H/lvj0LVekQAACAASURB\nVMILX9x31naDqnHeKi4abRfJn/vc57j11lt597vfzde+9jXe8pa3cMUVV7C8vMx//I//kXyfvcFS\nUvqF9XZ8oyjCdZ2Bc7kAJb84cOAghUKBxx//McViIS4mTTRNIwgCCoUlDMOs2bYoivC8tbWbUtfx\n8nn8TEZpklG2b3Kd/r+aJhCiwXOcy7N8+eXqOtXnx7HXvca2M+y9cDfPPPNUJda6ylc58DwWRocZ\nLSxj+p7qNJ6bUt7OgorMIvFWjqSSJ+gatJhA3RdEkeoom6bqKjuOOtXLLeLUPySwtKxuF6g4dJCD\nUSgDZLItdzZl7EkN9Eb3TKpVTmmDLeKi0XaRfOzYMa666qqyznA5juAcGhriXe96Fx/96Ed55zvf\n2fWFpqScr3iex+nTzw6Iy4XLqVMnuOiiPWWNtdIph+XIaikjNE2gaRqalsRUixqbyXbSB8vpe3G3\novr/RBFmyUHkh1VXchNxfY8TOZvdvsd61Of1sdbVvsr+mTPMPnAfo1dfg7Fzpxrq+/pXkfk8YvsF\nNf7D8pGHsDIZ9k3PYmuCwRBvxGha3F3NqEI5k1HFcr3cIk79k1LC7DQUC+r1T6ZC03TLlJSUFmi7\nLTU0NITnqaSkHTt28NRTT5UvC8OQubnGGqqUlJStj5QS13U3VAuapO+FhoHu+4yeOo3uq/aoVSiw\n74EHMAqFdd+/9H30hXmk7xFFYc1J6atV59txHBynVHPy41Q5UM+Np2ltPTdydpbwq19Gzs42vFwM\nDyO2b0dMjINpIibG1e+Tk6owtu0aX+XEW1mLJHaphHBdZSnn+erk+6oTu4ocIwJcTbBpgo3EJ1mL\nO+GaVvZTDjJZZnbtJMhkyql/6EZVMIg20AWydF3l61t/KhbLchtZLCIdBzkzg5yaQk6dIzx7Vg0C\npqxE1xFjY117X8hCgeiBHyE7+MzpKYnGeWxss1cyELTdWjl48CCHDx/mFa94Bddeey3//b//d6SU\nGIbBXXfdxQtf+MJerDMl5bwjsYUL+8UfdhUqeuvVtIoqsjrxUO7ig+PHnVIhZY0mudOvvSiKCKen\nuOCHP+TZq1+KN1Kr8RRRSMa2KXkuhw8/tmL7Ow4aaVUrqulKuxpLMfwgYDafY3RsDMNxKoffE29l\nGSGXl4jy2YpeGdQTFoaq25oUonV4usaxXIY9xSKtj0auDyMMmZyZxWjRPSQwDGa2byM/M8Ngmik2\nZ9UQkyhS5//4UbWT43vKHjCTIRKCBdvAzw0jfvt3UteLOsTEBPobfoPw7/62O3fY59Hd/aJxHhTN\ncttF8nve8x5OnToFwPve9z5OnjzJnXfeSRiGXHnllXzkIx/p+iJTUrYyum4wNjbB3Nws27ZdUB7e\nS2zhnLoY5H4k0VuvtlZd1xkZGWV2dnoDV9YpUoWfIMoSkZpLs1kKF12EZdlYllUTxx0EIa7rrj3Q\n1wXqpRhhFDKTzzJy7X/AGK+4FSTeytK0ECePY115EF83SSyRNV2DrK3kC4hNH9AygoDJmcZd9JaJ\nwpWDe8mOQCPCquvLPtIvrxZiApCLpVheoHZ2RkaVJaAmEDJAzs0hWhzmO9/dLlI2gAHRLLddJL/o\nRS/iRS96EQAjIyP85V/+JZ7n4XkeQ0NDXV9gSspWxzRNxscnOHLkKcbH27eBG4T4atd1WVpaJJvN\nx4l7qmBJnC2qbeGgdXeLFY+Ty3H0pVerMBFUwEjYDS2yqPd2rrpIqOLZMAyMuhjiTrvmiY754ukp\n5Hf/B9YVz29Lry3yeUT9F1Amo9wiTAstlwO94hxhAfuKJYwgBLuzXmwE+JrAjGT7ur41MHyfyVOn\nMfzVn18ZBLC0tHJwr1QCIQhMk4UdOxg9exYjluiUr5vol6VEhsFGzGe2RqMQk2rqAk2EJhChh5ye\nq/go19+kge+yPPks8ty5ylGM1Hs55Tyk7W+Pr3/967zmNa9hZKTi2WdZFpa11Q5upaQMBoMQX61c\nIwRRpGKqVWGsxbHVyn4tSeEDVfiviyrpBaihvvmLLuqPbmA2i9h1UeO44iaUdcxBiDU3yyU7L0Ks\nM3SmFTTADhsHqrSLpwmO5TLsLTpk2rFvawHD95k8fVpJC1ZBGAZyeBgKdYN72SxoGkEup/yWHQcj\nsc8LQ3VS8YsQBIg+COrpBOl5yJ//rCzBWHH5Gr7LQNveywNFH1vbyUIB+fhjiOdf0X8ezucBbf/l\nf+hDH+LDH/4w11xzDTfccAO/8iu/QraND/2UlJTzD9O02LbtArZv38HRo0+XpQmu6+L7pxECstlc\nuRMeBAHLy4sdF2u67zN28iQLl1zaQjTJKkQRZqGAn88j1/lFKnI5xEUXVWy6NhPXAc8jKhaRmq98\nlmMa+isDBIPkFVeFptcO7hFV9NbVp+rXtXx9MdCDfgkyCJCuh7BtGF05sLWq73Iup7y42/VeHiD6\n2tquzzXOvaJfNMttF8n33Xcf3/nOd7j77rv5/d//fWzb5tprr+X666/n0KFDNZq8lJSUlAQVLJJB\n1/UaaYJtWwSBX6P5TazhFOsvb4WU6F2IjNZ9n10PPczxX3oF3kjz5KswDJGxM0QQBIRhgBMPWjmO\nQxD45d9XPIauNx3w88KAk6vYxwkhsG27IsWoG+Qrk3grnzkdB1bMg2aWO+1N/ZWrbs+Ad1XPa+xM\n277LIp9Xf4Gui5yfJ/ru/0i1yilr02lSYJ9oltv+tBsdHeVNb3oTb3rTm5ienubuu+/m3nvv5Xd+\n53cYHR3lNa95DR/+8Id7sdaUlPOSxOVi3Q4JG0izVMHNomua5BYIw5D5+emyDjmKJFEUll0vkoCU\nUunxhtrx1ZwwpJS4YURw7z3IN964okCx7QyXXPLc8u/1g3zl82Nv5fD4ceb/97+w7w3XI7IjBEFc\nJDfxVy5jGGD17yR6U5oN7kVR5ZRob/t1cK8f6CA1MuX8ol9cNDqlo3mKbdu2ccstt/DVr36Vz3zm\nM9i2zde//vVurS0lJYWKy0W/DuVVk7hcrDV8GAQhQeATBEqTrOoVGcdUVwb6OukiA3jJIN8GSByk\nlIShirZOwpY0TcOyLGzbJpvNMjo6RjabxbbtmpOuG2UnjBoSHXPGVsXa0kLHBYoYHiYaG2V6eJho\nbEwVw9u3r+mvLKVE+rEXr+cjSyUly/CCis/yJksyjCBgcmq61jIuKYKDQK03CNTgXrGofvp+5ffk\nvCBQ5wdBeXAvJaUl+ljfDAPg47wK0veRszPq5wZtR0ctljNnznD33Xdz991388QTT5S7zCkpKZ3j\n+z7z87OMjbXveLHRtOqwoesatm3HBaGSI0gZEkURQeAjpYy9lMPuNPA0jdCyOkrb8/M5Tl/1Enb8\n9CcrLhNhiLW8jKhytVCyER2IkLKx60UjGjlhJDpm2hzIXCG/qEfT1fBaoy9yw0CMjCpv5Qbxxmbo\ns/foEUzdUJ7L9bKMTKZr6YaREPiWhen7aC28IYwwZHJ6JnayiEk0x40G94aHKU5MEAwPVzrGW3Bw\nrxnSdWufq+T8qnCS8u+Oo7rIiQvGFnG76LbdXV/rm2GwNc7VEowNmu1o+y9/dnaWe++9l7vvvptH\nH32UbDbLq171Kt7//vdzzTXXpJrklJR10EimEIYB09PnGB4e6fsiuRWHjSAIOHXqWfbvv6z8OeE4\nDo8//mMcp8Tw8AiFwjKjo2MEQYDrnkQIQdBhd7Idy7RGSF3Hz+fioa9azEKBC3/4I84dOrTu+w/D\ncIV+OSHRMXueg5QRYRDguiWI/agTHXP9F329/KIeMT6GfvBK9IkJAreu+LQs9Lfegmhi6anPzGDc\n/S3Eyw8R/cPXYWS0VpZhGNAltyPPsji+bw97jp0g06Bgb5kmg3uhbVEaGSG0rS09uNeIVsNJpKap\nDrzvEX7lS3DmNNGZ02g7d20Nt4tUQrI5dKhZFvk84uqXdnlRK2m7on3FK16Bruu88pWv5OMf/zi/\n8iu/gm33OncpJWVrk8gUtiq6bjAxMcnc3CyGYdQU0rqulX2Gk5+Q+BJv1oo3hjAMmZ4+h+/7Nfrl\nhETHXAx8fNtmZnGexZ89RhBHyiY6ZqNLX/R+EDBrGUxkMlirDcvkcuqQciajurIb7NgRaRp+JoNZ\nKrWmGWyiSTZcj+ziIobrnX+a5FbDSSB2CAGGhsGeA8va0m4XKb1nUDTLbRfJd9xxB7/6q7+aBoek\npPQJgzDYZ5omk5PbWVxcaHCpiAvDLV4RBwF6oUCYz5flCFJGsY5ZlPXL9UfjstksQRBQKpWYWVrE\nNg1s265J9OvW8bswCpmxTEbrXS3WgRVJ9hUdzC57JAN4mQzHr3g+e376GBlvjSMN1ZrkujCRMJvF\ns0xC31d65OT6/Rwm0m3WCieBSkBJNou0TGUP53sbs77znT7XOG912v5sfeMb39iLdaSkpKyTZLBv\nUNF1naGhEVQEdEQQBARBEHskb53SRF9aYuS7/8Liq15NOD5ec5mmaUi5tjQkMAzs8jCjrEg03BJa\nFLIpX6NOqeF4pUAl+EGD8cuNjFpfRZMsczlCO4PM5VThDOeVJrkhYQD1YT7xwKMsldSAZqmEDPyV\nCX4DqlOWpRLhN7+B/hs39Z21Xd9rnLc4Lf3l33HHHfzWb/0WF154IXfcccea17/99ts7XlhKSsrW\nR3VIi1iWTVL0eV7i8iAJ10hUawUpE9eMMHbSaL+z6efzPPuyXyToYXCSlJK5uZmGaYNSSqRTQndd\nZmdnCGNXkESiYS8tccH0ObYFHh0dT2jmr9wI21aey/NzDQf8khQ3xkZrBhsTxNi4kms08Y3uKk3D\nROLzNbFqp046jkrtIx5iCwLwGwg9/GCwta1hAKdOr3QpiWKJSvRTte2LixAGKxL8BjaVL4pgYX6w\nX7s+o+OkwE59lrtES0Xy9773PW666SYuvPBCvve97616XSFEWiSnpHSRIPCZmlocGJcL13XWdLlI\nMAyD8fFJLr54LwAnThxh9+79uK7D4uICUkqcqq6jEGJdRa7nuQSBFluZRW3HXktdx++xxExKSRCE\nsXVcg45yJos/MYGWycYR3soiz7IsEBqnx8bIOw4Wa0/s17pfVJ7PZv7KjRBDQ+jvfm/TIlfOzBDd\n/S2019+AmGygPYy7jjK5fVVHupz654cqetqPLeb8IC7YIvVzvfHlq5Folqu9lI8fUzsDoNYxPw+G\nvrKwDiMIA2QwoPKMKFIFctJ9T0h2VrNZJc/wAvBcGBmtxKxv8VS+lDbp0EWjXzTLLRfJjf6fkpLS\ne4IgHCCXC4/Tp59d1eWiHl3XycTdKMMwy/9XBVx3Sg3LsjEMvdx97WfP6YqFnLKY04tFwlxO6Wcn\nJ8lkMiss5qQhcEyjsgOxxiCfbWd4znMuJ5vN4jjr9xkVw8OrF0S5nPJeXm0IMEkBrO5IO47SvLqO\nkkGUSuB5qouZFLBRXCgbRrmgi4TAty1Mz21poM8IQrJLSxhB1fMkRKXTnOiT9+xF7LoQAN9xWBjK\nMbq8jFEvj/GUC4QYdJen+phuYpmKaapTolHO5cpDm0kqXz8il5ZW3ZmjpHbQVshHEgZURtKQVOPc\nFm3/JR89epR9+/b1YCkpKSnVrOl1u8VotL1JxHOn96tpWlVh2YPuY48wlpfZcd99nL3mGsLh/hiW\n9qVkbmKCcSk7k3bEJCmA1UWMnJlRh/JzObBNxBUH0SxbBZk88hCMjsLICOzapbrM8Re+Z1kcv/gi\n9vzscEtfbrrvk1teRvfr5AV1FnAiU4lzDnWNmV27yJ84gVE/lBgXjyn9g1xaIrzrLytHAuovT6LY\nF+YIFhcQmZXzHe3ISLrtu9xtBlrjXCXBkL4PS4swPKK6zj2i7SL5ta99LVdccQXXX389//7f/3t2\n7Ni6tlUpKZtJ4nXr+35fRT03InHYWJEYV8VakdXV3r6e56JpOlFdwbEeN656TXIyHAjEiX8R6+1Y\n+/k8J/7dS9E22ZQ/sjJ4k9vKoSOu73EiZ7Pb92g00ilnZ/G/+x3C37wRtPaGPqORYWZfcCWjI93r\nrDXsSGcyWLrB3hPPYl16mSqYZdw5NnTQNdXV7IXkYi1kVOlqV5MMuBWLDd+sKqQjdYXYUBxHFci2\n3TCURwAym4cnPaV/rbczbFdGkvout8R6NMvVEgw5NVUJFlntSFWHtP2t+6lPfYp77rmHT37yk3zs\nYx/jJS95Cddffz2vec1rGB0d7cUaU1LOawbBQzlx2HCauBYkRerk5PaWpA6maTE6OobvezjO2fJj\nCCGIova7wdWa5CiKWFiYR9O0ctJfLre+IlfqOt7QEHaXDl0m60uIojCOg/bQFheRul6+vLrgDwwD\nb3KicuhbSjxNa67fDkPk7Kwq9Krawf129EJzHezlgkp5YxWtcvkGWlud3EgIAsMgamN7ZRCqgmmu\nwcBiqIpn+eRhVcDX4/nguUjHGUzN8iCTya5ajEnLVAmXddfpZxnJQDMgyX9tF8nXXnst1157La7r\n8t3vfpd77rmHO+64gw9/+MMcOnSI6667juuuu64Xa01JSWnAIMRXt5LIV4+mafGAmvq9+gh4ux3l\nak1yGAaMjo5hGAZBEOA4pXLBCSIeiFOogry5I8Zql7WLlBLP8/C8ihWcVSzh+R7+zCyTPz9M4Rd+\ngaKU5QFGKSXT01PlWPBO0wnXSuprh3IwSRC0L8tIdMpnTitd8tKi0ijHWmVrYZ69Dz+CWZ+IJ1A6\nZdtWHed6GUUdka7jZTJEbezkCENXjg7j4yu7hfFAm7js8spAWxWyWITCcsND+im9p9UY7hWXOQ6y\nsLy6tj5lS7Lu47e2bfO6172O173udSwvL/Od73yHT3ziE/yv//W/0iI5JWUDGaT46kYEQcCxY8+w\nb9+lPfF7XqlJVsNuRpUtWbG4jO97CKGt0ESHYUgURQ3T/1TWRGuFcjg8zOKv/poKE2lA0kVOEghB\nDfEJIRCawIgiLMCLC7rK9fXyGlaTu2w0nQSTJDpl7eTJGoeMRKusmRb2s8cRl11eE4mt6RpiZAht\nfFtLRbIRBOSWlzEaFE6rLzD2Xa63ymsw0LaCNIRjU5CeBz9+tLUY7mriSO7oS19EvP/3NnyAr981\nzludjkWOP/nJT7jnnnu45557OHfuHPv37+/GulJSUs4DquOqGxeaicNF76KBNU0jlxvCcQpoml5T\nJEdRRBhGZalHPUlh2pI8wTAIW5CkqThuUfk/ovxzdSSe5+I4JVzXKdvxiVgCo+v6xqYytuO53AAx\nPAyTkysdMjIZVdTEOyjVhxXUzoIaxpKuW/E0lsTX633EdGAYLGZsxgQYHTyc9LxKCiBr+DNXM+he\nzb2inRjuajQdogC5ML859naDqnHu0EWjY5/lLrGuIvmpp57in/7pn7j33ns5duwYF154YVlm8bzn\nPa/ba0xJSdmirB5XTewZrPXckUJ1mrW4GK4tQpKitVkhvFH6XRmFiIUFfNNE6jqgCsJisVD2fj52\n7Ahnz54mKizjZDKUThxBm50C1NG/AwcOrlood7Nr1Y7ncss0k2HESCEh9JGLi6qr6zhxkRxBpIEm\nwdBoeFigRYxIMnnuHEYYxuEktQSGwUzWZsgPMdYpxZGOA0eeATujYqBhdX/magbdq7nXtBLDXY0U\n4PXv0HS/0rGLRp9oltt+5a+//nqeeuopxsfHee1rX8tHP/pRXvKSl/RibSkpKQNG4nLRrY5lGIbl\n7mBClyTAA4fu+1z0yKMcPfRy3OFhpFQddrUTIZBSFcK2bRPoOkUpMUdGY+11iOuqJEPTVO4Xz2Zt\n8q4LVpW1XL91req6Uc1kGAnGmTOIB+7DeM31GDt3ImdmCP6f/wbLy5CxwTTRdI0ofu7WM7hnSMnk\nuan4/nrTmReZDOy/BPJDZTlJomfGthoPBSZsFa/mPmZN3+VisbnnMmwt3+UtTtt/RQcPHuQP//AP\nednLXoaemlGnpKRUkbhcdIqu69i2jee5qI5p7SH1XtDJ4F6v1pTEYWt+rWY26V63/rhqYNGJv9gd\np4Qr1vdcbqQDRqNuVFMZBmBHEfv8EPuCCyrn23Zl4lPTayY//YzNwvbt+Bm7RtrQDwjLUttY1UWT\nhhEHeqxSnKdezT2lJd/l+QWiL3ymYRw7bG589yBrnKslGBtFW0Wy67rMzc1h23ZaIKek9Alr+Q9v\nBK04bEgpcV0Xy7Ib2sC5rsupUye46KI92HaGAwcOMjs7w8LCPEEQxE4XygJOFc8gREWK0Uwz3ApS\nRnieB4h1DO4pZ4l2o65bWlcch20tLjZ4bFWc+74XJ/OVmDdNNMsqa6VnZqbi50wlDR4+/Bi6rhMV\nlglyOXzDaPuQvFUosvdHD6L92jbowaBlNe06t2iahh3Jvk5U7AaBrrMwNsro/IKSfaRsHC34LjO5\nigvGZsd398vRovVolqslGFXBIr2krW9V27Z54IEHeMc73tGj5aSkpLRLP/got+KwEYYBx48/w2WX\nPa+hDVxSRCeFrWla2HZmRXGa6IO72bwVQsOyrHUP7pmmtUmFmQQ0rGKRix94kNlX/jJRbD1mVB1u\nV91xiWVZGIaBI8EZD4hsm7bbHRv4Jds15xYplTVcGMad1vjNE8mqy+KdnDCqDPr1m7YnDMH3CWyb\nmbFR8nNzGPVuGXWBJlITyGJpc0JXtjJr+C43I/VdVnSqWa4OFuklbbeerrnmGu677z5+8Rd/sRfr\nSUlJ2YJYls2ePZdw8uTxtm6n6xpC6Ejpx93cxB8YVsowGt1D633STgb3ei098PN5Tl/1ErY9+mjz\nNSAQZau7emqt7wyjseXZWkl97dBLWUbL0diZDAwNqzdHGIIQSK1SJOuFIkPnptALxYp/bhRVBv0k\nSp7RxlEaIwiYLLkYXT7aKoMA5udU5811YccFMDMDpRKBabKwbRuj09MYjlsTaBIJQeA6sLyUDvP1\nKZ1qnOVQDsb7N5BjkGm7SL7xxhv54Ac/SKFQ4JWvfCWTk5MrPgSvuGLj9CIpKSn9j9IqNy6YKnKR\nlUWFaVqMjIyytASGYZZT8gqFZaSM0DS97G/cqJPbS73wRiJ1HT+fUwVeLx9nraS+NuhmMEk9rUZj\ni+Fh9BvfRPjIQ5DPI/I5DF0nCENVN+dyLF+wnfDCCyuaZN+H06dVMRrFqX5tdLGNIGCb4zb3SV4n\nwjCQY+NgmTA0pO5/chJcV3WW9+8jr+sYS4WaQBNNExjLiwRT0+D7yEIBaGIp5/tqm+uPEoRR2onu\nEd3QOMuJCaIP/D60f1woZQ3aLpLf8573APDlL3+ZL3/5y3X6PZUE9cQTT3RvhSkpKVuW6rjqRGdc\njwrU0NA0ERfCSeJc0sEV5bmsRnRa77UyuJfEQyfdbrVtW6NAH3REPq8KXkMNvAlDhyBUbwwjHuQz\n9KpCWIImQI+Lxz6J6AZij994cE/X1c9I1v5uejWBJkIT4JWgWIAjTyPPnlb31chSLowjtzVNnRIi\nGXfX00K563RD4zw3hyyVap1qBp0OfZa7RdtF8he/+MVerCMlJeU8pDquuhGu61IoLBNFIVGkEvMq\nxWf1z8Ya5W4UyOqx1x7cW1paxPO8clGvCuioJwN9a6EG+Yr4mQxS18qx20EsKUgK+lKphK5DGOtx\nXSGILtiBKwSG73Vk5bcpU/Qb8MUaAZ5tYwrBZo0HGkHA5Mxsy0mBwjCU7GT/peXXoqGlnO+D56nn\nr/o5DOPu8hYfiNxUOtE4e/2X4tjp33/HPstdou0i+aUvfWkv1pGSkjLAJJIJKSVTU2dbdiNYC01T\nnWLlMhEgpVZjy5bEMEsZxb7B9chVu8xroSKt9ZYG94aHRwjDoByAkjhKdGugz8/nOX711QTNksGq\nMJaXueBf/5WjV70YZ2io/HxNT0+haYIwjAhDn8cffxxQawU1KLdsaBRPPENu5uya4SOrsglT9Kt+\nsQaqAJRR0klGdZelBD9UnVVQg2/JIF+DHRxP1zh22XPYc+IEmWhzjhQYYcjkzGx7N9I0RDa7tqWc\npq0skhGd73GmbBgdaZy75eHcLy4aHZK6jaekpHRM4rDhOKXuuBGU79diYmKSYrFINpuNgzECpqbO\nxnHQGqVSAdO0Gmqak25u/TBeO7QyuKdpaiiuktynut7dTAqUuo43NKSK/hZvE0WyvPYoiuICviJf\nyWazyvAhLoCCQEfXS2iaURM+slnIuXmin/4EObYNdq29c9DQMs62wbJUwes4SEODQL0uZugzeuo0\n5tKCKpxB6XSrv9h1HdJgjpQBoVON82Z6OK/JJkgw2v7LP3DgwJrTyqkmOSUlpV2a+T3ruo6uV5wZ\nkvMsy4rlA6sXsY07zL0h0ScDKyQOjajomHsXkpI8L0kxr2kaIvQxCwUlGTCNcicZiAt+vdylr8c1\ndJ49cDkXG3rHDhhrrl1GWMUCosWdjUaWcWJoCPHcyyE/hD6Uw7ZNXNcnikBbXMDwXbTLLkcbGQWU\nDEE+8pAqrgE8TwV7bGHKvsvT02nnbNDpROO82R7Oa1B9pKg6WGQ9MpVWafvv4QMf+MCKL6OFhQXu\nv/9+zp07x9vf/vauLS4lJWXrsFZkdat+z2EY4HluV5L9ukkScqIKdq1cMC8szDeVXKjbeHGnN1x3\noezlchy7+mqy+fya8+1RFKEvLbHzvvuItm/DHxmv6iQHVUOIYTmhL0HXdchm8XfuhOzand1OsU2L\n/UUXvdP4Z9OsUQwoLbmsOSN5DtT5xPZvbPrgUCu0q1EuU++7PDWFsZq7he8DUklSBvww+pZnHRrn\njfRw7nhmoTpYpJ+K5GZBIu973/u47bbbWFhY6HRNKSkpW4zqw+Dr1egG8eFw3w8Iwyju1FYKm0YF\n5ka6S2iaVk4TTDTJYRgwOjpWE+xRTRAEZQu7IPCJovUN4CgpRp7MGgWdlBGO46CXigSBz8y5KTzH\nrSkQwzDE8zykjMoJfQm2bbNv36XrWmM3acuDOZNBjI2rDpnnEdkGuAFI49t/4QAAIABJREFUSVgq\nUhwfJZxbqBTMjgO+pwpkw1Bey23ILSIh8DUNEzZssG89GuWGvstzc83dLaJI+TLrWjzIF6S+yynr\nZ0A0y109snLDDTdw22238f73v7+bd5uSkjLgrJactlZctUrDswnDgDBURaUq5ipds0Qa0KhoajZ0\n1wsqkoZEk1wrE2lEEmCyEWuUUnWSDdQ0o65r6LpeszNhGEa5wE8S+kDtpCidcmvSh24Gk9TTTjS2\nGB5Gf/d7wXEwDMHoaI6FhSJBIDF+9jjW/f8b4w2/gXHg+YAabAo/+1cwMqps1AxDaZpbxLNtTowO\nsdcPN22wrxUa+i6PjytbuGbuFpOTYBrgBeB7yjUjJWUL09V3+NGjRzfF7iglJWVwWSuuWtd19u69\nvCzTWFiYp1AoMDY2DoDnnULTNLLZXJMiu/eJeINGMvynBvn0Bh33xgV+9Y7JWnQzmGQFbXahxPAw\nDA8jDA19PI+wCoggQj8zgYFEH5tAbK/SaWYySk7S5UCQvqPed7mdolfKcvQ1xJZyfWhFltJbmjlp\nrOWiIWdmBuL90naR/LnPfW7Feb7v8/TTT/Ptb3+b6667risLS0lJGTyaDd81Y6246uT+MplcuQPt\nOI5KEYu/0FURTFXYyGCROHCok1xVOlIbw9394rPaX7ljslnEros2RLvcE5wSjZ5h6bmxPjdcWaQH\n7aXzrZdICHzTxPR9tG6+D2SkpBfqD6rqARvILaqirwFloee5SMdJJRjnCas5aazloiEdB86eQbvh\njbU7qMnlm+Gz3oC2i+Q///M/X3GeZVns3LmTt7/97dx6661dWVhKSsrg0erwXcJqcdWt3F9SHA8q\nybAfCMIwjP2gaXhErjxsRlIwU/5//fMXDA1x5tA1+FK2VbAYy8vsuO8+Tr/sZQRDnQ3DiFwOcdFF\nSrKwQbRrGdeQag1zgyEmq1Bg75OHMQ2zcUE8NBQXmL3TWnqWxfG9u9lz7ASZbg5aCU25IrQit6iK\nvoZKOInoxg5WymCwipPGmkmB0azqQDd7//aJZrntIvlnP/tZL9aRkpKS0ja6bmCaFkHgb/ZS1kUy\n7AeCIPCqvIwbez4ndnHKDUM2LJBBDfL5w8PIQmFdXb3qqO2EIFCacNd1CAJ/hfNFgq7rHSX11ZDL\nof3CS1uWPbRrGRcISXFomEBUurHVGuZGaE89ifbf7oQDz0ebnFx5uRVLFxic92TZHSNO1QsyGRZ2\n7FCWcL5P2RrEjHcMpKiJvi7j9+fhc+l5ygc7CMBv82hT6uSxNutx0igWe7SY7pKq7lNSUvqCKIpw\nXQfTtNaUTURRxPz8HMPDI3GxSOx0sXpx1I8zE4llXDK8t1ZwSVIkix6FoEkpcZwSjq6VE/og8X0O\neebJJ5DFIj9fWlIFYR22bXPgwMGurEXk84irW095bdcyLswPUdo2SZgfqn3cWMPccE0zMxXXi0bF\n+wAe2Si7Y7RrITcASMeBI8+ApquhRKM+TXANwgh8D5kWym0jXbf5e6pUUpKduVnk1NTK2y4vrzyv\nSoKxUcEiLRXJs7OznDt3jgMHDtSc/7Of/YxPfepTPP3002zbto1bbrmFa6+9ticLTUlJGWzCMGRm\nZooLLtjVMI3P8zxOn36W/fuf03CAL8G2LfL5YYrFZTzPRcqQKFKx1VGkZAu6rjctNHXd6CiBrx/R\nXZexZ08hL79cHe5fAz+f58Qv/jvyTa4bxdV3ktAHIIQyDx7yAyZ/8APmr72W0K4tJCsOGN0pKFzX\n4eTJ41x00Z6+88XuJ2o0yl24P8P3mTx9ugv3tPmITAb2X6KKZM8F22pPN+4FUCoiBsAvu5+Qrot8\n+MGmR2RwPSgsE37tK0SNPocsGzEyUntelQRDbN/ePIK+i7RUJH/84x/nscce4xvf+Eb5vJMnT3Lz\nzTfjOA6XX345Tz75JP/5P/9nvvCFL3D11Vf3bMEpKSmDh64bjI9PMDc3y+Tk9o4iq7PZPFde+SKO\nHn2aCy7YxdNP/xzHKTE+roY7FhbmV/UmFkJrGGHdD6xncE9KiQQiTbQsrZC6jj80hNT1ps336oQ+\nhXK80A0lBzF0k0hoddHbyjoukWJ0KstI7AF7lkao6xi6sb4CyHWQhcKKs6WuIQ1dJffV2+U5pXWu\ndHVqNcr9KXnYTIRlIU1LHQFI3DxaRQrw+vPzoq8JAlUg67rSsdej6aBriInJlcO9Tgm5sLCh8wzN\naKlIfvjhh7nppptqzvv85z9PsVjk05/+NIcOHcJxHN75znfy6U9/et1F8t/8zd/w2c9+lunpaQ4c\nOMDtt9/OC17wgjVvd/fdd/Nf/+t/5dWvfjV/8Rd/sa7HTklJ6R2maTI5uZ3Fxe6EDZmmhWGYCKFR\nKhUxzcSqTMaxyqt7E/cjSREchmHbg3uBaTK3Zw8jts1GbXUYhkxPn6uxhUskGYcPP4YQAs9zKZUe\nbyifSWQZ69EvdysaW9c0rPhny9i2klp4HizMr7jYDH32Hj2Cmc+BvvLVEGPj6vYDSGDoLExOMDo1\njbExwWwpg45pNN4paaZrJ07+65NgupaK5LNnz3LZZZfVnPf973+f5z3veRw6dAiATCbDW9/6Vj72\nsY+tayH33HMPf/Znf8ZHPvIRrrzySr7whS/w27/923z7299mYhX7j5MnT/Kxj30s7V6npAwoSVz1\neg7Rqy6mZHh4FMMwBnaADyp+zusZ3FP65MZDfL1CoiQuQmgrJBlJCEm2if1btSxjXQcVuhSNHfg+\nxTAg8Ft/34ihIbSXXI32mtchGgzu6TMzGHd/C+31NzS8nExGaZ4HkEA3mJmcID83P5gDTXEMd1v4\ngdLOtnu7lJaQnrdiuEIWi+C66mhMlc/yCu/lDfhbaul9Xj9IMj09zbPPPsstt9xSc70dO3YwN7fS\nL68VPv/5z/Obv/mb/Pqv/zoAH/rQh/if//N/8vd///e8613vanibKIr4gz/4A973vvfx4IMPsrS0\ntK7HTklJ2Ryq46obHVKPogjf99Yc5guCkCDwCYJghSvDaiRR1ynrR/lTJ0V9VQgJAr1QIMznG4ZU\ntBNM0ndYFmJysqG/KwC53OqXt0qVV7MsFlXBpumq0Asj9dPzleVc8vsA7yj2lOoY7nYH9zwPjh9T\nHtADehSgLwlD5E/+beVwnx+U5UxBlc+ydBw4dpTozGlEbNWov/u9PS2UWyqS9+/fz/3331/uGn//\n+99HCME111xTc72pqalVu77N8H2fxx57jPe85z3l84QQvPzlL+fRRx9teru/+Iu/YHJykhtvvJEH\nH3yw7cdNSUnZXKrjqhvheS5HjjzVdJhPxSobRFGA61KOrvY8tyxb8LzmkdegOtme12S4ZAPpRG5R\nfR+dUPZX7oILiL60xMh3/4XFV72acHy84/triTYt49aDLyVzExOMS0mXjO5W0sir2XGUxZoAaz5g\n78OPYKrDCsqUNgiI/wiUnKMHkdFGGFvFDaILhmFAEsPd7uBesQB79qYFcreRUr2vbbtWt6zpIEDs\n2197tMgsqhj64RHQhPr7cJymTjTdoKW/ore97W384R/+IYuLi2zbto2vfOUr7Nmzh5e//OU11/vX\nf/1Xnvvc57a9iLm5OcIwZNu2bTXnT05OcuTIkYa3eeihh/iHf/gHvvnNb7b9eCkpKVuDKALDMNi/\n/7mMjIzgOA4nThxh9+79ZDKZFb83wvc9nnjiJxu88pX0g9yi7K/cwH5pM5C+jywV1aHuVRxPEtq1\njBMCdClp52mLRoaZfcGVjI707ou5kVeznJkh/OxfwcgoOqA9eRhx2eWIXA5N1xAjQ2gjY2hhpArC\nBvZ8zSi7YwSru2MYQWIVN6BHYKpjuFtFCjAMxAYkKZ63VOuWWzzCJCNVYK+Ive6yBKOlIvmGG27g\n7NmzfOlLX2JxcZErrriCD37wgzXT4zMzM3z/+9/nd3/3d7u2uGYf+oVCgdtuu42PfOQjjI6OdvQY\n6lBh+18suq7V/DwfSLf5/KBX26zrSruq6xqGoa04D1j18uQ8UDZwO3bsRAiBlJJs1mZoKI+ua1iW\nRT6fI5vNrvi9EaWSFhedEaChaZUuqurMNnabSC4vN/OqPI5r/Yybf8bUX1fTEs/k1n2SK7HclXUk\n1629LQ2LQXWeqPpdlK9Xe3/xZcRroHZ7a65T3hb1mkqtfi2i5nX1fa+h9MWfnSb66U/wJ7djZOzK\n+b5LGAb4vottm+XhP9d1OHHiGLt3721oGVf/3s56DuOnTpH1nJr312o0e08mSENtr2EIRIv32ZDx\nUaDy/SYNgcxmIa+65JFloeVziHxePdfx71pU+14tv/eS90j8u9REnAko8G2bY3t2s+epp8kgiDQN\nP5PFdN2a2GshqHSuiYMFq+4P0YXt7gLVr7M0BJFQr4n6y66Vjwa6zvzoKGMLCypMpR6hBslE/JqC\n2qlAE+Xnsh3qn6dkfZ3cX3K76u1dz/21+xqu9ljV76+Gn2fx84qoXEcGAZw+rezhwhD56EOgV5Wp\nUaR2HH/8qPq/5xF97i5E1d+6GB/H+J1bu1Yot3w85l3veldTbTCoru/999+/rkWMj4+j6zrT09M1\n58/OzjLZYPDhxIkTnDp1ive+973lL6/k8OTBgwe599572b17d0uPPTGR76j7MjLS2eDIIJJu8/lB\nt7c5k9EYHx9hfDxfLlhtW5DJmIyN5chkMoyPvwjbrkgjqi/PxYfQVeiIxrZt+5idncUwNEZGsoyP\n51c8RqPb15PPmwwP51lYmEP5oVV/OSSWbCGatrJ4VUWgjmHo2LYRyz/USX0kSTIZs6nlnZJHJkW6\nVi4eGxXVKixFUiloZdVPUVWwV85Xy5XxzkSlwEt+V2uo/TIMw0pzwjD08muRbI+5fQLv+tdj2jb6\n2bPl7a2+TiZjYvtG+XmJMrXbryShIWNjOQzD4OGHf0Kp1MAebWYW49xZjh99CpZmy2cHQcDCwgJB\n4DI8PMxVV12FZf3/7L15tGRVeff/3WefoarufG9304w9QNONDAH9RQSHxOHFIUGRLMUEUYhIBl0Y\nDaKumLy6kqhrObBCookGhLAwEfn5g2iErCzk1eXQ74t5BVHApqGbHpi67zxUnWnv/ftj16k6VXWq\nbtW9NZyq+3zWqtV9zzlVtXfVqapnP+f7fB8b+TwDYxKjo9m67zdQPrdZ1oYhBIazNsYnmusYtto5\nJfwcVrI2hsZy4E0+ZjMIP4cFxwRToXY0kQKmDGAIH1IZ4NKCLQI41VIZAchCAYbBYDsWzKxeUEjh\nwzMNMJNDcgPcYLBMDmYwBLksDp/9Emx74tfIFAqAKgb+nIOZHEpyKNOA41gwYo8nHRNjbZ73ehgd\nzUIU9OsGx0JQnC8zY1dqOIfJDZgmh5UQCijJITmDZXGMjen3e55JsOJr3ypSBlBMll6n6H01MuXX\nsqXHEz5kgdfMdy2P1+p72Gjs8fOr4vUuEr2uAINhRueVQCgEwA19vuVytRn84hUcWShALi3AHhkC\nL8p8VaEAlV/CmMPadg6mokDVsiycffbZ2Lt3L17/+tcD0BmavXv34qqrrqo5fufOnfjud79bse2m\nm25CPp/HJz/5SZx44olNP/fs7MqaM8mjo1ksLhYgqr0wBxSaM815vZx00na4roTran/ZQqEA1w0w\nP59HNqujNjfmJRvf73mqtO3Agf3YuXMXXLeAMJRYXCyA85Wa50i6fxLbt++C67owDA7DKH8thmGI\nIAgRhiGy2WyirjmSQXheWHy9GJRikFJACAnXDep2tQ2CAEJIMMYghCw+VhQMVxLJK8q65PJ2xvT2\nfL5QGqNSCkEQxgJ7hTAUxeNReg79vPHnkaXnCEOBaMql+YQKIjNUGns034pj3ADwQtih0K+LW1lM\nFgQBfD/E/LxuTbuwsATOOXgsaySEAFcMI0srmFMMYVgeZBjq18n3A8zMzOHo0ReRyWThugUsLeUx\nPT2PkZHa17D63F5ZLkBIheXlAtRcredxEqudU2ohj6DgI1zIg9nNPWYzKE8hyI1Azc1BuS7U8grE\nsRmwzAqkCHDK8grk8BDcKts5ZjCYoQ9l2vAFEBR0YKfcACKUQCgQCAkhFYJQgEsFVTzXtKWfAoq3\nUIhie2cBhBKeFwC8/HjwQiy0ed5rIf4+hwt5+F4IpQzI4nyZEftAhgLjx3WCLrHkMRRQQkEFAgsL\neSjXhffrJ7WOtgVJSwnfBzwP8y/OwrCHoYrjgxuA8daDbuUGYIGeT3y+a3m8Vt/DRmOPn18Vr3dE\n8XUFUxDFY1Qo9LlW/M4ShqH1yUnPDQYIhYBxhFy/D4q1Nv6JJgLpVATJAHD11Vfj4x//OM4555yS\nBZzrurj88ssBADfeeCO2bt2Kj3zkI7BtG2eccUbF/UdHR8EYw+mnn97S85a+BNaIEBJhuDGCpwia\n88agG3MWQkJKVfe5kvbHtwEGstkcAKPp+yfBuVmUj1UGanHNb9Q+uhqlZEUTkPKtXIxX7zumHPSy\nWDFe8rE62C2PpVaTrIsQzWLWRnchFLFMsA5oa8dQW/xXLgpERVAen0/1fJOPSf6OjfZHizApFSyr\n/NoLITA3NwtjbhZOYQWzczMIRCyECUMgn8eC60EaDI8//itwziFEiOXlJQRBgHPOOb+uB3N0PhRW\n8ljKZlBYycNp8lxf7ZzyA4m58QlMBBJ2Oz8/2SGwa/8YrKjDlDGbOTYzA6OO7ZxpMgz7efh/9/eQ\n3AQrvheq9J5E71/8htK++N/6MFXaJCV0UBM9nlIIQwWWku9K/R4pSKUS5tsk0WdB6rnBdKC27wCG\nhtfU7ELl87rTnOlAhhKqOD5IVXpvWno8qUoSm/h81/J4rb6Hjca+6usdvxBWcw4WJTzR+Zb45Pof\nKVF5Trf5HExNkPyWt7wFc3NzuPnmmzE9PY2zzjoLt9xyS8kt44UXXkhtlyyCINYG5ybGx3Unvk2b\ntrTcic+yLDhOBs89dwTbt58+8K2LG2mStfTDqCj6q9QLd89Deb0opT2YOTNgMAPcMCBj3//W8jK2\n/u//g+cuugjuUK7kyxyGHIytlNxNVjudbCeHkUIBttM+N4xOFvaxkZFyJX+1zVwd2zlmGuD+Mphp\n1Vl+Ea3CbFu/3kNrvKQfUFfEfiE1QTIAXHnllbjyyisT991xxx0N7/vZz362E0MiCKKDWJaFiYlJ\nHDz4FCYmJtfYrlrB99vTuliIsOJxtO9yOSOa1MM5ya6tm8Rt4aSUkFJf2oxkE9X7y/NLf8hklAoa\nKx0/DIPr7cXW2fEOi438tDc8q/ouFy93C1mUWMji//vUzaJPUL4P5PNru28+r+9PdIRUBckEQRBx\nom58a2ldDOgAy3GcVbOopsmRzWaxsLCEIChbEOmgWUAIAc9zYVlW4mNxbnY9UxsPfotb4PsewjDS\nJMsKz2WlVCnDGg01knp0AjEygsX/cYluJtItQgHDc1uz+GqRZs+pTtKqVzPLZsEmJoDZ2UTfZRQ4\nUCgAnqt9loXQAXIoyo0eTBOScwS2DSsIG1rFEc2jXBc4eABwMlD2GpIEfgDle1AFF7CH2z/ADQ4F\nyQRBpBbDMBpKKDg3MTm5CXNzs4n7HSeDnTtX9263LBsvfelLMT29WFGs6LouHn/8UeTzKzAMAxMT\nkxXWlxGMGcUW2d0jcqhorEmWFZpk23aKXssMcdeLjmCaEOu06EwiypYrpfWQ8Q6LanEOzoEDYDt2\nwnVrG8RwbmBoaH1+t/ZKHtse+m8Yl2zSjQ16QKuSDmN0FNYf/ynYcjlbGfddZiYHlADO3K2D6LEx\nYHQUOPHEclBtGPCzWRzedipOe+oAMm6CGwnRMiyTAXbsXJfGmeVXwLKDLTXrFRQkEwTRUzg3sWnT\nloqCudVQSsHzPIyMOJia2ozFxYV1j8O2bWSz2ZpiLG2bZtRc1q+mV4WdrWiSIxu7ftEnh8PDeOHV\nr4aI2f8VCnkE+QL8wEehkIfHDUxPH4dhMJiLCxidnsHcpk3Yt++xmjoWw2AYGxvBzp27wZgJ3+KY\nP+EE+BZH0+GJEFBzs6hrWZJS2MgIWLYqq5/JANksbADbnt4P68STdSMSkwPc0I03eiwn2gisV+PM\nBrkVuQiTz8EwAKSEKhSAFe1kofL5ygYjbWgsQkEyQRA9xbIsbN58AoIgwPHjL2J8fHVtshAhDh8+\ngF27zurCCCNf4XLGMolIv6x9imXPtcqDgOIcYcWPXGXXQYPFuxQymAbHyNISFg2jVMwXR0qBQqGA\nMBSwLBPKyUBks1ADXvDZELcAJhWc5RUtuQhC2Mt5bNv/NCw/qHQXMAytUe7HttR1KHUbDIKKxin9\nzFo1ziqf1xZ1aUEI4IXjOiCu2aebieDxX0FFVnxBCAS+vkJSbO3Or/uTdQXKFCQTBJEKhAgxPX0M\nIyOjDYNk23Zw2mk78eyzh2v2eZ6LZ589jJNPPq0tThec82LDCIXl5aWSpjdCSgnf92DbDpSKiuYU\nlIo6fpmJtnHE+ih3/mOlDHmURWeMgcWy/kKIkhRGKb2YcV3tk+z7blGr7Vb4c8fhnK9ZE98tWtUo\nAygFEWp+TuuTPRdYWQYCH4aScJYWdaY5XgjJoANkIfS+BOlRv+HbtpaQHDqCTCQt6WPWpXH2A8D3\noFy3Q5UKLSKlDpANo/I8BAAm9eWzbFa3tQZ0ESoDMDqmO/pF5zYFyQRBbBS0TtkptZIOgqCiiM3z\n2uN0AWit8p4952BlZQVHjhzEqafuQCZTDr5d1y1tB4B9+x6ryGAyZvTUunI1dwsdQFb6JFce098I\nITA9fQxCFDXLRS9W338MhmFALMxDKoVnjh4CX0qW7DiOgz17zmk6UO5FYd9abOfYyAj4dX9Sujwt\nv/cdsItfBfn/3Q1l2cDRw2C7dlfoZA1ugI0Owxgdh8GMtTXTIDrKejTOkYczy6TsyophRG06YxQL\nMSwLJa9HxQApwHI5/Vlvw6KHgmSCIPoW3/dx9OghTExMgnOzFAy1E8uykckImKaFTCaDTKayXXe0\nHdBZx0a65W6ig+LG7haFQqGmcK+cEWepDZaDoSEcvegVCFb5MY/8lhnT7bijINm2bXDOERoMK74P\n22AwHafm/mEo4HnNeS5HpKGwr1lqfJcnJnWGWEogWjwlNJpRSkGFgbaOi+jjQj4FwLcs2L4/EJKL\ndWmcycO5AgqSCYLoazjnmJraDMuyOhIk9ytlf+H67hbZbDYxkxyGovQYaURxjmB4WI+7Ce23YejX\nQssuFEzTBOcmpGFCcgOGUX9h0/I51aeFfQAAx9ESjBee1/KLpcWKoEkxBYgAanFRZ+2qYOMTOsju\nMwTnOHrqKdh54OBASC6I9kFBMkEQqSUIAszPzzZVzNdJWrmEHgWYzVAu9utMkV+Su0Ur6Cy0Kv6/\nxXa+RMdou6SDc7CJSbCxMfDr/gTGs89WtL2OMF94AexnP4H5xkthbt1a+zhtcBMg+ot6RYIqn9f6\n9aDOd05Q1LanvJMyBckEQaSCJCu41Yr5Io/cek4S7Srka8ZvmXMOx3GKl+drs4/xIr8oWBUihJQC\nhmEUi/w6m8WKJBgRjeUW+vWLAjF9qT3drh3h8DBeeNWrEDqVWlk97rImOQx1Z0UhQ0ABQoYIEyro\nk84tz+Q4umc3TjE5epUzbbekg01Ogr/rD8obpqYS21w7UmJ7IOBs2VLT/jr1eG65w2A8C24Y5asR\nQaCL1+IMmL1ayIB5y8R4EMJc55q3YZGgHwDz80U7wYRAWEh9lWJsfH2D6DAUJBMEkQoiK7hWCAIf\nc3Mz8H0fuVyt/q7dhXyNiIr8RJ3L7PEiv0jD7LpuqdhPCIFCYW2taZslkmA0K7dwnAwMgxW3q1JA\nn1YU5whGRqBiixSlFAoFt7gY0PMU4ph+LebmwJeXsDAzkxj861bk+opGSYuezSLYulVX1feKNks6\nmr1iYxgGHKlSfQ7UELl4vPB8ucNgvM22kkDB1U4dnqeD6WocJ/UZz2YJGcOMbWE4FDDX+b3YqEgw\nKgKEYyNR0O+HQCFf61qRMihIJgii74jaVefzK70eSgWWZTcs8Eoq/tPuF6zkRFEdtEZEWVBVyoKt\n7QcuLsHgnMcyrJXHAChZq2lk17sKtgOdPY8CO7044FwvFBzPhXXsOILRUXgJQZBuSR7WXfgMCtVX\nbIIwxKxtYjIMm7eUSymRi4fx7LPlDoOxgI75HsABTEzCGBqBIWrPcS0paO67RgIIDAZLqlS27jaV\nwpQfrDtAjmhUJKhWkwNpT8ZyAWigG4Toj2k6pF0UJBME0VfEs17VHsRr6d63Go0kG+vVhsYlGkHg\nI2qWEREFzmXJAxAFxyn5Dekb4u+R7jxogDEOBoAxXtGpsHyc6ov6u3ZrlAWAmdFRtL+peG9gIyNa\nQlLsMIhYkGwrhVOOHMLzU5v1PpnwwWrhw+YbDIdyGWzLu8gkPVaPMRWwye98gbMKQ2B+Tmfg68kt\nosYlbkEfI4T2NY7O4xRIuyhIJggitaymU65mLZKN1Wgk2WhGq9yIuERjYWEei4sLME2r5LMspYTn\nuaXgPJ9fKbWWVkohCHx0woAimmt14V6kAQfKet14YJbW4r64X3S5a1/RxkxKqDCo0GpH9ItndNs1\nyhPjMM45F2wi3XrRdmAAsIMgHc0zBghmmlDjE4Bt1ZdbRNn5oZw+Jgh04MwMvTBJgRSDgmSCIFLL\nakGvbdsYH58sNcroK61kkUii4bpuRfc4jSpuKztUxOUS6MBPe/RaAqqmcE9KiYWFeRiGUSxE9GEY\nrJTRT2NxX9kvWsS2rQBgYK6LTc89j+dOPhkrK7WX05XSQXJSUV89elLY18+2c93GLVQIlVQ+r4Oz\nIIAquFAJcoteekCnXb7REM6LzT4SRDuKlTs2xo8xjHKQnAIoSCYIom/RWVXg6NFnkM2eVdPoox+R\nshxkRpnZqICsuoNepUa5PcSt4qoL94QIMTY2DtM0EYYhgsAH53FGjj8yAAAgAElEQVQv5vQV95Ul\nK/GFh87GM84xOn0cz8fmEEcIVWxI0kLwmYbCvk5RtIrryyK2eBvuuBey68Ken8e2XzwKa2IM4MlF\nBSUPaDehsK+DpF2+MehQkEwQBJECODdKDS8iC7koYA7DAEKUu+dFcotIo8wYSrd2UL9wz6joKBjt\nL+t5013cF/eMLmfkq7PzlYWMUadCt5hNdF0XYRjArRMsBQPcsazGKq6PiLfhjqNmZiDu/iY4AP6O\nd1X4QldQ9IBWXQ6SBx4h6hfuRX8nLVKF7IpmmYJkgiAGlnYV8oVhiEOHDmD79tPX7Le8WnGVZdkY\nGxuHZZU1yWEYYmFhHkNDw1haWoRhcFiWVZI7RBplQEsDqgsZO01ZmqGp1i3XQ+uZ0ykN0FrvIOY2\nInHo0AG8+OLzAADp+wiXl/Dk0hIMu/YyMuccVtLl5TbSbkmHmpuH/NUvocY3ASfWz4CnpbnPWqlo\nwx0nm9ULpSpfaKLDSAksLmgruOrCPQVd+Oe6WoJRfaVHKm3f1+FAmYJkgiD6injgyznHaaftxLPP\nHk48tn2FfDqbuJ4irmaK/AyjMlMb36Yztqx4MxDplcua4e6WHkXNUfQYyprkuG650X2F0PZq7XQi\naRdanlGWRZqmCcdxAAC8kMf43r2Yf93rIJzKgCsMBXzfLS1yOkabJR1MSdj5FbBVrgKs1tynL+Ec\nbHwcWFzs9Ug2HoYBjI4BuWxy4d74hLaIS3LIEMUMc4elXen7diIIgmiAZVkYH58sZbTa2p6XaBrD\nMErdA+Oa5LhuuR5lPXNvf4LCbA6Lp5yCMJtL3B/JMTgvL1w4t2AYHCa3wMzaQNHvQ7WFY9nYkffA\nixnwtre9TjFschL8bZdD/L93tXbHqgLACMUNKJND5fOpKwIEUlgI2Ki4rxmCACXP+KjVdRuhIJkg\niL6jng2clBJB4MOy7LYVj3FuYnJyE+bmZtvyeKsRdbsD9DwZY8X21bIoZ1AAZKmor5cWZWU3jrgm\nuTYbnkQaGnQobkDaNhRPRbiQGtZrbdhPBEGAuflZjDLdU2RV6hUAFrFEgG3PHIQ1lFu9CLAHpLoQ\nUMrya9qM3EJKYGYGiD6/QgIi1B7NbSoupSCZIIiBwfc9HDz4FHbsOKNtTheWZWFqajMWFxdq9jVq\nNNIq8cYiItZWOZvNQYgQYRggDLUvsu6UJ0vyhihY3QiZvzSgpEQoAogqa7gw1N35wjCsW9jXCc1y\n2zXKs7OQ//WfMC55E9jkZBseMb0IEWJ6YQ45xuA0cXy9AsAIPjMD83vfgfE7b121CJCowjB0C/BW\n5BZTU4BVDGX9EAh87dHcpuQBBckEQfQtYRhgYWG+Z1nJRo1GWiXeWKQa13Wxf/8TmJubwcTEFDKZ\nDMIwxPT08ZIFW7VDQz8hpago9ktqVKKPkzU2eOt57YOhIRy96BUIW9D2CiGQz69gevo4Ar8ykyil\ngvQ9qIVFPFkoJBb2OY6DPXvOaW+g3G7bOfJdbkjdAsCIXI6KANdK3CfZsvTfiV37WPmYSB+vGNDm\ngmAKkgmC6Dui4j2lgIWFeZx66nbYtgPfr7382U9EjUWSME0TjLEqC7Z4IV9/IkSIpaWlKr/l2kYl\nAEqexTqALrfpXmugrDhHMDzc2n0gIYtOIrzqh5sxBdt1se3RX2LxDW9ILOzTVwpE3feZ6D4SwNz4\nBGyl0FlfkgbU0ThbALbl87CETNzfa41zPSQA33FgMZYO7fMaoSCZIIi+I3KtcN1CqcionwPF1WCM\nFTOPDGEoitKLEFIqMKY1ytWkQbPcDJybGBkZgWXZFdZ3vu9V+TSjaC8nKlpzl2UnonhMd+ZsMEAZ\n1dktCVYcc73CvriUphFB4Ne9QlLt1Vz9d6ds6Jq1ius3lGNj/iV7sHm0BxKIVTTOLAxgzy8A42NA\nHZ0/m5wEy2aBFCX+fW7g0K4zcNqRI23TPoeWhYVNmzA2PQ1TdCchQkEyQRADS7sK+drlt7xWHCeD\nbdt2YHr6GKQM4XkoFvMJAApSMgghwDkvSRT6SbNsGLwiQx41UInbywEotbyOW7RpyUtl++zouH5d\nOAWBj1//+lfwEoImoNarWYgQy8tLyOdXwLnZuqQjl4Px/7wcyCW7fEQ0axVHNM9qGmc1MwO5isbZ\nHM7BGB0F5mpbqxPrg4JkgiD6FqUUTNOqmzlsVyFfO/yW11vkZ1k2Nm3aglNO2YZMJgPXdbFv32Ow\ni7rXhYX5Cuu1JM1ymrvhxUmylwMif2VZk0mubp/dydbYYngE0xdfDDU8jE4tOYTQsgxtPVdbpV/t\n1RyGHJwXYNsOANaypIMNDYH95stXPa7aKo5oD+vVODOz/xaDkjEEGQeW5zctxzCDAFPPP9/RcdU8\nZ1efjSAIoo0wxkoZx7TTjiI/zjkymUwp4NeaWAYkqxVrnj8uRUj7S1ZrL1feHi9SLB8Xb5/dwcWA\naSIYGdFZ+849S/GpeKKVXpJXc9R0Bmhe0hHRTpeWfkPNzUP++tdg27b3eigbCt+xcXjndpy2f39j\nR5bV2lJX+ySHofaoVqotpuUUJBMEQTSgE97L7aDaMk4IreONCttcN18MlhSUKhfERUGyYUTSjHRr\nlqtJcrfQrbH1turW2EpFc47m2V/zjSOE0PMRgXYEKdrQRW4g0ZyFCGP6ZAOOwxAEPhhL/smvXsB5\ngY8jOQenBn5bLOXSDFMSViEP0abzIlAKc5OTmOhlESCwtkLAtBUBRr7JjDXvkxyGUPv36Y+570G5\n7roWsxQkEwQxMNi2g507d7W1aKmRZKPTWuV4hq+6C1rcMs51XRw5chCnnrqjJMU4eHA/TNNGNptN\nlGCYZv8FyVGBXtzdIkmTHLXGBoAgCEvbo7lqTXPKU+lVCCEwPX0MQoSwFhdhrSyXbejCEMjnMeu5\nkAaHlAL79j1WlNow2LYJxjjOPPPspj4bKpNBcPKpUD1qeNFNHMvGaQUPh2uKMNeGHB3B7HnnYqwX\nRYDAugsBe9noJI40DATZLKxsFoY2h688oJ5Psu+B7dqtP+8ry2DrnAsFyQRBDAyGYXT1cnE7tMqN\niGf4MplsTRe0uGWcaVoVUgzTNMF5bfe7yDYuXhDXL2hpBV9Vkxy1xgYA183HigD1oqDfAmQgsr8L\ntfWcYcAo/is5h7W8jK3/+//ghYsvgjcyCkDBtu2SbSDnQKHQvE6Z5XJgJ58MtkohH5E+1l0ImJJG\nJ34mg8Nn7MRp08eR8f2WfJJZLqf3BSS3IAhigyOEwMzMcWzZciIsMp8deJrTJJf1uYwZNffpJOHQ\nEOZf/4aOBRp6kcNjCwZe9bdR0RrcMMpBMpEMUzqjnMbFUxCGmLVNTIZh0/INanbSPihIJgiib+Hc\nxMTEJObmZjE1tZmCZKKGsoa5rEluVDxZqXlGw2MT7885xNhYKUgfKJq0ius37Hwe23723+CnbgdS\nVrgoAMyMjmKs1wNpRIL+2crnse2JX8MCA5I+CwmuLWlkAD/FBEFsFCzLwpYtJ8K2nY56GEeyh8iW\nrNt4nofnnjtS132gWq8cJwxF7P/lBiSMCUipW0LH40Apo4AyfVm1Von8loFKTXIYhnXdPeKBcfS6\n6MLAwUUFAVQhDxUEQAOrxGat4voOKYGF+VS24WYT4zDOORdsYrzXQ6mlgf7ZWF6Gc/w4MDwMJLRn\nB8voQLmF7L1kDIHjwPK8rnXxoyCZIIi+ppEuuF2FfEKEOHz4AHbtOmvNfsvrKfJbzT7OcTI1emXG\ntNdw5HwBlBuQKCURhgpK2TUd6rQDhnZFSOPl51bQtmgWgqBSkxxpdZMoN2Ap/50mVxMACIeH8cKr\nXw3RQkZXO54k61S948cgfvkovPEpMMuq6eAHaDcVKeWGtYojammkf5ZP7Yc49Ayw5yUwErTPBjeA\noSzw5FNotnjYz2Rw+CVn4bTHn0BmuTuNUyhIJghiYOl2IV8jOl3kVw3nHNu27a5YIEQNSAzDQD6/\njC1bNkOISklB5IDRKJDsJ+J65LiOudHc9P7SX50fZIsozhG2oHkWQmBhYa7keBGhF0QSxvw8ss8/\nj/37n4A8/jyEEFhZWcbS0mLpeNt2cOqp27CysoxCoQDDMDrS+rrr5HIwfuMCqCce6/VI+pJ6+mc2\nM6NlFixZsmSFAtuOzcBaXtGZZsW0z7FUgJGeKzcUJBMEQQwYkfzCtp2aRQLnHM3IbMv+w5pBlxwM\nMrpToSh6JjsAdOA8NzeDMBSwl5cxNjODmeVl+IYBpRSEEFheXi51alRKoVAooFBYQT6/glxuqLXW\n1ymFDQ3BOP8CiKeebM/jNZA+pYG1FAKuCcfRVnK+r6UsVbAwgHPseNGbWQFSaCtDIQDwVaUYoWVh\n4YQtGDN5RwNZCpIJghgYgiDA/Pwsxscn21bEZ9sOTjttJ5599nDNvk43GilLNForckmSX+jH0w1I\n8vmVUutjrUuOGnEkNyGJj6cfreO6WbiXZnSb6/LnQkpZ8szmhgHT5FCWCSYETM9FaFtQnJds9SzL\ngu+bMAyz5dbXacXzXBx97gi2MoZ2lCPaK3lse+i/YVyyKXVFgED3CgHZ8DCMl/0mjDe+JdFqTs3M\nQNz9TaihIbDNW8ByOd0p7+H/qwPs0dFUtAWlIJkgiIFBiBDT08cwMjLatiBZSzaSM0ONGo20g0ii\n4boFhGGIQ4cOYPv209csIYkakKysrODo0Wdw7rkvge8DQugscb0mJBGMGS0H7L0m3p1vUAv31qJR\njkiylLOWlnHCT36KF1/5SgRjY4jb6hnFYFqksMhtLSil4AU+VLviMSGg5mZTWQQIdLkQ0LYbWs2x\nXA7KcYBsVjumKKUlGpYJWwhsO3AQluvWdtsDYAYBpp59DjjlFMDq3MKdgmSCIIi+QMH36xfvNYtl\n2chkBCzLQi6XA+cKYVgOAus1IelXanXI/V+4V02FRjnlAT3RGmmXb3QKQyk4ga/P5x5+/ihIJghi\nYOh0m+iNRNw6Lnl/2U4O0IFZWjOug1a41zPCEIbnAdkwFZfC20VoMBw94wxsNznSJpCoJ51KOy1p\nn4s+yyqf18V7Bq8s5BMSANMBs1TFf7uTqadfEoIgBoZuO0h0C85NTE5uwtzcbMefK8k6Lo6UEr7v\nFS3BBKq1y/2qWyY0UsqiTaCClKJ4KxZxLi7CfvopYNduiOGhGks5znlfFvIxy0KwZbO+7J8y1Ows\n5H/9J4xL3gQ2Odnr4TRNU9pn0wQbHdMey56nreQCX69LwwBYWdHFfICWYoRCB8ih0MGyaXY8y0xB\nMkEQA0u7Cvna4be8niI/y7IwNbUZi4sLifs9z23Jv7byEm6lfCPJOi6O67o4cuQgtmw5Ec888zRs\n267QLqdRt0yFe42JNM1BJoNCIY8gX4Af+MjnC/BNs/SaLPgBxqansbB5C7zQr7GUcxxnIBwvUkXK\nNc71aEr7bNvg734v2PAwgGIx361fBUZ1aK0e/xVgWcDQEGBZsBnDtukZWFNTwOSkDpA7/F1DQTJB\nEMQqtMNvuZNFfqs1G6nGcTI444zdyGazcN1aU36tW64/RtO04DiZojNCurXLG6Fwb71EmmYlRUmP\nrQv5GIyiJVzkhDG6tIxlzmEYRsUCKQxFXzpe6G6DBcB2ej2UDUVJjpHJwI4X9mUy2ltZKv1xjd0M\npeB4fvlYIYtSjCLF7prthIJkgiAGlkGVX6SJ1bTL7brPWtkIhXvthjEGhlodt1H822Cs6HJRuUBK\nkuekgSDw67pxeMePQfz6CeCMXXU7EvarjCSJtBQCJsox4m2uXRfwPR34+p7WIEupt2cy9WUWmYyW\nYQTtCZgpSCYIgmhAJ7yXmyUu0WiFVuUXEa38gEaNKXT2sL522badxCDTcRxw3h0rsVYL96oRIkRY\nzFLpgkWZeP/qFt9E7wkCH7/+9a/geV7ifmNuDvzYMcxMTsLf96vEot9WZCSeyXF0z26cksIiQCA9\nhYBJcox4m+uSj/LxY5U+yvv3ge3aDZXLITAMWFKi4tvFNHUHPwqSCYIgOk8j7+V2aJUbEZdotOLc\n0ar8IqKVH9DIc7lekBtpl089dQcymdpwIcrOCVFoaYydJpJlaNmF3ra8vAzf15d5dfDvwzBYTYGi\n1u7KvpdnBENDOHrRKxCmsJCtVaKmObqRSq1+lWcc5DwPCyaHbTs13uAty0iyWQRbt6ayCBBIfyFg\n1OY6CEPMTk5gdHkJVtxH2bKAbBb+8BAO5TLYlneRkZ1bmFKQTBAE0YBGwWk7tMrNkkbpiGXZDQMH\n07SQyWQ60milU+gMMauQWwwPD2NoSBcXhWGIIPDBi7rcONoFQvS9PENxjqBYTDUomCYHYwaUanUB\no7sNBkHQV+dxXfqkEFBIgZmsgxzn6KXEnYJkgiCIBqQxOCU6S7VPcnU750ZSDaUUwjBZm6ulGukO\nTgYVIQTm56drpEHW4iK2LM5Dzs5iljF9uT5GtPB56qlf45xzzu+6NtkLfBzJOTg18FMp36hHWrTP\n64WCZIIgiJQjpYTnuWuyj2s3nfrxixfzJTUqAcqa30rHiu4Saa11IF0rt5BSYmFhPvF9klJCCJHa\nArfViKziwkwG1daBaUcpnRFmzIBhlM9dbhhwvADbHnoIz732tcU23GUY0xIa3/d74tyhMhkEJ58K\nlSBZSjPr1j4bHHAyPW9aQ0EyQRDEKvSyeA8AfN/H888frWsf181Og+0u/OGc1xQAChEWG1pIKKXA\nOQdjDFLKmPuE/vE0DKOr2SptfaaLEZPkFkKEGBsbr9G2AnGpRn/+9Jat4iTQp4G+trXjsb+57qnI\nDBgGr9inSS7S7BYslwM7+WSwXK5nY1gL69U+s4lxsN17wJ56urQtZAzzU5MY7+L70Z+fVIIgiD6j\nk0V+rUpCPM/FM88cwTnnnNX2sbRKUgGg67rYt+8xABIrK3mMjIzCNE2EYYi5uZliMKMDVMYqG4B0\no2iOFS3QkgIqpWqt0eI06+YhpaiQbTRy1ai8HzlsEClgFe1zS1ekim2rA9/DzPg4hjwXzGBQJteO\nFyLhM++2pyCYgmSCIIhVaIcuuZtFfquxVveLTlFdAMg5Ry6XQz6/UnSLEBCCVbRLFiIsZZjjkgx9\nf3ONRVrpQIgQS0tLFcWBjVw14gyKw0a3CIeHcfzCCzH1yCNN36eR77LrugjDoK7nMjBYvstrpakr\nUqYJNjYGzMzottVSArkMkF+BcvOACKAWFwGVHGiz8Qntm7wOKEgmCIIYMLopv6jHerTLUXZ5ZWWl\nwkYuyjAbhoGVleW6soaoNXYY9megyLmJkZERWFa8o119V404g+Kw0S0U5wiHh5vWvq7muyx9H+Hy\nEp5cWoJhJwfCvWzfnZZCwGbkGMxxwN/9XpjFtbzlezCePwrrxFOgZufAfvYTmG+8FObWrclPkslo\nS7l1QEEyQRBESokkGkKIUva3XnOOOGvNfK+1CUkS69Uu69bYosZGjnNeChTT3hJ7PRhGbcvvSAdd\nK/OII/s2g94PrOq7XMhjfO9ezL/udRBObYDW6/bdqSkEbFKOYYyMgBW/i5hbAFucA5uagm1a2B4I\nOFu2gMXbWrcZCpIJgiBSSiTRcN0ChAhx+PAB7Np1Vsf8WtMmw6hHGApIKetarZWPC2NzSfecmiEq\nWmyEziSXXxvGGJQKU/+e9humyRMXaJxbeoHDLbC6uvTK83a98g3HsQAMNTXufikEXG2RbRgGHNn5\nlvEUJBMEQRB9QeSEkc+vQIgQvu9VBBfVrbCFCEsOGUC8PXWvZrB2GlnPxam2odNBskAQBKRTTiGr\nyjeK73uh8HjdgDCbzWB8/BWdHOaGhYJkgiAIoi+op1WOqG6F7boufvnLhxEEATg3YRgGODcgO9jG\ntlM0sp6LU21DF2WSC4UC6ZTrEPk/ix5kV1eTbyAMMez7EJZV0+hE79b3X+2qSrdJi/Z5vdAnhiAI\nIuXYtoPTTttZtxAvajbSjUyh57k4cOBJeF79y7/tIqn4T2uVMxVa5fKtensGnBuI2kz3e/evuPVc\n/ZtRode2LKsULBPJlPyfeSOtd2eJ5BvVN6fgYvJ//S84BTdxf2JgnQLWq31Ws7MQ3/xXqNnZ0rZe\ndPGjIJkgCKILBEGA48dfRBAELd9Xa5Pr/zj4vocDB/bD95Mv2VbDuYnNm09IdIZYjW7qliNd4vqt\n8xSUKvspr3aLjh8EHTNB9IJ1a58TCvva933QPCS3IAiC2GBYloUtW06AbdtYWWk9aO81zWaU4n60\nuhEHICUrBsPloDnSKgMo7YsHyPE2xv2KUgphGCIM9fud1Jwk6mhYvQBK2kakl/UUAnbLw3ndcgzO\nwSYmgQ5n/ylIJgiC6ALtaEjSLFJKBIEPy7IHUofarL2cZdnYseN0zMwcL0oPtO4zDAWUKstUHCdT\n0bQjn1+BYRilxiWNLdfSjz4fAiwtLaJQyJe2VTcnUUpCCFFaUEREiwYKlNPPegsBu+XhvBY5RrW3\nMn/XH3RwhBoKkgmCIAYM3/dw8OBT2LHjjJbs4trZhKSdnsvrwTTtKi2vAcNASVah97FYwFCZWQb6\nP4tsGAYsy8LIyGip0DGpOYmUEkLIkitGROSYQbrm1REjI1j8H5dADDVnydb2519HIWA3PZzXJMeI\nSTCCIMD8/CzGxydhdXCwg5diIAiCGECixiK27XTsOaJsdzt+dPrFc3mjwBgrFfPpW+vFfFLqFuGR\nLINIwDQhxsYSnSi6O4y1FAKm54qJF/g4mHPgBX7ifiFCTE8fq/GcbjeUSSYIgugDosYiRH0aaZXL\nAR4gZSS3UMUsqQIgi8dVF/ENJkm+y43kFnrR4xYt5RSUkuS7TNTVP6+mfXZdt65uGtDnm1+UPPUS\nCpIJgiCIgSBJq8y5lllEASCgIITOhAohEIYhOA/AiwVAUZY0CgArpReDQ5Lv8mpyC63dZsWufmIg\n9e5E8zTSP6+mfRZCe3dv27ajYx1E2wEFyQRBECmnW/q7ZminbrkbWJaNsbFxWJb2DM5kLLhuAKUU\nXNfF9PQxTExMVWh1p6ePx4JmUfr/oBHXardK5JYRod0y6mcGibXRa41zIxrqn1dpguK6OlAWos7V\niGwW7MSTgWxvA+j++JYjCILYwET6u5GR0cQgOdIrN1uRLqWE6/qQsvUfoG66dLSr+E9nstaWDR7E\nLHI9IjePZuQW8dbXQJSFFh3XiG44Io1zion0z3H40jJGvv99zL3utRDjEwn3UiV3Gdct1OwNLbOm\nsC9uG9ctKEgmCIJIOatlb1vVK/u+h0OHnsbY2G+0a4gdoR3Ff5xzOI5TfBwBQMD3Q0ipipX8ITzP\nKwXDQkQZUVVsY22WNLuDjs4s86bkFvHW10DcLYPCCkJnmfP5FUxPH0eQ0ORICIkwDHDgwP7EhX+S\nX3Ncp9ytpSudzQRBECmnm9nbfqCVDLNl2diz5xwIIcC5gfHxHObn8xBCZ0KfeOKX2LVrD8bGxgHo\ngqJ9+x6DbdtFBwhjYOUWSUQa7OoMelmaYQCQUKrc+jqiUSEWsbFQkJBK1v38GFLB9jxkTBOmU+nY\nE4YCvu/WdgSNSTDU3Dzkr34JNb4JOLFzkgwKkgmCIAaMVuUXEe1sQtJJ7XKrGWbLsqGlkQZyuRw8\nTyEMJVzXLWXh48VDnPOaAJDoX7Sbydq8niO3E2JtGAxQCZp3nl/Elr174b1lKqGhSLmoNu6O4RkG\nxAlb4BkGmJuHtbwMpjrrsEJBMkEQxICxVru4tTYhSYKy30QaECLE0tISGGM1HQabIa7THgRSVQio\ngPn5OXgiqNgcyXnCMMSTT5bdMYQIsby8hHx+Bc7SMrYcPoROd4xPVZD8jW98A7feeiump6exZ88e\nfPKTn8R5552XeOzdd9+Ne++9F/v37wcAnH322fjwhz9c93iCIAiCaJYwTJYOaBcHBcbK3soRgxJI\nDRKcmxgZGQFjBoQIKzoMNoOUCmEYDI7dXYoKAVUxY8yYASMW7erPlsLIyGiF5CIMOTgvwLYdcO5C\nhAKywxKf1Lzr9913Hz73uc/h+uuvxz333IM9e/bg2muvxezsbOLxDz30EH73d38Xd9xxB+666y5s\n3boV73vf+3Ds2LEuj5wgCIJIA57n4sCBJ+F5yQ0Mqom60MUvwUeFflFBX/XNdQsIAh9hGBQtrMo3\npeSGKvTrFwyDr6nDYETcN5toP7otPI/dtPa9skOk7hIZbedmdz5jqckk33777bjiiitw2WWXAQA+\n/elP4wc/+AG+/e1v4/3vf3/N8Z///Ocr/v7bv/1b/Nd//Rf27t2Lt73tbV0ZM0EQxEajnbrldtOq\nVtlxHExMTMGJFQ7FC/2SWFiYx6OP/hyjoyOw7VpJi7ZIkwjD2qCqXnaa6DxJHQabIWo6s7KyVMxE\npyZsGkh0Z0wJFQRQs7MIR0dLPsv6Ko7U/tyhgFQSrucBMQu5JFeM9ZCKdzsIAjz22GP4oz/6o9I2\nxhguvvhiPPLII009Rj6fRxiGGB8f79QwCYIgNjzt1C2vRq8al0SFfknoBYIFgCUG0lEwFnWzq8Zx\nnA3llpEWkjoMNoOUCkHgY2hohALkFhDDI5i++GKo4eGm7dqklCgU8hBCwFpcRObhB/HCxRchGB0F\nUF6wzMwch7WwCNstYPrpfVBz06XHcBwHe/ac07ZAORXv+NzcHIQQ2LRpU8X2qakpHDx4sKnH+MIX\nvoATTjgBF110USeGSBAEMTDYtoPTTz8TmUwGnldr5J8WOl38xxiD4zgtXYa3LBubNm3BKadsK3Xp\ni+O6Lo4cOYhTT92RuL+VTFc889xICx2HZAH1WVuHQVkTWEspKroNtsKG6UxomghGRsA5b8HTuOxA\nwhiDwRi4YUDGFpWRRtngHIwx2JYNFK8EhaEoep+LuovclqfRnofpDEqppr68vva1r+H+++/HnXfe\nCdtubfWgtTCt65Q4Nyr+3QjQnDcGNOeNgAHO7WKzjPKcOTCheoEAACAASURBVNcFNJwbMOto/po5\nptM4jo0TTtgKx7ErxrDa2KrfZyH08abZ/Fw4N2BZJoaGcsgmtMzl3IBt23X3N4PjWMhmM/A8D0Gg\nA6owDKGUgJSAUrJ06T/pN9I0zWKBWtzvuBh4FH/v4n7I0TGNfm8Zi24s9m/l4/X6vIiIv8/ROZE0\n32aIz5Vzo+SwoF/f1q8ISCmKVyAkTLNyfGuJReLzqZ5vq4/X6nvY6LlWe70ZAxj0uYSE89BgDMxg\n4NyELGbwmRDg+TxELgeVzWBp1y5khodhFuM+xgIoJdp6DqYiSJ6YmADnHNPT0xXbZ2dnMTU11fC+\nt956K2655Rbcfvvt2LVrV8vPPTk5tK62o6Ojve0r3gtozhsDmvPGID5nx2HIZCyMj+eQi7WDjdPM\nMQCKLWc9OE6y7GC9bNlSK61rdmzRnPN5BsYkRkezDY9v5TmaHUNjhjA+/oqKbGU+n8fDDz9c0k/P\nzs5icnIysVuZXvzw2H219ZnjmMhk9PGcl4Oq8qJBFYMeVAQ9SgFSMpimLqrSyWqFTMYqPb9+OrHO\nebeX0dEsTFPBtvWioXq+zSClDmxtm2N8XM9ramoStm0nvvarEQQBfN/H1NQocrkcHIfBts2K17IV\notcdqJzvWh6v1few0diTzq84anwML776lZC5HMziMeXzLzoHDXDTgCoGvObKEjb/5Mc4/upXwR8Z\nwfLuMzE2MdrRczAVQbJlWTj77LOxd+9evP71rwegs8h79+7FVVddVfd+t9xyC7761a/i1ltvxUte\n8pI1Pffs7MqaM8mjo1ksLhYgxMa4vEVzpjkPKjRnPWcpJU4+eQcKBQHPW0m8X6FQgOsGmJ/Pw/Pq\nF8gVCgUcOLAfO3fuWnNGtVVWG1v1nJudSyvPsZbHbAbf1wFbJIOO/p+0/hBCIgj0exolgXQb7hCG\noT1pgyAovu8MSkXHSEipSq2nI5TSDTXCUMAwomyohOsGpfHo4C9s+7zXQvx9Xl7Ow/dDGIaqmW8z\nRHP1fYH5+TwAvZio99qvhhD6/tHrVCgUUCh4CEMF0wxWf4AqwjBEGOr7xecLlN+bZmn1PSwUCnWf\nK+n8iiMVEOS0VzMTEkqx0vnHWLQwkxBhuQiWhXq/CCV8P4DrulheLiD6eml1/BMTq3tFpyJIBoCr\nr74aH//4x3HOOefg3HPPxb/8y7/AdV1cfvnlAIAbb7wRW7duxUc+8hEAwD//8z/j5ptvxpe+9CWc\ndNJJpSx0LtfaCkJKVfFl0Cq6//jG+FGNoDlvDGjOG4PqOZumXcyeJb8OQhR/qFZ5rZo9rp20MrYw\nlGsa42r36dS8o8cNghBRR7IgCFZ18tBuG/o+2spMHx8FvtEt2lYPpaKbiv1b+Xjdfr9XQ4jye8xY\n7XybIT7X8mKycu6tUP06+b6PxcXFlv2bI3RgqTXSQvDSfNcyvlbfw0bPlXR+Ve6PzjeWeJzSVsm1\n52fpWD33Tp+DqQmS3/KWt2Bubg4333wzpqencdZZZ+GWW27B5OQkAOCFF16ouHz0b//2bwjDENdf\nf33F43zgAx/ABz/4wa6OnSAIgug93XDDWEuxXzuI/Jt1YZL2ZfZ9XaTUyFFD191or+Buj5lYnajZ\niWXZFY0zmiXKJJumCSGofXa7SU2QDABXXnklrrzyysR9d9xxR8XfDz74YDeGRBAEQfQJrbpheJ6H\nubkZnHTSqU3b2TlOBjt3nrnWIa6ZuH9ztYNGI0cNXUgI/Oxn/5es51JK1OzENNdmyaBUOjL3g0iq\ngmSCIAgi3di2g507d7XVsL8enW5conW2YUuX31ejk5nmuH+zaVrIZDKl4L767wjTNOA42vpsNUu5\n6NJ59evRzteHIJohGMrhhVe9CnJ4uKfjoCCZIAiCaBrDMOA4tf6/naCbjUvaRa8yzY0wTROO46BQ\ncCGEdswQIvLrVZBSN0bR+uWyV20cwzBIrkF0DcU5gqHhnnf1pCCZIAiC6CvalWHW2l5RChz7hVaz\n1bZt4yUvOReeV3ZPcF0X+/Y9VuotsLAwj6GhYczPzyUWkbXqL0z0jrU2O+mnRidMCHDfA9bY1KVZ\nKEgmCIIg+op2ZZg5j/xz++uncC3ZasuywVjlPLVGmQFYXU4Rl2FQV7/0IkSIpaWlNbllSClTt2jU\n55o+7/xcFs+/8mKEuSyMxSUMHzkCjE4gLOrwtcNHCNd1AbTW3bIe/fXNQBAEQfQF3dQuE62T5JYR\nBD6kFFBKW2txXt8RQ3f72ygdKvuH9bhlhKE+B1pZNNbLWuusdK1sp3w/tWpXZaUkXNetXJQZBuC6\nMN0CpmbnsDA/BxHT1EspsG/fY6Xze8+ec9b1HURBMkEQBNF2uqldJlonyS1jy5YT8cwzT8MwDKys\nLGNsbLxuoMWYQW4ZKWU9bhmihQ4kjbLW2pbQL3bQS+i4p3RAa1lO3cePvJCTpD6cMQwtLKKgW/sB\nQLEIVRUlRKy4ABRYQyPDEhQkEwRBEANBp90w0spaHTWq3TIcJwPOOZoxs1CqsmFD3DmD2Bg0ylqX\ns9LJsg8pFcIwaOqcTQqSGWMAAwzGoIxosSahlFEaSztkIxQkEwRBEANBq1plzjlyuaGWMqKe5+LZ\nZw/j5JNPS02mvF2OGpwbcBwH+fxKRbOSiEZNS/Q4HMoubzAaZa1XC4C1zl2W5BRRB71oXxqgIJkg\nCILYkFiWhaGhYVgtXI9VSsHzvNT8iLeTSIKxsrKS2JykUdMSoD2FUsRgEC2odBY4WW4RLcCkDMGY\nAaVk0YqwfEyvoSCZIAiCSCX9WPyXxkzzasTlGpZlI5MRDZqTJG8niDiGYZSuONSTWwSBD4DBskwY\nhlF015Alv+40WA5SkEwQBEGkkk4X/zFmYGxsvK0uDf2YaU5jA5R2E4aipsNgM5Dd3dphjBWD5CQJ\njiwGz5XHpM2Pe+NUNhAEQRADQZRhtu36lfHNoJTEwsI8lOqvQMjzXBw48CQ8z+31UFJPZAUmpW6U\nEdndRbcwDOB5LsIwqNknRAilZNHuLj2B2yARdXiUUpQ0ydGt+u/4zc/lcPjCCxF2uG01ZZIJgiCI\nvmKj28t1Olu9VreMNBLXWWv/XKPCBzgMQywtLWJkZLSu3V28oIxoH0opBEEAIViNJlkplApHtQ1c\n9X0BZDOwDQOdLBWlIJkgCIIgiBKDJr+wLBtDQ0Aulyt550boDKZAobCCTCZX1zowcu5oxUeYaEyk\ngTdNXtIkh6EoaZJN04IQAoZh1CzY4pnmqJV21KCknVCQTBAEQRDEQBNvnhLHdV0cPLgfALBjx65E\n1w6g7NwhRKHjY91IxHXLkSWcUjpTHIZBKRBOyiTrKypuKYCOW8q1yyedgmSCIAhiIGjVDUNnrsKW\nirM4N7Fp05aWWvd2mm45avS7DCPePCVOJLMg147eogNmXsok27ZTCnjrZZIdJwPD0PuittTtbCSU\nnk85QRAEQayDVrXKvu9jbm4Gvu8jlxtq6j6WZWHz5hPWOsSO0C1HjUGTYayHtXYYpM6EjYm7W0TB\ncT3Hi3IWOgqKZduLcClIJgiCIIg2kcZMM9E+IrcMrW2ubXu8WldCgDoT9hP0KSYIgiA2JNp6SrbV\nCzeNmebV6McGKL2inrY5YrWuhAB1JuwnKEgmCIIgNiTRFdx+k9i2O1vdjw1Q2gVjDLbtwPf9pu9T\nT9scsZauhCTfSCcUJBMEQRAbEsaMou6xv/pq9WO2Oq04Tgbbtu3EwYNP9eT52yHfyGYzME0Tnhd0\nergbDgqSCYIgCIIosdHkF7107WiHfMNxLNi2jZUVCpLbDQXJBEEQBEGU2Gjyi167dqxXvmGa/XUl\npJ+gV5YgCILYkHDOkcsNteQ0IKWE57ltLfZbL+SoQRCdgT5RBEEQxIbEsiwMDQ3DapTGq8L3PRw8\n+BR27DgjNY0nuqVR3mgyjH5mLQV9aSwC1F30aq9oRNv1YlXv181EdIMg/ff650NBMkEQBLEh6UQG\nVkqJIPBhWXZbO3+lgY0mw1gLve5KuN5CwLV4OCcF17qTpQJjCkDtVZdmrsToIFhAStl0W2opJRYW\n5gEAQojE16AVKEgmCIIgNiSdyMCmMdO8GiTXaB9p0DevpxCwFQ/nRgF5EPgIAh9KmXWDbs7Nhtne\nqE11K22phQgxNjZeGsN6z2n6RBAEQRBEH9HubDVZyg0WnfBxrvc89QLyhYV5PProzzE+PlHXlUMI\ngZmZ4w2fo/W21AZM0yw9/noZrGtBBEEQBDHg+L6HAwf2w/e9Xg+l7/E8FwcOPAnPc3s9lER6Ld9Y\nDcuykclka27lDG/9cetssCppiaVUdTXIvYIyyQRBEARBlNhI8ou066x7Ld9YK5wbRTlFCC9hLSel\nhOvmizINBaUMSClL7wPnPBULg8H/BBAEQRAE0TQbTX4RhiEOHTqA7dtPJ9eONmFZNjZt2oJTTtmW\nKLdwXRcHD+6HadrIZrMwTRNhGGJ6+jg45+CcQ6ne2yxSkEwQBEEQTZLGLOsgO2p0BwXfT282uV/h\nnK/SBMUE5waSJBmRFKORBVw3oE8TQRAEQTRJlGVtxVu503RLo5zGBQLRvzBmwLYdCBHC8zz4vgcp\ntW1bGAalpj1JN6VUoutFu6EznSAIgiDaxCAHkhtNhjGIpKkQkHOObdt2lyznXNfFvn2PgXMDSmmH\nDMYYTNNKvELCWGWzkU50wRy8TzFBEARB9IhuBJLtDsRJrtE+0t6VsFuFgM0G45E7BhC1ic/B8zxI\nGRY1yQpKyVLzECFEqahPx8aVgTHnJhgz2qZnpiCZIAiCIPqIdgfi/dgAJa2k3S2jW6wlGI/7LkeF\nfYVCoaKwb2FhHmNj4yUv5GoYM8A5RxhSkEwQBEEQBLFmODcxObkJc3OzvR4KgcpGKFFhn2maME29\n0TAq/+40dF2FIAiCIIgSUspS0dSgY1kWpqY2122d3GvS3uxkraRJG90ICpIJgiAIgiix0Tr6pbnY\nclDlG5EcI4267TjpOyMIgiAIgiC6BLl2EPWgTDJBEARB9DG27WDnzl2wbaejz7ORZBhEb2GMFc/n\n3soxKEgmCIIgiD7GMAw4TmbN9m3Nyg02mgyD6B2Ok8G2bTt7rhWnIJkgCIIgNjBp7CLYr6RZ3wz0\neyEgK1q/dS+7nM53kSAIgiCInpD2QC/NpF3f3K1CwHY2VQlDUfr/yMgoAIUwDJq+z3qgTwBBEARB\nECXSHui1E+o22BnaEYxzzuE4DjzPgxBhxT4pJXzfg207dd83x3HWLdegIJkgCIIgiA1J2rsNbuSs\nfrwDXzWu6+LIkYM49dQdyGSSM9Wcc1iWva4xbLxXnSAIgiCIlhnUgC3KejbKSvaKQc3qNyvHiHfg\nq8Y0LWQymY4ubtJ1NhAEQRAEkUoGscCPcxNjY+M4cuQZcu3oIv3SJGWwloMEQRAEQRBNYlkWtmw5\nEbbtDFyGnFg/lEkmCIIgCGLDMogZ8n4nLVZ1FCQTBEEQBEG0gbR3JewXXXla5BgUJBMEQRAEQbSB\ntHcl7FbWvBPBeC+yy+leShAEQRAEQRB9RSdcOeLZZcYYHMcBY53tvkdBMkEQBEEQRBvoFzlDv+M4\nGezceWbHn4feRYIgCIIgiDYwqL7G7aZfFhPpHh1BEARBEAQxUPTLYoIK9wiCIAiCIAiiCgqSCYIg\nCIIgiNSQFjkGyS0IgiAIgiCI1JAWOQZlkgmCIAiCIIhU04vsMmWSCYIgCIIgiFTTi+wyZZIJgiAI\ngiCIvqFb3fcoSCYIgiAIgiD6hnj3vU5CQTJBEARBEARBVEFBMkEQBEEQBEFUQUEyQRAEQRAEQVRB\nQTJBEARBEARBVEFBMkEQBEEQBEFUQUEyQRAEQRAEQVRBQTJBEARBEATRN3Sr+x513CMIgiAIgiD6\nhm5130tVJvkb3/gGXve61+G8887DO9/5Tjz66KMNj7///vvx5je/Geeddx7e+ta34oc//GGXRkoQ\nBEEQBEEMMqkJku+77z587nOfw/XXX4977rkHe/bswbXXXovZ2dnE4x9++GHccMMNeOc734l7770X\nb3jDG/CBD3wATz31VJdHThAEQRAEQQwaqQmSb7/9dlxxxRW47LLLcPrpp+PTn/40MpkMvv3tbyce\nf8cdd+DVr341rrnmGuzcuRPXX389zj77bNx5551dHjlBEARBEAQxaKQiSA6CAI899hguuuii0jbG\nGC6++GI88sgjifd55JFHcPHFF1dse9WrXlX3eIIgCIIgCIJollQEyXNzcxBCYNOmTRXbp6amMD09\nnXif48ePt3Q8QRAEQRAEQTRLqt0tlFJgjLV0fKsYBoNhNP8cEZwbFf9uBGjOGwOa88aA5rwxoDkP\nPhttvt0kFUHyxMQEOOc1WeDZ2VlMTU0l3mfz5s2Jx1dnl1djamq4tcFWMTqaXdf9+xGa88aA5rwx\noDlvDGjOg89Gm283SMWyw7IsnH322di7d29pm1IKe/fuxQUXXJB4n/PPP7/ieAD4yU9+gvPPP7+j\nYyUIgiAIgiAGn1QEyQBw9dVX41vf+hbuvfdePP300/if//N/wnVdXH755QCAG2+8EV/60pdKx7/n\nPe/Bj370I9x22204cOAA/v7v/x6PPfYY3v3ud/dqCgRBEARBEMSAkAq5BQC85S1vwdzcHG6++WZM\nT0/jrLPOwi233ILJyUkAwAsvvADOeen4Cy64AF/84hdx00034aabbsK2bdvwla98BWeccUavpkAQ\nBEEQBEEMCEytpdqNIAiCIAiCIAaY1MgtCIIgCIIgCCItUJBMEARBEARBEFVQkEwQBEEQBEEQVVCQ\nTBAEQRAEQRBVUJBMEARBEARBEFVQkEwQBEEQBEEQVVCQTBAEQRAEQRBVUJBMEKuwsLCAz372s9i/\nf3+vh0IQBEEQRJdITce9tPPiiy/iiSeewLFjx+C6LjKZDLZs2YKzzjoLJ5xwQq+HR3SQ5eVl3HHH\nHbjwwguxa9euXg+noxw+fBgPP/wwFhcXMTk5iZe//OXYvHlzr4fVVpaWlmBZFjKZTGnbwsICHn/8\ncQghsHv37oGbczVBEMDzPDiOA8uyej0cosMEQYCnn34ap5xyCoaHh3s9nI6jlMLKysqGmCvRWajj\n3ir8/Oc/x+c//3k88sgjAPSHLw5jDL/xG7+Bj370o3jZy17WiyG2naeeegpf+9rX8PTTT2NiYgK/\n8zu/g8suuwyMsYrjvvOd7+BjH/sYnnjiiR6NtD1ceumlDfeHYYiDBw/ipJNOwtDQEBhj+M53vtOl\n0XWGO++8Ey+88AJuuOEGAIDv+/jEJz6B++67r+IcN00T1157Lf7sz/6sV0NtG67r4s///M/x4IMP\nwjAMvOc978HHPvYxfOMb38AXvvAFuK4LADAMA7/3e7+HT33qUzCMwbjYFoYh7rnnHtx///14/PHH\nsbCwUNo3NjaGs846C29+85vx9re/fWCC5r179+LAgQOYmJjAa17zmsSA6ZFHHsFdd92Fz372sz0Y\nYfd49tln8YY3vAFf/vKX8brXva7Xw2kLTz75JGZmZnDRRReVtv34xz/GP/7jP+LRRx9FGIZwHAev\neMUr8JGPfARnnnlmD0fbPh544AHcc889yGQyeO9734vzzjsPR44cwU033YSf//znCMMQZ599Nq67\n7rqBiUl6CWWSG/DTn/4U1113HU466SR8+MMfxrnnnostW7bAtm34vo9jx47hF7/4Be655x68973v\nxde+9jVcfPHFvR72unjmmWfwjne8A2EYYteuXdi/fz8+8YlP4O6778bf/d3fDWSGbf/+/cjlcjj7\n7LMT9/u+DwAYGhrC+Ph4N4fWMe666y689rWvLf39mc98Bt/73vdwxRVX4NJLL8Xk5CSOHTuGu+++\nG1/96lcxNTWFq666qocjXj+33norvv/97+Oyyy7Dpk2b8M1vfhOZTAb/9E//hMsuuwyvf/3rEQQB\n/uM//gN33303TjnlFFx33XW9Hva6mZ2dxfve9z488cQT2L59O17zmtdg8+bNcBwHnufh+PHjePTR\nR/FXf/VX+Nd//Vd8/etfx+TkZK+HvWZ838f73/9+PPTQQ6UF38jICG644QZcccUVFccePnwY9957\nb98HybfddlvD/QsLC1BK4YEHHsChQ4cAANdcc003htYxPvOZz+DEE08sBcn3338/PvKRj2B8fByX\nXnoppqam8OKLL+LBBx/EFVdcgTvvvLPud3y/8MMf/hAf/OAHkcvlkMvl8OCDD+L222/HBz7wAQRB\ngJe97GUIwxA/+9nP8JOf/AS33XYbfvM3f7PXw+5vFFGXd7zjHepd73qX8jyv4XGe56krrrhCveMd\n7+jSyDrHhz70IfXKV75SPfPMM6Vt9957r3rZy16mXvva16qnn366tP3f//3f1Z49e3oxzLby5S9/\nWZ1//vnq6quvVvv27avZf+TIEbV79271wAMP9GB0neH8889X3/rWt5RSSkkp1fnnn6/+5m/+JvHY\n66+/Xl1yySXdHF5HeNOb3qQ+8YlPlP7+3ve+p/bs2aP+4i/+oubYa6+9Vr3pTW/q5vA6xkc/+lH1\n8pe/XP30pz9teNxPf/pT9fKXv1zdeOONXRpZZ/jKV76izjrrLPUP//APat++ferHP/6xuvrqq9We\nPXvUX/7lXyohROnYQfkO2717t9qzZ4/avXt33Vt8/yDM+cILL1R33HFH6e83vOEN6p3vfKdaWVmp\nOG5mZka98Y1vVNdcc023h9h23v3ud6vLLrtMLS0tKaWU+tSnPqUuuugi9da3vlXNz8+Xjnv++efV\nb/3Wb6mrr766V0MdGAbjWmKH2LdvHy6//HLYtt3wONu2cfnll2Pfvn1dGlnn+MUvfoF3v/vd2LZt\nW2nb2972Ntx1110wDAN/8Ad/gEcffbSHI2w/f/qnf4r//M//xPj4OC6//HJ8+tOfxvz8fGl/tcxk\nELBtG/l8HoCWIRQKBVx44YWJx1544YV47rnnujm8jvD888/jggsuKP390pe+FEop/PZv/3bNsa99\n7Wtx9OjRLo6uc/zwhz/E+973vorL0klcdNFF+MM//EP84Ac/6M7AOsR9992Ht7/97fjABz6AM888\nE6985Stx22234UMf+hDuvvtufPCDHyxdHRoUdu7ciUwmgw996EN44IEH8P3vf7/iduedd0Iphb/+\n67/G97//fTzwwAO9HvK6KRQKyGazpf8fOXIE73nPe5DL5SqOm5ycxLve9S48/PDDvRhmW3nyySfx\n9re/vSQduuqqqzA7O4urr74aY2NjpeO2bt2K3//93x+43+peQEFyA8bGxkqXplbj0KFDGB0d7fCI\nOs/8/Dw2bdpUs/3000/HXXfdha1bt+K9730vfvSjH/VgdJ3jhBNOwE033YTbbrsNP//5z3HJJZfg\n9ttvRxiGvR5aR7jgggtw//33AwCy2Sy2b9+Ohx56KPHYn/3sZ9iyZUs3h9cRxsbGKhY/0f/j2+L7\nBkVa4/s+hoaGmjp2aGio7wPIo0eP4vzzz6/Z/sd//Mf44he/iB/96Ee45pprsLS01IPRdYbvfve7\nuP766/H1r38dN9xwA2ZmZnDyySeXbieeeCIAHTBG2/qdHTt2lGqFMpkMcrkclpeXE49dXl6Gafa/\nulRKCcdxSn9H/0/6fFPRYnugILkBl156KW6//XbcfvvtWFlZSTxmZWUF/3979x9TVf3Hcfx5h/Gj\nX5QXS4SKH2tc+eVgSUPn1nI5fpQtBedgtCWNciyZLWaWVl6zqLXpjEabY4lokFyRkoxiDWtszNaa\nXcywoiBFuAhB8iNFdu/3D9ctriJ9De/tXl6Pfxj3fu6579fudvY+53zO57z33ntUVFSwfPlyN1c4\n/cLCwiY9I240Gp3zutauXUtDQ4Obq7v+Fi5cyMGDBykqKqKsrIzMzEyOHDnic2eTn3nmGb777jvW\nrVvHL7/8wssvv0xNTQ1ms5mvv/6ajo4Ojh49SnFxMQ0NDaxYscLTJf9rycnJVFdX097ezuDgIDt3\n7iQwMJBPP/2U3t5e57jOzk727dtHbGysB6udPsnJyezZswebzXbVcTabjT179nj9zT7BwcH89ttv\nV3wvIyODd999lxMnTpCbmzvhd/dmfn5+PPHEEzQ0NBAZGcnq1aspLi6e8jf3ZqtWraKuro7PP/8c\ng8FAXl4eb7/9Nq2trRPGtbS0sHv37imvpHiDqKioCVd6mpqaJvz9u88++2zCFWG5Nlrd4irGxsbY\nsGEDn3zyCbNmzSIiIoI5c+Y4b9w7e/YsHR0djI+Pk5aWxptvvjnl1Iz/OrPZTGNjI01NTZMeeY+N\njVFUVERTUxMGg8HrV7eYzODgINu3b6empgaHw0FpaSlLly71dFnTprm5meeff57+/n5uvvlmxsfH\nnSs8/MnhcLBy5UrMZjN+fn4eqnR6dHZ2kpWV5Tzb5HA4KCoqIiwsjJdeeonY2FjsdjsnTpzAbrdT\nVVVFQkKCh6v+99rb28nNzeXChQs88MADxMfHX7YfO378OEeOHCEwMJC9e/cSHR3t6bKv2dq1axkY\nGKC6unrSMVarlYKCAoaGhrDb7T63D7NarWzdupWffvqJ/Px80tPTyczM5J133vGZfZjD4WDjxo3U\n1dWxYMECEhISqK+v5/fffyc8PByj0Uhvby/d3d2EhIRQVVVFeHi4p8v+Vw4fPsyzzz5LYmIis2fP\nprm5mYULFxIZGUl3dzcPPvggdrudw4cP89VXX7Fp0yZyc3M9XbZXU5P8D1itVhoaGmhra+Ps2bPO\ndZLnzJmDyWQiLS2NxMRET5c5LVpbW9m1axdr1qy54iXLP9ntdl5//XXa2tqorKx0Y4Xu19nZic1m\n49577+X222/3dDnTanh4mEOHDtHS0kJnZyejo6PONcDj4uJIT09n/vz5ni5z2vT09FBXV8fIyAgp\nKSksWbIEgI8//piqqir6+vqIiIjgySef5L777vNwD2SzgwAABnxJREFUtdPHZrNRVlZGY2Mj/f39\nl70/e/Zsli1bxtNPP83cuXM9UOH0qa2t5YUXXqC6uvqq+7D29nby8/Oda+D7ogMHDrB9+3YuXrzI\nuXPnfO5AHy41jhUVFVit1suWaA0JCSEjI4OnnnoKo9HooQqnV2VlJXv37nXuwzZt2kRgYCDr1q2j\nubkZ+GsZyy1btvjMMpaeoiZZRGQGsdlslx3s+9IDkRwOB3/88Qc33HDDlGs+j4yMMDg46BNzdCcz\nPDxMeXk5PT09PP744z510Pt3w8PDnDp1ipGREeeBvi/cS/H/OHXqFP39/dx9991evYzjf4maZBER\nAS41GufOnWPevHmeLsUtZlpeUOaZYiZmvh50Hl5ERIBLl3J97XL81cy0vKDMM8VMzHw9qEkWERER\nEXHh/QsHiojIpOrq6v7xWF+4gW2m5QVlnooyy7XSnGQRER9mMpkwGAyX3fk/GW9f1nGm5QVl/ieU\nWa6FziSLiPiw4OBgTCYTxcXFU461WCx88MEHbqjq+plpeUGZp6LMcq3UJIuI+LCEhAR+/vln4uPj\npxzrC4+bn2l5QZmnosxyrXTjnoiID0tMTOTMmTNXfIiIq1tvvZXQ0FA3VHX9zLS8oMxTUWa5VpqT\nLCLiw0ZHRxkYGOCOO+6Y8uEavmCm5QVlVma5XtQki4iIiIi40HQLEREREREXapJFRERERFyoSRYR\nERERcaEmWURERETEhZpkEREREREXepiIiIiXKS0tpbS0FLj06NmbbrqJ0NBQUlJSyMnJITo62sMV\nioh4PzXJIiJeKCgoiIqKCgBGRkY4efIk+/fvZ//+/bz22ms88sgjHq5QRMS7qUkWEfFCBoOBxMRE\n5/+pqank5ORQUFDAiy++SFJSEuHh4R6sUETEu2lOsoiIj/D392fz5s2MjY1RU1MDQF1dHTk5Odx/\n//2kpKSQl5eH1Wp1fubkyZOYTCZaWlombMtut7NkyRLeeustAGw2G0VFRSxevJjExESWLl1KSUmJ\n+8KJiLiZziSLiPiQ6Oho7rzzTo4dOwZAV1cXjz32GHfddRcXL16kvr6evLw8PvroI+655x5iYmJY\nsGABFouF1NRU53a+/PJL+vr6yMrKAqC4uJi+vj42b96M0WjkzJkzHD9+3CMZRUTcQU2yiIiPCQ0N\npa+vD4DCwkLn6w6Hg0WLFmG1WqmtrWX9+vUAZGdn8+qrrzI0NMQtt9wCQG1tLUlJSURERADQ2trK\nc889R1pamnN7jz76qJsSiYi4n6ZbiIj4GIfDgcFgAKC9vZ3CwkIWL17M/PnziYuLo6Ojg46ODuf4\nzMxM/Pz8OHToEAADAwM0NTWRnZ3tHBMXF0d5eTlVVVX8+uuvbs0jIuIJapJFRHxMT08PISEhjIyM\nsGbNGrq7u9m4cSPvv/8+Bw4cICYmhgsXLjjHBwUFkZmZicViAeDDDz/E399/wlnjHTt2kJqayo4d\nO1i2bBnp6ek0Nja6PZuIiLuoSRYR8SE//vgjNpuN5ORkjh07Rm9vLyUlJTz88MMkJycTFxfH0NDQ\nZZ9btWoV33//PW1tbRw8eJCMjAyCgoKc74eEhLBt2zaOHj2KxWIhKiqK9evXc/r0aXfGExFxGzXJ\nIiI+YmxsjK1btxIQEEBWVhbnz58HYNasv24/+eabb+jq6rrss/Hx8ZhMJrZt28YPP/zAihUrJv2e\n+Ph4ioqKGB8f19QLEfFZunFPRMQLORwOvv32WwBGR0edDxM5ffo0JSUlzJs3j4CAAIKCgtiyZQsF\nBQX09PRQWlrK3Llzr7jN7OxszGYz0dHRJCUlOV8fHh4mPz+f5cuXExUVxdjYGJWVlQQHBxMbG+uW\nvCIi7qYmWUTEC50/f57Vq1cDcOONNxIWFsaiRYvIzc0lMjISAKPRyM6dO3njjTcoLCwkIiICs9nM\nrl27rrjNhx56CLPZzMqVKye87u/vT0xMDPv27aO7u5uAgADi4+MpLy/ntttuu75BRUQ8xOBwOBye\nLkJERDzPYrHwyiuv8MUXX2A0Gj1djoiIR+lMsojIDNfV1UVHRwdlZWVkZmaqQRYRQU2yiMiMV1pa\nSn19PcnJyWzYsMHT5YiI/CdouoWIiIiIiAstASciIiIi4kJNsoiIiIiICzXJIiIiIiIu1CSLiIiI\niLhQkywiIiIi4kJNsoiIiIiICzXJIiIiIiIu1CSLiIiIiLhQkywiIiIi4uJ/BQzbTQlZHPQAAAAA\nSUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8VPWd///8nHPmnhsJdxII5aIBKraLRdEWA6vollr2u78HXfD3UAvSoiu6yyUI9Lu226YIiu0uWmgtsfr9liy121LhV6uthLaIWrWiQqIRK0ICAULuk2Rmzjmf3x8z5zCTTJJJMgm3eT4e88hczpw5k5k578/79noLKSUpUqRIkSJFb1Eu9AGkSJEiRYpLk5QBSZEiRYoUfSJlQFKkSJEiRZ9IGZAUKVKkSNEnUgYkRYoUKVL0iZQBSZEiRYoUfWLADIgQokQIcUYIcbiLx4UQ4r+EEEeFEO8JIT4/UMeSIkWKFCmSz0B6ID8Dbuvm8duBSZHLN4BtA3gsKVKkSJEiyQyYAZFS/gmo62aTrwLPyTCvA1lCiFEDdTwpUqRIkSK5XMgcyBjgRNTtqsh9KVKkSJHiEkC70AeQCEKIbxAOc+HxeP4uLy/PfkxvbiaeGItUFEAAEmGaENLPP+jQEJGrSkiHOHtwtLWjmkZkIwXT60UfMgSzpYWjJ08m4231icmTJ1NZWdnl46qqYhjh41YUhVGjRhEIBKitrbXvy8rKoqmpCV3XURQFIQSGYZCdnY3X66WqqorJkyfT2trKmTNnyM/P79OxmqaJolzYOo3UMaSOIXUMvaeysrJWSjmsp+3EQGphCSHygb1SymlxHvsxsF9KWRq5/SFws5TyVHf7nDFjhnzrrbe6fHz//v3cfPPN0a/TaZu7776bmfn5jBw+AoDmVj+mqkJkW0NRcLa3M9TfCoCnoYFrhCD7hz/g1a1PctODK+x9rfjCTLb+5Y3uDjmpSCnjvieLIUOGUF9fj6IomKbZ6fH09HRaWlqwPvfrr7+e119/HUVRuPrqq/nhD3/IrbfeipSSUCiE2+22DVJv6fhZXAhSx5A6htQx9B4hxNtSyhk9bXchzeALwF2RaqzrgcaejMdAYaoqimHYF9U0UUMhfG1teGpq8AsI/OUv1P3rvzF07//HE1lD7Mv4ykpWpafH3e9N48YN8juB+vp6gLjGA6C5uRmAp59+GkVReP311+3ty8vLWbhwIbm5uQAcOHCAgoKCQTjqFClSXIoMZBlvKfAacJUQokoIsVQIsVwIsTyyyW+BvwFHgaeB+wfqWDpSV1eHkpVFnWlwur2NoNNJwO0m6HIRdLsxVJWA1wuANAwQCorPh5aXh5w2lSrDiLmMUeNHAg98+ulgvaVeIaVk2bJlcY1MQ0MD1dXVDBs2jFtuuYXy8nKmTZtGaWlpn1+vtLSUadOmoapqv/eVIkWKi4cBy4FIKRf18LgE/mWgXr879uzZw7yRo6irq0Mi+WIwhFQ1pCLC4SEhkEKgGQaabuA4d44jeblM/d3vcLe2Mc/t7vBmLsS7GDiklNTW1uL1etm+fTu5ubksXbqUgwcPUlZWRkVFBQUFBWzYsIFFi7r9mCktLeWhhx7C5/MhpcTv9/PQQw8B9PjcFClSXNxc3JmcAUZGzvx/u24GH910Ix9/4To+vu46jl0/k09uuIFT183g5LXXcOLzn6MtMwslIxPT56PJlDEXr9J1TuJSwxvxvLZs2UJGRgbr16+nsLCQxYsX89RTT1FZWYlpmlRWVrJkyRJycnIQImx48/LyOnkXRUVFqKpKSUkJgUCAkpISVFWlqKjoQry9FClSJJFLogprIGiVJhnivP2c9NprYIRDOkKAVFRcoSC+U6eQQkFIk+NDhiANnfzp1yDN826HI9DOn4EJEyZwsLKS/+dc7WC/naTR1tYGwI4dO7jnnnt49NFHAfjRj36ElNIOe+m6TigUIhAI8PLLLwNw1113dfIuqqqqWLduHStWrLA9l69//ets3LhxsN9aihQpkswVa0COhEKcaw+fLG/JzOSD2V/CiJwcXZqG1DRcUtJumCAlvsZGRn7yCYRCSEBEyvAMXSeQlckXRo0GYBbAa50NSE/VUxcLVnVWeXk5H330kX2/lZzfvHkzy5cvZ8KECdTU1CCl5NZbbwVg2LBhSCkpLi6OCU8988wz7Ny5k5tuuokDBw6wePHiQXxHKVKkGCiu2BBWXV0dOTk55OTkYBgGQkpkKIQMhVBME6eU+EyJputM/POfGf3uu7jO1uKqrw9fzp3Dde4cnsZGsj49TujoUUJHj2LW1vLu/f+ClJID/7UVKSWX6tjgUCgEnC+F9nq9rFq1Cp/PR01NTafta2trqa2tpby83L5P0zTq6+uZN28eTqeTefPmUV9fj6adX7usWLECt9uNEAK3282KFSs67TtFihQXH1esB7Jnzx77+t13382s6dORerjZUHU4EIBfEeiaRuXNN6MYBllnz4QbEqM8CYmkPT2dz9ScxmxshGCQ9IMHwyW/FR9Q9/HH9rYNmx8jq2jNoL3HZGH1lLS2tuJ2u2lvb4+7nWUoVVW179N1HV3X7f6UtLQ025uBsPHYvn07mzZtYvny5Wzfvp21a9cCsHXr1gF8VylSpOgvl70H8tnPfjaxDdvaUOobUOob8Da34Kk9h7etDU0PIUwDTQ/1vA/DAEVBut12ya+Wl2dfjOrqS9IbiS737cp4RKPr57v+hRBkZ2fbRqO+vp7s7Gzbq3n66afZtGkTK1euxOv1snLlSjZt2sT27dtTpb8pUlzkXPYG5L333iNa+gTodBug0eHgqB7iqB6iqrkZJTsbbcIEdKcTqaroTidKWzvC0BF6yL4ouo6noYGTQ7KoGTeO2tGj4x5H4NWDdjPiuYf+NaYZ0bp01ZB4KSOlpK6uzjYYQohw+XTEkAYCAYYMGRJjLD788EN0XWfr1q20t7czadIkFi9enApxpUhxkXHZh7BKS0vRNI19+/bZSdylS5fGbFNXV4emaXYJqyMzk6AANRhEFQIMA80waBo1kgl/PtDpNUxVxREMQkgn5HJBa2vnbZqb7GZEgKo48iC5XTQkXg4oitJJEsUyGqtXr+aXv/yl/fnccsstKIpCYWEhK1asYO/evdx3333s37+fe++9NxXiSpHiIuHyPWNFKC4uZseOHRQWFgJQWFjIjh07mDNnjr3Nnj17mD59OocOHQIgZ8oUcl1uXPn5HANaTp9GOJ3IQJDKm2dHhBrPYyoK6Y2NoBtIJNf/9sUujyfw6kHM5qbOzYiAVwhWpaezJSI3cjmRkZFBfX19TAivsrISwzCor6/nnXfeYebMmbzzzjsYhoHX62XatGkcOXKEjIwMXnjhBaqrqykpKeFrX/saTz/9dFIMSGlpKcXFxb1qjkyRIkWYy96AVFRUcNNNN8Xc1/F2TwhVRZomIJnw6muIDnkMKRTcrX4wTXSnE7Whsct9hT4+CghGO12EonIFAA4BCzyRRr7LzIhEJ84tsrOzOX36NA6Hg/Xr17Nq1SpcLhc+nw+/38/WrVuZM2cOXq+XhoYGNE2joqKCyspKu0KsP0R3yQN97pJPGaEUVyqXvQEpKCjgwIEDtgcCYZHAjrS2tpKTkwPAOaeTt2vP8tcnn2TevHmENC0sky4ElYU3d34RIXC2tYEp0R0abaNGMrOL45GhEEpaOulDh9JQX09bTFJa0Cpll9palxtWbiQYDNr3BQIBgsGgXeZr5T2ssuEpU6bgdrv561//Smlpab9O1EVFRZ0MUSgUoqioKOH9lpaWsmHDBnbs2NEpRJoyIikudy77M9WGDRtYunRp3B94NE888YR9ff78+dzgcvHs//yPfdvpdFJ34gRBRensgSgKimEw/tWDmKqKt6mZwOmzOJubCRwLCyoaZ87a25uNjSihEEMdDvxRJ08FcKjqZaet1RVdeRFW78zcuXORUnLs2DH7segek44Ni72lqqqKkSNHUlJSEtPkWFVVlfA+ugqRrlixImVAUlz2XPZVWIsWLaK4uNhuVluxYgXFxcV92peI6m/ohJR8cv31fHzTjZy65rO4Zt1A8LPTcM26AdesG1CHD0MdHpnPYhigqqBpeNLS0AEdMIGQ5LLS1uqOqVOn2tet3hHrr2EYPQ7dqaio6PcxWIl6t9vNV77yFdvTURSFefPm9fj8rkKk/T22lIJxikuBy96AQNiIHD58GMMwOHz4cK9WhnV1dYRCIYLBICFNC/d5KApSVcMXRQEh0D0eAmk+dJeLhhHDed3t4oORI3jd7eJ1t4tqh4PTEmhvh1AIEQyC349oayNDUUgTArcQpAvBUEW9bMt6ozly5Ih93arQiq7UysjI6PScb3zjG/b10V2UTPeG0tJSamtrMU0Tv99v3798+XJefvll0tLSuj2JWyHSaPoyRyXaYOTl5fHQQw/ZZcxbt25lw4YNKSOS4qLjijAgfeG1QAAIV2iNHDmS/Px8srKyELqBGgqhRS5qMIhiGDiCQYRpIkwTNaTjMyXD3B58ZlgSpXnSJKq/0GHAV1QoTBUCATiFwClgqsPBAo/3ijAkXREv8f6Tn/wEl8uVlP1b3o417jeabdu2AeHE+s9+9rMuT+JWiLSsrIxQKERZWRlLly5lw4YNCR+HlUexDIYWybnV1NTgcDjssFhfPecUKQaKyz4Hkgyee+45/uVfIqNLFIFAAUvLKRhEqCrC4wmHproQTKwdNow2r4dDd3wFDBMpQETUfy1D4m5sYFLZH1ERDFNUHBFDcp3TCVx+lVl9JRAx7tXV1f3aj2EYXQpcRo8Evuuuu8jNzeXuu+/ulHexrkerDfc2N9Mxj3L8+HF+97vf8W//9m/2fpIRFkuRItmkDEgCRPcuSCEwFOW896CqSCAoJWYknEWcHEbI4UDTdbxNTWHZeEWxlX0xTQTQmpWJAATgEwIFbENyq8tzxRmQqVOnxoS5OpIMdWMhRNyZ79HyLSNGjKC9vZ2f//znfBpnyuSiRYv6lTDvmEexwl/RBiM1XjjFxUjKgMRh7969zJ8/375dV1fHz3/+c1u9V5GSkGHg8XiQ7e1oTidOpxOzqQmEwIzTJGiRc/RjMGXY0JhG2IBIiQAy3G4E4SIsnfCHE5ASEFdMYj2a7owHdD33vTckso/Tp08D4b4VZ8QbTCYdS803bNjA3XffzdixYwmFQnblYCqEleJiI2VAEsBS7r377rvJyclBSomu67S2tuKNbBMMBsPJdSCkKJhNjZhnzqJEKq+kqiJUjQ9vno3ucEYMiBmp2A0bEN3ppGHUSCaX/RFPJCeSrSgogEeoV2wuZKCJDlfFY+jQodTW1lJZWRn38Xnz5vH73//envlyyy238NJLLyXcYLhhwwa+9rWv4fP5OH78OGPHjqWlpQVVVXG73X0Ki1mkmhxTDCQpA9JLDMNANQxaI3pXmS4XamRVapomUkqU9HQ8N9xA4LXXcd1wPQDi4EGEw4EeCDD+4GuAAGmG/0bMiKlpuFpaEIRLehXOeyI6V06D4WDTUyjMSrLn5+fH9KRA2Hi8/PLL3HfffWzcuJF169axbds2rrnmGlpaWtixY0f4O6OqCTUYWuFSt9vN5s2b+3Wyj25y7M0xpEiRKKkqrEFCOBzIUAikpOraa6m69prII/G7Bp2EDYdHCJxC4BWC65xOGh97fLAO+YohXg4kHh2NB8Dvf/97cnNz2b59O1lZWWzfvp3c3Fzef/99pk+fzu23384tt9zC7bffzvTp0+OGoYqLi9m1axeffPIJpmnyySefcOONN3LnnXf2S4E4OjmvaVqqmitF0kktaXuBJb0REgKHwwFA0O3GGdXDIIRA13VOnjyJoaqoJ08CEIjoLZlS2tc/+Pu/DzsikRyIqao42tpoGDWKiWX7YzwRE5h0zTW0vfQST2QN6fIYqw096cl2h8PRSXLkSkRV1U7GRkpJVVUViqLYISyrk33v3r1s2rSJKVOmUF5eztq1a2NmpVhUVFRQVVXFtGnTqKioICsri4aGBqSU+P3+Pg/Z6kuTYyrklaI3XLEeSG5ubreP7927t9N9e/bsIRgM0tLSQk1NDTU1NagtfrKyssjKysLtduNyudA0jdGjRzPcMBg9ejSjR4/G6/Xi9XoxI7Inim6gGDqKbjDxwKtMOPAqE/98gAkHXyPr1ClUIVCEwKUoOBUFTyQxL1tbqTKMLi8DEeayGikvhZnuA0l3nspjjz2G3+/nscces+9btmwZK1euxO12s3LlSpYtWxb3fzh69Gi++c1vUllZiWma1NXVoSgKubm5MUO2nn766V4db2+bHDv2o6QaGFP0xBVrQDZv3pyU/cheC1cJQk4nQY+boMdD0OPmwzmF4UvhzXwwdw4f3jw7nGQXIix50kFC5ZFHHuEGp5N5bneny3VO54A1H0opGTIk7P1cicbE4/F0+diaNWvw+XysWXN+ZHFJSQlCCAoLCxFCUFJSEnciZX19PW1tbdx7770sW7YMCE91rKqqskNXy5cvt/tfEiW6yVHXdcrKyvja175GY2Nj3O766JBXqoExRSJcsSGsRYsWsXjx4l4/T9d1HA6HPXxK93p58803EULwmc98BofDEbeix0q6Gw4tHOqIcyKRQqAYBkYCpaJf/Nzn+PM7hzo/oISHVQ3UcCqrO/xSHM3bX9ra2rp8zPrMoz/7QCBgV3gpikIgEIhreP1+P7NmzeLHP/5xp+/OU089BcD48eN73YHfscnRkn557rnn4ioHD5SuV4rLlyvWA+krTU1N1NTUcOjQIQ4dOoRobeXQoUO88847/O1vfyO9i5W/FcLSAMU0w2Esw0DRdRRdZ/L+PzJ5/x/5zMHXGP/GX8KNilKGu9sNA+LEzmfPnt3pvmGKEuOJXAljcy8Gokf2RvPNb36TPXv28M1vfhPo2vB+/PHH4Qo+RWHatGn2/VJKnnzySVatWkUwGOy1sKKlA/fKK6+QmZnJrl27uvQwkqXrleLKIWVAkkgiq3LhdoOiIBQFU1UxHA4MhwNTUZBCYKoqusPB6asmc27cuB739/nPf57Zs2fbf4d7vQxTVLIUhakOR6fLra6uwzAp+o712Ud/B8aOHcu2bdv4yle+wrZt2xg7dmyXzz979ixSSkzT5PDhw50eHzZsGIFAoF95iehkvRXCqqqqsj2MZOh69ZaU6vClTcqA9JITJ07E3A72MpSj6zpmRA7FUvJFCD66eTYf3Tybyptn87cbZ9E4ahRV104/nwPREgxJmSYBKQlJaDJlp8uV2NF+oTh+/Hi3t6PpqSP+7NmzzJ8/P25eItGT8OjRo1m7dm1Mknzt2rV2aKur0QcDVYVlTYS0VJCtiZC9MSKJvPfobb7+9a+njFQSSRmQXlJXV4fX67VlTVSfz77ucrkIBoPdzrHQNA1VCFTDCEuYmKatqzXpj39i0h//xPjXXsfV3EzmqVOcnjCB2txc0PWYoVTdkRGRhZ+gaZ0uF0Iq/kpMuFtY5d7W367oafaJ2+3m5ZdfBmLzEtEnYavst7uTcEcvuePt/ow+6C1FRUVomkZJSQnt7e2UlJSgaRpFRUUJPT+RqrGO2zz44IMXZWXZpeqJpQxIL9mzZw+HDh3i2Wef5dlnn8Xw++3rR48eJT8/306wd4mmgcNxvtKqwwlWSImq6yiGgRZoR49KnpoNDT0eY2ZaGiZhHa2AlLgIizP64kjFD1ZuJN4JNPo+KSWNj2+57JLz1tTFnma49+SBWD0406ZN4zvf+Y6dlygqKqKlpYXq6mqklFRXV9PS0hL3JHzy5Ek2b94c42Fs3ryZk5FepcGmqqqKZ599NiYn8+yzzyY8ETKRqrGO23zuc5+7IJVl3XlBl3L59BVvQFwuV4+rwwGjg+H4aPaXwpcvfZET107n0xl/x7nx46kpuBo0DXX4MJSsrF7vWxMiZuphkylplXLA+0cspJRxT6DBYNCeyZGieywDU1tby8aNG23hxaqqKoLBII8++ih+v59HH32UYDBon4StE9fcuXNxOBz86le/itnvhx9+eMkmyROpGrsYKst68oIu5fLpK96A/K//9b+YPHlyn5/fGLVyrKuro7m5mVAoRHNzM1WaSnNzs32f0+kM50BMEwNAiJg8SFgKXkFqGi1Dh9KWmUnN5MnU5eXx4RfDPwKzoYHAwdcwzpxFP3EC9cyZmL9Emt08LheK2vnj1YAJmsZoVR20/pGuGD9+vB26eeKJJ2gNBmNm06fozOnTp9E0jd27d9v3jRw5ktWrV+Pz+Vi9ejUjR44EOoe3nE4nu3fv5tprr6W5uZklS5awadMm2xgNNrm5udx1110xSXtr9kpPlJaW4nA4cLlcMSGfjlVjF0NlWU9e0MVg5PrKFW1AsrOz+cUvfsGSJUt69bx4XeoQDm8VFhYyatQoCgsLydUNCgsLKSwsZOTIkYwePRpN01AUBZVwbkBAzGRCpATTRDUMhGniCAbRdJ22yHhXJSvLnrGu5eVhDB8e8ze66TAvN4/hw4fh8XjIzMwkMzMTBRE3yW55JIMp2Hjs2DFCoRAul4v169czav061q9fP2ivfymyZcsWDMOICfNY4SvADmNBOLxlhb6EEPa0w5///Of4fD7Wr1/P/PnzKSsrG5Rjf+WVV2Li/AsWLKC1tZV58+bhdDqZN28era2tdpNvV3kBa0W/evVq8vPzWbJkCevXr+db3/pWp6qxjpVl77zzzoBXlnWkJwORDCN3oXIoV7QBefLJJ/F6vTz88MMX+lB6TbceSCiEiNM3AqCqCpmq0inJbnkkF8ITMQyDiRMnogjBxIkTE26YS9Zo20uJaA8jGsuTi07GV1VVEQqFqK6uxjRNQqGQrcUlhGDUqFG8+uqrlJeX288ZqBNRaWkpO3bsiInz79q1CyklY8aMQVEUxowZY3+m3VVoWSv6733vexQXF1NSUsLx48d5/PHH406MjK4s+6//+q8BrSyLR08Gor/l0xcyhzKgBkQIcZsQ4kMhxFEhRKeztBBirBCiTAjxjhDiPSHEPwzk8XRk0aJF/PjHP+5XCCsec+bMQQjBoy+/hBCiU5zfCmFJGRFCic6FRMJYQY8H3emkJXsIbelpNA4fEbOPbj0QhwPZTdlvhteHKURMkt0dGaNr9Y9EJ9kH2pjouh5TRZRo1dawYcMG9LguRqI9jGjidcJDWAGhuwR9a2ur/f0sLS1lyZIlHDlyBNM0OXLkCEuWLEnKiai4uJg1a9bExPl9kQrGTz75BMMw+OSTT9i1axfFxcXdVmhFr+itqrH29nZCoVBcwxBdWfbMM88MujhkT15Qf8unL2QOZcAMiBBCBZ4CbgemAIuEEFM6bPYt4BdSys8B/wz8aKCOpyusL1eyUFW1UyWRaZr88Ic/pLm5GdM0Y06QXZ0qTVVFqiqG04XhcNA6JIuKKR3/fXGI8kDMpibU1rawNxIIhC9m+Ng8UVMTNSHsqi0rtBWdZB+ssJb1f7EkP/Lz8ztt41AUnE5njOptX8nOzu7X8y8EPZX7xiOeCKQV0vL7/bZXsmzZMtrb27nvvvtoaGjgvvvuo7293dbn6g8VFRV89rOfjbnv+PHjnUYEW6Gd7iq0rBV9tLc0efJku5/lYiMRL6g/5dOWQY3+fzzwwAMxnuVAMZAeyBeAo1LKv0kpg8B/A1/tsI0EMiLXM4ELU09I8noVulrtvfDCCxQWFnLy5Enq6+vxt7Wh6zpGF6EmyysR0kSYEsWUtPl6KA/uLRe4PeOOO+6wr5eUlHDm0U224KCUklOnTnV6Tsg0w9Mfk1DuO2rUqEvOi+nq+5WWloYQgrS0tIT3U1NTgxblqfr9fubMmcOf/vQnsrOz+dOf/sScOXPsMFJ/KCgo4Nlnn40Jj1n9U9H3RZco79u3L+axffv2AeEV/Ve/+lXuuusujhw5gqqqHDt2jFOnTvVpbspg0NELApIWKiwoKOA73/lOTBhr6dKlaJo24GGsgTQgY4Dotu2qyH3RfBv4f4UQVcBvgQv26Q9G/0FHI6XrOlLXw15Dx14Q60QhBCjhsFZCRIWwlIwMDK8nHM5yucKXqE70cWM7S6V4I7mR6CqtW1xu/jx8BH8ePoKXhg1Pmr5WdDHCnDlzGLq2iDlz5tj3xZudEU0i1TrdUVFREZOAvpRpaWlBSklLS0tC2wshGDJkSKf/8dtvvx0TTnz77beTcnyFhYV2iMyqAKutreXcuXMx91lVYdnZ2WzatIlz584BcO7cOTZt2mR7ja2trXa/lWVU09LSeOqpp8jLy7uoG/JeeeWVpOYsNmzYwKOPPkprayt///d/z+TJk3n00UcpKioa8DDWhVbjXQT8TEq5RQhxA/B/hBDTpJQxyywhxDeAbwCMGDGC/fv3d7nDlpaWbh/vivT0dJr7MIjJ+oInSiAQwOfzoSiKfeloPIBweS9gqCoIgSkkZ3NyODxtKiOOHcPX0oJphvsrDMOw/7rNsACjBALt7eExu6ZpezqKKZGGgZSSQHs7w4YNwxk5YSiBACrhUBYImiLhrtEq1OjhjyRDEVR1CInEU/7dv39/jyeznprnPB5Pt/uYMWNGj591d9+HsWPHMm3atC5nnXdFX75fyXx+MvYjpaSxsbHTvhobG+0wWWNjo71Nf49579695Ofns2rVKlatWgWA0+nE7XazdetW1qxZw9ixY/nnf/5n9u7dSygUQkrJmTNnME2TM2fO2P1E69evxzRNnE4n2dnZfOtb38IwDL773e8ipbQbI8+dO8f9999PeXk5c+fOBfp+fkgmzz33HP/6r/+KEIJXX30VIQQrVqwIVyKOGtXr/ZWXl2NEftNSStra2giFQpimSUVFxYC+XzFQq6+IQfi2lHJe5PY6ACnlxqhtjgC3SSlPRG7/DbheSnmmq/3OmDFDvvXWW12+7v79+7n55pt7fbwOh8NejVkS3ImwcuXKLnsX5s+f36nk9+677yYvLw+Px4PD4QhLwzudSFWNH1GSEoRASEl6MEjGqRpuGjqUtt/9DiUjk+bmZtv4paenE3z7LZAgTRPh86GHQqihEMJK5AeDoIUl5dWRIwkGg2gtLZimiTZ0KObZs5xobcUlBB9H/h9XOzQ+CIWvZyiCJtNAUyPVAAAgAElEQVQkI8oj8grBm1HTCqsNncebmti/f3/CPQZCCHuin/WdjDcBMJrs7OweDXh334drrrmG999/v1efN8R6q30JfXb8zfU1fGr9v/pK9P+3p3319zyhKApCCB577DGWL1/O9u3bbUMydepUewLi2rVrueeeezBNE4/Hg67rhEIhHA4HmqbR1taGoihcffXVlJeX8/DDD7Nnzx4qKirs/KKUkmAwyIEDB7jzzjtRVdXWsOvr+SGZqKpKe3t7TANzKBTC7XYnPF45mmnTpuH3+ykpKbF/b2VlZSxcuNDuQevtdEkhxNtSyhk9bTeQIaw3gUlCiPFCCCfhJPkLHbY5DswFEEIUAG4gMcGnJBPtyvfmZJIUIqsH4Lw3ErkthEAoCkLT0EaPpmnUSF53u/jrdTN4a9pUDs/4u5i/H37xi51CWF1hNjWh+P2dyn57WgVlKAoZQmGYosZV/l3g8fZ6dns8Nduefkx1dXW9eo2OvP/++0DvPu/LSderLyer/jB27FjWr19v96BY+RdrEmNlZSXLly+3k+Eej4eXXnqJYDDISy+9ZA/0Kigo4B//8R8B+PGPf8wPfvADHn30USCsGQb0SRplIIlOcKuqyne+852Yx/vT3FhRUcHtt9/OvHnzUBSFqVOn8sMf/pDa2lpWr149oKW9A2ZApJQ68ADwElBBuNrqiBDiP4QQVvZ0FbBMCPEuUArcIy9QQDq6p6AvlS7JIJE3bjgceBoa8DQ04G1oIP3MGbyR696GBtoyMzvvt2MOJMrAmD5f3LLfESNG2DLx1hTCaFxRZcDxmhKNOKWmvaWr2SoXkimJVMJdwrjdbvLz81EUhfz8fPuE3F+klBw7dsyeqhgIBOxFm5X4T0tLo7W1tcuhZdbtDRs2sHPnToQQNDU1MW/ePLsB1VoMWDmQwWqS7I6OigAej4eNGzfyrW99Kymy+aNHj+bXv/41RUVFFBQU8MEHH/DCCy+Qnp7O9773PduYLl68mK9//etJzQ8N6JlSSvlbKeVkKeUEKWVx5L5/l1K+ELleLqW8UUo5XUp5rZTy5YE8nu6ILlXszYq0t/Hzuro6W3/L6kqXmtZ5ZRu5LcGeEwHhTnTPvHmcmzSJmquv4vTVV1ETdakbm8eh22+j8os3ERdTxpT5RnsgZlNT3MFV4eOJvekVgmxFIVuJ35QYTKA0OtpQxxvI1JecVF+IZyCjOfX9jWzZsgVN0zhy5EjMY5dbM2N7ezvHjh3DNE2OHTtGe3v7gL+mZTDq6+vRNM2u+jIMgyVLluByuViyZIntMVllsVJKO/av6zpCCNtAWUn5zZs343K5cLvdCCG49dZbB71Sq6ioCFVVKSkpIRAI8O1vf5v09HQ2bdqUNNl8IQRz587l0KFD/OEPfwAgIyPDfry0tJSdO3cSDAaT6pFc0Z3o0WzdunVQXmfPnj0cPXqUmpoa6urqwtUzEX0siDJeVgiL8Jejo1eku9042ttxtAdwtLfjaWrG0d6OFgx26YkA3XogSkZGl3NHZn9pdowRUSFGoNHyRiyPREZG+HZHtKGOF8IaLKKTyfHwOp2sXLmSZcuWdTL07e3tnYzI5WZUBhqrkVFVVdsryc3NRdf1GJVhXdftyruDBw/az7c+E2uio8PhIC0tja1bt9qjhL///e/j9/u599572b59+6AakaqqKp577rkYLaznn38+XMafBNn8kydPsmnTpphGxDFjxsSoLBcXF/PAAw8wZcqUpDYbpgxIHOLJQlxsqMOGoU2YgJKdHfOXSLiqu070njwQxe9Hxqn9n/2l2UyfPp3JkybHNCJe6vTkcYYMg7KyMl588cW4Bu6ZZ55h6tSpKEIwdepUu84/US6nvEpfiLd4WLBggV1NBOEkc1tbGwsWLKC0tJQnn3yy0/Mh/Fmmp6cjhMDn89mPrVy5Eq/Xy8KFC9m0aRNPP/30YLy1QaGgoIAPP/ww5r7rrrsORVEYP348qqpy5MgRNm7cGBMmS4Zg44Uu470o+eY3v8nGjRtZt24d27ZtS/r+6+rqyMvLs0NZ0SEs+2QSFcIiUp6XCAGPh5rx4wk5HLzzpS+iG+GZ60IJr/I852q56vW/IE0TNSMDPRhEkdK+bQYCmD4fahI8geznf8kTWV2Hh6oNnS2DFKbqD8MfXkvBlCnceOONnZobrfi2z+cDzms2+Xy+uA148brfO6oTXGnEk2HZuXMnUko0TUPXdfvvzp07Y07+Pp8P0zRpa2uz72tqarKv67reKTm9fPlyuwJsMMjNzWXhwoVkZWXx6aefMnz4cJqbm8PD5VS11xVSHSksLGTTpk1s2rTJrnBbs2aN7QlLKXE4HJ1GKiRDlfjiXWJfIGbOnElJSQlZWVmUlJQwc+bMbrfvSpm3O6yhVFYoyxa5i8p19BTC6gpTUXEEwqEsT0MDvrp6vA2N3SbZu/JALJFG+hgH973917hz2aOrtQZTtLGv3POFL7BkyRJ27drVSdajqKio0w8zFArh9/vtqiELj8djx/ujKS0tvSgLBi4kdXV1CCHskJaV46irq7PzHBA22O3t7QwdOtS+T9d1OwcCnY329u3bBzXMuGDBApqammhvb0cIQUtLC62trXg8noSmSPZEWVkZa9eu5Qc/+AE+n49Vq1bZHtgnn3yCaZo8++yzeL1e1q9fn9R59ykD0oHy8nJefPFFgsEgL7744qDoySQVTUU4XUiHAzU7G9PrRTocCI8H4fGAiPORR+dAukA/cQL9xImYsbpdLZqt1bQSaLcrs6LLfqPLfy3RxovZkJS88QarVq1izpw5nXJl0SWiHb1Et9vNvn37eOu++9m3bx9utzvuAK0HHniA1gRyRlcaPY3fjb6/trY25r709HRKSkqYMWMGr776anjeTGsrv/jFL1i7dm1S9L0SpaysjHXr1pGTkwOcz5tZBgXCw9USHeXbkYqKCq666iocDgf79u2zpX5qa2tto7Ro0SKmTp3KsWPHcDqdzJ07l0mTJvVbWDJlQKLw+Xw0NzfzT//0T7jdbv7pn/5pQCuBrPnqVpMVEU8jWqE3ugorkZOMKQTN6Wm0ezyczMnhTO4YTn9mPKfy8jiVl0fjiBHd70DTMH0+hM9nq/zidqPl5aHl5aEOP68dlZGR2cmICEUwfPjwTruNLvuNTrZfiDkkfaWsrCzuKlEIQUlJCWc3baakpMQ+KZimyZIlS/jC9m0sWbIE0zTjyrPU1dWxcOFCpk6dOuDv4Uog2kg/+OCDAHb/yU9/+lOWL18+aEUzED7BP/LII7YWlmEYZGVloeu6rTQM4cVIX0psCwoK+Pd///cYRd6xY8eSkZFhl+3m5OSwb98+RowYgd/v5/HHH2ffvn39LiZIGZAonn76adxuN/X19ZimSX19fdLq4ONhhbLa2trsVYOtj6Xr4fAV50NYPc5aB2SkUUmoCq70dFy6jmaaOFUFp6pg9MV1b2+P8UCU+vpwuW8gQIbLjdfhYPjwYYwbN46xeWN7v/9LhFAoxNe//vVO9/e0Uk4kf/XKK6+wdetWajdttkUDU/QNKwzs9/t58MEHyc3Npb29HSklL7/88qAaDzgvdmg1EgIMHTrUlnK56667YsqlexvS2rBhA8eOHbO79svKyjh37hwtLS0EAgGam5tpamqyZ8JY3tnXvva1fhcTpAxIFIsWLaKkpCRcURPp6LTmEPSF3uZHLEMhFCU82pbOHkh0/LfL/WgamCYy0A6mGT7Z60b4QlgrK2FxRujkgZhDhtjVXj1WfHWDV4hOg6ySIdI4kMT7/1uexrC1RbanAZ3FIK1kcDyamppYsmQJwx9eG+59iJxopsQZHgV0kkZPcR7r93Ls2DEaGho4e/bsBe0DsZLclmgkwJEjR5gxY4Y98tr6XnWcfZIIixYtIjs7my9/+cs4nU5uv/12HA4HixYtwuVykZ6ejq7rZGRkkJGRYfeBvPrqqwmdT7rj4o8bDDKLFi3qFBe88847k7Z/p9NpjxntiPXFNwEHYT0rRdPCWlhC4PV6OyVs4xFyudAVhZbMTExNw+R8SbIuJYe++hVcDY1MeecQIhQKG5Q4sfmusD2QCMIwUFvbMCN6Weg6IgHpeRVojXSxo0CVYXCD02nrbF3ndHYKbV3Iyq3c3NxOshi5ubmdBB+t/3Vra6sd525vb+82BGk18AH2X4BVc+fyw/fes2VXIGw83nvvvX6+myuH6JNkKBTiqaeeAgav96usrIz58+ezfv16u/rLElK0qvcsPTa3201BQQH33HMPGzdu7G63NqWlpaiqis/nIzMzkxMnTlBXV8dvfvMbe4CWoijMmDHDzsUVFBQwYcKETvNYekvKA0mAZMpXxDMeoVDIPulYEwxlJCdiGkavSzyj5RxU08TpcODIysKRlYWiqqRJaB02DMfEiei5uYiMDMwE50gAcT0Qw+tBychAychARH4UfSFDUTrNaY++XMhcSTxNpc2bN2MYRrjhjfB8csMw0DSNWbNmhcOhUlJfX8+sWbNwOp2d9hEvsW6xdvduZs+eHdNnsm7dumS+rSsOKaVtRAaD8vJy3n33Xbs4xzoGICZfBtjeQW96iYqLi/nGN76Bw+GwxSRVVaWlpcXugpdSsm/fPoYMGUJdXR1f+tKXeOWVV/rduJvyQBJgw4YNLF68OKn7jA5vnTt3zpanDgaDOBwOlGhxRyFs5c5AIMDJkyftcJZUBKK5+fzfOF+IICAjMVZDCE6NHk1QVXgr4tGobW24WlqY+m4vVrU9eCAyFASXi9mzZ/PHP/6xF/+Z8wxTFOZ1yEF5hbB7S6qN7ueFXEh0XeeNN95g06ZN3PhhJa9eNZm1a9fGTaJbEh3Wj9/tdtsx8aBhsG3bNn7/+99zzZtv8d51M1i6dCmAvbKM1whpzRi3VGivdIYMGUJ9fT1paWn27JTBwul0MmvWLFasWGE37o0bN47jx4/HnPANw8DlcjFu3Di7TyQRKioqkFKya9cuW433/vvvZ9u2bTQ1NXHVVVfZr9vQ0EBWVhYul4sbb7yR7pTNEyFlQC4SLDfbqshSHA5k5MQSDIXslavL5WL06NEEg0GcTidGYxNqerr9N16YREb1kUgh0ALtSFXD29BAqLUV1dDxZ2QgA4HEQ1mWBwLIYBDD68HpCYetZCAQDmFFmrtmz55N6OhRjtfU9Op/ki6UmAFYAA4BUyPG9Dqnk8bHHidzzepe7TeZFBUVdVK1tW5/5jOfYfXq1bZU+qRJk7oMGUQbguiEalPk+q9+9Sv+Ln+8LUGxYsUKFi1aREFBAQsWLGD37t1UlJdTMGWKffvw4cOMHTs2ZUQ4r7eV6MCtZBIMBvn5z38ec5/1PQgEAuHfcZSsvhXCTDTyUFBQQHl5OQ888AAffPABBQUFnDlzBrfbTVNTk91Y6XK50HWdZ555htzcXJYuXdplOD1RUiGsBIjWixnZRVKzv5w4cQLDMGhpaSEYDNIWDGL4/Rh+Py0tLTGzA/qDKQQtOTm0ZWbaAoynr7qaurFjeXfBV6ksvDmxHUXNWRe6HvZAmpowm5qQfj9mQ0Onpwwf3rvxsYogbulvslV/+0NVVRWtra0x3dSWEbfkyQ/cey/Lly+nsrKyy6RlT3IqTz75JJmrV+F2u3n++eftFWV0gra6+PsxU/0gPHdcSsm7D6zoskz4Sigftn4/3YULB5p4zcDRIU3r2EaMGNGr5uHCwkKklMyePdtuoDx79iyBQIARI0YQDAZtZWXDMLjrrrtYsWIFixcv7nd4PuWBJID1Y/V4PL2eQNgfGk2TzC6+RN2FsHo6GWmqih4M4ggF0drakaaBaYQ9khafFxEMInrKifTCA4lm3LjwGN1gMIjW2EhznG0Gg8bHHk+qzIq1goz2RnJzc9m+fTvbIh5Ibm4u1X00eFZYa8iQIWzfvt1WELa6kEtKSlgT8UDWrl3L7t27O+2joqLCDpE2bXmCjFUr7UFGlztW8clgz0CB8/mOnn6X1nZ1dXU4nc6EK6TKysoYP34827Zts6WXrNCYpmm43W5Gjx7dqVT4Jz/5Cf/5n//Zl7dkk/JAEsDSi4kWd0sWiZb6njkTO6TR6/WSnp6Oz5QxfxNZuYj0dITTaYswKunpmC4X2sSJKF4vem4uWl5en9+Thdrit/tHpN8f46Uofj/oOtoFWhEa1dWdEvTJTtZXVVXFCAVG3+4t1up0zZo1CCFoiHh4FRUVvPHGG5SXl2NKSXl5OW+88UZckbyCggIWLlyI2+22vZmFCxfa3++uVucXctV+JWEZmFAo1Kvy2iNHjvDpp5/GyLdb37Pq6mpM06Sqqipmn9XV1UmR6k8ZkASIHst67733DshrWNo/DocDRVFwOp3hqgpNiyuE1hXRHkgwGCQUKeO1OmDt+yMnoSZF0OzxEHC5OCFNarOzOTJtKkdyx2A2NaL4/QhH58qhZJHt8eBLoOR3oLjB6WSe293pEt2XcjH0o1jCjKtXr2b69On2Z+zxePjDH/7A8uXLOf7d77F8+XL+8Ic/2DpclsT39Ce3Ul5ezu7du1myZAnHv/s9lixZwu7duxkzZgwQX9RRCDH4EzqvIJIlounz+ZgzZ05CGl9CCMaMGYOqqn2WT7FIGZAEiJ5q9tOf/nRAXmPPnj0Eg0FqamrsPEhNTQ1/O3WKmpqaTlo/XRHtgTidThy6jgL2KE2InCis+wAtPR1N0/Dm5+NwOtGcToKTJ+G57Tbar58ZI1/SG4w0n92A2B3XjhjJtFGjWbZsGdOnT+80vGog6TieN96Y3ltdXY8Ftog3EKs3JPq8xx9/nEOHDtm3/X4/brebF198kXH/+1u8+OKLuN1u/H4/K1as4Ec/+hFDhgxBiZo1v2vXLvL//X/zpz/9iTvvvNOuknM6nSxevDimZHjx4sVxS497ywMPPNDvfVyOJKsaTNd19uzZw3e/+11++9vfJvSallfcH1IGJAEqKiqYMmUKGzZsGNCEo67reL1e2wsZOXIkHq8Xb+TSECcxnQyiPZI2p5O67CGckZKDhs6HLhflkyZiNjViNjUi0rsWXOwO4fPF9IqYPh9omq25FW2kOg6vGmi60umykvVepeeD6e9ArJ6eFz01seO2mqbF9KFY5Z/bt2/H6/Xidrvt53i9Xpqamqh/7HEOHz7MT37yk5gxs7t27YpJyO/atavf3coAs2bNSoXCBpC2tjYMw6CoqIh/+Id/SOg5yQjHp5LoCWCVSu7cuZMdO3YwZ86cAXmdpqYmDh06xOTJk8nJyeHcuXMxI3MPHTpk96O8//7750sSPz7KWIeD8bljOoWwZCSEJbtJHkZ7JHi9eE2JMXwYQ/PzOfGXNwlkZeKZMNHevvVXv076e+/I7C/NJvj2W6jB0KAkPjOEQIvyAhRgQuRE7In0nlzILnirDPXhhx8mPT09RuQzEAgwZswYPj12jDFjxtiJel3XO+XDDMOI6UWJljZ3uVzMmDEj3DEdCOByuZg5c2a/ewUg7IFIKdmyZQuLA0F2upxdzuToapZKiviIKO8yUXpSRkiUlAeSABs2bGDnzp0sXrx4QFzx3s5V37hxY6e4tJSSAwcOJBTC6o5QKESTEp5ZcOzYMZoUwbn0dA4aOgcNnUPtbVBfD9LS2NJ7p6sVja7bc0eMM2dxvn8Y48xZO/GOYcRV9h0INCHsEb0dx/TqXHjFYCvENXnyZO64446YWHcoFKK2thYJ1NbWxqwsDcOgpKSEN++7nwULFtjeRGswyBNPPBEjbR4MBjl48CBZWVkIICsri4MHD/a7VwDCOb5ly5aFJwNGRgRv3ry503Y+n++C9GpcyvTF663pZU9WV6Q8kASwtLGKi4v54IMPBux1WltbycnJscNYXq+Xa6+9NqYRTNO0uD/oKl23hRf7g5QSFTAjiXzV8kauuw6A5uZm/IfeI+vdQwirbLe1FSWkI5XwyUkkqvgbFcIymxoJfnYa7tOnYzZR/H5G+Xz4I+W+0V/YcWPH9eu9doULUIUgO2IYNQHz3G67C/5CNC8uXLjQDi+tXbuW5cuX249ZQ4og3CgXvSL1+/1xPeZR69fhcrlipM1VVcXlcuHxeBBC4PF48Hq9SQlhQXj2/LRp08INj8+U8OUvfxkI96FYTZD9HXCUIjG6UjDoLSkDkiDRIosDNX60srKSvXv3Mn/+fCZPnmx7JtGlvnfffXfc51pmI3r12VUIq79fnIYvfZHs6iq0UaMBaKuuJuR24cuJmgp36mSf9q0OH4aSEZ6aGDxzGtPnw+l0ovv91Dc0oBoGXq+XcePGkjVA/QuKEEjCngiE3fRowccL0bz4/PPPA+G5Fh3nWQghePzxx+3Q0Jo1a3pcSDQ+voWMVStj7tN1HafTGS79lJLq6mocDkdc+ZXeoqoqu3btijnO1avDRnjr1q2dZFqsnpno92FVD/U38ZsiZUAuK/oyFrc72tvbcbvdOJ3OcGe4pqFEVWApihKWeU+Q1tZWW14hFAqhaCqNs2fbw6S07CGMe+ttzKhueeH1xW0k7Ctenw/N4UAEg+RG+hbMpsZ+7fORRx7h9U2b+vz8ZDcjdof1Yw8EAvzmN7+JMSAej4etW7ey+tgxxuXn4/F47ByCpmnk5uZy/NNPGRvRXzJNkyFrVlPwTEmnWdxtbW2MGDGCM6dPk5OTw+kOHmFfyczMpL6+ns2bN7P69GmGjxhhz+q+/fbbCURyLrfffrut/DBixAh27txpG5dk69FdySRjUQApA9IvrFBBX5JYfSUtLY2cnBw7Bp6RkWFr3UBs1+upU6fw6Dqa04mIUvyNSbInUOdvCT1ajNINzDSf7SmccbpoaG5mZCTMBeERuG19FFG0MQwUvx8z0vCkGAYYRjg/Qrjj3dHPorjp06djnDlLS4dGzYQOL9KM2BW5ScyZqKrK+Mwshl99FQcPHmTs2LEcP34cCH8+8aqwIPwdjScTHz2LG86HaX0+X8xJ+4477khKTqKhoYGvfOUrvPTSS8jIbQgvSKIT65bgpKIozJkzh7lz59q/sblz57Jv3z40TUvaCTBF/0gl0ftBf0s3+8J1113Hs88+y9GjRzl06BA1NTUcOnTIvlghrGAweF46Wtdj9JoURUEhnGR3SmnfTpTTqkJ1ejpVmkqVptKUlcmnBVfzutvF624X7zmTo9uVCKEjRwbttS4khmFwtO4cjY2NTJo0yc6LZWdnxygkhEIh2trayM7Otm/Hwxq/27GZzOVyxQzHSqQxLREKCgrIyMhg4sSJKEIwcWK4qm/IkCExifVly5YhhCArK4tXXnnFLqIYPnw4r7zyCllZWQOmR3clkawwfMoDuUSpq6uzE+45OTnk5eVx4sSJsDFQFHuF1miaZEee09ramtBY3J4ICYFL02yJeBkK4TlXhyey8m1xOFAj3c39QlUxfT60iPejB4OIYNBuTDSbGnFcZEKA0QOxoqXno4lOwvc2DOb3+zuV8ML5mLb1NzrxnZ+fz5M33cT8//t/7fuGri3C5XIxb948XnjhBSBsPG677TYOHTqEEAKfz8eNN97IL3/5y778K2IoLCzkRz/6EcOGDUNKaTfGWiNYrzEMysrKePHFF5FS0tjYiBCCoqKimNxOY2PjgPVDXUkka9GbMiCXKHv27AFg/vz5duJ97969TJw4EZfL1W2TUFchrGAwmHBirTUz87yAYGsrLVen0R5ZLYZCISonTmTozp19fn8DTejIEYwTVRhnziL9fhxCYBU596fdzRqIBdhJ945EJ+F7GwaLDkNB2KBYsyQg/NmqqmrnQFRV5dixY8zv8DyrTNf6HgEsW7bMPsmbkZN8aWkp999/f09vu0d2796Nx+OxJVasv4ZhhOdkRKqwbrzxRk6dOkUgEKCoqChGJHL16tVs3rw57mTIFBeGVAjrIiLZyXSLYIfVRlchLKfTmbCEtGEYdm+JArgiM0ssDa+WlhZMl9vuYJehIKI9gAyELyIY7NUY3WTjmDoV16wbUIcPQ/h86FHd6AYwmJqtXelxRWtydafH1dU8kniPWUjg9OnTMStRq1vcSpyfPn0aVVWZNWtWP95dmKqqKr761a/i8/ls7+bzn/88bW1t1NbWxhgsqy9l6NChHD582O6aHzp0aA+vkmKwSRmQAWLEiBExfweLQCCAFhFgdDgcpKWl2WEtK7xhzV0PBoMEIx6Idds0TYJCJEXmIJg/Ds9tt+G57Ta0MWNoH5qDY+LE86N0+zH6NllYHohHVfEoCq6IJ6ISljhxCYE2wLoq0WN8O16ssb79aWL0eDwocWLeHRcLDzzwAKZpsmXLFk59fyNbtmzBNM2kNc/+z//8D5WVlZhSUllZac95r6urs//6fD5mzZpFdnY2Dz/8MCNHjiRz9SpGjhzJww8/THZ2NtXV1aR3Y1AXLFhA7abN7Nu3LynHnaJrUgakH3QnoBe9iust/fFETpw4QV1dHTU1NbYwY1tbGy0tLbS0tNgVLt15IM5IeWV3hEIh2tvbaW9vJyQEAYeDhoYGGhoaaGlpCXdE5+TYXeWm34/qb7U9EsXvD3slSUrS9hXLA5GahjM9nWCUBxLdiX4p09bWhtnBCxXA2LFjYyq26urqmDlzJuvXr2fU+nWsX7+emTNn2if4/iCEIBAIxMxNiS74aHx8C8FgkN/85jcUFxezePFiTNOM+R2ZpmmLO95xxx1xlRXuvPNOPvroIxyqSmFhYZff42QVB1zppHIg/eBCVGENBB1zIEEhkKEQzZFBVfFKJq05zhCW/XCGQnavCYTrzCsLb+ZcTg4AoYkTaK6uxhcRBQw0NJLRUM+Uj472S6QxGUi/H6HrICUZbjdGJAHtiiwMBjPQlquq9utCeIRvdBd8snpLJOenYEZz8OBB+3ogEIi53a/X6zBUqatc20033URFRQWNjY1kZmYyZMgQu4elvr6e3bt3EwgE2Llzp73PYT4ftX4/Epg7dy6lpaX2/vx+f4X/M7kAACAASURBVCc1YZfLlZRZGClSHsigEO2h9HeEZE/U1dXhcrlsBd+0tLSYkJZpmvj9fvyBAJ9++imNDY1deiDWoKroVWpvCIVCpKenk56eTvb110NmJkPnzGHonDmYubkE8vPtEJf7xv7H2fuK5YHgcoHLhVDVC+aBRCsDuwA3IkZefoHHa88paXzs8YT22ZUG2oWYztcTBw4coKCggKqqKp5//nk++eQT6h97nE8++YTnn3+eqqoq+/tovS+P04kn4mmsW7fOHpBl7W/q1Knhyq7Ht1BWVjboxqOvv59LgZQB6QfWKNCOI0EzMzPJz89HCEF+fj45kVU4EHdSXDLZs2eP3SNy6NAhWlpaYkJaHXWNGk0Dv9+f9EmLlxoiesa7aXbKgeSq4Tkhg4kmhC3qaMnLWzmR3kiq9NZQ9He2SXdYeZfo/EtZWRmhSBnv0qVLbT2sffv2MW3aNIasWc20adPsnIau60gpKSoqIt3lorqhgdbI9/f06dMsWLAg7v4uFKFQ6LI1IpfnuxoEFEWxVzLt7e12gtrlcpGXl8dHH32ElJJTp04xY8YMmpub0TQtYZnq3ir09puI9lFWVlbcEJbVe2AYBsmKHiteL/rRj+3bouIDzOj/jxi89Y3UNEQk1CF1HVVRaIk0YjpFuBw3QxE88sgjdif85cpAhmbjhbCipUyWLVvGokWLeOCBB3jsscfYvHmz3QdSVFREdnY2dXV1pKens3HjxrivsW3bNjbW11MwZQrFxcUxUi0XCmuB1rTlCf76d5/nwQcftIsILmVSBqSPSCkZOXIkZ86cYfjw4Xayb/bs2bz88svcd999bNy4kXXr1rFt2zZuvfVW9u3blzQRs2QTlBJd1wmFQnhVFTMSwjIam9A1za56CQaDGAkawUAgENO30OLz2bf9iqB9SA4fz5zJdREJlIqtTzKyvd1eWeufforw++0TmQiFkD0k95OBMM1wPsTpRCgKUte58TN5yECAwMHX+q3BlSyChw8PmhZXsogn/zNq1CiOf/opo0aNYteuXcyaNQuv14thGGzdupU1kRxIWlqa3QjbVWJ/5MiRnD59ejDnkfWJ9957DwgblMzV8eeiXAr0yoAIIeYCXuB3UsoeYx5CiNuA/ySch/yplPLRONssBL5NOK/3rpTyklBM0zTNnvTmdrvRNI1QKER1dTWTJ09m+/btbNu2DSEEM2bMoLq6ut/6Pbm5uQltZ3WpAzgcDrtpyzru6E71jkgpaWpqIi2qY72jB9JRP6urdWpHDa10vx9H5HZ75Ng66ixFy6Sf+stfaDclnkhXe/sgnQylooQNh9OJUFWQ0pacd826IcYDeeSRR/jOd74zKMfV6ThbW7tsQrzB6eQ6p7PL8t9qQ+eHra2DngeJ591Ea3VZ0ionT57kZz/7GZsiYpc+n4//+I//4J577iErK6vL/VtzLs5u2myr+x48eJCysjIqyssZO24c3//+9wfdKyktLaW4uDjuMXQ1QMt3EZS590TCBkQIsQVoJFx0cx/Q7dxEIYQKPAXcAlQBbwohXpBSlkdtMwlYB9wopawXQgzO9KAkEAqFaGwMr0QbGxttF7W8vBxN02J+KIcPH+71TAWruzya6AR8dPdxNGPGjInpLl65ciVer9eeo33ttdeSkZHRbc6jQdfxnz7Nu+++y00TJqLF8UBCinK+CiuBk1BzczMhnw/FEtETAr2lxZaySEtL63EfFxtWN/vDt9wKhN+j+/RpuzS5JiJ2GM1ghcAyFMXOl8QjV9UuyiS6YRhUVVUxdepUcnNzOXz4ME1bniBj1UrKysooKCjgSA/6Z0IIu4x38eLFbN68mZdeeolr3nyL5xyanRMZLCNSWlrKhg0b2LFjh30MDz30UNhQVldTMGUKR48ejTlHXCqDtbo0IBGD8V0ppSU8MxZYGLmeSPDuC8BRKeXfIvv7b+CrQHnUNsuAp6SU9QBSyt5Lol4Apk6disfj4e2330ZKSUNDAzNmzKCtrY3y8nJCoVCnEFYyEpJ/jFK37erHH2/SmDWoCsIljJqm4XK5YnSUuvJIPv30GFlRVS19xTAMVNO0S30VKTEVxa72am5uxtnhOcLrQ6mttUNG4mwtwufDlGHv50KW/kK4m93S5QI4d/IkPmnaKsWjMzN45LbbKC8vH/Dqu56I1uiCzjpdiVZ09ZeOml0Ad9xxBz/4/N/xb39929bl2rBhA0uXLg2fdKMS4laPSHdEeze//vWv0XWdwsJCmv76Dp/73OfYsWMHK1asGDQDUlxczI4dO+xjqKurQ9M0NE3jzKObbE+puLiYL5881WlOS0989rOfvWD5lO48kF8B/y2E+C1hT+I5oAxwA08nsO8xQPRSqwqY2WGbyQBCiFcJh7m+LaX8XccdCSG+AXwDwp3d+/fv7/JFW1paun08GfzjP/4jO3bsYMuWLfaH99hjj7F06VKOHDmC2+1m0qRJvPnmm0yaNAmPx0NbZDZGf6TfA4EA+/fv7zQTO5p4+7YGVUF4IFVeXh4ej4dz584B4bhxVx7Jif+fvTePj6q82//f9yyZJJOEbECAhMUCEhZFiysUCaJoRYut0obwVASLy0/sU5VF4vJziSKPWmtoUawIPtVotRWhSoHSRAtu8CjFkFhQiQkJYcm+znp//5g5h3Mmk2SSzGSBXK/XvJI5633OzJzP/dmuy+lEVlWRn5/Peeedd7qT3fvynhS70Yjbq7EsvfkUt9utEt/Z7XbMbjd2b+GB0enE6e07KSoqwuFwEFNdrfvs4s8di3C5aPYaP6fTYzSbNFVtDoeDA534PgwuL8fhcmGtr8dktyPcblxeIyoA6b0+KSV4JwnGxgaOFxVhPnmSA3l56jEUNDY2EnG0FGn2zIOEw0HtB9uItts4XvS9up2xsUEd8+DyckxGE7g7XgXX3AG9FR1HF7Tg6Tr1l7+2mU8p/EU6joQEKm++qcPj1MJfEv3zzz9nzNatDNKwNgwZMoTzzz+f2bNn43A4MJvNXHfddQwZMiSg8xQVFVGZl0dhYSHDhw8nLy+P+KIi6s8dS3h4OIWFhSF/TigoLCzE5XKpY3hty3vce++9rFixgtKSEsTFF7F06VJWrVrFhDnXU9nBcb3wwgukpaV1enxduQ+tGhAp5R7gGiHEAmA78IKUckanz9T6+ccAM4Bk4CMhxCSN16OMZT2wHmDKlClyxozWh5GXl0db64OBGTNmMN5b4VFYWEhqairPPvss6enpPPHEE9xwww288sor6rq77rqLZ599VrmWgM+jDWMNHjyY6upqZsyYgdlsRgjhtzQwVAl6KSUHDhzg0ksvxdXURJ02hGW3E+ZyYfDmTVwuF2azmaamJjVeXV1djTAY1JJn6XDg8vHK6hMTiNTcH9vCW7B/+hlTl3qoNPZkrwVQ3weC1r4PlZvfw5SSQtPXX+NqbMJls2Hw3k+3zYZQ6F+MRqTTSWxsLG6DIHHkSJxGI6kzZqjHUFBWVkZ48jDVA3HX1hDnxwNxlpRwjndMx7OeZMCgQZSdOoXT6cTqLR0GMLfjtYZrcltdRaRBtEnqOOyii3CWlHBeCH5bites9Z6PHTvGnj17GDZsGMXff8+wYcPYs2cP8+bNa+0wOkxem82Iv23FYDCwYMECZsyYQe3/fUFlVBRSSlJTU0P+nFCQmpqK0WhUx3D06FHOP/98UlNTGTlyJOfNmMHUqVO5//771fcdRVc0UrpyH1qtkxRCmIQQ1wEngLnA+UKILUKI8wM8dimQonmf7F2mxVFgi5TSIaU8AhzCY1B6PdLT08nPz8flcpGfn69zh7du3Up2djbNzc1kZ2fz0ksvdfl8x48fV0nmKisrWblypfqF0YbHpk6d2uZxlEZDRXM9KSmpRaNha9AaP7fbjcvlwuVy4QYcXq12u92Ow+EIKOcjvTQqCgFjstOlNh5GR0eHNAZsHDZMpViRDjs4nadfUkKApJJdhXnCBIyDBjLi0ks56nLRICW1bje1bjcOKXH0cZaDzmL58uUtvGKHw8Hy5ctbbYzUQvlNREZGsn79erXX5Msvv+z23hAlHKeMYdCgQdx8883U1NSoPS6PPvqorgGyo3jttdcCui/BRlshrM3AJ3iqrjKklLcIIYYCjwkhpJTyV+0cey8wRggxCo/h+AXgG7zcDKQDrwohEvGEtL7rxHX0Glx99dXs2LGDWbNm6WK9V199NQUFBZSXl3d6pqCVMU1LS+Opp57y6oOPUH8wX3/9dZvH2Lp1K/Hx8SQkJHDo0CHGjh1LZGQkjd7wU6BiPQafJLrZ6cTgrbDSeiAdRVlZmSqEpcjn5ubmAnDCZMQcpAeqVo+j8d13cTXbVHJHqTAFu1wgJbKbjMmZis5I/x49epQBAwbolkkpO0TjbrVaycjIYNOmTSplfE9UYSnnUsZgjYqioaGBhx9+WKfEeMcdd3T5HI//5l7+c+J4C+6zUKEtAzJCSjlHCBEGfAogpSwDbhNCTG7vwFJKpxDibjzhLyOwQUp5UAjxGLBPSrnFu+5qIUQBHv66ZVLKii5eU49i4cKF5OXlqQ9Bt9tNeHg4Cxcu5OOPP+YPf/hDh47nj1gxOTmZW265BTitp7B3714SExMDmvlXVlaSkpKiClJZLBZVGlcJi7Vm5P79738DnpCa2+1ukxW1M7Db7S3kcy3ec1RLsAe5O3rAsvtxlZbSnPchET/4AQC2Awcwx8XhtNsxhYXhCnE1jOvESdw1tUw95xzqSkpahLBiDIY+3bDVWenf2tpatdKxqKioQ4UoimTv+vXrOXXqFCUlJWoTX3eFrrRIT08nPT2d2mef4/y12dxzzz06rZMVK1awefNmuHVUl85xXdkxgG7rLWlravWSEOIT4EPgOe0KKeX+QA4upfxASjlWSvkDKWWWd9nDXuOB9OBeKeV4KeUkKeWbnbyOXoOsrCxWr16NlFJ9ffDBB2RlZZGbm8sDDzzQ6WMrM/41a9ao4R2bzcayZcuw2+3Mnj1b9STawtatW9m/fz+bNm1i//79fPPNN6o0rkJ7oijGtTUWo9HoYXqlcyGs9tDY2MhRk0cQqaioiFqDoFEIcnNzyc3NZe/evV0+R2+AcdBATCkpmFJSCI+Lo9lo1IWwat1uGtQZZW9vkQsMWg0URfNE+7ovOrpFvrAj+UNFH76mpqZHQjttobi4mEceeUSndXLuuedy8OBBNaSlJYTsDALV9ekq2kqirwXWdssoziAUFhYyadIk3TKFYRTgyy+/JCsrq1PH1uYnwsPD1Uost9uN3W5ny5YtXHfddWopZKDQeiRab0SBP2/E5XKpy50GAxFNTVTU1ZGSktKlEJYWbrebMAlGr0didEtqDUL1elqrROsojMOGIez20+XCTqdH9Mrh8EwCuqH7XYFobmZwVBR1dXVquE7xQHyZevsy2lNubM0rCRTFjz/BU2WlrFu3DoCJEyf2mkZCo8nEvHnzOHz4MIUFBQx9/rfU19czcuRI9t15l1rWC53vVXG5XCHhMvNFf3C3k8jJyWHixIkYjUbdjCE1NbVFTbbCMJqamsru3bu7fO6srCyVh0sb4nI6nezcubPDx9N6JFpvRHlpjUlrsEuJ2+3m++9Pl6u6XC7q6uo8TYQOh85Lsft0s/ckBiy7H1tKisoMbI+OVkWvzKNH4+pGUTAZHo4hJoaIgQMJ81bb+eKyMAuz4uJwn6Ha4EoXva9XovVO2sPwhx7kxRdfJD4+HoCDBw/ilpKioiIWLVrU5Rl+R6A0EmZnZ3Ni9dNcfPHFbN68mcmTJ1Oa9SROp5Pa2lrmzJmjNkC+8sornZ5oKueMCGKVXmvoy6HVHoO2s3TatGns3r1bnTFkZmZy3333MXnyZN065cugbNcVtNWJ29VZfzBw6tQphgwZgtFoVL0Fl8uFqK9XE+3SZsPdTmjB6XRSaxAI74NSGgQOIVTqC4fDwd69e1UurTMOZjNGo5Fmux3hdKqEjt/GDuDOO++k4S9/YZDdzokTLftvwy3hNNv6puZFIF30gUBK6Zczq7m5WSVt7A4ozY9KEt1oMjF16lTeeecdct54A7eUrFy50sMg4c2BaKMWgUDr4Zw7aDB1ZhPvv/8+q1evZueOHSETJOg3IJ2AtrMUUGcMS5cuJT8/n4KCAs+XxdsH4ssIumDBgpDNvqdOncqePXs6vb82nAWQkpKiU29rampqd2YTLIoMKSVG8PBR4eXcklKXZO9sqe/evXt1+1ZfdglHXJ6QnD1tBjHAiA8/wi3dGBqbcEt3j3W+Dxk6FGmzMWDwYKzSzaXXXKOuu/POO1m3bp3OiAwaNIhzR41SCx7OJFwWFkaS0dhqVVdrBJJxcXFUV1VhjYqivr4+YFbsYKCgoIDi4mKam5txS4nb4WDfvn3YbDYMQqi/L63BUKIWgUCZ0M6fPx/XqVNqFdbbb7/N9u3bOfmzmxn013dCcm1tUZm02U8vpXyurfVnMgoLC5k2bZpumXbGcOWVV/L444+3un9sbGxQZEL9QSlzTExM9JsIDw8Pb1NQZ+vWrUgp1dDYnDlzSEhIULvWwcOn5YtaPwZRCWGBx1sQJhPCW52mEDL2lA5JfX29roIsLCERy2WXAlD61ls0DxyIffBgBqSOo7rwa2JSxwGeJkCjl9yxp+Gursb28ScsOt/zedTV1anX5Pjmm27XL+kOdNY7GTBggMeAWK00NTV1Kw+YwWCgrq5Ol8y32WwYDAZOPLWa39bWsHr1auLj43U6JoGGsBQP54033uCFG3/KZaNGMfG3z7F+/Xp+9KMfMStUF0bbHkhw6zPPICi5DC19QCAzBmWmEBMTE3QDojzwlRxERUWFX08hVGps/lzkQEJY7WmvhxpK34nLZMToDY1VjxqFNS6Omrk3MGjcOKrGjuGnd93VYl+lGVGBr55JqD0WQ2wslssvU99XlJVhGToU8BgQo9HIZWGe2e1Ag5EYcfpT6svJ+IEGA7N9RNwURArBfdHRLbyQpqYmJF4y0G4mkVTOt2TJEh4YOoyxWU94vBG3m0ErVzB8xAgMBgOnTp0iccVynS5KICgsLKS6uhqz2cxPXnqRcwcN5saf3si6detYtWoVV0y+kK133Mn1L65rsW9XNV/aqsLqGY7qPgAt0Zu/PEdrUEJfs2aFck7ggZRSx7/VFWjp4QHi4+MRQqilgoGE49ryQOrq6nqMGVbpO3Fpqr0sXu4lo4To6GhOtHL/tNTz4NEzGfjttzp6k56CcdBABg8ayLuFhdTW1hJjEDourBhD3zUgZqG/Fh0M+KWwV/R6qqqqQjm0VjF06FCPxIOibePlxJNSUu9lpVbgdrvZtGkTl19+eUBGZOjQoRw9epQRI0Z4+l/sNnJycoiLi6OoqIiUoiLOHZzEG2+8ofaidJSwsTW0mwMRQoQDi4EJeIgUAZBSLgrKCPogdJ2lreQ5/EEJfQVCSR1MdHWWoaWHB3jwwQeJj48POGH/2WefERsb6/mR1NRgMpkYGhOjeiDR0dGexsua9qu9+tEx/OY3vwGg/M23OHDkSA+PJnhoraTZLFr3QnoSZWVlah5Gcvo3Wf3Ms4x6MkudkB19/AlVffHuu+8OyIAovV+1tbUIIWh2OqmprycqKooJEyaQe24qlssvIyYERQOBJNH/F/gamA08BmQAoRX27gNQOks7AiX0pSS82stHBAPdLo3rg88++6zFNSpli2HeEsueRl1dHU5NtZfdbMZVX48weCq+mjvgwfmGtQCs3x3Bqcm39EQOxVxby/jYWGq9D1WLEGp4a9jQoX2uJNgiBDa/EyNBo5StCmn1JPx5Pw6Xi8rKSpVOaFjmKlLHj2fevHkBlxpXVlYSERFBXV0dbimxGI1ERkZSV1fn4fx656/BvhQVgdzl0VLKm4UQP5FSbhJCvAH8K2QjOoOhhL4UPYNQG4/W4I/FtyNobGwkMTFRzV9otUVA33jY2jVWO53EORw0NTWp4lgnjEYaGxvVY4VCk9sfXC6XrtrL4nAgDQYMQFhYGB2Zx/qGtQA+efwJJj30YFDG2lk4YmIYOHw4NYcPU1Z+jGgJn7uc/PDCC5nw4x9T98orqkHxh94k5esPMUJgEgIDYDYaW+id9EZ5X4DEFcsBz+9E20j4i1/8okPHefTRRykuLubldS9SUl2tJuyXL1/uKaz56zskP/9b1qxZw3VBHH8gTxIlOFcthJgIlAN9RjmwN0HxWG699dYeHceKFSvaJV1sC4cOHSIuLk6dUflWaQGMHDmy3eO4XC6am5v56quvmDJlCoNqanFFRqpluoHQsvR1GIcNw/b556cXNDcjzWaEw+EhcwwyDcfoMWMYPWYMDeXlXPrTG9XlhthYPmmDqPBqHynf3gaTEDjxPNAckhaVWl3tbA8Vih9/guEPPYjb7aa8vFxNqgfSvKtFZmamLo+i5BRLS08ToJeVlXH77bfz/A03EKz8QyCd6OuFEHHAQ8AWPIqCTwfp/Gcd0tPTcTgc3ZJIB/9kjNB1L8RmsxEZGUlkZCRms5mkpCT1fWRkZIeOr/3iNzY2qt3rUkrsQui6150hqh6y45kFNjc3YzObsdvt2ISguroap5d/KxTcWwOW3Y/l4ovVLnhXTIzaBS9iYnB3o9TvI4880qHlHcHFPdDs2R7fVnepMCrwx081XOOZKn0iSs9IoLBara2Ww/t68XV1dSx+/fWg8G1BYB7Iq1JKFx5SxXO6fMZ+kJqayjfffMPcuXM9DJzdiFmzZvHMM89w9dUeHW9forlASdhKSkpUr2Ps2LGAPt8yc+bMDnFVHThwgE1feiRHY2NjGT16NI2NjYS53QhN6W+oarWkpqpMSokUAouUCKMRAW2qQHYV2ryJwsklTp5COuwIPNU6wtJ6eCmYUIxFWVkZQ70lwV2F4+BBZsbGMXjIUCqqKpFuySDj6bLiUJUUt8e35Sr1lScKLQJtHna73R2agAXqqWvPn52d3WW+LQjMgBwRQvwdeAv4p+yuwPQZDCWJvn79enbu3NmtXbGXXHIJ//jHP9T3w4cPZ8KECR0qyQV9aW9kZCQxMTG6MFZUB2fOytdKSqm63VFRUdiF0JX+Sk6TKLpcLl15cbDgMhiQLhc2IaC5GTeosru5ublERUUFlT5Fmzc5Ofta4q++ilOffU5kVSU2YSBCScD3whh+IFC04+OHDuHCkSMpKysj5h+7KNYoEGrzL8FqgDSZTGDvmUZVBZ3RQhk8eLBadhwIpE9pcCDQsmeE2oCMA+YA/x+wQQixFXhTStl1VsCzFOnp6SxfvpwlS5Z0q/EAePrpp0lKSuLyyy9n69atHDlyhMLCQkaNal2HwGw2t3CRtaW9c+bMYezYsWzatEldtnHjxhakkh1BaWkp48aN8+uBKM2JiuZKsCGFQAiBkBJhMCBBzcuE0hMBcMbE4CwpwVRTg7uhAeGlUQEwNDYhupHYMZQwDhpI+YnjOB1OYgyCT+ynizDizGZcrs6JrmnRWeG2YKIzWiiVlZWEhYV1+Pvd0bl9R/m2/KHdeIWUslFK+Wcp5U+ByUAMnnBWP1rBrl27/DL1arFmzZpuMx7aPMiKFSuw2+3s2bNHbTDUzmC0UKqs4nuo3NZut1NcWcn3339PcXFxj4yhLezdu1fVJsnNzeWoVz2xK3ol1dN/RPzzv+XUnOuIvPFG7IMHY54wAfOECdiiojANT8FZUoKzpAQRaQ3BVXUfpl4+FZNZ/wCNiIggddAgBho8XfS+r4EGI+F9uIs+EDgcjpBNjrToCN9Wawgo0CaEuAL4OXANsA8ITNn+LEROTg6vvPIKr7/+egum3u7WIPCHp59+mnPPPZfp06fz97//HdCHj6xWKzExMbr8THUnewQMBgORkZGAJ5zgW+7bXrhMuz/AqeZmwo1GygsLSU5O7rHudQUt+LQ06onQdb2SAcvuJz88nHOX3g14Ot2V/wEq//s3XTp+b8DUy6firq1h+HnnqTmXpr//nZPHynReiYIYg8As+i7H12VhYcRo8oy+5cZlLicv2GwhNyBCCMLDw9mwYUOXjhNIJ3oR8CXwZzySs90bc+ljyMrKYtmyZX6ZerUGJCsri7feeotf/vKXOJ1OyjXx4FDC6XRy8OBBli9fri7Tsu3abDZqa2vZuXMnU6dOxWQy0dzcjMFg6LCLbLFY2L/fI145efJkIiIidHmS9vTX3W53iwShw2zmxIkTVFRUcPHFF4ckB9IV+Gq65+bmUhkTreq6A0HPoZyJiI6KBj+VSMnh4YQ5nYShT76bhcCIN6TSi9O0usQ+tEjuJxtN2O3dk+tqbm5m48aNIc+BnCel7OeYCBDtKRJqt5s2bRpr1qzh17/+dXcOsQVsNps6+/vxj39MfHw8ixYtYt26derYFOPREalMs9msPuAtFgtRUVE6+hPFOHUGLpeLqqqqThuQiooK6urqaGxsxOFw4Aak8kPuQDLSF76a7tHR0cTX1uk8lWAqKfqSOTq91+BuaMCYNCQo5+kJnPODc/hBTDTffveduuwH55xDwsCBnMzPxyHRdaKbDAa1D6QvwZcY0tcjqfmfZ/w2p3YVgwcP5sSJE+zYsaNLx2mLzn25lHINkCWEaPFrklLe06Uzn6FQFAm1fR7+Yo0KrYli/ZXu9O6Gkh8pKytj7NixbNmyhTlz5rBz507mzp2re9ilpaVx4sQJT4I5gIdsYmKimli/5ZZbGDt2rOqRgMcr6UqzYHFxMaNHj+7UvgkJCURHR7N//34iIiKwWCy43W4MBgPhYWEIg6FbZrK+uiQnvHkU5W+VsXWD7Y/MUQlx1fzPM7hKS1UDY6qr03WSuzWhwd6KBf/1X4C+pLjJG3Y9U9CCGNLHI2mv1LgzVV6A+p3vKhtGWwZbmTLv69IZzjK0p0io3U5h9L3pppu45557/Op3dCcOHTpEcnIyQghGjx7NT3/6U95++211fUFBATk5OVit1hYEi30RSA8ZKwAAIABJREFUzz//POeffz4WiwWTyaQziFJKXIBwuQil8G5reZTqdpiA24OvcSlNu5JEjRBVVVlZ5wbcCxBlNGF3uVoNYVmBkz01uG5GZ6q8wFPlGIwcYlt07soT4isp5RddPtNZgvT09HYVCZXt4DSjbyBNWx0JH3UWr732GlarlYaGBubPn8/MmTMBT7ipoaGBRYsWtQjRBYLKykpdSMuf0mF3o6amxkN1HuPR7VCS+mYhEEYjRm8jIT2crO+HHuaYaBw1tdBGEcZAg5GT7v7PrTUES8gtkJDhs0KIJOAd4C0pZX5QznwGoz1FQn8YMGCAqibYGrqL/kSBtqz3jjvu4A9/+EOnXd6tW7cyZswYNaTlT+mwt8ANuB0OXA4HFk0+I1TQJt4VYasGLxNwo5dGpaONmb6wR0W1mi8B+lxJsDUxUdeIqM2BNEh5VhkP38ouLUJNbd+uAZFSpnkNyDzgJSFEDB5D8kRIRnSWYOnSpbz00ks4nU5SU1OZO3cuBw8ebNGboSAyMpKCgoKQjUfJhcycOZPrr7+e7777jqeffloNYWVnZwPw8ssvB40l11eoytcr6S7SA98QlvAy8WIy0djYiLmLvGHtQZt4V4StjG6JMSwMA6ebF7tiysovvogfaniXzoSS4I50Xp/JaFHZpUUrAlvBQkBHllKWAy8IIXKB5cDDQL8B6SRycnJ46aWXWL16NUuXLtX1irT2g5g1axZbtmzplvEJIcjPzyc3N5eBAweqy7Ozs8nOzmbfvn2tkjR2BL55FF+vRAmfhRpKb4oSwjIKgRsQTicOKbGE2ID0BrRV0aXdpjdh+PDhFBcXI6VskQPBS4cSar6t3gZfoS1FYMuX2n6DyRQUdcZA+kBS8TQR/gyowMOJdV+Xz3wWIysrC5fLxdKlSzGbzWqviO8DMyIiQs0NvP/++7p1yo8nFNiyZYvqCV1//fVMnDiRzMxMXR7HZDL1CqqIYEGXRNd4IGY8Ia3ukt1tEAJ3dTXSK3DlEELl4TKYjOzduzckPSRtVXT1Zii9RIbaWuqamlqEsJSZeV+W8O0IWgptCb/U9sGS9g1karUBeBOYLaXsu6UbvQiFhYWMGzeO3bt3k5aWRk5ODk880dKha2pqYsyYMRw5cgSn06lj6Oyuii3FS7jlllv4+OOPyc3N5ZxzzgmZ8dCGtQwGA1FRUa2KVQUTTqdT9UAU46n1QFTZ3RDDJcBkNCLxCFyZpVTDW0aJruS3H3oMGDCAhprTpcoDDXrGX1/BLEc3ykp3JxRxLUAV2PLtNQlWXqRNAyKEMAJHpJS/6/KZ+qFCyXko6oRvvPEG11xzDQUFBbq4rtFo5PDhw4DnYarMgCdNmtQlosLOwOFwsHbtWv75z39itVr55JNPQmLEtGGt0aNHYzAYuj3RrlS7ubweiMvtVj0QbcI71LDb7bi8miRutxthEDSXl6td7X2lo10Jj5lPnsRpNCIKv8at4YET0TFBO5fVaiXKaiUuKoqIyAg+LyjEZrO1IGyMiYlh5oQJQTtvb4IirgWnBbZ8e02ClRdp8yhSSpcQIkUIESal7J5fzVmAzMxMldL9mWeewW6388c//hGr1YqUUm2u04ZMLrzwQjWc9cADD3DLLbe0KMVLTk4mMTFR16wXbKSlpbFv376Aad/bQntJUJvNRkxMjMqHFRMTo1NqC1Xpr3Jtyv2VJhNffPEF48aNY+jQoSFl4/Udh+C0Zku0W+Iym9W+ke4aR1ehhMcO5OWROmMGhdlrSWpu1jXJifyDIemiv/TSS/n000/BcfrxFRMTw29+85tuUVh0HDzI1IgI3C7Pd0rrFQEhI4a0AAYhEHi8kB9oohdKXiQYXkhAeiDAHiHEFkCdNkgpn+vSmc9iKLmErKwsbDYb48eP58EHH2T58uU4nU4GDRpEUVGRur3ZbGb//v3ccccd6n7bt29XcyaKpvjRo0fbLQUOFiorK1ss8yVLbA/tVdCUlJSQkJCgClWNHTtWJ1oFcN11wVR4bhvFxcWYzWZGjBihW56fn8+//vUvTp48ySWXXMLgwYMZNCj0qs+nTp3ScWwp3esKerOH0lbOpfK/f4MpJSVo57r00ktVwka73R6Q3HKwYJ4wgVnXXMOTTz6Jw+HQPcgVJGtE3YKV7Dd4C0EMeHJ4/vIiwfBCAjnCt96XAYhuZ9t+BIj09HTS09OZOHEi2dnZpKWlsWDBAm6//XbWrVun29bhcDB37lz14aDwaCkz+O4sZfSlfAeIjY1FCEFsbGyHhHD6Iv7617/ym994Sl4rKir49ttvKSwsJDY2ltjYWMLCwjhx4gRut5twTdw5FHA6nSFlA+4ptMfxJcyh780JNlatWgVA5V/fZd9//qMujzIIXYK7ryX7A+kDebQ7BnK2QktpMm7cON544w0AVq5cyWOPPUZ2djYrVqxg7969HDt2DDjNo6XkRQYNGqRyVPUExbmS2D55smMEEjfccINamqwUCGiruyorK0lJSdEpH06ePJkSzcOlqw12HYXWWCckJPDaa6/plkVGRtLY2KiOPSsry1MA8cX/ceGFF3Lttdd263j7ItrzThwHD+I6cbaQlfRuBFLGmwv4I1PsniL9Mxy+lCZSSgYMGIAQgrFjx1JUVERiYiKlpaVM8Cb9FKPjcrm47bbb2LRpk6qjvGTJEtavX9+t1/Dmm29y7733qmSEgVKuaPtaFKOhrbLaunUrUkq152TOnDmAXiBr48aNXR1+l+Dr/cXExBAREQF4kuDnnHOOuq66upqPPvqI4cOHh3xcZWVlNDQ0qF6rL6V8WySNvRnGYcOwff450pvTEI2NYDZ7aE2cTuhjPTvhQrQIYWmrxYJRKWYG4jW/SaUyS+kPqfzv32AcNqxTrL+B3G3tUcPx9IOcOQ0AvQBKOAs8ISK3281TTz3F4MGD2bBhA59++inr169XNUaUbTMyMvjjH/+IxWJBCMG5557b7RK5vnC73QFTrgghMJlMQePl6QiioqJISEhQu9C1sr3KZ9AZ1NbWqkUQkZGRLXI2hw4d4t5771XfV1RU0NjYqOaOnELgttuRXRgDeIyXWZNw96WU7yxJY09jwLL7cZWW4jh4EEPMAJpKSxExMZiOHsXg9UZlB/JwPYHzzz+ff//73wA0+/Ro+FaLtVcp5jh4UJeYtwqha6oUgFsInFrqezyVWUp/iCklpdMFBYFI2v6f5rVHSnkvMCOQgwshrhFC/EcI8Y0QYmUb2/1MCCGFEFMCH/qZieTkZJqamsjIyCAhIYHbbruNDRs2EB2tn0Gmp6dz1VVXAbBo0SKqqqqYPn06r7/+eo+MW/ugLPWhoDYYDKo8rhYjRozA4XCo9PDgP8cSClx00UVs2rSJb775hsrKShwOB/X19dTX1+NwOLrNqCUkJKg0NV988QWVtbUcO3aM5poajzcXpPPUWCMpKipSXwrHVlfkd3sKxmHDcDc04K6twdDcjDhxAuF0Im02pM2GsFjaP0gP44orruCKK65gQBdLmM0TJnDS7eKoy/NqkBKHl0naCYQ6oB1ICEsriG0AfggMCGA/I/B74CrgKLBXCLFFSlngs1008Gvgsw6M+4zFmjVrmD9/Prt376a4uJgRI0bQ0NDAs88+y8KFC9XtcnJy+PBDjzT9iy++yLp167BYLDop2p7CQR+32+12M2BAy6+MUoYbFRXFe++9h9Vq5d5771Wry/wZk2AbmMrKSrXfRDFyWm9EGX8oUVBQ0IKkUrrdNDU1EeHH8HYGLqNRJ3QVKaXOIzly5IhfXRItektVl+KFmFJSOPXZ5wBYS0sJ1yhc2rpJ4TMYaK2cvTvYt7uKQEb4f3g0Qf4P+AQPjcniAPa7GPhGSvmdt4fkTeAnfrZ7HHga6JqyyRmC9PR0VZNDCIHVauV3v/sdycnJqihVTk4OmZmZOBwOGhoa2LVrF6NGjeLVV1/lz3/+c4tjjhs3jvPOO6+7L0WFEEJ9OGkNgKK1LqUkLS0Ng8GghukAnnnmmRbHCnbF2datW/nmm29oamqivLyc8vJynTdSX1/fodLkziAiIoKEhAQ1pBYZGYkjPByDwYDT7cZut4fcI1IqupRXstOlex8dHd2ruuCVSi1TTQ2mmhqoqsJdW3P61QcEsxRMnz69xcTIYDDw0EMPBbT/QIORZKPnpQ1hmeC0zG+IEEgV1qhOHnsYoA2sHQUu0W4ghLgQSJFSvi+EWNbJ85xxWLNmDZmZmfzjH//wK0qVlZWl6qw/+eSTbN68me+//55bb721xewf4Ouvvw75mNsiV5RSqiy7WgOwbds2Zs6cSX19PXfddRcZGRncdddd6vrs7GwmTpwYukF7UVlZiclkUhsWzWazLuQWas4vbd5E6/0YDAYMQlBRUeHpK7H19/IqUBK+hdlrAUj82/vEX32Vur6qrAzrgQM9MrbOYPr06QA0lJdz6U9v7NC+zZERlNZ6SrYtQnjIJDV9IKEMCrclaXsRUOJl4kUI8Us8CfTvgf9fStmyk6wDEEIYgOeAhQFsuwRYAh4t37y8vFa3ra+vb3N9d6CrYxgyZAgZGRksWrSI4uJihg8fzoIFCxgyZAh5eXkUFhbicrkYM2YMq1evZsmSJaxevZrrr7+e1atXEx4e3mWpyq4iLy+P+vp6Ro4cyfHjx6mvr1fzJBEREWrvSFxcHFVVVaxbt46SkhLVEAkhAuo0b+8+B/JZbN26lfPPP1/t4B84cCDlbYRAysvLycvLa3ObtqDsr/zfFuxSYrfbOXXqFGYEtvp6tcm0qalJ13AaUV1Nk/e94i0o66WUqscHIOx23b5tHUuBw+Ho1Pf61KlTOBwOnE4nOTk5ON0uinNy1PVms5mI6upWj93QzjqA8LAwSjV5HOfxEzRWVyG998EVEUl1dTUmk0m9TvPJkxwI8bNicHk5Dk2SPNxux202q5+F2e3WfS7S53Npb4yDy8sZNHgw5Q2NuFwuv0l00DcoGkAn11xUVNTpe9GWB/ISMAtACDEdWA0sBSYD64Gb2jl2KaBtJ032LlMQDUwE8rzuWxKwRQhxg5RSJ6MrpVzvPSdTpkyRM2bMaPWkeXl5tLW+OxCMMcyYMaNVUarU1FSVJ2vlypVs3ryZl156CYvFwv33399CPrcnMGPGDPLy8tRSZC2ampqIj49HSqkaiTvvvJOMjAxSUlJYt24diYmJuh9WW+dpC6H4PiQlJTFjxowWOYKO7g+Qm5ur03mxWCyq96P0xkRGRmIwGDhSX4/5pJMPPviA5cuXc/jwYV1Xte1YOYO975V7rqwvLC1lQGysum1TQ4Nu37aOpaCurq5T9zI3N5fo6GiKiooYOXIktlMVWMaM0R03LDaWqa0ce89X+W2uA2i++ip+qGEP3pO9lmHffqvraHd5ecyU63QajaSG+FlRufk93Rgqv/gSh9FIrPezaC4pwar5XBqam0nS3Pf2xli5+T0cFRVMmzaNAwf+TUNdvV8PxOZThaXFyJEjO30v2jIgRo2X8XNgvZTyL8BfhBCBkC3tBcYIIUbhMRy/AOYrK6WUNUCi8l4IkQfc72s8+tESSh/I999/z+eff86VV16phrhuuummXmFAFOzYscPv8u+++46lS5ficDiIiIhgw4YNlJSUsHPnTpKSkigvL2fw4MHdMsakpCQaGxt1LMCRkZHdxr2lhc1m04WwAI+oldlMRUUFkZGRNDU1sWbNGm68sWOhjt4ELSmlQlUfbBoWfx3t5rhYnN6+i96mb9JVnHfe+TQVFmKor8ftdLbpgQRLN75NAyKEMEkpncCVeENIAewHgJTSKYS4G9iOJ5ezQUp5UAjxGLBPStk96khnIJQ+kFtvvZWoqCjGjx+v6q5rf4RGoxGDwdAjfRaBIDs7m5kzZxIZGcnbb7+tVmEp5cn++LaAoIfopJQcOnRIDZ9NmDCB/fv3++Xe6k74eiAJCQmYzWbGjh0LEPLkfiihVWEEGBICGhZ/He2OSRND7nX0NKTJhMvpbNMDaQhSMUpbhiAH+FAIcQpoAv4FIIQYDdS0sZ8KKeUHwAc+yx5uZdsZgRyzHx4oRiQzM5Ps7GymTZtGbm4uixcvVssCw8PDefvtt8nPz2fFihW9Tv5z6dKlAMybN09l+U1LS1PpWLZv385zz7Xk7Ax2fseXgsXhcKj9GQkJCaSkpPQIfYqSvPf1QBSjNmWKp23q+eefp0bRwdixnQEDBjB37txuGWMo4NtF35dIIn3h6wVRVYVxQAxuL+eVDFHnfHs5EK1qY1fQ6uillFlCiF3AEGCHPP30MeDJhfSjh+FLg5KamkpWVhYZGRkANDQ08OMf/7gnh6iDb6VWfn4+QghefvllRo8ezWWXXaYzGGlpafz2t78N2Xji4+OprKxs0edRUVHBpk2bmDNnDn/729/Uvwp6mj5Fgc1m491332Xw4MEtwn3FxcUkJia2smfvhm8XfV8mifT1gk7Ovhbb2DEkevMcTX99NyTndUG7Hoii2tgVtKcH8qmfZT3n0/ejBbQ0KAqysrL4+uuvdcSKvaEyyx8mTJjAmDFjWLVqFVdddRU7d+4EPOGb3NzckHpNa9euZfHixd2S2wgFLBYLB1opVY2MjOwWzq1+dAzOmBhVWAvw9K9ERqjrg9W/YhQCdzdEHPoW81g/AkJmZqbqhShaIb3NePztb39DCEF8fDyNjY1s27ZNlwMxm80sWrTIbx9Ie0JUHUFUVFSnk/UKn5YynpSUFLXfBbon6d4eFDbgyZMn01hcjMFg4Ec/+lFPD6vT8BfeUpCbm9vrw1vV03+ky8OcnH1ti/6VYMBoMiFdrpCzKPQbkDMQ6enpzJ8/n4SEBFUONjk5udvEpjoCJVG+dOlSzjnnHL777jvuvPNOXnvtNUpLS3UGJDw8PKiJ46ysLN566y3S0tK4/vrrO7y/wqcFEBcXx7Rp04iIiFDZeIEey6HExMRQVFSksgFrWYLz8/Mxm8386dFHiYiIYPny5SEfT7DgL7x1QlFsjI7uU+Et8HgkrWmfQNcqxUxelmLpdKJlB9PmQC4Ls2D7+BPctQGltVueo9Oj60evx5IlS9iyZQuFhYUMGDCAmpqaXvkDq6yspLKyUu2iP3bsGBaLhfj4eN12ihclpQyKQVSEuboCRYWxqqoKKWULKpmRI0fy0EMP8ac//UntzeiOHIpSfqwk3BWdEgVK131fLAlubGxU76XLZKTZmyAuKirC4XD0KWLI6uk/YoKmf0WrfRIsSCGwaTwRbQ7kE7uNqy+/rNNsvP0G5AxFeHg4Tz31FOBpPJw8eTIFBQV+wz/aZf5yJb7kgqFGZWUlAwcO5MiRI+zbt0+XwDYajUydOpVPPvmky+dRhLm0/FsdxauvvsqCBQt0oQKDwaC+Lyoq4t13323RTKkgKipKF/bSei8GgyFoNCpaDwTQlQPD6ZLgRx/V6Mft2A7AI488EpQxBAtut1stAXZJCJOSBoNQl9XX19P3NAs7B0UfRUVzs0cbRfk+GgwQQpG5fgNyBiInJwe73Y7VaiUxMZH//Oc/HD58mPDwcCIiIlr0V2gNir9cSVRUFFVVVSEftxba0lqlWgrA5XLx6aefYrFY1Ma/zkKrBtlZfPzxx0gpdYqKHVGFvOiii/j973+vhhqnT5+u0pskJSUFzXBr+bagpVbJpEmTyMnJ0RkVBTk5OVxxxRVq418/eg+0zMQAjf/7J4x2O9jtp8W1Qjj56zcgZyCysrKQUrJu3TqefvppwJMDcTgcanjopptuYtu2ba0262kRCKVIKODLUGo0GtWZvdlsZs2aNV06vrYMetSo05yhHaGMf/HFF4mLi+Odd95RiwBuuummgO5rb4LFYmmzaTI9Pb1XhT/r6upwuVxIbz+FUwiqq6txu904HA4sfVRxsTPQ9poIu93jhWijDCHU2Ok3IGcgCgsLGTFiBMnJyeTne7iCHA4HFouF8ePHU1BQwMcff8ydd97JCy+8QFNTU5uhEq2HEswKqI7C5XIhhCAlJQWn09mifLkzUMqgO5NEB0+z34gRI7jyyiu57rrreP/995k8eXKHDEhVVZXqTSmswDExMapXo5ynr+Odd95RFTMnT56M2+3mkksuaWcv/3C5XBiNRlVr2yglwptMN5vNOPqo4mJnoO01OTn7WsKOH8ckpSqs5Tp5gujwcOr80PF3NTzZb0DOQKSmpnLBBReo4Zlp06aRnZ2NyWQiMzOTrKws5s6dyzPPPIPdbmf8+PF+aeAVaHMgPdnNrjT1RUVF6QgIg42OXuOXX35JXFwcQghiY2P58ssvAbjmmmvUclOLxUJaWhp///vfW+z/wQcfqAbiwQcfVGlUfBPffRUVFRX84x//YJimoigmJgaHw6FWhG366CPYsZ2wsLBOTQzsgGxuRkqJ2+1GehUXFXQXe0BvhiLq5rbbiYqOZuiggV0+5tnj551FyMzMZNeuXcyfP5+7776b8PBwVq5cye233056ejqZmZm88cYbOBwONmzYoM4Kw8LCdD/yMV7G1NWrV6vL4uLiuvdi/EB56AQDOTk5AWuOtBfa8jU8H374Idu2beO//uu/2LZtm6og6Qun04nRO3tWSB0jIyOxWCwkJSURGRmpvnpDb0lHkZCQwIEDBzh06JD6qq2tpaKigoqKCh1hpd1u56uvvurwOaQQGAwGhPevorjYG8WwQglnTAzCbkc67KrELy63J5HudHpeQVQ67PdAzkCkp6dTUFDAu+++y9dff01qaiqZmZnqzC49PZ2PP/6YtWvXcuutt6oPY5fLpf6YlVAXwKpVq1QvpLfEwYPRD6IoO77yyiusW7eu3fBcW+uUIgNtsUFTU5MutCWlZNKkSX73Dw8Pp6GhQSV1nDNnjqpSqM1NdJdmfKihrQrzrQiLiooKiuflj/HXfeyY6pn09qbDzqB6+o8w1dYS4XZhiPF4HLYDBzBYrZi8VWpOux1jN5Ap9qMP48orr2xVTyQnJ4f333+fgQMHYjQaWbZsGStXrmTUqFHqw6qgoEANoQwZMkQtQzUajT0aj29L+bCjUJQd09LSeO6557j++uvZsqV1kmiTydTqtSclJSGEUKno4TQLAHiMj9Fo5IEHHvC7v+IFalFZWUlKSoqaH/FtSDSFiIivO6CtCvOtCIuMjGTUqFE89thjp432ju0IIfjlL38Z8Dn8Mf4e0zQh9pbJULDhjInBXXq6R0o4nR6vxHsvhcOBCFJIr+9+A/vRaSgPzlmzZnH77bezatUqHA4Hhw4d4oYbbmDLli0IIbBYLKxdu5aqqiruu+8+hBCMHj2awsLCkFMkBILhw4dTXFzc6f19Gwk///xzRowY0WK7qVOnsnfvXk6cONHqsWw2G1JKnWc0aNAgXn/9dU6ePMm9995LRkYGy5cvDzjGv3XrVqSUqtH0JXW85ZZbAjpOX0NMTAxHjhxRQ6haHDlyhLi4OKqrq1XvYoDBgNFqxRLW+7o/9u7dqwufnfDxgqpCUC1WPf1HJDc34yr16PfVHy1FhoVhGegh17Q3NmGIjEBEx3T5XP0G5CyE8uAcOnQomzdvZtu2bVxyySVYrVZ1Bi6lpKamhkWLFmE2m9XZ9KlTp3oNLXxJJ7tnFaSmpmKxWNq9nj179nDy5EnMZnOrvRD+QlgLFy7UUbQsXLhQbe70hbb5MFAoXFwKtB6KxWLpsfLrrsK3i16LyMhITCaT38+spqZG9S56C+rr63VjCvPxgk6EKCSprcwqvnIW5oREEi65GPDwbcUPHRqU8/QbkLMQSgc2eJK2ixYt4vvvvwfAarXS0NCA1WpVZ9XDhg1T12u7mfs6CgoKAjKGQgiEEDgcjhb0KoAuoa/873A4ePXVV3njjTc4efIkAwcOZP78+S329T1PR6Dl4gK9h3LLLbeozYlnOmrcblp+Kr0Tx40G6jW69o0+1WKh8EhCiX4DchZC6cAuLS0lISGBpqYmpJTExMQQFhamxuMTEhI4fvw44PFIhBAcOXIE8Mx2eyM5Y0fQmvHwnflKKXG5XMTExLB27doW2zscDrWMV9u175vot9lsfvMWJpMJi8XiNw/iD4H04lRWVuq8E1/D1xerucAT3lI8Yq3hdhuNmA0GbDZb0Cr0QgGHt0pMyc0o1WIKQuWRhAr9BuQshBKDz8jI4NSpU0yYMIETJ05w6tQpsrOzue+++2hqalJr55WHjfahNXfuXL8P0zMRSj7oxRdfbJG/sFgsTJkyhX379iGlpLGxkalTp7Jnzx6MRiOLFi1i0qRJfPXVV7qkuhYul0vVP28NSvn0nXfeybp169od89atW3Xvlf6Svo7a2lq1mEFL86KEAA0GA8ePH2d4H+n7aBZCx5Pm65H09kqxvuUv9SNoUB6Eo0aNIjs7m9TUVLKzs1WjcNlll6nd1NXV1eqMKTc3F4fDwVtvvdUzA+8G+FZ6xcbG8uqrr/pNftvtdkpLS9m2bRsPPfQQ27Zto9SbvJw2bRrHjh1DSsmxY8eYNm0a48ePb3GMYcOG+TUs2pCW4tWsW7euXWPjD0p/ifKaPHmy7n1fqugym81YLBZdf4zJZMJsNqveXF+BG0//lfIKRf+KLToaU00NzpISnCUliPyD6v/Kq7O08X3nW9OPoGP8+PHMnTtXlcRduXIl8+bN48iRI3z66afExMTw7LPPUlVVxbJlywBYtGgRxcXFvaIKq7swc+bMViuntPdQSZZnZGSwbt06/va3v/H0008zdOhQ0tLSWLFiBXfccUeLYzQ2NtLc3ExGRoauTNhfmCouLq5TxJZKf4mCvlzR5XA42vRAbDYb9OIwVnfj6KWX4LRGqTTxwaSM7zcgZzEyMzPVRrpp06bx6KOPqgSFVqsVq9XKbbfdRmpqKunp6bz11ltYrdYeHnX3QXnA/uUvf+GZZ57RNWMq0N5DpQBh8eLFREZGMn36dJ1U75w5c3ThCQWVlZWsXLmSrVu3qgJQraG+vh6RsQwiAAAgAElEQVSLxdIhxt/WoK38ioqKIjExUTVa2oouIQR1dXW9ig7EYrHoch1KZZbitRXX11NbVkZTUxPTp0/vqWGGHHv37qWoqEideDSbPY/04pwcwHNfmkJY+NJvQM5iaNloCwsLSU1NZdOmTWRkZBAfH8+GDRuYNm0au3fvZtGiRbhcLpWcMRgd0WFhYX2GInzMmDFkZmYC6IyI0tV/7bXXqobiV7/6Fb///e8xm81s27ZN7QNZvHhxq7ogM2fO5KmnnmLfvn1s3bpVpTZRoNzvYcOGUV9fH5QKK60XedFFF5GTk6Mm/rUeisVi4dVXX+3y+YIJm83WpgeilAJLKfnwww+JjIxkkzcHpHDCnQmor69HCKFO7MKrPKXbRu97u92OO4jUJb7oNyBnORQ2Wi0UskWtYcnIyGDz5s1BPXdfMR4Amzdv5p///CdLly7V3S+lq1+r6b548WKMRiN33303aWlpvPPOO6SlpXH33XezatWqFsdOTk7mlltu4fXXX1er3LQeRkREhFrIcOzYMa699loOHz4MnO6Oj4iIQAihbttW13xraI0epqu0Mf76VYKtHe/rgcTEeJrktHQpCpxOJ1lZWdxzzz1dPm+gePHFFzl+/LhHm76xkaioKH74wx8G/TwNQuASILw9QG63G4fJxFEISfNivwHpRwv4hrZ2797N4sWLycrKUrfprRrroYAyE585c2aLBLaWDmXfvn2kpaXxyiuvMHPmTLKzs7ngggtwu93k5uaSnZ3t12iuWbOGX//618ybN49LL71UXa7MKrUP2CeffFKXS3E6nZ4whbcUO1DjIYRoNZ/y7LPPctlll5GWlsZ9990X4F1qHf76VRISEoLap+J0Ov16IFq6FN/tuwuK8dCivr6eDz/8kOTkZA5+9BFxcXGt8qR1BC4BRlCp7QHMTidhRlNImhf7DUg/WsBfaCsrK0s3826rjPdMzpP4Fg/401VX3mdkZLRIrvvz4pQw2O9//3vdcuUhZzAY1B//hg0bWLFihe44P/vZz8jPz0cIwYQJE5g4cWK7VXJSSqqqqlqUFkdERHDBBRdgNBq54IILdN5PMOHbpxKKLvq2CBuBbmu09DUevpBSUllZyVdffcVoP42qvRn9BqQffuEvtKVFbm4u0dHROkI6JQ6tpXw3mUyqkqCvPGtUVFSfp9lOTU3FarXqrs1sNpOcnMwbb7zBK6+8onai+3pxCpQwGHhKhhVK8ptuuomamhrcbreOnfbcc8+lsLBQff/nP/+ZZ555hssuu4xPPvmE+++/v8U5fNGaB9LU1MRVV13Ftddey7Zt24KSrPcH3z6VUHTR+yNs1DZhzpkzp8vnaA8VFRU6w+VPm15BZWUl+c3NvP7YY5xzzjksWLCgU+dUtFHAY5ykyUStpt+kUQj27t0blP6SfgPSj05BeYC99tprPP300xQWFjJu3DgKCgooKytTt3O5XMTFxWG1WikqKtL9gLXGY+TIkRQXFzN8+PBWE829Ef/5z39ahEMcDgfl5eU4nU5mzpypW+fPKCthsGuvvZZLLrmEL7/8kokTJ/Lss89y1VVXATBv3jzCwsJUUsahXi4jxYNYs2YNF110EXv37lWZf10uF+PHj+fbb7/1O/YBAwZQX1+vGj/ls1GMhvK3uynk2/NOuhJ+6m4eN186fl+RMH/UQFJKvv32W/70pz/xk5/8pMPnlN7PUXkJPJK/ynldQvDNN98AdNmI9BuQfnQKqampNDQ06GRzc3NzWbRokS6EpfRJKCEXKSVXXnklZWVl3HbbbWqMXTEafcl4QOux9NaW+yNNVMJgdrudf/3rXxw/fpwDBw5gs9nUh/euXbtU70X7EHS73URHR6tNn5WVlboGtMrKSrUSzLdB0lfKODIy0i+dim/+IJQQQrTrnaSkpKhJ8jMZrRn+QKAtKBBSYtFI/go8nk8wvP/+TvR+dAqZmZk0NDSQkZHBzp072blzJ/Pnz6ehoUFXIqmoH2ZnZ6sJ6F27dlFYWMjy5cvV7dQvex/jAuoo/M2AFXLLYcOG4Xa7iYqKUu+D8iAwmUxs3ryZpUuXsmbNGtXLGz9+PPfccw9jx45FCMHYsWO55557GD9+PCaTiaqqKmbPns3//u//thhHdXU1l19+uVoRpRgPpStd+RsoR1cgGDlyJPfccw8jR45Ul2k/eyllm53klZWVWCwWtfM8KioKs9mMwWDoFKNxdyMmJkbHAGA2m3XvO2sYP/vsMz788ENO1NXhsNu7rUig3wPpR6eghGKWL1/O1VdfDXgqs5577rkWfRLgScgrP25/P3TlwdpbqOK7E5mZmWqo65133gFg4sSJZGZm8tVXX5GQkEBJSQn79u1jypQp5Obmkpqaqu7rr5ExKyuLjRs3smPHDpXo0WKxYLPZGDt2LKtWrfLbHb9kyRJeeukltR/l9ttvZ/369UG71qKiIl544QWdp+n72fvmyrTYunUr8fHxpKSkqPQsFRUVJCUlqfv1ZjJFbV4GPCEsbb6nM95eQUEBzd6cB4BdSkxebZqwEGuk9Hsg/eg00tPTKSkpUWOtJSUlfmP86enp5OfnY7FYyMjIIDU1FYPBwLhx49RtlFmndvapnaWeyfjVr37ld/mTTz7JD3/4Q06dOkVubq5aDrx48WJdU2NWVhZLly7liSeeYOnSpWrFXGlpKXPnzqWxsVF9OI8aNYrDhw/z5JNPsmrVKu644w6ys7PVc7733nu6c7333ntBvValm721rvawsLBe70UEE/48kLFjx6qvQIoJ2jK4ba0LBvo9kH50G+x2Ox9//LGuv0SZeWtnUEpIQyElPNPhL0SkxPwfeeQRwNODcv311/Pdd9+1KKlWKuYUD0VBYWEhK1as4PDhw6qa5IoVK1i4cCGPPPJIi1yDyWSiurqa2bNnM3v2bLZv347BYAga0aLiIfleszZkpvTJKNsqYU/Fa7VarVRWVjJ69GjA8wBOSkrSjbEnJZc7CofD0cID0Sbdg1Ep5hYCmxDg/Y25QC2e6Ko+fL8B6Ue3wZe8MTU1VaVCf+6557jjjjt48cUX1e2NRmPIZ1DQd8qJOxreGzp0KMuXL9eJWt14440YDAYee+wxvvvuOx2/18yZM3UhL0XbRAlRdhUNDQ2q52G1WtV7Hh4erv5Vlim6Hsrn73a7MZvN2Gw2NYylLZH1rW7qzsR/T6KiokJXGqzkhwwGg5o/k1Jib27GJiUDBgwAPAbZHAR9+P4QVj+6hJycHCZOnIjRaGTixInkeEnc/EGbUG9ubiY7O5uKigomTZrE/fffj9VqVf+OGjVK55WEEn3BeIDHK2loaODXv/51m/dZC21Rwq5du6ivryc2NpYHH3yQ7OxsMjMz1WP5hrwaGxuZO3duUDzB5ORkDAaDeq+199zfMqfTidPpJCkpCSEESUlJ6jI4Xeqr0LnHx8fr6N37qmBWR6Etd24NUvMdqKmpCer5Q+qBCCGuAX6Hp7v+j1LK1T7r7wVuA5zASWCRlPL7UI6pH8FDTk6OX8oT8N/v4K/D/brrruP9999n165durDWNddcw0cffcTBgwd1xwhEja+jaE3oqTdCST4vX768zUZPgLKyMjZu3Kh2w+/YsYNly5axZs0aDAaDSrui8HsVFhby5ZdfYjab1SS6w+FQPYSuIjIyksTERIQQjBw5Ur0W3yosBRdccIHKw5WQkMDQoUP54osvgNONiEqIxzdfEAq+rd4KbWJeKSDQcoOFsrIxZAZECGEEfg9cBRwF9gohtkgpCzSbfQlMkVI2CiHuBNYAPw/VmPoRXGh5oIAWDyR/8O1wnzhxYotjJCYm8vLLL7Njx44WjXhnY5WWPwTCQ5aamqr26bzzzju8//77zJw5U5f7mDZtmtoUqpQTK58FwO7du9WKr66gtLS01RLV1gzIF198QVxcHOeccw5lZWVq17w/HjZ/eifB5tvqC/AXwgJwmUwotWnBLFEIZQjrYuAbKeV3Uko78Caga6uUUuZKKZXA5adAcgjH048go7CwkKNHj+pCWEePHtXRbARyDF8uqa52G3cUfd0omc1mhBBcdNFFCCHUWWhmZiaLFy9Wq6qGDx/OL3/5S12fjtZA+G7vW/HVFYSFhTF//nyOHDnCww8/rLIOw2l+Md/qK6PRSFVVlY63C1A1a9pDVVVVmyqMvUnfJFiw2WwqsaTyklLicDjUlyuILNihDGENA0o0748Cl7Sx/WJgWwjH048gQ5ukVcJP8+fPV2k2FOTk5JCVlaWGrbSJW3+z3mPHjhEXF8e1117b5vl9NTM6gwsuuAC73d4iVNZXYDabWxhbp9OpS0ArISyn04nL5SIpKUlnIJQOd22IUSGA9K346izsdjvvvvsuN998M1arVSespa3C0l6Ly+XizjvvJCMjg5SUlIC04LXYsmWL+n94eDizZs1i+/bt6n3ZuHFjF66o98KfB6LtjRFCBK04pVdUYQkhFgBTgCtaWb8EWAIwePBg8vLyWj1WfX19m+u7A2fLGJqbm3G73ezfvx+Xy8VXX32F3dsFm5eXR319PQ899BCvvPIKy5YtY9KkSXz11Vfcd999FBQUcOWVV3LjjTeSkZGhWw8eGu7Y2FiOHz/eat7j+uuvb/ca27sPBw4cYMmSJR0yIF29r8H6XPLy8tqkUsnLy2PIkCGsXbuWsrIy7r33Xnbt2sWiRYvUe71gwQKGDBmijknZ/tSpUyQmJgZtvCNGjODiiy/WnVuBvyos8FTt/fGPf6SkpITt27czfvx4CgoKuP322zt8fqUgQ8npNDc3d8tvtKKiQpfojvdh223P0y4vL29znOXl5S2WOZ3OdhsIXS4X1dXVah7K4XB06n6E0oCUAima98neZToIIWYBmcAVUkq/yjVSyvXAeoApU6bIGTNmtHrSvLw82lrfHThbxlBZWcnGjRtVMsXU1FSef/55Fi5cyIwZM8jLy+Pdd9/l9ddfVz2MWbNmMXnyZJYuXcrjjz/OjBkzGD9+vM5DiYiIoLm5meXLlxMfH88dd9zhV9QoOTm53Wts6z5YLBamTJnChg0bOnTdXb2vwfpc2jvOjBkz/HoocDoZv3r1ah5//PEW6317SrqKJ598kvvuu4/XX39d7fGYOXMmRqNRV4Wl9ZxKS0sZNmwYQgiGDRumVoMpJaetJYeV5VrGA4UhWluy3V2/0Ztvvln9/8EHH2S/VxkRYPLkyW3um5SU1OY4c3NzKSgoaLFcCV0pSXStx+EyGLA1NFBbW6uev66urlP3I5QGZC8wRggxCo/h+AUwX7uBEOIC4CXgGinliRCOpR8hgDZJq0BLswGt62Vo8yS+iXUhBA888AAbNmygsLAQt9ut1vlPmDCBzMxMjh07xqpVq3Rd1B2FIj3rKxJ1pqA146GFb7grVEhPT6egoEAXHouPj8ftdqsU9iNHjqS6upqoqCgaGxuprq5WvZOmpibq6uqIj49X+bCUpkPfKjrFW9XmVJQEvGI8ekKzRngZcdvySLq7Wuyxxx7j4Ycf7vT+IfvlSCmdwN3AdqAQ+LOU8qAQ4jEhxA3ezf4HiALeFkLsF0JsaeVw/eiF0CZdla5W36SrkuPQIpDKnrS0NPLz89UHw5tvvglAfn4+6enprXoloUQwci7diUALEbTbhYeH6xLywSrhBbjyyivJz8/n4YcfJj8/n7Vr17bgrTKbzaxZs4bIyEiio6PVBrmIiAiio6PVBkEtU3FnSrB7olvdYDBw6NAhNm3apL6OHj1KSUmJ+oqIiOjWRH9XC0hCmgORUn4AfOCz7GHN/7NCef5+hBaBKBdmZmby85//HKvVqup9NDQ08Lvf/a7V42o1wqdNm4bZbGbevHmqOFVqaiqTJ09uk7U1ELz88svMnz+f/fv3B5QD6Su9Ip1FeHh4C6Nss9nUnEGwoXxPlCS+1WrlySefJD09nQULFqjhUWXdY489xsKFC9X93W63auR8Z+4rV67UJd4V46+Etbp78gH+H9aHDx/WlVVrqeuh9yf6e0USvatwOBwcPXqU5uZmBgwY0KEy0lCgt4zhyJEjJCcnh5SdtD3lQi0Cne0oGuGLFi2iuLgYo9Goe4AVFRVx8ODBLlNs2Gw2du/ezauvvtqi3+RsRGsP1VA+bDdu3EhBQQEHDx5ECMHGjRtJT0/XhUd9WYi1xl5K6de4rV69WvcgTklJQQjBoEGDqKqq6nYDIoTwSxLZVQ8gKipKN5FSPDatHIBCW6IdC6ASN5aVlanhwI7ijDAgR48eJTo6mpEjR1JfX6/yu/QU6urqenwMtbW12O12jh49yqhRo3psHFlZWbz11lu6Mt3c3Nx2mw2VfZUadpPJpCYDGxoaCAsL85s87AgUgsGlS5cCoelIV2a8fUGrItTQfgf8QUrJjh07mD17ts5zVaq2FM91/vz5XHjhhWpXupRSLQWOiIhQ8zkKfT2czi3YbLZuNx7K+LU6L+D5bnS1S/yiiy7i8ccfV3Mp8fHxmM1mXC6X+n3zTaIbDAZsNhu1tbUcOnSI9PT0s5sLq7m5mYSEhDNejKgjEEKQkJDQbXxSrSGQJLo/KBTw48ePB+CDDz7AbrcjpeSf//wnQ4YMCagbuy1IKdm1a5cqzhSKEFVrTXJnGzry29yxY0eb6+Pj4/n3v//Ns88+y09+8hOioqJwOp0qAeSOHTt46KGH2LbtdFtZQ0MDUsoeoTRxu938v/bOPTqq8lz4v3cmYciVGAg3p5q0FQmDQqqtUi8lUlBaTbPa0lZBArFg9Es+jrYlQKT0FkSO4KLh0+gqtMYmnB4vRRA5REh01dpTUKOVi0WLiAGlRC4mISG35/tjz97OTCbJJJlLCO9vrb1m5t173v3MZLKf/T7XtLQ0GhoarBWHuSIJRhLr1q1bLZ/KyZMnaWpqoqmpiYaGBhoaGkLq7xkUCgQGfye7vjAQvpO+OtFN/Cma66+/ng8/7H/JtKioKBwOR8DFFLtzomdlZXHixAmysrK6PEYTOMXFxZw4cYLDhw+zdetWDh8+zIkTJyguLrYc7A8++CDPP/88DQ0NKKW46KKLWLdunVdvFBPzbxyJG6r9+/dTX19PamqqVSnAVBxLlizx+56+BmycPXuWqKgoq2OjuZkdG4O9Eh40CiTS/Pa3vyU9PZ3Zs2eHZP5f/OIXPPzwwyGZO5QEEqnVHenp6YwYMYKcnBxrjpKSEqKionA6+1f5pq2tjaSkJHbs2NHjsU6ns9sVypYtW0hJSfHKflZKsWbNGrZv386aNWsGhEI/X+gqqGHfvn0cO3aMM2fOUFdX5+XnOHnyJK+99lq4RAwYu93utfLxXHWsWmXUl/XsZ6KU4sorr+zTuQ4ePEhtbS2N7jyPzz77DPjcdHfu3DlaW1uDtioZFD4QXz6e/BU6TpwI2ny2lBTGvPVmt8c8+uij7Ny5E6fT2Wd74mAkkEit7igqKmLRokU0NTUxf/58PvroI2w2GzExMQHXROqO+fPnW3eqcXFxxMTEUFdX1+m4nsxl/nwdsbGxlJSUWNFnsbGxQe0vfqHSnTP68ccfZ8eOHV7JimBUsAAjofD06dNhVeZtbW2ICAUFBUyZMsUr6mrZsmVs27bN64KelJRETU1Nn2U8ePCgVyHJlJQUvxnrweiZMihXIMFUHoHMl5eXx6FDh5g5cybFxcXce++9fO1rXyMjI8NqCfqHP/yB7Oxspk+fTmpqKuvXr2ft2rVkZGRw7bXXcvLkScAILf3qV7/KpEmT+N73vufVJMfkX//6F7fccgtXXXUVN9xwA++++25QP2+wMf0Z7e3tVh5HT5h9RubMmYPD4aC1tZUPP/zQunjk5OT0u0aT0+nkySeftJIRzaJ90Nn8ZyYbdpWA5s/X0dTUxOHDh+no6ODw4cODuqR4JPFchbS1tZGZmWmVqwfjbxkTE2P1hU9MTAy7T+oHP/gBGzdu5MEHHwTw6qjoSzB6dpj9UoYPH47NZmP06NFe/VKC1TNlUCqQcFNaWsrYsWOprq6msbGRG2+8kd27d1NdXc3PfvYz665z7969PPfcc+zZs4eioiJiY2OpqalhypQplJWVAfDd736XPXv28Pbbb5Oens6GDRs6nW/hwoWUlJTwxhtv8PDDD3PvvfeG9fOGGrPPiNl4Kicnh3PnzlFUVERLSwuVlZVs27Yt4KZKXbF69Wra2trIzc0FDPuxaabydW7a7XZiY2OtkhiB0NHR4VXnqaOjI2jtYTX+8XfXLiKW4h86dCj33HNPuMWiurqakpISHnjgAcC4CQT8OtLtdjsxMTEBO9j9+Us8HetNTU188sknvPXWW17bP//5z35+Kq1Agk5lZSWPPPIIkydPZurUqTQ3N3PkyBHACGNMSEggJSWFYcOGcdtttwFGmJ9Zm2jv3r3ccMMNXHHFFZSXl3eyBTc0NPDaa68xa9YsJk+ezN13383HH38c1s8Yajz7jERHR7N582YeeughNm/eTHR0tNV3xExA6yu3334769atC6ishc1mIycnx4rYMnE4HFx33XVWLL75GvDKX2lubu7WMRrKXJ0LAXMV4ruySElJwWazWTdxzc3NPPbYY/32n/UGp9NJU1MTubm5/OY3vwGM30ZUVJT1etSoUVbdqnHjxjFlypSA549kgqtWIEFGRPjjH/9oafkjR45YEUeeCT82m816bbPZLBvovHnzWL9+Pe+88w4rVqzoFDVi1g7yvJOIdNJisPEN/T1w4AB5eXlenzOQUOBAMM1rQJerg5aWFrZv386f//znTqXqW1paOHbsGNu3b7eOM5VMbGyspRiio6OJjY3t0nnZ36x6zed4lmI5efKkFb4rIpw7d476+nqys7PDJs/q1au9quPGxMTQ1tbGD3/4Q5YuXQrA8ePHmTBhAoWFhdx4441UVVX1+Xxm3/NwoBVIkLn55pspLS21lp81NTW9en99fT1jxoyhtbWV8vLyTvsTExNJS0vj6aefBgyF9fbbb/df8AGEb+hveno6paWlXqG/weqU50lCQgJVVVWUlZV5rRbMOlz+zCMTJkzgjjvuoKCggKFDh1JQUMAdd3xeM3THjh289NJLPUZ6af9IaGhvbyc1NdVqpTts2DCWLl3q1Y8k1PiudEeNGsWMGTN45plnWLlyJfB5naxVq1bxu9/9zuos2BvM32yw+553h1YgQWb58uW0tbVx5ZVX4nK5WL58ea/e/+tf/5prrrmG6667jvHjx/s9pry8nA0bNjBp0iRcLpflqB8s+Ib+ZmdnU1hYSHZ2dp9CgQOltbWVXbt2sWLFCjo6Oqy7xrlz5zJ37lweeuihTiasoqIiKioqLH9NSUkJFRUVgOFTqampoa2tjZqaGr8BEWCsfEwzRF98JHa73coxSE1NPe+KPoaaDz74gH379ln5JGb7gXBirnR//vOf8/vf/54dO3bQ3NzMihUrUEqRnJzsVbo+ISGhV6aprkqlgPG7jo2N7bIzY319fd+LNorIebVdddVV4sv+/fut55999pkcm5QhtWOdQduOTcrodM7u+Oyzz3p1fCgwZfD8bsJNdXV1n99bUVEhLpdLbDabuFwuyc/P93pdUVERVBkAAcRut3s9AlJVVSUul8t67EnWiooKASQrK0scDocA4nA4JCsrS4x/uc7nvuyyy6zzdbfZbDbruafcMTExYrPZJCYmJqB5fDfPubra3x/6IlOot3CSnJzsde7k5GQREdmzZ4+4XC4pKioSl8slt912m9frQHA6ndbf/9Zbb5Vbb73V61z333+/15jvfn8Ar0sA1+NBGRLSU86GZuDTmyKNwcDpdPLpp596mZLMcjDXXHMN+/fv92r/2pOsixcvZvfu3Wzfvp329nbsdjt33HFHl87bdevW8a1vfYvbb7+92+gyu93u5TMz+2OYcpuP5rgm8gwfPrzT3+LkyZNeJtF9+/ZRVVVl5a909Vvzh1l8NBI9TrQJS6PB+CeMj4+3nN5f+MIXiI+PZ+jQoSQkJDBkyJAuEyDNnBW73c7EiRPZtGkTq1evpr29ndzcXGbMmEFubi7t7e1+kx+joqKYM2cOANu2bfNrxnK5XKSnp7Nq1SovU4XZNdDMUzEfPbsJmjkQmsgQqCK/6aabrBIsvUm2NX0sZiTXyJEjrX3B7Ofil0CWKQNpC8SEFWkGkgznqwkrEjJUVFSI0+kUQKKjowWQ1NRUSUlJ6dJkVlFRIWlpaVJVVSUtLS1SVVUlaWlpUlFR4de05Y/8/HxRSnUysURFRXUai46OtsxUIiIOh0Nmz57tdZ7Zs2dbprOEhAS/c9ONOczf1l+6mztSW7gIp3x79uyRPXv2WCYzpVRITVgRVwi93bQC6Z0MWoH0ToaKigpJSEiwFEh0dLQkJCR0efE3fSOe+PpKepLBPGd3F5PY2FhLoSUlJYnT6RQR4+LU2NjoNV9jY6PXe++55x7ZunWrX2VkKhdzrkgoEH9+J61Aeidjfn6+ddOQnZ0tM2bMsH7DoVQg2oSl0XiwePFi4uPj2bFjBy0tLezYsYP4+HgWL17s9/i+lqv3pLi4mOeffx6bzWZVJAAjd2ThwoUAVgTX0aNHvUxhDoeD0tJSr/lKS0txOByW2eqxxx6zklY9SU5ONu4iI4wZbTTYOz6GioKCAtavX2/1Odm8eTOVlZW0trYyYsSIkJ5bKxCNxoPa2lqefPJJKws+MzPT6l3tj/6Wq4fPlZDZhc/hcFg+lJSUFOx2u1VC5eKLL/ayay9YsIDCwkLWrl3L2bNnWbt2LYWFhSxYsIDp06d3e97jx48HLKNm4LJ+/fou99XV1XHw4MHQnTyQZcpA2gajCau6ulq+/e1vh0QGbcLqnQyAVFZWeo1VVlZ2udTvzgcSqAymGcycSyklo0aNklGjRkl0dLSMGzfOMjc4HA7Jzs72MpHNmDHDMkUppWTGjBkiYoR3xsbGWqaMrjbz+O6O6S/dzR2pLVyEWsZA5gTU6xgAABHbSURBVNFhvL3gqaeeCmpmb0xMDHfeeWfQ5tMMXJxOJ3PnzqWiooLrr7+eV199lblz53YZfttdufpNmzZRXFxsjRcVFfmNrDETJzds2MAvf/lL7rrrLo4fP05UVBRtbW0cPHiQadOmcezYMX784x+zePFiKxJr06ZNvPfee+zatcuS96677mLTpk3U1tZSWVnJ9OnTefnll8nPzycxMZG//e1vgGH+mjlzJu+9954lixkm3NraSnR0NB0dHRE1LcXHx9PQ0GA9avqGZ8ViCF775kFpwgp2WYhA5jt8+DDjx49n3rx5ZGRkMHv2bHbu3Ml1113HZZddxu7du9m9ezdTpkwhIyODr3/9636rYTY2NpKbm9upHLwmPHiG3zocjm7Db038lavftGkTixYtslqpNjY2smjRIr85HrfffjvFxcUUFBQwb948Ro0aRUpKCpWVlSilyMrK4tChQyxfvpz777/f8otA58KT3RWaPHDgAMOHD/caGzNmjJe/JjEx0cv/k5iY2JevsVeY5jnPSsdmToOpNMzHSOQ6DFbMDPj+MCgVSKR4//33+clPfsIbb7zBu+++S0VFBa+++ioPP/wwK1euZPz48fzlL3+hpqaGX/3qVyxbtqzTHMXFxdx0001+y8FrQo9n3SKlFHFxcaxbt67XSY2LFy/GbrezceNGKisr2bhxI3a7vUtnvKcS+uijj6zWrCLCtm3bqK+vZ/bs2aSlpfHMM89Yzu/unPjmaqq6upq2tjbi4uJ44YUXSExMpLGxkZUrV/LEE0+QlJRkvffs2bPk5uYydOhQcnNzuyy/0luUUlY9KvN1dzQ1NTFx4kSvsYkTJ+qaYUHCZrMRHx/frf8koHmCJI8GSEtL44orrsBms+FyuZg2bRpKKatc+5kzZ5g1axYTJ07kvvvu89u2s7KyklWrVvktB68JD31pgOVLbW0tZWVlZGZmEhUVRWZmJmVlZT12NvSVISoqiqFDhxIfH29ddM2+19C9E983mdHslFlQUEB0dDQZGRkkJiZabU/j4uI4d+4cR44coaOjgyNHjnDu3Lmg3PWLCHV1deTl5XH69Gny8vKsfWYTr1OnTlmJnGPHjqWuro6qqipaWlqoqqqirq6OsWPHhrUU+2Bl3LhxPP744/2u9qAVSBDpqVz78uXLyczMZO/evWzdurVTqXYw/tGeffZZv+XgNRceiYmJNDU1UVBQQH19PQUFBTQ1NVmmpe56zvuupsBoRrZ582arcvCaNWussijz588HOndXNMf7g8PhwOVysXHjRpKSkti4caO1z7MQpGcV2ubmZi9Tovn/MmHChH7Lc6HT1xsjX7QCCSNnzpzh4osvBowWt/64+eabKSkpsUwUvS0HrxkYOJ1OcnJyLPNRdXU1OTk5vb57Pn36NHfffTfLli0jLi6OZcuWcffdd3P69GnA239iKoWuymAopTqtenft2mXd6FRXV1NUVITL5bJW0UVFRUEpfd7S0sKnn37q1TclISEBMBSFUorm5mbOnj1LXl4eR48etVYjpvKLjo7m6NGjvPLKK/2W50LmhRdesJpX9RetQMLI4sWLWbp0KRkZGV02Flq+fDmtra19LgevGRh4tsu9+eabyc3Npa2trVtnvD/S09OZNWsWzc3NiAjNzc3MmjXLa1XalcnN15HvcDj461//yujRozl58iQ33ngj5eXlfOMb3wAMf8rll1/udf7LL788KKXPJ0yYwJe+9CVmzpzJkCFDmDlzJtOmTSM5OZlTp07R0dHBqVOnuPfeeykpKWHIkCEsWbKEDz74gPb2dj744AOWLFnCkCFDrIS5ntBdHnumv0pkUIbxxsTEBD2MtydSU1OtznbgvcLw3OeZ1GO2s5w6dSpTp061zvX4448HQWpNJDEv4mY0VFxcHCtXruy12cAzxNczTDeQSq2ejvz29nYWLFjAxx9/zK5du0hKSsLhcJCdnW2F8Y4dO5bCwkLKy8utc82ePbtTF8a+kJmZyWOPPcbq1avJy8ujtLSUwsJC8vLyKCkp6XR8S0sLJSUlZGRkWLKUlJTQ0tKCw+GwlIjNZkNEGDlypFdi5IkTJ7jrrrvYsmULAKNHj+bf//43w4YNs3wumiAQSLLIQNoGYyJhKGXQiYTnvwyBFmX0BY+kyOrqarHZbPLiiy96JY+1tLSIzWYTESPxcPTo0V5JkaNHj7bqbvUHl8slc+bM8foc3fW88Nzve3x+fr6VBBcXFycLFy7ssmBkd1u46E6GnuTu7/x9/R7QxRQjx0CSQSuQC1cGXwXicrlk9erVXhcNz8KPNptNysrKvC7aZWVlloLpDzabTV566SWvMU/l5UtPGf4zZszo8cLoWW3Yd7Pb7f3+TIESFRXlt7JyIEolECKpQAalCUuj0XzuyC8vL6e9vZ3s7GyWLl3KiBEjaG1t7WQOM2txeZpiq6urgxIFmJ6ezjvvvMM3v/lNa6y7mmHdZfgDVpFLfzlSSilEhJSUFMuslZqaypEjRxg5ciRnz561QpfDQVf+zq4QEeszDHgC0TIDaetqBdLR0SEiA+vuP9IydHR06BXIBSxDRUWFpKSkSGpqqthsNklNTZWEhARxOp1+zWGB1PXqjyxjxowJ6tzJycl+Vxl2u936vOaYuapKTU2VJUuWRMSEFR8f3+MqyWazyUUXXXTerEAirhB6u/lTIIcOHZITJ05IR0fHgLl4R5ozZ87IiRMn5NChQxGT4UK+eA8UGXrrP+mrvyUQHnjggaDNbfadX7p0qUyYMMG6EH/5y1+2LsQul8tqvmUqrrVr18qYMWOC4tcJFDB6r5iK3PPi3dLScl6bsJScD8skD66++mp5/fXXvcZaW1upra2lubmZ5ubm0Ldx7IGBIkNSUhJOpzNi4Ywvv/yyFV0WKbQMg1OGiRMn0tjYyMaNG8nMzASMpMv6+npGjRrFoUOHKC0t5ac//SkAl156qWXCam9v71N5mr6ilCI+Pp4RI0bw4YcfYrPZrIKVNpvNq0WxL4Fcn/sbiuvvHEqpN0Tkaj+Hd35zqDbgFuCfwPvAEj/7HcCf3Pv/DqT2NKe/FYgnF/odp5ZBy3AhyGA6/D1NbkuXLrVMWPB5N8n8/HwvE1YwV1WBAMiQIUMsOefMmeO1AklNTZWYmBjL0e6vZH9P8/dn62LOyDrRlVJ24P8B04FaYI9SaouI7Pc47C7glIh8WSn1I+Ah4Iehkkmj0QwOTIe/mYV/4MABLrnkEpKTk60Kw+PGjetUQj9SK7GWlhaysrJoaGjwsk4MHTqUsWPHEh8fz5/+9Kde5/pEmlBmon8NeF9EDolIC/BfwHd8jvkO8KT7+TPANBWM/HqNRjOoMRMsR48eTU1NDTt37kQpxfr16/tdCDPYuFwu0tLSrJL0zc3NpKWl4XK5OlVf7qkcjT+cTidRUVGsWbPGKjwZLkKpQC4GPvJ4Xese83uMiLQBZ4DhaDQaTTf0pgZYpCkqKgKwKguvXbvWaxz6VwF69erVxMTEUFhYyJAhQ7yKX4baFxsyJ7pS6vvALSLyY/frO4FrRCTf45i97mNq3a//5T6mzmeuhYDZRedyDL9KV4wA6rrZHw60DFoGLYOWwZNkYAwwFGjFuKE+GeT5nYBvxEyrnzFf3vAzdqmIpPR00lAmEh4FvuDx2uke83dMrVIqChgGfOo7kYg8ATwRyEmVUq9LINEDIUTLoGXQMmgZBrIMwSKUJqw9wGVKqTSl1BDgR8AWn2O2ADnu598HqiRUSyKNRqPRBJWQrUBEpE0plQ/sAOzARhHZp5T6FUaI2BZgA/CUUup9jOXcj0Ilj0aj0WiCS0hrYYnIi8CLPmM/93jeDMwK8mkDMnWFGC2DgZbBQMtgoGUwGAgyBIXzLhNdo9FoNAMD3ZFQo9FoNH1CKxCNRqPR9Inzvh+IUmo8Rka7maR4FNgiIv1v5Hweo5QqE5G5kZYjnHhE+x0TkZ1KqTuArwMHgCdEpDWiAmo0g4zz2geilCoEbscok1LrHnZiXET+S0RWhUmO8RgK7O8i0uAxfouI/E8Yzu8bHq2ATKAKQESywiDDNcABEflMKRUDLAG+AuwHVorImTDIUI5xUxQLnAbigeeAaRi/9Zxu3q7RaHrJ+a5ADgIu3ztL953oPhG5LAwy/F/g/2Dc5U4GFonI8+59b4rIV8Igw5sYF+rfYVTYVMAm3GHRIvJKGGTYB0xyh28/AZzFXd/MPf7dMMjwDxG50p2UehQYKyLt7vpqb4vIlaGWQdM1SqmRIvLvCMswXEQ6JStr+sb57gPpAMb6GR/j3hcOFgBXiUg2MBVYrpRa5N4XrsKQV2OUIygCzojIy0CTiLwSDuXhxuauZwZwtYj8h4i8KiK/BL4YLhncNw8JGKuQYe5xBz2XcwgKSqlhSqlVSql3lVInlVKfKqUOuMeSwiRDolLqQaXUU24znue+R8MkQ7LPNhzYrZS6SCmVHCYZVimlRrifX62UOgT8XSn1oVLqG2GS4WqlVLVS6o9KqS8opV5SSp1RSu1RSmWEQ4ZQcr77QP4D2KWUeo/PCzdeAnwZyO/yXcHFZpqtROSwUmoq8IxS6lLCpEBEpAN4RCn1tPvxOOH/2+5VSs0Xkd8DbyulrhaR15VS4zDq8YSDDcC7GImrRcDT7ovGtRhmznDw3ximw6ki8gmAUmo0RsWF/wZmhEGG3wPvAc8CuUqp7wF3iMg5jO8iHNQBH/qMXQy8ibFKDsdNxbdFZIn7+X8CPxSRPe7fZAXGjVeoeRRYASQBrwH3ich0pdQ0974pYZAhdATSNGQgbxirqGuB77m3awF7GM9fBUz2GYsCyoD2CH0n38bwO4TznMOAPwD/wmgO1gocAl7BMGGFS46xGKYrMP5pvw98LYzn/2df9gVZhrd8XhcBf8WodP1mmGT4CfA/wBUeYx+E6+/gPt8BIMr9/H999r0TJhlqPJ4f6Wrf+bqd1z6QgYBSygm0iftu02ffdSLy1wiIFTGUUolAGoYSrRWR4xEWKawopSqBncCT5mdXSo0C5gHTReSbYZDhAIZvsMNjbB7wMyBeRC4NtQzuczqBRzCsAysw/FDhMmeilCoAbgNWATcCF2EEVdwEfFFE7gyDDH/D+OzDgIcxfKSb3Sa0NXKeF1XUCkSjCSJKqYswItC+A4x0Dx/HKBy6SkROhUGG1UCliOz0Gb8FKJEwBJf4nDcLWIbRsnp0mM89FbgHGIdxU/MRsBmjNl9bN28N1vknAasxfLL3uWXJwQjyWCAir4VahlCiFYhGEyY8fEQXnAzu0O4vicjeC/l7GGgy9BetQDSaMKGUOiIil2gZtAwDRYb+cr5HYWk0Awql1D+62gWM0jJoGcItQyjRCkSjCS6jgJsBX1+Hwgjj1DJoGcItQ8jQCkSjCS4vYEQ6veW7Qyn1spZByxABGUKG9oFoNBqNpk+c76VMNBqNRhMhtALRaDQaTZ/QPhCNppcopdqBdzAKNLZhlK15xDPzW6O5ENAKRKPpPU0iMhmMEuUYhfkSMUpWaDQXDNqEpdH0AzH6WywE8pVBqlLqL0qpN93b18HoEKmUyjbfp5QqV0p9RynlUkrtVkq9pZT6h1IqrGVGNJr+oKOwNJpeopRqEJF4n7HTwOVAPdAhIs1uZbBJRK52F8+7T0SylVLDgLeAyzCKDf6viJS7e5nYRaQpvJ9Io+kb2oSl0QSXaGC9Umoy0I5RxA8ReUUp9ahSKgWj7cCzYnRv/BtQ5K5c+5yIvBcxyTWaXqJNWBpNP1FKfRFDWfwbo+LqcWASRsOiIR6HlgFzgPnARgARqQCygCbgRaXUTeGTXKPpH3oFotH0A/eKohRYLyLiNk/VikiHUioHozuiyR+A3cAnIrLf/f4vAodE5LdKqUuAKzGalGk0Ax6tQDSa3hOjlHqLz8N4nwLWuvc9CjyrlJqL0ZGv0XyTiBx3N3va7DHXD4A7lVKtwCfAyjDIr9EEBe1E12jChFIqFiN/5CsicibS8mg0/UX7QDSaMKCU+iZGj+4SrTw0gwW9AtFoNBpNn9ArEI1Go9H0Ca1ANBqNRtMntALRaDQaTZ/QCkSj0Wg0fUIrEI1Go9H0Ca1ANBqNRtMn/j/1eEyCu+slpQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -885,12 +860,19 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -910,9 +892,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 2 } diff --git a/example-notebooks/Test pem_survival_model_timevarying with simulated data.ipynb b/example-notebooks/Test pem_survival_model_timevarying with simulated data.ipynb index 7b2d7a0..1afdf8d 100644 --- a/example-notebooks/Test pem_survival_model_timevarying with simulated data.ipynb +++ b/example-notebooks/Test pem_survival_model_timevarying with simulated data.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -13,14 +13,6 @@ "text": [ "INFO:stancache.seed:Setting seed to 1245502385\n" ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] } ], "source": [ @@ -38,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -98,7 +90,7 @@ " vector[T] log_t_dur;\n", " int n_trans[S, T]; \n", "\n", - " log_t_dur = log(t_obs);\n", + " log_t_dur = log(t_dur);\n", " \n", " // n_trans used to map each sample*timepoint to n (used in gen quantities)\n", " // map each patient/timepoint combination to n values\n", @@ -269,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -286,12 +278,25 @@ "data": { "text/html": [ "
\n", + "\n", "
agesexageratetrue_tteventindexage_centeredkeyend_timeend_failure
059male540.08208520.94877120.0False1.0138551.013855True04.18120.000000False-1.121.013855True
15958male540.08208520.94877120.0False1.0138551.013855True04.18112.827519-1.120.808987False
25965male540.08208520.94877120.0False1.0138551.013855True04.18110.462045-1.120.377535False
35972male540.08208520.94877120.0False1.0138551.013855True04.1810.196923-1.120.791192False
45973male540.08208520.94877120.0False1.0138551.013855True04.1819.244121-1.120.009787False
\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", @@ -303,73 +308,73 @@ " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
agesexageratetrue_tt
059male540.08208520.94877120.000000False1.0138551.013855True04.18-1.12
158male390.08208512.82751912.8275194.8905974.890597True13.18-16.12
261female450.04978727.01888620.000000False4.0934044.093404True26.18-10.12
357female430.04978762.22029620.000000False7.0362267.036226True32.18-12.12
455male0.08208510.46204510.462045female570.0497875.7122995.712299True40.181.88
\n", "
" ], "text/plain": [ - " age sex rate true_t t event index age_centered\n", - "0 59 male 0.082085 20.948771 20.000000 False 0 4.18\n", - "1 58 male 0.082085 12.827519 12.827519 True 1 3.18\n", - "2 61 female 0.049787 27.018886 20.000000 False 2 6.18\n", - "3 57 female 0.049787 62.220296 20.000000 False 3 2.18\n", - "4 55 male 0.082085 10.462045 10.462045 True 4 0.18" + " sex age rate true_t t event index age_centered\n", + "0 male 54 0.082085 1.013855 1.013855 True 0 -1.12\n", + "1 male 39 0.082085 4.890597 4.890597 True 1 -16.12\n", + "2 female 45 0.049787 4.093404 4.093404 True 2 -10.12\n", + "3 female 43 0.049787 7.036226 7.036226 True 3 -12.12\n", + "4 female 57 0.049787 5.712299 5.712299 True 4 1.88" ] }, - "execution_count": 6, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -388,7 +393,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -396,21 +401,23 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAFoCAYAAADUycjgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4HNXVwOHfbFFZ1VVvVpfGtmzLBdsYG4yxAVMChF4C\nBAgEQkgCJHyEFCAQEmoISTAQmgktJIRqwJgO7lWWbWlsy7J6713bvj9WkpsMkrza1a7O+zx+LI1m\ndo50pJmz9965V3E4HAghhBBCfBedpwMQQgghhHeQokEIIYQQQyJFgxBCCCGGRIoGIYQQQgyJFA1C\nCCGEGBIpGoQQQggxJFI0CCGEEGJIpGgQQgghxJBI0SCEEEKIIZGiQQghhBBDYhjuAaqqngj8CpgF\nxAPnaZr27nccczLwKJADlAJ/1DRt+bCjFUIIIYTHjKSlIQjYBtwMfOfCFaqqpgLvA58CucBfgWdV\nVT11BOcWQgghhIcMu6VB07SPgI8AVFVVhnDITcA+TdPu6H8JVVUXALcCq4Z7fiGEEEJ4hjvGNBwP\nfHLYtpXAPDecWwghhBAu4o6iIQ6oOWxbDRCqqqq/G84vhBBCCBcYdveEi/R3a3znmIh+F//7piP2\nTdJP4XenXYc5NMBlgQkhhBA+aCjDCb6TO4qGaiD2sG0xQKumab1DfZFJAcdjtdlpae+l2rYXnamd\nkuZyfvTHVSw+bgJnzUshNMjPpYGL0aHX6wgNDaS1tQubze7pcMQxknz6Fsmn7+nPqSu4o2hYC5xx\n2LbT+rYP2b3nXk1TUwdWq51X899jdd3X6ExtdFttfLiuhE83l7F4VhJL5yQTYpLiwRvYbHasVrko\n+QrJp2+RfIrBjGSehiAgkwNNHemqquYCjZqmlamq+icgQdO0q/u+/hTwU1VVHwSeBxYDFwJnjjTo\nyXFprK77GkVvY8okf3YU9NJrsfPhulI+21LBkllJnD4nmeBA40hPIYQQQojDjGQg5HHAVmAzzjEJ\njwJbgHv7vh4HTOjfWdO0/cBZwBKc8zvcClynadrhT1QM2YTgxIGPF8w1cc81s5mRFQVAT6+NFWtL\nuGPZGt76ah8d3ZaRnkYIIYQQB1EcjiGPRfQ0R3/3hMPh4I6v76HT2sXiCSdxftbZAOyvbuWdr4vJ\nK2oYOCjQ38CFJ2ewaEbi0V5XuJnBoMNsDhrobhLeTfLpWySfvqcvpy4ZCOmVa08oisKEEGcRUNZW\nMbA9NS6Un1+Uy2+vOo4p6REAdPVY+ddKjdc/3YPdewokIYQQYszxyqIBGCga9rWW8PbeD6jtrB/4\nWnpCKLddPJ27rpxFjNk5YvTjjWUse2sHvRabR+IVQgghvJ3XFg2qORMAq93KqtIvuHfdQzyx9Rk2\n1+RhtVsByEwM4zdXziIjMRSAzbvrePj1rbR2DvlJTyGEEEL08coxDf0KG/fwZfkadjQUYHcc2B5s\nDGJe/GxOSJhDjCmKXouNf76/i81aHQAx5kBuvTiXWLPJ7d+EkD5TXyP59C2ST9/jyjENXl009Gvu\naWFt5SZWV66nqaf5kK9lmzNZkDCXqVGT+d8X+/l4YxkAwYFGfnbhNDITw9wSvDhALkq+RfLpWySf\nvkeKhqOwO+wUNO5mdcV68gdpfTg+/jiUhmTe+7wOB2A06Lh0cRYLpsZjNHhtT43XkYuSb5F8+hbJ\np++RomEImntaWFe1idWVG2jsbjrka/H+yVQURtBTHwMOHWFBfpwyK4lFMxJlQig3kIuSb5F8+hbJ\np++RomEYnK0Pe1hduZ78+l2HtD4oNj96axOw1U3A0R2En1HHiVMTOHV2EjEy3mHUyEXJt0g+fct4\ny+eDD/6RL7/8jPb2Np5//hUyM7PcHkN1dRUXXXQOL7zw6qic35VFg6dWuXQbnaIjJ1IlJ1KlpaeV\ntVUbB1ofHPpejPH7Mcbvx9Yaga12Ap9usfHZlnJmqtGcPidZxjwIIYSPWrduDStXruBvf3uGhIQE\nwsLCPRaLorjknj7qfL5oOFiYfyhLUxdzWsoiCvtaH7b3tT7oQxvRhzZia6ilt2gam7U6Nmt1ZCaG\ncfqcCczIikan846kCiGE+G4VFWVERkaRkzPF06HgLa3+46po6KdTdEyOVJnc1/rgHPuwnobuJvSR\nVaiRsZTmJdLVY2NvRQt732ohJjyQ0+ZMYP7UePyNek9/C0IIIY7BAw/cy4cfvo+iKJx44mzi4hL4\nz3/e4V//eoF3332bxsZ6kpNTuPrq6zj55MUAbN26mZ/97EYeffRvPPXU3ygp2c+UKbncc88fKSzc\nxT/+8Th1dbWccMKJ3Hnn7/D39wdg/fq1LF/+HPv2FaHX68jJmcbPf347iYlJR41v3769PPnkE+Tl\nbSMwMJDZs+fys5/d5tHWEBgHYxqGqsfWy+NbnqK0rRyACzO+T29NIqs2ldHY2jOwX1CAgZNnJJKT\nGkFqfAgBfuOy7jom463P1NdJPn2LK/LZ2W2lqrHDxZF9u/iIIEwBQ78ed3Z28MYbr/Hee2/z7LP/\nQqdTePvtN1m1aiU///ntJCVNYNu2LTzyyJ947LG/k5s7Y6BomDJlKjfffCv+/v787nd3Eh0djZ+f\nPzfddAudnR3cddcvufzyq7j88qsA+PLLz1AUHRkZmXR1dfHcc09RWVnJ8uWvAUeOaWhvb+eyy87n\nnHO+z9KlZ9Hd3c2yZX/DZrPx178+OeyfjYxpGAX+ej9unHYNj2z+O43dTfxv3zvcNO0a/jxrHpu0\nWlauL6Okpo2Obisr1pawYm0JOkUhKTqIjMQwMhJDyUgII8Yc6DV9U0II4Wqd3VbuWLaGzh6rW89r\n8jfw0E0nDLlwMJmCMJmC0On0mM1mLBYLL7/8Io8/vmyguyI+PoHt27fxzjv/Izd3BuAce3D99T9h\nypSpAJx99jk888yTvPHGO8TFxQNw8smL2bJl00DRsHDhKYec+447fss555xGcfE+0tLSj4jtzTf/\nTXb2RK6//qaBbXfe+VsuuOBsysvLSEqacMQx7iJFw0HC/EP4Se61PLr5H3RZu3lux8vcOvMmjp+c\nwNxJsWilzXy0oZQd+xqxOxzYHQ5Ka9sprW3n863OhbOCA41kJISSnhhGZkIoaQmh0hohhBBjXHl5\nGd3d3dx6682HjC+w2axkZ088ZN+MjMyBjyMiIvH3DxgoGADM5ggKCnYd8trPPvsUu3btoKWlGbvd\ngaIo1NRUD1o07N27hy1bNnLqqScdsl1RFCoqyqVoGEvig2K5YepV/H3bc3Tbeli2/QV+ddxPCfcP\nY2KKmYkpZnp6beyvbqWospWiihaKKlpo7bQA0N5lIa+oYWB5bkWBxKhgMhND+1okwoiV1gghhI8y\nBTjf8Y/17onDdXV1AvDww38lKirqkK/5+fkd8rnBcOA8iqIc8nn/NsdBj/ffcccviI9P5M47f0dU\nVBR2u4Mrr7wYq9Vy1Fjmzz+Jn/zkZ0cMkDw8NneTomEQ2eZMrph4IS8V/JvmnhaezHue22beRIAh\nAAB/Pz1qshk12Qw4R73Wt3Q7C4i+QqKsth2b3YHDAeV17ZTXtfPFtkrAOS4iIzFsoEUiPT6UQH9J\nhRDCN5gCDGQkeNfj6qmp6RiNftTUVJGbO91lr9va2kJZWSl33vk7pk1zvm5e3rZvPSY7eyJfffU5\ncXHx6HRja7ZiuVMdxdz4WTR0N7KieBUV7VU8t+MVbpz2Q/S6I5+cUBSF6PBAosMDOT4nDoAei42S\n6jaKKlsoqnAWEi0dztU1O7qtbC9qYHt/awSQGB1EeoJzbERmYhixESZ00hohhBBuYTKZuOyyH/DE\nE49hs9mYNm06HR3t5OfnERQUzNKlZwHDfzQyJCSUsLAw3n33LSIjo6iuruKpp/7+ra3N559/Me+/\n/w53330XV1xxFSEhoZSXl/Hppx/z61//3qMt1VI0fIszUpfQ0NXEuupN7GrU2FizlePjjxvSsf5G\nPdkTwsme4Hw8xuFw0NDazb7KVvZWOAuJ0po2Z2sEUF7XQXldB1/lHWiNSEsIJTMhjNzMKFLiQkbr\n2xRCCAFcf/1NRERE8Mory3n44QcIDg4hO1vlyiuvHdhnuDdsRVG4994/8fjjD3PVVZeQnJzCL37x\nK2655cdH7NcvKiqKZcueY9myJ7jttluwWHqJjY1n7tx5Hu/alkcuv4PVbuXedQ/T2N3E7NiZ/DDn\nUpe9tsVqo6S6nb0VLeyrdHZtNLX1DLrv/T+aS0JUkMvO7UnyiJ5vkXz6Fsmn75FHLt3IoDOQFZ7O\n+urN7GspdulrGw16MpPCyEw60PfX2No9MC5iT3kLxVWtAFTUd/hM0SCEEMI7ja0RFmNURngqAA3d\nTTR1N4/quSJCA5g9MYZLF2fxf5fPGNje0TX4KFshhBDCXaRoGIKMsLSBj/e17Hfbef2MevwMzhR1\ndEvRIIQQwrOkaBiCWFM0QUbnUtlFbiwaAIICjYBz/gchhBDCk0Y0pkFV1ZuBXwJxQB5wi6ZpG4+y\nrwG4C7gKSAQKgTs1TVs5oog9QFEU0sNSya/fRVHzfree2xRgoKmth44u907JKoQQQhxu2C0Nqqpe\nAjwK3A3MwFk0rFRV9WjTVP0RuB64GZgEPA28papq7ogi9pCMsFQAKtqraOlpddt5gwKcLQ0btVqe\nfncn63ZWS6uDEEIIjxhJS8OtwNOapr0EoKrqjcBZwLXAQ4Ps/wPgvoNaFp5SVXUJcDvO1gevkBnu\nHNfgwMEf1j3CkuSTWDThRAIM/qN63ozEUHaXNdPTa2P9rhrW76pBUSAz0Tl/w7SMSBKjgjz+7K4Q\nQgjfN6yiQVVVIzALeKB/m6ZpDlVVPwHmHeUwf+DwyQe6gAXDObenpYYmc2LiPL6uWEu3rZv3iz/m\ny/I1LE1dzPzEuRh1o/P06gULM8hOCneuZ7G3nqa2HhwO2FPufCTzv18UERkaQG5mJLmZUUxMDsdo\nOHLWSiGEEOJYDfdOFwXogZrDttcA6lGOWQncpqrq10ARsAQ4Hy8bhKkoCpeq32de/HG8U/QhWtNe\n2izt/GfPO3xW9hVnpZ3G7LgZ6BTXfls6RSE3M4rczCgcp2VTVtvO9qIG8orq2VfRigNoaO3msy0V\nfLalAj+jjskpEeRmRjItIwpzyOi2hAghhBg/XPX2WAGONrXkz4FncA6AtOMsHJ4HrhnuSfR6z9cZ\nGREp3BZxIwUNu3lrzweUtJbT0N3ESwX/5pPSLzgv60ymRU8ete6C9MQw0hPDOO+kdFo7eskvamDr\n3nryi+rp6rHRa7GzbW892/bWAxopcSFMz4xielYUaQmhY2I9i/48joV8imMn+fQtks+Ru+++u2lv\nb+fBBx/1dCiHcGUuh1s01AM2IPaw7TEc2foAgKZp9cD5qqr6AZGaplWpqvpnYNjTK4aGBg73kFFz\ngnkG8zKms758K6/nv0tlWw2VHTU8ue0FsiPTuXzauUyOyR7VGMzmIFKSzJy9MBOrzU5BcSMbdlWz\ncVcNFXXtAJRUt1FS3cY73xQTHuzPrEkxzJ4cx4zsaEx9gyw9ZSzlUxw7yadvkXwOn7+/kd5eA2az\n787eO+y1J1RVXQes1zTt532fK0Ap8ISmaQ8P4XgjsAt4XdO03w3j1I7W1i5strE3F7rNbmNt5Sbe\nL/qYpp6Wge05kSrnZZ1Jcmii22Oqaex0tjjsqaewpAmb/dA8G/U6Tps7gXPmp7l9WW69XkdoaCBj\nNZ9ieCSfvkXyOXJjuaUhNDTQY2tPPAYsV1V1M7AB59MUJuBFAFVVXwLKNU27q+/zOTjnZ9gGJOF8\nVFMBvrPAOJzNZh+jC6goHB83m5nR0/mqYg0f7/+cDmsnOxs0djZozIrJ5ez004gxRbstosjQABbP\nTGLxzCS6eqzs2t9I3t4GthfV09ppwWKzs2JNCd9sr+LikzM5PifW7U9gjN18ipGQfPoWX8/nLbf8\nmIyMTHQ6HR9+uAKj0cgNN9zEkiVLeeyxB/nii8+IiIjgF7/4FccffwJ2u52HHvojmzdvorGxntjY\nOL7//Yu46KIDixg6HM5//T83h8PByy+/yLvvvk1jYz3JySlcffV1nHzyYk9928ds2EWDpmlv9M3J\n8Aec3RTbgNM1Tavr2yUJOHgmogDgfiANaAdWAD/QNM19kx24iZ/eyJLkhcxPmMOnpV/xadnX9Np6\n2Vybx9a6fE5LWcT30k93e1yB/gZmqTHMUmOwOxwUV7Xy/ur95BU10NLeyz/f38VnW8u5fEk2afGh\nbo9PCOFbuqxdVHfUffeOLhQXFE2gYXhdKh99tILLL7+KZ599iU8//ZiHH/4TX375OQsXLuLqq6/j\n9ddf4f77f8+bb65Ar9cTExPL/fc/SFhYGPn5eTz00ANERUWxaNGSQV//pZeeZ9Wqldxxx10kJU1g\n27Yt3Hff7zGbI8jNnTHoMWOdLI09ilp72/ho/2d8U7EOm8MGwPVTr2J69BQPR+a0vaie1z7dS01j\nJ+Bs/lkwLZ4LFmYQGuQ3aueVpXd9i+TTtxxrPrusXfxuzZ/psnaNQnRHF2gI5L4T7hxy4XDLLT/G\n4XDw978/A4Ddbuf000/m5JNP4Te/uQeAxsYGzj13KU8//QKTJx953f7LXx6isbGR++77MwAPPHAv\n7e3tPPDAw1gsFs488xQef3wZOTkHjn3wwfvp6enh97+/7xi/46GTpbG9RKhfCBdnn8spE07kL1uW\n0dzTwr+1t8gOT8fUt5aFJ03LiGJyagSfbCrn3dXFdPfa+Hp7FZu0Ws6dn8Yps5IwyAhqIYSPysjI\nHPhYp9MRFhZGevqBbRERkQA0NTUB8Oabb/DBB+9RU1NNT08PVquFrKzBZxsoLy+ju7ubW2+9mYPf\nnNts1qMe4w2kaHCDqMAILlPPZ9n2F2jtbePNve9z5aSLPR0WAAa9jqVzk5mXE8t/vyxidX41XT02\nXv9sL1/mVXLZkiympEV6OkwhhJfof8fvDd0TBsOht0BFUY7YBuBw2Pn004958sm/csstt5GTMxWT\nycSrr75EQcHOQV+7q8vZgvvww38lKurQVRb8/EavJXe0SdHgJlOiJjE7diYba7awrmoTx8VMZ1Lk\n6D6SORxhwf5cd9ZkTp6RyKurdlNc1UZVQyeP/TuPSSlm5k+NY0ZWtNuftBBCeJ9AQyBpYcmeDsOl\n8vPzmDo1l/POu2BgW0VF+VH3T01Nx2j0o6amitzc6e4I0S3kDuBGF2Z/j8LG3bRZ2nlVe5PfzLlt\n1NeuGK6MhDB+c9VxrMmv5r9fFtHa0UtBSRMFJU34GTRmZEczLyeWyakR0nUhhBg3kpIm8NFHH7Bh\nwzri4xNYufIDCgt3kZAw+CP1JpOJyy77AU888Rg2m41p06bT0dFOfn4eQUHBLF16lpu/A9eQosGN\ngo1BXKyex3M7Xqaxu4l3933IxdnneTqsI+gUhQXT4pmlRrNqYxlrdlRT29xFr9U+sGhWiMnInImx\nHD8llvT4UFkwSwjhVQa/Zh25zbmfwnnnXciePbu5++67UBSFJUtO4/vfv4j169cc9RzXX38TERER\nvPLKch5++AGCg0PIzla58sprXfeNuJk8PeEB/8x/iW11OwC4deZNAytojlUOh4N9la2s3VnNhoLa\nI5bmjjEHMi8njuNzYok1f/cATxlt71skn75F8ul7XPn0hBQNHtDS08b96x+h09pFrCma38693eUL\nXY0Wq83OzuJG1u6sZuueeiyH5SM9IZR5OXHMnhRDqGnwwT5yUfItkk/fIvn0PfLIpZcL8w/hnIyl\nvK69RU1nHbWd9cQFxXg6rCEx6HUDq2529VjZsruOdTur2VXShMMB+ypb2VfZymuf7GFKegTH58Qy\nIysaf6Ms1y2EEN5OigYPSQ5JGvi43dLhwUhGLtDfwPyp8cyfGk9TWw8bCmpYu7Oa0pp27A4H24sa\n2F7UgL+fnpOmJXDxKRnodd7RoiKEEOJIUjR4SLDxwCpo3lo0HMwc4s/pc5I5fU4yFfUdrNtZzbqd\n1TS09tDTa2PVpjJCTEbOPiHV06EKIYQYIXnb5yFBBxUNHb3eXzQcLDEqiAsWZvDgTSdw5xUzSYkN\nAeCdb4oprWnzcHRCCCFGSooGD/HX+2HUORt62nygpWEwOkUhe0I4Pz43Bz+DDpvdwXMrCrDKcrtC\nCOGVpGjwEEVRBlobOny0aOgXF2HigpMzACirbeedr4s9HJEQQoiRkKLBg/rHNfjCmIbvsnhWEhOT\nwwF4b/V+9pQ1eTgiIYQQwyVFgwf1Fw11nfV40XwZI6JTFK45cxL+fnrsDgd/eW0r3b1WT4clhBBi\nGKRo8KAJIc45y4tbS1lZ8rmHoxl90eGBXHKKc9nZspo27n5uA+V17R6OSgghxFBJ0eBBS1MXkxgc\nD8B7+z5iW22+hyMafQtzE1gwzfk9VzV0cv/yTXyzvcrDUQkhhBgKKRo8KMDgz43TfkiIXzAAy3e9\nTmnb0Zda9QWKonD99yZz0wXTMOgVeq12nv+ggOfe30VPr83T4QkhhPgWUjR4WESAmR9PvRqDzkCv\n3cLT25fT0tPq6bBGlaIonHlCGr+/ZjYx4YEArN5RzX0vbaKi3vcHhQohhLeSomEMSAtL4QcTLwKg\nuaeFp7cvp9dm+Y6jvF9qXCi//+FsjlOjAais7+C+5RtZnS/dFUIIMRZJ0TBGzI6bwdLUxQCUtJXx\ncsEbPv9EBYApwMBN503hilOznd0VFjvPrSjg+RUFlNa0YR8HPwMhhPAWsvbEGHJW2qlUd9SyrS6f\nzbV5xAfFckbaEk+HNeoURWHxrCTSE0JZ9vYO6lu6+Sa/im/yqwgKMJCVFI6a7PyXHBOCTueSFV6F\nEEIMk+JF72Yd42F99x5bL3/Z/CRl7ZUAnJdxJkuSF6IovnOj7FvbncHy2dlt4aWVGhsKagc9NtBf\n7ywiJoSTnRxOSmwIBr00mHnSt+VTeB/Jp+/py6lLbiJSNIxBTd3NPLL5HzT3tACwKGkB52edjU7x\njZvjUC5KrZ297C5tRitrRittpqKuncF+U/2NejKTwpiYHI46wUxqvBQR7iY3Gd8i+fQ9Hi8aVFW9\nGfglEAfkAbdomrbxW/b/BXAjkAzUA/8Ffq1pWs8wTjtuigaAhq4m/pH3HDWdznfcM2OmcdXkSwcW\nufJmI7kotXdZ2FN2oIgorW1jsF9dP4OOjMQwZ3fGhHDSE0IxGvQu/g7EweQm41skn77Ho0WDqqqX\nAMuBG4ANwK3ARUC2pmn1g+x/OfAc8ENgLZDdd/xrmqb9chinHldFAzjXpHh6+4vsaykBICs8nRum\nXo3JGOjhyI6NKy5Knd1W9pQfKCJKqgcfNGnQ68hICD1QRCSG4W+UIsKV5CbjWySfvsfTRcM6YL2m\naT/v+1wByoAnNE17aJD9/wZM1DTt1IO2PQLM0TTtpGGcetwVDQC9Ngsv7HyV7fU7AUgIiuPm6dcR\n7h/m4chGbjQuSl09VooqWgaKiOKqVmz2I3+39TqFtIRQ1AnhTEmLIHtCuE+NF/EEucn4Fsmn7/FY\n0aCqqhHoBC7QNO3dg7a/CIRpmvb9QY65DPgHcLqmaRtVVU0H3geWa5r24DBiHZdFA4DNbuON3W/z\nTeV6AMz+4fx0+nXEBcV6OLKRccdFqcdicxYRfeMi9lW2YLUd+bu+aGYiPzg1WwqHYyA3Gd8i+fQ9\nriwahttBHgXogZrDttcA6mAHaJr2mqqqUcA3fa0SeuCpYRYMAOjH6QA3Azp+kHMhESYz7+79iKae\nZh7d/CQ3z7iWTHOap8Mbtv48jmY+DQYd0zKjmJYZBUBvXxFRWNpMYUkTeytasFjtfL6lggA/PZcu\nzpLCYYTckU/hPpJP3+PKXLpqVJ0Cgw5uR1XVk4G7cA6E3ABkAk+oqlqladr9wzlJaKh39+Ufqx9E\nnEuCOZpnNr1Cp7WLx7c8w63zruO4xFxPhzYi7s5nbEwoJ8yYAEB7Zy+/eWoN+ypa+HBdKWEhgVyx\ndKJb4/E14/3v09dIPsVghls01AM24PB28RiObH3o9wfgJU3TXuj7fKeqqsHA08CwiobW1i5stvHd\nXDbDnMtPpht5Ju9f9Nos/HXtCzy08PcEGPw9HdqQ6fU6QkMDPZ7P2y/J5YGXNlNR38HrqzRsVhvf\nm5/qsXi81VjJp3ANyafv6c+pKwyraNA0zaKq6mZgMfAuDAyEXAw8cZTDTMDhv3l2QFFVVdE0bciD\nKmw2u/SxAZPME7l2yhU8tf1Femw97G3cz8SILE+HNWyezmegn4HbL53On1/ZQm1TF//5fC8GvcKp\nx03wWEzezNP5FK4l+RSDGUn3xGPA8r7iof+RSxPwIoCqqi8B5Zqm3dW3/3vAraqqbgPWA1k4Wx/e\nGU7BIA41MSIbg86A1W5lb3OxVxYNY0F4sD+/unQGf35lCw2t3bz2yR78jXpOyk3wdGhCCDHmDHt0\nhKZpbwC347zxbwWm4Xwyoq5vlySckz71uw94tO//ncA/gQ9xjnEQI2TUGUgJcb4jLmou9nA03i0y\nLIBfXTad8GA/AJZ/WMjeihYPRyWEEGOPTCPtxd4t+oiVJZ9h1Bl55KR7MXjJbJFj9ZGuqoYO7n1h\nI71WO2efkMr5J6V7OiSvMFbzKUZG8ul7XPnIpTxT48Uywp2PW1rsFsraKjwcjfeLjwwiPjIIgNqm\nTg9HI4QQY48UDV4sPSwFBWfxuFe6KFwiNsI5wrimscvDkQghxNgjRYMXCzQEkBQcD0jR4CoxZhMA\n1U2deFHXnRBCuIUUDV4uM9zZ776joYBVJV/Ije4YxfW1NPT02mjt6PVwNEIIMbZI0eDlFk1YQJhf\nKABvF33Am3vfw+6QwUsjFdvX0gBQXt/hwUiEEGLskaLBy0UGRnD7rJuJNcUA8HnZN7y48zUsdquH\nI/NOCVFBGPrmaX/l4910dsvPUQgh+knR4AMiA83cNusm0kJTANhcm8eT256jyyqD+YYr0N/AJadk\nAlDd2Mkz7+3EPsgS20IIMR5J0eAjgo1B/GzG9UyNmgzA7uYi/rLlKZp7ZJKi4TplZiILpjkHmG4v\nauCtr/f82lZdAAAgAElEQVR5OCIhhBgbpGjwIX56P66fciXzE+YCUNFexaObn6S6o9bDkXkXRVG4\n8jSVjATnWJEVa0vYUHC09diEEGL8kKLBx+h1ei5Tz+fMtFMBaOxu4rHNT7KvpcTDkXkXo0HHzedP\nHZha+vkVBZTWtHk4KiGE8CwpGnyQoiiclXYql6sXoKDQYe3kia3PsLNB83RoXiU82J+fnj8Ng15H\nr9XO397cLo9hCiHGNSkafNj8xLncMPUqjDoDFruFf+YvZ3fTXk+H5VXSE0K5eqkKQENrD0++vQOr\nTR5pFUKMT1I0+Lhp0Tn8dPr1+OmMWOxWlm1/Uboqhmn+1HhOm+1cUXR3WTOvfbLHwxEJIYRnSNEw\nDmSGp/HjaT/EoOjptfXyZN5zssDVMF20KIOcVDMAn2+t4Iut8vMTQow/UjSMExMjsvjR1CvRKTq6\nrN38fduzVHfIEwFDpdfpuPG8KcSYndNMv7JqN7vLmj0clRBCuJcUDePI1KjJ/HDypSgotFs6eGLr\nM9R1Nng6LK8RFGDklgumEeCnx2Z38I+38mlo6fZ0WEII4TZSNIwzs2Knc8XECwFo6W3jiW3P0NQt\n75iHKjEqiBu+l4MCtHVa+Nv/ttNjsXk6LCGEcAspGsaheQmzuSj7XMA5j8MTW5+hpUfmIBiq6VlR\nnHeSc3XR0pp23pYZI4UQ44QUDePUyUnzOTfjDABqu+p5ZPPf+az0KzotnR6OzDucPS+FaRmRAHy8\nsYx9la0ejkgIIUafFA3j2Gkpi1iauhhwtji8ufd97lp9P//a9Qb7W0txOGShpqNRFIWrTlcJ8NPj\ncMALHxbI/A1CCJ+nv+eeezwdw1Dd091tkRUHXSw7PIO4oBiae1po7mnB7rBT3l7JmsoN5DcUoCgK\nsaYYDDq9y86p0ykEBvrh7fkM9DdgCjCyvaiBtk4LOp3CxGSzp8NyO1/Jp3CSfPqevpze64rXUrzo\n3aSjqakDq1XezY2WsrZKvq5Yy8aarfTaDkyXHGgIYE7cLE5MPJ74oNhjPo/BoMNsDsIX8ml3OHj4\n1a1oZc3odQp3XzObpOhgT4flVr6UTyH59EV9OVVc8VpSNIgjdFm72VC9ha8r1lJ12FwOmeFpnJg4\nj+nRUzDoDCN6fV+7KNU0dvL75zdgsdpJiw/hN1ceh07nkr9Pr+Br+RzvJJ++x+NFg6qqNwO/BOKA\nPOAWTdM2HmXfz4GFg3xphaZp3xvGaaVocDOHw0FRy36+rljL1tp8bI4DjxaGGIM5IWEO8xPmEhk4\nvCZ5X7wofbS+lDc+d67rcf3Zk5k3Jc7DEbmPL+ZzPJN8+h5XFg3DHgipquolwKPA3cAMnEXDSlVV\no45yyPdxFhf9/6YANuCNkQQs3EdRFDLD07gm53L+OP83nJt+BpEBzgKhzdLOypLPuHvtn1mW9zw7\n6guwO8bvBebU2UnE9s0WuWpTmQwiFUL4pJG0L98KPK1p2ksAqqreCJwFXAs8dPjOmqYdMnOQqqqX\nAx3Af0dwbuEhIX7BnJa6iCUpC9nVoPF1xTp2NhTiwMGOhkJ2NBQSGWBmfsJcTkiYQ4jf+OrX1+t0\nnDIridc+2cP+6jb2VbaSkRjm6bCEEMKlhtXSoKqqEZgFfNq/TdM0B/AJMG+IL3Mt8JqmaV3DObcY\nG3SKjilRk7gp9xrunXcnp6ecQojRWSA0dDfx7r6PuG/9I9R01nk4UvdbMDUefz/nUyafbi73cDRC\nCOF6w+2eiAL0wOErHdXg7Hr4VqqqzgFygGeHeV4xBkUGmjknYyn3z7+La3MuJyvcOUtih6WTF3e+\nitVu9XCE7hXob2DBlHgANhbW0tze4+GIhBDCtUY2/P1ICjCUTtzrgB2apm0eyUn0epmLaiwy4Mfc\nxJnMTZzJyuLP+d+eFZS2VfB+8UouVI8c69qfR1/M52lzJ/DplnJsdgdf5VVy/sIMT4c06nw5n+OR\n5NP3uDKXwy0a6nEOYjz8Yf0Yjmx9OISqqoHAJcBvh3nOAaGhgSM9VLjJxeFnsqe1iPyaQlaVfMmc\n1Gnkxk0edF9fzKfZHMRMNYYtWi1fbK3kyrNy8DO6bmKsscwX8zmeST7FYIZVNGiaZlFVdTOwGHgX\nQFVVpe/zJ77j8EsAP+CVEcQJQGtrFzaZqnfMu3Lixfyh8VHaLR38be2L/G7ebYT6hwx8Xa/XERoa\n6LP5XDQjgS2as3vig6+LWDgj0dMhjSpfz+d4I/n0Pf05dYWRdE88BizvKx424HyawgS8CKCq6ktA\nuaZpdx123HXA25qmNY00WJvNLs8Ne4EgfTA/mHQRT21/kdbeNl7c8W9umnYNinLoY8K+ms/JKWYS\nooKorO/gg3UlzJsSh07x/cmefDWf45XkUwxm2B0dmqa9AdwO/AHYCkwDTtc0rX+4fBKHDYpUVTUL\nOAEZADluTI2azMKk+QDsbCjki/LVHo7IfRRF4fTZEwCoauhkx74GD0ckhBCuIdNIi1FjsVl4aNPf\nqOyoxqDo+dVxt5AUkjAuZpyzWO38atkaWjt6mZgczh2Xz/R0SKNmPORzPJF8+h6PzggpxFAZ9Uau\nnXIFRp0Bq8PGC7tew2KzeDostzAadCyZlQRAYWkzJdVtHo5ICCGOnRQNYlTFB8VyfqbzscvqjhpW\nFK/ycETuc/KMRPyMzj+xR17fyiurdkvxIITwalI0iFF3YuLxTIrIBuCT0i8pat7v2YDcJDjQyBlz\nUwDo6Lby6eZy7n1xI3c/v4GPN5bR2tn7Ha8ghBBji4xpEG7R1N3MHzc8Rpe1mxhTFI+e8Ts62yw+\nn0+Hw8HO4ka+ya9iy+56rAc9wqbXKUzLiGTB1HimZkRi8NLJdKQP3LdIPn2Px5fG9hApGrzcuqpN\n/KvAubjpGVmLOC/trHGVz45uCxt21fBNfjXFVa2HfC3EZGReThwLpsaTFONdi33JTca3SD59jxQN\nwis5HA6ezl9Ofv0uAG477kYyQtM9HJVnVNS1szq/mjU7q2ntOLSbIiU2hAXT4pk7OZbgQKOHIhw6\nucn4Fsmn75GiQXitlp42/rjhUTosnUQGmLlrzq0EGAI8HZbH2Ox2duxzdl9s21OPzX7g79GgV5ie\nGcX8qfFMSY9Arxub3Rdyk/Etkk/fI0WD8Grb6rfzz+0vAzAzZhqnp5xCQnAcOmVs3hTdpb3Lwrqd\n1azOr6ak5tCnLFLjQvi/y2cOLL09lshNxrdIPn2PFA3CqxkMOl4seI21ZQcWOw00BJAWlkJmWBoZ\n4WmkhCRh1I/9pvnRUlbbzur8KtburKat0zm3xYKp8Vx71iQPR3Ykucn4Fsmn75GiQXg1g0GHweTg\nwS+fYndT0eD7KHqSQyeQEZZKZnga6WEpmIwmN0fqeVabnWfe3cmmvlnabzhnMsdPjvuOo9xLbjK+\nRfLpe6RoEF7t4ItSU2crRS37KWoupqh5P2XtFdgdg+c4ISiOjPC0gULCHBDu5sg9o7Pbwt3Pb6Sh\ntZsAPz33XDObGPPYKaDkJuNbJJ++R4oG4dW+7aLUbe1hf2vpQCFR3FJCr33wqafN/uFkhDsLiIyw\nNOKCYnx2XMTeihb+/PIW7A4HafEh/PoHs8bMvA5yk/Etkk/fI0WD8GrDuSjZ7DbK2yudLREt+9nb\nXEy7pWPQfU2GQNLDUgcKiQkhSRh1I1n9fWx6f81+/vfVPgDOmJvMRYsyPRyRk9xkfIvk0/dI0SC8\n2rFclBwOB7Vd9RQ193VptBRT1zX40tMGnYGUkAnOlojwVNLDUgg0BLriW/AIu93Bo//eRkFJEwDz\ncmKZnhVNTmoEpgDPFUdyk/Etkk/fI0WD8Gquvii19LRR1FLMvub9FLUUU9ZWiYMjf68VFBKC48gI\nSyMzPJWM8DTC/cOO+fzu1NTWw93Pb6C960CXjV6nkD0hnNzMKHIzI4l183gHucn4Fsmn75GiQXi1\n0b4odVu7KW4tHWiNKG4txXKUcRGRARHkRKp8L30pJqN3tEJUNXSwckMpeXsbaOk4ctGruAgTuZmR\nTM+MIiMxbNTHPshNxrdIPn2PFA3Cq7n7omSz2yhtqzioNWL/EeMiEoLiuHn6dV7V8mB3OCipbiNv\nbz15exuOmBAKwORvYEp6BNMzo5iSHjkq01LLTca3SD59jxQNwqt5+qLkcDio6ayjqKWY/Ppd5NcX\nAM6nMX46/TrigmLdHpMrNLX1sL3IWUDs2t9I72E/W0WBrMQwcrOiyM2IIj7ShKIc+3XE0/kUriX5\n9D1SNAivNpYuSg6Hgw/3f8KK4lUABBlM3Jh7DelhKR6N61j1WmwUljaRt7eBbXvraWrrOWKf6PAA\ncjOiyM2KQp0QPuJujLGUT3HsJJ++R4oG4dXG4kVpdcV6XtP+hwMHRp2R66ZcwdSoyZ4OyyUcDgdl\nte3kFTWQt7ee4srWI4aJBvjpmTs5lsuXZGE0DG99i7GYTzFykk/fI0WD8Gpj9aK0vW4nz+98BYvd\nioLCZRPPZ37CXE+H5XItHb3kFzWQV1TPjuJGenptA1+bkRXFT74/ZVgrao7VfIqRkXz6HikahFcb\nyxelfS37eSrvRTqsnQCclXYqZ6QucUnf/1hksdrZXdbMRxtK2VncCMD8qXFcc+YkdEP8nsdyPsXw\nST59jyuLhrExD60QY0R6WCq3zboJs79zXYsVxat4XfvfUdfD8HZGg46ctAh+dsFUJqWYAVidX80b\nn+3Fi95QCCHcRIoGIQ4TFxTLL4+7mYQg52qS31Su58Wdr/n0TdRo0PPT86eSFh8CwMcby3h/bYmH\noxJCjDUjKhpUVb1ZVdViVVW7VFVdp6rq7O/YP0xV1X+oqlrZd0yhqqpLRxayEKMv3D+MW2feRFZ4\nOgCba/Mob6/ycFSjK9DfwK0XTychKgiAt77ax2dbyj0clRBiLBl20aCq6iXAo8DdwAwgD1ipqmrU\nUfY3Ap8AycD5gApcD1SMMGYh3MJkDOSGqVehV5xPE2ypzfNwRKMvONDI7ZdMJyosAIBXPt7Nul3V\nHo5KCDFWjKSl4VbgaU3TXtI0rRC4EegErj3K/tcB4cB5mqat0zStVNO0rzVNyx9ZyEK4j8loYlJE\nFgCba/J8uouinznEn9svnU5okB8OYPlHGq2DTFcthBh/hlU09LUazAI+7d+maZoDZ0vCvKMc9j1g\nLfCkqqrVqqrmq6r6a1VVZTyF8AozY3IBaOhupLRtfDTXx5pN3HLBVAB6em28v3a/R+MRQowNw11P\nNwrQAzWHba/B2e0wmHTgFOBl4AwgC3iy73XuH87J9aO88I5wj/48eks+Z8ZN4dXC/2J12Nhat52M\nCO+eLXKo1GQzcybHsmFXDV9sreCM41OIDj9yUS9vy6f4dpJP3+PKXA63aDgaBQZZi9hJh7OouKGv\nVWKrqqqJwC8ZZtEQGuodqxCKofGWfJoJYnrCFDZV5LG1Lp8fzb3EZ+dtONy150xhU2EtVpuDFetK\nufWymUfd11vyKYZG8ikGM9yioR6wAYev6BPDka0P/aqA3r6CoV8BEKeqqkHTNOtQT97a2oXN5pvP\ny48ner2O0NBAr8pnboSzaKjvbGTz/l1khKd6OiS3MBkUFk5P4PMtFXy+qYwlMxNJigk+ZB9vzKc4\nOsmn7+nPqSsMq2jQNM2iqupmYDHwLoCqqkrf508c5bDVwGWHbVOBquEUDAA2m11mKPMh3pTPyeaJ\nGHUGLHYrn5esJjlowrhpbTh7XirfbK/CYrXzyqrdXH26StQg3RTelE/x3SSfYjAj6Z54DFjeVzxs\nwPk0hQl4EUBV1ZeAck3T7urbfxnwU1VV/wr8HcgGfg08fmyhC+E+AQZ/cqOnsKlmGxtrthJoCOCi\n7HPRKb7f72sO8WfJcUl8uM451fQdT60lMjSAicnhqMlmctIjMJuDPB2mEMINhl00aJr2Rt+cDH/A\n2U2xDThd07S6vl2SAOtB+5erqnoa8BecczpU9H380DHGLoRbXZR1LjUdtZS1V/JVxVp67RaumHjh\nuCgczjo+haLyFnaXtwDQ0NrN6h3VrN7hnMMhJsKEmhRG9oRw1ORwosKkP1wIXyQLVgm38+YFcTot\nXTyZ9xzFraUAzIrJ5erJl6LXDW85aW/kcDiob+mmsLQJrbSZwtImGlt7Bt03KiwANTmciclmJiab\nieybLEqMfd789ykGJ6tcCq/m7Relbms3y7a/wN7mYgByo6dwTc7lGHWuehjJOzgcDupautlT3sy+\nqjbydtfR2Hb0ImJisnmgkJAiYuzy9r9PcSQpGoRX84WLUq+tl6e3L6ewaQ8AkyNVrp9yFX56o4cj\nc7/+fDY2tlPV0ElhSRNaaROFpc00fUcRMTHFWUREhEoRMVb4wt+nOJQUDcKr+cpFyWKz8NzOl8mv\nLwAgOzyDH0/7IQEGfw9H5l5Hy6fD4aCuuYvC0ubvLCKiwwNQk81MTA5nRlY0gf7jq9VmLPGVv09x\ngBQNwqv50kXJarfy4q7X2Vq7HYD0sFR+knsNgYbxMxBwqPl0OBzUNncNjIcoLGmiuf3INS0C/fUs\nzE1kyXFJ0gLhAb709ymcpGgQXs3XLko2u42XC//DhuotAMyInsqPpl7p4ajcZ6T57C8inN0ZzkLi\n4CJCr1OYMymG0+ckkxwbMhqhi0H42t+ncG3RIG2AQhwjvU7PlZMuxmK3srV2OzsbNewO+7h4FPNY\nKIpCrNlErNnEwumJOBwOiipaWbmhlC2767DZHazdWcPanTVMTjWzdE4yOWkR42ZSLSHGIikahHAB\nnaJjelQOW2u302vrpbmnhYgAs6fD8iqKopCZFEZm0lRqmjr5eGMZq7dX0Wu1s2t/E7v2N5EYHcTS\nOcnMnRyLQRZUEsLt5K9OCBeJDTqwJEt1R60HI/F+sWYTV56m8vBPTuC8E9MIMTmfSqmo6+C5FQXc\nsWwNH6wrobPb4uFIhRhfpGgQwkViTdEoOJvOqzulaHCFEJMf58xP45GfnMDVS1XiIkwANLf38t8v\nirj9yTW89ske6pu7PBypEOODdE8I4SJ+eiMRAWYauhulpcHFjAY9C6cncmJuAtv3NvDRhlJ2lzXT\n02tj1aYyVm0qIyspjDmTYjluYgxhQX6eDlkInyRFgxAuFB8U01c0HG2leHEsdIrC9KwopmdFsa/S\nOWhyk1aLwwF7ylvYU97Cq5/sZmKymTmTYpilxhAcOP4m3BJitEjRIIQLxQbFsKOhULon3CA9IZSb\nzptCfUsX63fVsKGglrLadhwOKChpoqCkiZc/3s3k1AjmTIphRlY0pgC55AlxLOQvSAgXijM5B0N2\nWDpp7+0g2E+WjB5tUWGBnDUvlbPmpVLV0MGGglo2FNRQ1dCJze4gf18D+fsaMOg1pqZHMGdSLNMz\no/D38/1FxoRwNSkahHChUL/ggY87rZ1SNLhZfGQQ5y5I45z5qZTXdbChoIaNBbXUNndhtdnZuqee\nrXvq8TPqyM2IYs6kWKZlRGA0SAEhxFBI0SCECx28YJXFbvVgJOOboihMiAlmQkww55+Uzv7qNjYW\n1LKhsIbG1h56LXY2FtaysbCWAD89M7KimTMphpy0CJn/QYhvIUWDEC5k1B0oGnptMofAWKAoCmnx\noaTFh3Lhogz2VbSyvqCGTYW1tHT00t1rY+3OatburMbPoCMxOojE6GCSooNJig4iKTqYUHkaQwhA\nigYhXOrgosFil6JhrNENzDoZxmWLs9DKmtlYUMMmrY72Lgu9VjvFVW0UV7UdclyoyXhoIRETTEJU\nEP5G6dYQ44sUDUK4kFF34E9KioaxTadTmJRiZlKKmctPzaawtIm95S2U13VQXtdOXVMX/cv5tXZa\naO17IqOfAkSbAw9pkUiKCSYmPBCdTtbHEL5JigYhXMh48JgG6Z7wGga9jilpkUxJixzY1tNro7Kh\ng/La9oFCoqKundZOZ14dQG1TF7VNXWzZXTdwnJ9BR3xU0IFCoq+oCA3yk8W2hNeTokEIFzq0e0IG\nQnozfz/9wFiIg7V29FJe11dI1LZTXtdOZX0HvX3LSPda7ZRUt1FSfWgXR3Cg8ZAWicToIBKjggjw\nk8uw8B7y2yqEC/nrDwyY291UxOy4GR6MRoyG0CA/JgdFMDk1YmCb3e6grrnrQDHR939tUyeOvj6O\n9i4LhaXNFJY2H/J60eEBJEUHkxjtfNojKTqIGHMgep08xSHGHikahHAhP70fuVE55NXvZE3VBjLD\n05gbP8vTYYlRptMpxEaYiI0wMUs9sL3X0t/FcaB7o7yug5aO3oF96pq7qWvuZuue+oFtBr2O9PgQ\nFkxLYPakGBlwKcYMxdFfBo99jqamDqx9TYDCexkMOszmIHw1nx2WTh7c+Fcaupsw6oz8ctbNJIUk\neDqsUePr+RwNrZ29VNQe2ipRUd9Or+XIn1+gv4ETcuJYOD2BpJjgQV7NtSSfvqcvpy4ZUDOiokFV\n1ZuBXwJxQB5wi6ZpG4+y79XACzjHDfUH3a1pmmmYp5WiwUeMh4tSaVs5j25+EqvdSlRgJP933M8w\nGQM9HdaoGA/5dAe7w0F9cxfldR2U1rSxoaCW6sbOQ/bJSAxlYW7iqLY+SD59j0eLBlVVLwGWAzcA\nG4BbgYuAbE3T6gfZ/2rgcSCbA0WDQ9O0usP3/Q5SNPiI8XJRWlO5gVcK/wvA1KhJ3DD1anSK7/VT\nj5d8upvD4WB3WTNfbqtkk1aL1XbgWh3ob2BeTiwnT090eeuD5NP3uLJoGMmYhluBpzVNewlAVdUb\ngbOAa4GHjnLMSIoEIbzaCQlzKG4pZU3VBvLrC/i45HOWpi72dFjCSyiKgppsRk02c1lnFmt3VPPF\ntkqqGzvp6rHy2ZYKPttSQUZCKCdNT2DOxFhZhEuMumEVDaqqGoFZwAP92zRNc6iq+gkw71sODVZV\ndT+gA7YAd2matmvY0QrhZS7OPpfy9gpK2yp4f9/HpIROYFJEtqfDEl4mxOTHaXOSOXX2hCNaH4oq\nWymqbOX1T/cwLyeOhdMTmeCGsQ9ifBpuW2kUoAdqDtteg3N8w2A0nK0Q5wBX9J1zjaqqicM8txBe\nx6g38qMpVxJkMOHAwQs7X6W0rdzTYQkv1d/6cMM5OTz20wVcekomcRHO4WFdPTY+21LB3c9v4I8v\nbTpiPIQQrjCsMQ2qqsYDFcA8TdPWH7T9IWCBpmknDOE1DEAB8KqmaXcPI1ZHa2sXNpv0sXk7vV5H\naGgg4ymfO+oL+fuW53DgQEFhUfICzsk8nUBDgKdDO2bjMZ9jicPhQCtt5outFWwsqMXSl4PU+BDu\nvXbOsGehlHz6nr6cemRMQz1gA2IP2x7Dka0Pg9I0zaqq6lYgc5jnJjTUN0efj1fjKZ8nmmdh0Xfz\nwtb/0GPt4bPSr9lat52rp1/EvAkzfWJ64fGUz7FmXkQw86Yn0drRy+urNN77eh/7q9ooKGtlfu7I\nHveVfIrBjOTpiXXAek3Tft73uQKUAk9omvbwEI7XATuADzRN++UwTi0tDT5iPL+Taexu5t+Fb7Ot\ndsfAtsmRKpdN+j4xpigPRjZy4zmfY5HFauf/lq2hvqWbuAgTf7rx+GHNLin59D2ebGkAeAxYrqrq\nZg48cmkCXgRQVfUloFzTtLv6Pv8dsA7YC4QDdwApwLPDPbHNZpdHgHzIeMxnqCGU66dcRX79Lv6z\n+x0aupvY1aBx75pHOD1lEaemLDpkpUxvMh7zORYpwHknpvHs+wVUN3by5dZKThpBa4PkUwxm2A+N\na5r2BnA78AdgKzANOP2gRyqTOHRQpBl4BtgFrACCcY6JKDyGuIXwalOjJvPbubdzWsoi9Ioeq93K\niuJVPLD+MQob93g6POHljp8cR2J0EADvfFNMr8Xm4YiEr5BppIXbyeQxh6ruqOF17S32NO8b2DYr\nJpcLsr5HmH/otxw5Nkg+x6Zte+p54s3tAFy8KJOlc5OHdJzk0/e4cnIn35ueTggvExcUy89n/Jir\nJl1CsNH57nBzbR5/WPcIX5Svxu6QC7cYvtzMSDITwwB4d3UxDS3dHo5I+AIpGoQYAxRFYW78LO4+\n/lcsSJiLgkK3rZv/7H6Hhzb9jb3NxZ4OUXgZRVG4ZHEmigLdvTae/6AAu/e0LIsxSooGIcYQk9HE\nZRMv4PZZN5MU7By8VtZWwV+2LOO5HS/T0NXk4QiFN8lICOPM41MAKChp4vMtFR6OSHg7KRqEGIPS\nwpK547hbuCjrXEwG5/PyW2q384f1D/Ne0Ud0W3s8HKHwFufMTyMp2jmt9H8+30uNzBQpjoEUDUKM\nUXqdnpMnzOfueXewMOkEdIoOq93KRyWf8Yd1D7GuapOMdxDfyWjQ8aOzJ6HXKfRa7Ty7Yhd2u3RT\niJHR33PPPZ6OYaju6e62yC+7D9DpFAID/ZB8Do2f3o+cyInMiJlKXVcD9V0N9Nh62V6/k50NBcQF\nxRIRYPZYfJLPsS8s2B+dolBQ0kRTWw/dvTZCg/wI8Ddg0B/63lHy6Xv6cnqvK15LHrkUbiePdB2b\nnQ2FvLnnfWo6awe2zYyZxnkZZxEZ6P7iQfLpHWx2O396eQv7KlsP2R4R6k9chGngX0J0MBPTozBg\nx27zmvuD+BaufORSigbhdnKTOXY2u42vKtbyQfEqOq1dABh1BhYnL+TU5JMJMPi7LRbJp/eoaezk\n8f9uH9K4BqNBR6w5kLgIE7H9RUWkifgIE6YAoxuiFa4iRYPwanKTcZ12SwcfFK/i64p1A+MbwvxC\nOCfjDObEzUSnjP6wJcmnd7E7HDS2dFPd2ElVYyc1jZ1U9/1rbB3aANtQk/FAMRF5oJUiOjzwiO4O\n4XlSNAivJjcZ16vqqOHNPe9R0Lh7YFtGWBrXTfkBYf4ho3puyafv6Om1Ud/aTVu3jb1ljVTWd1Dd\n4Cwounu/eypqvU4hKjyQOHPgIcVEXGQQoSajT6zm6o2kaBBeTW4yo+fw8Q5hfiH8aOqVpIeljto5\nJeCIRckAACAASURBVJ++ZbB8OhwOWjp6qelrnegvJKobO6lv7h7SpFGB/gbiIgIPKSRizYHERpjw\nN+pH+9sa16RoEF5NbjKjy2a38d6+lawq/QIAvaLnwqzvcWLivFF5pyf59C3DzafVZqeuuWugkKjq\nKyZqGjtp67QM6ZyRA4Mxg4iNCCQhKojsCeHS1eEiUjQIryY3GffYWpvPvwr+TY+tF4C5cbO4VD0f\nP71rB7FJPn2LK/PZ3mU5ZMxEdUMn1U2d1DR2YbV9+2uHmIwsmBbPwtwEYsymY4pjvJOiQXg1ucm4\nz/+3d+fRcZ1lnse/VaUq7aVdlrfYjpfXu2Q7gSwEOwkhA3QDaSBLA2kS0k1COkBots70aZr0zJlD\nOIE+gWYITZPEE6AJ3RCSdBaTkM0JiW3FkmzZfr2vsnZZu1RSVc0ft6Ro8VKSy6pFv885PiXduvfW\nozy5V4/e973vW9/dwE93bKShx1m5fm7OLP561a0UZRbG7DOUz9QyFfkMhcK0dPSNKiSGWiraOscP\nxlwxv4D1FbOpWFys1odJUNEgSU2/ZKZW72Af/2/Xr6lurgUgOy2L21b+JcsKl8Tk/Mpnaol3PvsD\nQeyxNl6tqqNqfzMjf0XlZfu4qnwm7y+fRXFe5pTHlqxUNEhSi/dNaToKhUP84cgrPH3wBcKEceHi\noxf/D66bt+G8xzkon6klkfLZ2tHH6zUnea26blQLhAtYeXERGypmsXpRER63Wh/ORkWDJLVEuilN\nN7tb9vJI7S/pHnQm9ykvWclnl91IZlrGpM+pfKaWRMxnMBRix4FWXqk6wY4DLYz8rVWQm85Vq53W\nh0L/5P8/TmUqGiSpJeJNaTpp7m3l33Zs5HhXHQCripdz5+rPTfp8ymdqSfR8Nrf38lr1SV6vqaO9\nKzC83eWC8oXFrK+YxaqLi3C7NSfEEBUNktQS/aY0HQSCAzy261dUNe3EhYsHrvonsryT6yNWPlNL\nsuRzMBiien8Lr1SdoPZQ66j3ivzpvL98Fu9bPYuC3KmbUj1RxbJoSIvFSUQkufg8Xq6fdw1VTTsJ\nE2Zv234qSlfFOyyRqKV53KwzJawzJTSe6uW1qjo219TR0TNAS0c/v3v9EL/ffJiKxcVsqJjF8gWF\nuDUj5XlT0SAyTc3JnUW2N4vugR52t+5V0SBJqzQ/k09uWMjHr1rA9n3NvLL9BLuPtBEKh3lnbxPv\n7G2iOC+D9RVO60Neti/eISctFQ0i05Tb5WZpwWIqG6vZ3bqXcDistQEkqaV53Fy6tJRLl5bS0NrD\nq9V1bK45SVfvAM3tffzXqwd58vVDrFlczPo1s1k2r0CtDxOkokFkGltWuITKxmpa+tpo6m2hNKs4\n3iGJxMSMwixuvHoRN1x1MZV7G3l1ex322CmCoTDbbBPbbBOlBZmsL5/Flatn4s9S60M0VDSITGNL\nCxcPf72nda+KBkk53jQ3ly0v47LlZZxs6ebVqjre2HGS7r5BGtt6+c0rB/jtawdZZ0pYXzGbpRfl\nq8XtLCZVNBhj7ga+BpQB1cA91tqtURx3M/BL4Elr7V9M5rNFJHYKMvIpy55BfXcDu1r38v45V8Q7\nJJELZmZRNjdfu5hPrL+YbXuaeKXqBPuOtxMMhdmyu5EtuxspK8xiw5rZXLmqjOyM2K7Tkgom/Mil\nMeYm4DHgb4AtwL3Ap4Al1trmsxw3D9gMHABaJ1E06JHLFJEsj3RNF/+57ylePrYZgDUlq/iziz9I\nWfaMqI9XPlPLdMvniaYuXq2q482d9fT0Dw5v96W5ec/yGVyzdjbzy/xxjPD8xXWeBmPMW8Db1tov\nR753AceAh6y1D5zhGDfwKvBz4P1AnoqG6Wu63ZQSXWNPEw9s+xG9g70AuHDxnrK1fHjBByjOLDrn\n8cpnapmu+ewfCLJtTyMvbz/BwbqOUe8tmJnLhjWzec+yGaR7PXGKcPLiVjQYY7xAD/AJa+1TI7Y/\nilMI3HCG474DrLTWfsIY8wgqGqa16XpTSmSdgS42HXmZ1078icGQ89eW2+XmipmX8qEFHyA/Pe+M\nxyqfqUX5hCP1nby8/Thv1TYQGPHfIDsjjStXzWTDmtmUFSbPct3xnNypGPAADWO2NwDmdAcYY64E\nbgPKJxzdGB4tiZoShvKofCaOgjQ/Ny37GB9csJ5nD77I5hNbCIVDbK57m7fqK1k/9wo+tOAacn05\n445VPlOL8gkL5+SxcE4et1y3hDdqTvJS5XFOtvTQ3TfIpq3H2LT1GCsWFHLNujmsXVKc8AtmxTKX\nE21pmAmcAC631r49YvsDwPustVeM2T8HqAHusta+ENk26ZaGCe4vIpPU0NXEb2r/m9ePbGHoHpGe\nls5HllzNn5vryPYlz19ZIucrHA6z40Azz755mLd2nCQYevfXUVFeBte/dx4fvGweRYm9XHfid08Y\nY8qBd4DgiICHSp4gYKy1h6L8+HBHRy/B4PRsLkslHo8bvz8T5TPx1XXV8/SBTbzTUDO8LSstk+vm\nb+Cai95HRlq68plilM+zO9XZzytVJ3jlnRO0jliu2+1ysXpREeuWlFC+uJj8nMRZ8yKS04QaCHkU\nZyDk98bs6wMWjTnF/wZygC8B+6y1g0RHYxpShPpMk8/RzuM8c3ATtS17hrflenP44PyrufqiKygt\nzlc+U4Suz+gEQ86CWS9vH79gFsDFs/yULypmzaJiZpdkx3Xuh3g/PXEjziOXX+DdRy4/CSy11jYZ\nYzYCx621953heA2EnOZ0U0peB04d5umDz7Pv1MHhbQXpedy27kZMjlE+U4Cuz4lraO3hteo63tnb\nRENb77j3i/wZVCwupmJRMeaifNKmeLxI3JfGNsZ8EfgGMAOowpncaVvkvT8Ch621t5/hWBUN05xu\nSsktHA6zp20fTx98gSMdxwBwuVz84+V/R2lGaZyjk/Ol6/P8nGzppmp/M9X7mtl3op2xv2IzfB5W\nXlzEmkXFrFpYRE7mhZ9AKu5FQ5yoaEgRuimlhnA4TE3zLh6p/QUDoUHWlK7ijpWfjXdYcp50fcZO\nV+8ANQeaqdrXzM5DrfQFgqPed7lg8Zx8KhYVU7G4+II9xqmiQZKabkqp5XcHnuHFI68B8M1LvsRF\n/jlxjkjOh67PC2NgMIQ91kb1vhaq9jfR0tE/bp8ZhVmsWVRM+aIiFs3Ji9mjnCoaJKnpppRaekM9\n/MPm/0PfYD/LCw13V3w+3iHJedD1eeGFw2GON3VTta+Jqv0tHDrZMW6f7Iw01pkSPrlh0Xl3Yaho\nkKSmm1JqSUtzs+n4H/mvXc8CcO/au1iUvyDOUclk6fqceqe6+qk50ELVvmZ2HW4dNQvlgpl+vn5L\nBRm+yS9KraJBkppuSqklLc1NerabLz79P+kZ7GVR/gK+suZOLS+cpHR9xlf/QJDdh9t4Y8dJKvc2\nAbBifgFf+mQ53rTJdVfEsmhI7LkvRSQpZPkyuX7B1QDsP3WIPa374hyRSHJK93qoWFzMXTes5PIV\nZQDUHm7j357ZRSgU/z/yVTSISExcPffK4bUpnjr4HKGw/koVmSy3y8VtH15K+UJnpdltexp5fJMl\n3r0DKhpEJCbS09K5ft41ABztPMGv7e/ifoMTSWZpHjd3fXwlS+Y4q8y+UlXH716PduWFC0NFg4jE\nzFWzLxseBLm57m2eP/xSnCMSSW4+r4cvfXI1c0udVrxn3jzMpq3H4haPigYRiZk0dxpfWPU5ZmU7\nfbHPHNrEG3Vvn+MoETmbrAwvX72xnNJ8ZxXN/3hpH8+/fTQusahoEJGYyvJmcnfF5ylIzwfgV3t+\nS01TbZyjEklueTnpfPXmCgpyndUzn3h5P0++fnDKuwBVNIhIzOWn5/G3FZ8nOy2LMGF+XvsLDrYf\njndYIkmtND+Tv//02uEWh6feOMyv/7h/SgsHFQ0ickGUZc/gzvLb8Lq9DIQG+Un1o9R3N8Q7LJGk\nVpyfybc+s5bZxdkAbNp6jMee3zNlj2OqaBCRC+bivHl8fuWnceGie7CHH1X9O6f62+MdlkhSy89J\n55ufXsv8slwAXqs+yU+frmUweOEfc1bRICIX1Kri5dyy9C8AaOs/xfcrf8x/H/oDxzvr9EimyCTl\nZHr5+i1rWDLXGTu0ZXcjP/rtDgIDwXMceX40jbRMOU1Tm1qizedzh17kmUObRm0ryihgdfEKVpes\nYGHefDxuz4UOV85B12dy6R8I8q+/28HOg60ALJtXwJc+sZp037vXktaekKSmm1JqiTaf4XCYLfXv\n8HZ9JftOHRw3Y2R2WhYri5dRXrKCZYVL8Hl8Fzp0OQ1dn8lnMBjip0/Vss06a1UsmZPHlz9VTma6\ns8iVigZJaroppZbJ5LN7oIfalj1UN9Wyq2UPgdDAqPe9bi/LCpewumQFq4qWkePLvhChy2no+kxO\nwVCIf39mN2/tcgYbL5zt595PVZCVkaaiQZKbbkqp5XzzGQgOYNv2UdNUS03zLroGuke978LFwvz5\nlEe6MYozi2IVupyGrs/kFQqFeeS53byxox6A+WW5fPWmCvJz01U0SPLSTSm1xDKfoXCIg+1HqGmq\npbq5lubelnH7zM6ZyeriFZSXrGBOziwtwR1juj6TWygc5vEXLK9U1QFwUWkO3/zMWi6aXaCiQZKT\nbkqp5ULlMxwOc7K7gZrmWqqbajnaeXzcPgXp+awuWUF58QoW5S/QQMoY0PWZ/MLhML98cR8vVTrX\nzOySbH7yrQ+oaJDkpJtSapmqfLb1naKmeRc1TbXsPXVg3EDKrLRMZyBl8QqWFRnSNZByUnR9poZw\nOMxvXj7A81ucNSqefvBjMSka0mJxEhGRC60gI5/1c65g/Zwr6BnoYWfLHmqaaqlttQSCAXoGe9lS\n/w5b6t8hPz2Pe9feRXFmYbzDFokLl8vFp65eSFqam2fePBy786qlQaaa/pJJLfHO50BwANu2n5rm\nWmqadtE50AXAssIl3F3+eY15mKB451Nir6MnwMJ5RfFraTDG3A18DSgDqoF7rLVbz7DvDcB9wCLA\nC+wDHrTWPj6piEVERvB6vKwsXsbK4mXcbEL8bv9/88djr7O7dS/vNFazbkZFvEMUiatCf0bMzjXh\naaSNMTcBDwLfBtbgFA0vGGOKz3BIC/C/gMuAVcAjwCPGmOsmFbGIyBm4XW7+/OLrKcpwuiV+s+8p\negZ64xyVSOqYzNoT9wIPW2s3Wmv3AHcCPcDtp9vZWvuatfb31nHIWvsQUAO8b9JRi4icgc/j42Zz\nAwCdgS5+f+DZOEckkjomVDQYY7zAOuCloW3W2jDwInB5lOe4FlgCvDqRzxYRidbyIsMlkW6JzXVv\nc7D9cHwDEkkREx3TUAx4gIYx2xsAc6aDjDF+4ASQDgwCX7TW/nGCn43Ho0U5U8FQHpXP1JCo+bxx\n6UfZ1WLpGezlV/a3/MNl92oehygkaj5l8mKZy1g9cukCzvYYRidQDuQA1wI/MMYctNa+NpEP8fsz\nJx+hJBzlM7UkWj4LyOYzFTfw022/pK6rns2Nf+Ljy66Pd1hJI9HyKYlhokVDMxAEZozZXsr41odh\nkS6Mg5Fva4wxy4G/ByZUNHR09BIM6hGgZOfxuPH7M5XPFJHI+VxTUMHC/Dc5cOowT+x4mqxwNpfO\nXBPvsBJaIudTJmcop7EwoaLBWjtgjKnEaS14CsAY44p8/9AETuXG6aqYkGAwpOeGU4jymVoSNZ83\nL/kLvrfthwRCA/xsxy840VnPhxdch9ul5vezSdR8SnxNpnvi+8BjkeJhC87TFFnAowDGmI3AcWvt\nfZHvvwVsAw7gFAofAT6D89SFiMgFNSunjK+svZOHax6jPdDBc4df4mR3I7cuv0lTTYtM0IRLbWvt\nE8DfAfcD24HVwPXW2qbILnNwJn0akg38K7AT2AzcAHzaWvvIecQtIhK1ef65fOPSe7godw4AVU07\n+EHlj2nrOxXnyESSi6aRlimnaWpTSzLlMxAM8Pju31DZWA2A35fL36z6KxbkXRTnyBJHMuVTohPJ\naUymkVannohMGz6Pj9tW/CV/tuCDAHQEOvmX7T9ha/32OEcmkhxUNIjItOJyufjQgg/w+ZWfwev2\nMhga5NFdv+KpA8+PW25bREZT0SAi09La0tV8de1d5KfnAfDCkT/ys52PEwgG4hyZSOJS0SAi09ZF\n/jl845J7mJc7F4Dqpp28eFQz3IuciYoGEZnW8tL9fGXtneT5cgHoDHTHOSKRxKWiQUSmPZ/HS7pn\naL65pHmiTGTKqWgQEQFnBR0ROSsVDSIiI6idQeTMVDSIiAAuNTWInJOKBhERYKh/Iqy2BpEzUtEg\nIiIiUVHRICICeCJLZVc17uDAqcPxDUYkQaloEBEBNsy5Ehcuuga6eWj7w7x9sjLeIYkkHBUNIiLA\nlbPfy1+vuhWfx8dgOMjG3b/m9wee03oUIiOoaBARiSgvWcFX136RgvR8ADYdeZmf7Xycfq1HIQKo\naBARGWVu7iy+fsk9zPdfBDjrUfyg8se09Z2Kc2Qi8aeiQURkjLz0XL685gtcMqMCgGNddTyw7Ycc\n6TgW58hE4ktFg4jIafg8Xj63/BY+suA6ADoCnfzgnf9LZUN1nCMTiR8VDSIiZ+Byufjwguu4fcWn\n8brTGAgN8vPaX/CHI6/EOzSRuFDRICJyDutmlHPv2ruGl89+8sCzbG/cEeeoRKaeigYRkSjM88/l\n65fcM1w4bNz9a+q66uMclcjUUtEgIhKlgox87lh1Kx6Xh0AwwE93PEbPQG+8wxKZMioaREQm4OK8\nedy45GMANPW28OiuX2kCKJk2VDSIiEzQ+2ZfxpWz3gNAbcsenj30hzhHJDI10iZzkDHmbuBrQBlQ\nDdxjrd16hn3vAG4FVkY2VQL3nWl/EZFk8KklH6euq55DHUd57vBLzM2dTXnJynMfKJLEJtzSYIy5\nCXgQ+DawBqdoeMEYU3yGQ9YDvwQ2AJcBx4BNxpiZkwlYRCQReN1p3LHqs/gjAyMf2/Uf1Hc3xDkq\nkQtrMt0T9wIPW2s3Wmv3AHcCPcDtp9vZWvtZa+1PrLU11tq9wB2Rz712skGLiCSC/PQ87lj5Wdwu\nN/3BAD+s+hnPHXqRxp7meIcmckFMqGgwxniBdcBLQ9ustWHgReDyKE+TDXiB1ol8tohIIlqYP59P\nLXYGRp7qb+eZQ5v4zlsP8N2tD/Hi0Ve1ZoWklImOaSgGPMDYNrgGwER5ju8CJ3AKjQnxeDRuMxUM\n5VH5TA3KJ1w97wr8Gdm8dvwt9rYeIEyYo53HOdp5nCf3P8uiggVcWlbBuhnl5Piy4x3uWSmfqSeW\nuZzUQMjTcAHhc+1kjPkWcCOw3lo74bVm/f7MSYQmiUr5TC3TPZ/XFV7JdcuupK23nT8dq+SNI1vZ\n13qYMGH2tR1kX9tB/mPPk6yesZQrL7qUS+eUk+VN3P9m0z2fcnoTLRqagSAwY8z2Usa3PoxijPka\n8A3gWmtt7QQ/F4COjl6CQT0Pnew8Hjd+f6bymSKUz7HSuLzkvVxe8l6aelrYVl/F1voqTnSdJBQO\nUVW/i6r6XXi3pbGqeBmXzlzDyuJl+DzeeAcOKJ+paCinseAKh8/ZQDCKMeYt4G1r7Zcj37uAo8BD\n1trvneGYrwP3AR88j0ctw21t3QwO6n/iZJeW5qagIBvlMzUon9Gp66qnsqGKbQ1VNPeNHtKV4Uln\ndckKLplRwdKCxXjcnjhFqXymokhOXbE412SKhhuBx4AvAFtwnqb4JLDUWttkjNkIHLfW3hfZ/xvA\n/cAtwJsjTtVlre2ewEeraEgRuimlFuVzYsJhZ7zDtoYqKhuqaQ90jHo/25vFmtLVXFJazsL8Bbhd\nUzu2QPlMPbEsGiY8psFa+0RkTob7cbopqoDrrbVNkV3mAIMjDrkL52mJ/xxzqu9EziEiMm24XC7m\n+ecyzz+XGxZ9hP2nDlHZUMX2ph10D/TQPdDD5hNvsfnEW+Sn57G2dDWXzKhgTs6suLZAiMAkWhri\nSC0NKUJ/yaQW5TM2gqEgu1v3sq2hmprmnfQHR48Vd+EiPz2P4sxCijIKKcwsoDijkKLMQooyCshL\n98ekVUL5TD1xbWkQEZHY87g9rCxexsriZQSCA+xs2U1lQxU7W/YwGBokTJi2/lO09Z9iHwfHHZ/m\n8lCYUTBcRIx+LSTHm43LFZPfGzKNqWgQEUkwPo+XtaWrWVu6mt7BXva2HaS5t4WWvlZaeltp7muj\npbeVgdDA8DGD4SCNvc009p5+Nsp0j4+ijEKKMgsir04xUZxZSGFGAZlpGVP140kSU9EgIpLAMtMy\nKS9ZMW57OBymc6CLlt624WLCeW2jua+V1r62UUt29wcD1HXXU9ddf9rPyU7LoiizgOKsIuYUzCDH\nlUu+r4DijAIKMwrwJsgjoRJfGtMgU059pqlF+UxMoXCIU/3to1omWvvaaI4UF+39HYTPPSffsDyf\n/zStFM73+el5GqSZwDSmQUREzsrtclMYaSVYfJr3B0KDtPW1DbdMDLVUtPa10drfRkd/16j92wMd\ntAc6ONh+5LSfVZCe/+44ikg3yNCgTb8vV+MpUoSKBhGRacjrTqM0q4TSrJJR24dajk42tdLY5Yyj\naB7R9THUFdIX7B8+JhQOOdv7Tr8OodedRuFQIRFpqSjMePfrrLRMFRVJQkWDiIiMk5GWzqycMmbl\nlI17LxwO0z3YE2mdaBvz6nw9GHp3up6B0CANPY009DSe/rM8GaMKiqGWijyfH396LrneHHV/JAgV\nDSIiMiEul4scbzY53mzm+eeOez8UDtER6BzVMjHUBdLa10Zbf/uoQZp9wT5OdJ3kRNfJ038eLnJ8\n2fh9ucOFxKhXXy556bn4ff6EWcMjValoEBGRmHK73OSn55GfnsdC5o97PxgK0hYZpDm6qHCKjI5A\n56j9w4TpDHTRGejiBKcvLIZkpmXg9/nJ8+XiT8+NFBT+4YJjqLjITMtQl8gkqGgQEZEp5XF7KM50\n5og4nUBwgLa+NtoDnXQEOuno76A90El7fycdAefrzv5Ougd7xh3bO9hH72DfGbtChnjdafh9TgEx\nVEjkRYqMdwsNP7m+7Clf/yORqWgQEZGE4vN4mZFdyozs0rPuNxAapGNEITFUXIzd1hHoGvd46UBo\n0BmH0dd21s9w4cLvy8E/3FqRiz/dP/o18rXXnfq/UlP/JxQRkZTkdac5c0dkFpx1v1A4RGeg22m1\nCHS822IRee0Y0YoxEBocdWyYsNPKMabL5HSy0jJHFBJ+/Ok5TpfImEIjw5OetF0jKhpERCSluV1u\n8tKdwZIw64z7hcNhegf7RhQUnbQHOujoH/nqbO8d7B13fM9gLz2DvdR3N5w1Hp/bO9w6MbagGGrN\nyEv3k+3NSriuERUNIiIiOE+FZHkzyfJmUpY946z7BoIDo1ou2gMddEaKipGFRlege1zXSCA0QHOf\nM/jzbNwu9/AYi5FPiIx8zfP5yfXlkDZFXSMqGkRERCbI5/GedTDnkGAoSOdAV2RA55gWi/5I10jk\n68FwcNSxQ1OBn+pvP2c82d6sEY+fOq9zc2extrT8vH7OsVQ0iIiIXCAet2f48VNyz7xfOBymZ7CX\n9kgh4Yyz6Bj9Guigo7+LvmDfuOO7B3roHugZtyCZ1+1l7cxVMft5VDSIiIjEmcvlItubRbY3i1mM\nn4VzpP5g4N1WixFFxchtDd2NDIaDbGuoUtEgIiIyXaV7fJRkFVGSVXTGfZ7Y+ySvHn+THS27CQQH\nYvbZiTUsU0RERM7bmpLVAASCAXY274nZeVU0iIiIpJiF+fPx+5xBFO80VMfsvCoaREREUozb5aai\nxBnLUNO0O3bnjdmZREREJGGsKXWKhv5gf8zOqaJBREQkBS3KX0CuLyem55zU0xPGmLuBrwFlQDVw\nj7V26xn2XQ7cD6wD5gFfsdY+NLlwRUREJBpDXRSvn/hT7M450QOMMTcBDwLfBtbgFA0vGGOKz3BI\nFnAA+CacYyF0ERERiZkPzf/AcDdFLEympeFe4GFr7UYAY8ydwEeA24EHxu5srd0GbIvs+93Jhyoi\nIiITkZeey50VfxWz802opcEY48XpZnhpaJu1Ngy8CFwes6hEREQk4Uy0paEY8ABj1/1sAExMIjoL\nj0fjNlPBUB6Vz9SgfKYW5TP1xDKXsZpG2gVj1v6MPZffn3mBP0KmkvKZWpTP1KJ8yulMtPxoBoLA\n2IXGSxnf+iAiIiIpZEJFg7V2AKgErh3aZoxxRb5/M7ahiYiISCKZTPfE94HHjDGVwBacpymygEcB\njDEbgePW2vsi33uB5ThdGD5gtjGmHOiy1h44759AREREpsSEiwZr7RORORnux+mmqAKut9Y2RXaZ\nAwyOOGQWsJ13xzx8LfLvVeCaScYtIiIiU8wVDl/o8YsiIiKSCvRMjYiIiERFRYOIiIhERUWDiIiI\nREVFg4iIiERFRYOIiIhERUWDiIiIRCVWa09cMMaYu3HmdSgDqoF7rLVb4xuVTIYx5tvAt8ds3mOt\nXR6PeGRijDFXAV/HWel2JvBxa+1TY/a5H7gDyAfeAO6y1u6f6ljl3M6VT2PMI8DYNZWft9Z+eOqi\nlGgZY/4euAFYCvTizNL8TWvt3hH7pONM0HgTkA68AHzRWtsY7eckdEuDMeYm4EGcXzRrcIqGFyKT\nS0ly2okzKVhZ5N/74huOTEA2zmRud3OaBeqMMd8E/hb4AvAeoBvnevVNZZAStbPmM+I5Rl+vt0xN\naDIJVwE/BN4LfADwApuMMSNXHvsX4CPAJ4D340y++F8T+ZBEb2m4F3jYWrsRwBhzJ84PfDvwQDwD\nk0kbHDF7qCQRa+3zwPMwvObMWF8G/tla+3Rkn1txFrL7OPDEVMUp0YkinwD9ul6Tw9gWIGPM54BG\nnJakzcYYP87vzputta9G9rkN2G2MeY+1dks0n5OwLQ2RNSvWAS8NbbPWhoEXgcvjFZect8XG0ENm\nFgAAAtdJREFUmBPGmAPGmMeNMXPjHZCcP2PMApy/REderx3A2+h6TWYbjDENxpg9xpgfG2MK4x2Q\nRC0fpwWpNfL9OpyGgpHXqAWOMoFrNGGLBqAY8DB+ye0GnJuTJJ+3gM8B1wN3AguA14wx2fEMSmKi\nDOcGpes1dTwH3IqzRtA3gPXAs2dplZAEEcnRvwCbrbW7IpvLgECkmB9pQtdoondPnI6LM/e/SQKz\n1r4w4tudxpgtwBHgRuCR+EQlF5iu1yRlrR3ZpVRrjNkBHAA2AC/HJSiJ1o9xVpeOZszYhK7RRG5p\naAaCOINwRipl/F8zkoSste3AXmBRvGOR81aPc/PR9ZqirLWHcO7Lul4TmDHmR8CHgQ3W2roRb9UD\nvsjYhpEmdI0mbNFgrR0AKoFrh7ZFmlyuxXmURJKcMSYHWAicjHcscn4iv1DqGX29+nFGcut6TQHG\nmDlAEbpeE1akYPgYcLW19uiYtyuBQUZfo0uAi4A/RfsZid498X3gMWNMJbAF52mKLODReAYlk2OM\n+R7wNE6XxGzgOzj/E/8qnnFJdCJjTxbhtCgAXGyMKQdarbXHcPpQ/8EYsx84DPwzcBz4fRzClXM4\nWz4j/76N8zhefWS/7+K0DL4w/mwSb8aYH+M8EvtRoNsYM9Tq126t7bPWdhhj/h34vjGmDegEHgLe\niPbJCUjwosFa+0RkTob7cZo9q4Dr9QhQ0poD/BLnr5UmYDNwmbW2Ja5RSbQuwenLDkf+PRjZ/hhw\nu7X2AWNMFvAwzsjt14EPWWsD8QhWzuls+fwisBpnIGQ+UIdTLPxjpBVYEs+dOHl8Zcz224CNka/v\nxen2/0+cyZ2ex5mnI2qucFhjlEREROTcEnZMg4iIiCQWFQ0iIiISFRUNIiIiEhUVDSIiIhIVFQ0i\nIiISFRUNIiIiEhUVDSIiIhIVFQ0iIiISFRUNIiIiEhUVDSIiIhIVFQ0iIiISlf8PhMBgxflwHaEA\nAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VFX+x/H3mfTeE0JCSEIPHUK30AREir2uws+C2Nay7i7rqquurrqWtawNFAVFBcXCIqKAIL33DgkBAqRDSALp5/fHHSCEhCRkZm4y+b6eZ55pd+795s7kk5Mz956jtNYIIYRwLhazCxBCCGF7Eu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4IQl3IYRwQq5mbTg0NFTHxsaatXkhhGiUNmzYkKW1DqtpOdPCPTY2lvXr15u1eSGEaJSUUgdrs5x0ywghhBOScBdCCCck4S6EEE7ItD53IYQAKCkpITU1lcLCQrNLaVA8PT2Jjo7Gzc3tkl4v4S6EMFVqaip+fn7ExsailDK7nAZBa012djapqanExcVd0jpq7JZRSk1VSmUopbZX87xSSr2jlNqvlNqqlOpxSZUIIZqkwsJCQkJCJNgrUEoREhJSr/9matPn/hkw4iLPXw20sV4mAB9ccjVCiCZJgv1C9d0nNXbLaK2XKqViL7LIWGC6NubrW62UClRKRWqtj9WrsmrsWvMLGTuXs7XZ9ZS4eNtjEwD4ebrxfwNicXWR75yFEI2PLfrco4DDFe6nWh+7INyVUhMwWvfExMRc0sZy967gyoPvEHHge+4veYJDRFzSei7mzLSyPVoG0rNlsM3XL4RoeN555x0++OADevTowYwZM2y+/ueeew5fX1+efPJJm6+7Kg79QlVrPRmYDJCYmHhJM3P3vfMFSBpI+2/v5nf9PNz4CbQeatM6dx07ydVvLyPjZJFN1yuEaLjef/99Fi5cSHR0tNml2IQt+hyOAC0q3I+2PmY/rQbDfYvBPwpm3ATL3zrX3LaBMD8PADLyJNyFaAomTpxIcnIyV199NS+99BJ33303vXv3pnv37vz4448AfPbZZ1x77bVcddVVxMbG8t///pc333yT7t2707dvX3JycgCYMmUKvXr1omvXrtxwww2cOnXqgu0lJSUxYsQIevbsyeWXX87u3btt/jPZouU+B3hYKfU10AfItVd/+3mC4+DeBfDjQ7DwH3BsM4x9D9x96r3qIG93XCyKTAl3IRzq+f/tYOfRkzZdZ0Jzf/4xuuNFl/nwww+ZP38+ixcv5s0332Tw4MFMnTqVEydO0Lt3b4YONXoHtm/fzqZNmygsLKR169a8+uqrbNq0iccff5zp06fz2GOPcf3113PfffcB8PTTT/PJJ5/wyCOPnLe9CRMm8OGHH9KmTRvWrFnDgw8+yG+//WbTn7vGcFdKfQUMBEKVUqnAPwA3AK31h8A8YCSwHzgF/J9NK7wYdx+48VOI7AoLn4eM3XDDx9CsU71W62JRhPi4S7gL0QT9+uuvzJkzh9dffx0wDtU8dOgQAIMGDcLPzw8/Pz8CAgIYPXo0AJ07d2br1q2A8Qfg6aef5sSJE+Tn5zN8+PDz1p+fn8/KlSu56aabzj5WVGT7rKnN0TK31fC8Bh6yWUV1pRRc9jg06wLfT4Qpg+Gq56HPROO5SxTq60FmvoS7EI5UUwvbEbTWzJ49m3bt2p33+Jo1a/Dw8Dh732KxnL1vsVgoLS0FYPz48fzwww907dqVzz77jCVLlpy3nvLycgIDA9m8ebNdfw7nOc6v9RB4YCXED4T5k2DGjZCfccmrC/F1J7ug2GblCSEah+HDh/Puu++ird/jbdq0qU6vz8vLIzIykpKSkiqPuvH39ycuLo5vvvkGMP6YbNmypf6FV+I84Q7gGwa3z4SRr0PKcni/H+z95ZJWFerrQba03IVocp555hlKSkro0qULHTt25JlnnqnT6//5z3/Sp08fBgwYQPv27atcZsaMGXzyySd07dqVjh07nv3S1paUtuFRJnWRmJio7TpZR8YumH0vpG+Hfg/D8Jfq9PJ/zt3Jl2sOseufFzs5VwhRX7t27aJDhw5ml9EgVbVvlFIbtNaJNb3WuVruFYV3gHsXQeebYNV/IS+9Ti8P8XXndEmZtN6FEI2S84Y7gJsntLW2vAtP1Oml8aHGIZX9XvmNB2dsYP72NApLymxdoRBC2IXzD/nrGWBcF+bW6WUjOkXy3YP9mbP5KHO3HmXetjT8PF0Z2SmSsd2a0yc+BBeLDHYkhGiYmlC41/3EiB4xQfSICeLpazqwIimbHzcfYe7Wo8xcf5gIfw9Gd2nO2G5RdIryl1HthBANShMI90DjOnsftLm0MWhcXSxc2TaMK9uGcfraMhbtTufHzUeZtiqFj5cfID7Mh7FdoxjTrTlxofU/Q1YIIerL+cM9pDXE9IPF/4L2oyCwRc2vuQgvdxdGdWnOqC7NOXGqmJ+3p/Hj5iO8tWgv/1m4l67RAYztFsUtvVrg4+H8u1cI0TA59xeqABYLXPch6HL44QEoL7fZqgO93bmtdwxfT+jHykmDeWpke0rLNS/M3cm0VSk2244QouFasmQJo0aNMruMCzh/uAMExcKIVyBlGax+3y6biAzwYsIVrfjpj5cT4e9BcmaBXbYjhBC10TTCHaD7H6DdNbDoeeMEJztqGezDoewLh/kUQjRMKSkptG/fnvHjx9O2bVvuuOMOFi5cyIABA2jTpg1r165l7dq19OvXj+7du9O/f3/27NlzwXoKCgqqHC7YDE2nU1gpGP02vNEOtn0LQ+p2SnFdtAj2Zvn+TLutXwin9fMkSNtm23U26wxXv1LjYvv37+ebb75h6tSp9OrViy+//JLly5czZ84c/vWvfzF9+nSWLVuGq6srCxcu5KmnnmL27NnnreOll16qcrhgHx/HH2jRdMIdjLFnAqLhxEG7bqZliDezNxZxqrgUb/emtYuFaKzi4uLo3LkzAB07dmTIkCEopejcuTMpKSnk5uYybtw49u3bh1KKkpKSC9ZR3XDBZgyv0PSSJ6glHE+x6ybahPsC0P+V3xjcPpxhCRFc0TZMgl6ImtSihW0vNQ3n+8wzzzBo0CC+//57UlJSGDhw4AXrqG64YDM0nT73M4Ji4bh9W+7DOzbjozt7Mrh9OIt2ZTDxi410f2EB905bx6x1h8mS8WqEaHRyc3OJiooCjCn3qlLf4YJtqek1JYPjoSADNn8JXW+r14Qe1bFYFMM7NmN4x2aUlpWzNiWHBTvT+XVHOgt3ZaAUJLYMYlhCM65KiCBWTnwSosH7y1/+wrhx43jxxRe55pprqlzmmWee4bHHHqNLly6Ul5cTFxfH3LlzHVypwXmH/K1OQTbMuhMOroCO18Go/4BXkEM2rbVm57GT/LojnQU709l5zBgSoW2EL1clRDAsoRmdowKwyJg1ogmRIX+rV58hf5teuAOUl8GKt2HxS+AbAdd9BHGXO7yMwzmnWLDTCPq1KTmUlWua+XsyNCGcYQnNuKx1qAS9cHoS7tWTcL9URzYaE3rkJMNlj8HAp8DV3ZRSjhcU89vuDBbsTOf3vZmcLiljdNfmvHVLNxl9Ujg1Cffq1Sfcm16fe0VRPWDiMpj/N1j+H0haDHd8axwy6WBBPu7c0DOaG3pGU1hSxpSlybyxYC/uLhZeu7GLtOCFU9Nay8iqldS34d30jpapzN0HxrwDN0+HY5th2yyzK8LTzYVHhrTh8aFtmb0xlWd+3F7vN1qIhsrT05Ps7Gz5jFegtSY7OxtPT89LXkfTbrlXlDAWvEPtPjRBXfxxSGsKS8v4YEkSHq4uPDOqg7RuhNOJjo4mNTWVzEw5q7siT09PoqOjL/n1Eu4VhXeAzN1mV3GWUoq/DG9HYUkZU1ccwNPNwp+Ht5OAF07Fzc2NuLg4s8twOtItU1FYe8jcAw3o30OlFM+OSuD2PjG8vySJtQdyzC5JCNEISLhXFJEARSdhziOQc8Dsas5SSjG+fywA2QXF5hYjhGgUJNwr6nob9LoXts6Cd3vCd/dD5l6zqxJCiDqTcK/IzQuueQMe3QJ9H4Bdc+C93vDNeEjbbnZ1QIPqMRJCNGAS7lXxj4ThL8Fj2+DyJ2DfQvhwAHx1G6RuMLs6IYSokYT7xfiEwpBn4fFtxtmrB1fCx4Ph8+sgfadDS3G1nsS0JfWEHA8shKiRhHtteAXBwL/C49th6PNwdDNMvhKWv2WMU+MAcaE+XNc9islLk3nl590S8EKIi5JwrwsPP2MMmofWQpthsPAf8OlIY2waO1NK8cZNXbmrX0s+WprMpNnbKCuXgBdCVE3C/VL4hsEtX8B1k40zWj8YAOs+tvu3nRaL4vkxHfnj4NbMXH+YR77aSFGpY/5zEEI0LhLul0op6HoLPLgKWvSBn/4EX1wPuUfsvFnFE8Pa8fQ1HZi3LY17p62noKjUrtsUQjQ+Eu71FRAFd35vHEJ5aDVMGQzFBXbf7L2Xx/PvG7uwYn8Wj35t3lReQoiGScLdFpQyTn664xvIT4NNMxyy2ZsTW/DokLYs3JXB/ow8h2xTCNE4SLjbUuxlEN0bVv3XYUfR3NE3BncXC5+vsu+k30KIxkXC3dYG/BFOHDTObnWAUF8PrukSyeyNR8iXvnchhFWtwl0pNUIptUcptV8pNamK52OUUouVUpuUUluVUiNtX2oj0W4kBMfDinccNlbAnf1akl9UyvcbUx2yPSFEw1djuCulXID3gKuBBOA2pVRCpcWeBmZprbsDtwLv27rQRsPiAv0ehqMb4eAKh2yye4tAOkcF8NbCffxr3i7WHsihtKzcIdsWQjRMtWm59wb2a62TtdbFwNfA2ErLaMDfejsAOGq7EhuhbreDT5hxBqsDKKX413WdSWjuz6crDnDzR6vo9dJCnpi1mXnbjkl3jRBNUG1mYooCDle4nwr0qbTMc8CvSqlHAB9gqE2qa6zcvKDP/fDbi8Zoks062X2TnaMD+PyePuQVlrB0bxaLdqXz2+4Mvtt4BHcXC31bhTC0QzhDOkQQFehl93qEEOZSNY1RopS6ERihtb7Xev9OoI/W+uEKyzxhXdcbSql+wCdAJ611eaV1TQAmAMTExPQ8eNCJj/A4fRze7AgdRsH1k00pobSsnA0Hj7NodwYLdqZzIMs4/r5DpD9XdQhnaEIEnZoHYLHItH1CNBZKqQ1a68Qal6tFuPcDntNaD7fe/xuA1vrlCsvswPgDcNh6Pxnoq7XOqG69iYmJev369bX5WRqv+U/Bmg+NAcf8m5tdDUmZ+Szalc7CnRmsP5hDuYZwPw+GdIjgqoRw+rcKxdPNxewyhRAXYctwdwX2AkOAI8A64Hat9Y4Ky/wMzNRaf6aU6gAsAqL0RVbeJMI9Owne7WEMG3z5n8yu5jw5BcUs2ZPBwl3p/L4nk4LiMrzcXHh+bEduTmxhdnlCiGrUNtxr/EJVa10KPAz8AuzCOCpmh1LqBaXUGOtifwLuU0ptAb4Cxl8s2JuMkFbQ8jLY9EWDm0Ip2Med63tE8/4dPdn47FVMv7s3Ph4uLN2baXZpQggbqM0Xqmit5wHzKj32bIXbO4EBti3NSXT/A/ww0ZjoI7Zh7iIPVxeuaBtGdJA3uadLzC5HCGEDcoaqvSWMAXc/o/XewAV5u3HilIS7EM5Awt3e3H2MgN/zE5Q17OPNA73dOX6q2OwyhBA2IOHuCG2GQWEuHGnYXyAHeruRcbKIdxftY11KDsWlcparEI1VrfrcRT3FDwTlAvsWQExfs6up1oiOzViVlM0bC/bCAvB0s5DYMpi+8cH0axVC56hA3F2lPSBEY1DjoZD20iQOhaxo6ggoOQ33/252JTU6XlDMmgM5rE7OZnVyNrvTjLHivdxcSIwNom98CH3jQ+gSHYCbi4S9EI5U20MhpeXuKK0Gw+KX4PQJ8Ao0u5qLCvJxZ0SnZozo1AwwjolfeyCbVUnZrE7O4bVf9gDg7e5CYqy1ZR8fQueoAFwl7IVoECTcHcUv0rguymvw4V5ZsI87IzpFMqKT8TNk5Rex1tqyX5WUzb/nG2HvYw37fq2Mln2n5v4S9kKYRMLdUVw9jevSInPrsIFQXw9Gdo5kZGcj7DPzjLBflZzF6uQcXvl5NwC+Hq5c2S6Mf9/QBR8P+agJ4UjyG+corh7GdWmhuXXYQZifMRvUNV3Ohf3q5GxWJmXx1drDNA/w5O/XVJ4CQAhhTxLujnIm3Msaf8u9JmF+Hozu2pzRXZsDiqkrUhjbLYpOUQFmlyZEkyEdoo7iHWpc5x4xtw4HmzSiPUHe7jz1/TbKyhvW+DpCODMJd0eJ6AgWVzi6yexKHCrA241nRyewNTWX6atSzC5HiCZDumUcxc0TwhOMuVWbmNFdIpm9IZXXf9lDWbmmT1wIHSL95EgaIexIwt2RmneHnT8Yw/+qpjP7kVKKF6/txD3T1vHiT7sA47DJnrHB9IkLpndcMF2iA/BwlYlChLAVCXdHat4dNk6DE4cgqKXZ1ThUi2Bvfn38StJyC1mbksPaA9msO3D87AlR7q4WurUIPBv2PWKC5PBJIepBfnscyTfCuD6d0+TC/YxmAZ6M6dqcMV2NaQePFxSzLiWHtQdyWJuSw/tLknj3t/24WBSdmvvTOy6Y3nEh9IoNItDb3eTqhWg8JNwdycPPuC7KM7eOBiTIx51hHZsxrKMx1EF+USkbDx43wv5ADtNWHWTKsgMAtG/mR6/YYGvgBxPh72lm6UI0aBLujiThXiNfD1euaBvGFW3DACgsKWNrai5rD2Sz5kAO321M5fPVBwGIDfGmf+tQJl3dHn9PNzPLFqLBkXB3pDPhnrXP3DoaEU83l7Mt9YeB0rJydh47ydoDOaw5kMNXaw8R5uvB41e1NbtUIRoUORbNkQKiIaw9LPwHzLgZMveYXVGj4+pioUt0IPdeHs+UuxK5sm0YX609REmZTCwiREUS7o7k6gETfoerXoBDq+H9fjD3ccjPMLuyRuvOvi3JyCtiwc50s0sRokGRcHc0N08Y8Cj8cRP0ugc2Tod3esDS143JPESdDGwXTlSgF5+vOmh2KUI0KBLuZvEJgZGvwYOrIe4K+O2f8G5P2PI1lEsXQ225WBR39I1hVXI2v+1Ox6yZxYRoaCTczRbaBm77Esb/BD5h8P398NEVsPcX40xWUaNbElsQ5ufB3Z+tZ/Abv/PBkiQy8pxvaGUh6kLmUG1Iysth+2xY/CIcT4GYfjDkH9Cyn9mVNXinikuZty2NWesOszYlBxeLYnD7cG5JbMHAdmEyjo1wGrWdQ1XCvSEqLYZN0+H3f0N+OrQZBkOehWadza6sUUjKzGfW+sPM3nCErPwiwv08uLFnNDcntiA21Mfs8oSoFwl3Z1B8CtZ+BMv/A4W50OlGGPQUhLQyu7JGoaSsnN92ZzBr3WEW78mgXEPf+GBu7RXDiE7N8HSTgcpE4yPh7kxOH4cV78CaD6GsGHqMg8FPg3ew2ZU1Gmm5hXy74TCz1qdyKOcU/p6ujO0WxSODWxMuwxiIRkTC3RnlpcPSf8P6T8HT3+iq6TEOLNICra3ycs3qA9nMXHeYn7enEe7nwRf39JHuGtFoSLg7s/SdMO/PcHA5RHaDa96A6Brfa1HJ1tQTjJu6FheLhel39yahub/ZJQlRo9qGuxxC0BhFJMD4uXDDJ5CXBh8PgR8fhoIssytrVLpEB/LNxP64uShumbyKdSk5ZpckhM1IuDdWSkHnG+GR9dD/EdjylXES1NopUF5mdnWNRutwX759oD9hvh7c+ckaFu+WoSCEc5Bwb+w8/GDYizBxhXGo5Lwn4Ze/m11VoxIV6MU3E/vROtyX+6av5+u1hygrlxPIROMm4e4swtvDuP9B4j2w5gNIWWF2RY1KiK8HX93Xl8TYICZ9t40r/r2YD5YkkVNQbHZpQlwS+ULV2RQXwAf9AQUPrAR3b7MralRKy8pZuCudaSsPsio5G3dXC2O6Nueufi3pEh1odnlCyNEyTdqBZTBtFPR9EEa8bHY1jdbe9Dymr0rhu41HOFVcRrcWgYzr35KRnSPxcJXDT4U5JNybup+ehHUfw//9LGPT1NPJwhK+25DK9FUHSc4qIMTHndt6x3B7nxiaB3qZXZ5oYiTcm7qifGMyEDcvmLgcXN3NrqjRKy/XrEjKYvqqgyzalY5Siqs6RDBxYCu6tZAuG+EYcpx7U+fha5zclLUHVr5tdjVOwWJRXN4mjCl3JfL7nwdx3+XxrDmQzS0frSIzr8js8oQ4T63CXSk1Qim1Rym1Xyk1qZplblZK7VRK7VBKfWnbMsUlaTsMEsYaszxlJ5ldjVNpEezNpKvb892DAyguK+fTFQfMLkmI89QY7kopF+A94GogAbhNKZVQaZk2wN+AAVrrjsBjdqhVXIoRr4LFDX76k0z+YQdxoT6M7BTJ56sOcrKwxOxyhDirNi333sB+rXWy1roY+BoYW2mZ+4D3tNbHAbTWcppfQ+EfaQwwlrzYmMpPAt7mHhjYiryiUmasPmR2KUKcVZtwjwIOV7ifan2sorZAW6XUCqXUaqXUiKpWpJSaoJRar5Ran5mZeWkVi7rrda8xeuSyN2D+3yTgbaxTVACXtwnlk+UHyD0lrXfRMLjacD1tgIFANLBUKdVZa32i4kJa68nAZDCOlrHRtkVNLBYY/Ta4+8Dq96GkAEa9JUMF29BDg1pz6+TVdP/nr3SOCqBvqxD6xYfQKzYYHw9b/ZoJUXu1+dQdAVpUuB9tfayiVGCN1roEOKCU2osR9utsUqWoP6Vg+L+MgF/6mjHL03Ufgoub2ZU5hb7xIXz3YH+W7M5gVXI2U5cf4KPfk3G1KLpEB9CvVQj94kPp2TIIL3f5oyrsrzbhvg5oo5SKwwj1W4HbKy3zA3Ab8KlSKhSjmybZloUKG1DKmMHJzRsWPQ+lhXDTNHCRlqUt9IgJokdMEGBM2L3h4HFWJWWzKjmbD39P5r3FSbi5KLq1CKRffAh9W4XQIyZIpvsTdlGrk5iUUiOBtwAXYKrW+iWl1AvAeq31HKWUAt4ARgBlwEta668vtk45iclkqz+A+ZNkiAIHyS8qZV1KDqutYb/9SC7lGtxdLfSICaRffCj9WoXQrUUg7q5y+omonpyhKmr28yRjBMnRb0PP8WZX06Tkni5h3YEcViVnsyopm11pJ9EaPN0sJLYMpl+rEPrGB5MQGSDdOOI8Eu6iZmWl8NUtkLwE7vwB4i43u6Im68SpYlYn57DaGvZ70vMAoyetZbA3bSP8aN/Mj7bNjOvYEB9cXaSF3xRJuIvaKcyFj6+Cggy4dxGEtDK7IgFk5xexLuU4u9NOsjc9j91peaRkFXBmDhF3Fwutwn2NwLcGf7tmfkQGeGL0kgpnJeEuai8nGaYMNlryve+Dfg+BT6jZVYlKCkvK2J+Rz560vLOBvyctj7SThWeX8fN0pV3EuRZ+uwgj9AO9ZeA4ZyHhLuomcy8seRl2fA+unpB4tzE3q3+k2ZWJGuSeKmFPep5xSTvJnjQj+PMKS88uE+HvUaGF70+7CD/aRPjKkTqNkIS7uDRZ+2DZm7B1pnGSU/c7YcCjENTS7MpEHWitSTtZyB5r635PmhH++zLyKS4tB8CioGWIz9nWfbtmfiRE+hMb6mNy9eJiJNxF/RxPgeVvwaYvAA1dboXLn5A++UautKyclOxTFbp1TrI3PZ+U7IKzo1L8dUR7Hhgo73NDJeEubCP3CKx8BzZ8BmXF0HsCXP2q2VUJGztdbPTnf/D7fuZtS2PynT0Z1rGZ2WWJKshkHcI2AqKMMH9sG7QbCWs+hKI8s6sSNubl7kLn6ADevLkbXaMDeGzmZnYePWl2WaIeJNxF7fiGQ4cxxu28dHNrEXbj6ebClLsS8fd0477p62WGqUZMwl3Unp/13/S8o+bWIewq3N+TKXclkl1QxMQvNlBUWmZ2SeISSLiL2vNvblznpZlbh7C7ztEBvHFTNzYcPM7Vby9jytJksvOlFd+YSLiL2vOLBBSkbTO7EuEA13SJ5IM7ehDk7c5L83bR9+VFPDRjI0v3ZlJeLtMxNHRytIyom5l/gANL4fEd4OFndjXCQfam5zFz3WG+25jK8VMlRAV6cUuvFtyUGE1kgJfZ5TUpciiksI/UDfDxYBj2onEGq2hSikrL+HVHOjPXHWb5/iwsCga2C+eWXi0Y3D4cNxnMzO4k3IX9TBttnMn66BZw9TC7GmGSQ9mnmLX+MN9sOEz6ySLC/Dy4sWc0tyS2kLNc7UiOcxf2c9njkHcM1n9qdiXCRDEh3jw5vB0r/jqYT8Yl0q1FIJOXJjPw9SX8uLnyTJzC0STcRd3FDzIuv/wNtsw0uxphMlcXC0M6RDDlrkRWThpMbIg3325INbusJk/CXdSdUnDrDIi9DL6/3zr+jBAQ4e/J0A4RrEnO4VRxac0vEHYj4S4ujbsP3D4LWg2CHx+SLhpx1sB24RSXlbMqKdvsUpo0CXdx6dy84NavoM0wmPsYrJ1idkWiAegVF4SXmwu/7800u5QmTcJd1I+bJ9zyBbS7BuY9CV/fYQwXLJosD1cX+rcK4dcd6eSeKjG7nCZLwl3Un6sH3DwNhjwLSb/Be31g8b+g+JTZlQmT3H9lK7ILirhv+noKS2RsGjNIuAvbcHGDy/8ED6+H9tfA768aIb9zDph0LoUwT++4YN68uRtrU3J47OvNlMlwBQ4n4S5sKyAKbpwK438yhieYdSd8fi1k7jG7MuFgo7s259lRCczfkcZzc3Zg1gmTTZWr2QUIJxV7Gdy/FNZPhcUvwgf9IWEsNO8OzTpDsy7gHWx2lcLO7r4sjvSThXy0NJkIfw8eHtzG7JKaDAl3YT8urtBnAnS63uiD3/MzbJ997nn/KGvQV7gExoJF/qF0Jn8d0Z6MvCJe/3Uvob4e3No7xuySmgQJd2F/PqEw6k3jUpBlDBlc8bJvAWjrl27uftCs0/mBH9bBOCpHNEoWi+LVG7qQU1DM377fho+HK6O7Nje7LKcnA4cJ85Wchoxd5wd++nYozjeeVy4Q1u78wI/oDD4h5tYt6uR0cRnjpq5l46HwHrjiAAASzklEQVTjTL6rJ4PbR5hdUqMko0KKxq28HI4fuLCVX3GKv8rdOq0GyxjzDdzJwhJun7Kafen5TLu7N33j5Q90XUm4C+dUVbdO1h7Q5dBqCNz5ndkVihrkFBRz80erOHbiNF/e15euLQLNLqlRkXAXTUfJaVj8Eqx8Fx7bDoEtzK5I1CAtt5CbPlpJ7qkSBrYLJy7Uh/gwH+JDfYkN9cbP083sEhus2oa7fKEqGj83L0i8xwj3bbOMk6lEg9YswJMZ9/Tlhbk72XT4OP/bevS8c93C/DyItwZ+XKgPcaG+xIf50CLIG3dXOZqqNqTlLpzHJ8Pg9Al4aI0xLLFoNApLyjiUc4rkzAKSs/I5kFnAgawCkrMKyCkoPruci0XRIsiL+DBfa+j7WP8I+BLh74FqAu+7tNxF09PlFvjpCTi6CaJ6mF2NqANPNxfaRvjRNuLCL8RPnCo2gt4a+AeyCkjKzGdlUhaFJeVnl/N2dyE25Ez3jg9x1m6euDAf/JtgN4+03IXzOH0c/tMZWg+Gm6ebXY2ws/JyTdrJQmvw55NsDf7kzAJSj5+i4nA2ob7u1la+EfZxoT60CvOhRbA3Hq4u5v0Ql0Ba7qLp8QqCPvfDstchbbtxMpRwWhaLonmgF80DvRjQOvS854pKyzicc4qkM619a3fPot3pZK0/181jURAd5E2bcF/6xAfTv1UoCZH+WCyNv3tHWu7CuZzKgbe7QvyVxjjzQlSSe7rE2r1j9O0nZRWw69hJkjMLAAj0dqNvXAgDWofQv3Uo8aE+DaovX1ruomnyDoa+DxhDDqcsh5j+MlaNOE+AlxvdWgTSrdLx9Wm5haxKzmLF/mxW7s9i/o40ACL8PRjQKpR+rYywjwr0MqPsOqtVy10pNQJ4G3ABPtZav1LNcjcA3wK9tNYXbZZLy13YzekTRuu98AS4+UB4B4joCBGdICIBwhNkREpxUVprDmafYmVSNiuSsliVlH32qJ3YEG/6tQplQOsQ+sWHEOLr4dDabHYSk1LKBdgLXAWkAuuA27TWOyst5wf8BLgDD0u4C1OdOATJSyB9h/Wy3fjC9Qz/KCPkIzqeu4S0AVd300oWDVd5uWZPeh4rk4xW/ZoDOeQXlQLQvpkfA1qH0r9VCL3jgu1+ApYtw70f8JzWerj1/t8AtNYvV1ruLWAB8GfgSQl30aBoDXlpRtBn7DgX+pl7oNw6z6fFDULbnh/4ER3BL1KOmxfnKS0rZ+uRXFYlZbMyKYt1KccpLi3HxaLoEh3A40PbckXbMLts25Z97lHA4Qr3U4E+lTbWA2ihtf5JKfXnOlUqhCMoBf6RxqXN0HOPl5VA1r7zQ//gSuNM1zO8giD8TNgnGN074R3A3cfxP4doEFxdLPSICaJHTBAPDWpNYUkZGw8dZ+X+bOZsOcojX21i4RNXEubn2C6b82qs7wqUUhbgTWB8LZadAEwAiImRAftFA+DiZg3sBOCmc4+fPg7pOyFjp9Glk74DNs84NwwxCoJioe0IGPw0ePiaULxoKDzdXOjfKpT+rUIZ260517yznBfm7uTd27qbVlNtwv0IUHEkpmjrY2f4AZ2AJdbDhZoBc5RSYyp3zWitJwOTweiWqUfdQtiXVxDEDjAuZ5SXw4mD1lb+Tji2BdZ8CHt/hus+gpi+5tUrGow2EX48NKg1/1m4l2u7NWdIB3PGra9Nn7srxheqQzBCfR1wu9Z6RzXLL0H63EVTcXAlfD/R+AJ3wKMw6ClwNe9fcdEwFJeWM+rdZeQVlrLgiSvx9bDdUee17XOv8QBgrXUp8DDwC7ALmKW13qGUekEpNab+pQrRiLXsDw+sgB53wYq3YPIgY4x50aS5u1p4+foupJ0s5OV5u0ypQc5QFcJW9v4CPz5s9NcPegr6/9GYJFw0WS/9tJMpyw7w3OgExg+Is8k6bdZyF0LUUtvh8OBqaD8SFj0PHw+Go5vNrkqYaNLVHbgqIYLn5+7kp63HHLptCXchbMknBG6aBjd+ahxXP2UQzH8KivJrfq1wOi4Wxbu3dadHTBCPz9zMqqRsh21bwl0IW1MKOl0PD62FHuNg9Xvwfl/YM9/syoQJPN1c+GRcIjEh3kyYvp5dx046ZLsS7kLYi1cgjH4L7v7FOOHpq1tg1l1Gi140KYHe7ky7uzc+Hq6M/3QtqcdP2X2bEu5C2FtMX7h/mXGy05758N9esPlLs6sSDhYV6MW0u3tzuriMZfuy7L49OVpGCEfKToI5j8DBFdDlVrjmdfC4cGo54byy84vqNZKkHC0jREMU0grG/Q8GPmWMX/PRlcaZrqLJcNQQwRLuQjiaxQUG/tUI+ZJT8PFQWPORMXKlEDYi4S6EWWIvg4krIH4Q/PwX+PoOyM8wuyrhJCTchTCTTwjcPhOGvwz7foU3Oxghv+dnKCs1uzrRiMm50UKYTSno9yC0GQYbP4MtM2H3XPAJh663Qvc/QFg7s6sUjYwcLSNEQ1NWAvsXwqYvYO98KC+F6F7Q7Q7j5CjPALMrFCay2TR79iLhLkQt5GfC1plG0GfuAlcvSBhjtOZbXgYW6VltaiTchXAmWsPRjbBpBmz7FopyISAGontCcDwEt7Jex4NvuMz56sRsOYeqEMJsSkFUT+My/CXY/RNsn20cI79zDuiyc8u6+RghHxJ/LvDPBn8zae03ERLuQjQ2bl7Q+UbjAkYffe5hyE6GnAqX9J2wex6Ul5x7rauXNejjLgx+/ygJfici4S5EY+fidi6gKysvM4L/bOgfMK6z98O+BVBWVGE9HpVCP+5cl09AtHHylWg0JNyFcGYWFwiKNS6tBp//XHk5nDxyfmv/zCVpMZSerrAeN2MdFVv64e3lS90GTMJdiKbKYoHAFsYl/srznysvh/y0C0M/OxlSlkNJgbFcZFcY+tyFfziE6STchRAXsljAv7lxib3s/Oe0NoZJSFoEi1+Gz6+DuCuNkI/qYUa1ogry/5QQom6UAr8I6HY7PLIeRrwC6duNKQVnjYOs/WZXKJBwF0LUh6sH9H0AHt0CV04yvqR9rzf87zGZccpkchKTEMJ28jNg6Wuw/lOwuELsAONIG/9o4zogGgKijMMuXR0zrrmzkZOYhBCO5xsOI1+Dvg/C8jfh2FbjRKuCzCqWjbAGfxQEtDgX/AHRxn3vUDkSpx4k3IUQthccB2PePXe/5DScPAq5qRUuh41DMTN3GwOllVSaNNrFw/hC90zYnw3+Cv8JePg69udqRCTchRD25+ZlTDEY0qrq57WG08fPD/+TFW4fWAp5R0GXn/86z8Dqgz8gGvwiwaVpxlzT/KmFEA2LUuAdbFwiu1S9TFkp5B2zBv8Ro+Wfmwq5R4zrQ6uh8ESl9VqMgD8b/NYuoOA4YwYsJw5+5/3JhBDOxcX13ElX1SnKrzr4cw/D0U2w639QVmwsG9beGISt9VDH1O9gEu5CCOfh4WvMWlXdzFXl5XAqCw6uhIXPwRc3QOurjJB3stmu5KtoIUTTYbEYR/R0vBYeWgPDXoTDa+H9fjDvL3Aqx+wKbUbCXQjRNLl6QP9H4I8boed4WDcF3ukOqz8whlFu5CTchRBNm08ojHoTJq6A5t1h/iTjLNvFLxvH6Zt0omd9yRmqQghxhtaw71dY/hYcWgVoCIyB9qOMS0xf08e1lzlUhRCiPvIzYe/PsGsuJC8xJjbxDoF2VxtBHz/QOH7fwSTchRDCVoryjLNod/8Ee3+BopPGXLWthxhB33YYeAU5pBQZW0YIIWzFww86XmdcSoshZZkR9Lt/gl1zrIOkXWYEfddbjeVNJi13IYS4VOXlcHSjcXLU7rnG3LThHeH2mRc/2aoeattyl6NlhBDiUlksEJ0IVz0Pj2yAP8w2zob9eAgc2WhuaaZuXQghnEnroXDPr8aIlp+ONFr0JqlVuCulRiil9iil9iulJlXx/BNKqZ1Kqa1KqUVKqZa2L1UIIRqB8A5w3yKI6Agz74SV75pyrHyN4a6UcgHeA64GEoDblFIJlRbbBCRqrbsA3wL/tnWhQgjRaPiGw/i5kDAGfn0alr3u8BJq03LvDezXWidrrYuBr4GxFRfQWi/WWp8ZaX81EG3bMoUQopFx84IbP4O4K2DL1w7ffG3CPQo4XOF+qvWx6twD/FyfooQQwilYLMbJTtn7jclIHLlpW65MKfUHIBF4rZrnJyil1iul1mdmVjGnohBCOJso61GLRzY4dLO1CfcjQMUDNqOtj51HKTUU+DswRmtdVNWKtNaTtdaJWuvEsLCwS6lXCCEal+bdAQWpjj2vpzbhvg5oo5SKU0q5A7cCcyouoJTqDnyEEewZti9TCCEaKU9/aNYZtn/n0KGEawx3rXUp8DDwC7ALmKW13qGUekEpNca62GuAL/CNUmqzUmpONasTQoimZ9BTkLUHVr/vsE3K8ANCCOEIX91mjC758Dpjsu5LJMMPCCFEQzLiFeNkpvl/c8jmJNyFEMIRglrCFU8ao0juW2j3zcmQv0II4Sj9HzEm5Hb1sPumJNyFEMJRXD3gjlkO2ZR0ywghhBOScBdCCCck4S6EEE5Iwl0IIZyQhLsQQjghCXchhHBCEu5CCOGEJNyFEMIJmTZwmFIqEzh4iS8PBbJsWI6tSF11I3XVXUOtTeqqm/rU1VJrXeOEGKaFe30opdbXZlQ0R5O66kbqqruGWpvUVTeOqEu6ZYQQwglJuAshhBNqrOE+2ewCqiF11Y3UVXcNtTapq27sXlej7HMXQghxcY215S6EEOIiGnS4K6VGKKX2KKX2K6UmVfG8h1JqpvX5NUqpWAfU1EIptVgptVMptUMp9WgVywxUSuVaJwvfrJR61t51WbebopTaZt3mBRPUKsM71v21VSnVwwE1tauwHzYrpU4qpR6rtIzD9pdSaqpSKkMptb3CY8FKqQVKqX3W66BqXjvOusw+pdQ4O9f0mlJqt/V9+l4pFVjNay/6ntuptueUUkcqvF8jq3ntRX9/7VDXzAo1pSilNlfzWrvss+qywbTPl9a6QV4AFyAJiAfcgS1AQqVlHgQ+tN6+FZjpgLoigR7W237A3irqGgjMNWGfpQChF3l+JPAzoIC+wBoT3tM0jON0TdlfwBVAD2B7hcf+DUyy3p4EvFrF64KBZOt1kPV2kB1rGga4Wm+/WlVNtXnP7VTbc8CTtXivL/r7a+u6Kj3/BvCsI/dZddlg1uerIbfcewP7tdbJWuti4GtgbKVlxgLTrLe/BYYopZQ9i9JaH9Nab7TezgN2AVH23KYNjQWma8NqIFApFenA7Q8BkrTWl3ryWr1prZcCOZUervg5mgZcW8VLhwMLtNY5WuvjwAJghL1q0lr/qrUutd5dDUTbYlt1Vc3+qo3a/P7apS5rBtwMfGWr7dWypuqywZTPV0MO9yjgcIX7qVwYomeXsf4i5AIhDqkOsHYDdQfWVPF0P6XUFqXUz0qpjg4qSQO/KqU2KKUmVPF8bfapPd1K9b9wZuyvMyK01sest9OAiCqWMXPf3Y3xH1dVanrP7eVha5fR1Gq6GczcX5cD6VrrfdU8b/d9VikbTPl8NeRwb9CUUr7AbOAxrfXJSk9vxOh66Aq8C/zgoLIu01r3AK4GHlJKXeGg7dZIKeUOjAG+qeJps/bXBbTxP3KDOYRMKfV3oBSYUc0iZrznHwCtgG7AMYwukIbkNi7earfrPrtYNjjy89WQw/0I0KLC/WjrY1Uuo5RyBQKAbHsXppRyw3jzZmitv6v8vNb6pNY633p7HuCmlAq1d11a6yPW6wzge4x/jSuqzT61l6uBjVrr9MpPmLW/Kkg/0z1lvc6oYhmH7zul1HhgFHCHNRQuUIv33Oa01ula6zKtdTkwpZptmvJZs+bA9cDM6pax5z6rJhtM+Xw15HBfB7RRSsVZW323AnMqLTMHOPOt8o3Ab9X9EtiKtT/vE2CX1vrNapZpdqbvXynVG2M/2/WPjlLKRynld+Y2xhdy2ystNge4Sxn6ArkV/l20t2pbU2bsr0oqfo7GAT9WscwvwDClVJC1G2KY9TG7UEqNAP4CjNFan6pmmdq85/aoreL3NNdVs83a/P7aw1Bgt9Y6taon7bnPLpIN5ny+bP2NsS0vGEd37MX41v3v1sdewPjAA3hi/Ju/H1gLxDugpssw/q3aCmy2XkYCE4GJ1mUeBnZgHCGwGujvgLrirdvbYt32mf1VsS4FvGfdn9uARAe9jz4YYR1Q4TFT9hfGH5hjQAlGv+Y9GN/TLAL2AQuBYOuyicDHFV57t/Wzth/4PzvXtB+jD/bMZ+zMUWHNgXkXe88dsL8+t35+tmIEV2Tl2qz3L/j9tWdd1sc/O/O5qrCsQ/bZRbLBlM+XnKEqhBBOqCF3ywghhLhEEu5CCOGEJNyFEMIJSbgLIYQTknAXQggnJOEuhBBOSMJdCCGckIS7EEI4of8HOxEhzr3d4vsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -422,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -431,7 +438,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_33772694934.event_col_event.time_col_t.pkl\n", + "INFO:stancache.stancache:prep_data_long_surv: cache_filename set to prep_data_long_surv.cached.df_14209590808.event_col_event.time_col_t.pkl\n", "INFO:stancache.stancache:prep_data_long_surv: Loading result from cache\n" ] } @@ -446,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -455,115 +462,122 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
agesexageratetrue_tteventindexage_centeredkeyend_timeend_failure
625973male540.08208520.94877120.0False1.0138551.013855True04.1810.118611-1.120.009787False
35965male540.08208520.94877120.0False1.0138551.013855True04.1810.196923-1.120.377535False
615972male540.08208520.94877120.0False1.0138551.013855True04.1810.262114-1.120.791192False
715958male540.08208520.94877120.0False1.0138551.013855True04.1810.641174-1.120.808987False
26590male540.08208520.94877120.0False1.0138551.013855True04.1810.944220False-1.121.013855True
\n", "
" ], "text/plain": [ - " age sex rate true_t t event index age_centered key \\\n", - "62 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "3 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "61 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "71 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", - "26 59 male 0.082085 20.948771 20.0 False 0 4.18 1 \n", + " sex age rate true_t t event index age_centered \\\n", + "73 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "65 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "72 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "58 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", + "0 male 54 0.082085 1.013855 1.013855 True 0 -1.12 \n", "\n", " end_time end_failure \n", - "62 0.118611 False \n", - "3 0.196923 False \n", - "61 0.262114 False \n", - "71 0.641174 False \n", - "26 0.944220 False " + "73 0.009787 False \n", + "65 0.377535 False \n", + "72 0.791192 False \n", + "58 0.808987 False \n", + "0 1.013855 True " ] }, - "execution_count": 9, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -574,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -584,17 +598,11 @@ "output_type": "stream", "text": [ "INFO:stancache.stancache:Step 1: Get compiled model code, possibly from cache\n", - "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_25_1.model_code_9304163442804524267.pystan_2_12_0_0.stanmodel.pkl\n", + "INFO:stancache.stancache:StanModel: cache_filename set to anon_model.cython_0_29_2.model_code_10216236489136838232.pystan_2_18_1_0.stanmodel.pkl\n", "INFO:stancache.stancache:StanModel: Loading result from cache\n", "INFO:stancache.stancache:Step 2: Get posterior draws from model, possibly from cache\n", - "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_25_1.model_code_9304163442804524267.pystan_2_12_0_0.stanfit.chains_4.data_75232070308.iter_10000.seed_9001.pkl\n", - "INFO:stancache.stancache:sampling: Loading result from cache\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:228: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", - " elif sort == 'in-place':\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:246: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", - " bs /= 3 * x[sort[np.floor(n/4 + 0.5) - 1]]\n", - "/home/jacquelineburos/miniconda3/envs/python3/lib/python3.5/site-packages/stanity/psis.py:262: RuntimeWarning: overflow encountered in exp\n", - " np.exp(temp, out=temp)\n" + "INFO:stancache.stancache:sampling: cache_filename set to anon_model.cython_0_29_2.model_code_10216236489136838232.pystan_2_18_1_0.stanfit.chains_4.data_98562805320.iter_10000.seed_9001.pkl\n", + "INFO:stancache.stancache:sampling: Loading result from cache\n" ] } ], @@ -623,7 +631,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -632,8 +640,8 @@ "name": "stdout", "output_type": "stream", "text": [ - " mean se_mean sd 2.5% 50% 97.5% Rhat\n", - "lp__ 407.328012 15.738683 101.998321 214.786192 407.532163 606.393469 1.059665\n" + " mean se_mean sd 2.5% 50% 97.5% Rhat\n", + "lp__ 438.367242 33.037071 136.999711 60.442022 454.291446 665.11812 1.245577\n" ] } ], @@ -643,19 +651,21 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAF+CAYAAAAMWFkhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8XGd97/HPmRntsnZLluV9exw7jrc4zr6REAIlBCiE\npS2FS1va0FLaQqEbUG5bmpaWS+HeUsotcFvK0hIIJHE2grPajtfE2+PdlmVZ1i5Z22jmnPvHGTlG\nccaa0RzNSPq+Xy+9bB3NnPPTozOjr57znOdxPM9DRERE5PWEsl2AiIiI5DaFBREREUlKYUFERESS\nUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUkqkuoTjDE3AZ8A\n1gP1wL3W2odGPeYK4AvALYlj7APeaa09Pe6KRUREZEKl07NQAuwG7gdes7CEMWYx8CywH7gZWAV8\nHhhMv0wRERHJFmc8C0kZY1xG9SwYY/4TiFprP5CB+kRERCTLUr4MkYwxxgHeAjxgjNkErAWOA39j\nrf1xJo8lIiIiEyPTAxxrgVLgj4FHgDuBB4EfJsY6iIiIyCST0Z4FXg0fP7LWfjnx/5eNMdcDH8Ef\ny3BZnud5juNkuDQREZFpIeO/QDMdFtqAGHBg1PYDwA1j3YnjOPT0DBCPu5msbUoLh0OUlRWp3VKg\nNkuP2i11arP0qN3SU1lZkvF9ZjQsWGuHjTEvAWbUl5YBJ1PZVzzuEovp5EiV2i11arP0qN1SpzZL\nj9ot+9KZZ6EEWMKr3RyLjDGrgQ5rbSPwd8B3jTHPAk8DdwO/hD/ngoiIiEwy6QxwvBrYBezAn2fh\ni8BO4HMA1tof4Y9P+CTwMvAh4B3W2hczUbCIiIhMrJR7Fqy1m7lMyLDWfhP4ZnoliYiISC7R2hAi\nIiKSlMKCiIiIJKWwICIiIkkpLIiIiEhSCgsiIiKSlMKCiIiIJKWwICIiIkkpLIiIiEhSCgsiIiKS\nlMKCiIiIJKWwICIiIkkpLIiIiEhSCgsiIiKSlMKCiIiIJKWwICIiIkkpLIiIiEhSCgsiIiKSlMKC\niIiIJBXJdgEik43runR0dAR+nKqqKkIh5XkRyT6FBZEUdXR08PiWg5SWlgd2jPPnu3njtcupqakJ\n7BgiImOlsCCShtLScsoqqrJdhojIhFAfp4iIiCSlsCAiIiJJKSyIiIhIUgoLIiIikpTCgoiIiCSl\nsCAiIiJJKSyIiIhIUinPs2CMuQn4BLAeqAfutdY+9DqP/RrwG8DvW2u/PJ5CRUREJDvS6VkoAXYD\n9wPe6z3IGHMvcA3QlF5pIiIikgtS7lmw1m4CNgEYY5xLPcYY0wB8GbgLeGQ8BYqIiEh2ZXzMQiJA\nfBt4wFp7INP7FxERkYkVxNoQnwKi1tqvjGcn4bDGXqZipL3UbmOXbptFIg6hkEM4dMmOtYwIhRwi\nEYdIJPd+njrXUqc2S4/aLXdkNCwYY9YDvwesHe++ysqKxl/QNKR2S12qbRaL9VNUlE9xcUFAFUF0\nKJ+KihIqK0sCO8Z46VxLndosPWq37Mt0z8KNwEyg0Rgzsi0M/IMx5vettYvGuqOengHicTfD5U1d\n4XCIsrIitVsK0m2zrq4+Bgai5BcMBVbbwECUrq4+IpHiwI6RLp1rqVObpUftlp4g/sjIdFj4NvDE\nqG2PJ7b/Wyo7isddYjGdHKlSu6Uu1TaLxTxc1yPuvu7NQOPmuh6xmJfTP0uda6lTm6VH7ZZ96cyz\nUAIsAUYu2C4yxqwGOqy1jUDnqMcPA2ettYfHW6yIiIhMvHR6Fq4GnsafY8EDvpjY/i3gQ5d4fHB/\nfomIiEjg0plnYTMp3HKZyjgFERERyT26H0VERESSUlgQERGRpBQWREREJCmFBREREUlKYUFERESS\nUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQ\nERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGR\npBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJKlIqk8wxtwEfAJYD9QD91prH0p8LQL8\nFXA3sAjoBp4EPmWtbc5U0SIiIjJx0ulZKAF2A/cD3qivFQNrgM8Ba4G3Awb48ThqFBERkSxKuWfB\nWrsJ2ARgjHFGfa0HuOvibcaYjwJbjTFzrLWnx1GriIiIZMFEjFmowO+B6JqAY4mIiEiGBRoWjDEF\nwBeA71hrzwd5LBEREQlGypchxiox2PEH+L0Kv5Pq88Nh3aiRipH2UruNXbptFok4hEIO4ZBz+Qen\nKRRyiEQcIpHc+3nqXEud2iw9arfcEUhYuCgozAVuT6dXoaysKON1TQdqt9Sl2maxWD9FRfkUFxcE\nVBFEh/KpqCihsrIksGOMl8611KnN0qN2y76Mh4WLgsIi4DZrbWc6++npGSAedzNa21QWDocoKytS\nu6Ug3Tbr6upjYCBKfsFQYLUNDETp6uojEikO7Bjp0rmWOrVZetRu6Qnij4x05lkoAZYAI32wi4wx\nq4EO4Azw3/i3T/4SkGeMqUs8rsNaOzzW48TjLrGYTo5Uqd1Sl2qbxWIerusRd0ffOZw5rusRi3k5\n/bPUuZY6tVl61G7Zl07PwtXA0/hjETzgi4nt38KfX+Gtie27E9udxOe3Ac+Mp1gRERGZeOnMs7CZ\n5HdRaCSKiIjIFKJf7CIiIpKUwoKIiIgkpbAgIiIiSSksiIiISFIKCyIiIpKUwoKIiIgkpbAgIiIi\nSSksiIiISFIKCyIiIpKUwoKIiIgkpbAgIiIiSSksiIiISFIKCyIiIpKUwoKIiIgkpbAgIiIiSSks\niIiISFIKCyIiIpKUwoKIiIgkpbAgIiIiSSksiIiISFIKCyIiIpKUwoKIiIgkpbAgIiIiSSksiIiI\nSFIKCyIiIpKUwoKIiIgkpbAgIiIiSSksiIiISFKRVJ9gjLkJ+ASwHqgH7rXWPjTqMX8JfBioAJ4H\nfttae2T85YqIiMhES6dnoQTYDdwPeKO/aIz5Y+CjwG8B1wB9wGPGmPxx1CkiIiJZknLPgrV2E7AJ\nwBjjXOIhHwM+b639SeIxvwa0APcC30+/VBEREcmGjI5ZMMYsBGYBT41ss9b2AFuB6zJ5LBEREZkY\nmR7gOAv/0kTLqO0tia+JiIjIJJPyZYg0OVxifEMy4bBu1EjFSHup3cYu3TaLRBxCIYdw6FJX4TIj\nFHKIRBwikdz7eepcS53aLD1qt9yR6bBwFj8Y1PGLvQu1wK5UdlRWVpTBsqYPtVvqUm2zWKyfoqJ8\niosLAqoIokP5VFSUUFlZEtgxxkvnWurUZulRu2VfRsOCtfa4MeYs8AbgZQBjTBmwEfhqKvvq6Rkg\nHnczWd6UFg6HKCsrUrulIN026+rqY2AgSn7BUGC1DQxE6erqIxIpDuwY6dK5ljq1WXrUbukJ4o+M\ndOZZKAGW4PcgACwyxqwGOqy1jcCXgD8zxhwBTgCfB04DP07lOPG4SyymkyNVarfUpdpmsZiH63rE\n3ZSurKXEdT1iMS+nf5Y611KnNkuP2i370rkQdDX+JYUd+OMQvgjsBD4HYK19APgn4Gv4d0EUAXdb\na6OZKFhEREQmVjrzLGzmMiHDWvtZ4LPplSQiIiK5RENMRUREJCmFBREREUlKYUFERESSUlgQERGR\npBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQW\nREREJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGRpBQWRERE\nJCmFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUlKYUFERESSUlgQERGRpCKZ3qExJgR8\nDng/MAs4A3zTWvs/M30sERERCV4QPQufAn4L+B1gOfBJ4JPGmI8GcCwREREJWMZ7FoDrgB9bazcl\nPj9ljHkfcE0AxxIREZGABdGz8ALwBmPMUgBjzGrgBuCRAI4lIiIiAQuiZ+ELQBlw0BgTxw8kf2qt\n/W4qOwmHNfYyFSPtpXYbu3TbLBJxCIUcwiEniLIACIUcIhGHSCT3fp4611KnNkuP2i13BBEW7gPe\nB7wH2A+sAf6XMeaMtfb/jXUnZWVFAZQ29andUpdqm8Vi/RQV5VNcXBBQRRAdyqeiooTKypLAjjFe\nOtdSpzZLj9ot+4IICw8Af22t/UHi833GmAXAp4Exh4WengHicTeA8qamcDhEWVmR2i0F6bZZV1cf\nAwNR8guGAqttYCBKV1cfkUhxYMdIl8611KnN0qN2S08Qf2QEERaKAW/UNpcUx0fE4y6xmE6OVKnd\nUpdqm8ViHq7rEXdHn+aZ47oesZiX0z9LnWupU5ulR+2WfUGEhZ8Af2qMaQT2AeuAjwP/GsCxRERE\nJGBBhIWPAp8HvgrU4k/K9H8S20RERGSSyXhYsNb2AX+Q+BAREZFJTvejiIiISFIKCyIiIpKUwoKI\niIgkpbAgkiWeF9ytlyIimRTE3RAikkRzex87bCtdvVEKC8IU5YcpLIhQXVbIyoVV5OXgFM8iMr0p\nLIhMkL7BYbYfbOXk2d4L2/oHY/QPxoAhmlr7ONnSyy1rZqvLT0RyisKCyAQ4eLKTnYdaicX9Sw+F\n+WGWziknFvcYjMbo6R+mvXuQ7vNRHnnxJKvml3J9lmsWERmhsCASsGNnutl24BwADrBsXgVrltZQ\nkBe+8BjP87Cnuth+0A8Uu471Eg438ltvryIcUj+DiGSX3oVEAtTRM8iLe1sAKCmM8Jbr57NxRd0v\nBAUAx3FYPr+Su6+dR2lRHgDbD3fyo2ePT3jNIiKjKSyIBGQoGufnu84Qdz3CIYdb1zZQVVaY9DnV\n5YX80vXzqZrhd/o9/OJJXj7aPhHlioi8LoUFkQC4nsezL5/h/MAwABtX1FFdnjwojMjPC7NhaRkl\nhX7vw9d/so+OnsHAahURuRyFBZEA7DnSzpm2fgCWza1gyZzylJ5flB/mvbfOwwH6BmP8nx/vJRbX\nEr0ikh0KCyIZ1tk7xCuJSwc15YVsuKI2rf0smzODt96wAICjTT389+ajmSpRRCQlCgsiGbbrUCsA\n4ZDDLWtmEw45ae/rnhsWcsX8SgAe29bIocaujNQoIpIKhQWRDGrp7Od0ax8AV8yvpCRxZ0O6QiGH\n37xnJSWF/oDH7/3sMK6miRaRCaawIJIhnuex0/q9Cvl5Ia5cVJWR/ZaX5HPPDQsBON7cy9Z9LRnZ\nr4jIWCksiGTI6dY+Wrv8uxauXFRN/qi5FMbjtnUN1FUVA/Bfm48yNBzP2L5FRC5HYUEkA1zPuzBW\nobgwwvJ5FRndfyQc4t23LQb8AZSPbTuV0f2LiCSjsCCSAceaeug6HwVg9ZJqIuHMv7TWLKm5MNjx\nkS0n6ewdyvgxREQuRWFBZJxc12PPkTbAH1+weHZqcyqMleM43Hf7EhwgOuzy4DPHAjmOiMhoCgsi\n43SqpZe+wRgAa5bWEBrHrZKXM69uBjdeVQ/A868009R6PrBjiYiMUFgQGaeDp/y5D0qL8phbVxr4\n8d5+8yLyIiE8/LUjRESCprAgMg7tPYOc6xwA/KWnQ05wvQojKkoLuHn1bAC2HmihpbM/8GOKyPSm\nsCAyDgdPdgL+bI1LG4IZq3Apd2+cRzjk4HnwiHoXRCRgCgsiaRqMxjje3AvAwtllFORnbl6Fy6kq\nK+SGVbMAeGHvWdq7tSqliARHYUEkTYdPd+O6/tTLV8zP7LwKY/Hma+fjOBB3PR7dqt4FEQmOwoJI\nGlzPwyYGNtZVFlE5o3DCa6itLGbjijoAntnTTNd5zbsgIsFQWBBJw9nOKP2J2yWXJyZKyoa3XLcA\ngFjc5fFtjVmrQ0SmtkgQOzXGzAb+FrgbKAYOAx+01u4M4ngiE+3YWf8OiOLCCHNrg79d8vU01JSw\n3sxkh23l6V1NvPm6+ZSOc6VLEZHRMt6zYIypAJ4HhoC7gCuAPwQ6M30skWxo6x6irWcYgGVzKwKd\nhGksfinRuzA0HOfpXU1ZrUVEpqYgehY+BZyy1n74om0afSVTxo4jfu51gCUTeLvk65k/awZXzK/k\nwMlOntpxmjddM4+8iK4wikjmBPGO8lZguzHm+8aYFmPMTmPMhy/7LJFJwPU8dh72w0J9TTHFhYFc\nyUvZXdfMA6CnL8qWfWezXI2ITDVBvNMtAn4b+CLwV8BG4MvGmEFr7b+PdSfhAFbtm8pG2kvtNnbp\ntNn+Ex10nvcvQSydU0E4oEsQoZBDJOIQGWMPwdplNTTUlNDU1sfjLzVy67oGnIBmk9S5ljq1WXrU\nbrkjiLAQArZZa/888fkeY8xK/AAx5rBQVlYUQGlTn9otdam02bZNFoC8sMPyhcEsRQ0QHcqnoqKE\nysqSMT/nnbcv5cvf301TWx/HWvq4+oq6QGoboXMtdWqz9Kjdsi+IsNAMHBi17QDwjlR20tMzQDzu\nZqyoqS4cDlFWVqR2S0GqbTYYjfH8njMANFQXEB0aJhpQbQMDUbq6+ohEisf8nNWLqigvyae7L8oP\nnrQsnhXMXRo611KnNkuP2i09qfyRMVZBhIXnATNqmyHFQY7xuEssppMjVWq31I21zbbua2FoOA7A\n3JpC4onZG4Pguh6xmJfSz9IBbl8/hwefOcb+E50cPd3N/FkzAqtR51rq1GbpUbtlXxB9qP8IXGuM\n+bQxZrEx5n3Ah4GvBHAskQnzwl5/4GB1WT5VM3JjYONot61tID/Pf1k/9tKpLFcjIlNFxsOCtXY7\n8HbgvcArwJ8CH7PWfjfTxxKZKO3dgxdWmFy/tDKwwYPjVVqUx42r6gF46cA5Onq0wJSIjF8gfx5Z\nax8BHgli3yLZ8MK+s4xcdFi3pJKDJ9uzWk8yb9wwl6d3NhF3PZ7cfpp3374k2yWJyCSn+1FELsPz\nvAuXIJbPq6BqRn6WK0qutrKYdctmArB5TxMDQ7EsVyQik53CgshlnDjbS0tHPwDXXTkry9WMzcgk\nTQNDcZ5J3MEhIpIuhQWRy9h2oAWASNhhfeIv9ly3ZE45ixvKAHhyeyNxVyPJRSR9CgsiSbiex7YD\n5wBYtaia4sLJs6LjXRv83oX2niG2H2zNcjUiMpkpLIgkcbixi87eIQA2rgh2RsRMW7dsJjMrCgHY\ntO0UnhfcvBAiMrUpLIgksTXRq1CQH2b1kposV5OaUMjhjYnehZNneznU2JXlikRkslJYEHkdsbjL\n9oN+WFi7tIaCvHCWK0rdjavqKUmsjLlpqyZpEpH0KCyIvI4DJzs5P+CvMLkx4EWZglKQH+bWtQ0A\n7DnaTlPr+SxXJCKTkcKCyOvYut+/C6KkMMLKhVVZriZ9d6yfc2F1zEe2qHdBRFKnsCByCdHhODsP\n+XcQrDe1gS1FPRHKSwu46Sp/Cuit+1to6xrIckUiMtlM3ndAkQC9fLSdwai/wuRkuwviUt60cR4h\nx8H1PDZtU++CiKRGYUHkErYmJmIqL83HzK3IcjXjN7OiiGtW1ALw7MvNdPdFs1yRiEwmCgsiowwM\nxXj5qL9Q1IbltYRCubnCZKrefO18AIZjLk+81JjlakRkMlFYEBll95E2hmP+9MhT4RLEiDkzS1mT\nmCvi6V2n6R8cznJFIjJZKCyIjPJSYiKmmvJCFtWXZbmazHrLdX7vwsBQnJ/tbMpyNSIyWSgsiFyk\nb3CYV469egnCcabGJYgRixvKWT7PH4PxxPZGBqNavlpELk9hQeQiOw+1Enf9NRSumaQTMV3OW65f\nAEBv/zBP7Tid3WJEZFJQWBC5yMgKk3WVRcyrK81yNcFYMb+SZYk7PB7dckpjF0TkshQWRBJ6+qMc\nONEJ+L0KU+0SxAjHcXjHzYsA6B+KsWmb7owQkeQUFkQSdtpWXG/kEkRtlqsJ1rK5FVy5yJ/C+ont\njfT0a94FEXl9CgsiCdsSEzE1zCyhYebUvARxsZHehaFonEdePJnlakQklyksiABd54ewp7oAuGb5\n1O5VGLFgVhnrl80E4OldTXT2DmW5IhHJVQoLIsD2g+fwEv+fqndBXMq9Ny3EwZ/V8acvnMh2OSKS\noxQWRHj1Loj5dTOoqyrOcjUTp2FmKdeu9MPRM3vOcKatL8sViUguUliQaa+1a4AjTd3A1B/YeCn3\n3rSISDhE3PX4zycP4Xne5Z8kItOKwoJMe1v2tVz4/3S6BDFiZkURd2+cB8C+E53sOtyW5YpEJNco\nLMi0t2XfWQCWzSmnurwwy9Vkx5uvm09VWQEA333qMNHheJYrEpFcorAg09rJ5h4az50HYOPKWVmu\nJnsK8sLcd/tSANq6B9m07VSWKxKRXBJ4WDDGfNoY4xpj/iHoY4mkavMuf22EcMjhajMzy9Vk19Vm\n5oVFph558STt3YNZrkhEckWgYcEYswH4DWBPkMcRSYfneWze5S/TvHJhFTOK87NcUXY5jsP77lhG\nyHGIxly+97PD2S5JRHJEYGHBGFMK/DvwYaArqOOIpOtIUzfnOvoB2Lhi+g1svJQ5taXctq4BgO22\nlR32XJYrEpFcEGTPwleBn1hrfxbgMUTS9uJef2BjfiTE2qU1Wa4md7z9pkUXBjt++zGrdSNEhEgQ\nOzXGvAdYA1yd7j7CYY29TMVIe6ndxibuuhcmYlq/vJbSFC5BRCIOoZBDOBTcqpShkEMk4hCJBPfz\ndF2Xjo72S37t3Tc38M8/PUZv/zD/96ev8IE7519YhTMcDhGL9dPbO0A87l72OFVV1YRC0/u81Osz\nPWq33JHxsGCMmQN8CbjTWjuc7n7KyooyV9Q0onYbm532HD19/l/Md1wzn8rKkjE/Nxbrp6gon+Li\ngqDKIzqUT0VFSUp1paq1tZXNO49ROqP8kl9f2lDC4aY+Xj7WzQ+fO82CWanPbHm+t5u33V5CdfX0\nHjw6Qq/P9Kjdsi+InoX1wExghzFm5E+vMHCzMeajQIG19rJTxPX0jO2vFvGFwyHKyorUbmP0xJYT\nAJQW5bFk9gw6O8c+zXFXVx8DA1HyC4JbeGlgIEpXVx+RSHBTT3d19RGOFJFfcOkVNjeuLOZs53F6\n+4d56VAXc+oqKS7MIxQKUViYx+DgMK6b/FwLT8D3MRno9ZketVt6gvgjI4iw8CSwatS2bwIHgC+M\nJSgAxOMusZhOjlSp3S5vKBrnpYP+JYgbVs/GgZTaLBbzcF2PuBvctMiu6xGLeYH+LC/3fYRCDtdf\nOYvHtjUSHXZ57uWz3L6+4cKbhuu6l22Difg+JhO9PtOjdsu+jIcFa20fsP/ibcaYPqDdWnsg08cT\nSdWOQ+cYivozFN5+9dwsV5Pb6qqKuWJ+JQdOdtLU1scrxzo0GFRkGpqoUSNamUZyxvOv+HdB1FUW\nccWCqixXk/vWLauhusyfBnv34TaaWrUypch0E8jdEKNZa2+fiOOIXE5b9wAHTnYCcONV9RdG+Mvr\nC4dD3LJ2Ng+/cJKh4TibdzdRV1NKRE0nMm3ofhSZVkbmVnCAG66and1iJpHSojxuWl0PwNCwy6YX\nTxDTgDORaUNhQaYNz/MuXIJYPr+Smmm6wmS6ZteUXBiv0No1wIt7W/A8XWEUmQ4UFmTaOHy6m3Nd\nAwDcuKo+y9VMTlcuqmJurX+r5ZGmbl4+eulJnURkalFYkGnj+VeaASjMD7NumSYJSofjONy8up7q\nRK/MniPtHD6tpV9EpjqFBZkWhoZfnVvh6uW1FOSHs1zR5JWfF+atNy6ipNAfH71lXwunW89nuSoR\nCZLCgkwLOw+1MpiYW0GXIMavpCiPN26YS34khOfBM7vP0NY9kO2yRCQgCgsyLTz3sn8JYmZFIUvn\nXHotBElNxYwCblvXQCjkEIt7PLW9ic7e4KbAFpHsUViQKe9sR/+rcyus0twKmVRXVcxNV9Xj4F/q\neeKlRrrOKzCITDUKCzLl/XxXEwDhkMNNqzW3QqbNnzWDG66aBcBgNM7j2xrpPh/NclUikkkKCzKl\nDQ3HL9wFsXbZTCpKg1tWejpbNLuc66+8KDC81HhhCXARmfwUFmRK23aghb7BGAC3rW3IcjVT25I5\n5Vy7sg6AgaEYj21rpHcgluWqRCQTFBZkShu5BFFfXczyeRVZrmbqWza3gmtW1AJ+YHhufxfNHbpL\nQmSyU1iQKet4cw/Hm3sBuHVtgwY2TpDl8yov9DAMDXt87eFjnDzbm+WqRGQ8FBZkyno60auQnxfi\nhsT1dJkYy+ZWcMMqv837h+I88J+7ONLUneWqRCRdCgsyJfUNDrNtfwsA166oo7gwL8sVTT+LG8rZ\nsLSMkONfkvjid3ez/0RHtssSkTQoLMiU9PwrZ4nG/CWUb1s7J8vVTF8N1QX82h0LiIRDDA3H+dIP\n9rDrUGu2yxKRFCksyJTjuh4/23kagIX1ZcyfNSPLFU1vK+aX8fvvuoqCvDCxuMdXH9zLi3vPZrss\nEUmBwoJMOTsOtXKu0x+Bf+fV6lXIBSsWVPFH71lDcUEE1/P4+k/3Xwh0IpL7FBZkSvE8j0e2nASg\npryQDVfUZrkiGbG4oZw/fv86ykryAfj3xw/x8IsnslqTiIyNwoJMKQdOdl64Te+ua+YRDukUzyVz\na0v59PvXUV3mz6T535uP8YOnj+B5XpYrE5Fk9E4qU8qjiV6F0qI8brxKS1HnorqqYj79K+uZVVUM\nwKNbT/Htxyyuq8AgkqsUFmTKOHm2l30n/NUl71g/h4K8cJYrktdTVVbIp35lHfPqSgHYvPsM//KT\nfcTibpYrE5FLUViQKePRrX6vQn5eiNvXa2BjrisrzueT713HsjnlAGw7cI6v/PAVhobjWa5MREZT\nWJAp4VxnPy8dPAfAzatnU1qkSZgmg+LCCB+/bw2rFlUD8PLRdv7x+3sYGNICVCK5JJLtAkQyYdPW\nU3gehEMOd22Yl+1yxs11XTo62gM9RkdHO14OjBMoyAvzu+9cxdd/sp+XDp7jUGMXD3xnFx+/bzVl\nxfnZLk/OKmmfAAAaoklEQVREUFiQKaCls59nX24GYOOKOqrLC7Nc0fj1ne/mmd0t1NZGAzvG2TOn\nKC2vppzqwI4xVpFwiN+6ZyVFBWGe2dPMyZZe/vY/dvKH962hqmzy/zxFJjuFBZn0HnzmGHHXIxxy\nuOfGhdkuJ2OKS8ooq6gKbP+9PZ2B7TsdoZDDB960nOKCPDZtO0Vzez9/8+87+MP3rL1w54SIZEfG\nw4Ix5tPA24HlwADwAvDH1tpDmT6WyMmzvWw74I9VuHVNA7UVRVmuSMbDcRzeddtiigsj/PCZY7T3\nDPGFf9/BH9y3hnl1mrZbJFuCGOB4E/BPwEbgDiAPeNwYo3dxybj/2nwUgIL8MG+9YUF2i5GMcByH\nX7p+Ab/6xmU4QE//MH/7nZ0cauzKdmki01bGexastW+++HNjzK8D54D1wHOZPp5MX/tPdLDvuL/k\n8V0b5l6YRlimhtvWzaG4MI9//el+BobifPF7u/nIPStZu2xmtksTmXYm4tbJCsADtJC9ZIznefzX\nz/1ehRnFedx1zeS/A0Jea+OKOn73nVeRnxdiOObylQdfYfPupmyXJTLtBBoWjDEO8CXgOWvt/iCP\nJdPLdtvKicQaEG+9fgFFBRqrO1VdtbiaT7xnLSWFETwPvrXJ8tDzx7WehMgECvod9n8DK4AbUn1i\nOKz5olIx0l7Tod0GozG+/7MjAMysKOKODXOJJL7vVOYnCIdDxGL99PYOEE9hmuGeng4cx5/TISiO\n4xAOOTl5jFBicS7/38u1m0dPTweRyPi+j+oS+OjbFvMvDx+j8/wwP3r2OC3tPbzjxgbCIYeqquoL\ndeWiXHh9TsTcHUBGfxa50G7iCywsGGO+ArwZuMla25zq88vKNB4yHdOh3b7x0F7aewYB+B9vu5KZ\nNa+Okm9tbWXzzmOUzigP7PjNTScpq6imuLggsGMUFeUTjuTl9DEKCy8/S2bbuQG27O+gri6tQ7zG\nratr+NnuVrr7Yry4v50TZ8+zdmEev3xnCdXVuT+WIZuvz4l4bZzv7eZtt2f+ZzEd3tdyXSBhIREU\n3gbcYq09lc4+enpS+2tvuguHQ5SVFU35djvR3MOPn/HHKqxdWsMVc8ro7Oy78PWurj7CkSLyC0ov\nu69QKERhYR6Dg8O47tjbLBQuZGBgmP7+odS/gTEaGIgSjpCTx0il3fxjjO3nMRb5BfCW60t5emcT\nze39NHcM0TcYY/3yTiKR3J2LIRden6m8NtIVHojS1dWXsZ9FLrTbZFRZWZLxfQYxz8L/Bt4L3AP0\nGWNG/qbottYOjnU/8bhLLKaTI1VTud3irss3Hj6A5/m3Sr7/zmXE4x7++FlfLObhuh7xMU1j7LeT\n67pjfLzP8/z9p/KcVOX2McbebkF8H5Gwv1DY1n0tHGnqpqc/zpd+eJiPvauERbPLMnacIGTz9Zna\nayM9rusRi3kZ/x6n8vvaZBHEhaCPAGXAz4EzF328O4BjyTTy1I4mTiYGNb7jpkWaBngaC4ccrruy\njrVLawDoHYjxhf/YwTN7zmS5MpGpKYh5FjQSRTKuvXuQB585BsCCWTN4g5agnvYcx2HV4moiRNl9\nvJfhmMc3Hz3IieYe3nvHMvIieisSyRS9miTnuZ7Hvz16gKHhOCHHXz8gFOBdAjK5NFQX8NG3LmFm\nhd/T9PPdZ3jgOzvp6BnzVU8RuQyFBcl5D794kv0n/EWP7rpmLvNnaY0A+UX11UX8xa9vYNUifwXN\no2d6+ItvbGPbgZYsVyYyNSgsSE471NjFj571Lz8srC/j7TcvynJFkqtKCvP42C9fxT03LMAB+odi\n/POP9yWmi45luzyRSU1hQXJWb3+Urz20D8+DooIIH3nbyguTL4lcSijkcO9Ni/jk+9ZSXebPH/HC\n3rN85v9u48AJzTgvki6980pOcj2Pf/3pATp7/TkAPvTm5czU8tMyRmZeJZ/70DVcu8K/c7ute5C/\n++5u/uWhfXSfD27uCpGpSmFBctLDL5zglWP+1LRvWDeH9aY2yxXJZFNcmMdv3rOS37xnBTOK/dkm\nt+xv4U++voWndpwmnsJEXCLTncKC5JznX2nmwWePAzC/bgbvvn1JliuSyezaFbP4q9+4llvXzMYB\nBobi/McTh/izr2/lxX1ncQOcpEhkqlBYkJyy93g733z0IACVMwr43Xeu0v3yMm6lRXn82puW8ye/\nup55tf50xy2dA3z9J/v5829sZduBFvU0iCShdX0lZ5w828tXH9xL3PUoKgjz8Xet1iyNklGLG8r5\ni1/fwNYDLTz03HFaOgdobu/nn3+8j6qyAm5ZPZubV8+mvDS4BbxEJiOFBZlQr7fwUGvXAF/6wR6G\nonHCIYf7772S2TXFKS3wlGz/IiNCIYfrVs7imitqeXFvCw89f5y27kE6eoZ48NnjPPT8CdYurWHD\nFXWsWlRFYX7wb5P+8tHB3q3R0dGOp0sukiaFBZkw+w9a9h9rfc1a9+cHXbYcjTI47H9+1dwIB63l\noE39GG0tp5g1f2UGqpWpLhwKceNV9Vy7so7dh9t4elcTB052Enc9tttWtttWIuEQKxdUsmZpDcvm\nVjCrqhjHyfzsoR0dHTy+5SClpeNbPtpfuAuG4y6xuHfhI+56dLS3UlA0g/LBPBwHQo5DOOQQCjnk\nRUIU5ocpyAuTFwkF8j3K5KawIBMm7rpU1s0lHH71tOvsHWTL/tMXgsKG5bVcsaAy7WP09nSNt0yZ\nZiLhEFcvr+Xq5bU0t/fx811n2Hawhe7zUWJxlz1H29lz1L8zp7QojyUN5SyaXUZ9dQn11cXUVhZl\nZP6P0tJyyiqqfmGb53lEYy5D0TgD0RhD0TiDQ3EGozEGo/GLPmIMDbsMDceTDNgsAKLQ2Jy0Dsfx\nJ7iaUTzykU/ljAKqywspyAuP+/uUyUlhQbKmtWuAp7afJppYevbaFXUsm1eR5apkOquvLuG9dyzl\nvjcs4diZHnYdamXnoVZaOgcAOD8wzO4jbew+0nbhOSHHoaqsgPLSfMqK8ykvyaekKI/8vDAFkRD5\neWHy8kIUFRXQ1zdE3HWJxz2isTjDwy5DsTjdPX2cOncez+knOuwSHY4zlPjwJvjKgef53+f5gWGa\n23/xazOK86guK6SuqpjZNcXMKM6f2OIkaxQWJCuaWvvYvLuJWNzDceCGVfUsml2W7bJEAD8ALGko\nZ0lDOe+6bQnt3YMcaermyOluDjd10dTaRzzxF7zrebR1D9LWnYmFq8Y2YVQk7FCYH6EwP+xfPkhc\nQijI8/+fHwmRF/EvKeRFQoRDDueaTxGO5FE/uwHP8+t2Xf8SxfCwy+Bw3O+5iMY4PzBMb7//0Tcw\nzEheGdl2IrFU/IziPOqrS5hbW0p9dXEGvn/JVQoLMqE8z2PvsXZ2HWrDw39TvnlNPfPqtDiU5K7q\n8kKqywvZmJgRMhZ3aese5Gx7P80dfbR3D9LTF6WnL0p3X5S+wRjDMb+H4PU6BkKOQ35eouchDPG4\nS2FhPvmJ3ojCxC/+kbEEhQXhCwEhncsevfkOTjiU8oDNWNyls3eI9kQgau0aoLffv27oh4cuDjV2\nkZ8XYlZFPtUVpVRWVREO6ZbnqURhQSZMNOby3MstnDrXB0B+Xohb1symvroky5WJpCYSDjGrqphZ\nVcWsoeZ1H+d5/gBDHKisLKG7q59Y3CUccn7hF35bWxsv7G1+zZiFXBAJh5hZUfQL0637lyj6ONPW\nT3NbH9GYS3TY5VTrIN/YdJz/eraJ61fN4qarZjOrSj0OU4HCgkyIM219fPfZdtp7/dX/KmcUcNva\nBkoT0/CKTEWO45AXcYhEQhQVRBjMDxOOTf47DUqL8lg6p4KlcyqIux5n2/s4cbaXU2d7GY57dPdF\neXTLKR7dcoqlc8q5dW0DG5bXaiG4SUxhQQLluh5PbG/kvzcfIxb3BzIuqJ/B9VfO0huHZIQ/R0H7\n5R84zmMAr7ntd6wiEYdYrJ+urj5isddemJjMcyCEQw4NM0tpmFnKyoZ8KstL2HO8j5ePtuN6HodP\nd3P4dDff+9kRbl0zm1vWNFA5Q5NeTTYKCxKYc539fOPhAxw+3Q1AOARrllSzYmG17uOWjOk7380z\nu1uorY0GdoyzZ04RiuRRW1uf1vNDIYeionwGBqKXvLXx7JlTlJZXU071eEvNqlDIYeX8cm5Zv5iu\n80O8uPcsm3ef4VzXAD19UR56/gQPv3iSDctruXPDXBbWa1DzZKGwIBk3HHN5YnsjDz1/nOiw/xfZ\n/FkzuHl5AW5euYKCZFxxSVmg1/t7ezpxwvlpHyMcciguLiC/YOjCXRSj9z/VVJQWcPe187lr4zz2\nHmvnqR1NvHKsnbjrsWV/C1v2t7BsTjl3bpjH2qU1hEJ6X8hlCguSMZ7nsftwG9/72RHOdfn3pYdD\nDm+9fgFvvm4+B6zl3ECWixSRCRVyHK5aXMNVi2to6ejnyR2nee7lZoaG4xw63c2h069QW1HEnRvm\ncuOqegryNfFTLlJYkIw43tzDDzcfZd+JV/9CWjKnnF+5c5luixQRAOqqinn/nct4+00L2bznDE9u\nP01n7xDnugb4jycO8aNnj3Hr2gZuXzdH4xpyjMKCjMvRM9089NwJXjn26gCzyhkFvPu2JVxzRa0u\nOYjIaxQX5nH3xvncefVcth88x2PbGjnZ0kvfYIyHXzzJpq2nuHp5LW/aOI+rK3VrdS5QWJCUeZ7H\nvhMdPL6tkb3HX10pryA/zF0b5nL3xvnqShSRy4qEQ1y7chYbV9RxqLGLx7Y1sudIG3HXY+v+Frbu\nb8HMq+TWNbNZt6yGvIjeV7JFYUHGbGAoxgt7z/LUjtOc7ei/sL0wP8wdV8/hjRvmUVqkeRNEJDWO\n42DmVWLmVb46ruGVZoaiceypTuypTkoKI9ywqp5b1zZooqcsUFiQpFzXw57q5IV9Z9luWxmKxi98\nrbQoj9vXNXDH1XMVEkQkI14d17CIF/Y18/SuMzS39dE3GOPxlxp5/KVGlswp5/orZ3HN8lqKC/Xe\nMxEUFuQ1XM/j2Jkedh5qZev+Fjp7f3Fxm/l1M3jD+jlsXFGrbkERCURxYYQ3bZzPfW+8gud3NfLU\njtPsPuxfojhy2l/U6ztPHGbN0ho2LK9l1aKqlNe9kLFTywoA/YMx7KlOdh9pY8+RNnoSC8WMKCqI\nsGH5TG68ajaLZ5dp4KKITIhQyOHKRdUsn1d5YaKnF/aepamtj1jcZfvBc2w/eI68SIgrF1axbtlM\nrlxYRXmp7qbIpMDCgjHmfuCPgFnAHuB3rbUvBXU8SU1vf5TjzT3YU10cONnJyZZevFFzxUTC/ovv\n+itnsXpJtXoRRCSrRiZ6etPGeZxqOc/ze5vZfvAcXeejDMdcdh1uY9fhNgDmzCxhxYIqViyoYklD\nmS5XjFMgYcEYcx/wReA3gW3Ax4HHjDHLrLVtQRxTLs3zPDp7h2hq66OptY8TZ3s43txDa9fgJR9f\nUhhh9ZIa1i6tYeVCdeuJSO5xHIf5s2Ywf9YM3vOGpRw/08MO28qOQ+cuvLedbu3jdGsfj7/UiAPU\n15SweHYZixvKmTOzlIaaEt21lYKgfhN8HPiatfbbAMaYjwBvAT4EPBDQMaclz/MYjMbp7RrmVGs/\nx5s6aenop7VrkHOdA5zt6GNgKP66z8/PC7FsTgXL51dyxfxK5tWVah16EZk0Qo7D4oZyFjeU867b\nFnO2o5+9xzvYd7wDe6qLoeE4Hv7Kt2fa+nj25WYAHGBmZRENNSXUVhZRW1HEzMoiasqLqCwtUJAY\nJeNhwRiTB6wH/npkm7XWM8Y8CVyX6eNNFp7n4XkQdz1c1yPuusRcj3jcYzjuEou5DMdchuMu0eE4\nQ8NxosMug9EYA0NxBoZiDERj9A/GOD8wTG//MH0Dw3T3RRkafv0wcDHHgfrqEhbWz2BRfRkLZ5cx\nZ2apVn8UkSnBcRzqq0uory7hzqvnEou7nDzby9Gmbo6c6eHYmW46evwB2x5wrnOAc52XnoO+qCBM\nRWkB5SX5lBTlUVKYR2lRHiWFEQrzwxQW+P8W5IXJzwuTHwmRl/iIhP2PcMghEnYIhRxCjjOpx3oF\n0bNQA4SBllHbWwAz1p2EJ+EvsB9uPsqT208Td11c1w8Irufhuv4dBhOluCBCbaWfkmdVFtNQW8qc\nmSXMqi4mP4vjDiIh/8UTDnDBmHDYYaC/Z0yL0oRCIaJDEYaGYheWIB6Lgf5ewuF8zge4+E8uHyOV\ndsvl72Mij3G5NpsM38PYjtFDJDKbSCQz798jvwfS/X0QiYQw8ysx8ysvbOvpi9J47jyN585z+tx5\nzrT30do5QHffL65a6v+R1k9ze//o3aYt5Dgsn1/JJ9+3dtItnOV4Gf4lZoypB5qA66y1Wy/a/gBw\no7X2+oweUERERAIVxJ/vbUAcqBu1vZbX9jaIiIhIjst4WLDWDgM7gDeMbDPGOInPX8j08URERCRY\nQd0N8Q/At4wxO3j11sli4JsBHU9EREQCkvExCyOMMb8DfBL/csRu/EmZtgdyMBEREQlMYGFBRERE\npobJd3+iiIiITCiFBREREUlKYUFERESSUlgQERGRpBQWREREJCmFBREREUkqqEmZXpcx5ibgE/gr\nU9YD91prH0ry+BuAvwWW40/sdBJ/+esvTUC5OSPVdhv13BuAnwOvWGvXBVZkjknjXLsFeHrUZg+o\nt9aeC6zQHJLOeWaMyQc+A7wfmAWcAf7SWvvNYKvNHWmca/8GfAD//Lp4RaF91tpVQdaaK9I8196f\neM5SoBt4FPiEtbYj4HKnvWz0LJTgT9J0P/4L5XL6gH8CbsIPDJ8H/qcx5sOBVZibUm03AIwxZcC3\ngCcDqiuXpdNmHv4b0azEx7QJCgnptNkPgNuADwLLgPcCNpDqcleq7fZ7JM6vxL9zgA7g+0EVmINS\narPEHz3fAr4OrAB+GbgG+JcAa5SECe9ZsNZuAjbBhTUjLvf43fgn1IjvGGPeiR8e/jWQInNQqu12\nka8B/wG4wNsCKC1njaPNWq21PcFUldtSbTNjzJvwX4uLrLVdic2ngqswN6XxvtYL9I58boy5F6hg\nGk2Jn8br81rguLX2q4nPTxpjvoY/U7AEbNKNWTDGrAWuw+9WlySMMR8EFgGfy3Ytk4gD7DbGnDHG\nPG6M0ZLqyb0V2A78sTHmtDHGGmP+zhhTmO3CJpkPAU9aaxuzXUgOexGYa4y5G8AYU4ffu/BwVqua\nJiZNWDDGNBpjBvEXpvqqtfbfsl1TLjPGLAX+GniftdbNdj2TRDPwW8A7gXcAjcDPjTFrslpVbluE\n37OwErgX+Bj+G/hXslnUZGKMmQXcjd+9Lq/DWvsC8CvA94wxUfzXaxfw0awWNk1M+GWIcbgRKMXv\nivpbY8wRa+33slxTTjLGhPAvPXzGWns0sTmVbvhpyVp7CDh00aYtxpjF+KumfiA7VeW8EP4lrvdZ\na88DGGP+APiBMeZ+a+1QVqubHD4IdAI/znYhucwYswL4X8Bngcfxx3v8Pf6l1uk2hm3CTZqwYK09\nmfjvvkQS/yygsHBpM4CrgTXGmJHreyHASSTyN1prf56t4iaZbcAN2S4ihzUDTSNBIeEAfjidAxy9\n5LPkYh8Evm2tjWW7kBz3KeA5a+0/JD7fm1jd+FljzJ9aa1uyWNuUN2kuQ4wSBgqyXUQO6wGuBNYA\nqxMf/wwcTPx/a/ZKm3TW4P9ClEt7HphtjCm+aJvB7204nZ2SJg9jzK3AYuAbWS5lMijGP68u5vLa\n208lANmYZ6EEWMKrP9xFxpjVQIe1ttEY8zfAbGvtBxKP/x380dUHE4+/BfhDYLrNszDmdrPWesD+\nUc8/Bwxaaw9MaOFZlMa59jHgOLAPKAR+A/+WwDsnvPgsSbXNgO8Afwb8mzHms8BM4AHgG9PpEkQa\n7TbifwBbp9PrckQabfYT4F+MMR8BHgNmA/+I335nJ7j8aScblyGuxp/4xkt8fDGx/Vv4I4JnAXMv\nenwI+BtgARDD79b8hLV2ut1bm2q7Septlp94zGygH3gZeIO19pmJKjgHpNRm1to+Y8yd+HOhvAS0\n418e/PMJrDkXpPz6TMyB8nb8ORemo1TPtW8ZY0rx52X4e/zBjU/hX56QgDmeN+b5fURERGQamqxj\nFkRERGSCKCyIiIhIUgoLIiIikpTCgoiIiCSlsCAiIiJJKSyIiIhIUgoLIiIikpTCgoiIiCSlsCAi\nIiJJTZpVJ0Ukc4wxnwE+c9GmDvzVIv/aWvvoRY9zgT+6aKW/8R7zMWvtlvHuS0QmlnoWRKavfmAj\ncC3wYfzFs35ijLk2oON9Brg+oH2LSIDUsyAyfbnW2pdGPjHGbAMagQ8A+utfRC5QWBARAKy1Z4wx\nrcC8UV8KJS4h/DYQxl8q+H5r7QCAMWYW8FfArUA9cBr4AfA5a2008RgXf2XBvzfG/H3i/7dNsxU9\nRSYthQURASCx/G8VcGzUlz4KPAv8GrAMf3ngs8CfJL5eg7809e/jLxu8DPgsUId/eQP8Sx1bgC8D\n30ls2x/AtyEiAVBYEJnGjDHhxH8bgAeAXvxf6Bdrttb+auL/jxtj1gO/TCIsWGv3Ap+8aJ8v4I+H\n+KYx5qPW2kFr7TZjDMApa+22wL4hEQmEwoLI9FUKDF/0eQx4m7X28KjHPTHq8/3AfRdvMMb8PvAb\nwEL8gZLgX2pYhHoQRCY93Q0hMn31A+uBa4D3A83At40xdaMe1zXq8yhQMPKJMebj+JcmHgTuATYA\n9ye+XIiITHrqWRCZvlxr7a7E/7cbYw4BW4G/4NVf9mPxy8CPrbV/NrLBGLMyc2WKSLapZ0FEALDW\n7gD+E/igMaY2hacW4fc2XOxXLvG4YdTTIDIpqWdBRC72eeC9+Hc2/MllHjviCeD3jDH3A4fwg8Li\nSzzuAPA2Y8xzQB9grbXnx1+yiARNPQsi05c3eoO19hB+78JHjDFlice85nGj/CX+7ZCfSzy3H/jd\nSzzud/Dfcx4BtgHr0q5cRCaU43mXex8QERGR6Uw9CyIiIpKUwoKIiIgkpbAgIiIiSSksiIiISFIK\nCyIiIpKUwoKIiIgkpbAgIiIiSSksiIiISFIKCyIiIpKUwoKIiIgkpbAgIiIiSf1/LOjlCHF3vmIA\nAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd43Wd99/H3V3tvybYk25Jtec9EXllk14QMIAFCGE2BulAIozyF0qcPtKVPn7YUCr1ahknSELKAkBASskOmEw95D8nb1rC1rL11dO7nDyngJHZ0bJ+j3xmf13X5wrZOjj46HH186/7dv/s25xwiIhI54rwOICIiZ0fFLSISYVTcIiIRRsUtIhJhVNwiIhFGxS0iEmFU3CIiEUbFLSISYVTcIiIRJiEUT1pQUODKyspC8dQiIlFpy5Ytrc65wkAeG5LiLisro6qqKhRPLSISlczsWKCP1VSJiEiEUXGLiEQYFbeISIRRcYuIRBgVt4hIhFFxi4hEGBW3iEiEUXGLiEQYFbeISIQJyZ2TIrHkgY21QX/O21ZOC/pzSvQIaMRtZl8xsz1mttvMHjSzlFAHExGR0xu3uM2sBPgiUOmcWwjEA7eGOpiIiJxeoHPcCUCqmSUAacDx0EUSEZF3M25xO+cagH8HaoETQKdz7tlQBxMRkdMLZKokF7gJKAeKgXQz+/hpHrfWzKrMrKqlpSX4SUVEBAhsquRq4IhzrsU5Nww8Alz09gc559Y55yqdc5WFhQHtBS4iIucgkOKuBVaZWZqZGXAVUB3aWCIiciaBzHFvBB4GtgK7xv6bdSHOJSIiZxDQDTjOuW8B3wpxFhERCYBueRcRiTAqbhGRCKPiFhGJMCpuEZEIo+IWEYkwKm4RkQij4hYRiTAqbhGRCKPiFhGJMCpuEZEIo+IWEYkwKm4RkQij4hYRiTAqbhGRCKPiFhGJMCpuEZEIE8hhwXPMbPspv7rM7MsTEU5ERN5p3BNwnHP7gKUAZhYPNACPhjiXiIicwdlOlVwFHHLOHQtFGBERGd/ZFvetwIOhCCIiIoEJuLjNLAm4EfjVGT6+1syqzKyqpaUlWPlERORtAjrlfcx7ga3OuabTfdA5tw5YB1BZWemCkE1i3AMba4P+nLetnBb05xSZaGczVfJRNE0iIuK5gIrbzNKBa4BHQhtHRETGE9BUiXOuF8gPcRYREQmA7pwUEYkwKm4RkQij4hYRiTAqbhGRCKPiFhGJMCpuEZEIczZ3TopIgPoGfRxq7SUlMY7s1ETy05OJjzOvY0mUUHGLBNHR1l5eOdDCgaYeRtwfd34oyEjig8tKKStI9zCdRAsVt0gQ+J3j9zXNvFjTTEZyAqtn5rOwOIsRByd7BnlxXzM/ffUwq2fmc92iKcSZRt9y7lTcIudpYHiE+zYc43BrL8um5nDjkmKSE+P/8PHygnQWlWbzzJ5GXj90kqT4OK5dMNnDxBLpVNwi56Fn0Mc9rx+lvr2Pmy8o5cLpuad9XHJCPDcsLmbE73hpfwtTclJZVJI9wWklWmhVicg56hn0cfvdm6hv7+PW5dPOWNpvMjNuWFzMtLw0Ht5SR2PXwAQllWij4hY5B74RP194YCvb6jr4yPJpLAxw9JwQH8dtK6eRGB/H4zuO45y2rpezp+IWOQf/9LtqXtrXwrdvWnjWUx5ZKYlcNbeII6297G/qCVFCiWYqbpGz9PM3jnLP60f5zCXl53yizvLyPPLSk3hmTyN+jbrlLKm4Rc7ChsMn+fvH93L1vCK+cd28c36ehLg4rpk/icauAXbUdQQxocSCQE/AyTGzh82sxsyqzWx1qIOJhJvjHf18/v6tTM9P4z8+svS874RcVJJNcU4Kz1c3adQtZyXQEfcPgKedc3OBJUB16CKJhJ+B4RE+e98WBn1+1n2iksyUxPN+zjgzLqsopL1vmANN3UFIKbFi3OI2s2zgMuAuAOfckHNOP9tJzHDO8Te/3snO+k6+9+ElzCrKCNpzzy/OIiM5gY1H2oL2nBL9AhlxlwMtwP+Y2TYzu3Ps8GCRmPDjlw/zm+3H+eo1s4N+x2NCXByVZbnsa+ymvW8oqM8t0SuQ4k4ALgB+5JxbBvQCf/P2B5nZWjOrMrOqlpaWIMcU8cbze5v4t2dquH7xFL5w5ayQfI4VZXkAbNaoWwIUSHHXA/XOuY1jf36Y0SJ/C+fcOudcpXOusrCwMJgZRTyxr7GbLz20jYXF2XznliVYiDaGyklLYs7kTDYfa8fn94fkc0h0Gbe4nXONQJ2ZzRn7q6uAvSFNJeKxtt4hPv2zzaQlJ/DTT1aSmhQ//n90HlaW59M76GNfoy5SyvgCXVVyB3C/me0ElgL/HLpIIt56cwVJc/cg6z5xIZOzU0L+OWcVZZCWFM+uhs6Qfy6JfAHtDuic2w5UhjiLiOd8I37ueHAbm4608YNbl7Js2rtvHBUs8XHGwuJsttd1MDyi6RJ5d7pzUmSM3+/42sM7eW5vE39/w3xuWloyoZ9/UWk2QyN+TZfIuFTcIsCI3/H1X+/kkW0NfPWa2dx+cfmEZyjLTydd0yUSABW3xLwhn58vPriNX22p50tXVYRs2d944uOMBSXZ1DR20T804kkGiQwqbolpbb1DfOqezfxu1wn+7n3z+Mo1s0O27C8Qi0qyGR5xvLiv2bMMEv5U3BKztta2877/fJVNR9v4zi2L+cylM7yORHlBOunJCTy564TXUSSM6cxJiTnOOX72+lH+75PVTM5O4ZHPXRTwCTahFmfG3MmZvLK/Bd+In4R4ja3knfSukJjSM+jjjge38feP7+U9s4t44guXhk1pv2nOpEy6BnxsrdVebnJ6GnFLzGjqGuCm/3qNI629fH3NXP7ishnEneee2qEwqyiDxHjj9zXNrCjP8zqOhCGNuCUmbK/r4IcvHaSz38f9n1nF5y6fGZalDZCSGM/ysjxerNEFSjk9FbdENd+In8e2N/DLqjpKclJ58ouXsHpmvtexxnXFnCL2NXXT0NHvdRQJQypuiVodfUOse/UwG4+0cWlFAZ++ZAZFWaHfdyQYrpg7usOmRt1yOipuiUrHO/r58cuHaOke5OMrp/HehVPO+4zIiTSzMIOpeam8pPXcchoqbok6+5u6WffqYcyMv7hsJvOLw2vVSCDMjCvmFLH+4EkGhnUXpbyViluiysHmHu7bcIz89CQ++56ZE7Ila6i8Z3Yh/cMjbK1t9zqKhBkVt0SNYyd7+fmGoxRkJPPpS8rJTj3/k9i9tKI8j/g4Y/3BVq+jSJhRcUtUaO4a4J7Xj5KdmsifXVxGWlLk36KQmZLI0qk5vHbwpNdRJMyouCXiDQ6PcP/GWhLijE9dXE5mSmSPtE918cx8dtV30Nk/7HUUCSMBFbeZHTWzXWa23cyqQh1KJFDOOR7Z1kBrzyC3rphGTlqS15GC6uJZBfgdbDisUbf80dmMuK9wzi11zukIMwkbG4+0sauhk2vnT2JmYYbXcYJu2bRcUhPjeV3z3HIKTZVIxOroG+LpPY1UFGVw6exCr+OERFJCHCvK83hNxS2nCLS4HfCsmW0xs7Wne4CZrTWzKjOramlpCV5CkdNwzvH4juM457hpaQlxHh5+EGqXzCrgUEsvjZ0DXkeRMBFocV/inLsAeC/weTO77O0PcM6tc85VOucqCwujc/Qj4WPP8S6qG7u5et4k8tKja1777S6aNbq3ipYFypsCKm7nXMPY/zYDjwIrQhlK5N0M+fw8sfM4U7JTuGhmgddxQm7e5Cxy0xJ5QxcoZcy4xW1m6WaW+ebvgWuB3aEOJnImGw6fpGvAx/WLiyNq/5FzFRdnrCzP18oS+YNARtyTgNfMbAewCfidc+7p0MYSOb2B4RFe3t/C7EkZlBekex1nwqyakUd9ez91bX1eR5EwMO7tZc65w8CSCcgiMq5XD7TSPzzCNfMnex1lQq0emxLacPgkU/PSPE4jXtNyQIkYPYM+1h9qZWFJNiU5qV7HmVAVRRnkpSdpnlsAFbdEkNcPtTLs83P1vCKvo0y40XnuPDYebsM553Uc8ZiKWyLCkM/PxsNtzJuSRVFm5G7Vej5Wz8ynoaOf+nYdZxbrVNwSEbbVtdM/PMLFs6J/+d+ZrJoxup77jUOaLol1Km4Je37nWH+wldLcVMryY/fCXEVRBvnpSVoWKCpuCX/7G7tp7Rni4lkFWBTf2j4eM2PVjNH13Jrnjm0qbgl7rx86SXZqIgsj8OzIYFs1I4/jnQPUaj13TFNxS1hr6x3iYEvPH47xinWrZ47Oc2u6JLapuCWsVR1rw4ALpuV6HSUszCzMoCAjSRcoY5yKW8LWiN+x9Vg7sydlRvzBv8FiZqyckc8GreeOaSpuCVsHmrvpGvBRWabR9qlWz8insWuAYyc1zx2rVNwStqqOtpOenMDcyVleRwkrf1jPrXnumKXilrDU0j1ITWMXF07L0UXJt5lZmE5hZrIuUMYwFbeEpd/tPI7fjR6WK2/15nruNw5pPXesUnFLWHpsx+gJN5OyYnNfkvGsmpFHc/cgR1p7vY4iHlBxS9ipPdnHttoOFpfmeB0lbK2e8eZ67jaPk4gXAi5uM4s3s21m9kQoA4k8vvM4AItLdafkmZQXpFOUmawLlDHqbEbcXwKqQxVEBMA5x2+2NbC8LJfctOg+vf18mBmrZ2rfklgVUHGbWSnwPuDO0MaRWFfT2M2B5h5uXFLsdZSwt2pGPi3dgxzWPHfMCXTE/X3ga4A/hFlEeHzHceLjjOsWTfE6StjT/tyxa9ziNrPrgWbn3JZxHrfWzKrMrKqlpSVoASV2OOd4ancjq2fkk5+R7HWcsFeWn8bkrBSt545BgYy4LwZuNLOjwEPAlWZ239sf5Jxb55yrdM5VFhYWBjmmxIJ9Td0cae1lzcLYOsH9XI2u587TviUxaNzids59wzlX6pwrA24Ffu+c+3jIk0nMeXp3I2Zw7YJJXkeJGKtn5tPaM8ihlh6vo8gE0jpuCRtP726kcnpuzB4GfC7+uG+J1nPHkrMqbufcS86560MVRmLXkdZeahq7WbNQFyXPxrS8NKZkp7BBFyhjikbcEhae3t0IoPnts2RmrNY5lDFHxS1h4endJ1hSmk1JTqrXUSLOqhn5nOwd4kCz5rljhYpbPNfUNcCO+k6uXaDR9rlYNUPnUMaaBK8DiLxQ3QzA1fNCv5rkgY21If8cwXA2OZ1z5KQm8svNdSTEnXksdtvKacGI9hahej1DkTWaaMQtnnuhuonS3FRmT8rwOkpEMjPKC9I53NqLX/PcMUHFLZ7qHxrhtYOtXD1vEmY66eZczSjMoG9ohObuQa+jyARQcYun1h9sZdDn56p5RV5HiWgzCtIBOKwbcWKCils89UJNE+lJ8awsz/c6SkTLTU8iJy1RJ+LECBW3eMbvd7xQ3cxlswtJStBb8XzNKMjgiOa5Y4K+W8Qze4530dw9yFUTsJokFswsTKdvaITjHf1eR5EQU3GLZ56vbsIMrpij3SSDoWJSJgbsb+r2OoqEmIpbPPNCTRMXTMvV3ttBkpGcQEluKvubdIEy2qm4xRONnQPsbujSapIgmz0pk7q2PvoGfV5HkRBScYsnXqhpAibmbslYMmdSJg60b0mUU3GLJ16obmZqXioVRbpbMphKclNJS4rXPHeUU3HLhOsfGmH9wVaumqu7JYMtzoyKogz2N3VrWWAUC+Sw4BQz22RmO8xsj5n9w0QEk+j1mu6WDKk5kzPp1bLAqBbIiHsQuNI5twRYCqwxs1WhjSXR7IXqJjKSE3S3ZIhUFI0uC6w+oemSaBXIYcHOOffmlY7EsV/6GUzOid/v+H1NM5fNLtDdkiGSnpxAWUE6e453eh1FQiSg7xwzizez7UAz8JxzbmNoY0m02n28c/RuyblaTRJKC4uzaO4epLl7wOsoEgIBFbdzbsQ5txQoBVaY2cK3P8bM1ppZlZlVtbS0BDunRInnq5uJM7hirua3Q2l+cTYwuq2ARJ+zPeW9A3gRWHOaj61zzlU65yoLC3ULs5zeC9Wjd0vmpSd5HSWqZacmMi0vjd0Nmi6JRoGsKik0s5yx36cC1wA1oQ4m0edEZz97jndpU6kJsrA4ixOdA5zs0eEK0SaQEfcU4EUz2wlsZnSO+4nQxpJo9ObZkloGODEWaLokao17WLBzbiewbAKySJR7obpJd0tOoNz0JEpyUtnV0MllszV9GU20HksmRN+Qj/WHTupuyQm2ZGoODR39NHZpdUk0UXHLhHj1QCtDPr82lZpgy6bmEG/GlqNtXkeRIFJxy4R4bm8TmSkJrJyR53WUmJKenMC84iy21XUw6BvxOo4EiYpbQm5k7G7JK+YUkRivt9xEq5yeS9/QCM/vbfY6igSJvosk5LYca6etd4hr5muaxAuzijLITk3kF1V1XkeRIFFxS8g9t7eRxHjjcp0t6Yk4My6cnsurB1qoa+vzOo4EgYpbQso5x3N7m1g1I5/MlESv48Ssyum5xJtx56uHvY4iQaDilpA62NzD0ZN9XKtpEk/lpCVx8wWlPLi5ThtPRQEVt4TUs3vHzpZUcXvuc5fPxDfi565Xj3gdRc7TuHdOigTigY21p/37hzbVUpKTyos12jHSa2UF6dy4pJifbzjGZ98zk1xt9BWxNOKWkOkaGKauvZ95U7K8jiJjPn/FLPqGRlinue6IpuKWkKkZOzprvoo7bFRMyuSDy0q489XD7GvU0WaRSsUtIVN9oovctEQmZSV7HUVO8XfXzyczJZGv/3onI36dQhiJVNwSEoO+EQ619DB/SpY2lQozeelJfOuG+Wyv6+Ce1496HUfOgYpbQuJAUw8+v9P8dpi6cUkxV84t4jvP1FClDagijopbQqL6RBepifFMz0/3OoqchpnxrzcvZkp2Kn92z2YdcRZhVNwSdCN+R01jN3MnZxIfp2mScFWYmcx9n1lJZnICf3r3JnbUdXgdSQI07jpuM5sK3AtMAhywzjn3g1AHk8h1qKWH/uERFpZkex1FxlGSk8p9n1nJbT/dyAd+uJ4/vaiMr147h4zkM1eD3+84erKXvSe6eGZPIx19QwwM+xke8ZOZkkBOWhLT8tKoKMogQbtBhkQgN+D4gK8657aaWSawxcyec87tDXE2iVC7GjpJTohjlo4oiwgzCjN49q8u49+eruGe14/yi811rJ6Rz+qZ+WSmJBAfF0drzyBHW3s52NxD9YkueodG9/aOs9Hb6VMT44mPM2rb+tjV0InfQUpiHItLcrhyXhFZ2qcmqAI5c/IEcGLs991mVg2UACpueYcRv2Pv8S7mTcnS3tsRJCslkX96/yJuuXAqD2+p45X9rbxQ89b9uwsykigvSOdDlVOZPyWL+cVZbD3W/o5Rtc/v51BzLzvrO9hS286O+g6unFvERTMLNHUWJGd1y7uZlTF6cPDG03xsLbAWYNq0aUGIJpHozWmSRZomiUhLp+awdGoOAK09gwz6/PhG/OSmJ5121Lyz/p0XNRPi4pgzOZM5kzO5cm4RT+w8wVO7G9nf1M1tK6aTmhQf8q8j2gU8JDKzDODXwJedc11v/7hzbp1zrtI5V1lYqH2XY9Wu+tFpEp3kHvkKMpIpyUllen76OU915Gck86cXlXHzBaUcbe3jRy8f4mTPYJCTxp6AitvMEhkt7fudc4+ENpJEKp/fz94TXcyfkqWLUvIWF07P5VOXlNM76GPdK4dp6x3yOlJEG/e7y0Zve7sLqHbOfS/0kSRSHWrWahI5s/KCdNZeNgOf33H3+iN0Dwx7HSliBTIsuhj4BHClmW0f+3VdiHNJBNpW10FqYjwVkzRNIqc3KSuF2y8qo2fAx/+sP8rAsE6ePxfjFrdz7jXnnDnnFjvnlo79enIiwknkGBweofpEF4tKs0mI0zSJnNnUvDQ+tnIazd0DPLK1Hue00dXZ0neYBMWe410MjziWja1IEHk3FZMyuXb+ZHYf72L9oZNex4k4Km4Jim117eSlj94xJxKISysKmD8li6d3n+Boa6/XcSKKilvOW2PnAIdbelk6NUdbuErAzIxbLiwlJy2JX22pY1Dz3QFTcct5e2x7Aw40TSJnLSUxng9dWEpH3zC/23XC6zgRQ8Ut58U5x8Nb6pmWl0Z+hk66kbM3PT+dSysKqTrWTk3jO+7tk9NQcct52XKsnQPNPSwvy/U6ikSwq+cVMTkrhUe3NtA/pCmT8ai45bw8sLGWzOQEFpVomkTOXUJ8HDdfUErPoI/nqhu9jhP2VNxyzjr6hnhi1wnev6yEpAS9leT8lOSmsmpGPhsPt7Fdhzq8K323yTl7dFsDQz4/H12h3SAlOK6ZP4mMlAT+96O78I34vY4TtlTcck6cczy4qZalU3OYX6wDgSU4UhLjuX5xMXuOd3HvG8e8jhO2VNxyTjYcbmN/Uw+3abQtQbawOIvL5xTy3Wf3caKz3+s4YUnFLefkrtcOk5+exI1Li72OIlHGzPjHGxfi8zv+8XEdtHU6Km45a4dbeni+upmPr5pOSqJOM5Hgm5afxhevquCp3Y38vqbJ6zhhR8UtZ+3u9UdISojjE6unex1FotifXzqDiqIMvvnYHq3tfhsVt5yV9t4hHt5SzweXlVCgOyUlhJIS4vj2+xdS397Pf7940Os4YUXFLWfl3jeOMTDs51OXlHsdRWLAqhn5fHBZCT955RCHWnq8jhM2Ajm67G4zazaz3RMRSMJXZ/8wd712mKvnTWL2pEyv40iM+MZ180hNjOebj+3WoQtjAhlx3wOsCXEOiQB3v3aErgEfX7mmwusoEkMKM5P56zVzWX/wJI/v1A6CENjRZa8AbROQRcJYZ98wd792hDULJrOgWIcBy8S6bcU0Fpdm8+0n9tKlQ4Y1xy2BufO1w3QP+viyRtvigfg445/ev5DWnkG+9+x+r+N4LmjFbWZrzazKzKpaWlqC9bQSBpq6BrjrtSO8b9EU5k7W7e3ijcWlOXx85XTufeMouxs6vY7jqaAVt3NunXOu0jlXWVhYGKynlTDwr0/V4BtxfG3NHK+jSIz7X38yh7z0JL7xSGxvQqWpEnlXW46188i2Bj5zaTnT89O9jiMxLjs1kX+4cSG7Gjq567UjXsfxTCDLAR8E3gDmmFm9mX069LEkHPj9jn94fA+TspL5/BWzvI4jAsB1iybzJwsm8b3n9nM4Rtd2J4z3AOfcRyciSKR7YGNtSJ73tpXe7b53/8Zj7Kzv5D8+soT05HHfKhLmQvUenWhmxrdvWshV33uZv/n1Lh5cu4r4OPM61oTSVImc1rGTvfzzkzVcWlHA+5eWeB1H5C2KslL45vXz2XS0jTtfPex1nAmn4pZ38Psdf/2rnSTEGf9682LMYms0I5HhlgtLWbNgMv/+7D72HI+tVSYqbnmHu9cfYdPRNr514wKKc1K9jiNyWmbG//vgInLTkvjSQ9sZGI6dHQRV3PIWm4608S9P1XDt/EncfIGmSCS85aYn8d0PL+Fgcw/femyP13EmjIpb/uBEZz9/ef8WpuWl8e8fXqIpEokIl1YUcseVs/hFVR0PbYqOC7DjUXELAP1DI3z2vq30D43wk09cSFZKoteRRAL25atnc2lFAd98bA876jq8jhNyKm5h0DfCX9y3hZ31HXzvI0up0JatEmHi44z/vHUZhZnJrP15FQ0d0X3IsIo7SJxzDI/48UfYfsG+ET9ffHAbr+xv4V8+uIg/WTDZ60gi5yQ3PYm7bq+kb3CE2+/eRGdf9O4iqLsqztLwiJ/dDZ1sPNJG9YkuDrX0UNfWT/fAMP6xzk6MN9KTEyjMSKYgM5lpeWmU56eTlRpe0w/9QyN86aFtPLu3iW9eP5+PLPfuZh+RYJg7OYuffPJCbr97M39+bxU/+9QKUpOi70BrFXcA+odG+H1NM0/tPsFL+1roGfQBUJKTysyiDJZNzaWurY+khDhG/I5Bn5/ugWFae4aoOtrGG4dOAjA5K4WFJdksLsmmINO78xof2FhLz6CPe984SkN7P9cvnkJKYnzU3Fknse2imQV898NL+OJD27j9fzZx1+3LyYiyO3+j66sJsoPN3dy3oZZfb62ne8BHQUYSNyyZwiWzCllRnkfhKeV7ptIb8TtOdPZzpLWXvSe6eL66ieerm5iSncKikmyWlOaQm540UV8SAEdae/lVVR29Qz4+tnIa83UwgkSZG5YU43eOv/rlDj5x10buuX0F2Wnh9RPv+VBxv82Qz88zexq5b8MxNh5pIzHeeO/CKdy6Yiory/PPek+E+DijNDeN0tw0Lq0opLN/mN0Nnexq6OTZvU08u7eJ8oJ0LpyWy4KSLJITQvdj3cDwCD944QB3vnqY3PQk/vzSGZTmpoXs84l46aalJSQnxHPHg1v5wI/W89NPVjKzMMPrWEFhoTh8s7Ky0lVVVQX9eUOpvr2PBzfV8ovN9bT2DFKam8ptK6fx4cqpFGSMP61xLtMM7X1DbKvtYFttOyd7h0iKj2NhSTYXTM+hLD+dOLOgbDLl9zt+u+M433lmHw0d/VROz+V9i6eE9B8JkfMRzM3VNhw+yefv38qQz8/3b13KVfMmBe25g8nMtjjnKgN5bEyPuEf8jlf2t3DfhmP8fl8zBlw5t4iPrZrOeyoKiQvxjmO5aUlcObeIK+YUUtvWx5Zj7exq6GRrbTu5aYksLs1h7pRMlpbmnFOWroFhHtlSz30baznY3MOC4iy+c8tijp7sC8FXIxKeVs3I57d3XMLae6v49M+quHX5VP72ffMi+l6FmBxxH2rp4eEt9TyytZ6mrkEKMpK5dflUbl0x9ZynDoJ1YW/I52fviS621bZzqKUHv4O89CSWl+WyvCyP+cVZzCrMoDAz+R13Nrb3DnGwpYcddR28vL+FjUfaGPL5WVKazacuKeeGxcXExZkuQkrYC8V2xgPDI3z/+QOse+UQRZkpfG3NHG5aWhI2W8KezYg7Zor7eEc/L9Q08+jWerbWdhAfZ1w+u5CbLyzl6nmTSEo4vyXtoSjD/qERCjKTeHl/C5uPtlHX9sebChLjjayURNKS4xkc9tM76KN36I+b7MwsTOc9s4v4wLISFpW+9eKjilvCXSj3od9R18HfPrqLPce7qCj8nU+UAAAG90lEQVTK4I6rKlizYPJ5d8D5CvpUiZmtAX4AxAN3Ouf+5TzyTQjfiJ+ttR28uK+ZF2uaqWnsBqCiKIO/vW4u719aQlFWiscp311qUjw3LS3hprH9sJu6BjjQ1MPB5m4auwbpHhimd9BHalI8qYkJTMlOYVZRBnMmZ2pXP5EzWDI1h8e/cAlP7W7ku8/t44sPbqMgI4kPVU7luoVTWFiSFfb79Ixb3GYWD/w3cA1QD2w2s9865/aGOlygBoZHONzSy+6GTnYfH12xUX2ii4FhPwlxxvKyPP72urlcMaeIWUUZYf9/yplMykphUlYKl1QUeB1FJKLFxRnvWzyF9y6czMsHWrh/Qy0/efkQP3rpEMXZKVw0q4DlZbksnZpLeUG656PxtwtkxL0COOicOwxgZg8BNwFBL+6jrb0Mj/gZHhm9fdzn9zPkc/QO+ugaGKarf5juAR/tfcMc7+jneGc/De39nOwd+sNzZCQnML84i4+tnM6F03O5pKIgoi9CiEjoxMUZV8wp4oo5RbT1DvHC2H0WL1Q38fCWegAS4ozp+WkU56RSmJlMYWYyRZkpFGQkkZaUQEpiHKmJ8aQkxpOenEB5QegP1Q6kuEuAulP+XA+sDEWYNT94hYFh/7iPS0uKZ0p2CiW5aSwozqI4O5Vp+WksKskeXUYXJhcbRCRy5KWPTpd8qHIqzjkOjf0Uf6C5m4PNPTR2DXKouYeWnkGGR05/bbAgI4mqv7sm5FmDthzQzNYCa8f+2GNm+4L13KdTHbynKgBag/d0wfWx0H+KsP76J4hegzB7DSbgfX865/0aHAPs/5zzfz490AcGUtwNwNRT/lw69ndv4ZxbB6wL9BOHCzOrCvRKbjSK9a8f9BqAXgOIrNcgkBn3zUCFmZWbWRJwK/Db0MYSEZEzGXfE7ZzzmdkXgGcYXQ54t3Mudg53ExEJMwHNcTvnngSeDHEWr0Tc9E6QxfrXD3oNQK8BRNBrEJI7J0VEJHTCa1W5iIiMKyaK28zuNrNmM9t9ho/fZGY7zWy7mVWZ2SUTnTHUxnsNTnnccjPzmdktE5VtIgTwHrjczDrH3gPbzeybE50x1AJ5D4y9DtvNbI+ZvTyR+SZCAO+Dvz7lPbDbzEbMLG+ic44nJqZKzOwyoAe41zm38DQfzwB6nXPOzBYDv3TOzZ3onKE03msw9ph44DlggNGL0A9PYMSQCuA9cDnwv5xz1090tokSwGuQA7wOrHHO1ZpZkXOueaJzhlIg3wenPPYG4CvOuSsnJNxZiIkRt3PuFaDtXT7e4/74L1g6EHX/mo33Goy5A/g1EFXfrBDw1x/VAngNbgMecc7Vjj0+1t8HHwUeDGGccxYTxR0IM/uAmdUAvwM+5XWeiWZmJcAHgB95ncVDq81sh5k9ZWYLvA7jgdlArpm9ZGZbzOyTXgfyipmlAWsYHciEnZg+AedUzrlHgUfHfpT6NnC1x5Em2veBrzvn/JG6e+J52gpMd871mNl1wG+ACo8zTbQE4ELgKiAVeMPMNjjn9nsbyxM3AOudc2H5U5qK+22cc6+Y2QwzK3DOhc3eDROgEnhorLQLgOvMzOec+423sSaGc67rlN8/aWY/jMH3QD1w0jnXC/Sa2SvAEiAWi/tWwnSaBDRVAoCZzbKxxjKzC4Bk4KS3qSaWc67cOVfmnCsDHgb+MlZKG8DMJp/yHljB6PdGTL0HgMeAS8wsYWyqYCVB3c8tMphZNvAeRl+PsBQTI24zexC4HCgws3rgW0AigHPux8DNwCfNbBjoBz5yysXKqBDAaxDVAvj6bwE+Z2Y+Rt8Dt8bae8A5V21mTwM7AT+jp1296/LRSBPg98EHgGfHfvIISzGxHFBEJJpoqkREJMKouEVEIoyKW0Qkwqi4RUQijIpbRCTCqLgl4o3t4Pbmbm6Pj22W9OZOd0+c5XPdbmbFoUkqEhwqbokG/c65pWO7vbUBnz+P57odUHFLWFNxS7R5Ayg55c8ZZvawmdWY2f2n3B35TTPbPDZKX2ejbmH01v/7x0bwqV58ASLjUXFL1BjbT/wq4Len/PUy4MvAfGAGcPHY3/+Xc2752Cg9Fbh+bP/xKuBjYyP4/olLLxI4FbdEg1Qz2w40ApMYPQziTZucc/XOOT+wHSgb+/srzGyjme0CrgRicRtXiVAqbokG/c65pcB0wHjrHPfgKb8fARLMLAX4IXCLc24R8FMgZaLCipwvFbdEDedcH/BF4Ktm9m4bqL1Z0q1jx9ader5mN5AZoogiQaHilqjinNvG6O52H32Xx3QwOsreDTwDbD7lw/cAP9bFSQln2h1QRCTCaMQtIhJhVNwiIhFGxS0iEmFU3CIiEUbFLSISYVTcIiIRRsUtIhJhVNwiIhHm/wMTneVu60IXoAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -672,19 +682,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAF/CAYAAABUoP1jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VNXZB/DfTCaTkEAgECaBggsC14W6oHWndrPS0CBo\n0bZKVDTti3V5rXbT9621r9XWBQVaUIOgwbqBEIJQtVrp4l5RK4KHTZYAyRC2QIBMkpn3j5l7MzPn\nnDszmUkyyfy+n08+3Hly585NCMyTc57zHEcgEAARERER2XN29w0QERER9QRMmoiIiIjiwKSJiIiI\nKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIji4Oru\nG4hmGMavAEwGcCKAIwDeBvALIcR6m+dcA2ABgAAARyh8VAiR18m3S0RERBkiHUeaxgGYDeAcAN8C\nkA3gNcMw+sR43gEAJWEfx3bmTRIREVFmSbuRJiFEafhjwzCuBeAFcCaAf9k8NSCE2N2Jt0ZEREQZ\nLO2SJoUBCE677Y1xXl/DMLYgOHq2GsCdQoi1nXtrRERElCnScXrOYhiGA8CjAP4VIwESAKYBmAjg\nKgS/rrcNw/hS598lERERZYJ0H2maA+BkABfYnSSEeBfAu+ZjwzDeAbAOwI8A3B3PCwUCgYDD4Yh9\nIhEREUXLiDfQtE2aDMP4I4BSAOOEELsSea4QotUwjI8AjIz3OXv3NsHpzIi/cyIiopQqLMzv7lvo\nEmmZNIUSpksBXCSE2NaB5zsBjAGwMt7n+P0B+P2BRF+KiIiIMkTaJU2GYcwB8AME65OaDMMoDn3q\ngBDiaOicpwHsEELcGXr8vwhOz21EsHD85wi2HJjXxbdPREREvVTaJU0A/gvB1XKrouLXAagKHQ8H\n0Bb2uUIATyDYn2kfgA8BnCeE+LxT75SIiIgyhiMQ4JQUAOzefZDfCCIiog4YPLhfRhQFp3XLASIi\nIqJ0waSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5M\nmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiI\nKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJ\niIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIji\nwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiIiIjiwKSJiIiIKA5MmoiI\niIjiwKQpyurVH2D16n93920QERFRmmHSFMbn82HevLmYN28ufD5fd98OERERpREmTWGqqxfjwIED\nOHBgP6qrF3f37RAREVEaYdIU4vXWYfnyauvx8uXV8Hrru/GOiIiIKJ0waQqprJwLv7/Neuz3t6Gy\nck433hERERGlEyZNIbW12+OKERERUWZi0hQybNjwuGJERESUmZg0hVRUTIfT2f7tcDqzUFFxYzfe\nEREREaUTJk0hHk8JSksnWo9LSyfC4ym2HrN/ExERUWZzdfcNpJOsrKyw4/Z80ufzoapqPhwOB8aM\nORVut7s7bo+IiIi6EUeaQrzeOqxcudx6vHLlcqvlwPLlS7F7txdeb31EWwIiIiLKHEyaQqqq5qOl\npb0LeEuLD1VVTyr6Ny1l/yYiIqIMlHbTc4Zh/ArAZAAnAjgC4G0AvxBCrI/xvCkAfgvgOADrAfxS\nCPGXZO9Hl0zdccedyV6aiIiIepB0HGkaB2A2gHMAfAtANoDXDMPoo3uCYRjnAXgWQCWA0wFUA6g2\nDOPkeF+0vHwasrPba5Wys90oL7++Q18AERER9T5pN9IkhCgNf2wYxrUAvADOBPAvzdNuBfAXIcSM\n0OO7DcP4NoCbAMTVN8DjKUFZ2SQsWfIiAKCsbDI8nmKUl0/DmjWfWqNNqmRq9eoPADgwduxZ8bwU\nERER9UDpONIUbQCAAIC9NuecB+D1qNiroXjcysomY/BgDzyeYpSVTQLQnkyFnxPeisBcWbdw4Xz4\nfL6I67FNARERUe+RdiNN4QzDcAB4FMC/hBBrbU4tARBdnV0fisfF6XQgLy8X1113AwAgLy/X+tyE\nCWWorn4JDgcwYcJ34XK155pLl1Zj924vAGDFimWYMuVKAMFkauHCBXA4gNNPP51tCoiIiHq4tE6a\nAMwBcDKACzrwXAeCI1RxGTgwHw6HA9/61tekzy1f/pK1me+qVa9h6tSpAIBdu3ahpmapdV5NzRKU\nlX0HQ4YMQVXVS9Yqu9dee9l6DhEREfVMaZs0GYbxRwClAMYJIXbFOL0OQHFUzAN59Elr794mOJ0O\nKV5fX4cXXnjRevz88y/g7LMvgMdTjJkzZ0dMyfl8PsycORvXXnu99jlERES9TWFhfnffQpdIy6Qp\nlDBdCuAiIcS2OJ7yDoBvApgVFrs4FI+L3x+A3y8PTC1YME9qOTB/fiXuuONOBALy+YFAwPY5RERE\n1DOlXSG4YRhzAFwF4IcAmgzDKA595Iad87RhGPeFPW0mgO8YhvFTI+g3CK62+2Nn3mt5+TS4XNnW\nY5crm20KiIiIeqm0S5oA/BeAAgCrAOwM+7gi7JzhCCvyFkK8A+AHAH4E4GMAlwG4NEbxeFzs+jd5\nPCUYOXKU9blRo0ZbbQrY84mIiKh3SbvpOSFEzEROCPENRewlAC+l+n50/ZuA4H51mzZtsM7duHE9\nvN562+cQERFRz5SOI01pR9W/CTC3WGmxHre0tKCq6knb5xAREVHPlHYjTenI7XajvHwaAEfc/ZY6\n8hwiIiJKXw7VCrBMtHv3wYS/EV5vHX7+89sitlh54IFHORVHREQZZfDgfnLPnl6I03NJiLXFChER\nEfUeTJqSxNolIiKizMCapiSxdomIiCgzsKYpxKxpWr36AwAOjB17VjffERERUc+QKTVNHGkK4/P5\nUFU1Hw6HA2PGnMqRIyIiIrKwpinM8uVLsXu3F15vPZYvr+7u2yEiIqI0wqQpxOutQ03NUutxTc0S\neL313XhHRERElE6YNIVUVc1Ha2t7d+/W1vbu3kRERERMmkKam5vjinWm1as/wOrV/+7S1yQiIqL4\nsBA8TbAInYiIKL1xpCkkJyfHNtbZo0AsQiciIkpvTJpCSksnSrEJEy4F0D4KtHDhfPh8vpS/ttdb\nF5EoLV++lEXoREREaYZJU8jKlTVSbMWKZQA6fxSoqmq+tekvALS0+FiETkRElGaYNMUQzygQC7iJ\niIh6PyZNIeXl05Cd3V58nZ3tRnn59TFHgVIxdad7bSIiIkofTJpCPJ4SlJaWWY9LSyfC4ymO+bxU\nTN15PCUoK5tkPS4rmxzXaxMREVHXYdIUpqnpkHV8+HDwuLx8GpzO9m+T0+m0RoFiTd0lMm1XVjYZ\ngwd74PEURyRQRERElB6YNIV4vXV4/fVXrcd//esrVgLk9weseCDQfmw3dZfotJ3b7UZ5+TRMnTqN\nPZqIiIjSEJOmkAcfvF+KPfTQfaisnAsgMmmqrJwT83odmbYbO/YrGDv2rLjvmYiIiLoOk6aQnTtr\npdiOHbWord0uxc1Yefk0uFzZVtzlykZ5+fVd1neJq/aIiIi6DpOmGFQF2WbM4ynByJGjrPioUaPh\n8RR3Sd+lzm64SURERJGYNIXE2kYlnMMR/NPrrcOmTRus+MaN67uskze3XSEiIupaTJpC7rjjTin2\ns5/dpUyC6uuDseCIUosVb2lpQVXVk53ed4nbrhAREXU9Jk0xDBs2XBtrbm6WPtfc3NzpfZe47QoR\nEVHXY9IUMnv2DCk2a9bDqKiYDoc5HwfA4XCiouLGmNf76le/FnZ8UUrukYiIiLoPk6YQv9+vjHk8\nJRg9+kQrNnr0idaoUVNTk/Scw4eDsf/7v19bsXvvvTul98ptV4iIiLoek6aQQYOKpFhRUZFU7L1p\nU3ux97ZtW6TnbN26BW+99Q/s2dNgxRoaduPtt/+VsnvltitERERdj0lTSHiSY2poaEBV1Xy0trZa\nsdbWVqt+KLw7uCkQCOCJJ/4kxR9/fHbMe+C2K0REROnL1d03kC7CE6Pw2MGDB6W4GXM6ndK0Xvg+\ndTqrV38AwBHR/dvsu+RwODBmzKkRW6mozne73bjggnEAHNx2hYiIqAtwpCnE55NXwvl8zair2yXF\nzdiIESOlz40YMRI/+tFPpPiPf3xz6JrqppS6vku6830+H9566594++1/srklERFRF2DSFKIrBLfz\nk5/cGvHY4XDgJz/5b1xwwVcjaqSKigbj/PMvBKBOjuz6LumSKTa3JCIi6lpMmmIoKRmijXk8Jfju\nd9vriSZMuNQqyP7tb9s3AL7nnvsA6JMjXd8l3flsbklERNT1mDTFEN7x29Ta2h771re+rTweMGAg\nzjnnPJx77vkYMGAggMSbUurOZ3NLIiKirsekKYbt27dKsW3b2mO//e3/WsfhvZkA4MILL8IFF8Ru\nbMm+S0REROmPSVNIeNfv8JhdrdNbb/0De/fuseJ79jRY/Zh8Ph8qK+di3ry5VqF2efk0uFztCxZd\nLhfKy6/X9l3SJVNMsoiIiLoek6YQXc+l3Nw+UtyMPfbYH6XPPfbYLABAdfViNDYewIED+1Fd/RKA\nYA1U//4DrHMHDCi0aqBUfZd0yRSbWxIREXU9Jk0xjBhxgjbm97dJn2trawsVai+1Ymah9tq1a6RO\n4evWfQYg2HepvHwapk6dFtF3SdfEks0tiYiIuhabW8YwefIUrF27JiJ22WVXAADc7hypv5PbnYPK\nyrkR03p+fxsqK+egtna7dP1Zsx7G3LnzAQBjx35F+ryZTEU3sdTFiYiIqHNwpCmGZ55ZIMUWLgzG\nhgyR2xEMGTJUmRypYvEaO/YrEd3AY8WJiIgo9Zg0xbB16xZF7AsAwJ49e6TP7dnTgGHDhkvxYcOG\n4+abfyrFb7nl9uRvkoiIiDodk6YkqFbWBQJ+TJ48RYpfdtkVOPnkMTCMk6yYYZyMk046JebrJLKR\nLxEREXUOJk0pFggAL7zwZyn+wgvPAACGDz/Gig0fLo9IRfP5fJg3L7J1AREREXU9Jk1JcDrlb5/T\n6cSWLZul+BdfbIbXW4fXX3/Vir3++qsxtz+prl6MAwfM1gWLk79pIiIi6hAmTUlQ7Us3ZMgQbW+n\nRx99UIrPnNkei56Gk/eYq87oPeY4TUlERN2JSVMSVEv9g925p0nxa665IWL7FZNZaK7qIB5sXdDe\nC8psXZCJfD4fqqrmY+HC+ZymJCKibsGkKQlNTYcUsSasWvWGFH/zzb9qp/MAdQfxVLcu6MmWL1+K\n3bu98HrrI0bfiIiIugqTpiRs375NEduqTXa+//2pUvyHP7wGXm8damrCO4gvgddbr21dkGnkacql\nGT1NSURE3SPhjuCGYRwT+6x2Qgg5s+gldJv5FhYWorHxQER84MCB+OgjuR7nww/fx4cfvo9AILyD\nuB+VlXNQUTEdt99+s/U6TqcTFRU3pvirSD+rV38AwGE17qyqmo+WlvYpuZYWH6qqnsQdd9zZTXdI\nRESZqCPbqGwBIO9uq5eVyMUNwxgH4GcAzgQwBMAkIUSNzfkXAXgzKhwAMEQI4U3ktVNFNQpSX1+H\n7Gy5Bqq2drsy+dq2bSs8nhKMHDka69d/DgAYNcpIamPe6GQkHZm1Sw6HA2PGnMotYoiIKG10ZHpu\nMoDLQh/lAHYC+CeA/wbwAwC3AfhXKC7PR8WWD+BjAD9B/MlZAMAoACWhjy5JmFwuOed0uVw4evSo\nFD969Kgy4SkuLtaOWHm9ddi8eZMV27RpY4enpXpKIbWqdqm8fFpEwhkstr++u26RiIgyVMIjTUKI\nZeaxYRiVAP4qhIheLjbLMIwFAL4F4NkEr/8KgFdC13ck8NTdQojGRF4rWa2trcpYbm4fHD16JCKe\nk5OrXW2nKxCvqpqP1taWsGu3dHhaykxGgsfVuPzyKxK+RmdT1S6NG3cRPJ4SlJVNwpIlLwIAysom\nJzXiRkRE1BHJFoJPAfCc5nPPITgq1RUcAD42DGOnYRivGYZxfhe9rlJxsWpEqQQ5OTlSPCcnB8cc\nc6wUV8U6qqcUUutql4BgojR4sAceTzHKyiZ11y0SEVEG60hNU7g2AGcA+Kvic2MByPNOqbcLwI8B\n/BtADoAKAKsMwzhbCPFxZ72oy+XEoEFF2LOnISJeVDRYu5Hv7bf/HB9/vBqBQHDW0eFwYNq0CgQC\nAdxyy/SI86dPvwmBQABr1nxqJRLZ2W5Mm1YBlyuxXHfhwgVSMrJw4Xz84hd3JXSdzuZwyAOLDocD\nLpcTLlcuxo27CACQl5fb1bdGRESUdNK0EMBvDcPoA6AagBeAB8ERpl8CeCzJ68ckhFgPYH1Y6F3D\nME5AsLbqms563cLCfHg8g6WkafDgImzfruqlFED//nlWwgQAgUAABQVy93AAKCjogyFDhuDKK6/A\nM88E9637/vevhGGMSPhes7PlWvzs7CwUFuYnfK3OdOutN6OiosKquXK73bj11ptRWJgPn8+Ht9/+\nZyjRvIYF4kRE1OWSTZruANAK4OcAfh0WPwrgTwgmTt3hfQAXdOYL7NvXhC1btkjxLVu2ICtL/rY6\nHA488MBDUvzBBx9Cc7NcmH3vvffh3nt/j69//RI8++xzcDiAr33t29i3rynhe73qqmvxwQf/trqL\nO51ZuPrq6zp0rY748MMPAABnnvkV2/NycwtwwgmjsG7dZwCAkSNHIze3APv2NWHRoudRV1cHAHjq\nqWcwZcqVnXvTREQUt3T7JbyzJJU0CSFaAdxhGMbvAHwZwRYBuwB8KoTYl4L766jTQ/fRaVpb/Thy\n5IgUP3LkCIYO/RIOHToYES8o6G9tmRJuy5YtOHLksBTfvHkjWlv9WLFiuZXsrFjxcocKuNva/Ihe\niNja6kdra+fPnvp8PixYMA8OhwMnnfRl2xEir7cOGza0DxquXy+wc+cuAAEsW9be/HPZsiW44IKv\nshiciIi6VIeTJsMwcgG8COAhIcQ/APwjFTdkGEY+gJEIFncDwAjDME4DsFcIsd0wjPsBDBVCXBM6\n/1YAXwD4DEAugjVNXwdwcSrupyN27ZLztZ07dyI/X52JBzSNFaI7hdfULAmtJrNPFlTNIcPbGvj9\nbV3WHDKRVXu61YIA2NySiIi6XYdXzwkhjgK4CAk2r4zDWQA+AvAhgsMjDwNYDeCe0OdLAITvJeIO\nnfMfAKsQHPH6phBiVYrvS+J2y6vh3O6ciO7epkDAr10lp2tFYJdE6HRnP6bVqz/A6tXtXc97yqo9\nIiKieCRb0/QagG9D7sjdYUKIv8MmmRNCXBf1+EEAD6bq9ROh69PkcDgiCr6BYE3TGWechbVr10TE\nzzzzbGzbtlW6jsvlQnNzsxRXxcKpRnbKy6dJq/BS3RxS1ck70e1PSksn4qOPPoyITZhwKQYNGtTp\n909ERBRLsn2aFgC4yjCMPxqGUWoYxpmGYYwN/0jFTaYrs9YoVsz03HMLpdizzz6NkpIhUlwViyU4\nsiNv/Gs2hzR1RnNIVSfvRK1cKe+Ws2LFspj3Hz3CRURE1BmSTZpeBjAMwI2h4/cBfBD6+Hfoz4wT\nPcpkxlQJVVubPslSTa+Fj9xEC47stISd2z6dN378BDidTjidWRg/vtT2/hOlm4ZL5fYnuuaWPWV7\nGCIi6vmSTZq+HvXxjbAP8zHFoKrz8XrrsXPnDim+Y4ccMx08eFCKmav4XnllBfx+P/z+Nrzyysok\n7lamm4ZLdITLLslyu90oL5+GqVOnRdSApWKEi4iIKB7Jthz4e6puJJP169cPjY0HomIFqKvbKZ3b\n3CxvBmyqq5NX7e3atavDq/BSoaxsMv75z1VwOBwxtz+Jtcfc2LGRfZ70e9WxFQEREaVesiNNlAI7\ndtQqYtuRkyNvFxIei67lSXTj31SJNUJ0wQXjcP7546RVgqpapET2mLPbq46IiCjVkl09B8Mwrgbw\nXwBGI9gnKYIQoiDZ1+gt+vTpIzXEVMVMgwcPxtatTVExD4BgLU9l5Vw4HA48+uhcuN1u3HzzT/G7\n390dcf4tt9xujdyEi7UKLxF2I0Q+nw9vvRXc/uTSSy+3EifVajugfRoOcHCrFCIiSitJjTSFEqZ5\nANYAKEKw2eVLAHwI7kMn7xuSwY4//gRlTDdCpNv4FwCqqxejsfEADhzYj+rqlwAARUVFEZveOhwO\nDBpUFPO+Fi16FosWPRf316GiGyHS1RzZ1SKNHfsVqzGnnViF5lxVR0REqZTs9NztAP4PwE9Cj+eE\n+igdD2A3gENJXr9XOeMMORE488yzMXz4MVJc1QjTFKxRWmI9rqkJthaoqpovbQgca7qqqekQamqW\noqZmKZqaOv7XpSrU1q2qS1XTS4+nBKWlZdbj0tKyiBEurqojIqJUSjZpGgXgLSFEG4A2AAUAIIQ4\nCOAPAG5J8vq9ygsvPCPFnnuuCvn5faV4Xl6+tn9TZeXcqOTIj8rKOR26pxkz/mCtqnvkkQc6dA1T\n9AiRruaoo7VIsUeO2kfZuKqOiIhSLdmk6QAAcy+RHQBODvtcFoBBSV6/R8rKkneWycpyRez/ZvL7\n/aivl1e9eb116NevnxTv168ftmz5Qopv2fIFSksnSvEJEy7V3ufatWvw+edrrcfr1n2Gdes+057f\nnXw+H+bNm4t58+ZaI0debx1WrlxunbNyZU1KR7KIiIjCJZs0/RvAqaHjGgB3G4Zxk2EYP0awnum9\nJK/fI6kaVra1tcLvl5te+v0BZe1SQ0NDqCA6Unn59Th6VG470Nx8VNtRW2f27BlSbNash7Xnm+Kt\nFQrWHGVbj7Ozs1Fefj3Ky6fB5WqPu1zZMZteVlcvxoEDZg3XYgCpH8kiIiKyk2zSdD+AbaHjXwN4\nF8AjAOYiWAj+4ySv38vISZM6FtTQ0CDFgoXg6o7jur3qcnLkjYVzcnK0I192VCM+Oh5PCU44YZT1\neOTI0fB4iuHxlGDkyPb4qFGjbXsrySNH1Rw5IiKiLpdU0iSEeFcI8ULoeL8Q4lIAfQEMEEKcI4TY\nlIqbzFSqGqMZM/4At1tOgtzuHGUS4/P5tNN2HdnzTjXio+P11mHjxg3W4w0b1lvTZ5s2tcc3blxv\nmwRVVs6N2ILG729DZeUc7eq5RKcpiYiI4pFsy4FywzDOD48JIZqFEI2GYRQZhlGe3O31LuHtAMJj\nxx57nBQ/9tjjcfhwkxQ/fLhJ26JAtx2LbtpOVzOlk+iIj66ppt0eeYA8/Vdbu126dm3tdu02LYlO\nUxIREcUj2em5pwD83TCMXyo+dwKABUlev1fRbeQbnkCYwpONaLqkadiw4VJcFTOVl09DVlZ7f9Os\nLJdtbZFuxCeVVK0C7L6uRDqIExERJSMV26hUAviNYRgvGIaRl4LrZRz1xrzy1iomVcPKoqIiTJ48\nRYpfdtkV2ukqj6cEl156mRW79NLLI2qL4h3x0dFNn9kVgqtaBVRUTI9IFJ3OLFRU3AhA3R8qVtNL\nIiKijkhF0vQUgG8A+CqAtw3DOC4F1yQA4X2HwmO7d3ulqNfr1U5L2U1XjR8/AU6nE05nFsaPL7U+\nn+iIj4pu+kxXCK5rFRC8zmTpOqbo/lC61yUiIkpGSjbsFUK8DeArAFoB/NswjG+m4rqZLjyxCI/5\nfPIqOZ+vWbt6zs4rr6ywmlu+8spKK64a8dGNZNlRTZ/pCsHtWgVMmvQ9FBT0R//+AzBp0uW2r6l7\nXSIiomSkJGkCACFELYALAbwG4C8AbkrVtTPVOeecL8XOO+9CDBwo9wwdNKhIuXqupcWnna5KdJuT\npUsXSddXbQYcTjV9FqsQXHediorpuOGG6XFt5Kt6XSIiomS4Yp8SPyHEUQA/NAzjPwDuTeW1M9Fz\nzy2UYn/+89NQ9WnavduLI0eOSPH6+nprj7Zly4Ib+5aWToTHU4yHHrpPO7Kjim/btlW6fnhs9eoP\nADikzXbHjv2K/RcaUl4+DWvWfGq9dnQtUrzX6ej5REREdpIdaToewMfRQSHE7wFcBEBuaU1xC1+p\nFh7TNaUsLCyU4oWFAwFEdilva2tN4V0G+Xw+VFbG1/RSN/LVW2qR4u2YTkREPUuyzS23CiGU75BC\niLeEEE8nc/1Mp+vrpKPajmXPnobQHm3txeArVy6H11uP8vJp0qo0c3Wb05klxVWNL4cMCcaqqxej\nsdFsevmS7ddllxz19FokVQE9ERH1DklPzxmGMQDA9wCMBpAb9emAEOLWZF8jUzkcTgQCbVIsJ8eN\no0cjp+Jyc/toR6CC/ZX8YbFgf6WKiukIbx0V3kcqEPBLcVVtUHa2O1QDtdSKLV++FF/72jdsR4nK\nyibjjTdeBeCISI7MWiTA0SNrkcwC+uBxNS6/3L5QnoiIeo6kkibDMEYBeBtADoB8ALsBDAxddx+A\nAwCYNHWQ2y0nR263W5kcBZMceeDQ4dD3V6qqmh+VHPmtmqboBKqq6kntHna6pOyuu+6x/foCgeD9\nReuptUiqAvpx4y7qkVOMREQkS7amaQaA9wAUI9hUqBRAHwBXAzgIQF6jTnHT1TSpWg40NzcrO4U7\nHE7lm7bHU6xtUaCL65pSJtr0EggmFOZ0XniiASReE7Ro0bNYtOi5uM9Plej7tGuZQEREPV+ySdPZ\nAB4DYL7LuoUQbUKIZxFMqGYlef2MptuAV6egoECK9e/fX3muTWmUlsdTgokT25tMTpx4GTye4oSb\nXupaGgCJ1wQ1NR1CTc1S1NQsRVPToUS+nKSwdomIKPMkmzTlAGgUQvgB7AUwNOxzawCcnuT1KQF1\ndbuk2K5dO5Wb6tbX6zfataPqIB7c5iSycNzc5gSQR4LsRmRUTTXtzJjxB6s55yOPPNChr6kjVPfJ\n7VuIiHq3ZJOm9QCODR1/BOBGwzD6GYbRB8CPAexM8vq9Sp8+8tZ8eXn5Kbu+rhC8b9++Urxv337Y\nv3+/FD8PuF+aAAAgAElEQVRwQI6FU3UQl1fDTbKmBBMZCZILypcoEz7T2rVr8Pnna63H69Z9hnXr\nPrN9jVSw3+6l57dMICIitWSTpufRPpr0vwhupbIPQCOAywHYVwJnmCNHDkuxw4ebOv11d+2Sc9dd\nu3Zg5055U+AdO2q104J202qTJn0P/fub25x8zzpHNRKkG5FJtFP47NkzpNisWQ9rz08Vu5Gynt4y\ngYiI9JJaPSeEmBF2/K5hGGMAfAfB1gN/E0KsSfL+KAXCV8LZxUw7d+5QxnTJwh133Am3240TTzwZ\nDkd7qwDdSNBJJ52CsrJJ1hYs5ohMonvn6UbWulNPb5lARER6qd5GZTuAJ1J5Tep6zc1H44qFa2o6\nhPfffxeAA9OmHUJ+fl/tSNDcufNRVjYZ//znKjgcjg6PyJSUDMHGjQcjYmazTUC/rUuyUr3dCxER\n9QypaG6ZBeAcAMMgN7eEEKIq2degZDkg71fnwNChQ6VRpaFDh2H//n3StGFOTi7Ky6fh00//g9bW\n4BSa2XIAAB566P7Q6FUADz/8e/z61/ZbD7rdbowYcULEyJSuD5ROv379pFjfvsGYz+fDvHlzATjw\n6KNzUzrqY9YuRY+UERFR75ZUTZNhGGMBbALwTwTrm56K+liQzPUpNfLyVAXoecoi9Ly8PAwd+iUp\nPnTol+DxlGDkyFFWbNSo0fB4irF27RqsX/+5FRdiHdat+wxXX32tdJ2pU4PbETY1HcIHH7yH999/\nzyoQ1/WB0iktnSjFJky4FEBwW5cDB8xtXRZrr9FRrF0iIso8yRaCz0Ww6/c3EGxwWRj1MTDJ65NC\nTo40oIfc3FwER5SiObQb+W7fvk2Kq2Imr7cOGzeutx5v2CDg9dZj5syHpHMfffRBrFr1hhR/882/\nAlAXiOv6QOmE76dnWrFimXJbl/BVeKnYUNesXZo6dZo0itUVG/ZyU2Aioq6X7PTcKQCmCCH+noqb\nofhkZWVJsWCfJFVxd0BT2F2rLAZvbj5qWwje2tpqxVpbW1FV9aRyVeCRI4exbdtWKb5t29YYBeLq\nPekSIW/r4re2dTGbUjocDowZc2pS03aq2qVUXl+nK14jVTqrroyIqDukok+T3IaaOpVZUxQdC28w\naXI6sxJePacrBNetblONfKliplitAny+lojWA6bo0RVd6wJdsgbYN89MxehNos05u/s1OnPEil3T\niai3STZpug3ArwzDODEVN0Px0fVRKikpkeIlJUOkmMnlkgcaXa7siETElJ3t1r6urgZq0KBBUryo\nqMh2e5jq6sU4cuQwDh9uQnX1SxGfj34DTrSZZCq3b0n0+qmSytfoyNecSJLVFQkkEVFXSjhpMgzj\nU8Mw/mMYxn8AzAbwJQBrDMPYZsbDPj5J+R2T1p49DYrYbu354VNt7bEWbf8j1TYtqhgQ3Ntuz549\nUryhoUG54bDP12xbi6R7A1YVZB9zzLGIdswxx6Z0+xaVrtiwt6OvoUp2Ev2aE0myuiKBJCLqah0Z\nafow6uNlAAsBvKH43OrU3CbFI9HmkDq6pKatTU6y2tpaNXve7dImX7q4XIvUhsrKObZvwKqC7IqK\n6XCE7UjscDgj9sKL1pve4FXJkSrZ6cjXnEiS1RUJJBFRV0u4EFwIcW1HX8wwjGMA7BRCyO++lPaO\nHDmijOXm9pHira2tcCgW8wUCfuTm9sHRo5HXys3tg9ra7dL5tbXbbTuRA3JBdnAV3mVYtiw4vWeu\nwisvn4ZPPvnISsyczqzQ9i1P2l4/3mLmWE0vU8HuNXQF4mayEzyuxuWXXxHzexpNlWSNG3cR+1MR\nUUZJtqYpbqEmmF8AOLWrXpO6hm5kSle7NHCgXOs0aNAg5RtwcXHsN2XV6MqkSd9DQYG5F97lYZ9R\ntWXQM5tkzps3N+aUVKwaq1QUXdu9hmokKFWjaImOHOmK9ImIerIuS5pCEnvHoh5BN93mcMg/Xg6H\nE/X18ddGBQL2TSx1dTZutxsVFdNxww3TrRGXqqr58Pvbwu6xDVVVT9q+wSfaJLOsbLK1cXF4cpPK\nlWRlZZOthNB8DV1ypEt27L6nqZBokT4RUU/Q1UkT9UKqPkFut1vbGkFHV2i+dOkiKW5uYZKKAm7d\nG7yciFTHNUqj6uaQ6pVk0VOfiY4E6RqD6sQaOVKNoqWya7pulI5NPomoKzFpoqSpV+Hpy9YGDSpS\nxAZrz9f1XYrVQiB6Ws1udEX1Bh8sTI8cmaqsnGM91q1Ia2wMjkzFO0WW6Bv/8uVLrdGvWAlYefk0\nOJ3t/8zNOq5E2Y0c2Y326bqmJ0J3ffaBIqKuxqSJkqabnisulvtGFRcP0bZGUPWUKikZor2+3eiK\nalrNbnRF9QavK0wHEluRZnefib7x617Dft8+eVY8lSNHdqNoY8d+Jelu4Lrrsw8UEXU1Jk3UaQ4e\nPKiINSZ0DYcDESMlJlXMpJtWS7Qlg6oGx67ouiPL7BPtUK57Dd1myro6rlSNHMm9tZaktF2DLkns\nTW0iiKjnYNJEnUa3J92wYcdI8eHDj9H2e9I1q9SNlsSaVlPx+XyorIycztPVanm9dRHdyqurF9u+\nYQfvs30UKDs7OArk9dahpqY94aipWRIxvZjoCNSmTRusxxs3ro+ZRKRi5CiYxLXXqbW0tKS0H5Mu\nSWQfKCLqDl2ZNAUA/B2APPxA3cKhaKSkinXsOk6bPe9UcX1t1BlnyNM7Z555tna0xG5aTae6erFV\nixSeEKkkugrP4ylBQUF/K96//wBrFCi8ML61tT3h0CUuumk4XfJiV9OkHzmKfwQnVQ1ViYh6gi5L\nmoQQfiHE14UQG2KfTV1DlSAlnjSpkyO5Dsm0fbucwGzfvk35ZuvzNeP55xdK8WeffRoAMH78BCs2\nfnwpAGDYsOHS+cOGDdf2jfJ666xGmACwbJn9yNHevfL2MHv37oXHU4LS0jIrVlo6ER5PMdauXRNR\nx9XQsBvr1n2mTTjsEhePpwTHHz/C+tyIESfEsZQ//r/TdBvB0SWi7ANFRN0hqaTJMAy/YRhtmo9W\nwzD2GIbxhmEYZbGvRl1NldjYJTuJ0k1vhY/SmPz+NuVr+/1+tLXJ55uxxYtfsGKLFwfbEHzta9+U\nzv/61y/WtjSorJwrxSsr52iTrG3btklx1Qo/c0Rt9uwZ0mdmzXpYcX6QXeLi9dZh48b11uc2bBBW\nIbjTmWXF27udq0fFzK8l2dVnOTk5ccU6SjeayD5QRNQdkh1p+hmAWgAbATwC4FcAHgWwCcBOAH8C\nkA2g2jCM7yf5WtTDJNqKQEdXCO711uG111ZasddeWwGvtx7PPPOUdP7ChfO1e+dt3rxJim/evAk7\ndsgjYjt2bNcmm15vHV5+uX2E6OWX7fs6dSTh+NOfZkaM7AUCAcyZ86j5yPa50VRTgImO4JSXT0NW\nVvtuTFlZrpSP+Ohqr1LZB4qIKB4J7z0XZSCAfwP4nhDC+h/bMIw7ALwEoI8Q4quGYTwP4BcAno91\nQcMwxiGYjJ0JYAiASUIIea145HO+BuBhAKcA2Abgd0KIpzv0FVHKqJo8qmKxuN050l51bncOHnzw\nPulcVczU3KweOVKNZEW/nkm1/56pqmp+xLXa2oKjOldffS3mzJkZce7UqdMwcuRIrFnzH6sWySwQ\nBwL46KMPI843E5EvvlAneMERpcjNjs2aJtVedfq95IIjOGbz0FgjOB5PCUaNGo3PP18LABg92ohr\nxCfe/fyA9torwBExeqmLE2WSRP4tUfKSHWm6HkBleMIEAKHHTwC4JhR6FsCJcV4zH8DHAH6COH51\nNgzjOAAvA3gDwGkAZgKYZxjGxXG+HnWaDmRICrrpvJ07d0jxnTtrcfXV10rxqVOnKTcQBvQjWYkW\nyutqnVatekOKv/nmX0MJymQrVlYW3Fi4oUHVxyoY0xfXq+mmseymAMePnwCn0wmnM8uqE9PpyKq9\njkwL6vo9paIPFFFPxQavXS/ZpCkPgLx+POhYALmh40MA4vobFUK8IoT4tRCiGvFVsE4HsFkI8XMR\n9CcAiwHcFs/rUefRFYjr9qTT0dUW6bzzzr+k2Ntv/0NTIH4MBg/2SPHBg4uRm5srxVUx0/btcq3T\n9u1btR3NAfVedY888oB0/owZfwi9fh/FPfVJuNu5nVdeWQG/3w+/vw2vvLLS9txYLQd0XdPZlJIo\nefy31PWSTZpqAPzeMIwfGobRDwAMw+hnGMbVAH4PwPxbPBXBuqfOcC6A16NirwI4r5Nej5KmGhlJ\nfFQqvPdReEy3Ki0/v68Uz8/P13Yob2uTa5fa2vzaxEXXuTyWI0eOREwH6vpbAcDQoV+SPjd06JcS\n7nYutyJwaqftOto0Utc1Xdebiojixwav3SPZpOlGAKsAPANgv2EYRwHsB1AF4G8Abgqdtw3BIvHO\nUAIg+ielHkCBYRipW8YTxeViX9CuEl5obHK5XMqi8ra2toiRD1Nra4t25Ci871H79bPh86lbIFRU\n/FiK/+hH07X3P2SIvD3M0KFD4XI5sXTpi/D5fGhubsbSpYvgcjmRl5cnnZ+XlweXy6mcYnQ6Hdqp\nRJfLCZfLibPPPgdnn3229TgryxlVA+WHy+XEwoULpGm7hQvnW8+L/rjuuhukwvFp0yrgcjmxYkW1\n9VvwihXLrOtH96ayuz4/+MEP9Uei/1bNj08++RCffPJhyu8nUyRVCC6EaARwmWEYJwE4G8EEZheA\nD4QQ68LOW5LUXSbOfAdJTVGNQmFhfmddutdLtC5HtepNtwrP7/dj1y5VrdMO3HTTTdJU0SWXXGwV\nMYdzOvUzw++//44Ue++9t+BwOKSvw+FwICtLVTPlwNGjjRGjLsuXL8Xll1+K3/zmN/jZz34Wcf49\n99yDwsJ87N7tla7l9dbjrrvuREVFRUQ381tvvdn6OX3nnXfgcDhw7rnnAgB+85tZ0nXmzJmJgoIC\nKZ6dnWVd595774XD4cBdd90FACgsPAFXXnkFnnnmGQDA979/JQxjBHbt2iWNKJWVfQdtbXJC29bW\nwn9PRAnKzs5Sxuz+LZmjvw6HA1/96vlcQNEBya6eAwCEEqR1MU/sHHUAopfreAA0CiE6rTJu376m\nzro0JenQIfnvpqmpCbNmzZbis2bN0k7nlZQMkXo7lZQMQUuLXJiuipl27pT7Q+3cuQv33hu50i8Q\nCODee+/Dvff+HqNHn4j16z8HABjGiRg+/ATs29eEwYOLsX///ojnBeuvCtC3bz+rGL1fvwLk5hZg\n374m+Hw+zJjxCBwOYPbsx+F2u7Fhg9xjdsOGDZgxYzbef/8Dq62Cw+HE1Vdfh337mrBv31784x//\nAAD84AflKCwcCAC45JIyvPbaX+FwAN/+9nexb18TZs6cHVF35vP5MHPmbLS2qqc8+e+JyN6HH34A\nADjzzK8AAC65ZALee++9iHPGjy+z/be0aNHzqKurAwA89dQzmDLlypTdX6b84pN00mQYRj6AawFc\niGALgr0A/gngaSFEV/xP+A6A70TFvh2KdxrVf/6ULtQjWYcPq5Mplba2Nhw6dEiKHzp0COeee4E0\nYnXeeeOkmPm6Hk8xGhsPRMQ9nmJl+4AvvtiE1lY/Kiqm42c/uxUAcMMN062ft6Ym+Z6amprwn//8\nJ2L13p49Dfj0009x0kmnYPHiF3HgQDDRWrz4RVxxxQ/hdudIo3Vudw7a2vxRfagCaG31o7XVj7vu\n+oUV/Z//+SVmznwMAOB0ujB16nUAHHA6XWht9WtHE1W/2WZnu/nviciGz+fDggXz4HA4cNJJX4bb\n7cby5cuk82pqlmL06JOU1wjufNA++rts2RJccMFX2RQ2Qcl2BB8O4D8AZgEwAPhDf84C8Eno84le\nM98wjNMMwzg9FBoRejw89Pn7DcMI78H0GIATDMP4gxF0I4DvAZDbMBMlQF0z1arsIP7EE3/SXkdd\n2H1E0+ogOOR+3333WLH77/+tdbxr107pObt27dCuuJOLRYMNN3UF5dFfWyAQQGXlHLz11j+krWDe\nfltepWjS7ZGn27yYiPRSsUou3bZI6qmSrd4yE5OThRBjhRDfEUKMRbDJZADBhpOJOgvARwA+DLvG\nagDmu0gJACsZE0JsATABwLcQ7O90G4DrhRDRK+qIEhL+H4zJ5/Mp46qYaceOWkVsu6aVQjPeeusf\n2LdvrxXbu3ePlaDoekrpVtxVVs6VtlGprJyj3eJG1x5BlRQ+/vjs0D3Lq+Q8nhKMHDnKOnfUqNHW\n9ifHH3+CFR8xYiR/0yWyoVslp/vFhDpXstNzFwP4sRBChAeFEMIwjP9FcBQoIUKIv8MmmRNCXKd5\nzpmJvhaRHaczS+oWroql2ty5cu3V3Lkzcf75F2LChEmoqXkp4nNlZZfh1VdflrqV5+bmorZW3gqm\ntnY7+vaV2y8cOLC/Q20TzN+Cg8fVuPzyK2yaXgawYYO8d56ZOC1a9CwAB6ZM+YHtaxJlCt0I0R13\n3ImRI0dZC1nMX0x0dLsDUGKSHWlyAdDtK3EEgFzeT9RDJDqilCq6jYsB4G9/e0363Ouvv6L8z9Lj\nKdHEi5Xd1HfsqNWOZJWWXirFv/vdydq+S7qml5WVcyO+Pr/fj8rKOQCC9Vo1NUtRU7NUWbtFRO0S\n7cbf0U2uVQ1qM1mySdNbAP7HMIwB4UHDMPoDuCv0eSJKEdWeeEePHsGePfIWLnv2NKCxsVGKHzwo\nx0yDBhVJsaKiIqxaJc92/+1vr6Gqar7Ud8muTkI38gUEa7DMTuSqGi2iTKTbRDtWN36VRHcH4DYt\nsmSTptsBjASwzTCMasMwHjcMYymA7QBOAHBHsjdIRO0GDhykiBVpG3F6vXVSvL6+Dn36yF3N+/Tp\no+yO3tDQoJ2207Vr0BV8q7eyGY61a9dE9Mtat+4zrFv3mXQuUabxeEpQWlpmPS4tLevwCJFqdwA7\ndgXomToClVTSJIRYg+AmufMADAXwjdCflQBOC32eiFLE61U3t0x0f77wYmy7mKmkRO5qrup0bvJ4\nSnDCCe2F4CNHBustKiqiO6c7UFFxI2bPlhe7zprVkXUkRL1dsPFuefm0iJ0AHA6HVaNkN0IU7ybX\ndtu0ZPIIVNK9z4UQ24UQPxVCnC2EGCWEOEcIcbsQQl4yRERJSs2+fZMnT5Fil112hWYLl3xtf6Wc\nHHmnopycHHi9ddiwoX19yPr1n1v/4Ub+Rx/8M1YB+qJFz2LRoudsvqJImfpbMPV80T+7Xm8dVq5c\nbj1eubIGXm89GhoaIvqhBQIBa6S4s1sUZPJGwQmvnjMM41PE/790QAhxWqKvQZTJdNuxpNKCBU9I\nsfnzn1AWknq9dejTR9637/DhJlRUTMeaNf+xaivMabiqqicjVhm2tbWhqupJNDc3S//RV1bOQUnJ\nEGzceDDi+uZIllkgDjhQWlqm3Hg5XPhWEWPGnJrWW0Wk42rB1as/AOCIazSCUkv1s6tLXjZt2ig9\nf9ash3HPPfdJI0Tjxl2UstYeqhGoceMuwuDB/VJy/XTXkZGmDxP4WJ2a2yTKHInuzWdHtxpOtXpu\n50794LCqgHv79m2heouJVqy09FJ4PMU4ePCgdP7Bgwe1faB0I1mAfYG4akSpp/wWnI6rBTN52iUd\npFMTS/sC9MxtkpnwSJMQ4tpOuA8iioNuFCo7O1t6k3O7c5QtEuwSMKfTKU2VqRKvcJEjSsEu6tF7\n9pmxRPtA6QrETzrpFOVv5brfgtOxgaaZDALAI488gP/5n9/GeEbnU/XcokidNRKn+9ktL5+GTz75\n2GpS63Rmobz8ejQ07Mbvfnd3xDVuueV2rFghb6/SEWaLgiVLXgQQf4uC3i7pmiYi6jq6USjVli+t\nrS3a81XTfQ6HUxN3KIvER4w4IVRvUWPFzHoL3QiXjq42yq5AXPVbeU/5Lbi7VwuqRujsCn8pqDNH\n4ux/duV/x0VFRVIh+KBBRdoRoo4oK5uMgoL+6N9/gNWiINO3QmLSRNQLJDqCE/6fXnvMpezTNGjQ\nYJx88pel+CmnnBbapkVuVnn11ddK50+dOk2bTJWXT5Pidv8R9/Q3+O5cLah74+8pCWd36sj0WbKL\nEqqq5kf9GwvWB1ZVzZfqA6uqnuxwE0ud6N+jdCtjMwWTJqIMpGtRoOrTtGfPbmnrFgCorl6krVFa\nteoNKf7mm3/FMcccK8WPOeZYNDSoXrcBN9/8Uyl+yy23a9/gy8sjE7NgQtbx34ITfcPTnZ+q66RC\nT6n5SjcdSdQTGZlK5QjO+PET4HQ64XRmYfz40g5dAwh+jQcOHMCBA/utr93rrcPGje2dyDdssO9E\n3tswaSKiDjNrmKJjumTqjDPkOpAzzzw7pSMv0SNfHZXoVIzufFVclwx25HUTYffGn8ppnd4o1khc\nsosSdCM4ur+X8AUYpgkTgtsdvfLKCmvxxCuvrIzr61O1OlD9rCS6C0Bvw6SJiCzqjt3HaM+P3iRY\nFzM991yVFPvzn5/S1GS1apMpeUQpWBxbWTlXOt/c2y5RiY7I6M5XxU8+eQxOPPFk65yTTjoFJ510\nSodeNxF2b/ypntbp6RIZ7VMluomOTOlGcOSO4BPh8RRj6dJF0jWWLHkxZSNinK5VY9JERJa9e+U9\n7FSxWFQdxEtKhmhrr8J/czWpEim9YG2HboTLpGuSGR3vyBve8uVLw84Pblxsd52f/vQX1hTKbbf9\n3LqOagPkrmK3N1lvbRiq+rp8Ph/mzZuLefPmWkmE3UhcKhYlxD+CE/xZ1+3j2JFkJ5FEPfgLS5b1\n2PyFJVMwaSIii7q/kn6DX53wjURNra0t2j3v1DVWzdqCcrk41h/zjaGp6RCWLVuCmpolEX2RVPGO\nvOGpNk+1u05+fl9MnDgZEydOthp2dvbUR6wpON3eZOnYvykVSZzu66quXmzV8lRXLwagH4nr7EUJ\nckfw5aERKHkUsLg48ZFB3f3b/6x0rG9cb8CkiYhSbuvWL6TYli1f4OKL5aLUSy75rnZV3Tvv/EuK\nv/32P5TJ3aFDB233yHv44d8jEAjA7/fj4Yf/YH1eF0+EbuPiWKZM+WFEN/COXide8UzBqfYmS7fi\n8VQlcaqvS04iqq0kSDUSZ7coIZEaMV2Nku76uoawdrVOKrrr66YFdav5MgWTJiLqMi+/vFSK1dS8\nhB/8oFyKX3XVtZrpwr3K5pm7dskxAAgEgn2RhFhnxYRYi3XrPtPGU1UUneh1VAlA+BtaKkZX7Kbg\nVNKxvUMqkjjd1xVso9HesNXvb7Pq4nQjcSqJ1oiF9zsz2TWq1K2AfeGFP0vx559/xjru+M9Q5o4u\nhWPSRERdRlfT9N57b0vxd975l6ZuY1uC28PswMyZD0nxRx99UBvX/Zato2vOmegbp10yqKqzMSXy\nRpjIGz+QfgXBHU3ior9Huq9LVytkih6JKy+fBperfXMNl8tlJcapqBHTjRzpfta/+GKTFDdjqhG6\n4P23tzpwuYKtDnTTgrrzMwWTJiLqdps3q/+j13U019U6NTcfleLNzUdx5MhhKX7kyGEcPtwkxc1Y\n+PYwfn9kUXr0G155+TQ4HO3/nToczog3zv79I7sq665jR1VnAwTfCOfOnYW5c2fFPVWlmoJLV/Em\nO3YSmc5TryBtj0Xfj8dTgv79B1iP+/cvtBJjuxqxmTMfwsyZD8YsNNetkvP55GlbVSycaoTO4ynB\nyJHtrQ5GjRptTcPppu1U52cKJk1E1O3Cp0NMbW1t2hGl1177ixR/7bUVEW86JrfbjZycXCkejMnb\nxgAO6bfsFSuWW6MZujfg8M7J0dvR+HwtUnG86jq6miy7OpuXXnoBhw8HE8AlS16IeG5HpmJUCaGq\nvUNX6MzaJd3XNXnyFOn5l112hfZ+1q5dE9EUds+e3TG3xHnuuYVobW1Fa2srnn9+IQD9dJ5u5Ou4\n40ZI8eOPH6FtG2K3wnPTpvZWBxs32jerTPT83oZJExGlLV3/ps2bN0rxTZs2KpMsh8OJvn37SvF+\n/fohJ0dOsnJy3LZ1Lbrl5bri2OrqxdaoVnV1e2d11XV0xb26+/F66yLqXl5+eVlEcldZqZ7O09En\nKarkMqgzu53rkp1E6sTsp/Pkr0s3sqO7H90ULxD8fs6ePQN//OOMiP5Nr73W3nDy1VdXWvfzzW9e\nbMW/+c1vAYDyZ7dv334455zzpfi5516o+cUhO8YKTzluX5gun58pmDQRUY+jq43SjUypfhOur6+L\nmFIzORxO7W/3ifZRkn+7Xxqzf5OK7n7+9KeZ0v5jc+Y8CiCYrDU2mtN58jY4KvqEMDJhM98kO9I1\nPd5ETvc9SrROTDfNpPu67P7uVfejm/oFgBdffBY+nw/Nzc148cVnAQAPPnifdP5DDwVjs2a1N3Od\nNesRAEBdXZ10fl3dLmuEKtyzzz6t+Vmvx969e6X4vn1yzBSroDxTMWkiol4jvCDXpNqcOBZdXYuu\nj1Kwpil8x3mn1aE8egSqsnKO9o1ctyJKdz+qot/NmzdpkzU7HSmwTnQVWyKJnF3tUlnZZBQUqOvE\nkqVKwOxqfHRTv15vHf7yl/Yp3r/8JTjFqyrg3rGjVruSMxCQf0EIBPwRNXemtrY27c9Kbe02Kb59\n+zZtIfuWLZul87ds2azcvHvMmNOkWG/FpImIeo39+/dJsX379iqnvdzuHOWIVSDg1+6RZ9dHKbJm\n3b5rs45uRZSuzkZXKK9L1kyqKbL4N0HOslZXJdc1PfL8RKf5WlvlOjFA7u6um2ZKpJ+RQz87icGD\nPVLM4/FYU3ThVDGTbppv8GB1EqdTUTFdEbtRe77HU4J+/Qqsx/369YfHU4ysrCzp3KysLDz7rLwV\n0jPPPKW9fm/DpImIer28vHwplp+fp1xt1NzcrN0jTye4513kNFll5Rztb/26N2zd6j/dVElurtxh\nPTe3j22y1rHiajlrSHQVm10ip1sKr6tdqq5ebBW/h68kbGo6hOrql7Bs2UtWd3dd/yNdXDe9pfs7\nC4cbnywAACAASURBVC8CNzU0NGDr1i1SfOvWL+B2y+0p3O4cNDWpV3IeOqTq0i/HTG+++Tcp9ve/\nv4ni4hIpXlw8BGvXromYptu3bw/WrfsMPp+ckPp8LdqRr0zBpImIeo3oVWtmTD0CtU87UqOrmdI1\nn9QlKbrf+nVv2Koi3uxst7Ilw+bNm3DcccdL8eOOO9522bxuSk2XpNjVNCXCLpHTLYWPb9uS9pWE\nZr1QIBDAgw/eDyDxLuu6751dgXgi1KOebmXi4ff7cfSonEirYqaaGnnas7p6kbKmae/ePZgx4/dS\n/OGH78/45EiHSRMR9Rq6JCjx89WtCFQbAm/dulX7Rrthw3opvnHjBu0bua6QXdWSwe9v0yZlFRXT\npU1VKyputC1kT7TAOtFVbLrvkd00n6rHlW4l4dq1a7Bhg7DiGzZ8brv0/7zzLpRi55//Ve3UrG4z\n6EGDiqR4UZEcMxUUFChi/aH7mdP93ev2cdQ5evSIMnbkiBxXxSiISRMRkUSVaAW0DQV1NUdPPPEn\nKf7447OVI1/79+/XJk06uqRMToAmWcXMdhsCqzpY62qa5K7pZRFJVnSNUkXF9KhieQcqKm6MOc0X\nndfqRqweeeQBKT5jhn4vwaeemifFFix4As89p16Vpht91E3PhSetJqczS9n1va5uJ5xOOWlSxUyF\nhQMVsUHa81MlK0tebKFagNFbMWkiIkqSruZIN5KlLviuxaBB8pueaiTDNHfuLClmthyYNOl7ocae\nOZg06XsAYk9V6bdYsamEVpwTT78n1VRqtOXLl1qr7czRKN2IlV13dxXd+bpGq7qeYbopW10PMF3y\npYvr1NfLrQjq69X7L6ZSW5v6+5ApmDQRESVJV3M0bNgxUnz4cDlm2rNH3qBYNZJhspuObGnxWT2C\nzJEcXUsDO7qaJnlvshprWk3X7ym8Jsbv94e1a5C3oNFN29l17FbpyNesvo56lFG3mKC1VU6+VLGO\nSnQqmlKDSRMRUZzUheb6miNVHcmRI/oiXl0LhI74/e//zzr+wx+Cx6qVYeExu02Bo+mm1XTbddiJ\n/BoDttfXFdHr7NghT+epYibd6jYdXYPU8Hs3qWIdlejIFKUGkyYiojipf7tP3RSK6k2vrS3xN8K1\na9dEbDWzadNGrFv3GQoLC6VzBw5sr41RbQocPRLkdDptC75122zoaqOC7Rrame0adBLtbJ1oobNu\nuk2np68yU9VeqXo0URCTJiKiNKGbAlJ1NVe1JzCZ23KEe/DB32H37t1S3Ov1hv7UN5+MnlYD9KvP\n7BuAhveyCl5HtypN1xdp+3b1+amTWdNeuhouUsucknciojSXyJSLqiDXpEtcsrLk55gNNeXmk37t\niE9l5RxlovL00/NQUjJEipuF4dH75FVVPan9mnXTcJyWou7EpImIKM2lKlFwubKlUQRzFEu1j90X\nX2xSLjHftm0rDh9Wb1Qbq24qnF1n67175aJ4u2k4oq7A6Tkiogyhqs0xa3h0tT+61WeqKSu/P6Ds\nHzRw4EBtQbYuIVT1Y9q+Xd50lqgrMWkiIupldCvAOjJipauz0hVA797tleJer9cmKVNfX3evqkaK\nmdRckboXkyYiol5G1WzQrgYqlXSbDuvokiPdPoK6JpPqbUXyYt0uUUKYNBER9TKpXBGl2n+uuLhE\ne77LJa/0U8ViSbR5o3okS667IkoGkyYiItLav3+/FNu3T947z5ToSJNO3779pFi/fvJmt0RdiUkT\nEVGGSHRDYEBf06Tejy6ePeric/BgoxRrbDyQsusTdQSTJiKiDJHaHkeqqbLe2wSSCGDSRERERBQX\nJk1EREREcWDSRERERBQHJk1EREREcWDSRERERBQHJk1EREREcWDSRERERBQHJk1EREREcWDSRERE\nRBQHV3ffgI5hGD8BcAeAEgCfALhZCPGB5txrACxAsB2t2cf/qBCCW1wTERFRSqTlSJNhGFcCeBjA\n3QDOQDBpetUwjCKbpx1AMMEyP47t7PskIiKizJGuI023AXhcCFEFAIZh/BeACQCmAXhA85yAEGJ3\nF90fERERZZi0G2kyDCMbwJkA3jBjQogAgNcBnGfz1L6GYWwxDGObYRjVhmGc3Mm3SkRERBkk7ZIm\nAEUAsgDUR8XrEZx2UxEIjkJNBHAVgl/X24ZhfKmzbtLlSsdvHfVm/JmjzsKfLaL4pOv0nIoDwUJv\niRDiXQDvmo8Nw3gHwDoAP0KwLirlCgvzO+OyRFr8maPOwp8tovik468XDQDaABRHxT2QR5+UhBCt\nAD4CMDK1t9Zu376mzro0kRJ/5qiz8GeLKD5plzQJIVoAfAjgm2bMMAxH6PHb8VzDMAwngDEAdnXG\nPQJAa6u/sy5NpMSfOeos/Nkiik+6Ts/NAPC0YRgfAngfwdV0eQCeAgDDMKoA1Aoh7gw9/l8Ep+c2\nAhgA4OcIthyY1+V3TkRERL1SWiZNQogXQz2ZfovgNN3HAC4JaykwDEBr2FMKATyBYKH4PgRHqs4T\nQnzedXdNREREvVlaJk0AIISYA2CO5nPfiHr8UwA/7Yr7IiIiosyUdjVNREREROmISRMRERFRHJg0\nEREREcWBSRMRERFRHJg0hfz5zy/FFSMiIqLMxKQpzMknf1l5TERERMSkKcyVV/5Qeaxy+DC3HSAi\nIsokTJqIiIiI4sCkKQaXS+7/6XK5kJfHXcGJiIgyCZOmGJ5++oW4YkRERNS7MWmKw7nnXqA8JiIi\noszBpCkO3/nOd6VjFoITERFlFiZNRERERHFg0tRBLAQnIiLKLEyaksAu4kRERJmDSVOS2EWciIgo\nMzBpSlJ0F3EWiBMREfVOTJqIiIiI4sCkKcXy8vIxcOAgKV5UNLgb7oaIiIhShUlTJ5g9+wkpNnPm\nY91wJ0RERJQqTJo6SVnZ5Ihj1joRERH1bEyaOslZZ52tPCYiIqKeiUlTF8nLy0dp6UQpPmnSlG64\nGyIiIkoUk6YudNVV10ixCRPKuuFOiIiIKFFMmrrYTTfdpjwmIiKi9MakqYsNHuyJOM7Ly0dlZZV0\nnipGRERE3YdJUxrIy8vHyJGG9Tj8mIiIiNIDk6Y0MXXqtRHHeXn5mjMdXXI/REREFIlJU8jGjetR\nW7vNelxbuw0bN67Hxo3r4fM1d8s9/fnPLylii7vhToiIiMjV3TeQLu6++1cRjysr51rHFRXTu/p2\nLKeffiY+/vhD6xgAXC4XWltbI85zubLR2trS5fdHRESUKTjSFAevt946Dh+BOnr0SKe/9uTJ35OO\nn376Bem8p59+vtPvhYiIKJNxpCnKNad+BUP79UfD4SZUfvQOAGDZsiXW58NHoO655/4uvz/Tuede\ngHfffcs6BoCxY8/C6tX/jjjvrLPOwb///V6X3x8REVFvw5GmKCMKizDGMxTDCgZ0963Y+s53visd\n3377r6Tzbrvt55orsKCciIgoEUya4nTNaWfgVxd+DRVjv2LFamu3KYvHu2LaTufaayukYxaUExER\nJY9JU5yCI1AlESNQlZVzI6brKivn4u67f4Xa2u3dcYsAgOOPH6E8NovIw4/VyZQcIyIiIiZNnSId\nR6BUBeUAMHz4sdIxkykiIiIZk6YkVYw9A7+68AJcc9qpViwdR6B0brjhv5THxcVDpGNdMnXKKV+W\n4l/+8mmpvE0iIqJux6QpScMKCjDG48GIwsKY56bjCJTOjTfeojw+9dQzpOM77/yN9Pxf/vLXmDjx\ncik+adKUFN4lERFR12HS1EluGHsKfnnhmSg/7UQrphuBevfdt3pMMnX55Vcoj6+++jrp+Morfyg9\nf8qU73P6j4iIeiQmTZ1kWEFfjPEUYURh/5jn9oZkatSo0crjm266TXlcEFZQbx7rkqn8/L5SvG/f\nfsndMBERUYKYNHWx688YiV9cMAZTTz0+5rm9IZkaPNijPL799l8oj0eONKTjJ554Wrru448/pU2y\nsrKypHhWFvu4EhFRcpg0Ralt3I+Ne3ejtnF/p1x/WEE+TvEMwIjCgoj4dacPw8/OOx5XfXlozGv0\nhmRKZ+rUa5XH3/rWeOXx0KHDpOOqqhel61ZVvaBNsq666lopPnXqNAwaVCTFVbGu0tCwu9tem4iI\nmDRJKj96B3f//S/WFiqm2sYD2Lh3D2obD3TK6w7rl4tTPP0wYkBeRPza0/rj9nMH4odjCjTPbNeb\nk6lx4y5SHv/4xz9RHp999nnK48GDi6Xj0tIy6fXGj5+AWbMel+KzZj2uTb508X795L87VYyIiNIb\nk6Y4Va5+H3ev+isqV78fEa9tbMTGvXtR29jYKa/7pX7ZOHlwLo4f4I6IX31aNm49140rxsSedoo3\nmdq8eRNWrXoda9d+Glc8nZOvCRMmKo9vuum/lcf//d8/Ux6XlU1WHqumEQHguONOkI4fe2yBdH+P\nPbZAm2S53W4p7na7UVQ0WIoTEVHXYaFHlIozzsOwggGobdwvjTapVK7+SBmvbTwU8Wd7vCniz44a\n2s+J4wudyHE5ALRa8e+f7kJhngP1B/1Y8mmb7TXCEykAePrpecrzdHHz+RUV0yPitbXb0NzcDIcD\n8HrrI+IAMGzYcNv76g6FhQOVx2eddTaWL19qHZumTr0Wd9/9K+vYdN11N1jx6667wYpfcskEvPrq\nCuvYNGjQYOzZs9s6BoAFC57DVVdFtmtYsOA5AOZ0YuTnzORLFX/ggd/hk09WR8T1mzg7AAQUcert\nOPVLFB8mTVGGFQzAyIHyb/QVY8/GsIL+qG08II02qcxb/Zky/uRHG5XxHY1HI/7sqJICJ44baCZT\n7UnT5WNdKMwDvAcDqPnEPplKVHTyFf04Op5IkmWXfAGAz9ec9P13hfPPv9BKms4//0IrfsstP7WS\nrFtu+akVv/DCi/Cvf/3dOg43ZsxpWLPmE+vYzs9/fpeUTJmbOMtJ1mJNXJ+UdVf8uut+AJ/PFxF3\nu3N6zM8DEfVMTJqibN7XgKOtLWg4HDkSNKygP0YOHCSdXzH2DAwrKEBtY6N21Cke8z+pVcZ3HGyJ\n+NO086A/4s9YSgocOGagEzkuP8KTqUljszAgH9jdGMCKT9qv9d2zsjAgLxh/9eP2+HfOykL//AAa\nDgCvfxzfa0dLNMmyi1966WXWsZlk7d5dj5aWlk6Jmzr7zfnii8dbSdPFF4+P+NyUKd+3kqYpU75v\nxe+5534rAbvnnvut+LXXVuCppyqtY9Ppp5+Jjz/+0Do2nXzyl7F27afWsWnIkC9h164d1rHJ4ymB\n11tnHZv69i3AoUON1rEpOzsHLS3N1rEpP78fmpoOWsd21KNxzwJIr+Ru/vwn8MYbr0bEL764FJ7/\nb+/cw6wozjz8nmFmGIbLcBsICGgULDGICtGAmtXoakhiRI3G1Y1K8BKMZjUXjLfduLtxk7ibYNbN\nJnGTrJi4CeqaqHE1RsVLIl4icvFWMIAhIwiDODAXZoaZc/aPqjpdp0/3OX2GGRic732e85zur6ur\nq6u7q3791dfdY8Zw99135tgvvHA+P//5z4iivLyczs7OorbuIkO/gpAMEU0hFq96KdIeJ6YA2jo7\n6ejK9d5cOuNDTBg2hPqdzTlep0uOnsyEYYOp39kS63XyuXNldOD5L1bujrRv3pnO+S/GmJoUE0eW\nUVmeBoJ1xgxLccCofHttDYwfNcDac/nY0SkAlr6SO8Rzon2J+NPd15SxPPDA/dnpPRFfpdr3tlhz\n9jFjxpY85Bn3EeezzjonK5r87xGed94FWfHlv6B0wYKrsvYFC67K2q+88uqs/corr87aFy68Pmtf\nuPD6rP2mm27O2m+66eas/dprb8jar732hqw9TgzGeePixF1t7VgaGrZkpx1jx45jy5bN2emeZP78\ny/NE07x5lwDkiaY5cz7FnDmfSizKFi9eEmnvrugrdehX7GIP2/sDIpoSsnhldI9fyLsUJaYmDBvM\nISPz76LnHzmBA4ZV8fbOtlivUxKWrIi+83zHiqh3QmJq644MkLb/xe0N1t6wIz/2Zdwo91xB7j6P\nHe3suds+fob5/2NuyA2zrP35kP2YmVAzDFpaYVlUSM5eZF+Jtbhl4SHP9evXUV+/MU9k7S/2JEO2\nU6cenhVNU6cezmuvrSaVgtNPPyNbL6effkbWfuaZZ2ftZ555dtZ+xhlnZu1nnHFm1n7ZZVfk1O9r\nr62moWEL8+Zdyp13/iRrr6tbA8CNN97MLbfcDOSKuwULvsSPfnR7dtpxzTULue22f81OOw4+eArr\n16/NTjtmzTqe55//Y3baETdcGycGR48ew7ZtW7PTPiNHjmb79m3ZaUecdzCO8vJKOjs7stOO6uoh\ntLY2Z6cD/Hi6VNH8zTNMaW9aEPYOqUxGAj8Bli17OVNfvzGvEyrUYXWHS46ezOjqKjY1tfDzVRuy\n9s8fNYHRgyrY1NzO3as3Ze2fmjyYmoED2Lark8fWt2btnzuygvFDy9jUlI71Ou1tTjvGNF6PvZQr\njk451jSCT7wY8kDZuOqnQyFiJ1j7H0L2T5wGtaNTNGzL8MhjgX3GTBhWA60t8KInpo76MAy19pef\nD+xHHANDamBXC6zwYv2nHgtDhsOuZnj1ucB+6CyoroH2FnjjD4XrQOi/zJ17dlZMX3bZFVnP1u7d\nu3NEVl+1O+Hq2ryLL76UysqKfmN3deGE+t6298VzIql9woRJzJ49M4na3e8R0WRpaGjK1NWtyRkG\nmDBhIvX1fyEspuIaGb/R7G0+d2QFowal2Nyc5p5XA+/SqVMGMLQKtrdmeGpd92KO+iqzj4Xhw6Gx\nEZZ5gurYj0DNcNjRmCuaZswK7Ms90XTkbBg2HHY2wkpPNE07DoaOgKb3ckXTYcfDkBHQ/B68+cfA\nPm4aVA2F3a1QvzKw1x4BA619y4rAPnw6VAyFrlbY7jkoB58AA0ZCemeK5qe86/GjA0mNKIOmDJml\nwQMCqY+NhqHlZN7rgGe3l1CDgiAIvcNjjz3WL0RTnx2eU0pdCXwN+ACwEviS1jo64MikPxf4J+Ag\nYA1wndb6kT0pQ1XVICZPPjTHNmHCJGszAbKVlYGretq06cyYcQxAjtDqDTEV5136/drSnoz7K1XG\n0Cp4ryXDc3VBh338YYH9hbWBffZhZQwZlKGxGV5au3cF97KYhxZfjBmq84WSz8qYN0n4QsnHF0o+\nm1+NtjesjrY3roq2UwGpihSZVG59psqtnXzxm6oog/KynBcEpGbUwuByMjt3w8ptnn08VFeQaeqA\nlZs9+0SoHkimaResfDtrL5txEJnqgdC0i8zKIPi97OhDrL2VzKq3PPuUIP2qdZ5dkRlUBc0tZFbV\nefapZAYNguZmMqvWePYPwaCBZJpbyax6M3d/j5gKQGb1GyH7h6z9tZB9mrXnHqSyI6YDkF69KmQ/\n0tpXhuxHkxo6DFpb6Frxp6x9wBEzSA2tIdPaQteK4k/TCoLw/qBPiial1HnAd4HLgReBLwO/U0od\nqrXeFpF+NvA/wNeBh4ELgN8opY7WWr++t8pdWTkwT2RBvJgq1X3cG+LrGR3tjfrjm9H2ZTF2ofu0\nLIWo9yNllrZHvjUps3RbtH159Lt2Mss3xdj/EmlPL38r2v7Kuhj72hi7jrG/EWOPfk0H5IulwB69\nTlgsZbexOlq5hsVSYI+OWexavTzSLghh5hx4MgCP/vnJXPtBJ1JbNYrGjp08tP5xz/5RageNoLG9\niYfWL/Xsx1Fbbe3rngnsH5xFbfVwGtubeajuD579WGqra2hsb+GhuuCO8BMHz6R2kLE/WPeCZ59B\nbfVQGttaebAu8E984pAjqR00zKRfu9yzT6O2ehiNbS08uDb6+nk/0idFE0Yk/VhrfReAUmoB8Clg\nPnBrRPqrgUe01t+z899QSp0GXAV8MelG29qCIZD6+o2MH38A1dWDY+2trS05j6H76XycmAqnHz/+\nAKZNm55N4zj44EOy4iuJJ6sviC9BEAQhn7BYytrfejrG/myMPdoV/uiGaJf6oxuiPaCPrH85xh59\nI/DIumhB9Mi6GFf7+5w+J5qUUhXATOBfnE1rnVFKPQ7MjlltNsYz5fM7YG7S7ba2trBo0Xey8//1\nXz/k7rvv4lvf+m6s/frrv0qr9wqCRYu+w+233wGQJ6ZaW1u4+uorEqd3ZfLt6XQmK6Z8geaLr3Q6\nU9Q+efKh2ad71q9fy+LF5t0w559/EUOGDGbMmLHU128sar/44vkccMAkUil6zV5ZObDHg/EFQRAE\noTv0xWc1RwMDgC0h+xZMfFMUHygxfR5lZSnKynKrI5WC8vKyWHsqFPZWVlZGR0cb11xzRU5Hv2jR\nrXR0tJWUvrHx3Zh8dtHRsYtFi27ttv0HP/g+kyZNZNKkiSxZ8sus/de/vpfjjjueyZMnJ7IvWfJL\npkyZ3Kv2GTNmctNNN+d43CorB7Jw4Q3Mm3dpznfaetsOUFVVxQUXXLTP7FVVVTn2ysrKXrfPm3cp\n1157Q+gY9LbdHIPetM+bF3zmRhAEIQl97uk5pdQ44G1gttb6Bc9+K3CC1vq4iHXagYu01ks82xeB\nm7TW4/dCsQVBEARBeJ/TFz1N2zBvRxwbso8h35vkeKfE9IIgCIIgCCXR50ST1no38DJwirMppVJ2\nPuahcJb56S2nWrsgCIIgCMIe0+cCwS3fAxYrpV4meOVANXAngFLqLqBea+0+UPV94Gml1Fcwrxw4\nHxNMfhmCIAiCIAg9QJ/zNAFore8Bvop5WeUrwHTg41pr9yKaCXhB3lrrZRihdDmwAjgbmLs339Ek\nCIIgCML7mz4XCC4IgiAIgtAX6ZOeJkEQBEEQhL6GiCZBEARBEIQEiGgSBEEQBEFIgIgmQRAEQRCE\nBIhoEgRBEARBSICIJkEQBEEQhAR06+WWSqkrga9h3pW0EviS1vqlmHTXA+77byngz8C5WuuXvHzG\nA23AQPsDaAXaMW8HvwE4AfPepiGhzWRsvmswbwU/HfgWMDyU5hVb3nE2vaML84Fgnw6gkmjc9gRB\nEAShP5Jmz50uXcBOYBBGi4T1SBp4D9gKjARGW3sZuX1wBqMf7gXOtfk5+1bgR8AtwAjgVszXQoYD\nTwN/p7WuK6XQJe+0Uuo84LvAN4CjMaLpd0qp0THpnsPs/Ot2J7bY9Jd6+VwJbPLK0wLcDswC/gIs\nBf4NGAzsstt07Lb5LwGm2TxrvOV1wEO2rIOBjdbeYf//z66fwbx9HIxgSgMN5LMDcyAB1gJNtkz+\nC6/S3rz77/KWh1+OVWw+TBdGVDo67Tbj6MTUY0/jyllo292hM8LWHrPtuPlSCK8b3p99/TKzQttP\nUveNobRR66TJPUeTkmT7PXme7GlepRzLjgLLurP9qOs0Q26ZeutcK6W8pZYnLu84e9T1XYierJNw\nfUdtp9hyiL9WWsjfv7j8wm0amP4siih7uM/pznoZb91w3UT1Y65fdH11B2Y/XB+42867OmgH1oW2\nA3CHXWeETVtul7ttZjB1OQKYiPkiyDPAdkx75q6lP2AcIt8DPoP5dNrjwG22bGOAqzGi6QHgIODT\nwFEYLfC4UsqJrER0Ryl+Gfix1vourfWbwAJMBz4/Kh0wCfgBcARmJ9+x6f/ey+cnwOEYVegqa5PW\neg1wKVCFORgp4BzgDZtHPfCu3Y8/YQTYW3b7t9n/17TWc4EXMF6qy63diaepwK9s3uOsLYNRrQvJ\nP2nqgFft9P3AwbZ8KVuWDsxHh90J0gL8kqCu221av0HO2Hwdu4inAeMZe9SzNWPehO6X06ccuCbC\nHk7bSfxFG8WzmMYjfB75+e4i96IMsyk0H5Uf5HsD/fpqo7D3z9/usxHL/cZrN/mN2YYCefu4/XQN\n6p52Pk4Yv1sgn9dj7D4DMcfW1VHU8RpN0Bj5+J1DVCNfqA3xbxgyEWkLnWsd5IuWLsw+ROUFpv52\nhLYNQaMdRaddFtWRF/LEby+wLEpspTFlD5d7Fbn1Gj6Pm0Lzbj86CW7qCok7dw6VEdSNI+p4hnHl\nKXR++fsUFhNR66UJhHxcvjtDZciQ2y6G98XlGyacf4rotqLQMYiyL7X/baE0b9ht+je1ce3fsRHb\nqIhI12ntDld3qVCaMFsJ2k0/z5Qt03N2+h6C/X82lO4ub96lqcD0a256PsbR4L4NO5Dg2hkI/CP5\n1+wYm996TL/8fYw2aMNcr3cDQ+166zDeo1sxHqdddvsp4FqMADoZ+KXW+hSt9ala6y8Dv8X0L2uA\n84CPAAu01su11muBK2y+50fUXSwliSalVAXmm25POJvWOoNRdrMj0j3l0tt0uzBK7wmMeozKJ3zC\n1mAOvDtg12AqoBzzOZVaaz8JUynKzl9l/09WSs318nPDbu4kegRzUMAcSDAX/u9snq487r8Tc5DA\nHLCNdlmnLWszMIzgZB0CzPC274Yf/eG/MmCyN19FPG5//X1aE1o/inuLLAezHxVFUwWcQL6Ycfk4\nqgjOs6jGaHBofgDR52W4A5viTQ+kMP52Pxqx3K/vcgL3ruPgIvk7yjDnlauTUodxw/tdbf9HeLZw\nnocn2JZzfxfqDLYDo8ivZ//4DqQ0b5TbXty2C7U/4Y7CL0vcfpQRiAw/zVjyr2NHOfEizB1Phz89\nMqYMED20X0b0tTKdwtf70NC8X6euLYgLJYDgHIJcDzxEXzdO3IVJei77+xgeRnFUEoRPxOU7LMLm\nX5fheonLK2m5C10fkC9k/tr+h4/dTJuXX+8DiA7reD5mW1HnqC+Mo+omiloCMRXOswzTXwKciTkX\ndgKHEuxrCvgrO92KuR7TmGNX7qX5sf0fbe2ujWiz632e/BukQzEjRhPs/PGYMJ1q4IMYfQDwNsbh\nkgLuw9RlOaZfTWEcF27fTlFKTQFQSh1p82wiGAbM4IljqznaMf1YYkr1NI22hd4Ssm/B+xacl649\nlL4Lc8CbMDsalU+YRfbfDYmdatetJLexu9r+DyAYCwXTKd+POUEyBCeqi7O6Ffi4nXaNyFaMqynk\nBQAADPVJREFU2+8CzEnnq/hnMAIkbdM53JjsSGC1tbmTT5F/0uqIfXUkOS5+43QswYUUHustlGe4\nTFGNeiGSlLNYoxVuyJPiNyI9EWPmNxR7mkcU4XzDHrZCxB2XOC/fexFpe4pSOpZiy9x+RXlKqots\nK44JEbZwHGSYMvLr0XkH/DL406W2nXF109fiI8OiOMqDUWj4urmHylHMM1usPevuuRhH0uMU58mK\nspUyLBS+yS603N9m2Eng4/bZCb8acvtxMAIGgptbJ5acJ83FE71O0M8N8NJuBD4G/JBcr+lUa3dM\nJxjCawFOtPZJBE4JJ3ja7HQGM+qTwojVh4E3lVIdmFjoJ235p2E8WRuBbymlhiulKpVSX8e0F26E\nKRE99fScc58moVAgdY5dKXUdZvwxgxEFnQTDES69U7B13vr3Y0QPBHc7rUC71nqbtbuTYD1GLPnj\nt2Mw4qjN5u9fUF8BPoRxH1aQH6t0P/BhO/2UtXeS2zF0AofY6TS5rujusIbojqfUBrmQmx+CYZak\nxHklMgm2FaY1NF9JfixZd4m7u/aXJ2FXkXwcGQLRXgr+vm4n2vXeRXQsXhT+fsXVYwPR4jsqfXjf\nW2KWuXXdMY3aj31NVNvYk3Fzjp6OB4zDxX5G4V+LvnfvHYJOcqNnD9eNf2yjBGrUvhfzWPbWudCF\nqYskHtNisVrFhgOLHdvuxBCWQpp4TxOYfme9N99Ibv+8k9wylhEIF/8mfQRwGEFojKuD7Rgvbzu5\noS6OToJr/2mC4Wvfk+a3+69jgroPwAjOFKbNfdnmdSHwN5j45W9jnB5tmGG7nwBnYzxc2zHi/kRM\nTHNJx6FU0bTNbmBsyD6GXC+RSzcwlH4ARm0OwVRgVD6OkzHDX3NsHsMx4/9HYU761Xabzjvk3+F8\nBiO2HCnM3XdUbEoK4/7zXclNGMU9jODgOMoxHfYsu8yvQxd7krJldsM6ZeTeCaQwdeSWNQNfpXCA\npBOH6yOWVRAff5EkbsEvVyEGJEgTTh+3nVKGASHX3e3YRm7HnISoxrjYdZD0OokqYxJxkRR/vZEx\n9nJMw5AEf7/iylQbsyzJPsTdSbt1XX2VOpwZ7oySCI+eECd74hWKu7b35MY1HE9TiIoC24ob3vPb\n40klbCtMqUOzUcuT1L3f+cWlH4DZ3yRe9WJlDLc9vkiJWj8c21QoLq4nKKNwXN4S4EBvfjj5AvgW\nO92JEVXuXLnHS5fG1KfLy+Ux0uZZgRE34WHFOgKhdRHB8WvC1FGX3eZOTD8/C7iMYDQJjD443G5D\na63vxYx0XY3VBFrrL9j/V7TWMzAetXFa60/atEljVoESL1it9W6MqjvF2ZRSKTv/XES6k1x6m26Q\nLeDJmKe5ovLJYBrT04CP21cZvII5EONt3i9hPDVOELhAzl3AZszTci7GqhNzYGqA33i782f7fxzw\noJ2ut/81mDtsl78mOEj/jHlqbjLGk+QafheEOgdzhwamfjsITgb3nyLXG/BJzAEOX8h+4KO7GP2x\nfHfxHUD00CaYk203sDxmuc9uooPQ/YbAb6hf9ab9MWvfc+YPFbn63EFwdxsWFS8T/aTc2gjbCnKD\npJOwNcLmexn9aUc46LSD6GGI8Hou6D+Kd8kNZo8SV+F4mk5vOnxOOdaR75VL8nRTnLfz0Zg0SR4Y\naI7YdvgpGgj2q8FL4+PSu4cKwsvDsUdu237+YQ+Zn/4dcvGXhevS4XtnCnmKXV5+5+Xv/3aij09c\n8LA/vzsmTRT15O+LW+85ovH7h0I3X6V4Vwqt66+/g9y26L3Q8ij8dsrdlBa7riD+XC4mdKOu7UIi\nJZy+mFfOPU3WGVoW1YZtJ3+/wg8RhEdFpnvbceveQ1DvdxGc234c0XaMo8GteyPmengllL8bqrwQ\nE3Tt8yTGaeJunlswx8ENuQG8adO4tv8UTDjNFkwcFZj+2IngHUqpkzDDdC2Y9jV8baO1btJav2vj\nnz5Mri4oSiqTKc0LqpT6LLAY+ALmEf0vY55oO0xr3aCUugtzga6w6f4buAQT9DUT42KbiGncp2Oe\natMYRXoaZtgsZXd2GcbNdiTGLZfCdP4VBAe8iSDK/m6MC64Sc6JVEQy9NGAq+DMYMdeMOQnWYsY9\nyzAX5ijy41vcSVuOuRhH2f/R5F4IbeTe0W3CCBrIfR9UeIiyncLBzIWGNJMsb8LU6/7wMlN3YYcF\nZHgfe+I9IY5WAvEbVZfF6jeuTEnX62763s6nt3CPGBcj6ph3UbqXMiq/qPezRW3TzbeRG/Tr7KWe\nh1H5uzv17qyflEZy313XU/n66/ZEXKAj7l15rt2OK0MxCpWxJ66bPckjru0L59+B6S/8bb1N0Nck\nJercdf0pBOEGVd62OjH9+0F2upkg1MVdl66M7pxYZctWTXAOPoPxHFVirq0uu9zFKXdiQmxOwvS1\nIzFPw52M6VfHYc6DZlueKRiBN9jmV2/T/C/mdUU7MA8BNWCGmqdjnrB/SWv92eRV1g3RBKCU+iJm\n6GwsRhx9SWv9J7vsSeAtrfV8m+568oMznVfmTcz4YyWFG5405km7Eyn8pEgaI4JUgTSCIAiCsL/T\nQv7Tx32FJDcoEHhs4/r1JowIGmbzrCQ32L4ZM+LzTeCnmHjjKNKYJ+8XYoadN2OcOt/UWpf03rBu\niSZBEARBEIT+xv4wXCMIgiAIgrDPEdEkCIIgCIKQABFNgiAIgiAICRDRJAiCIAiCkAARTYIgCIIg\nCAkQ0SQIgiAIgpAAEU2CIAiCIAgJENEkCIIgCIKQABFNgiAIgiAICRDRJAhCj6OUek8p9Q8J09Yo\npb6hlDosZD9QKZVWSp3dO6UsHaXUBqXUvxdJU2PLfdHeKpcgCHuHJB/NFARB6E2GA98AVmO+R+nY\njPmo55p9UagYzsR82FsQhH6IiCZBEPY1kV+F11p3AC/u5bIURGu9cl+XQRCEfYeIJkHopyilZmO+\nDv4RoBN4GLhGa92glDoQ2ABciPH2/C3ma+N3A1/XWqe9fOYC3wYOAlYCV5VQhgOB9ZgvmN+nlMJO\nfxAjpjYA52it77fpNwC/BeqAr2K8VP8LfAE4HPgP4CjgNeASrfWroe19DbgMOBB4G7hda31bCeXd\nADyktf47z3YZcAPm6+nPAdclzU8QhP0LiWkShH6IFUxLMUNNn8UIiWOAB0JJvwl0AecCP8QIlUu9\nfI4C7gM0cBawGLgHqExYlE3A2RiBdB1GoM3GDM3FMRc4DbjcrnM+cLvd9h3AOcAgWw5/n/8duBn4\nb+CT9v87SqnLE5Y1D6XU6cCPgScwQ3dPAPdihJ8gCO8zxNMkCP2TbwMvaq3PcQal1KvAq0qpOcAb\n1vy81voaO/2EUupkjCi5w9quA/4MnKW1zth82oCfJimE1nq3UuoVO1untc4Ox1mvUxQZYK7WutOm\n+xhGyM3RWv/e2gYADyqljtBar1ZKHQxcCVyutXZle1IpNRgTT3VH3laScSPwtNbaCcnfK6UGATd1\nMz9BEPow4mkShH6G7dSPwwyHDXA/YC3wF4zHyfH70OqvAxO8+WMxw1W+Z+W+Xii2z9NOMFnWAGmM\n58y3pYCJdv5UjNi6P7TPTwAfUEpNpESUUmXATOA3oUX3EROnJQjC/o2IJkHof4wABgCLgN3erwMj\nMnwB0RhatwOo8ubHAVv9BFrrJkz8U28RVaZdISHVYf9dWUdh2rt3yd3nx+zykkUTUIvx1m8N2bd0\nIy9BEPYDZHhOEPofjRivyy3ke0kAtpHcU7IZEwCdRSk1lFxh1RfYjvFGHY8RS2F0N/JswATQjwnZ\nx3YjL0EQ9gNENAlCP0Nr3aqUWgZM1VpHvoDSPtWWhBeBTyulvuIN0Z1bYpHCXqHe4An7P1pr/XBP\nZKi1TiullmMC4L/vLToXCQQXhPclIpoEoX+yEBPY/SvgV5in6CYCfw38DBPcnYRvAy8BDyil/hM4\nBPOE3a4SyvIOxvt1vlLqLaAd8+qCHkNrvdaW7xdKqX8FXgAqAAWcpLU+q5tZ34LZ959h6nEm8Lme\nKLMgCH0PiWkShH6I1noZcAIwGCOSHsY88dWCeQcSxHtLsnat9QrM03RTgPuBi4HzMMInaVkywOcx\n72Z6HOO9Gh9ThkxMuYra7LuVbrTl+y3wC8zrFp5KWtbw9rXWD2HeEXUy8GuM6PxsCfkJgrAfkcpk\nxIssCIIgCIJQDPE0CYIgCIIgJEBimgRB6FXs+5DiSIfe8bTPKFLOjP/pGEEQ+ifiaRIEoddQSp1I\n7nuRwu+FSvTm8L2EK1NUWesKrCcIQj9BPE2CIPQmfwI+XGD5tr1VkAQUKmfiwHZBEN6/SCC4IAiC\nIAhCAmR4ThAEQRAEIQEimgRBEARBEBIgokkQBEEQBCEBIpoEQRAEQRASIKJJEARBEAQhASKaBEEQ\nBEEQEiCiSRAEQRAEIQH/DyRTqSyrYhurAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAELCAYAAAC79N20AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcFNW5//9+pqenZxEGpllEllHBJCaR6BWXqKCCimKQRE2+xrnqNdz4DSbekJvFGIkrxCUxiUvAa0KMyY/cbJqocUPBBTUxgomgSHTwmxEYEGhkBmZ6erp7zu+Pqm66q6uni2aml5nn/Xr1a+aceurUqaru+tR5zjnPEWMMiqIoiqLkpqLYFVAURVGUckFFU1EURVE8oqKpKIqiKB5R0VQURVEUj6hoKoqiKIpHVDQVRVEUxSMqmoqiKIriERVNRVEURfGIiqaiKIqieKSy2BUoJUaMGGEOPfTQYldDURSlbFizZs1OY8zIYtejUKhopnDooYeyevXqYldDURSlbBCRlmLXoZCoe1ZRFEVRPKKiqSiKoigeUdFUFEVRFI+oaCqKoiiKR1Q0S5xQKMTXv/51du3aVeyqKIqiDHpUNEucZcuW8cYbb7Bs2bJiV0VRFGXQo6JZwoRCIZYvX44xhqeeekpbm4qiKEVGRbOEWbZsGT09PQD09PRoa1NRFKXIqGiWMCtXriQWiwEQi8VYsWJFkWukKIoyuFHRLGGmT5+OiAAgIsyYMaPINVIURRncqGiWMLNmzcIYA4AxhnPPPbfINVIURRncqGiWMI8//nhaS/Oxxx4rco0URVEGNyqaJczKlSvTWprap6koilJcVDRLmJNOOiktffLJJxepJoqiKAqoaCqKoiiKZ1Q0S5iXX345Lf3SSy8VqSaKoigKqGiWNNOnT09L65QTRVGU4qKiWcI4+zBPOeWUItVEURRFARXNkubee+9NSy9evLhINVEURVFARbOkaWlp6TWtKIqiFJayFE0RqRaRv4nI6yLypojc6GITEJHfikiziLwiIocWvqYHRmVlZa9pRVEUpbCUpWgCEWC6MeYTwNHA2SJyosNmLvCBMWYS8CPgtgLX8YBJBGvPllYURVEKS1mKprHYayf99sc4zOYAD9j//wGYIYmYdGXC2LFj09Ljxo0rUk0URVEUKFPRBBARn4j8A9gOPG2MecVhMhbYBGCMiQFtQNClnCtEZLWIrN6xY0d/V3u/OPzww9PSEydOLFJNFEVRFChj0TTGxI0xRwPjgONF5ON5lnOfMWaKMWbKyJEj+7aSB8jq1avT0n/729+KVBNFURQFylg0ExhjdgPPAmc7Nm0BxgOISCVQD4QKW7sDo6GhIS0dDGY0lBVFUZQCUpaiKSIjRWSY/X8NcCawwWH2CHCZ/f+FwEqTWDKkTGhtbU1Lb9mypUg1URRFUQDKdQ7DGOABEfFhCf/vjDF/FpGbgNXGmEeApcCvRKQZ2AVcVLzq5odT48tM8xVFUQYcZSmaxpi1wDEu+del/N8FfLaQ9VIURVEGNmXpnlUURVGUYqCiWcIcc0x6Y/rYY48tUk0URVEUUNEsaTZv3pyW3rRpU5FqoiiKooCKZknjDLawffv2ItVEURRFARVNRVEURfGMiqaiKIqieERFs4QJBAK9phVFUZTCoqJZwkQikV7TiqIoSmFR0VQURVEUj6hoKoqiKIpHVDQVRVEUxSMqmoqiKIriERVNRVEURfGIiqaiKIqieERFs4Tx+Xy9phVFUZTCoqJZwowaNarXtKIoilJYVDRLmK1bt/aaVhRFUQqLiqaiKIqieERFU1EURVE8oqKpKIqiKB5R0VQURVEUj5SdaIrIeBF5VkTWi8ibIvJVF5vTRKRNRP5hf64rRl0PlNra2l7TiqIoSmGpLHYF8iAGfN0Y85qIDAHWiMjTxpj1DrtVxphPFaF+fUZnZ2evaUVRFKWwlF1L0xiz1Rjzmv3/HuAtYGxxa9U/OOdljh49ukg1URRFUaAMRTMVETkUOAZ4xWXzJ0XkdRF5QkQ+VtCK9RFtbW29phVFUZTCUraiKSIHAQ8C840x7Y7NrwGNxphPAHcDf+qlnCtEZLWIrN6xY0f/VTgPIpFIWrqrq6tPyw+FQnz9619n165dfVquoijKQKUsRVNE/FiCucwY85BzuzGm3Riz1/7/ccAvIiPcyjLG3GeMmWKMmTJy5Mh+rXepsWzZMt544w2WLVtW7KooiqKUBWUnmiIiwFLgLWPMD7PYHGzbISLHY51nqHC1LH1CoRDLly/HGMNTTz2lrU1FURQPlJ1oAicDlwDTU6aUzBKRL4nIl2ybC4E3ROR14C7gImOMKVaFS5Fly5bR09MDQE9Pj7Y2FUVRPFB2U06MMS8CksPmHuCewtSoPFm5ciWxWAyAWCzGihUruOqqq4pcK0VRlNKmHFuaSh8wffp0Kiutd6bKykpmzJhR5BopiqKUPiqag5SmpiYqKqzbX1FRQVNTU5FrpCiKUvqoaA5SgsEgZ511FiLCzJkzaWhoKHaVFEVRSh4VzUHMrFmzqKmp4dxzzy12VRRFUcoCFc1BzEMPPURnZycPPvhgsauilAEaDENRVDQHLaFQiBUrVgCwYsUKfRAqOdFgGIqiojloWbp0KYmpqz09PSxdurTINVJKmVAoxFNPPYUxhieffFJfspRBi4rmIOXZZ59NS69cubJINVHKgWXLlqXN69XWpjJYUdEcpMTj8V7TipLKihUrkp4JYwzPPPNMkWukKMVBRVNRlJw413Z1phVlsKCiqShKTrZv395rWlEGCyqaiqLkZMaMGdgLByEinHHGGUWukaIUBxXNQYpz7VB1tym90dTUlIxV7Pf7NeyiMmhR0Swxmpub+fSnP827777br8c5/PDDe00rSirBYJBTTz0VgFNPPVXDLg4yNLDFPlQ0S4xFixbR2dnJwoUL+/U4q1evTku/+uqr/Xo8RVHKFw1ssQ8VzRKiubmZLVu2ALB58+asdmvWrOHss8/m73//e97H0iknyv4QCoV4/vnnAXj++ee1xTGICIVCLF++HGMMTz311KC/9yqaJcSiRYs82d1444309PRw/fXXey7b6V7x+Xxp251pRUklNbhBNBrVFscgYtmyZfT09ABW9LBly5YNanetimYJkWhl9saaNWvo6uoCoKury3Nrc+nSpaxbty4ZLi8YDKZtHzFixH7WVhlMaHCDwcvKlSvTokGtWLFiULtrVTTLCL/fz4033piW56W1GQqFkg+5p59+ml27dmXMs3v//ff7rqLKgMM58Mf50qUMXKZPn54cOV1ZWcnJJ5+c5q4VkcoiV7GgqGiWERUVFclWZgJn2g1nMHYNzq7sL1u3bk1Lt7a2FqkmSn/jdL02NTVRUWFJReJvqrs2EAgcUpyaFgcVzTIiEonktV9iCbAE2VxrfTHASBmYJB6S2dLKwMHpeg0Gg5x11lmICDNnzuSll15Kc9f6/f5BNf9IRXMQkOiLypZOsGjRInp6erj55psLUS1FUUqM1CXgUkfKzpo1i5qaGs4999wMd200Gh1Uo4HKUjRFZLyIPCsi60XkTRH5qouNiMhdItIsImtF5N+KUddyYu/evcm/2tpUlMFHtlHSDz30EJ2dnTz44IM0NTWluWcjkcig8tWXpWgCMeDrxpiPAicCXxaRjzpszgGOsD9XAEsKW8XSIREzNFvaDW1tKqkk+rKypZWBgdso6VAolFxvd8WKFezevbuYVSw6RRv1JCJ3A+5+QsAY81+9bNsKbLX/3yMibwFjgfUpZnOAXxrrG/BXERkmImPsfQcVI0eOTBstO2rUqJyjZROtTkUB7dMcLDQ0NKRNfQsGgyxdujStZblo0aK04P2DbSBQMYcKJ+K4nQx8FPitnf4s6eLXKyJyKHAM8Ipj01hgU0p6s5036EQzFAqlpXfu3Jlzn0SfhaIogwe3UdLOvNRoZfF4XAcCFQpjzAPGmAeAycBpxpi7jTF3AzOAo72UISIHAQ8C840x7fnUQ0SuEJHVIrJ6x44d+RRRkhxoxA51vynK4MPNDe/WvaMDgYrLcGBoSvogO69XRMSPJZjLjDEPuZhsAcanpMfZeWkYY+4zxkwxxkxxLpdVzqRGADrppJPStp188sk599fJ64oy+DjttNPS0qeffnpG3tSpU9PmbepAoMJzK/B3EfmFiDwAvAZ8r7cdxHr1WQq8ZYz5YRazR4BL7VG0JwJtg6U/09lx73xTDAQCOctwumQURRn4zJ07N62/cu7cucydOzdNJK+88kqmTZsGWMvEGWNiRatwESiqaNri9wxwAvBH4CHgk7bbtjdOBi4BpovIP+zPLBH5koh8ybZ5HHgXaAZ+ClzZLydRAjhdsc6O+5deeinN3plWlFzo6NnBQTAY5JBDrHE9Y8eOpaGhgWAwmPROnXLKKYN+LdWifvPtka2PG2O2GWMetj/bPOz3ojFGjDGTjTFH25/HjTH3GmPuTZRtjPmyMWaiMeYoY8zqXOWWK4sXL2bdunUsWWLNqnn22WfTtjuX/ZoxY0bB6qYMDJzeCS/eCqX8CIVCyZH227dvT76IJ+53IBAgFArxwgsvANYycRp7tvC8JiLHFbsS5cyqVasA7+scnnLKKf1dJWWAEQ6He00rA4PUZcDi8XhyGbBUkfz5z3+usWeLzAnAX0Rkox25Z52IrC12pcqVJUuW4BzQ5Fwrc/HixTnLGWjrazY3N/PpT3+ad999t9hVKUvyCZChlB8rV65Meqbi8XhyGbDUvGeffVZjzxaZmcBEYDowG/iU/VfJgxdeeAHn1Bmne7alpSVnOaNGjerTehWb2267jc7OTm655ZZiV6UscPaT+/3+tO1VVVXFqJbSz7iNtHcKqTN2dSwWG1QhgooumsaYFmNMCxDGihCU+Ch5YIzJGpA9wUEHHZSzHOd6m+VMc3Nz8kWhpaVFW5secK500d3dnbY93xV3lPLDKaQu09EGlduh6KIpIueJyDvA/wOeB/4FPFHUSpU51dXVvW5PuFZ6YyCFSbvtttvS0tra7J1QKJS2yHC+ATKU8uPll19OS7uNtHd6siorK3POqx9IFF00gZuxgq6/bYw5DCsi0F+LW6XyprOzs9ftZ555ZoFqUho43dFe3NODmdTBID09PcnWplL+5IoU5lz2a8aMGRlCmsuTNdApBdGMGmNCQIWIVBhjngWmFLtSAxkvo2cH0g+jsbGx17SSzsqVK9MGejgXMVfKF6fb3UlTU1NaIIOmpiamT5+eZjN27Ni0dCwWG1SuiFIQzd12DNkXgGUicifQUeQ6FYWhQ4fmNvKAcxCPcyL6nXfe2SfHKReuvvrqtPQ111xTpJqUB9OnT097cOq83oGBF7d7MBjkrLPOQkSYOXMmDQ0NHHXUUWk255xzTlo6Eon0vmTSAKMURHMO0Al8DXgS2MggHT3rHGyRL85VTZz9k62tuUNFlvOUAqcLavjw9C6XYcOGFaNaZYNzkeGmpqYi10jpC7y63WfNmkVNTQ3nnnsuAHfffXfa9l/84hdp6aqqqoETtNsDpSCa/w2MNcbE7JVP7gIuKHalikFXV1exq5CknN2zqcHqgYyHg/bR9c4HH3yQlh7siw73JQe6+tCB4NXt/tBDD9HZ2cmDDz4IZK6t6xxIqPM0C89VwJMicnpK3peyGSu5KfYcumIGEnAGq9+1a1fGw+GZZ54peL3KCR1tnB9eBDFXn2J/4jbIx0koFEr+Xp555hl27dqVM9CJLg1WeLYA5wC3isg37bzy9Q2WAMUOcbZo0SI6OztZuHBhwY/tDFa/dOnSjD7egRa4oa/R0cb5kUsQQ6EQTzzxBMYYHn/88YK3Nt0G+ThZunRp0stkjGHp0qUZwVGcdHd3D5yFiD1QCqKJMeY94FTgoyLye6CmyFVS8qS5uZktW6xlSzdv3lzw1qYzWP3KlSszAjUMpMAN/UFdXV2vaSUTL4NsnOHoemtt9ocb122Qj5OElyaBl5HTgUBgdJ9VsgwoBdFcDWCM6TLGXA48B2iMrjJl0aJFaelCtDZTHzBuMVKdbqgzzjij3+tUzmhw9v3HyyCbp59+Oi29fPnyXsvrDzduU1MTH//4x7MO7nIOGvQS5KSyslL7NAuJMeaLjvRPjDGHF6s+yoGRaGUm2Lx5c78fM/UB47by/KxZs9LyEqMCFXfyeXAOdrwMsnG6ObO5PfszIlMwGOSOO+7YrzUxPaydOqi604oumiJyhIj8QUTWi8i79mdjseullAfOB4yzFXnBBRfw0EMPpeUlRgW6lVWskY1KeTN9+vSkl8PNuwGZo06zhbPcHzduX5Dre3/ccbpyYypFF03gfmAJEANOB34J6JyAMuWEE05IS5944on9erxly5alveH/+Mc/Ttv+61//mueeey4tz9nvmcA5VUVRvDJr1qy0ATRu3oyamvShGrW1ta5luS3P1Z/kcgV7GAhWvvPT8qAURLPGGLMCEHvFkxsA9Z+VKUOGDOk13desXLkyrS9p27ZtadtfeOEFT+5Gt6kqiuKVxx9/PC392GOPZdg4fwvZVhs69thj09JTpvRfVNFQKMRTTz2V9NQ4X3qnTZuW8ZtyYoyJ9lsFS5BSEM2IiFQA74jIV0TkM0DutauUksTLKgl9ifMB48aYMWPS0occkrnQvNtUFSU36tK2yDbqNPX6eB3F/c477/Sa7ktSPTXRaDQjlOeVV16ZMzqYiAyqgZulIJpfBWqB/wKOBS4BLitqjZSs5HpIui1i2580NzfntHHW1RlmENynqgxWnG7DbG5EgMWLF7Nu3ToWL17c39UqabJ971Ndn4FAIM3GmU7gbNlt3bq1D2uazooVK9Lcyi+88ELa9t27d3ta4GEwUXTRNMa8aozZa4zZbIy53BhzvjFGlwYrUYoZ0cQNLw8Up3vr+OOPz7Bxm6rSn5RyC21/RnmuWrUKsNzgpXguxcQ5SM25cHcxFvJ2fu+co2id9/qWW27hyiuvTMsr57jUfUHRRVNEPiQiPxWR5SKyMvEpdr0KQTHDzeVDav/Hk08+6fqQdLpjX3zxxUJVLytO99bbb7+dYeM2VaU/ha3UXj5Sqa+vT0tnC3DvbF0O5tamW7eEc+5mKeD83jmniDlH9La0tLB27dq0vA9/+MPOfQbV21LRRRP4PfAasAD4ZsonKyLycxHZLiJvZNl+moi0icg/7M91fV7rPuCmm26is7OTG2+8sdhV8YRzpKrbAz/bA7eYLSsv7q7zzz8/LX3BBRf0m7D15zy8vsDZ1/b+++4rPyVamQmcrr3BhFtcV+fcTa8cfPDBaWlnn3y+5PO9GzduHN///vfT8pwvnZFIpPeRQgOMUhDNmDFmiTHmb8aYNYlPjn1+AZydw2aVMeZo+3OT18oU6uHe3NycfJhv3bq1LFqbzv6PRODz1GuWTaCcAlRq7skHHnggLX3ffff1m7B5XaKpvyi1az8QyLZ4c6qQeqW/Fk3PZ/7n4YcfniH4zlZzdXV15si6AUzRRFNEGkSkAXhURK4UkTGJPDs/K8aYF4B++cUXym12003pOl4Orc1sgc+9BKp2ClCpuSdfeeWVtPRrr73WbxPMvS7R1F+U2rUfCASDQaZNmwbAqaeeSkNDA01NTWnfIa+sXr06Lf3qq6/2SR3zmf+5evXqnKuc+Hy+QbVAbTFbmmuw4s5ehuWOfdnOS+QfKJ8UkddF5AkR+Vg2IxG5QkRWi8jq7du3F8xtVsgRcn2F25B5Zz+n24AaZ8tq6dKlJe2eTNBfE8y9LNHUX5S6a7icSQzsSV1MPtUz4xWvA7H2l6OOOiotPXny5Jz7TJkyJaPLZbBTNNE0xhxmjDnc/uv8JGPPisiZeRT/GtBojPkEcDfwp17qcZ8xZooxZgpQ0PBV5UCqK885feSUU05h2bJlRKPW3OZoNJoxGu/f/u3fMlpWzoAExbjO++ui7MupM16WaOovCh2ibbAQCoWSg+BWrVrFrl27MqJTFZvXX3+917Qb77zzjr5YOSiFPs1c3JbbJB1jTLsxZq/9/+OAX0RG5Nqvvb29oOGryoHUeXjOIfLd3d0Z18g5B7K1tTWjZSUiRXVPAtx+++2sW7eO22+/veDH9rJEU39R6BBtgwW34BhOl3+x6erqSkt7Wb1m69atvc7TtembpnCZUA6iud+TgkTkYLH9hCJyPNZ5Zs5od+AMa3UgrYuBMNjCOQ/POaz+xRdfzBoKLMHWrVtpampKum0rKio4/fTTk/0kPp+voO7JBH//+98Bq+/Syz3q68hGs2bNoqampuArrhQ6+MRgwWt841Sqq6uB0n9WeJhPOqgmbpaDaGZ0BojI/wJ/AT4sIptFZK6IfElEvmSbXAi8ISKvA3cBF5n96VToAwbCYAvnvDu3vpYdO3Iv2h4MBpODhkaNGsUXvvCFtL6eQron3cjW2uxPYX/88ccJh8OuMUqV8sP5ePHyuEn0fRbqWeFc4svDkl9e0YDtpY4x5vPGmDHGGL8xZpwxZqkx5l5jzL329nuMMR8zxnzCGHOiMeblXGUC7N27Ny2db+vCGQS5VN8gc+Gch5cvoVCI1tZWwJpMvXv37rwGSPQXr732mmt+qrutL4W9mINxCh0beLCQTwveGFPQ70K+66RWVeUMLdv78NoBRjmI5r8KdaC+cs86gyCXc2uzL1i6dGmaSC5atCgtXarXx03Y+yKKUzHnaR5+ePr67pMmTSrYsZV0Et/9/hyY1ReuXy99n4OJooumiJzv8pkhIqMAjDHn5yqj1MgWBGCw4uzv2bx5c1q6HK5PYtWT2267jc7OTm655Za8yyrmPM033kgPouUMkdYflHqfXV+Qbwu+vwdmFcj1W3x3UQEpumgCc4GfAU3256fA1cBLInJJISvidM/m657MFgRgsJLLBRsMBgtUk/xZsWIFzc3NyQV5W1paPLc2naJRzHmaxWAg9O+7kXpf851b6ebWdYbNyzeMnrObqL+IxWK7+63wEqQURLMSONIYc4Ex5gLgo1hvLidgiWfBcE7MzxUJIxte180bLJx++um9bk/0d5YyPT093HZb+uynW265xVMryikaztHExR4I1Zc4r0df9tmVWou1v14GnC7zI444Iq9ynN1E/YU4H5wDnFIQzfHGmNSI0NvtvF1AQVcEd74ddnR05FXOjBkzkg9FEeGMM8444LqVM7laUtkGJJTaQzLRykxNL126lHXr1mVdtNpNNJyjiQs5T7O/cV6PvuyzK6UWq/O+1tTUpG13prPhtipQX4XRc3YT9RcaRq/wPCcifxaRy0TkMuARO68OKMlmf66HeVNTU5r7bSC1JPLh3nvv7XV7tqHvboJUTCF1Bs4eO3ZscrHqFStWuNbJbdCPczRxtnNxa7WV0kuEG4k+uWeeeYZdu3b1WZ9dqYX/c74MOAfLOAMJZMOtK8f5EpVv98VAehkrJUpBNL8M3A8cbX8eAL5sjOkwxvTu1ysSud54g8EgM2fOREQ4++yz+/TLW44/BGcLzYnbkPZQKJTxAIbitjauvjq9t2D8+PEZUWAgfYSt26Af52jipUuXugqi81z789z7am1X53n1VTCFYq8M48T5MuDEa8vO2TXR2tqaEYc63+6LAsaz1oFAhcQOOvAisBJYAbxQ6EAE+4PXOZhNTU18/OMf7/NW5u7dJdn4PiDc3sqzCUux5r9WVVUxadKkZGuzsbExw42WiAKzaNEiOjs7WbhwoeugH2e0mJUrV7ounZbastq4cWPOBcAPhL4YFexk5cqVrqEX8y2r2KEXU3G+DOSLs68xGo26LnqQDwVc+Fr7NAuJiHwO+BtWFJ/PAa+IyIXFqIvTTejWL+F1DmYwGOSOO+5IaxmuWbOGs88+OxnCLR9KZQX4/iC1tZNNWIo1/zXxcLv66qupra3lmmuucY0C09zczJYtWwBras3UqVMzgrM79+vp6cl4GXC2rG699dacC4Dni3NUcF8Rj8ddQy/m42aePn16WnrGjBl91jouNZwu29GjR+dVTr4DGZXeKbpoAtcCxxljLjPGXAocD3y3GBVxPszcYi56nYPp9mC44YYb6Onp4frrr+/DWg8cUltobkP4izn/NXHc4cOHM3HiRIYNG5YxKnj69OksWrQoLe/uu+/mhBNOAODEE0+koaEhGXM0QUVFRcbLgLNl1dLSkvf3LhfOUcF9idt9zMfN7LbCzs0330xnZ2faWrSF6vd1vgz0Jc7R9u+//76rXa5zzTVqXcmPUhDNCmNM6rckRGnUy7VfYtiwYb2mEzgfDGvWrEmKsNdBAoOFIUOGZLTQ3CiF+a+p93Xu3Llprci5c+cmzyHB5s2bky2hxN/Ozs40m3g8niGITvdfXV1dWjrbuecjSH3ZuvSC24CeXAJw1113paW///3vJ/vstm7dmry2qavy9CfTp09Pu/d9iddwd7nu9dy5c/ukPoNsRklOSkGcnhSRp0TkP0TkP4DHgMeLUREvQZednetune1uI/1uuOGGPq3rQKKjoyOjheZk6NChGQt3O9P9jfO+ikjSbThjxgwaGhpcHzCpLwNeXIluguh80XKb+5vvCNOxY8d6sssHN0FxG9Dj1qebKqLO39nOnTvT0jfeeGPGqjy7du1yFeO+aI02NTWlnUdf4iWweiFHE5fwEJOiUHTRNMZ8E7gPmGx/7jPGFDSoQV+T2veW6H/ysLzOoKWnpyejheakvb0dv9+fludM9zduIzjnzp3LUUcdlXyrP+WUU9L2ca5FeMstt2T1TiTYvn27q/sv19zffEeY9meL3e0lwjmgx00A9rfFvHXr1ozW5eLFi13LyTW31gsffPBB3vvmwkt0IS/zXw/k/JTsFF00AYwxDxpj/tv+/LHY9TlQVq5cmfbwKvZIv3LAiwvIGebQme5PTjzxRNcRnM4BX1deeWXafk5XbEtLi+sIaKcgHnvssWnbjzvuuOQoXL/f7zoqO98Rpv/4xz882eWD2wPfOZrYKfZLly7NGCns5fvhDHv5wgsv8OSTT6aVEwqFkv3BTz/9tOcWmrN1mssz0t94mf+amEOs9C1FE00R2SMi7S6fPSLSXqx65Uvqj0pXkth/vMw/dbbaPKwo75lAIJCWdrrE5s+fnzbGEoOuAAAgAElEQVSKsaKiwjXSUTAYZOrUqQBMmzYtY+WcbIt2O4NhON24mzdvTs79nTlzpuv1yjembaHdb87RxE6xd6aXLVvGwQcfnNexnAOsnK0vr60xZ4s1l2ekv3F7qXKibtX+oWiiaYwZYowZ6vIZYowZWow6Od9mKyoqPPd/pA5AKMZKEn2Nz+dj5syZaXnOoe8zZszgmmuuScs78sgjM2y8EAqFcto4o6701ZJFs2bN4kc/+lFa3uLFi5MClxj1+pGPfCTNJhaLcfHFF3PxxRezZMmSZP6VV17JUUcdxZVXXpl8aKfukxC2BHV1dRnBMNwGFOWa+9vU1JQhSEuWLHGt4/7idCkPHz4877LOOuusNPF3ij2QMTCqL9yhy5cvz2h9eWmNu7mPiz045s0330xLO5850PcDlBQLvaopuM2f8zIazzkAoRwYMmRIWrq+vj4t/cQTT/D1r389Le9Xv/pVWvrqq6/OGNZ+5513Ztg4RSJfvAzUclJTU5Mh7AsWLEhLz58/P80bEAgEOPzwwxk/fjx1dXXMnz8fgK997WvJFt65555LdXU14XA4TbyXLFnCVVddxdatW/ntb3+bsULFmWeeyfHHH5+Wd/TRR/Pyyy/j8/mSIuu8P0OGDEkr141gMJghSEBaHS+66KK0fZqamjy12J2Cu2TJkoyyvOIUf6fYO6/ZqFGj8p6rmEosFstrIWa3vmIvK4/MmTMnLe28zuPHj89ZRjacL/FuL52TJ0/OWY7zJVfJjYpmDpyj8dzo7+Htfc3RRx/Ngw8+mJb3+9//Pvl/6qTohJjOmjUL2PcwT21Bjhs3DtgnRk6bb37zm31a/1ScgvjVr341LX3//fdnCPu0adMyzgssN3pFRUVS+P1+PxMnTkxzhY4ePZq6ujqampqYN28eEydOZOLEicybNy9pkypSztZpU1MTN9xwQ1Ik6urqGDVqFJFIhEAgkJzDOWXKlLT9jjvuuAyBdsMpSM46fuELX0izv+yyy5LzSBM4XX8zZswgGAwmW1fDhw+noaEhoyw3QXbD2Q8cDAaZNm0aAKeeemrGyNj333+/T0ZKe12uC9K7W9z6ij/xiU+k2X/+859PS3/xi1/ky1/+clqe0xX8/e9/f3+qv984W6NuOF9ynXFuR4wY0ad1GgioaO4H2cQx33U3+wMvrbrbb789LZ0QkMmTJzN58mSeeOKJ5LbGxkYmT56cbG0ddthhTJ48OS0Oa0NDA5MnT04++Jw2qaJVWVnJhz/84bTje33bTfQVJjj11FMzBPHcc89N/l9TU5N8MDuF3XleYLUEPv7xj2f0SafiJqSpOEUqtXU6e/bs5P8TJkwA4LrrrnMV32uuuSbZz9rY2Mi3v/3tDBun69XZys1G4sGYELVrrrkmORJ5zJgxGaH0EvfxIx/5CHV1dWmtztSy3ATZ2bqqq6vL6S52un4bGhr2S/D6gtQ+TLe+7K997WsMHWr1Ik2bNo3LL788bf/PfvazwL5zOf/88wkGg8nrPH78eNcXjy9+8Yuu9ckn+lGukIWJl6DE9+xjH/sYN998c5rNwoULPa/YMlhQ0dwPiu16bWpq4qqrrkrLO//889PSixYtyuiLnDVrVrIFc/TRRyfzEyKZ2srsLxKi9e1vfztjzur111+fIYgTJ05MS8+fPz9jZGpCPJyCeOSRR1JXV8f999+ftHUKeyFJbZ0mGDp0KJMnT+aYY47Jut/48eOpqKjIaE2n4mx9emmNjh07lsmTJ3PZZZcl8xobG6moqEhGq3LzKLi9MDjLcgryD37wg7Rjn3DCCRl1DIVCyd/W888/7xqw3Nk33J84+zAPPfTQtO2Jcxs7dix1dXXJ72Vi6k6q8I0fP57JkyfzpS99CbC8GXV1dclWprN1nhBbJ15iA+9v3/Wtt94KwIc//GEmT57Mj370IyZNmpT0NI0YMYLDDz+cO+64I20/FxEt3M0pAVQ0C4Azmks23MQulcsuu4zZs2en5SV+jGC14o455piMvsj58+fzoQ99iMmTJ2e0MgtFqmgFg8GkiB955JE0NDRkCKJzSP+sWbMIBoPJt/tTTz01+fB2CmKu1mChybc+uVq+zhZqNndxPsdy8yh4wSmikyZNSrauDjnkENcWs7PPsNg463PQQQel9WUn/nfe14MPPpjJkydnFT63fSBTbJ392bW1tWmxgbO1Np0vI87Ys6lpEcn6wnbYYYdRUVHBwoULAeseJjxYo0ePzhDRjo6Ot7Oc7oCkLEVTRH4uIttFJHPImLVdROQuEWkWkbUi8m+FrmMq1113XYYL8mMf+1haevny5a5i53xzB5KDEBKuxcSbcKrQuPXZlRKHHXYYdXV1yZZNqiBOmzaNhoaGjPOEfW/3+ysKSvFItGKvu+461+3OPkMnCU9CX+A2cjlXfVasWOHqLegrnGKbKxbwLbfcklHvcePGZbyMfOtb30qzueaaa5LPikQr0w23l7VDDz2UiooKbrzxRiZNmpR07R500EH09PT0zTD2MqEsRRP4BXB2L9vPAY6wP1cA+Y+194BzIMWJJ56YNtDjmGOOyehwd05xSOAUOzdX2siRI5k8eXLSxs3V59ZnV0pkc/Wluruc55ltP6W0ydVidvYZHnLIIWnbnaOdDwRnn93RRx+d4dZ0m+9ayO9dqigNHTrUNUCGcxCR2zVK7e/3+XxMmzbNU7eAG857OHHiRCoqKjLc74OBshRNY8wLQG8TJ+cAvzQWfwWGiUjuMeJ54hSm+fPnpw30SJDa4Q77+hSXL1+etCl1setPVBAHJ84Rxj/84Q+TC5OPGzeOww8/3NNglFyD4ObPn8+xxx6bMXLZ6daMx+PJlmZPT0+/tC5zkRCl22+/PbmGa4LGxkYmTZqUcY3cSLTSe+sXzwcvg+YGKmUpmh4YC2xKSW+28w4Ytzl/wWAwYyK82xtdaoe7oigWzvmvDQ0NTJgwgYqKimQLyunadY7KHT58eEYr0unmTHgsco1crq6uTgpwY2NjUV7iUkXJ2a+ceAY5r5EbxRwAN1AZqKLpGRG5QkRWi8hqL/Zuc/6AjInwiqJ4x9ln6GzJHHvssUmXZW1tbcacxyVLlqTNL00MinPrF8/lopw3bx5HHHEEdXV1vY5WLRSTJk1Km36UuCaDubVXTAaqaG4BUsNtjLPzMjDG3GeMmWKMmeJ8e3W+YSamdzinOIC6FhXlQPDy+0m4Ka+//nrXYAuQOSjOrV+8r+pTSLxMP1IKw0AVzUeAS+1RtCcCbcaYzIUvHThH6f3mN79JSyemd6jLQ1EKj7OF6BZsId+BLqWOtipLh74JClpgROR/gdOAESKyGbge8AMYY+7FWsR6FtAMdAKXu5eUSXV1NV1dXckgAMOHD+eDDz7ICCKgKEpxKbXWoDI4KEvRNMZ8Psd2A3y5N5tsfOhDHwL2hZobP34848ePTwsioCiKogxOBqp7VlEURVH6HBVNRVEURfGIiqaiKIqieERFU1EURVE8oqKpKIqiKB5R0VQURVEUj6hoKoqiKIpHVDQVRVEUxSMqmoqiKIriERVNRVEURfGIiqaiKIqieERFU1EURVE8oqKpKIqiKB5R0VQURVEUj6hoKoqiKIpHVDQVRVEUxSMqmoqiKIriERVNRVEURfGIiqaiKIqieERFU1EURVE8UlnsCij9y5IlS9i4cSMbN24E4Bvf+AYdHR3U1dUl8y6++GIAwuFwVptE3rZt2w7YZuLEif1ybvPmzXOtT2peX9ksWbKEefPm7Vf9CnU9ejuW8/5MnDixT87Dy/UYTGS7Zvt77QtZR72H3lDRLFG8PKi8PNw3btxIrLsDv32n//nWWiqr6oim5IVC1v+J9Ia31uK3bSodeeFwB9UBeOuttVRV1dGdYpPIC4c7CKTYRLo7qPRbNuvfWktra2ufCHRrayu72ncilRDvgm3bttEZ7QD7WOs2rKXWX0dHtAP8AmHDtm3b6IiGrTSwdsMb1Plr7LwKCMdsmy7w+2ybN6nzV+/LC0dZtWpVzvuzceNGOqIREhdo7Yb11PkDdES7odIu+403kvZ9cT06wmGormbthg3U+f10RKMkLn4yLxyG6hrWbthAa2trzod7a2srO9v3QGWVXc4/qfNX0hGNW2V3dbpej2KLQn/hRRBbW1vp2N1JoDIAwDvrm6kICF2dEYZUDeGd9c2u176/rplbnVtbW+ncvYdApZ89kbCn73RfvuSVK2UpmiJyNnAn4AN+Zoy51bH9P4DvA1vsrHuMMT8rRN36SuxaW1vZu3snAfsOvb1+Lb5AHfHuDqp80NFtiUS8uyPxbOftt9biq6oj1t1Blb3f3i4YNwIuOt3K+M2zMXZ1wshh8NnpVt7ih2KMGAafmWEV9McVcdo6ITgcPjXD8uD/eUUP7R0wcgScc4bwxDOGvR0wfDiccYZ1rGeegY4OCI6A084Snltu6OyA+gaYOtMSqVVPGcJ7w3SGO6iqtkQ0UFVHJNpBhV3n9RvWEvDX0RnuwF8Nb25YS7W/jq4Um0ReIAjj51Sw6eEeaAffCBj2aavOu//UA23ACB++zwwh/sc9droK32fGAhD/4xY7r4bKTx9B7E/v2Ok6Kud8DIDYw29CWxxGHETlnGOIPfx3wm1h1m5Yv0/8koIYSeYRjiAHB6mcM9UuZxW0dyHBeirPOw2A6P1/skU0IaxvUeevcs9LCmLCJppiYwmijB6Nf/Zsoo8+Cu3tSHAEVbM/DUD3o3+C9jZk9BgCsy8g8uiDhNt3s3bDP1OE1RbEcJctrFa6IjiamvMutU7rkV9Ce4iK4MHUnnc5nY/cT7h9B2s3vI0khfXtDFFw+96Xg7A6W/Ctra3sbeukyhbEt99qxlcldIUjHFQ1JJkeVz+B+SdfC8CPX1pEa9cmJg6bxLdO+A63v/I9toQ30bz+HQIV1QA0r38n45r1lUcjKZC+KvtY/0QClUyoH8WCky5i4cu/YVN4F83rNxCwvwvN6zcgAT8mEk3mrV+X+ZI32Cg70RQRH/AT4ExgM/CqiDxijFnvMP2tMeYrfXlsz1/Otg8I+KwHZ/NbbyJV1fREwlRXVtAesVoyPZHOpCC+s34dFYFaeiIdBCphT8TKH1svfHmq9cP8yaoI27pgTL1wxbQq7nuhm+1hOLheuPw06wt9/3NRdoRh9DDhktOswn/wp2hfXoI+Y/hIOPEc4a9PGCJ74aAGmHKOJayrnzBE98CQUTD5XGHtY4b4HqgJwoc+ZQni23/uwbQX8wxAgkOonHMcALGHX4X2biQ4lMo5JwEQ/fmTHssZhv+8GdY+j6yA9k4kOBz/eWfZecuhvQMZPRL/7LOJPvoktO9Fgg34Z59r2Tz6GLTvyes8KoIjCcz+HACRR38H7R9QMfoQqmdfTNejv4b2XZ7K8QXHUHfeFQB0PHIf4fbttpAGMF17bU9AD9his25DpkjkK6zO36bXLgcvraaNGzfSFY5QG9gniGOGTeD/Tl8AwP+sXMj2zk0c2jCJL596LT95fhHbwps8XbMJB03gminfBuCW1beyKbzZElJfgD3de9IEKtu5WoK4N0UQ30YCPkwkRsBXxZ7uTutYQ0dz7UmXALDo5V+xKRLKrE/9SBac/FkAFr70ezZ17WZC/QgWnPIZAL742E9tEa20j7XB03kOJMpONIHjgWZjzLsAIvIbYA7gFM39ZvPmzTldLp1tuwn47C/MW+uRqgCmO0LA52NPdzcAE+rr+M7UjwPwvVVvsCkcZ0J9Ndeccii3vPgvNnfB+Hof3zqpHoDbX25jSxeMq69g/skBfvxShNauAz0bRSk+vuBYDjrvSvY+shjat+ELjmPInPkA7Hn4x4TbW1m34R0qKgPEu/awbds2uqI9VPit1tebLsLqJoitra20tXdSaQtyKLQLv786md6woRm/X4hGDf6UPC9dBa2trYwfcQSXn7mA+59eyI6O9/r1mk0YMo7vHPfffO/VH9La2so3vvENF7fqXlsQO6x9ho7h2hP/E4BFf/0ZmyLbmTD0YK795OUs+sv9bIrs7Lv61QdZMPVTACxc9ec+K7dcKMfRs2OB1Ne4zXaekwtEZK2I/EFExnspuCscpipuqIobmt96i23bthEJh6mK99D81luEw2Ea6+u5Z9bZ3DPrbBrrLdGbUD+Eu845lUkNww745BRlsFEVHM/4S39AYLTV6qsdMYGjL/0hR1/6Q2pHTCAcDrN+QzMxqohRxc7QLtraO4mbKuKmirc2NBMOhxkebOSCS+/hgkvvodJfTTDYyL9f8hP+/ZKfEAw2AjCyoZG5F/+EuRf/hJENjYTDYbrCEcRU8c8NzWzbto1/vtVMhamiwlTxz7eak6JaDMLhMM3r36EqVklVrJLm9e8QDoeZMPQQ7pr+XSYNbyxa3QYr5SiaXngUONQYMxl4Gnggm6GIXCEiq0VkdU8szj3nXMg951xIY30DAEc0BLln1hwa61UQFaVYDBkxgWmX3sm0S++k0h+gPjiBcy69i3MuvYv64IQDKnvMqCP40v+xRBRgdEMj/3XhPfzXhfcwuqH4ojRhyFjuPP0m7jz9JiYMcWsfKIWkHEVzC5DachzHvgE/ABhjQsYYu2eQnwHHZivMGHOfMWaKMWZKTXWgzyurKIqiDBzKUTRfBY4QkcNEpAq4CHgk1UBExqQkzwPeKmD9FEVRlAFK2Q0EMsbEROQrwFNYU05+box5U0RuAlYbYx4B/ktEzgNiwC7gP4pWYUVRFGXAUHaiCWCMeRx43JF3Xcr/1wDXFLpeiqIoysCmHN2ziqIoilIUVDQVRVEUxSMqmoqiKIrikbLs01T6llgcdu62Ys6C9X801km024o5CxD6wMrr7oYnnjHs+gBidvqZZ6xyPkjJe265YbedjnRbMWcB2nYBJkLgoAOvdyQSoScEmx7uIRICE+3ERO2Ys0BsJ8SjnRA1VtzZnXE6o50QtWPOAuyM0BkFomLFnd0ZpjNqIFphxZwF2NlhhX+LVhB7+O+wcy+RHgGqMupjQhFiD79sZXTHMO/vsmLOAibURmc0jolGiD3ynGUTjWHa9h74xVCKSiQSYUukhZ88v4gtu1uIxLvYHGnhxy8tAmBzWwtd8S42RVq4/ZXvsWlPC1GiycUFSoFIJEJLZAcLX/o9AC1tO4jSA9VFrliJoaJZBCKRCJsiMW5/uQ2ATW0xuuJxNkcMP34pwua2HrrinWyJGH6yyppuuqXNEIl3sjViuO+Fbrbu3pe+/zkrvuzW3YbueCexbsOvnotZx4rClpAVqB1g+27otgXx9yutvJ4ea5hxoYjH47Tvgr8+YWjfBfFYJxXdVsxZgD0h6LHz1j5m6LDTErVizgJ0hsDE40iRfCXxeBwT2mPFnAVMaA/xeBwqfPtXkAG6IlbMWcCEdtMZjWGi3VbMWcCEPtiX9+iTmNCulPRjtk3IzosSffRROx3FRKNWoHbAhHYm8yKPPogJ7UhJ/w6AntB2Oy9G16O/ttPdmGjMCtQO9ITet/O20vnI/fSEtibTHY/cZ12f0FY6oxFMdAt7H1lMPLTFTm9mz8M/BiAW2gw9UfbzihWcSCTC1u4W7n96IVs/aKE7FmZrdwv/s3IhAFt3txCPx6n07Z8CxuNxWva8xy2rrfUmWva8R1dPFy2RzXzv1R/SsmczXXE7/crdts1muuIRWiKtLHplCS3trXZ6K4v+aq1J0dK+1c7bxqK/3E9L+za64t20RGIsevlXts37ybyFL/+GlrbtxONx/L6KzDq27WThi3+0rkUsyvsdbflfzAGAimYKkViMhaueAqBl9y7C8RgtkW4WvrCClt277XSEhS+ssm3aCMfjtEQiLFr1Ki2799AVj9MSqeB7q96wbTroivfwXkS45cV/8V5bF/G4Sa5MUgqIQE3AucpJLUPrOhyrnNRyUF1HyiontdTVdThWOamltq4jZZWTWqoP6khb5aQt5KMvZNrn8+EPxpKrnFS01xKp70hb5STQVktHfVdylZPatmo66uNpq5zUtvnoqCe5ykltG3TU+9JWOalti9NRX5lc5cS3vSPjDHw+H3FHwHYJ1qetclLb3kXn0Jp9q5z89MF9q6IMQuLxOPHQJrY+fDvdoU10R7uoiL7HhoctIenc+R490S4i0RZWP/w9AGLdYULvN7PqYasVtzvUQjzaRXe0heUPW0IW7e7k/fff4dFHbgYgFGohGg0T7W7hwT9beTtCLURjVt5vnriZ7XY61t3Cr56yynl/lyWIvhxPSp/Px9hhjWkB2w+pHp+xysnYqvHJVU7e3dNsvTSVCD6fj0ZHwPbmtvfTbHow7Il0JWPOtrRlBn0f6GifZhHw+XyMr6/kWyfV862T6hlfX0ltbW0yYPu4+gpqa2uTq5x8eWqAsfVCbW0tY4ZZq5yMGbYvfflpfi4/zZ/MS6xycslplQT8MDZoLQ120emVjBoGtbW1yaXBPju9En8l1PeBu9QrgUCAoQ3WKidDG6z6DAlaq5xMOUcYErTy6oLWKid1drrWXuXkQ5+qoDZolVMsAoFAcpWTyjnHIcEh+dWn0pdc5cR/3gwkOIza2trkKif+885CgsPtvAb8s89Ggg12Ooh/9rn4Z5+LBIMpebNT0tbSYFWzP40ER9h5IwnMvgAJjqS2tpaK4CgCsz9HYPbnqAiOSuZVz744JW0tDVZz3qVUBEfbeWOoPe9y629tbXKVk7rzrsCXzLMCtvuCY6mtraXSDtg+ZM58KoPj8PlK/4XB5/MxZngjl5+5gDHDG+3fXSP/d/oC/u/0BYwZ1pjXvQ8EAjQOsVY5uWbKt2kcMoHa2loa7YDtjUPG7UufcBXfOeGqfXlDD+HaE+bROPQQO20FbL/2xP+kcegYO88K2N449GA7ba1ycu1Jl9A41LqHjfbSYI31o1zPIRAI0GivcrLglM/gkwr8ud4gBjgqmikEKitZMHUmC6bOpHGY9WBqHDaMBdNm0DhsmJ2uZ8G0qSyYNpXGYfV23hCunXocjcOG2GlrlZPvTP04jcPqqK2tTa5yMqG+uqgPe0UpJQKBAFXB8YyZ8y2qguOtl6MRE/jInG/zkTnfpnaEJSRDRjQyZc53mDLnO1RW1RAcPYmpc65l6pxrGRa0hGx4sJGz5izgrDkL8FfVMnr0Ecw+77vMPu+7BG2bkcFGLvjUd7ngU99lpJ03KtjIRed8l1F2enRDI5fMXMAlMxcwuiE/QRyoVPkqabRXOVkw9VM01geLXaWCo6KpKIqiKB5R0VQURVEUj6hoKoqiKIpHVDQVRVEUxSMqmoqiKIrikcE9dngQs2M3/PQRa6ZhNGZFAfrFw/Fk2l9lRQFaloiuY+ft2Am/+6MhGoOqKisK0B+tec/E7LzQTvjzgyaZbtsFT/7BmpAWi0KgCj7YASt+Z4jb6XyJhGDjL3uId0FdDcR3QugBq85EcY+4srOb+C/+ZdsY8NfAzjCxB96AcAxq6mBnB7FfrrFt4uDXsCjKwOO9tu1c9fQS9kTCBGqrea9tB1ct/ylgBTKQQAmFLCoRxJgSml1bZIbV15uZp54OQCQeRaqqiITDDKkKEInHkKoqTHeEgD1PycoL2Hk+9nR3E6ipxXR3EbDnn0XicaSqmp5ImOrKCtojMapr6+iJdBKwX1kiMagI1NIT6SBQCXsiUF1bR9xOJ2x8gTri3R1U+aCjG6prrHQiUEI0Dr6qOmLdHVTZ++3tgqpK8NvpaAyG1I/gkEMOYePGjQDU1NQAEA6HAZg4cSIdHR3U1dUlbRJ527Zt63Ob1tZWdrfvpMKuY08MAv46OsMd+KshHoNqfx1d0Y40m+FD08/j4IMPzjhWa2srO9t3gl8gbBjRkL6PWx2zl/MB+H0QjlJXU0tHNLIvMEEsTp0/kJ4XjlgXvtKudCxm23TnsKmybRx54TBUV0MsattEHTb+FBs7HY1Cpf3gi0VTbGr2paMxh00lHeGuFJtK28Z+u4l123lxa7+uTupqqumIxhHbxsS6qfP77LwApmsvdTXVVjjCSnsKRyxCrb+CzmgPFZUB4l17qKuppivaQ4X9ktIT7aLaX0EkavD5rf0inW34/dX47HLisQhVfqE7aqi087rClk0iHYtF8PuFaNTgt/Oidl5XOEJN9RCisQiVfiHWbaiyj9UdjVBZZdnUBiwbX5UQ7zZU2eV023ld4QgHVQ0hErfSPRFDwLaJxCJUBISuzghDbJuKgGAiPQQqrHON9HQhgQorzxdgT/ceArXVdtq6rpF4t20TJ+CrYk93h20Td9j4MJGYbdNp28TSbGqHDfH0++nc3U7A/n60dXVSXeknYH/vIrEYDz/x2BpjzBQGCSqaKRx88MHmk5/8JLB/ApDrgVtMGzdBnDhxIvPmzeMb3/gGAD/4wQ8AMtJuef1hs2TJEjZu3Ljf4uvlPJxln3XWWa777G8d8732+dj05wvLgdiU0ndar+v+2+Tz+3G7rnfcccegEk11z6Ywbtw4Jk6cCOyfALjllYNNqTBv3jwgv/Pa37IT6ULWcaDaFPv4A9Wm0MfvDS/f+zvuuMNTWQMFHQikKIqiKB5R0VQURVEUj6hoKoqiKIpHVDQVRVEUxSNlK5oicraI/FNEmkXk2y7bAyLyW3v7KyJyaOFrqSiKogwkylI0RcQH/AQ4B/go8HkR+ajDbC7wgTFmEvAj4LZc5e7YsSM5vHrJkiUAtLa2pqVTh2A781pbW/vEJpE3UG28Ushr7yTfOisDD6/faef3VRmYlOuUk+OBZmPMuwAi8htgDrA+xWYOcIP9/x+Ae0RETI6JqYl5SAnq6+tz2iTyUm0PxMbLscrdprW1lXA4zJIlS5g3b17yIQQk8wp57Z3H92rjrHOp28ybN8/Ttfdik8hLXKcDtSnVa+b2XXDLc35fB8t1HWyUq2iOBTalpDcDJ2SzMcbERKQNCAI7sxU6cuRIfv3rX6flOb8U8+bNy5jr5+899fMAAA01SURBVMzrK5tE3kC08SKIhbz2zuN7sXFLl4ONl2uvL4u9fxfc8twEZDBd18FCWUYEEpELgbONMf9ppy8BTjDGfCXF5g3bZrOd3mjb7HSUdQVwBcCECROObWlpKdBZKIqilD8iMqgiApVlnyawBRifkh5n57naiEglUA+EnAUZY+4zxkwxxkwZOXJkP1VXURRFGQiUq2i+ChwhIoeJSBVwEfCIw+YR4DL7/wuBlbn6MxVFURSlN8qyT9Puo/wK8BTgA35ujHlTRG4CVhtjHgGWAr8SkWZgF5awKoqiKErelKVoAhhjHgced+Rdl/J/F/DZQtdLURRFGbiUq3tWURRFUQqOiqaiKIqieERFU1EURVE8oqKpKIqiKB4py+AG/YWI7ABagBGkRw5ypr3mqU1hbIp9/MFsU+zjD1SbYh9/f2wajTGDZ5K7MUY/jg/WtJWsaa95alMYm2IffzDbFPv4A9Wm2MfP12YwfNQ9qyiKoigeUdFUFEVRFI+oaLpzX4601zy1KYxNsY8/mG2KffyBalPs4+drM+DRgUCKoiiK4hFtaSqKoiiKRzzFnhWRs4E7sYKj/8wYc6tjewD4JXAsEAP8gAF+BnwI+Hfb9FdYK5RcjbWclw+IYAVUjwGjgYDj8AaIAt1AHSAuVYxgvQD4U/LidvmKoihKYenBe6Ms4e7cDQwl+3PbsO/5b7Ce8Ym8NmAr1jSYg4FOoBpoBk4E/hu4GDgU6ADeA34HhIEmu8xK4EhgpDFmV/ba5hhea5/ARuBwoAp4Hfiow+ZK4F7b9n3gz7btBiyx+wiWeEaATwKbgH9irTzSDvwFmARcBTyGJaxxe9+fYM2d3AK8jHUzWuyy4lhi+xrw/4Cb7ItogDeAJ4HtWKIbt+set/ftAbqwVkoJ2/uE2SfQUTtvk53fk2Jn7GMmblpnyk3cnGLTY//dmZJngL870gnbHpd8Y9fH2Oeamh/JUk40Szm5PtmOfyDlHEiZ+Z5H6nHjOWzctmfbp7eyYh7tnOW5XavUfK/3M/WYXVmuRWodvdY3mmWffO51PIttarl7s+zn/K6HcxyrB9jh8T54+S55vaepn2zH7+065brXbttz3Uvn8XamlJPYNwI8a+e7PYtCjvLb7XLiKWW9giVIXfb+H9jl99j799jHidmfvbaNwWo4dQLrgPV2uVvt/SYCK+zrGbX3C2E1wq7DEs0HgQV2Ga3APcA24FbgNiwxPg1Lm/4LuNdF62ZjLSF5wFNOjgeajTHvGmO6gd8Acxw2c4AHbNvXsZQ9ivXm0G6M2WCMeRtL7L5pn/CL9sluBfYA5wOfB34M1NgX1Qc8hyWYbwNH2Mf7l32R43YZDVgiPc6+AWDduAoswSHlr2GfyAHUYglrYp+99n6Jt51/pNgn9gEYllJmR8ox6hzXxmC9IKTyPu4kyulx5Mftv62O/D0ux+rGmwfBuOS5teJ7s89Gajm59utte29vnLlIPGTdzimxfwxv16HLw/G2pvxfkaVcSL+34jiW2Pul7t+F+/00jv9jjuO72aYeK9U+mqWusO+7B+73I/V3kev7k1qvxIM2tVynjUn567wG2+kdIfO36Cx3f0jcG6/EsZ5J2cpyI3Ge8SzbwBKr3sqrIPP5kahPgnqHPVj340j2fRecddxs/02UvR0Ybtsl6nwolrcvYTuUfaI6lH3Py0Qd27Ce9QbrXu0Exqbs84Ztuws4wS47gvXC9AFWQytiH78KOAdLW4ZhacZGLA/pp40xqdetDvd7+Xngf13y0/HQ0rwQyyWbSF8C3OOweQNLsC7EcsluxGomvw5sTrF7DquF9pp9AbcA12A9cH5h//VhXfTEA+0DYAbwLuktutvZ92DstI+Z+nbUxr63omxvdm752d7snbapb2MH0iLST+l/+qoFPhA/em1K75OrFe72iWEJYbZ7nMtj4zx+qn3i//dc7FOfozGsl4LulLww8BKWd64HeCvl/LqxhLYTq7HTjeXJjAEPA1/BEvXdtv78yq5LGHgG+FiKNtViiXNDqQY3eA2YhyV6V2Od+CTgD8AUrLeGRDN8B9YFeMfO7wbWYLl2E26bDVh+7DjwHfsY72CJ773se2tKvEUlboqwz52aeiMrSf8CgNW6TX2DW5NSbuItOOFGTeD8UmHXNxvG8XcgkM+5uL0pF5PeWlAJ+uueHWi5/XEtEw9CyPQqHGh9U/ffn7o7f3e5bPe3nvmcl5ffuhf29x5W70dZibQPq6ED7nVLfTYlBCvhGZOUcjqxxqUkWoRR9nk1Eq3If9n2a0hvcESBlVjeFQFuxGosnQBMsMs7yN62DEtAf4nlgQtjuWFvto91KvB7Yyliou5fxmpl34Tl7ftTyvnNBl7qtS/TxotobgHGp6TH2XluNlvsk6vHaiaHSb+Bh2BdsPHGmKVYQlmNHb8Qq2l8EdZF8QNbjDEfwnoD+ij7+ibbsS6mz/4cYv+txOrwBfgEVuvzPSzhjbOvnzT1rSjxFpRwiSUeAoL1pUi0eOtJd2NNcVyDCJbIp/5QjJ0XSyk3QPYfjDj+5vPAKzXB9SI4Tgr5MtdX1yuf83TiVpfe3IJe6t6d28SVxO/C7cEvuLtqne7mfHC6Gr3gFMFcdcinnvmcV7ZumGzlZfu9H+g1dbs2ibwKxzZD5ncu5mKzh3313ZWSX4P13K/Beq77HMfqwXq2d7PvuZ24H9XAVGCIbX+mXXYF1vO3xs6vxBK5v2CNlfHb276KJZYVdnq8iIzBduUbY9qNMXuxBPcTgF9EEi8KF+HFNYu3L+WrwBEicpiIVNmFP+KweQS4zLb9BFaHsB/LtzxURD4sIh/CEsb77fKmYPWFGizxNMBfgc+xr4PZiMiRWG8Xw7FEuRIIAsdhXfBEJ3Mcq8/0a3ad3sIavPS6XY8K0luQsE+cK7AeDrvZ90WIYfm+w7bdQVjii71/auDiGFYreAj7RvAmjnMQ+0YTJ/D6I0jcn2wtULeHZozMPpGE3f6KcE+W/7tJ/yH1RqdLPZxlZjuvvhI0tz6iRPm99Xk66cDyYLjZ9VbXbA+g3kjdZ2sWm2zfo9TzTRXN1HuYWn6YTBIPMrd+Oec5OO+j23VJtE4SpPbHp/YZxzz8D9ZvNfUYbs+yfL4/ufZx+y5l+37lGr2feqw9LnkJWlK2ZfvNu9Ul8bxK/Z50Yb38J675BynbEoMjU38Xif9Tr28F+/ooDVZDQOxjd2AJVhvwJfaNsUh8RxJiW2lvT5Qfs7ftZV+f6Few9CRu1+vvwOlYLyM7sJ6riXEtjwGLsQQyDKwyxqzG0qWHReQIETlYRARLd963zyMkIvVYYvswXvASoBaYhTUQZyNwrZ13E3Ce/X818Hus4b3/xBrJuhG4FmuAUGKU6y+wOmYT4pQY4fYA1sCg75AimCmf3fb+2foOe1I+btv396P9NPrRj370k/8nWx9otnEkPewbs+Ls8/wnlk68Y9skxp3EsEQ5Ym//C3CGvW2Nbf8M1kDRB7HcuF1Ygr4GOMnWr/8AfuM1YLtGBFIURVEUj2hEIEVRFEXxiIqmoiiKonhERVNRFEVRPKKiqSiKoigeUdFUFEVRFI+oaCqKoiiKR1Q0FaWAiMjeXrYdKiIXp6SniMhd/ViXm0TkDJf800Tkz/11XEUpZzytp6koSkE4FGvNv18D2BFNVvfXwYwx1/VX2YoyUNGWpqLsJyLy7yLyNxH5h4j8j4j4RGSviCwSkddF5K8iMtq2PUxE/iIi60RkYY6ibwWm2uV+LbXFJyI3iMgDIrJKRFpE5HwRud0u90kR8dt2x4rI8yKyRkSesmNvZjuPX4jIhfb/Z4vIBhF5DWuZPkVRXFDRVJT9wI6F/H+Ak40xR2OFC2vCilP8V2PMJ4AXgC/au9wJLDHGHEX2GLIJvo0VM/NoY8yPXLZPBKYD5wH/H/CsXW4YONcWzruBC40xxwI/BxZ5OKdq4KdYQbCPxVoxSFEUF9Q9qyj7xwwsYXnViv1MDVaQ6G6sVeHBimt5pv3/ycAF9v+/wlq+KF+eMMZERWQdVjDwJ+38dViu3Q///+3dsUodYRCG4fcj5AaEpLEwYCMkqYNeh403kMZKSCPkBlKmSC2B3EKaiKW9CpEEC3tbm6iYSbEbPCeo5189Wpy8T7fL7s40y7DDsAO8Arb73J4wuVADLAHHVXUEkOQL8PYeeUozy6IpDRPgc1Vtjp1M3tXVj5wvGX+3pvWD5zOAqvqd5GIk3t+tEQG+V9XylOJJ+oftWWmYHWA1yXOAJHNJFm65fpdunR50bdzbnHK1S/AufgLPkiz3uT1N8rLhvh/AiySL/fHaPXKQZppFUxqgqg6B98C3JAfANnDjsA3dYtz1vqU6P+HxB8BlP0y0MeHa63I7B1aBD0n2gT1gpeG+X3Tt2K/9INDJ0NjS/8LVYJIkNfJLU5KkRg4CSY8syWu6SdpRZ1X15oHifaKb4h31saq2HiKeNMtsz0qS1Mj2rCRJjSyakiQ1smhKktTIoilJUiOLpiRJjf4AjYwfTixomnkAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -694,19 +706,21 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAF3CAYAAAARh7eaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmYXFWd//F3dzokJIGQhUgIiBjgK8sgCMoigisMQWBw\nXAAdF1QEITCAsgwIgmSQRVYRkVVUXGYE2cVtHH8yCggoonCAgCyh2bKQpZOQTur3x63uVHfSSXf1\nUqe73q/n6Se37vqtS/Xl0+ece6uhVCohSZKkfDTWugBJkiR1ZECTJEnKjAFNkiQpMwY0SZKkzBjQ\nJEmSMmNAkyRJyowBTZIkKTMGNEmSpMw01boA5a9UKpXmzFnEihX1+1DjxsYGxo8fTb2fB/BctPE8\nFDwPK3kuCp6HlRobG5gwYUxDVdv2dTEaehoaGmhsrOrzNWQ0NjZ4Hso8FwXPQ8HzsJLnouB5WKk3\n58CAJkmSlBkDmiRJUmYMaJIkSZkxoEmSJGXGgCZJkpQZA5okSVJmDGiSJEmZMaBJkiRlxoAmSZKU\nGQOaJElSZgxokiRJmTGgSZIkZaap1gVIqm9Llixh1qznB/R4ACNHjuzVfpqaGlhvvXVZsGAxra2l\nqvYxZcomva5D0tBkQJNUU7NmPc+MGafXuoyaOPXUs5g6dYtalyEpQ3ZxSpIkZcYWNEnZGDH57Qwb\nsUG/7X/50tdY2nxf+VjvYNiIsf12rK5rmMfS5vsH/LiSBhcDmqRsDBuxAcPWnTBAxxo7YMeSpJ6y\ni1OSJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmSMmNAkyRJyowBTZIkKTMG\nNEmSpMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQ\nJEmSMmNAkyRJyowBTZIkKTMGNEmSpMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMGNCkNWhpaaGl\npaXWZUiqgr+/GswMaFIXWlpaOPHEYzjxxGO8yEuDjL+/GuwMaFIXmptfaP8LvLl5Vq3LkdQDHX9/\nX6h1OVKPGdAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmSMmNAkyRJyowBTZIkKTMGNEmSpMwY\n0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmSMmNA\nkyRJyowBTZIkKTMGNEmSpMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMNNW6gBxFxD+ANwIlYFxK\naX5NC+okIj4LfD2ltGEPtnkOmELxntZLKbX0V32SJKl3DGirVwJOA65KKc2PiOuAT5XnN6xm/X+k\nlN48kAWWa+mJHYD3AD/uh1qq8uc/PwA0sMMOb1tl+g9/uAeAefPmMG7ceHbd9Z08/fRMNt98C3bY\n4W3cdNNPaGho4KCDPtJhX23/iXbY4W1rPOZTTz1JQ0MDL774As8//zxjxowB4C1v2YbHHvsbTz/9\nNOuuu25/nwJJA2DGjNO7WNJ2zeg0t6GRUqm02mWjR49hm22246GHHqC1tZWmpiaGDRvG0qVLVlm3\nsXEYU6dOZeHCRUCJ+fPns3jxYoYPH8748ePZdNM38txzzzJnzhwAxo+fwEc+cjB33XU7CxcuZMmS\nxYwcuS477fQOGhpKPPbYowDsu+/+QKn9OrnbbnsApfZr5FNPPckDD9zPpptuyhFHHLNKXZXXW6DD\n9bTzss7btF07S6VSh2tw5To777xzF+e7Ol3VNNQZ0Lq2MKX0Snn6GOCkimUvUgS2u8uvlw9kYdVI\nKc2OiLm1rqPNsmWvc+ONN9DQ0MBWW23VYfoHP/gus2e/2mH9J598gnnz5jJ+/AQ233xz7rzzVgD2\n2Wdfhg9fhxtvvAGAUqlEY2Mj2267HcOHr7PaY5ZKJebOncOKFStWqeuJJ1L79IIFy9qnlyxZ3Gfv\nXVL/e/jhh7qx1ur/zi2VVr02tFm0aCH33//H9tetrctobV222nVXrFjOE088vsr8pUuX09z8As3N\nL3SY39w8i+uvv5r581/rMP/222/u8Hr27FcolWDu3CLYPfXUE0ADc+fOYYMNxjF37hxKpRLNzbM4\n5JB/Y+zYce3bVl57t912O5Yte739evre976/w7K2a2jbNlBi9uzZNDQ0sGLFChobG9lnn30ZNWpM\nh/1uv/32wOguz2FPdK6383V9KBu0AS0iPgycDmwBtAAPAgemlBZHxOeA44HNgaeBy1JKV5S3+zfg\nW8AOKaWZ5XlXAHsBO6aUlnY+VkppAbCg4tgAr6WUXl5LjV8D/hm4slzrBsB1wHHAicCxFH/CXZhS\nOq9iuy9RBMA3A7OBW4CT1tQtGREfomj12xp4Hvgu8J8ppa6vNDV0xx238uqrRf697LKLOkx3DmcA\nc+bMBuDVV1/h7LPPaA9Xl112ERFbt2/f5s47b+PAA/+1y2P21I9+dCN77LFbVdtKGni33Xbz2lfK\nUOdwtjptLW5tZs+eXbFsdodlZ599Bueff2n768rr4J133sajj/6t/Xp69tlntF9/K6+hna+dResi\nrFixgssuu4iTTvpKh3XuuONWDjvsU917w2vRud7O1/WhbFAGtIjYCLgR+BLwM2A94F1AQ0R8HPgq\ncBTwZ2BH4KqIWJhS+l5K6XsRsR9wY0TsBuwLfBrYbXXhrC/KBd4L7A1sCfw3sBXwd2DP8s9VEfHL\nlFLbn3zLgC8CzwBTgSsoWun+fbUHiHg3cDUwHfh9+ThXlbc5px/eU6+8/PJL3HXXbe2vU3p0tdNd\nqQxwKT3KzJlPrLLOnXfeyu67v4sNN5y02mP21DPP/IM777yTSZM2prW1p73LQ0tTUwPrrbcuCxYs\n7pNzMWvWc31Q1eA0FN57X38e+sLll19U6xKyMXv2q9x77/+xyy67r3IdvP32W1i+vLXDum3arqGl\nUmmN186UHuWPf7xnlf1Om7YPI0as16vaO9fb+bo+1A3KgAZMBoYBN6eU2q5wfwOIiK8CJ6SUbinP\nfyYitgWOAL5XnncE8BfgMuBDwFdTSn/up1pLwGEppSXAYxHxO2BqSmnf8vInIuJkivFhDwGklC6p\n2P7ZiDgDuIguAhpwBjAjpfSD8utnyufhLDIMaD/84Q0sW7b6LoFqtLa2rjJv2bJl3Hjjdzn22C/3\n2TGvuOKKXm2vtSut6LvPRa4q3+P1119Vw0pUL6655tvsssvuq1wHK8NZZ23X0LbpNbn22is7XIeX\nLVvGd77zHaZPP6FXdXeut/N1fagbrAHtL8CvgUci4m7gFxQtU69TtDhdExFXV6w/DJjX9iKlNK/c\nDXo3cE9K6dx+rPWpcjhr8xKwsNM6LwHtfxJExN4UY94CGEtR/4iIGJ5SWt1vyvbAO8qhrM0wYPga\ntpEkSZkalAGtPK5q73IX5d4UXXtnAweUV/kccF+nzToP5N8LaAU2jogxKaXOoamvdA5HpS7mNQJE\nxJuBW4FLgZOBucC7KcaxDV/NtgBjKALdrZ0X5BjODjnkk/z974/0WStaU1PTKq1ow4cP59BDV46B\n6ItjHnnkkXZx0j9dnG0tSQ2Nw3u9v9xVvsdPf/rzTJmyaQ2r6b1cuzjnzcvmnqia++xnjwBWvQ4O\nG9bUZSta2zW0VCqt9dp52GFf4LrrvtO+zvDhwzn88MN7XXfnejtf14e6QRnQ2qSU/gD8oTwY/xng\nnRQD5KemlH7U1XYRsTvF+LX9gXOBb1KMQ8vBzsCKlNKJbTMi4hNr2eYhIFJKT/VrZX1k0qQ3sO++\n+3PrrTcBELF1+9izyumuTJgwsX2sRMTWRGzdvq8206Yd0GGcQudj9tRmm72JadOmMXfuIlpbs7zv\nYsA0NTUybtxoz0UfmDJlU6ZO3aLWZfRKjp+HCy+8nMMOO7TWZWRhwoSJ7LLL7sCq18EPfvBAHn30\nbzz++GPt67ZdWyuvoWu6dkZsza67vpMXX2zusN+NNtqIuXMX9ar2zvV2vq4PdYPymwQi4h0RcUpE\n7BQRmwL/CkykGHh/JnBKREyPiC0jYruI+HREHFfedj3gBuDSlNLdwCeAj5bvCu1tXedGxDW93M2T\nFN2ZR0XE5hHxKeDza9nmTOCwiDgtIrYu/xwcEWf2spZ+s99+BzBx4oZsuOEkpk8/rsP0hAkTV1l/\n/PgJNDY2MnHihpx22pk0NjbS2NjI9OnHte9r4sQNmTBhIhtuOIlp0/bv8pgTJkyksbFnH/2DD/Zi\nLw0m++9/UK1LqMr6649d6zrjx49n3Ljx7a8nTJjQfl0bP34CDQ0rH9d52mkd/zdQee2dNm1/jjnm\n+Pbr6WmnndlhWedtJk6cSENDQ/v1s+0a3Hm/++13AH2lc731ZLC2oM2nuPvxWGB9itaz48uBi4hY\nRPEYi/OARcBfgYvL215M8ciMUwFSSo9ExKnAFRFxT0qpuRvH76odf2PgDVW8n/b9pZQejIgvA/9B\n0br3W4quzuu72jildFdEHEDxKI9TKMbiPUbRLZql4cPX4dBDPwk0MGrUmA7TH//4p9b4oNqxY8cx\nbdoBNDQU6wPt27c9qHZ1z8qpPGZ3H1S7YEHxJRIjR/rQWmkw2X77HbvxqI2h/6DaymegQcfr4PDh\n6zB8+Drt19OxY8d1WLa6bTo/qLbtGly5zjrr9N2zyjrXW08a2p5nopUi4mngopTSpWtdeRCJiPdT\n3BjR0696KuXUfTFQZs58sv0J5Gec8TV23nmHrLpxaqWvu7Qqz/OoN32AYetO6PU+u7J88Wxa/vHL\nATlWd2o49dSz7OLsJ5Wfq4E6z7mei4HmeVipfC5W9w1EazUouzgHyLkRMb/cJTroRcRjFDcRmMgl\nScrcYO3i7G97Utwx2fYtAkPB3pT/e/tF6ZIk5c2AthoVD78dMlJKz9a6BkmS1D12cUqSJGXGgCZJ\nkpQZA5okSVJmDGiSJEmZMaBJkiRlxoAmSZKUGQOaJElSZgxokiRJmTGgSZIkZcaAJkmSlBkDmiRJ\nUmYMaJIkSZkxoEmSJGXGgCZJkpQZA5okSVJmDGiSJEmZMaBJkiRlxoAmSZKUGQOaJElSZgxokiRJ\nmTGgSZIkZcaAJkmSlJmmWhcg5Wry5I0ZNWpUeXpKjauR1BMdf383rnE1Us8Z0KQujBo1ivPOu7R9\nWtLg4e+vBjsDmrQGXtilwcvfXw1mjkGTJEnKjAFNkiQpMwY0SZKkzBjQJEmSMmNAkyRJyowBTZIk\nKTMGNEmSpMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKk\nzBjQJEmSMtNUzUYRsS3wFeDtwCbAbimlByNiBvD7lNJdfVijJElSXelxC1pEfAB4CNgM+AEwvGLx\nMuCLfVOaJElSfaqmi/Mc4Ecppd2AszotewjYsddVSZIk1bFqAtp2wPfK06VOy+YBE3tVkSRJUp2r\nJqDNATbuYtlWQHP15UiSJKmagPYz4MyIiIp5pYjYCPgS8NM+qUySJKlOVRPQTgFeAR4G7i3PuxZI\nwGvAV/ukMkmSpDrV44CWUnoN2B04Angc+BVFODsB2COltLBPK5QkSaozVT0HLaW0DLiu/CNJkqQ+\n5DcJSJIkZaZbLWgRsYBVH6nRlVJKaWz1JUmqV8uXzuvn/b+22umB1N/vUdLQ0N0uzm/Q/YAmSVVZ\n2nz/AB7rvgE7liT1VLcCWkrpq/1chyRJksqqukmgTURsAkwGmlNKz/dNSZLqyZQpm3DqqZ2/Na7/\nLFmyBICRI0f2aj9NTQ2st966LFiwmNbW6joYpkzZpFc1SBq6qgpoEXE4cCqwScW8F4CzU0pX9lFt\nkurAyJEjmTp1i1qX0WNNTY2MGzeauXMX0dq6otblSBpienwXZ0ScAnwb+C3wL8Bu5X//B/hWebkk\nSZKqVE0L2nTg/JTSSZ3m3xYRL5WXn9PryiRJkupUNc9BW5/i2wNW5xfAetWXI0mSpGoC2t3A+7tY\n9gHgN9WXI0mSpO4+qPZtFS+vBq6MiEnAz4CXgUnAQcB7gS/0dZGSJEn1pLtj0P5ExwfVNgCfKv+U\nyq/b3A4M65PqJEmS6lB3A9p7+rUKSZIktevuNwn8b38XIkmSpEI1NwlIkiSpH1X7TQKfAI4AtgJW\n+b6UlNL6vaxLkiSpblXzTQKfoLiT8xFgIvAT4KfA6xR3dF7QlwVKkiTVm2q6OE8AvgYcVX79rZTS\nZ4DNgVeAhX1UmyRJUl2qJqBtCdyTUloOLKf4ZgFSSguAc4Fj+q48SZKk+lNNQHsNGFGengVsU7Fs\nGDCht0VJkiTVs2puEvgTsD3FVz7dCpwREY3AMuBk4N6+K0+SJKn+VBPQzgE2K0+fXp6+iKL17H7g\n8L4pTZIkqT71OKCllP4I/LE8PQ84MCJGACNSSvP7uD5JkqS6U9Vz0DpLKS0FlvbFviRJkupdtwJa\nRFwKXJBSerY8vSallNKxvS9NkiSpPnW3BW1/4BrgWeAAoLSGdUuAAU2SJKlK3f2y9M0rpt/Ub9VI\nkiSpZ89Bi4iREXFrROzZXwVJkiTVux4FtJTSEmAvikdqSJIkqR9U800CvwD27utCJEmSVKjmMRvX\nAd+OiPWAO4GX6HTTQErpwT6oTZIkqS5VE9BuL//7xfJPZThrKL+2C1SSJKlK1QS09/R5FZKysGTJ\nEmbNer7Da4CRI0e2z2tqamDbbWPAa5OkelLNVz39b38UIqn2Zs16nhkzTl/rehdccAGTJm0yABVJ\nUn2q5iYBSZIk9aOqvoszIj4BHAFsBYzsvDyltH4v65JUYyNjLEvSawCMettEGoBFD75a26IkqU70\nuAWtHM6uBh4BJgI/AX4KvA68DFzQlwVKqo3G0cPbp5vWX4dh669Tw2okqb5U08V5AvA14Kjy62+l\nlD4DbA68Aizso9okSZLqUjUBbUvgnpTScmA5sD5ASmkBcC5wTN+VJ0mSVH+qCWivASPK07OAbSqW\nDQMm9LYoSZKkelbNTQJ/ArYH7gZuBc6IiEZgGXAycG/flSdJklR/qglo5wCbladPL09fRNF6dj9w\neN+UJkmSVJ+qCWjbUdy1SUppHnBgRIwARqSU5vdlcZIkSfWomoB2OfDNiPgF8APgtpRSC7C0TyuT\nJEmqU9UEtI2ADwMHUwS0xRFxW3n67pRSax/WJ0mSVHd6fBdnSmluSumqlNL7gCnAacCbgNuAlyLi\nyr4tUZIkqb706rs4U0ovpZQuSSntDvwzsBj4XJ9UJkmSVKeq+i7ONhGxCUVX58HAjsAc4Dt9UJck\nSVLd6nFAi4gNgY8AhwC7AYuAW4CvAL90DJokSVLvVNOC9gLQCtxJ0XJ2e0ppSZ9WJUmSVMeqCWif\nA272mWeSJEn9o8cBLaX03f4oRJIkSYVe3cUpSZKkvmdAkyRJyowBTZIkKTMGNEmSpMwY0CRJkjJj\nQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0qU60tLTQ0tIy5I4lSUORAU2q\nAy0tLZx44jGceOIx/R6cBvJYkjRUGdCkOtDc/EJ7q1Zz8wtD5liSNFQZ0CRJkjJjQJMkScqMAU2S\nJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmSMmNAkyRJyowBTZIkKTMGNEmS\npMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmS\nMmNAkyRJyowBTZIkKTMGNEmSpMwY0OpMRFwXETfVug5JktS1ploXUE8i4mngopTSpbWuRUPXTTf9\nhAceuJ/m5heAUk1rmTHj9A6vR48ew/rrj6Woq4Gdd34HBx30kZrUJkk5swVtEIqI4bWuQXlqaVnI\n7bf/jObmWXQVzu699//6tYaHH36oy2WLFi2kuXkWzc0v0Nw8izvuuIWWloX9Wo8kDUbZtKBFxD7A\nacB2wHLgD8CxKaWnyst3By4H3gL8FZgB3AzskFJ6uLzOdsB5wLuARcAvgONSSrO7cfwG4MvA54FN\ngReBK1NK55SXbwJ8A9i7XN/vy/U9U15+HbBBef4JwDrAj8rrLI+I/wE2Ay6KiIuBUkppWHnbPYD/\nBHYGXgF+BpySUmopL38auAbYEjgQuAk4rBs1NQIXAJ8BWoFrgYa1nQsNXpdeeuFa1/nVr37OoYd+\nst9quO22m7u97ooVK7jssos46aSv9Fs9kjQY5dSCNpoibOwEvJcicNwMEBFjgFuBvwA7Al8BzqWi\niSAixgK/Bh4A3gbsA0wCftzN438dOBE4E9gaOBR4qbzvJuBu4DXgneWfBcDPy8vavAd4M/Bu4JPA\np8s/AB8Cni/XvhEwubzvqcBdwH9RhNOPlfd/Waf6TgD+XH7/X+tmTV+qqGMPYDxwUDfPhwaZRx/9\nG48//li31j366M8zc+aTq/zMmvVct7Z/5plnmDnziVW2P/74o3pcd0qPktKjPd5OkoaybFrQUkod\nBq5HxOeBlyJiG2BPYAVweErpdeCxiDgf+E7FJkcDD6aUvlKxj88Bz0bEFimlJ7s6djkAHgN8MaX0\n/fLsp4G2vqCPAQ0ppcMrtvksMJcijP2qPHsOcHRKqQQ8HhF3AO8DrkkpzY2I5cDClNLLFYc/Gfh+\nSqktkD0VEf8O/DYijiy/X4Bfp5Quqjj+x7tR07HAf6aUbikvP4IiuGoIuvLKzpm+ay0ti1YZH7aK\n5Ss6vCy1rnx92WXdP1Z3XHHFJVx88bf7dJ+SNJhlE9AiYgvgLGAXYCJF614JeCOwFfBwRVgBuI+O\n3XVvBd4bEQs67boETAW6DGgULWbrAL/pYvlbgS1Xs+8R5X23BbS/lcNZm2aKVrE1eSvwTxHxiYp5\nbe9rcyCVpx/oSU0RcR9FK919bQvKXa1/Wks9kiSpxrIJaMDtFK1WnwNeAIYBj1AEpwZWHfHceSxV\nWzfoiatZ1ryWYy9ey/IxwJ8ouj077/uViullnZaVWHs38hjgSuCS1ez72YrpRT2sqW1ebW/j04D5\nwhemc/75M7q17qhRoznuuJNWmT9r1nNcf/1VxYthHT+6DU0rX0+fPp3x4yfR2trx43X55Rcxb97c\nHlYORx55bI+3kaShLIuAFhHjKVrJPptSuqc8bw9WhovHgEMjYnhKqS0EvZ2O4eNBinFez6SUOvbN\nrN0TwBKK7shrV7P8QeCjwCsppd7ccvY6RfDsvO9tU0pP93Bfa60pIpqBXYG2czqMYoxf59Y4DQFb\nb70tW231lm6NQ/vmN6/q1bE222wzJk3ahNbWjr9qF154OYcddmiP9hWxNRFb96oeSRpqsghoFOOm\nZgOHR8SLFHc7nlOx/EaKuzavioivl5efUF7WFtIup2h9+1FEnEcxHmxLivFjn+3U9dhBSmlpRJwL\nnBcRyygCzYYUwela4AcUA+5viYgzKAb7v4liwP25KaUXuvk+/wHsGRE/BpaW7y49F/hDRFwGXE3R\nUrYt8P6U0vQ17Ks7NV0CnBwRT1KE3OMp7jTVEHXMMcdz9NGHr3Gd97//n/u1hv33P6jbd3I2NjYy\nffpx/VqPJA1GWdzFWQ5PH6No3fkrxd2cX6pYvgD4IMW4q4eAr1HcbQlFyxcppWaKOxkbKe5ufBi4\nEJi7pnBWcYyzysc9E/g7xSMyNiwvW0xxo8KzwE/Ly6+iGO81vwdv9XSKEDUTeLm8778Ce1GEyd9R\ntIx9FZhVsd0q9Xezpm8A3wOup7jhYT7FIzo0RI0aNYYPfvBfmDx5Cl09UWWXXXbv1xq2337HLpeN\nHj2GyZOnMHnyxkyePIX99juQUaPG9Gs9kjQYNZRKg3OIUvkuxmuAsSmlpbWuZ4grzZ27aJXurHrS\n1NTIuHGjGaznYebMJ9vv2jz11LOYOnWLta436m0TaXnwVQDWf/fGAMz/bdFYfMEFF6y2i7Mnxxrs\nBvtnoq94HlbyXBQ8DyuVz0VVzx/NpYtzrSLi34CnKFqWdqB4btmPDWeSJGmoGTQBjeLhrmcBb6C4\nK/PHFN88sFYRsSlFF2DxBYAdlYBtUkrP912pkiRJ1Rs0AS2ldD5wfpWbv0Axfm1NyyVJkrIwaAJa\nb6SUllN0j0qSJGUvi7s4JUmStJIBTZIkKTMGNEmSpMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTM\nGNAkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmSMmNAkyRJyowBTZIkKTMGNEmSpMwY0CRJkjJj\nQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKTFOtC5DU/yZP3phRo0a1Tw+VY0nSUGVAk+rA\nqFGjOO+8S9unh8qxJGmoMqBJdWIgw5LBTJJ6xzFokiRJmTGgSZIkZcaAJkmSlBkDmiRJUmYMaJIk\nSZkxoEmSJGXGgCZJkpQZA5okSVJmDGiSJEmZMaBJkiRlxoAmSZKUGQOaJElSZgxokiRJmTGgSZIk\nZcaAJkmSlBkDmiRJUmYMaJIkSZkxoEmSJGXGgCZJkpQZA5okSVJmDGiSJEmZMaBJkiRlxoAmSZKU\nGQOaJElSZgxokiRJmTGgSZIkZaap1gVIytOKRcvap1vnv05DDWuRpHpjQJO0WkvSa+3TLQ++WsNK\nJKn+2MUpSZKUGVvQJLWbMmUTTj31rPbXS5YsAWDkyJHt85qaGnjjG9/IkiUrBrw+SaoXBjRJ7UaO\nHMnUqVuscZ2mpkbWXXddlixZNEBVSVL9sYtTkiQpMwY0SZKkzBjQJEmSMmNAkyRJyowBTZIkKTMG\nNEmSpMwY0CRJkjJjQJMkScqMAU2SJCkzBjRJkqTMGNAkSZIyY0CTJEnKTEOpVKp1DZIkSapgC5ok\nSVJmDGiSJEmZMaBJkiRlxoAmSZKUGQOaJElSZgxokiRJmTGgSZIkZcaAJkmSlBkDmiRJUmYMaJIk\nSZkxoEmSJGWmqdYFaHCIiM2ArwDvBTYCZgE/AGaklJbVsraBFhH/AewH7AAsTSmNr3FJAyYijgK+\nRPEZ+Au6KGNoAAAHSUlEQVQwPaV0f22rGlgR8S7gy8BOwGTgX1JKt9a2qoEXEacABwFvARYD/wec\nlFJ6vKaFDbCIOAI4EnhTedbfgLNSSj+vWVGZKH9GZgAXp5SOr3U9AyUizgDO6DT7sZTSNj3Zjy1o\n6q63AA3A54FtgOOAIyh++erNcOAnwBW1LmQgRcTHgG9QXHh2pAhod0fExJoWNvBGA38GjgJKNa6l\nlt4FXAbsAryf4vfiFxGxbk2rGnjPASdRBPadgN8At0TE1jWtqsYi4u0U/7/4S61rqZFHgDdQ/DG7\nEbBHT3dgC5q6JaV0N3B3xax/RMQFFCHtxNpUVRsppTMBIuJTta5lgB0HXJlSugHaWw72Aw4Dzqtl\nYQOp3DLyc4CIaKhxOTWTUppW+ToiPg28TBFSfl+LmmohpXRHp1mnRcSRwK7AozUoqeYiYgzwfeBz\nFD0v9ag1pfRKb3ZgC5p6YwNgTq2LUP+LiOEU/+P9ddu8lFIJ+BWwW63qUlY2oGhRrNtrQkQ0RsTB\nwCjgD7Wup4YuB25LKf2m1oXU0JYRMSsiZkbE9yNi057uwBY0VSUitgCOBupmXEGdmwgMA17qNP8l\nIAa+HOWk3JJ4MfD7lNLfa13PQIuI7SgC2UhgAXBQSumx2lZVG+WAugOwc61rqaE/Ap8GEsU41a8C\nv4uI7VJKi7q7EwNanYuIcyjGT3SlBGxdOfA3IqYAdwE/Tild288lDohqzoOAYlxiPY/DUuFbFGNT\n31nrQmrkMeCtFK2I/wrcEBF71ltIi4hNKIL6B+rt5rFK5SFBbR6JiPuAZ4CPAtd1dz8GNF3A2j8w\nT7VNRMTGFINgf59S+kJ/FjbAenQe6tCrwHKKQa+VJrFqq5rqSER8E5gGvCul1FzremohpdTKyuvD\ngxHxDuBYirs768lOwIbAAxXjM4cBe0bE0cCI8tCIupJSei0iHge26Ml2BrQ6l1KaDczuzrrllrPf\nAPdTDAwfMnpyHupRSmlZRDwAvA+4Fdq7td4HXFrL2lQ75XB2ILBXSunZWteTkUZgRK2LqIFfAf/U\nad71FDdLfL0ewxm03zQxFbihJ9sZ0NQtETEZ+C3wD4q7NidFFEOPUkp11YJSHuw5HtgMGBYRby0v\nerIn4wsGoQuB75aD2n0Ud3WOorgA142IGE3xl3BbC8Gby5+BOSml52pX2cCKiG8BhwAHAIsioq11\n9bWU0pLaVTawImIGxZCP54D1gI8DewF717KuWihf/zqMQYyIRcDslFLd3NEaEecDt1F0a04BzgRa\ngR/2ZD8GNHXX3sCbyz9t/xNqG380rFZF1chZwCcrXj9Y/vc9wO8GvpyBkVL6SfmZZ2dRdHX+Gdin\nt7eSD0I7A/9D8dkvUTwbDuC7DLGW5bU4guL9/7bT/M/Qw5aCQe4NFO93MvAa8DCwd53fwVipHlvN\nNgFuBCYAr1A8dmbXck9NtzWUSvV47iRJkvLlc9AkSZIyY0CTJEnKjAFNkiQpMwY0SZKkzBjQJEmS\nMmNAkyRJyowBTZIkKTMGNEmSpMwY0CRJkjLjVz1J0iAUEXtRfOXUzimlB9e2vqTBxRY0SRq8/K4+\naYgyoEmSJGXGLk5JGkAR8SngamDjlNIrFfPHAS8CRwGPAKcAOwNjgSeAb6SUvr+G/W4GPA18OKV0\nU8X8i4EDU0qbV8ybApwL7AOMBu4HjrOrVMqHLWiSNLBuBlqBj3Sa/2GKLsufApsBvwcOAz4I/Ddw\ndUR8oorjlajoCo2IDYB7gO0pwuCHgEXAryNiYhX7l9QPbEGTpAGUUpofEXcChwDfqlh0MPCLlNJc\n4MeV20TE/wM2BY4AumxF66bjgPWBnVJKs8v7/zVFK92XgJN7uX9JfcCAJkkD74fAjyJik5TS8xHx\nBmAv4OPQ3sp1FnAAMAUYVt7u1T449gco7v6cFxFt+y0B/wu8vQ/2L6kPGNAkaeDdTtGteDBwQfnf\nxcBt5eXfBXYFzgT+DswHvgh8tA+OPRHYBVjWaX4JmNkH+5fUBwxokjTAUkpLIuIWVga0jwG3pZRa\nImIEMI1i0H57F2hFa1dXlpT/XafT/PGdXs+h6M48DWjotGxp99+FpP5kQJOk2vghcHtE7E3RWjaj\nPH8ERZdmewtXRKwH7L+W/b0MvA5sXbHdOsCedHxe2q8oulIfSykt7uV7kNRPDGiSVBu/pGjNuhaY\nC9wN7TcR3A+cHBGvAsuBk4B5wKRO+2hvAUsplSLiZuDoiJhJMV7t6PI6lQHtQuBQ4HcRcQnwLLAh\nRbfnrJTSJX39RiX1nI/ZkKQaSCm1Ujw+YzLw3+XXbQ6hGA92PXAx8F/ADavZTedvEpgO/Ba4BPg2\ncBdwU+UKKaU5FC12DwFfpwiGF1I82uPeXrwlSX2ooVTym0IkSZJyYguaJElSZgxokiRJmTGgSZIk\nZcaAJkmSlBkDmiRJUmYMaJIkSZkxoEmSJGXGgCZJkpQZA5okSVJmDGiSJEmZMaBJkiRl5v8DpQ/b\nfDJ8/5sAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEKCAYAAACPCivzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFwdJREFUeJzt3X+U3XV95/HnO8kkIOFXhsBizA/pgBiEUgkr1K0GhDaJQFZlhZ6eTSi2rrt0iLLqWWNowg+X9nCwJYNne2j9ESxrqfXHEkgCCT89Hq1OEATKj50F0jRVEyaAICoJee8f9046CfPjzsy9uTOfeT7Oycl8v/f9/X7f32TuvObz/XUjM5EkqUQTmt2AJEmNYshJkoplyEmSimXISZKKZchJkoplyEmSimXISZKKZchJkoplyEmSijWp2Q2Md0cddVTOmTOn2W1I0piyefPm5zNz+mB1hlyTzZkzh87Ozma3IUljSkRsqaXOw5WSpGIZcpKkYhlykqRiGXKSpGIZcpKkYhlykqRiGXKSpGIZcpKkYnkzuKRRp6Ojg66urhGtY9u2bQDMmDFj2Otoa2ujvb19RH2ouQw5SaNOV1cXDz/2BK+/adqw1zHx1ZcA+Omvh/djbuKrO4e9bY0ehpykUen1N03jlycuGvbyBz+5DmDY6+hZXmOb5+QkScUy5CRJxTLkJEnFMuQkScUy5CRJxTLkJEnFMuQkScUy5CRJxTLkJEnFMuQkScUy5CRJxTLkJEnFMuQkScUy5CRJxTLkJEnFMuQkScUy5CRJxTLkJEnFMuQkScUy5KSCdHR00NHR0ew2NEr4/QCTmt2ApPrp6upqdgsaRfx+cCQnSSqYISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpafDD6GdXV10d7ezsyZM7nuuusAWLFiBRHBpZdeypVXXsnMmTO5+OKLufrqq5k4cSKvv/763uUnTZrE7t2795levnw5119//d51tra27t3O9OnT2b59O7NmzeK6667j2Wef5VOf+hQzZ85k6tSpXHHFFaxevZqVK1cCcOWVV/LKK6+wdetWMpOjjz6a7du3M3nyZCKCzGTXrl1kJgDTpk1j586de/uZMmUKhx12GDt27HjDvh955JG88MIL/f7btLS0EBG89tprb9jP8WDt2rWcf/75zW5Do8CWLVuYP39+n6+1tLRw7LHH7n1ff/rTn2b16tVcfvnl+7yXe36uXHPNNbS2tg64ve7ubq666ipWrlw5YG2tdSMVPT9g1Bzz5s3Lzs7OYS17ySWX8NxzzwGwePFiMpPbb78dgKlTp/LKK68AbwyzgfSuXbx4MZ/4xCf22U6PxYsXc8899+zdBsCcOXPYsmULF1xwwT696MCLCO67775mtzFsy5YtY/MzP+OXJy4a9joOfnIdwLDXcfCT6zjtuGO48cYbh91Dsy1btoxHHnmk5vqe9/Ds2bP7fC/3/EwYyOc//3nWrl3LBRdcMGBtrXX9iYjNmTlvsDoPV9YgIg6JiDsj4pGIeCwiLoqI0yLigYjYHBF3RcSxETEpIn4YEfOry10XEZ9rRE9dXV37BM+6detYt27d3une4TOUUUzv2nXr1tHZ2fmGgAO444479tkGwHPPPUdmsn79etavX1/zNlV/mcnatWub3YaabMuWLUOq73kP9/deXr9+Pd3d3f0u393dzYYNG8hMNmzY0G9trXX14OHK2iwA/jUz3w8QEYcD64HFmbkjIi4CPpeZl0bEJcA/RER7dbl3NaKha6+9dp/pXbt21X0bu3btYtWqVX2+1vuwZ1/LeYSg+W644QY2bdrU7DaGpauriwmvNfd7aMKvfk5X18ssW7asqX2MxIsvvjii5fd/L+/atYtbbrml35HXmjVr2LNnD1D5GdFfba119eBIrjaPAudGxJ9HxO8AM4F3ABsj4mFgBfAWgMx8HPgqcAdwaWa+tv/KIuKjEdEZEZ19nW+qRV+jq0bYf7RWCwNOKsP+7+XMZOPGjf3Wb9q0ae/RoN27d/dbW2tdPTiSq0FmPh0R7wQWAdcC9wKPZ+aZ/SxyMvAicHQ/67sZuBkq5+SG09OcOXMOSND1PrdXq56LStRcETFmzyf1nJNrpj0HHUbbGD8n198FJ7Xa/70cEZx77rn91p9zzjmsW7eO3bt3M2nSpH5ra62rB0dyNYiINwOvZubfAtdTOQQ5PSLOrL7eEhEnVb/+IDANeA/QERFHNKKnFStW7DPd0tLCpEn1/Z2lpaWl38OVEydOHHC5lpaWuvaiobviiiua3YKa7IgjRvbjZ//3cktLC0uWLOm3funSpUyYUImViRMn9ltba109GHK1ORn4QfXQ5ErgT4ELgT+PiEeAh4HfjoijgD8D/igznwZuAhrya2BbWxtz5szZO71o0SIWLfq3q8imTp269+uhhF/v2kWLFjFv3rx9ttPjvPPO22cbUBldRgQLFy5k4cKFNW9T9RcR3kIgZs+ePaT6nvdwf+/lhQsXDni5f2trKwsWLCAiWLBgQb+1tdbVgyFXg8y8KzNPycxTM/P0zOzMzIcz8z2Z+ZuZeVJm/nVmPp+ZJ2Tm1upyqzNzaaP6WrFiBQcffDAnnHACS5YsYenSpbz97W9n7ty5rFq1au9ry5cvB944+to//Hruk+u9zt7bmTVrFgcddNDe11atWkVEMGvWLObOncuKFSs4+eST9/Yyd+5cZs2aRUQAcPTRlaO3kydPZsqUKXvvl+sxbdq0ffqZMmUK06dP73PfjzzyyAH/bVpaWpg8eXKf+zkeOIpTj4FGcy0tLfu8r3vew/u/l3t+rtQy4lq6dOneZetRN1LeJ9dkI7lPTtpfz5WAY/k8EnifXL2U8v3QF++TkySNe4acJKlYhpwkqViGnCSpWIacJKlYhpwkqViGnCSpWIacJKlYhpwkqViGnCSpWIacJKlYhpwkqViGnCSpWIacJKlYhpwkqVjj79MkpYK1tbU1uwWNIn4/GHJSUdrb25vdgkYRvx88XClJKpghJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kqliEnSSqWISdJKpYhJ0kq1qAhFxHHRMQXI2J9dXpuRHyk8a1JkjQytYzkvgLcBby5Ov008PFGNSRJUr3UEnJHZebfA3sAMnM38HpDu5IkqQ5qCblfREQrkAARcQbwUkO7kiSpDibVUHMFcDvwGxHxXWA6cGFDu5IkqQ4GDbnMfCgi3gu8DQjgqczc1fDOJI1rE1/dycFPrhvB8t0Aw17HxFd3AscMe/saHfoNuYj4YD8vnRARZOY3G9STpHGura1txOvYtm03ADNmDDeojqlLH2qugUZy5w/wWgKGnKSGaG9vb3YLKkS/IZeZf3ggG5Ekqd5quRm8NSJWR8RDEbE5Im6sXm0pSdKoVsstBH8H7AA+ROWqyh3AbY1sSpKkeqjlFoJjM/OaXtPXRsRFjWpIkqR6qWUkd3dEXBwRE6p/PkzlMV+SJI1qA91C8DKVqyiDyrMq/7b60gTgFeCTDe9OkqQRGOjqykMPZCOSJNVbLefkiIgjgeOBg3rmZeaDjWpKkqR6GDTkIuKPgGXAW4CHgTOA7wFnN7Y1SZJGppYLT5YBpwNbMvMs4LeAFxvalSRJdVBLyP0qM38FEBFTMvNJKg9rliRpVKvlnNy/RMQRwLeBjRHxArClsW1JkjRytXzUzgeqX66KiPuAw4ENDe1KkqQ6GOg+ucMy8+cRMa3X7Eerf08Fdja0M0mSRmigkdz/Bs4DNvNvN4X3/vu4hncnSdIIDHQz+HkREcB7M/OfD2BPkiTVxYBXV2ZmAnceoF4kSaqrWm4heCgiTm94J5Ik1VkttxC8C/iDiNgC/ILqObnMPKWhnUmSNEK1hNzvNbwLSeNaR0cHDzzwAAAzZsygra2N9vb2JnelEtRyn9wWgIg4ml4PaJakeunq6mLn8zuYMjH5vy9ub3Y7KkgtD2i+ALgBeDOwHZgNPAGc1NjWJI0nUyYmsw99vdltqDC1XHhyDZVPHng6M98KvA/4fkO7kiSpDmoJuV2Z2Q1MiIgJmXkfMK/BfUmSNGK1XHjyYkRMBb4D3BoR26lcZSlJ0qhWy0iu56HMy6g8mPn/Aec3silJkuqhlpCbBNwN3A8cCtxWPXwpSdKoNmjIZeZVmXkScBlwLPBARGxqeGeSJI1QLSO5HtuBnwLdwNGNaUeSpPoZNOQi4r9FxP3APUAr8Mc+0kuSNBbUcnXlTODjmflwo5uRJKmeanms12cORCOSJNXbUM7JSZI0phhykqRiGXKSpGIZcpKkYhlykqRiGXKSpGIZcpKkYhlykqRiGXKSpGIZcpIOuI6ODjo6OupWJ/WnlmdXSlJddXV11bVO6o8jOUlSsQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrEMOUlSsfzQVEkN1d3dzVVXXUVrayv33XffPq/Nnz+f+++/v99ld+7cydatW5k/fz4Axx13HNdffz2tra0N7FglcSQnqaHWrFnDo48++oaAq8XWrVv3mX7mmWe45ZZb6tWaxoFxHXIRMT8ifruB6/9KRFzYqPVLo113dzcbNmwgM/ut6Rml7e/ee+/tc/6dd95Jd3d3PdrTODCuQw6YDwwp5CLCQ7xSjdasWcOePXsGrevq6mLXngDgZ69OoKuri6uvvrrP2t27dzuaU80aGnIR8e2I2BwRj0fER6vzPhIRT0fEDyLiryPipur86RHxjYj4YfXPuwdY79SI+HJEPBoRP46ID1Xn/25EfC8iHoqIr0fE1Or85yLiqur8RyPixIiYA3wM+EREPBwRv9NfDxGxKiK+GhHfBb4aERMj4vpqzY8j4r9U6yIiboqIpyJiE3B0P/1/NCI6I6Jzx44d9frnlkadTZs2sXv37rqvd+PGjXVfp8rU6JHcpZl5GjAPuDwiZgBXAmcA7wZO7FV7I/AXmXk68CHgbwZY75XAS5l5cmaeAtwbEUcBK4BzMvOdQCdwRa9lnq/O/1/AJzPzOeCvqts8NTO/M0gPc6vr/n3gI9Xtnw6cDvxxRLwV+ADwtmrtEvoZJWbmzZk5LzPnTZ8+fYDdlMa2c845h0mTBj/40dbWRsuEyiHNY960h7a2tgGXO/fcc+vWo8rW6JC7PCIeAb4PzAT+M/BAZu7MzF3A13vVngPcFBEPA7cDh/WMxPpwDvCFnonMfIFKcM4Fvltdx1Jgdq9lvln9ezMwZ4D19tfD7Zn5y+rXvwssqdb9I9AKHA+8B/haZr6emf8K9H1SQRonli5dyoQJw/sxs3z58j7nT5o0iSVLloykLY0jDQu5iJhPJTTOzMzfBH4EPDlIL2dUR1WnZuaMzHxlKJsENvZafm5mfqTX67+u/v06/d86MVAPv9hvW+296t6amXcPoVdpXGhtbWXBggVERL81/d1CcPbZZ/c5//3vf7+3EKhmjRzJHQ68kJmvRsSJVEZahwDvjYgjqxdwfKhX/d1Ae89ERJw6wLo3Apf1qj2Symjx3RHRVp13SEScMEiPLwOHDqOHu4D/GhEt1boTIuIQ4EHgouo5u2OBswbZvlS8pUuXcvLJJ3PWWUN/O8ycOXOf6eOOO85RnIakkVcKbgA+FhFPAE9RCaFtwP8EfgDspDKye6lafznwhYj4cbWvB6lcGNKXa6u1j1EZmV2Vmd+MiEuAr0XElGrdCuDpAXpcC/xDRCymEm619vA3VA55PhSVX1F3AP8R+BZwNvBPwD8D3xtg29K40NrayurVqwFYuXIlAMuWLQPgxhtvHHDZadOmMW3atEHrpP40LOQy89fAwv3nR0RnZt5cHcl9C/h2tf554KIa1/0KlXNu+8+/l8qFIPvPn9Pr604qtw6QmU8Dp+xX/oYeMnPVftN7gOXVP/v7k0HalyQdIM24T25V9YKNx4BnqYacJEn1dsBvbM7MT9ZaGxF/CCzbb/Z3M/OyvuolSeptVD+9IzO/DHy52X1Iksam8f5YL0lSwQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrEMOUlSsQw5SVKxDDlJUrFG9QOaJZWpra2trnVSfww5SQdce3t7Xeuk/ni4UpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJUrEnNbkCSAH79erDl5YlEwPHNbkbFMOQkNV1bWxvbtm0DYMaMGbS1tTW5I5UiMrPZPYxr8+bNy87Ozma3IUljSkRszsx5g9V5Tk6SVCxDTpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJULENOklQsn3jSZBGxA9jS7D6G4Cjg+WY3UQfux+hSwn6UsA8wdvZjdmZOH6zIkNOQRERnLY/SGe3cj9GlhP0oYR+gnP3o4eFKSVKxDDlJUrEMOQ3Vzc1uoE7cj9GlhP0oYR+gnP0APCcnSSqYIzlJUrEMOQ1ZRFwTET+OiIcj4u6IeHOzexqOiLg+Ip6s7su3IuKIZvc0HBHxnyLi8YjYExFj6qq4iFgQEU9FRFdE/I9m9zMcEfGliNgeEY81u5eRiIiZEXFfRPxT9ftpWbN7qgdDTsNxfWaekpmnAncAf9rshoZpI/COzDwFeBr4TJP7Ga7HgA8CDza7kaGIiInAF4CFwFzg9yNibnO7GpavAAua3UQd7Ab+e2bOBc4ALhuj/x/7MOQ0ZJn5816ThwBj8sRuZt6dmburk98H3tLMfoYrM5/IzKea3ccw/HugKzOfyczXgL8DFje5pyHLzAeBnc3uY6Qy8yeZ+VD165eBJ4AZze1q5CY1uwGNTRHxOWAJ8BJwVpPbqYdLgdua3cQ4MwPY2mv6X4B3NakX9RIRc4DfAv6xuZ2MnCGnPkXEJuDf9fHSZzPz/2TmZ4HPRsRngD8BVh7QBms02H5Uaz5L5VDNrQeyt6GoZT+keoiIqcA3gI/vd9RmTDLk1KfMPKfG0luBdYzSkBtsPyLiEuA84H05iu+nGcL/x1iyDZjZa/ot1XlqkohooRJwt2bmN5vdTz14Tk5DFhHH95pcDDzZrF5GIiIWAJ8GLsjMV5vdzzj0Q+D4iHhrREwGLgZub3JP41ZEBPBF4InM/Hyz+6kXbwbXkEXEN4C3AXuofILCxzJzzP0GHhFdwBSguzrr+5n5sSa2NCwR8QGgA5gOvAg8nJm/19yuahMRi4C/BCYCX8rMzzW5pSGLiK8B86k8vf9nwMrM/GJTmxqGiPgPwHeAR6m8twGWZ+a65nU1coacJKlYHq6UJBXLkJMkFcuQkyQVy5CTJBXLkJMkFcuQk/QGEfFKs3uQ6sGQkyQVy5CTxoGI+LOIuKzX9KqIWBER90TEQxHxaES84RMAImJ+RNzRa/qm6qPQiIjTIuKBiNgcEXdFxLEHZGekITDkpPHhNuDDvaY/DKwBPpCZ76TySRI3VB/tNKjqMw47gAsz8zTgS8CYe1qJyucDmqVxIDN/FBFHVz/FfTrwAvBT4C8i4j1UHuM0AzimOn8wbwPeAWys5uJE4CeN6F0aCUNOGj++DlxI5SN7bgP+gErgnZaZuyLiOeCg/ZbZzb5HfHpeD+DxzDyzoR1LI+ThSmn8uI3Kk/4vpBJ4hwPbqwF3FjC7j2W2AHMjYkpEHAG8rzr/KWB6RJwJlcOXEXFSw/dAGiJHctI4kZmPR8ShwLbM/ElE3AqsjYhHgU76+MikzNwaEX8PPAY8C/yoOv+1iLgQWB0Rh1P5WfKXwOMHaHekmvgpBJKkYnm4UpJULENOklQsQ06SVCxDTpJULENOklQsQ06SVCxDTpJULENOklSs/w9Wz7/RpwbKjgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -723,7 +737,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -731,21 +745,23 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 15, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAF4CAYAAACRqWnRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XecXGXZ8PHfmTO97WzLbrLZTSWTXkgBAoYWQIqKoqiP\nndeuoFgfFfVVHwsWFFSwPigvgg2lClKkB0ghbUkyJNmU7X36nH7eP2Znsptskt1kN9lN7u/nw4fk\n7JmZew7DmWvv67qvW7JtG0EQBEEQhLHGcbIHIAiCIAiCMBgRpAiCIAiCMCaJIEUQBEEQhDFJBCmC\nIAiCIIxJIkgRBEEQBGFMEkGKIAiCIAhjkghSBEEQBEEYk0SQIgiCIAjCmCSCFEEQBEEQxiQRpAiC\nIAiCMCY5T/YACqLR6BuALwJLgYnA1bFY7MGjPOYC4CfAPGA/8N1YLPbHUR6qIAiCIAgnwFiaSQkA\nm4BPAUfdUCgajU4FHgaeAhYBtwK/i0ajl4ziGAVBEARBOEHGzExKLBZ7DHgMIBqNSkN4yCeAhlgs\n9qXCU0Sj0fOAG4EnRmeUgiAIgiCcKGNpJmW4zgaePOjYv4FzTsJYBEEQBEEYYeM5SKkG2g861g6E\no9Go5ySMRxAEQRCEETSeg5TBFNJER61pEQRBEARhbBszNSnHoA2oOujYBCAZi8W0oT6Jbdu2JB0o\ngentTrLmjv8HNuQMm2xzKxoS9weept6/C4AWdze6w2RmdhJfbHonDhskh4QmOWnw1yA5ZbyhIA7Z\nQd3yhXh9+YkdVTOx7IHx03mLJ9EVV5g6MQzA3tYkUyeGCfndhAPu4nlZRWd3U4IZk0vwe13DuEyC\nIAiCMCYdtf50PAcpLwGXH3Ts0r7jQ9bTk8Hh6HedHDLTr76SXFrJ/7wrgapoXNN7Hme2Z5jkMXnS\nuJ/7tHvZ5W/hX9OzXBlZTSTiJ6vbhHtUFk0JEYmE2NGcZPFEL2G/i4xi8Pz23uLLqIZJW69COqOS\nUw22Bj2YlsWe1hTTJobwup1csryWkD8fqMRTKmvrW3Bi0ZtSmToxjM9z9P98suwgHPaRTOYwTWs4\nl+akGo/jHo9jBjHuE2k8jhnEuE+08Tru4SotDRz1nDETpESj0QAwkwOR1fRoNLoI6InFYo3RaPT7\nwKRYLPaBvp//Cvh0NBq9Gfhf4GLg7cAVw3ldy7KxrIGzGxVV5cU5mtoZNQCkczqe7R2cM2cCV7kv\nYtNf1rE7vovnfPfz3bd8nQklYXp7UoT+9HdqEyFIwIS2JJLRjO6WUXQJM+5mQUgnINuoukljPEP0\noispiQQBSGY0LAvmTyvn9cY4qmbic+c/oIZpYVk2WcXgtT09VEZ8uOShZ+tM08Iwxt+HfTyOezyO\nGcS4T6TxOGYQ4z7Rxuu4R9JYqklZBmwENpCvKfkJ8Crwrb6fVwO1hZNjsdhe4EpgNfn+KjcC/ycW\nix284mdExdMquRx8fvE3AOjV27n7tbuIp1VSOrTOXIq5+GysJefQO2spvpWriJx/IeFzzsU/sZqq\nRfOZtGIJFUsWka6dhZVTMBLJ/D/JFJaqYiRTaKk0yYxGPK0ST6tkFKM4BlU3eWFLK8nskLNagiAI\ngjDujJmZlFgs9ixHCJpisdiHDvOYpaM5roJCLcmrr3diWTayvYAaT5RmNcbtW36GGa9hsnsu+3p0\nMrtSeN0yOH0ongCy00nGMons3EgqEURzycQVi+YOJ+mObpxyfvLIsCBpOFi/3ySdUVnjdOP15dM9\nimbgcOQvj23bpHP6ITNAgiAIgnAqGTNBylhXFvZy2dlTSCZyGH05wmTwi3zx5Q+TtDr40d4PMMlf\nxzzvxbjty5hoz0SWHazb3o5hWHTEs2TCUbrCfrwumZzPImcqrF5RQ2WJb8Brtffm2LC7hwVnVBLy\nu0nndNZtbwfJIpXVUDULpHx6CMApOwj6jlxMm8xovFTfxvI5Ewj73Uc8VxAEQRDGAhGkDEN5iQ+H\ndSBH+Pa5V/Nyyys82HgXuq3Skt1PS/ZOnui5k5klUa6a9launPpWSuXJPP1qM4FJFaxYUkM44CaZ\n0bC3tTOxropI8EBbl3ROZ+uOOC1pE3dDD163jKKZNHdliAQ9bHy9i8bOFABr6lvxuvP/CVcvqz1i\noGJZNqmsJmZfBEEQhHFDBCnHIeB18/0Lvsf56z+IWraZxxsf4OnGpzAsg12JGD/b9AN+tukHzC9f\nzGz5Us4qeRPhgLsYlHhNFTORwDAOzGwoGR1bVagNwIIqDz6Pk3ROR0s7WbpwEgBZzUACFkwvR5Ik\ntuzuoieZX410tBkVQRAEQRgvRJAyArxygDdOfwcfWPheepRuHml4iH/u/DsvNj+PjU199ybq2cTD\nXb9ko/1fXLfgo5QYFYTrXybeESTnkovPlTIklF43lVqcDe1lOGUJw7SJp1W2+rw4XU4MwySe1tja\n0A1I7G1LARJet3zUGZX+klmNdds7RApIEARBGJNEkDLCyrzlvG/uB3nf3A/SlmnlwV3/5J7tf2Jb\nz1YUK8M9u37Lvbt+x/zgKuaFLmelbxGaaRL2u3HKDnK6RTyTwFsWweXzs3xqCMm22djQw9JpIUJ+\nN8msn5d39rCiLoiEjUPNMX9GftmyMYw19SIFJAiCIIxlIkg5Th6XzOy6Ujz9ZkMKqgMT+eiiT/KO\n6dfx+xcfYYN6H8+0PIppm2xNP8tWnmVtejarwx/jo0uvJRxwk+hNU7nrfso8YerTARSlCdkyKOlI\no6gt2C6ZlCGhJtykkrtx2waRzgzWzAkomkEmpw+ocREEQRCE8UoEKcfJ53Eye0rpEc+RJImZgSV8\n+LyrSNsd3Fn/O+567U4SWpyG1A5+k7oR984Wbjr3a0CQ5PyzmTIlgmNXL1tskLBpVNN0lQTxuGQM\n00J368T8LkzLZr+WpbUhTmt3BmjlqpVTh5zyKfRcWbV4kkj5CIIgCGOKCFJOsMmhWr5+zrf48JzP\n8qNnf8sjnb+iV+viF1t+RCy+jZsW30JWcpN1elFxggPmTi1D8nhYOX/igP18IL+0WKpvZcH0ctbH\n8scM0yKd0zFMC6fswJZlEhkNRTOLy5YLj1VUE023RMpHEARBGHNEkHICDJYS8sp+VpW9nTM8K7l9\n3420mzGe2P8Im1u2s8p1PYp6Dm2tPVhI+I0cQZeDElshYJgDnts0NIJGjqCRw2dpWPjI5HTW7egA\nwOGQ8PncJFMK6ZzG2m3tOJ35pnCKZhSXM2cUY0CaSBTVCoIgjKyNGzdwww0f57HHniYQCJ7s4Ry3\nE/F+RJByAgyWEioNeTh/cQ2pbCUB+fc8pd7Co/v/QYfRwN+NG9naM58L00upc13M/JRJiRv0VxqI\nH/TcimZS2pbE6A4Q6VLpmb0Cs29WZGl0AqUhDyURP4l49pCi2mRGI5XVae/NHrKJlSiqFQRBGHmS\ndNSNf8eV0X4/Ikg5iUpDHiQJwt4gPzv7V5y540xu2XAzOStFLFlPzFVPqfwYiZoPc92c/yLkCh3y\nHImMRm99K5OnlxPf2QPygdmakN9FJOShNOxFMk3iKfWQQMUGTDMfkMTTavF4/72CBEEQhPHJMAyc\nzvH7VT9+R36KkSSJD8z5GJH4Kl5OPMia1F9ozTXSa7Zzc/13+eWOW/ngjOv4RPTTOKQDWxxlcnrx\nzw7LQNJygz5/Kqvx5PrGAccMwyKr6CSzGut3dLKzKVH8WWGvoHROZ0OsU6R9BEE4qZJqgp3x14f1\nGFl2EM74SKZyh8wWD8UZkVmEPSXDeoyu6/zylz/jqaeeIJPJMHv2HG644XPMnj23eM6WLZv41a9+\nSWPjfs44YxZf/vJNTJ8+A4C2tjZ+9rMfsnXrZjRNY+LESXzyk5/h7LNXAtDQsIvbb7+NzZs34fP5\nWL78LG644XOUlEQAuP76jzF9+gxkWebxxx9lxowzKC0tw7ZtvvWt7xXHYBgGV1/9Rm644fNceunl\n2LbN3Xf/gQcfvJ+eni7q6qbwgQ/8Hy644OLiY1566QVuu+0WOjramT9/IW9845XDvqbDJYKUk8zh\nkAj53TgcEpZl45b8nF/6bt4QeQdP7H2QbZm72ONqJG2k+UXsNrRtLVzOeQOeoxSweoJUtiexJQf2\ngppDXsc0D6SAQv4DK3+aO9P88/kGls2upKYyn1NMZXVe3NqCZdki7SMIwkmXVBMsvXsBCfXghPfo\nKvFE2PDercMKVH75y1t57rln+PrXv01VVTV/+tMf+fznr+fPf74fyG8Qe/vtt/HZz36R0tIyfv3r\nX/DlL3+OP//5H8iyzC23/ADLMrnnnntQVZvdu3fh8/kBSKfTfOYzn+TNb34rn/nMF1AUhTvu+Dnf\n+MZXuPXWO4pjeOyxR7j66rdzxx3/C0Bj436++c2voCgKXq8XgFdeeQlVVTn//AsBuOuu/+WJJ/7N\nl770VSZPrmXTplf5zne+QWlpGYsWLaG9vY2vfe3LvP3t1/KmN72VHTu28Ytf/HRErvORiCDlJAv7\n3Vy8dDIA8bSKz+Nk8RkVOCQJXX8LF+uXUTKxie9su4m9mQb+7HmcD6z+ImWe8uJzFLrSdm5swpad\nTHcNPuOh6Sa2ffRgw7ZtVM3E4Ti1cqeCIAijSVEUHnjgPm666VusWHE2AF/60td4xzte4eGHH2D2\n7DkAXHfdR1m6dDkAX/vat3jb267gueee5sILV9Pe3s7FF69m5syZ9PZmmDChuvj89933F2bNms1H\nPvKJ4rH//u+buOaaq2hqamTy5FoAampq+cQnri+eM3HiJDweL8899zSXXno5AE8++W/OO+98PB4v\nuq5z991/4Gc/u4N58+YXH7NlyyYeeOAfLFq0hPvvv4/JkyfzyU9+BoDa2jp2797FPffcNVqXExBB\nyphUWGXjcTtQ8bKo7nxu8v+EDz/7VpJGkp/uupXvrby1eL4NZLM6hi8I5AMLh5rDTCTQUdFsjXhH\nN7sbezAUFa+rX7pI0dEVnY07u4rpHkUzaexMAxJZ1RC9VARBOKnCnhI2vHfrsaV7Qicu3dPc3IRp\nmsyfv7B4zOl0MmfOPPbt28Ps2XOQJIl58xYUfx4Oh6mrm8K+fXsBeMc73smPf/wD1q9/hSVLlrFq\n1UXMmDETgF27dvLqq+u45JJVA15XkiSam5uKQUohGOo/hgsvXM3jjz/KpZdejqIovPDCs3z72z8A\noKmpEUVRuPHGTw34RdY0DWbNmg3Avn17mTt3/oDnnT9/AaNNBCljVOFz0tqTYU19K1DHXNdlbNP/\nzX277mWh/S6q/XWHPM7hkLA1jbLta8n1huj1OlF8bnp7DIy4l2nOdqo8B/5nVXWTKiVD7YwZBIL5\nKcVUVqMrkaM7oZBIqyiqiaLlC28ty8YpO8RGhoIgnFBhTwlLq5YP6zFOp4PS0gC9vZni7vWjqfAF\nf/CKF9u2h7wK5qqrrmblyvPYtGktTz/9LHfddSef/vSNXHPNteRyWc49dxWf/OQNh8yKV1RUFP/s\n8/kOed5LL30j11//MeLxOGvXvoTH4y3O9uRyWQB+9KNbBzwPgNvtHvZ7GEkiSBlD+tenhP1uzpk3\nEZBYOT8/3derX8+3Gp7AwqLB+TjvWvLNAY/PKAbrtrcjud30zFnBnDmVlJZ4iZT46djVifO5/VSt\nmE9dpb/4mERG47Wt7Wzem8TrzgD5mZSepIJmWNTv6enrZAtr6lvxuvMfmeFsZHgwTTfpjOeojPhw\nD7KdgCAIwng0eXItTqeTLVs2sXr1ZUC+QDUW2861174byH/Zv/baViZMqAIgmUzS2LifKVOmFp9n\nwoQJvPOd7+TSS6/il7/8OQ89dD/XXHMts2bN5rnnnqa6eiIOh+OQ1z+SBQsWMWFCFU899W9efnkN\nF120GrlvNejUqdNxudy0t7eyaNHiQR8/deo01qx5fsCx+vqtwxrDsRBByhjSvz4FoCToxuuWi11m\nJwYmc97E1TzX+jgP7L2XlXVLWV59FjWhyYc8l+XxIZeU4Ir4cJcGcIZUHORb7B/MNgxsS2Hx1HKC\nXheprIaWzmC7vSybXcn6HZ0gwcr5E5EkiQ2xDgzTOuaGb26XXCzSFQRBOFV4vV6uvvoabr/9NkKh\nMBMmVHHPPXehqgpXXXU1O3fm24L/4Q+/IxwuobS0lN/85nYikVLe8IYLALjttp9w7rnnMX/+bBob\n23j11fVMnToNgLe97VoefvgBvvnNr/Ke97yfUChMU1MjTz31OF/5yjeOOtOxevVl3H//fTQ1NfLz\nn/+6eNzv9/Pud7+X2267BdM0WbhwMZlMmq1bNxMIBHnjG6/k6quv4S9/uYfbb7+Vq666mh07tvPo\now+PzoXsRwQp40AirSFJ+WXBV9b8F8+1Pk6v2s1Hn/gQANX+SSypXM7cyJm4s9NZYJ13yHNYmoqv\nqxllfRNx/4EIXNFMIi0ZWr0VWNndZKT8sZKOHPGZSw55Htu2UTSDZEZDlh0jsvInpxrsa0sxpTqE\nzyM+koIgjF8f//j12Db8z/98k2w2w+zZc7nlll8SDOZ/MZMkiY9//NPceuuPaWpqYtasKDfffEux\nl4llWfz4xzfT2dmB3x/g7LNX8ulP3wjkUzp33PF77rjjNj73uevRdY2qqomcddY5xQDlSIHKpZde\nzt13/4Hq6okD6mYAPvKRT1BWVsaf/vRHfvSj7xEMhpg1K8r73ncdAFVV1Xz3uzdz2223cN99f2XO\nnHl8/OOf5vvf//aIX8P+pKGs9jiVdXamhnQBTnRuE6A3pfLspmYgHzjsbUtSVebjT03fZ6fxNDk7\nOejjPLKXOs9cLph2LudPPZdL5lxIy36Lux+p59qVk6mtDBTPTWQ0/rOxGcPhZOXsCjbs7kXVTRra\n0thOF1OrQyQzKvG0xvRJYUBib1uSqdVhwMbhcHDp8trj2nl5sBmZk3G9j9d4HDOIcZ9I43HMIMZ9\noo3XcQ9XZWXoqEUu4tfWMazQOl+SIJXTCfpcTK8J4+Cr2HyV6Wco7ExvYmPnejZ2rmNnfAcAqqmw\nM/sqO197ld++9nN4BGqD0whrUVbwJaZFlhVfQ3aqmL44EhJSIIjDm2PRGRE0qR2QWLVoEgBr6tuK\ntTFgs3BGOVt2d2FZ9nE3fDs4zdVfTjXY3ZQQsyyCIAinIXHXH+NKQ/kZikjQQ21lkHhaxeOWAYmF\n1XNZFVwC5NM+caWXVzvW8/z+Nfyn4QX2KfVkjXzRa2N6D7CHdz/xBO9v+ACfil5P0BUik9ORcxkM\nhxMjmUJJZzGSMrKSwZYP//Ho30tlNBu+qZrJjv29VJf7RZAiCIJwmhF3/VNIxFvKRXWXsKR0FYvs\nZizbpFXbzX6tnk0dL7E18zSGZPCH3f/LA7v+zvvtN3O+vZSI5aTNV0FHbwM7u3yk9+pk0gq2JLHG\n68XpchZ3UDYsm71tKVTdGtBL5UiOZ0fl/iueBEEQhNOLCFLGGYdDIuhzk1H0w57TP03klKdSEnkT\nr2xp5s5Hn6Jxwr28HH+GXinJrdLdvFAe4+ZFt5FqlPBVBXFubGX+vAp2NfZiy05WLqopri6C/M7J\nYLNgejmqbtLRe/QmSccz0xIOHD4VNBhRhCsIgnDqGN5Ca+GkC/vdnLdwIp6j9BcpDXmIBD1EQh7K\nwl6CPhc+dx3fP+dO/nzVfUwrmQ7Ahu51/LHl9zglu7g82e924nU58DksAkaOoJGDdAojkcRMJnGo\nSv5FbBvTtEjndBTNJJnJ76QcT6ukc4cPokaTblo0d2XQj6G7pCAIgjC2iF81TzOprM6ZU1bx0FXP\n8X+efCevtL/IutaXeVPnPFKRErR4iPSrjVTG44BELtdA2uHkxd78bIph2sTTKjlbpq0nW2z41hnP\nAXax2RscvuHb8aR/juZIRbiCIAjC+CKClNNEYal5bH+ctp58C+QqazHwIq8ntvNsyQQmB6pIpxR2\nl1Tgq5BwOCTmL6rBRsK7rZMzp0ewLZt1O7uZN6cadnQAEstmV7K1oYeV86sJB9yksnqx4dtgTuTO\nyiL9IwiCMH6JdM84dCzFpOGAh0jAzbLZlVywpIYLltRwaTTf9M3C5DfKdTzn+l8c/i6WzCjnrLnV\nuOWBH4+g14UsS0iWiZ1KIWnqoK/Vv+HbyUr7FIj0jyAIwvglfrUch441peF0Ogj53cXGaxdOPZ9l\nWy9lfeJxdFvl0ZZ7kOx72ffKcj4cuJzS7lJyyTCa5ESJu2nr2cmrcSeJtEp6fxM9WZNcxSRkWULR\nDNZua8fpdPQ1nksBEl63zPI5VUccl0j/CIIgCIMRQcppzOVw8dG6H/KFqi9z6/qfsjbxGCYG/9HX\n8p/4WuYFl3Pr4h8zyT8Z77ZO/FMjuHZ2U6ZpLJpezqt74thuL6sWTRqwAqitO4uqGUyfFKahJUE8\npRQLayG/Qqjwd6fsGPX0j0j5CIIgjE/ijn2acEjgccmkcjrxdD5Nkw8WDM5wTefdVd/iw7O/wC/X\n/ZRt9r9RLIXXcuu4Ye0n+fOqfwx4LrfTQcjnxC9b2GiEAwdmZ9I5nU27umjtyYIk0dqdwTDtg2Za\njL6Zlnyh7dFmWo6XqouGcIIgCOORuGOfJgI+F9MmhtnZGGdnYxzI7wfU0JKkrSdLVjGYkJB5f9Ny\n/JGl/NPzOI86XmBb4jV+9Z+bmKVfQ6pbR084qVC6MJJeKjtS2JID+6xpQD5IKRTLTiwPsCxaydYG\nByvnTxyk14rEwhnlvN4YP2KflWRG46X6tuNKBR1cwyNmVgRBEMYHcYceZzTdpDOeozLiw32UXin9\nlYW9xQZvBcmMhqoZqIZFacjL7LoIz/SeyVXLa/hR2TtpfeFdbOrZyO9yD/DV2msIzVqOa2c3cWsS\nzmglnbEObNmJ5D40ePC48vUvXrcT+TAFvoUC21R2YPqn/7LlkUgFHVyXImZWBEEQxgdxhx5n3C6Z\nmsrgMT22sA9Qf4V9gDwuGdsG3eWFUBh3JMj3zvsFb3n4QjRL4+nev7EqNxdNt3D2i40k08BMJDCM\nvj4qGR1bVZD7GsNpusnzW1rxug88yDAs0jmNjTu7aOpMo2oWrT0ZCumf1ctqiQwy1qEYShGuwyHh\ndTvZ3ZJg7pQyEagIgiCMUeLufBortNhX9RwAsf29xNMq63d0sH1vL/GMg5m+M9meeZn27s00PvU0\nSauESc4UVspHZXuSQsM3uy8ISeoSereLcrUbe2ENlm0DEkujEwj5BzZ2S2Y01tS3smB6OVsb5GL6\n53D9VYZiKDMvYb+bs+dV8czGZmZMKhFBiiAIwhgl7s6nsUKL/Wc2NrP4jAoyOZ3GzgzLZk8g5Hez\npr6N+VVRtje8TJs3QeWKs4m3GkRnlxPwOOnc2ATA/CWTKSnUnGR0XJvbiFOL5DowkxHyu4gEPaRz\n+mGDkP79VZyyA9l9aLfaE0HUrAiCIIwN4g48Dh1rXcqRRIIeHJKEU84XmYYDbrxumVnhM6AB4mYn\n73n1Ci4MXctKx0eB0BGfT7JM7GQCh6pgeXxAfuXPk+sbi+cU+qkUVv8U0j8g4fc68fncLJgaOa73\ndbj0z5Ea4omaFUEQhLFB3IHHoeOpSxmKQj8TRTNYVXcVD5b9g609r9KrdvMP9Q6eePSPXOu+iHNT\nZxEiOGi6p7ACKNKl0jN7BXBg5U8h9VPYUbmw+qeQ/lk5vxqn08Fr++Icb6PYw6V/RJM3QRCEsU8E\nKUJR3/Y+1O/pBqS+WY4gb3PfykzfS2y276VB2UjKzvJ79WHu9jzFJSXv4uZzvkIk6M0/uJDu6VsB\nFN/ZA/LA2Z5C6gfA63YW+6xk+rXQt+182qX/yp/+Dl4FNJ6IdJIgCMLQiDvkaeJw/Ub6pz1Kgm6m\nVodZOb+676c2C6aXs35HJyv9F3BD9B3cX/8U67Q/sab9aVQ7x8PxOzmrYwEfm/xhAJxOFafUitS3\nukeyTGxVwUgkAbCU/J8Nw4WZ0XCo+aLddE7n+S2txXb6DodEU2eGdEYlq+jFRnD9HW6X5eN1LHsj\nDYdIJwmCIAyNuEOeJoaS9oinVbzu/FJkacD3c36FDsAM/xLet+Jy9uW28bnnP86+1G5+/Oq3uWbO\n1VT4KrA1jcrYOiRsjGSISKdCq7eCZHY3AErcTTLxOrhsFM2krD2FfWYdRl+vlYnlAVbOr0aWHWzY\n2cXSMyoIeAd+TAu7LCfS6iFFuP1b7hf+nsxo/OfVJlYvqx1SQziRChIEQRgbRJBymvC4ZWbXleI5\nQqFtId2zcWdnsahV1S32tef/bRgWnYkc+X4mlVxb+TV+lLqOhBbnc89cz7dWfpdSdw2d0eVIpsHU\n6ATisU5cDifhRfnZGe+2TsJzK4kEXCQyGj3bOwc0g/O4HIQDbpyyA5/HSUnAPehsyWD9V+BAD5b+\nLfj3d6QAOGtu9YhvYHg8FM1gx76sSPsIgiAchrgzniZ8Hiezp5Qe8ZzSkKfYlTaV0wn6XEyvCaNq\nBq3dWeZPL2NPa4qV86sJB9xcQA0Njndz3657eWzPIzy25xEWVSxlhuMCloQuQQqXYPqyODUFCRub\nQ9Mnjr5mcDbSgCZwR3Ok/iv9JTMaqaxOe2+22H5/NHddHopCOkk3bZH2EQRBOAJxZzyNDfZlXehK\nGwl6qK0MEk+reFwysuwozrT09+Wl36JH6eaZpiewsdnctYHNbOCfHT/loeRKZrKKS5qD5NLVaJLz\nkHRPaVuSXDKMJjkPNIE7exr4vEN6D/2LcIFB+7DYgGnm013xtEoyo9EZz5HK6iclSCmkkwobPRaI\nglpBEISBxJ3wNDbUfXEKP43tjw9oX28YFvGMyjtCP+CNsz/P+vjjvBJ/lP3KNmws1na+wFpe4K9u\nF+fLF3DDnBvxNpUNSPf01rcye/5EvEgHmsANshfQUBzchwXy6Z+sopPMaqzf0cnOpsSAXZivWjlt\nzKwSEgW1giAIA4k74WnM4zp6nQqA1y0zuTLAstmVbG2Qi+mefF+TNlbMrSIcqOWtnEky8znuf/UV\nuvwv8e/Gf7InuQsDnafanmBN14u8t+LLnM97DvtakmViJhJIsoRDyQ3r/Rzch6WguTPNP59vYNns\nSmoqgySJ+griAAAgAElEQVQzGumczv72NPG0etKClNFeRSQIgjDeiSDlNDaUOpXC/j6SpPftaiwX\n+5oAh/wdoC44nfcveQM3nvlFfvfc46xPPsoLib+RM7L8tu2bZB9/kS+VvhNTlw5J91QoXeRyu/Nf\n4F1ZrHnVMMwg4uAUUKHNfsh/YJwuWUYzzOPaXfl4DbaKyDAsdjUlmDdNbHwoCIIg7oLCEfXf36cg\nkT6wvLew105B/yXAkiRR651NrXcOnzzn/Vz/zIdoy7bwp9zjNISS/HjprfTu1Aame6xJ+JbU4JQl\nUg0JHO7h7Yas6Yc2fktlNQzTGlCTohompmmTVfTDPNPJYVgWu5oTzJwsNj4UBEEQd8HT3HBWulh9\nlbMbd3YCh+69Ewl4MCyrWO/hdec/Xg6HxKKKM/nnlU/ywX99gFhmHS91vMw7X7iWD0+8hfNKZgMg\neeKY2MglJciyA8urDTqOw8nkdBpak1g2A5Ymp3M6mm6xcWdXsSalpStDMqPxyrYOJk8IDUj5nOzV\nP4IgCELemApSotHop4AvANXAZuD6WCy27gjnfxb4OFAHdAF/B74Si8XUwz1GGGgoxbOF2omysLe4\nRBko7r2zYHo5Wxt6WDG3qu8RUrFuJaMYrNveDkC5r5LPTruDtdbvuXPbHTSl93Hz7g8wZcqdnDvp\nAmQth9S3JFmSJeRMEjPhxlAHpnvynWoPbFxYPN73HhbOKGdSRQDIBy7xtIppWiw5o4KQ300qq9Gd\nUNB0E1U36UkqGKZVbLU/1ILikVZIrWX6ze6IFT+CIJzOxsxdLxqNvhP4CfBRYC1wI/DvaDQ6KxaL\ndQ1y/n8B3wc+CLwEzAL+CFjkAx1hCIZSPHukDqxet3NArUr+mFxcrmya1oAOsLou8an5NzGj5Ay+\n+fKXyFlpPvzUu/jsgi+xMBbGj4dcriH/hd2ZIdMRQD+oHb6imURas8WNCw8W9OVrUtI5nXU7OlA0\nk9aeLFsbevC6ZQzDQjctcqpBS3eGNfVtxZmX1ctqh3X9RtJgqTWx4kcQhNPZWLrr3Qj8OhaL3QUQ\njUY/DlwJXAf8cJDzzwFeiMVif+n7+/5oNHovMPg3lzCowxXPHmvKo3/XWsh3VW1oSdKTzBH2e2jq\nSgM2E9wXccPUX/KrfZ8nZ6X5yZbv4/UEODd4JV9Z/EmmhGpJ7+wicEYFAe/AmZRERiO+ue2QjQsP\nVljts3BGOfndlquLgVRzZ5q/P7O72IZfkiQ2xDoO6bEyGo50bQdb8SOKaQVBOF2NiTteNBp1AUuB\n7xWOxWIxOxqNPkk+GBnMGuA90Wh0eSwWWxeNRqcDV5CfTRGO03DSQFK/L9T+XWshnxJSdQtsWDKr\nAqfT0a9j7du4YvFC/nvN9WxoX49iZ3gq9VeefvLvXFp3JSuC72J5eAbOg77IZaeK5YkjaznMRALD\nyP/cSGaxDQMjmcLwmBgZHUtR8Ok5nPqRM4C2bReLgGXZccRzj9eRru2gK35EMa0gCKepsXLHqwBk\noP2g4+1AdLAHxGKxe6PRaAXwQjQalfoe/6tYLHbzqI5UKDpc59RC19qCfCrJHnQJcyQ4j3+97Sme\n3vMCP3jxp2xO/QfLtnhs30M8xkP8s30xb591LefWnMe88gXIjvzsiWToVMbWkUuXYPelalI5B0bc\nR2pDG3GfRVKXUOJuetsVWtphjcOF15cPaNI5Hc0waevJsqa+DaC4AzPYOByjG6gIgiAIRzdWgpTD\nyX9jDCIajV4AfJV84exaYCZwWzQabY3FYv8z1BdwOKQhNdMq/HY92r9lj7RjHXfA52LetDICPhdO\n55Ef65QdOBwSTtlxyLmFnymaSVY10AyLjGLgPGg80fCZvK/q+7ytqp39nkf5y+t3kdJTbO3axNau\nTQCE3SWsrDmXpZUrMaxpOKJLWbKkhnBfwJPpzOB6vpHIWQsorwwgZzT89Z14qgMoG1pZMruamsp8\nQW0ioxX3/3nDokkAOBywaEYlm3d3Fsd+tPfe31CvdeGa5FSDTbu6WDGnqpiGOty5hmmzpzXJ/Onl\nIz6bcrp9tk+m8ThmEOM+0cbruEfDWAlSugATqDro+AQOnV0p+DZwVywWu7Pv769Fo9Eg8GtgyEFK\nWVkASRp6x89w2Hf0k8ag4Y67FJhUXUIirfLCpmbOW1xDSXDwniW2LOPzuSmJ+CkND9xzx3I48Hpd\nNHVm2NLQQ1Nnhpe3d5BTDcrCXlx9QUBONeiMK8ysncJnLr6Fmy74Jt945FY2ZR9ha8dmbGySWoLH\n9vyLx/b8CwC/HOZhxyounXkxF0y9gMikKXiczYRCHiIlfmyHjNfrIhDy4JIlKv0WNcH8f2s/NmVu\nCUV2Fa+N1+smEPSA5Ci+L7tf3YtTdhw2mBjOtS5cr2DIh27FCYV9h1y3AofLSWVZgK54jsauLMvm\nTzrsucfrdPlsjwXjccwgxn2ijddxj6QxEaTEYjE9Go1uAC4GHgToS+FcDNx2mIf5ya/k6c8CpGg0\nKsVisSGtH+3pyQx5JiUc9pFM5oq76Y4HxzvueEqlrStNT08GSzcGPSeV0XA5IJXMIZnmgJ85gDNn\nlqMoGgunl4FtM29KhC27u1k0vYySvi/9REZDUXRWRCswNR1UF5dVv5dvz/8CpiPFmuYXeaH5eV5s\nep76rq0AZM0kj+5+mEd3PwxA2FXCRGUGEx5bzeUl80nqEr29brr3KjjbbDqfagJ/PgBRNBOac8RK\nZmH1XZc9rUkSSYWmzjSRkIfHX9pTDKIKLlleS+gwhcRDvdaJlEoup5FM5sjlNBLx7CHXrb/lsyr5\n18t7URS9eG5ONdjbmmTqxPBxz6ycrp/tk2E8jhnEuE+08Tru4SotDRz1nDERpPS5BfhjX7BSWILs\nB/4AEI1G7wKaYrHYV/vOfwi4MRqNbgJeAc4gP7vywFADFMgXMQ6nH4ZpWhjG+PvQHOu4DdPCsmyM\nIzze73FyweKa/PmDnBP0uXA7ZfweJ26nA8OwsCwrP6a+/wHNvtfRdIuueI6smg+ILNMi5I5w2ZQr\nuWzKlQDs6WrlNy88yK7sBtrYQiy+DYCkniApv8qNyVd5OvImPrfwK3j2OHBVBcjpLbjPrCPcl+6x\nMxo961uwEwbzp5X19UexWDC9HJdTYuX8iQNmTVJZnQ2xDlTNxOc+8nU82rUuXFNzCNe2//mFPxuG\nRSan89qeHiojPlwjNCV8un22T6bxOGYQ4z7Rxuu4R9KYCVJisdhf+wphv00+7bMJuCwWi3X2nTIZ\n6P+r/HfIz5x8B6gBOsnPwtx0wgZ9mlB1kxe2tLJq8aTj6sBa6Fhbv6enWKRa6FvSEc8ST+ebw3nd\nThwOCZ/PjSwfOstV6i1jUehCFoUu4o1n1WHKaV5qeZF/7/oPDzb8g5wd58H9D/FU69NcVfEJZk7/\nKJbLjRwO44yEgPwKIdvdDRgEfS7CAXe/ni/OQ/YjOlbpnH7IsubC1gGprDagh0w6p7NldzfnLZw4\n4DoP1uRNEAThdDBmghSAWCx2O3D7YX520UF/LwQo3zkBQztteVwyMyaVsLctecwdWA/uWJvK5oOR\n/rspP/1qMwGfuziD4ZQdlJcHMTX9qL9JlPvKuWrGm1kYvJDqljfSXP5P7mv6Mxk9zV9af8T65INc\naH4VM1mN4cmnVcyMhqxkcJij98Wfzuk8ub7xkOOGYZHOaWx8vavYN8brdqJoBnvbUiyaWTEgSBms\nydvBRGdaQRBOReJuJhyRz+Nk5uQSmjrTx/wcB/f+kCQOma3wuB2AVDzmdOaLVHu1oQcRtqYxr7mB\nd3ku4h2Vs/hm7x/ZYexldyaGy/w571v/KeL9alLKm1J0mSXY+ixg5PfoKcygLI1OIOQ/dCfnZEZj\nTX1bMVhr6cqwqznBS/WtXLqi7pDZlIObvPUnOtMKgnAqEncz4ZiNxkZ8hR2WnbIDW5ZJpNRD0iWp\n7OCBi+R2s3vyIpYsn8IbKoP8Lf0ePvSfT7E+/QT75V14lp5FZEIw/zoZje61+8nGdSTX6G4iGPK7\ncMqOo3azte18fUpvSiWV1Q+ZTTnc1gSCIAinKhGkCMdsJDfis+38DEuhnX6hJiWZUuhNKUQCnkN6\nlgw2q6C7vEjhEpyREB6nysLg2axPP0GWOK1KC3XMOvhNYCaTmIYLh5o77vcxmEzfHkIHK6R91m5r\nx+l0kEhrJDM6Ehme39zMVSunDdid+UgUzaArkUPRDOD4a2kEQRDGAhGkCCfcYKkLn8fJ4jMqiukf\np+ygJOJnf3Oc5ze3sGLuwIZn/XdXPhxb01jSbOZ7EQNffemj/GbXjZTL4WK6p9sIo6xvw+W0KWtP\nYc+uHvH3W9id+XBpn4LmzjR72hJURPK9EYazj5CmW3QlFDT99F4JIAjCqUUEKcJRDWWn5OE4XOoi\nEvQcCFKcDkrDXhLxQ1vp91dIDwGkshqGmZ/diadVUjo4Zl7B6tRWnux6iO1mA+9J/ZD/d8EfmeCs\no3vtfjI9Kt5lU/H5XfRs76RuFFM/Ib/riCuGkhkNp+zA3W/G6HAptaPVqAiCIJwKRJAiHNXhdkou\nSOd0NsQ6R7Q25WgO3m0ZIJFW6U0pPLG+kckVQQzLYm+PziWlXyUV9/KK8Tf2Zxp5yxNv5fazfkt+\ny6gDHKaBnUyMWtqnv8GWJueDLAtNN1E1R3Fpcmc8N6QaFcvKt86vjPhE8awgCKcEcScTjtvx1qYc\ny6zAwbstQz5dsrcthd/jYsXcwg4LEgtqg0zfeS4bS33cnL6buJbgxhc/xndyXyFgVBbTPaVtSYzu\nAGU9Wewz6xit2o7DLU1O53R03aIjnqM3rfZtfGj39ZSxj1qjYtl2cQmzCFIEQTgViDuZcMwKaSD3\nMDbhG8yxrlw5eLflZEZDlh3YB+9J6XLTMWsZb515KWU9Z/KFDZ+l3erlb+VbmKe/p5ju6a1vZfL0\ncnr2JZDcozcjVJhBmTOldEAwkcpqZBUd3bBwOR0smF4GQE9SpaElSUtnmll1g89oSQ4Jt1PGtCx2\nNSWYN61MBCqCIIx74i4mHLNCGiieVo943mgsVR5MIQXUGc8VZyEaWpK09WTIKgamO0vIdT5zg+ew\nLf0ST2f+SqVrCQ6mDHgeh2lgJhIYxoGxmhltRNNAmm6ycWcXXveBOh9FM+lKKAS8LhIZha0NPYBN\nRzxHMqPx0mvtTKoMDjqbEvK5qKsKomoWu5oTzJxcIoIUQRDGPXEXE0bdSC5VPpKSoJvJlQEkYOX8\n/CodVbdQNZPSkLfYzbZ2+o9580PnY9ga92ifZ/fTv+fDgTdR3lON0R2ktDtDLhnGPiiAKGtPjVga\nKL9FgDRgxU++BsVmwfRytjZ0F99DMqujGRbNXRniaXXQIKXQOl/TleMemyAIwlghghRhTBtuvYrX\n7QTs4nJlj0sG28bjOrBCaFlwAT88/6fc9MJ/kzUyvGJs45XENmYG5vOpqZ8iXHYmsxdMKu7QDPnm\nbz3bO0c8DXTwip+D9w8C8DhlZAl0wzxsoFdonf/wmj30JBXRL0UQhFOCCFKE4zbSS5T7CweGX6/S\nf9M+VTdRdRMkqXgM4Kq6dzHzgjfw/ed/xjb7fhJanF1KPTdu+gSTvbO43HcZM8unURuqZXKojpB/\nApbHN+zxO9QcZjKJpSgYiSSG4cLI6FiqCkjFYwDJnixaKk0qW4KiGQfeg2H29Vo5sLzaKTsGnVEx\nTZuelCr6pQiCcEoQQYpw3I62RPlgo1WjUqhJaevJFmtSGjvSaLqBaYEsSQT7NVNTNINzvB/gxxfd\nxEON93DHpp+TMDppUl7nt6+9fsjzB+QIU5vrmFIyhdpwHbXBfABTG6qlNlRHeaBs4Hg0jbLta1E6\nwygZH8nE6+CySeoSao8bbIlkdhe4bDKGxLNdLuJplZwt0xpXAAmnQyKr6GRyOpJDYv2OTnY2JQBY\nvax2QKDicEj4vS5E5xRBEE4VIkgRTrjRqlEpDXlYuaCaoM/FojMqsC0bVbdIZVS6kypLZlVQUxks\nnp/MaDgcDipDJVw39xPU5i6j2f0Mf97xJ3qtZnrV7gHPnzHjvNYT57WeLYO+ftAVYmrpFGr8tdQE\nJ1PhnkRispOzaqvROoOEFkSJBN2Q0fFsbgMkwouqiARckNFxbW6j1DA5c251sSYlHHDT3Jnmz0/t\nBCSWza4kHPCwpr6VZzY2s2rxpGKgF/a7OWtuFbtb8kGM2BlZEITxTty5hFNK3YQQdRNCAMTTKh6X\nTOoI51uWTTKjIUkSLoeHt01/L1ONy7hgSQ0uj0Fzqomm9H5inQ281LAdZyBOW66JpnQj7Zm2Acud\n03qK+o566qkf8Bq/bs3/++v7PNQEapjorcGj1nF55MOHjMdhmdipFA718AWwtm2jqAaafvgaFRA7\nIwuCMP6JO5cw6o5WszLa6Z+upEIyoxdTJYZhEc+oeF1OmrrSgN1XcAuyfKDnS8AVYFZZlFllUc4s\nU5mYbeaCJTXFQlfVVGlON9GUaqQp1UhzppF2tYXdXQ00JhtpTjdh2mbx+VRLpSHVQEOqAQArleYN\nyjXFFFC200Uio7GupYVUTmeN043X5843eTMtVM1i/Y5OPG6Zxs40IJFRjAGFt5JDwuOSkUS7fEEQ\nTgEiSBFG3dFqVkY7/aMbFg0tCZbNrqSmMkgyo7Gmvo0F08twOh3FtIpTdgxrUz+P7GF6yQyml8wA\n+vYbKg3Q25vBMCy6khkeWLeJiuocL8c2E4gk6dJbWdP2Cnsze3jefoSeBddTVzULMjry+maUriwz\n5lSwtzPLgjMqCfnd+WLZlEJ7r8LsKRGCPhddiRzdCYV4SqEk4MaybdZt72BWXYRpE8OEDiqqFakf\nQRDGI3G3Ek5pdRNCnL94Es1daUL+A5sUet1y31LfgZsXHq0x3XA4HU7K3RNZUlGJ3TO9OAuzqWUb\nV9z/Bgx0/mfL/+XPF99VfIxp2exoSRNPq2zZ3oLHJaPqJr29GSzbwc6mBE7ZQVciN2B2aPmcKlJZ\nDfswgZ5I/QiCMB6Ju5Vwwo3mkuUjSWbyy3eTGQ1FM0hltQHLlQFSWX3UxzHFW8sV5oU8KD/Oms4X\nuPofb+T/hj6J3lOFO61jaU7mGL3M9PiLQYo/kyM+cwmrFk3qey8qElnmTC2lpStDMqOypzXJnCml\nxb4yo908TxAEYbSJIEU44YazZDmZ0Xipvu246lWsvuKU+j097GpOoGhmX7v8LFnFoH9NSoFTPr79\niI5Ecru5YNqX2NbeyS51I69qr/P+1Ld4a9l/E5AX4ijzoXhrmLCkhpKAm0RGY+vmNjwe94AmdbLs\nIODNj9uybFTdxOdxFvvKHM+skEgPCYIwFoi7jzCmjUS9SlnYy7ypZSyeVUnI5yKZ0VA1A9WwBrTL\nLzhco7SR5PRFuGHiT3nN/Vd+8/odxLVe7uz+Msuld/MWPjbg3IxqoKkatmENaFJnmhbpnI6iGaRz\nOoZpk1WNERmfSA8JgjAWiLuPcMoL+9286dxpA4553DKQXwljHxT/GKZ1yCzESKeBJEOn6vWNnFez\njOXlX+CLPb+m106yzr6XM9vnMc0oIZfbTdrh5NkuF71JBVuSWOP1gizT1pNFMyzq9/TQGc/Xp/Qk\nFf7x7G4+dMUcJpYHBmwpIFI/giCMRyJIEU66kaxRGc5y5kKPk407OwccLyxRjgQ8OJ0D0z4jlQay\nnS46o8tZsLCaKwKrmdF1NasfPx8Tg9cDO1lYcR2+JTXYSLg2txHKKrjcLlYuqgFA1QwKzd22NnQz\nbWKYxo4UumGhG/kVSmG/+7hSP4ZhsaspwbxpZWI2RRCEk0LceYSTbrht9Y9kKOmhwo7BkqRz1tyq\nAX1GgOIS5RVzq0Y1DWS6fcglJTiDHmqcPqZ5F7NLWc8O/SUM76eRS0oAkDxxZMmJq2/TwUzu8LM6\nhmkV9/c53jEblsWu5gQzJ5eIIEUQhJNC3HmE005hx+BnNjYTCXoOCVKAQ5YmH4/8aqIDq4jyNTEW\nSAw4FnWexS7W06q/zt1NX2VVz0/xyD5sVUFWVZymg2RHNy/u6KapLY3tdIEErd0ZMoqBbtrkVJ0H\nXtjLjJpwcWZq9bLaYe8mLQiCMBaIIEU4pY1WN9uhKNS61O/pZm9bisIqonRW5/XGXjxuJ2vqW/G6\nnajZHKv2V7O2ZDKdchPrsk/wnseu4gcln0WPV1GZ7cAvWWRSEbJxL7VKGmXaHGbXRcC2mT2lFEU1\naO7KUBJwMX9aGZIksWV3F4m0Sk1lcNi7SR9MrPgRBOFEE3caYUzzuI+vXmW0utkORWnIw/mLa0hl\nNUAasGHgrpYEE8v9xZVFyYzGs+r5fEJdxj9S36deeY5txl6uS3+XD034IQ4WkHE5qJhaQevaFkxX\nKXJSY8f+OK09WWTZgW5a5FSDroTC1oZuQOoLjlq5auXU405ViRU/giCcaKPXDEIQRkChXmWkvxRP\nVPqjNOQhHBjY2Tbkd+OUJdyuA8fCATeugJ8ST4D3lX2bK8IfBKBL7eTe7h9g903LmH3BVlVAZkrE\nybJoJVOrQ6xaNIlLltUS9LtwSBKLZlawcn41E8sDAMNq9w/963ZG7loIgiAMl/h1SDgt9V/5cqIk\n0vn6k1RWwzAtNH1gnYqeVSnduZE2TznvMZcyM5LhtszfaNJiJPY/TB11qL2lmMkAE+Lt+B0W9uzq\ngS9i2+imdWDmyLZRNZNMTh9WfU3/up3hECkhQRBGkriLCKc8VTd5YUsrqxZPOuF1KXCgNqWw1DmR\n1khmdGw7zcNr9jAh4sewLPb1KuwPzUCSZUqqavngojfw2389Qs7M8mjJNqor38KsunLk9a10+CP0\n5CzaG+K0dmcACcO00A0bVddZv6MDj9tZ3C35+S0jk/I5GpESEgRhJIm7iHBKGaznim3bpHP6kOtS\nRjoVVKhNKaROmjvT7GlLUFniI+B1s2JuFQCqZqEafvy2ztlzJ1Ad8vPm2qv5y9572Jj7D9eYHwPK\ni+8Jy2JOhQuf5eLs+fkZlayi09qdZdnsCTgcEg0tieIMyrGkfMSKIEEQTiYRpAinlJHouTIaqaDS\n0IFUSzKj4ZQdfa3kBgZODkNn4p71aOkQbS6ZK9R5/AUw0Fm7/w4WJN+DmQxQ0ttJ1vSj17cSSWax\nF9YguQbOElmWjW7kUz+aYQ57zKOVEhMpIUEQhkrcIYTTzslclgwHNjzsTijE0ypr6tsAm33tSbKq\nQWc4Sm84gNclk9NnMD19Fg3WKzzmepkPzPs28qYU3e4wLT0arwVD9Eo6PbEegGK7/I2vd2FaNolM\nvv4lntGGXZcyWkRKSBCEoRJ3COGU5nHJzKyJsLctWTx2MpclQ37Dw2hthHhGwy07WNmXqklmdRrb\nU1RUlbBieV1xafKbtffys7ZXyFopPrf1Q6yyv07IrgDgjOoAXfEsy+r8AGjpDLbHy6rFk0hlNfa2\nJYs7Kb/0WhuXrqg75sBspNM/imawY19WzKgIgnBYYgmycErzeZzMnFwyYnvujISw380ly+sI+dwc\nLUyyNY1z9utc6TwXgN2ZHfxF+TTJzmdwZtMYsXoiu7egrH8ZZf3LlOytB3Ngase2C5smHl9gVkj/\njNTsk6Zb7Njfi6oPPxUlCMLpQfz6IggnQWHFT1tPtpjuaenKkMxo7G5J8NymFoJ+F4pm0ByZwxXl\n/4M78yf+2fM7slIvd3hvYal0A7WBy8nKOl0lQQD2KhlKNIu129rJKAaJjIaqm2QVg+bONBnFGBMp\nH0EQhKEQQYpwWjrZy5JLQx7OnlcF2APSPZpuIssOlsyqoKYymN/sEImz5ldzefhmVmxbyk2vfAYD\nlVc8PyJs7+eq8o9w9hllADgtg2XRMkJ+Ny3dWfY2OwiHfHSSA8Ac4gqfY63bESuCBEEYSSJIEU55\nI7EseTSUhb1URvxEQh4sy8bjlJEdEs6+L/rCjEehW23Q52J11RuJ5b7MPzw/J+mI80TvX9jX8zKT\nk9dT4Sgn0pFGSQWxXTJqzsIblyFYC4DRV4sTT6tH3R35WOt2hrsiyDAsdjUlmDetTNSlCIJwCHFX\nEE55I7EseTT0/0KPp1Wg0Pb+QDBx8A7KaR1CJefyQXkuf07fTIe8idelfbw/9R0+MuFmnCWz6CoJ\n4nHJZDw6qUwKO6mRzunIDon1/5+9846T4y7v/3tm+93uXtdJp15H3bIly5JsbIONbcA2JRQ7wC/0\nFiA/B0IaCQkQerEdIAH/SEwJhGpcsHHBFTd1ySoe1ZN0vW4vs1N+f8ztam9vV7e3V3Rnfd+v171u\nb3Z25pm92Zlnn89TXu7laFsYsKcjT3Zzt9HQTZNj7WGWzasRTopAIBiBuCoIBAWcjxLlbI5KIqWD\nRM6ZiCUyHGkLoesm/ioX4ViaZCJFY7CWV6X/GWnRH/hNz13EzTAPxO7gtsb/ZNNyW+6JJjQkPUNE\ngzYsHA6ZTSubCFZ72KX2jNrcbbIksawkJAlJSCAQjIJwUgQXHMXKkvM5HyXKdQEPm1Y1cao7gm5Y\nbFrZxNwmP+29MVq7o7kclfaOAQI7n8DtauSkXsvN4a2Yxhl+63iIk7EjNIV3kIk1EHE6SGcMGroi\nSJabtqrFMKR2WZZFStNzTeVqA8UTaSdLEstGkLLRo0JEszeBQJBFXAEEFxzZsuS23tj5NmUYcxv9\nLGwOcnKE85TnJLjcHG1Zz7K5QcyD/ThWrKW5qwd6H8LAYN+8ejo9K/C4bCflZCJCyoB4SqdKgj1H\n+3A6ZFq7ooCE1+3g+ssWUFdXPZWHCpydtBxPZYYtF83eBAJBFnEFEAimmFJyUlbyiSUzObknHNMY\njKZ5dOcZ5jX6iacy9KYl3GEDCXA4oMW1OLeNI6l9zPIoXLKkFsu0MNJp4kkdgHlzarjyopbs3li/\ntIEjZ0IYRnmRkomWwcqdtCwiKwLBhYv4xAsEU0wpOSkr+XQPJrh09SxaGqptuacrQpXXxebVzUQT\nGoYxnlsAACAASURBVGd64yyfU01PayfOIy+xOByjxbWQDk7x/MAv2Ry+DDNxHLelM789RFSXiVh1\neObWEqy2nQuv25lLmo0nMwxEUoSj6VyeSiSukdZMkMgl7UbiGr2hJNFEZkrLtkVkRSC4cBGfeMEF\nSbGy5OnA3EY/K+bXUu0pqLopDHa4XGhVfrRlSwmHErwqfgu/6P8qbVInZ2YNErzsBiQseve0EU3o\nJCO6HXYpQMsYPLWvg7rWQZLJs46TrpvEUxqhmMZzBzrxup2kNH1IJrK4cdvi814ZJBAIXvkIJ0Vw\nQTJdy5Kzks+eo70AhGMa4biGYVo88FwrHpeDUCzN0dMhtLROa0cIf5WbS/3X8UD4u8T1GHvjTwI3\n5LYpYeEwi7eeNy0LWZLYum4O6Mawip9IXOO5A11sWzs7N0dIy9jPl6oMGqskVGnzt2Rap60txgbf\n1DfiEwgEU8e4nRRFUZzACkACVFVV9XFbJRBcAMSSGXapvcNu6HUBD1dtmIs0dM/Oyj0NQS/VPhcr\nF9TSOZBgxZwqUseOsjbWQ9BysyvqZZHVzEFiDEZPEXn+WdyWTlN7iKBm4k5bZOZeUdIWhyxRzgQd\nC0hrRsmJymOtjBpr87cs6YzB4VODrFzahChkFgheuYzLSVEUZSPwG2DB0KIziqK8VVXVHeO2TCA4\nT0yVFHSu3JQs0WQGn8eJx+3A43Lg97lwOiR8/ipCwWZ8mxbS0FCN91AvjaFF0HucuCdFcOvlObkn\nlsjQHtKYV0TuAVvyeXT7aTDNYbboukksqbH9UDdOp0xK0znTEwMsntnfyY3bFgnJRyAQTCrjjaR8\nb+jnu4Af+BbwA+DicW5XIDhvTCcpKOBzsaA5QCSeJq0ZxJIZdMMikdaRDJ1ESiOacJHOGNQ4GgAI\nG30jtuOwdBxaqug+sn7JppWzqDpHYmokrpHOmLmpxaM1gyu5nVEkoUokIFEBJBC8Minr06woyreA\nz6mqGi14ahnw76qqJoG4oig/An5VqTGKovwl8GlgNrAP+MS5ojKKotQAXwLeDNQBp4D/q6rqHyq1\nQSA4XxS7eWdzVHpCSUAinTHsnJTjPazseomBJ44R9nrp0wPUuA1wQL/eQeezj1EnuXJyTyCpURv3\nYl2xFMldPI8jWOUeFhmxHaIijohlkc5r1Q+MOgson9EkoUokIFEBJBC8Min301wPqIqi/KOqqv+d\nt/xZ4CeKovwXUAX8HfBMJYYoivIO4JvAh4DtwG3Aw4qirFBVdcRXQ0VRXMBjQBfwFqADWAiEKtm/\nQDBVZOUkt1MetrzYzbsu4GHbutk4ZIlkWkdZUEtPKEljk59d9au4fuMc5jQF6TgZ4pL6N/CTl34D\nwLFF1Wys30ivr5tYIkPXYIJ5c+pKOiiFxJIZHtt5ZtgyXTeJJzP0hZPIssxzB7rwus9KSNdumj+m\n96FYTk4xxGRlgeDCpSwnRVXV9yiKshm4U1GUjwIfV1V1O/BB4N+Bnwyt+jjwyQptuQ34vqqqPwZQ\nFOUjwBuA9wFfK7L++4FaYIuqqtmcv9MV7lsgmDKyclKptvCFLJgVIFjl5sk97VR5nTgdEn2hFHHc\nHA9BGI2e/hi+eA0SEhYW33zpm3yq5euAMzcjRzZ0jLA9XFBOJ8+5z2wEZaMyi0DV2QhJJK7xxO42\nQMpV/UQTmbJmARVSbpJtpcm1WYQUJBDMXMr+xA45JVsURXkf8DtFUR4BPqOq6tvHa8RQVGQjtnST\n3Z+lKMpjwNYSL7sJeB74nqIobwR6gZ8BX1VVtTKxXCA4z4w21K+m2sOi2UH8VU6OtIVYvbiOpU1V\nNO17GiyLm4Ov5t7M4xxJ7+GX7X/LF6o+zKnOKP5YmtqYh6TeCkB9dxRr5exR7QlUuUZU8XjcDkDC\nMeT85M8CAoZNbc4yFjloohFSkEAwcxnzJ1ZV1f9SFOVXwL8CBxVF+QpwxzhLjxuxx591FyzvBpQS\nr1kCvAb4KfA6YDl2Eq8D+OI4bBEIzhulhvrlTw72uh1UeZxIkkS110VNnZ+BVZuRDJ3PLL+O1hc+\nzr74U/xR20Vjy5Ns8byPM31xFswKsGGzXYg3cLiXBa7Ke4xousEz+zvxuh2kNCM3C8gpS8MqgvK5\ndtP8CXNUZFkiWO3GIUuUaAEjEAheAZTtpCiKsgLbKfAA21VV/WtFUX4A3A58UFGUv1JV9eEJtk9i\nZK/NLDK2E/MhVVUtYI+iKHOxE2/LdlJkWSpL63Y45GG/ZwrC7qljrDZX+1ysWVxPtc+F0ynjdMhD\n56KE0yEPu8nXB71cf9kCQtE0siyR0kzAIpUxiKd0UrIHS3Zj+IK8r+lz3O3+DHsGd/KL1p8RCbhZ\nLb0ZWZJwOuxz3WEZSPEojkwaSbadFTlvn1lbCu3It1GWJTavbsayQJbh8nUt1FSPdHwiCY2dL/fY\nr887TodDJqObPHegi6svnptr2V8O9vuxkKDfQyRilrT3XMeSJZnWae2MsGhOcNIjLTPxvAZh91Qz\nU+2eDMqt7vkL4P8BR4EE8A1FUb6nqupfATcoivIm4LuKohzCrq45MUY7+gADaC5YPouR0ZUsnYA2\n5KBkOQzMVhTFWW5kp76+GkkqPyEvGPSVve50Qtg9dZRrcx3QMrsm97flcOD12jfqmtoq6oLeEa8x\nZRmfz01rZxjdsDjSFiac0Gnri5NM67gw8e/byaeCb+WzUgetdPBQ9G4aYxG2Jq/EcNnD/JrOhHBE\n/TR2J+lZsQmAQMCb26flcODzuUfYkbNR0vF6nMxvqQXg0OkQC+bWUl/E5tNdEZBlLIcj94MsY8ky\nliQRS+kYkv280yGPyVkB+/3WkYrae65jyT0fSdHaE2fl0qaiz08GM/G8BmH3VDNT7Z5Iyv3a8Hng\ns6qqfhVAUZRrgEcURfmiqqq9qqr+TlGUB4HPYFfmNI7FCFVVM4qi7AKuAe4b2oc09PedJV72LHBr\nwTIF6ByL9DQwEC87khIM+ohEkhgV9oc4Hwi7p47x2hyOpkmlNEAiHEogGXZux/bD3Wxe1Uyw2o0M\nXLayCbcD9qg9zG2oZklLkLbuCImURsvsGtrXbmH5klr+Q9rKe1+4la5UBz/1/46+QJD3LnoDa+rW\n0uvuZ87SRvqO9KMZ4AOi0RSSYeRsSSa1nB2FNqY0EyyLcCgBUHRdgGhC4/5nWznZGSGVyuB1O8jo\nJqFYmqd2nR6SiYBnTbxu+3L02kvnEyijpX7++x2NpHDJEI0kR9hQ6ljKfX4imYnnNQi7p5qZavdY\nqaurHnWdcp0UD3As7+/j2FJMLqNOVVUN+KKiKP9NZXwL+NGQs5ItQa4C7gZQFOXHQJuqqv8wtP5/\nAB9XFOUO4DvYrfn/Hlt+KhvTtMpu4Q1gGCa6PvNOGmH31FGpzQ5ZYsmcGlq7IuhD29AyBqFoGi1j\n5LYZrHLjdTuQJYn23hiReJrewSSxRIYdh3rQdAO5S8PrruGj87/LV4+/h4QZ5qHo3Tz01N14HT4W\netdypfMK3Noy5lvLMFx1pAcHSSXsS0IqnkFPJEkNhEilz+aRpOMaJJNYkhvTtHIVPdnHhced1gxM\n02J2fRXrlzRQ5T17yYkmNOIpHQlYs6geSZLYf7yP1s4IJzujXLF+TlnzfwzDpMrj5OoNcwFG2KAb\nZkn7ynm+GOOtGJqJ5zUIu6eamWr3RFLup+u7wF2KolwNJIE/Ax5QVbWtcEVVVdsrMURV1V8qitKI\nHbVpBvYC16uq2ju0yjxAz1u/TVGU64BvYzd+ax96XKxcWSCY9vg8TpbNq6GtNzbqunPqq5ndUM22\ntbMJVNllwLph4PM4aKrzsW3tnCHZZC6L5/+czz77Gc6kD2FhkjKSqPEdqIftPokOS2aevISnTy1n\nq3cFl3hWIBsBUiE3kfARcJ114lOaQW1nguTSjdg56uUhSRZ7j/UN66ui6ya6bhCKabx0oh+QaO2K\nktZMOgfiXLSssSwn5XwgKoYEgqmh3D4pX1AU5UXgWuzoyeeAn0+0MaqqZtvsF3vuNUWWvQhsm2g7\nBILpRKmyZKfDrvgJVrvxuB34PC7cQzN+gtXuXOnwlnmX8ulFd5M04jQs7GRnzwv88fjTtKYOkDE1\nDMnklHWMU4lj/E/iIQCWBZazuGozV23+R2qD/tw+w3GN0L4ukMY218ga+jJYrO9KdtLy0Josaamh\ncyCeC3OPdbJyIaIZnEAwcxlLn5RHgEcm0RaB4IKn2HDDUmXJQK4fiWVBY40Xy7Sdmvw+JdFEBgCf\nw8+Vc6/hyrnXcAnvYc3SAL/c9ThH4ns4k97NyfQB4rodxTkWPcoxjnJ/2xo+sPpdw/YpmzqyaYJ7\ndD25kGJ9V7xuRy5Z1ut2Uu0dflka62TlQsbbDK4cRMM4gWByEJ8mgWAaUe5ww+xMnwMn+wE40xND\nNwxMEwzTwiFJ+KuG9yQpjCR4HF6WVl3MQnkNi/tXMr+5ilarnV3aEb4ffYABM8wTh+/hrb1zc69J\naQZN7SHiuIisvmxMx6bpI5u8ReLasOZvKU0nlsxgGJU5JOcLIf8IBJOD+DQJBDMArUDyqfG7WTQ7\nmJNJ0hmTtKajZUz6IykuXtHI3KazMk08pbPjcPFqftPpYnDNFtaubGCb18U24NTzMj87+RN2mSre\nK7biddilueG4Ru+eNpKmjMtRvuST0U26BpMj5v3ouplr/qabFq1dUSKJDIOxNIlUpuT2IgmN3Ud6\nuW7r4rJtKIWQgwSC6YtwUgSCGYBlMULy8bodWBZIkv3j87jI6MXnAY0mlZgeH46aWpxDHWFfteg6\nfnbyJ0QyEV7/h5u4feu3WF+/Lre+ZOhY6RR6OIKENeosIHMo9LN+aQMtjcVlIjuaYtFcX8WRMyGM\nc9hsmhaRuIZhWozXtZgsOUhIQALB+BGfHIFgGuNxOVg2t5aXTw8OW56Ve/Yc7SWl6XT0xZlTX033\nYIJQTOOFQ900BMMjtud0yGUNAryq6So2WWvYKR3k5bDKjX+4mY8EbubdntfR1BEjYTnprWoikjiO\n29LtWUCXLCCvK0FR/L6ROSmxZGaYTZZltwWIJTOEYulhktD5nAE0VoQEJBCMH/HJEQimMdmy5GPt\noWHL6wIertowF0nKRiAk1i9rIGOYRBP9rF1cj7JgeG5L9gZfzvRlp9fHh1fcxet9j/L1g18haST5\nTvQenpCPcnnLO1jm3IzH6yd40WwkLAYO9yK5x155E0tmeGznGYDcDKBQNI1hWhw4OUBnf4KUpg81\nfbPwup1cu2n+iO2MtwJorAiJSCCYGspti3/JWDaqquruyswRCATlkM3JuHTVLILVdnO3ao+LdUvq\nOdQ6UPQ1umF3es1W+4yG5a3iXRs+xhvWvZFPPv5RXux8noPhAxzkAFVyDZuqX8OsgT/noroNyIaO\nEQ6j68MdBD2ewUqnkLTi+8xGUDYqs7AsC03Xmdfkp2swwdrF9cxpqCaa0EhnTJa01HCiI8xAJAXY\neTpZxlsBNFYmSiISkpBAcG7K/VTspPSgv3yyAwHH1kRBIBCUJCv5tHZFcsvyb8r50k9PKElKM9h3\nvJ8z3TFC8TS11Z6ig/XKHV62uGYJv3vjg/xg/3/w77u/TV+ql4QZ5unoPTz9zD0scDRzeeYSmgav\nZqlv9rDXRjISmX4XwWSY7tplJfcRqHIRT2bo6EuQ1kxiSZ2XT4fo7E+g6yYZ3eDImdBQozv7MnOq\nO0Y0oRH0zNzLjZCEBIJzU+6n4tWTaoVAICjJaJ1o6wIeLlGa2H+sn+Xza3j51CDLWoI011ex8+Ve\nVi2qGzELx+GQxxR1cMgOPrrh47xtyXu588lf8eLg7zmQeJKMlea00c1p+SF+PvAQm5su5aYFN3L9\nvNcyr3oexDO49nURSWQgce5cmGyi7PJ5NXQPJtikNA2rULIbv3Wybe1sYskMp7pjZZUqT4UUJOQf\ngWByKLfj7FOTbYhAIKicYJUb3TCp9jhxO2Xa+uL0hFJ0DsR56YQDpyyVjKqM5b7qlJ2srt7GUtcW\nLGcKc9Y+7j3+K17oegYLi+29O9jeu4N/2vU51jau56qW6/Brq6gxF4BuoUei6J6zMo0ez2Cm7Coh\nI6Eh6To+jxOnQyZQdbZrbiw5XC6yLHvWTjiWzg1iLJVcOxVSUKXyT0rT6QsnSWk6oyUdCwQXIiK+\nKBDMAIp1oi3G7PpqLlrWyOXr5gwtsXK9VJ470MXm1c257q5g90959qWOimzyytXcsPQW3rL0Fu7Z\nvpveqj/x0KnfcbD/JQAO9O3nQN9+AOqsOuaZm2l54SJuCCi4JfvSE8lIuRlB6YyBr0/CyrQM2082\nuTabWAsSumEPX3zxYBcuGRKpzIjk2plQBaRlTPrCKbTMhT1ETiAoRUVOiqIo7wI+gj152Fv4vKqq\nwXHaJRAI8ii3E2123fw282cfD5/pk08yrROOa7lE1sJOsFlKJd3WuZp589pP8pktf8PpyCkeaX2I\nh1of5Pn2P6FbOoPSIIOOh/m76MP8WyrAtS3X8NmL/4Gg1YD3UC/B1U1EExrJ59qQXMOdi6xN65c2\nkO90uV0y1122EMkwhpJpJdYvbeDImVBZZdZZJksOEhKQQDB+xuykDDko/w+4G3u4339hJ8reBISA\nH0+gfQKBoAxiyQwnOyOsWliXuzGWI29kk27be2I8+1IHbqcdqYklMhxpC6Hr5oj2+gDSOW68C4IL\n+cD6j/CB9R/hVH83//70L9gdeoIjyefRSBDNRLnn1O84Hj3OTy7/1fDtWiZWLIak6yO26/e5ck5X\nPFncWbIsi5SmD3Ou4qmR28pnsuSgciSgdMYgkdJJ51UqCQSCs1QSSfkU8AXgK8CHgO+pqrpbUZQA\n9gDC0efMCwSCCcU0LVsu8ThzN8Zy+qHUBTxsXTuHPcf62bi8MTfcr703Rmt3dER7fbBv+s/say/L\nrhpPLZuCr2OldSXhPpWm5pd5wniW3ydfYP/AS3z7j59hg/7nZ+WefgnjUDu+fhkrU7waKJ7M8Mz+\nTk51R3li1xkwTTTNIJbU2HO0L1cBlG2/n9J0ZLm8SqapRssYJNL6sHJqgUBwlkqclOXAs6qqGoqi\nGEAQQFXVqKIoXwVuB741gTYKBIICiuWo6IbJ9sPd1AY8Y5It6vwefB4nNdXuXB6HnYAqDUteHQ+m\n00m6cQGv2noFtzR+grf/8Vae63meHyceoHHeGwhuvNaWe549jWN1E8nD/Uiu4seQrQJqaazm1Rvn\nIxnGMJkqWwEUrHYTTWR49qWOCY+STJREJMkSTlk6Z2RKILiQqeTrRZizaejtwOq85xxAw3iNEggE\n5yabo1LYWyOe0nM35LHmRIRi6dxPNGHnp0QT2rDlY2kGV4jDNJCxkCWZ27d+i6AriInJH0P/O2w9\nCQundW6JBsDjkqkNeOwfv/0TrHYjS2eP17Is0ppBOmPn1xQeS2HVULlMlETk97qoDXjwe0sn+SbT\nOi+fGiSZHv09EQheaVQSSdkJrAceBu4DPqcoigxkgL8DXpw48wQCQTm4nTL1AS+OPIckPyfiXNJP\ndvjf7iO9uZtuOKYxGE3z6M4zzGv0F20GN5aEUFnPsLxjP/qOdkLVbvzAFofCI5kdhOLtRJ5/Nif3\nyAdOsbRjEEtbWfb2s8STGU50RjAtO1E4pRm098Wp9XvYfqi76HFcuqp5zPuZSkTDN8GFTCVn/JeB\nhUOP/3no8bexoyg7sPNUBALBFOL1OKkPeqDETOBzRVXqg16u37KQSDiZk03ae2O0dkVwOuSizeAS\naZ29R/uIxDUkaXRnxXS6ONqyno2XLqJ2KMel8cWH4PgOYs4E1Vu2ICUNks+exlzdyHG5h0sqmAWU\nlYKy05azk5W3rZ0zrPQa7EqlXWoPxhgqgUpRqfwjyRIel0PIPQJBCcbspKiq+gLwwtDjEPBGRVE8\ngEdV1cg5XywQCCYVLWPwp/2dXLmhZdjNcrRKk4YaH7Jpouv2DTsUS+NwSIRiGi+dGMDrdqDrZq4h\nnG6aw/qSgD3A8FxkXF6kYA3O2gAATTVzAejNtPFnT97Eh5f8FZa1BLClISsSRvcYuYZvRiSCnE6W\n9T7kT1vOVgTV+j3DJi5nK4GiieLl1mOZuFyp/BPwuVg8J0iggp4uYu6P4EKgkhLkDwC/HnJQAFBV\nNQ2MXkogEAgmFcuyy5HHmytR6/cwr8mPhJRLQrWTUu2GcDZnnxvLDT3LrSvfyb1H76E1eoIjEZVP\n7f0Y840VzN7/JhZ31aPv6CRU7c41fEv1Janvj2CtnD36xouQP3EZzk5d1g3bWSkmB03npnBCBhJc\nCFRyZn8X+I6iKI8A/wPcr6pqYmLNEggEYyE7hPDl04MTsj1Zlmis8RFPZYY1gMs2hMs+zvZZyU5Y\nLiQS10qW1y6pXcbv3/gnvvLIHTwcuZueVDdnHEf4G+1rLG/czB3rvsbC+UsgnsF7qBfvohoGToVY\nUKLqZzTyJy4HqlxlSUFjaQpXSDkSkGj4JhCcm0qclNnAW4FbsJ2UpKIo9w89flhVVZGCLhBMMdkh\nhIda+zndFyeWzIyrdDhY5eaK9XN4ck/xfij5k5fzyZeEnE6ZlKbT0R+nPuChWOqKS3bxquZb+fS1\nH+Ou/d/nrgN3kibGUXM7H9j5Ln5d+zNq5bm59WVDx4hEsNIppApbnwSqiktBpciXiLIUduQtNjuo\nHAmo0pk/E42QjgTTlUpyUgaBu4C7FEVpxnZW3gHcDwwqivJrVVU/PLFmCgSC0fC4HCycHaStNz6p\nw/TAbgJ31Ya5IxyPfEkoKxGBxLJ5NcOklkJ8zir+YvEHWfqMk6cbnuEe8wk6km3c/PubuL32M6Ri\nS0n1JanrC5MaqCET8dKo9WOm1+BwTt5NNZ7MsOPlnhHLdd0kltRyElFK00fMDppJCOlIMF0Z19mo\nqmo3cAdwh6Io12G3yP8AIJwUgWCK8XmcLJ4T5PmDXVOyv7pA8ehD4YygbNKtbli5vitZ8iMQcUOi\na+5W3r/6ZmJ7f8Cj+g/oM8N8LPo13t30z2xZ/ToGT/bTsqQR19EBQvICZI8HjMnr1pqtFspKRKXI\nOmNjnR0kJCGB4NyMy0lRFGUediTlFuBiYAD4wQTYJRAIxsl4u6JOxM0xKwuppwcJxdLsfLmHw62D\nRauEwK4AkmtqWVd9K1csX8Pnd/01kUyY73Z8imcT/8P1Ve9hDa8FQDINMqFBJMPEGKpKMiLxonN/\nxku+RFRM/jl7vMNnB6U0g3hKLyknTUdJSEg/gulEJdU9TcDbgFuBrUAcuBf4J+BRkZMiEEwPxtsV\ndSJujllZqKMvxpneOJtWziJQ5S5aJQQgyzK+oZk7b1j4VpbOms1tj3+C3lQPe0O72RvazR971rDN\nvIUtWh0h6zSYZu4YUwkTX59Ucu7PeCmsEMqSlX/yZweBlXPAbty2eNpWCRUipB/BdKKSM7AD0IEH\nsSMoD6iqmppQqwQCQUW4nTKNNT7cBaW0EzFrptLISl3AQzRhzwKycv5SccfJNK1hU4uvW/Q6HnvL\nDr7wyNd4NPxTwpkwO/WD7OSfeDJwBT/c/C0W+FpykZRob5zkc20l5/6Ml8IKoULyZwcBaBlz2OsK\nyU6v3rRy1pgTnYUMJLgQqMRJ+QBwj2jcJhBMP7weJ401XrwF34AnYtbMeCIrWefkwMl+QMr1J4nE\n04RidikwQGtXlLRmOymOoeZwPmcV1835IB/f9gm++cLtPD7wU+J6jP3JP/Hae6/jzsu/zbVzrsnt\nS7JMjEgE3WNgxLWyG8CNhXz5B0pLQBaQzqsCcjpkHO6zzk12enUl/xdRGSS4EKikuudHk2GIQCB4\n5VLjd7NodjAXYQCLdUsa2PlyL9U+N9vWzhlaLrFuST0HWwep9g6/PPldAW5q/gifvPhD3PHgX/N7\n+SlCWoj/88R7eY//Bm4Lvo1UUsbXL5Ha2UGoSialGdR3R7EuWYBUQZv9csiXgLIN4sCebhxPZgjF\n0jx3oAuv24EsS/h8bq5Y24zP/cq4oQt5SDCZlHVGKYpyJ/ANVVVPDz0+F5aqqn81ftMEAsFY8bgc\nrFxQh8flIF2iiVo5VCoPnUuCyDZ/G162bFE4b0iSpBFyVT51/mZet+yLLEu8yP9EvkJvspe7Y3/g\nJU8PH172KRKpBrybFlLbVE04rjFwuHfSHBQYLgFZloXdIC6/S29n7u9EWufgqRCGYUdO4qkMoWia\neKqyacwTRf7/bbLL1wWCsVCu23sT8EPgNHAzpQRlGwsQTopAcB7weZysXFgHMC4npVJ5qJQEkd/8\nLRttSGdMTnXbvx2ShNMpDes1cq5ZQIbbxzLv1Tz1xrfwkQffw9NtT7Grfzcf6n8ns+XlBDvez/+p\n/zNAshvAhcNYSJipFHo4gq67JlwKyuaoFDaIy/7tdMhYli2PhOMaumHaHXl1+3d+aXYlYwbGQ7kT\ns0dDSD+Ciaass0hV1cV5jxdNmjUCgeAVSX7zt2w7+nVLGkhrOp39CS5e0Tg0admu9KkPesu6STdX\nz+Y3b7qPb+/4Jv++53aiWoQu8yifO/h33Hn4y7zVezVboptIRuaiSU5SITeR8BFwWcOkIKi8O285\nZJvCabpJW2+cVCqD2ynTH05hmBYHTgzQ2T98ush0nhtUCiH9CCaaSkqQl6uqenQyjBEIBBPHREk/\nE0W2+ZssSzTVVhH0e/C4HDiGIgz55M8CyjZ8iyWLSyIO2cH/3fhpPrDuw3xvx3/xw/3/yaDVTr8Z\n5vuJe/mh40He4L2RWxa9C9+pevzLavFXObESGcLefsxkEj00/P2Z6ChLtincRUsb8XpdbFzeSLXX\nSXtvjM6BBFvWNDO3yQ+MnBs0EZVZY2Giq4ZEdEUwHio5Y1RFUXYBPwN+oapqxwTbJBAIJoDxSj/p\njMGf9ndy5YaWCb05ZqWFUCyd040PnBwg21dE101SGX3Y/J98GchRQgbyuwPcsux9GCe3sXBtuq9p\nwQAAIABJREFUG/ecvpun2p5AJ8O9Z+7h3jP3sMiay60Dr+HNgctx6m5quyIkU2ewhnqzZMlFWSqc\nuFwMLWNgnVMpt8k2hIsPzV+aiMqssTDRVUMiuiIYD5WcMW/EntXzr8DXFUV5Btth+fXQXB+BQDDN\nyI+qlItlWcSSmUm9OXrdDuY1VedV/djVPS+dGBgx/ycrA43Wcl6SZK6Ycy1/vuHN7Gzbz1f+dDs7\nIw+S0BO0Su18OfYT7kj9hjfMvYlVC1/Lyo1XUlMwBTmbcFvpxOVCEimdE50R0hmT3nAqJ/fEEhm0\njMGeI30cbQsD+RVCndy4bdGE7F8gmKlUUoJ8P3C/oihe7CTaW4A7ge8oivII8DNVVX8+sWYKBILx\nkB9VqZSJlh1kWcLvcyNJGYJDTkK2AqhUbn4u2TRj4PWM7nAtq1V419zPcvt1X+P+k7/hrn130ZY6\nQkJP8KtTvwB+wW+TG7h52c1cOvsyNsy6hGpXNQ5nGtMTs+1MJzHCYXTdjR7PDEu+BYYtk7CKykSG\naTtWqxfV0z6QyMk9kbiG0ynnqn/Alreyka9zOWRTLQOVYiZXBgkpavpT8X9lqMvsL4FfKooSAN4K\nfAF4PSCcFIHgFcZEyw7BKjdXrJ/Dk3vagfyGbwO5XiNet4NYIsORthC6buKvcpHSdDr64yxpCeJ0\nyBhlDBj0uwPcqryH2fFrqZ/fzW9O/oTfHf0tKSPJgf69HOjfC4BDcrCmcR3r6i/Bm1jGrNAV1B3e\nTXIwiOV2EMlIw5JvgWHL3JZeMhnXMMyy5J7sm6Hp5z6uqZaBSjFRlUHnAyFFTX/G/V9RFGUTdjTl\nHUALoI53mwKB4PzicTlYNreW1q6payydrQCKJuzqn2x0ob03Rmt3lItXNDK3yZ+Tf668qIVgtZtB\nrfweI5IkcVHTRq5avI1Pb/hXvvHUXRzUHuHQwH4My8CwDPb37mV/r+20/PAM1Lgb2OzcxJZZm1jp\nvwhHRzPBtfOorR6qvIln8B7qJbi6CQmraF+WZFpnMKax92gfkUQmJ/dkZ/5sP9SNc6g3TEozODM0\n/yeezFA9wyp8BIKJpCInRVGU1dgDBt8BLMPun/Iz4Oeqqu6dOPMEAsH5wOdxsmxezdCwvPIZqwRR\nWElSF/AgScN7jUTihXN/bAwTBiIpwtF0ThYpVQFUjKC7htc03srnL/40bo/Bvt497Oh6kZ1d23mx\n80UG0/0AhI1+Hu18mEc7HwbAKblYG76I1y15HX958V/hdFrI3ijOmiBATiYabqtt/Ir5tYQSmZzc\nU4xIXCOaSNM9mMq9brKZKOloJs4T0nWTY21h1iyuF9GUaUglJcj7gTVAH/Ar4L2qqj470YYJBIKZ\nx1gliHIqScwh7+TAyQGOtYdJaTonOiIMRlMsbKlFz+hnpyAXzP0plypXFVtbLmdry+UADEZT/OrF\nF9CDJ3jixLN0WYc4MngICwvdyrC3byd7+3byyPHf87WNd2CmXLmcFGcimsthOVvKXGXvx+skbVjU\nVLuL9kDJOlmWZeej2FElO7qSnf+TJdsIbiKYKOlouswTGgu6aXKsPcyyeTXCSZmGVPIf2QV8Gvij\nqqrnv/mCQCB4RVPr97CwOTCs1Xw6YyJJEq/aMBfJMM72FIlryLJcMkpRLpIkMcuzgEsWbqQlfTVX\nXzwXhzvN08ee4eHHf8wB98sc0E+yq383f/bo67nV8Uk2hBXclk5dV4RkxM5hyZUyN1076j6zM4BS\nmkFnf4JIXGOn2ku1xzlCEgJypdnx1JwxT1CeSmZidEUwfRjTJ3mooqcBSAkHRSB4ZVNJ2XI5jCYt\nFLup+TzDW817XI6SiaWmaeWiDtHExM3ECbiDXL7gWoyVi/jsynp+eOJ73H7gTkJWlP/Uv4Rc/WE+\nuPC9RFwDeFY2469y5RrG1ac1ME2MWAw5XTz6kXW01i9tIBK3e8hsUppyTd4K6eiL09oVxRilJHus\nTHTV0EyMrpSDqAyaGsb0zqqqmlIU5Srg25Nkj0AgmCZMRNlyMUaTFka7qWVzUzr7Ezyx6wyYJppm\nEIqn8bqctPXFyDZ+y+J0yKP2Vynbfo8Pd209f3/lF9i88FV89NEPENJCfPfkf/Lw6ft5v/ZW0pmL\nkNwO0ppBbVeEdH8dZipA+uB+Asko5prZUCIh1u9z4XE5cDpkAlVnHbNYMjPsGCzLyklChVU145n9\nM12qhqY7ojJoaqjknX0EuA54YoJtEQgE05jJiqyMlbqAhy1rmpFlePXG+UiGwUAkxXMHuli3pH5E\n35HsDXsyymOvWXgd99z4OB988D0cS+3nmNHO3zvuYE/VLfzLpf+AL1PF4IFOGur8yNs78KxZQjRt\nIrvHJs9kpaDCZVrGZM/Rs43g8pmJs3+mmmyvnvM9hVpQmkqclP8G/nOoN8qDQDcFnZdUVd09AbYJ\nBIJpxERHVmLJDLvU3lFlhWLyT63fg9ftpDbgyeWkeN0OAlXuvIZwNtk5QNkZQBMtBc31z+fTy+6m\n1/8kX9/9r0S0ML889b883vNHPrjmk9S6NtPkbwZZxuH3Y0pj3282grJRmZWbtpytetq2dk7OIcse\nV/7sn8lmujSVq4TCXj1ThZCKyqeSd+eBod8fG/rJd1Ckob/P71ctgUAw7SlXVhhLTkO2EmjP0d7c\nMl03R5WCxossybxjxbu5Zv713Pbo3/Bi6EH6kr18eec/AbCq4xL85iZ6+v8Mr1GLEXajp4dHObKd\na41IBEkrHvUJVLmGJcnml2qXS6FsBIxw4PIfOx0ytYHS2xfy0NgRUlH5VPLuvHrCrRAIBK8Izrck\nVOu3G8JJeYUkkbg2qhQ0UTT6ZvH++V/iI5vey537v8yeHjuofDiyG+TdvGfvD1jFEm5svYzXVW9m\ntqP+rJ1DnWtTfUlqepJQs2LC7MpSTDYChjWV001z2EBHgOsvW0BdXfWE2zMdENVH05tKZvc8NRmG\nCASCmc9YJaFKJy3LskSw2o1DljALinzqinzrH00KKmS8UtDlLVfzhhXXs79T5XvP/5T9sT9yLHYA\ngMOc4HD0BF+P/pyNdRu4bcVHubJpG0ZSx300gnteFXG5Dzkx8QWUxWSjQvIHOkqSxC61B8MoL0oy\nE6WfmVZ9dKFJRa/8IxQIBNOWSictB6vcXLtpPjV+D4ODelmvKSYFwVk5qLbaM6wPCYy9KVwhCwKL\nuKHpvbx36Qe556H7sep38Iy+g2PY0Yxdg3v5m53/wB9nf4t4RkILudGiSeq6IvQYNViZiY+mwHDZ\nqJj8k8WyLFKabk+FjqSIJTR87tK3DSH9TD4XmlRUScdZk1IjSodQVbWiWK+iKH+J3ShuNrAP+ISq\nqjvKeN0t2G35f6eq6lsq2bdAIJgaspKQ2zn+XJCxUEwKgrNy0ObVzcMSUCeybBmXG6t6LW/beD3X\nJzI0tSS48+Vvc++p++g2Bwm86kpImngP9eJdVEP/gU4SoQySa3KjEcXkn+HSj0VrVxRZ7uTQ6RDJ\npMZrLpk3JolsJkZXykHIRFNDJW7YXzPSSakHXos9YPD2SgxRFOUdwDeBDwHbgduAhxVFWaGqat85\nXrcQ+DrwdCX7FQgEU0tWEipVElzJTa3cG0YxKQhsOahYAmrWxnDMTiItTDAtXCYVekB5OCyD7LML\nqhfw2pZruPfUfZiWyaA2iJOas8djWTgKdaxJYDT5xz5Oi8vXzaGmxsfj20+N2XF7pUZXZppMVIrp\nLh9VkpNSygn5nKIoP8Z2WCrhNuD7qqr+GEBRlI8AbwDeB3yt2AsURZGBnwL/DFwJeZ9ygUAwI6nk\npjZZN4xs/kpWIsq2otd1k1RGp7baUzTRdETFUEZjbe8B3Ps68Gsm8Z5qPPrZCEbrn/7ALOblEmeb\nOwbwJjJY2qoJP6ZiFFYN5eN1O6mpdlPj96Blis8QOldlkGB6M93lo4m26KfAT7CdhrJRFMUFbAS+\nlF2mqqqlKMpjwNZzvPRzQI+qqv+tKMqVFdgrEAjOEx6Xg2Vza2ntipxvU0pSFxguEWWTStctqeel\nEwNsXt08tKaUqxoqWjHkcnOgaS3KRQuIJTJUL2+kNuyDP9pPV23cSNC9LCf3dL/UwZnBNJvc00ce\niSU0jndE0A0Lr/usoj9aZdClq5pLbPH8c76kKCEVlc9EOykrgEpc50bs3irdBcu7AaXYCxRFuRx4\nL3BRBfsTCATnGZ/HybJ5NbT1xs653nhvJOO9IRRKRGcrhIpHevIrhvKrhDSnB8sfxJAyOGpqcRnB\n3HOnzB7mBy/GKfUgD23XYRpYkTC6x8j1UNHDEXTddoDOTlieGvShCp/1SxtoaSxejly8MmhqmspV\nwvmSomaCVDRdZKBKEmf/ushiN7AKeBt2AutEkW0OV2iDHzti80FVVQfHswNZlsq6eGWz/Meb7T/V\nCLunjploM5xfu50OGVmWcDrkXGVN4TJZkoinMsiSNKz6ply764Nerr9swZhsKEX2enHo1CCnumPI\nst1w+2RnhMFoill1VbgKtiHLEi6njAS5nBXZIVPl8eXWef/D72Ze9Xw2xpZB5xZm9dbji+uYO7uJ\n+N3EMhLpQTex6FFkl31JTGsGDV1R5EsX4nSe3da5jqfwudGOPfu87JAxAEmCGr+Hxlp7f9GENqw8\n2TG0fvZ/oukGibSOppukNH2YnVPBaOfIWP73U8m57J5om0ttz0haHGkLMW+W/7y+N5W4R98osiwN\ntAF3AF+oYJt9gAEUxgVnMTK6ArAUWAjcryhK1sOQARRF0QBFVdWT5ey4vr76nMluhQSDU/shmyiE\n3VPHTLQZzo/dHp+bzWtbaJ4VoMprRwgshwOfz01NbRV1Qe+IvwsZr92jbT+furpqamurCMc0nth1\nhldvnA/AQ8/Zl5vrti4e0Z3V6ZA53hZClmWqqtwMxDQCAS9Xz76cd69/N/974H/JmBna4mdok85w\nb/QJ6qqbWOrfym0XvYs3r3k1kbjOy3s6WXDxnFxkZzCW4vCeLupm1Q2z+1zHM9b3Nvt8IOAlFE3j\ndDgIBn3U1VUTiWv8afvwyqCMbqIZFvtODKAbJm29CZAGaOuNs13tY+G8+mEVVFNFqXPEcjiQHDI7\njvRx/ZaF1Iyhc+9UUMxu2eVkdqOf+vrqCbG31Dkwls/FZFJJ4uyEu1SqqmYURdkFXAPcBzDkfFwD\n3FnkJYeBdQXL/g3wA58ERrZULMHAQLzsSEow6CMSSU7r8GUhwu6pYybaDOff7nkNPtJJjXTSTrYM\nR9MkkxrhUALJMEb8DbassOPlHl67ZRGSaY7L7mhcwyVDNJLMbf9cyGCvZ5pn1x/qJxIpsY2u3ii6\nYdA/kLD3GU0hGS7uuPo/+MLWr/CHkw/x25d/y+NnHkO3NAaNXnZyH+988j6atzdzw8KbWZW+gWik\nBmmo6icaS5OKJxg41YGed7OKxNKkQ+Fh71eWct7bYutHoylAQjcMIpEkg1VOQkPPbVp5VoaLJzPo\nQ9JJNKERiiRZMidANJ4mFEly4vQANUNOisNhy3CTyWjndvb4kskMAwNxzEx5PXcmm9Hs3ramGTOj\nl90j6FyUOgdKLU+mdVo7IyyaExy3DFROF+PplMr7LeBHQ85KtgS5CrgbYKhyqE1V1X9QVVUDDuW/\nWFGUEGCpqnp4LDs1TWtMeqRhmOj6zLkBZRF2Tx0z0WaYPnbrholpWuhD9hT+DaBlDMKxNIZpIY3T\n7iqPk6s3zLX3XeZ28m2yLPs60tEX55l9Hbmk0vwmcQPRFMm0weHTAyxqqUXCyu2ryhHgLcvezmtm\nv5E/7DxCzL+P/z34Gw7Fn0UnRXeimx8dvgvZ+iF/at/CR2tuZrFrDinNoLYrQjQUJJOXyJrSDGq7\no2Q2zEcvSOAt570ttr5pmOCwc3GMgtdWeZz4fS5iyQzPH+waZkdHXxxZkkhrBt0DiWHvD0zdpOZS\n53b2GLKPp8P5n89UfCZLnQOllseTGQ6eHKCp1odrCiTispwURVEagRZVVfcXLF+PXcmzCugCbldV\n9f5KDFFV9ZdD+/k8tuyzF7heVdVse8h5wPRwcwUCwaRxvuf/jJW6gIcta5oBa9hcoPwmcZ39cV4+\nHeLi5U1cfvF8DC1T9ObjdVSzbf4bcfVu5ERPP4vXtfN83x+4//i96Og8kH6OB3tf4KYFN/L+FR9h\nMLiclWvn5KITgN0d9nAv0hRXBhX2XMn2WNm2dg4Azx3ozL0/Uz2peTJ4pTSpG29i+WQn2Ja7xS9j\nlwhfkl0w1ETtGexoxz5gLXCPoiivUVW1osZqqqp+D/heiedeM8pr31vJPgUCwfRirPN/YOpvGIUX\n9lq/p+hE4myTuGhCQ5YlLMv+ZhqOpktOIo4l7Yogl+TlNXNfz3sueQef6DrKvzz5ZZ4P3UvGzHDv\nqfu499R9XBS4msNnrmT97DUsr1vBwsAiHE4d01O6YkpOJzHCYXTdXbRqKJ9KKojye65k35P8x2OZ\n2DzRFI4AiMQ10poJEiP6v4w2fPKV0qRuvJVGk91npdwtXg78sGDZbdg5IK9TVfURRVF8wKPA3yK6\nvwoEgilkqm8YY72wZ5vCHT41SCihk0zatuZLQvk9RoBh7fvn+Rfwrrmf5Yuv/id+fOR7/PTQj0gZ\nKfZFn2Tf7idz63kcHhYFlhKw5rFfuoj1zatZXqewtHYZXqcXS9OoP7yd5GAAy+3ITV6OhI+Aa+R7\nl9IM6rujmJcuRPJVVfJWTRtKjQCIpzRCMY3nDnTmertkmSo5SlCacp2UucCBgmU3AXtVVX0EQFXV\npKIo38FuUS8QCAQTwkyTf4qRjSCsWljPyiWNuYTIaEJj58u9rFpkR47SGZN1SxpIaSadQ0m2+cyu\nbuFLr/o6f7Xx09y+/XYeOPYAfZk2DMtObEwbadTQIeAQO/c/knudLMksCCxkcXA57sYmrpy7jvWz\nVjLLuQjv0RTB1U3UVo+8GWelI9ntOffAthlAqREAWVkuX6qbbDlqJkhF06XhXLlOikVevxJFUZqB\nxYyc09OG3ZhNIBAIJoRK5J98puKGMNoF3bLA6ZA42RkmlMjkIimxZIbjHWEcDgmnQ6KzP85LJ0b2\ngimkuaqZv930L1zm+CDb1jcyYLRzdFDlyKDKwZ7D7Os6SG/mNCnDlmpMy6Q1cpLWiF0q/XBed6ka\nRyOrBpdzVcsVfHTVh3E7hr9HsqFjhEMYTgeSnmGmU849Nzv9OZ7MTIo8NROkorFGC1OazsunEhOe\nm1LullTgWiDrmt+I7bQ8UrDeHKAXgUAgmCZMxQ1htAt6jd/NotlBLl/XwoK5tYRDCXTDpL03RmtX\nhIuXNw6V49rdWgFkWabaO/ol2u3wsLJmFSvr7Tk/oViaJ/e0c+WGOUStbo4NHuHI4BGODqoc6juM\nOqASN8K514eNPl7o6+OFvud5Uv09d9R/nKBsl4amNIO6rgjx2DE0hxtfn46VWTaOd+r8omUMntnf\nWbKtf7ZpWUozhqS3Tm7ctkhIPmWgZcxJyU0pd0t3Aj9WFKUOu4rno8Ax4LGC9a4HXpow6wQCgaAI\nHpeDVQvr8LodpJOTPy14IvC6HdRUu6kPepEMA103icQ1nA6ZQJWbYLU7l2gL4B5nl09ZklkYWMTC\n4CKuWXgdYDswT+xuY/0qD91aK/u6DvK0uoNO6yCHwgd5MX2Iv0jczk+u/hHzqucSjmsMHuhk7UUt\neJ0OkpGjSK7pKU+Ug2lZgFRy6nOWSFwjnbHPq+lWgXS+paKploHKclJUVf0fRVHmAp8A6oBdwMdU\nVc2VBCuKMgs7T+Vzk2GoQCAQZPF5nKxaVE+V15VrAlcpk3XRz7+YZ6M4oViagUgqV90TTWi533B2\ngvBYumCPFUmSaPA1sbRpHqtrLmVO4rVccVEzX9n9j/z40H+hho9w06Nv5rZNf8NFdVvJ+Pw4amqR\nHQ6cVul5QoV/T/VsobFwrqnPWTyu4U5iscqg/InP+YxWGTQezrdUNNVzh8qOyaiq+jXga+d4voeR\nbe0FAoFgWjNZF/38i/lg1B44uPtIL4fPhHM5Kf2RFL2hFC8c6qba6xwxQdg5RfOUnLKTr1/1bRYE\nF/LFFz5Hd6KLv3v6UwDUOJu4KnEVW5q3EezoRt+xjFC1e0RlUOHf2cog65IFU96zZaIpVRlUKBPl\nc6FUBmWdcWmSIivTqeOsQCAQVMR0rwCqC3i4asNcXE6ZmtqqXE6KenqQgycHWLu4njkN1YDE2sX2\nfBuHQ85NVC72rT1/wvJEIEkSn7zkNhbXLOYrL36Ro6EjAIT1Xu478WvuO/FrqIE5qRaurL+Ci5sv\nw6peTnD9pXZlUDyD91BvrlLofDWVmwxKVQYVY6Y1qhtvJDHrjGcnf080wkkRCAQznvFWAI2VSi7s\ndQEPTqdMXV5OSqDajdspE6h2E6iyc1KOtYeHvU7XTXpCCUIxu4NrYS+PiY623LT0Tdy09E10xTt5\n5Pjj3HPwYU5ldtMWOw1AZ6qDX5z4Jb/glwB8v2cx18+/lg8s+fiIbdmVQfbxTFfpZyyUIxMVY6xS\nUeGQysnkfMtHoyGcFIFAIBgjE3Vh93td1AY8+L2uXLSlMB0lEtd4Ync71T4329bOGTZFeDJzH2ZX\nz+HmJW8lGN7KtZvmczpxhi/d9zMcjcfYM/A8XfFOAFrjJ/n+y3fx9LHHeKf090TC3pzcU9cVIRkJ\nAuSkH5hek4Ynm0qkousvW1DW8L0LAeGkCASCVzTTWQqSZAmPy5HT8+tKfIP2uGVAynWuzZKVg/KZ\naBkoy/zAItZ5Xs+tm5czf5afPR2H+Onzv+WE9RzP9T7LYf0k33V9ia3Lv09LXQtWIkPE1Y1npZ2q\nGPb2YyaT6CFjWifVTjSVSEWGcf6jGmONFk5W1Y9wUgQCwSuaqZCCKtX1Az4Xi+cECYwSDbEsu03+\nnqNn21Dlt9Qv9m18MpNuJUliSc0yrmx+J5/d8Gm+vf/zfH/fd+nMtPLu59/JDxo/RYvVTLArQjpj\nR1xquyIkU2ew3I5hSbUXSmSlEqkomtBIa8NL7Keqqmis0cLJqvoRTopAIBCMk8nW9X0eJxuWNw67\nyeVPWc6XgGByZaBCZEnm89u+hFcKcMfer9Bh9vG2/s/zj+v+mTmBy1m5rgWAwQOduYnNr6Sk2ski\nEtd4dMeZEefUhVZVJJwUgUBwQTOd5aB8av2eEd/Es83fxvoNPRyzv4Wf61s5lC8dSZLEX67/FL09\nMr/q+jpJI8ln9/49l9bcwAbfdwm4g+hVMRw1NTj9HhzO9DknNU8WcjqFgVRy6nMWW45KYXp8U2jd\ncMYiE8HUVRVNdTM54aQIBIILmsmSg8q5mE91985sTktWNkppOq1dUXTdJJXRS0pHDoeEPmLpSK5u\neDtvvfg1fPpPH+ZE+Dg7wn/gjQ+8mmvm38Bgv5P2lxcyr7YZlxXgTDJDZxw83jn4nJPvDFiaRu3R\nvXR5G4gkjhed+pwlpRnUdiYYWLl50u0ajUoriopRWGUEpR3VSFxD00c6PFNdDSScFIFAIJgEyrmY\nT3X3zsIKIvvGJLFuST0vnRgoKR0FqtwMJspxU2Btw0U89vZn+NTjt3HP8V/QFjvNjw7/AID7eoav\n+4Vj9m+f00edp546bz31vgbqPfXUeeuo99ZT722wl3uHnvc2UO+tJ+AOjqkzr+R2E1q+ARcSwYtm\nF536nCUc1wjt6wLH9I6ujYViVUZQWj7KOrDx1JxzOkmTHVkRTopAIBCMkamUiCY62lJYQeR1O4Yi\nLMWdKd0wCUXTRFLlOSkAfpefr17+HRq0DexM/oaeZBf9yX7SZvGKnqSeJKm30xFvL3sfTtlJraeO\nhiEnJuvI5Ds1jVUNLJo1D2fGB1oVutuFK5NBKnGs+cimjqS9ciqQxiofdfTFae2KYowiH012ZEU4\nKQKBQDBGJkoiKudb6GRGW7Lyz4GTA0Mt+SWcsjSiakiWJZDtx44xVA1trn0dn3n1BwB4ck87W9c3\nYDkTtA508uSBoyxaIJOyIgymBhhID9i/k/0MpgcYSNl/h9KhotvWTZ2+ZC99yd6iz5ei2qqi/rSf\nOjlAreynxdnARwI3M8tx9v+Z0gya2kNYkox12eJXVIJvMfmomAxkWVZurlR+mXt8DM7qRCCcFIFA\nIDhPnO9un1n5xx5waLFt7WyAEVVDToeM5XCgpTN26XORVv2FfxdLuvU4vNRW1+C16uny13L1wrmj\n5lvopk4oHbIdmNQAA6n+3OPBob+zj3PL0wPoZvGbaVxKEDcSnDGGtKc0GLPquGPrt3PrhOMavXva\nsBzOV5SDUoxSMlAsmUHLmOw52sfRtrNdkFOajixPzUwpEE6KQCAQjJtK5Z9YMsPJzgibVs4ac3Lk\nRMlAdQEPkgRetzPnlBRWDTmdMqYs43Y5Sibdel1O2vpiFLbudw7NIKoUp+yk0ddIo6+x7NdYlkVU\nixDRQ+iuJCd72jg90MXzR44TN8I0NBjEjTD7+/ZyMnyCh9sfwwj48Djs43U40+i+EHD2vZXTSYxw\nGF0/t9My0xrVlZKBInENp0Ma1uU4msjw7EsdRZ3qWDLDLrV3wnNThJMiEAgE46RS+cc0LdIZo6JI\nylQn3TbU+Lj64rk5WwuTbtctqcfplNm2dvawCIzf55q04XOlkCSJoKeG+uo66uqqWVa1mr7aJJ7e\nU4DEDZctoNbv4ckzj/P2+99ERAvzjR1f4Q1LbmJ1w9oR27M0jfrD20kOBrDc53ZEZ2qjumIykFyQ\nmGxZlt1cTpJGRNDCsTT9kdSERwWFkyIQCASCsqgPetHzylLLSrqNpSetVf94ubzlVdR56hhMD3LH\n7m9yx+5v4nF4WFW3jhpjOYu8a1kdvY75/oUMrNrMqlVN1FSfO0pQrFHdTIzCxJMZTnRGMC37/wy2\nA9beF6fW78lVA2UjamlNp3MgMWo10FgRTopAIBBMAjOlSRwMl47K/SZcmHSb1kza+2K8G5UOAAAe\nKElEQVQMRJLMqq2a8lb9leByuPjyld/gq9v/jZPhEwCkjTR7+3YCO3kK+NE9/0idp4G57lXs913O\ntvmXccmsjdR6i0fOChvVVRKFMS9dCFRN0FFWhjF0Hqxf2kBLoz3ssKs/QVrT2bRyFoH/3969x8dd\n1fkff81M7kmTtE3v99LygZbeoIAtl+UioOttdVVWd1nxsogCXhbWRdYV18tPvKIo7iIuCqIrigje\n+OGCgHJReqPc2tOUUnuh6S3N/TrJ7B/f74RJOkmTdDJzhr6fPPIg8/1+Z+Yz0yb9zOd8zjllySGg\nLjq7e5k9pYKd+1toaO6gvKQgY6seK0kRERkDwxkCau3opqG5k9aO3FYaUoeOhjs0M7Dpdsn8ieCA\nBDlfqn8k3rbwHbxt4Tuo7zjIhr3rWLd3LU/tWcPaPWtp6w0aRg91HuRQ52M8t/ExbtoY3G9+1XGc\nPGUlyyetYOnkFZxUs4SKworDHj9SVDTiKky0yJ9hoorSYBiopb2bp7ceYE99G89uq++rrsTjvXTH\ne9j2chMNLV2s3by/r9E2E0v0K0kREcmR3t4E8d5Ezmb3HK3UpttxZUUUF8bo6Eo/qyZ1x2Yfh38m\nlEzk/DkXcv6cC2lo6eT+P23nQPduqmbs4ZkD6/njX/7Erk5Hd2/Qi7Gt8UW2Nb7I3VvuAiBChIXj\nj+eE8UspaZ9D+d6zWVW8Eiikt7i0b0uAoeRqu4DhSDbYTptY3q/vKGn3/hb2HGxl5QmTqCwvztgS\n/UpSRERypLAgSllxAYVphkaSsr1XymhnDfWG4z919W088Vxdv0/ag+3W7NvwT6pIJMKkolm8bv4Z\nvHn+23mkcDerl9awq2MLG/YFFZcN+9bxYkOwbG6CBFsOObYccgD8dM9XiRBhXtUCJkWOZ3vxa3jN\nzFM5adLStBWXdIbbywLZ62cpLoym3S8qmA0UrE48nMXihktJiohIjpQUFVBWUtBvyu5A2V5LZbSz\nhqorinnN4ikk11tJftIebLfmXA3/dA6xoWLSYJWeolgxJ09ZyclTVvL+JR8Mru1q4tn9z7Bx/9Ns\n3L+BDXs3sL3pRRLhf9saa9lGLX9e+xtYG1RcFlQvZOmk5SyfvILlk0/hpJollBeW93uu3s5Oxr/w\nZ9oPHrmXBbI/q2jgAnDNbV19i78F8cT73uej+bNWkiIikiNFBVFqqkopGqKS4rvUykt1RXHfeiup\nn7RHu1tzJiUbfffUt/LEc3soKSoYssoDDKuaNK6oktUzzmT1jDOBoKfn/rWOmlkH2dr8PGv3rOOp\nl9exr/MvfYlLbcMWahu28PPanwbPE4li409g0fhlFLfPZdL+czl93mkcWnQ6J1jNEXtZIP2sosNe\nT5rKTLy1m96OjsN2hu5paiUSH2RBvPZu1mzuvxFT6uJvBbFo3wrGyYraaPtTlKSIiORISXEBNVUl\nlBSP/FdxtoeBBjOapttcGD+umFWLpwGRvkrPYFUeCJZ/X7Np76ieqzRWwalTjAuOO5eGBZ08smE3\nK0+qYmf7Zjbu38DGfUHVZWtDLQC9iV421b/ApvoXAPjxy1+kMFrItOIFrOo5ldNnnMqyySs4YfyJ\nFMbS/0N/pH6WwWYZNXVH6GgooqlxS7+doTvaeik9ECHRveCwx0rO/EldAC518bfwGVl90lQikchR\n9acoSRERyUO5XlI/H1VVFKWs7ZKU/v3L9PtaUVjBqvFnsGr6GX3HmruaeGb/RjbsW8/GfRtYv3c9\nO1u2A9Dd282O9k3sqN3EXbV3AFASK2FxzRKW1CxlQfVCjqtewHHVC5k1bvYRn3/QWUat3ZS8sJ/K\nRZP67QzdvL+V9id2ESkcPAEeuABc/1WLCw5L/EZDSYqIiGREpndszrRkcvLK0v7B1Nn6pk4mV5cO\nurZLJmappDOuqJIzZpzFGTPOAoJK1K/XPM/EWQfY0vo8v33uUfZ0b6au7eUg3p4O1u1dw7q9a/o9\nTlG0iNnj5lGRmM6a3pNYPPkE5lcvYEH1QiaWTCQSrhybbpZRQUEnBZF9aXeGjiR66WlqIl7cQ7y1\nm0RnB7Fh7CCdSUpSRERyxJcF3zI1dJTtpfpHKrm2S3K196bWLjq74hCJDLm2S3IYq7Fl6IZbOPrp\n1RUF1Zw1YwlvrH4D81r+hrOXTacz2sAz+zawYd96nt63HndoM7uad5IIE4au3i62NjrA8fTzD8Pz\nrzxeVXE1C6oXMLN8PrROon37CpZOXcS8qvmUFZYNOgzU0dZL6cEIHWtfpqEsSlN3hO6DhUzsPEhi\n6Yyjeo0joSRFRCRHRrvnT6YdS0NH48f1b94tLooBkSEbewdWYGDoqdWQ2enVU8qmcMHc13HB3Nf1\nHWuPt/NS4zZebNjKiw21bDrg2PjyJg727KCxq6HvusbOBtbtXcs61gJwX0qbzcyKWcweN5/xk+Zx\n3SkfYuqEaX3nmve3En+0luITplAxsYye9jgFLxyiKTGB3vaOw5ptx2oKtJIUERGP+VJtGS3fh4CG\nY2AFBgafWg3ZmV5dWlDKoomLWTRxMRAMFT2yYXewCWRBC1sPbWVb41a2HqrlxcatbKnfwkuN24gn\nXqkG7WrZya6WncCjPPLQ3Vy14mN8cNkVlBeWE23uYV7dCyQ27aWlvIjW7gjxg4VM6jhAR+fLdLSW\n9mu2TZ0CPdQMo5FSkiIi4rFsV1syPWvI9yGg4RpYgQE/planM6FkIqdNm8hp007vO9bQ0snv1+9g\n4cIE+7t3sK1hK1sbanlu//M8tfcJWrtbuOGpz3Pbc7dyzcprOXviW3lx5jJWnDqH6kkV0NpN4cY6\nGnqns8AmU7K9sV+z7XCmQI+GkhQREelzLA39RKMRKkqLsrJ3Ujb6WY4kGokxa9wMllQcz3mzXwsE\nycv3H///PNx6C3+qe4x9bXv5xB8+zuyKm1iceBdvrVhEQXV12GC7J22Dbd/j98TpaQz27cnU0I+S\nFBGRPOTLMJAv67WMRmVZEWcuncYjG3aP2XOMpp8lFsvu0Ni8siVcuvoeNhx6jM89eT3PH3yWHS0v\nsYP/xzMP3MlVKz/K6ye/hUluDRESdDSPTzvcM76uifamSoCMDf0oSRERyUNqus0Po+lnGVdW1Fev\nGE4FBo6+ChOJRDhv9ms5Z9Z53FP7M7745BfY2bqd3W07uPYPV/OVkhs4Y8rbOLv8jcw+cUHa4Z5D\nz+3hhHAxt0wN/ShJERGRY1Y2GntH08+SCEswqRUYGPtZRdFIlLcffzGnVF7EZ+//HluL78E1PMfB\njv38suMWHmi8k7+veD8riy6hoKqyb82VWEEn8bIWYlVVABnbzVlJiojIMS516Kizu2fUj5OPQz++\nNvZOrCoNZuoMqFBla1ZRLBLDis7lM+ddxrauNdy49mv8qe4xOntbuW3zTfyx9A8snXULFfGgctLT\n2kVBW3NfT0rq90fTn6IkRUTkGJc6dHQ0ScqxNPSTjQrMhMoS4vHDV7s9mllFA4ePmlq76EizM3RL\nezB8FIlEOHf2+ayYcCb/9chv+NWBb1Pbtpba9qd5++/+mpsnfpQTi+Yc1pOSrj9lNLszK0kREREZ\nIV8rMINJ18AL0NLWzZZdDcTjvVSUvVKF6egKdkCOpQwfzS1dwhUzb2Zt4jburL2Fut6D/EP9F/n2\n6ptYPeHcfj0pmepPUZIiIiJ9Mj1rKB+HgF6N0jXwAuze38L2vc0smFnF9JryvuPNbV10xxP09PTS\n0NJJU2sXXd09FBXG+NiST1PYPpMfvfx52nvaufzxD/ODC+4mXjanryclU/0pSlJERKRPpmcNHUtD\nQL5L18Db0NJJQSzC9rpm6urb+o63tHVTu6uBCFBRVkhHV5yXD7Yyd+o4YrEoq8a/idcvWcl7H3wH\nrd0tXPHwpVwz93Ygs/v6KEkREZFRy1TTbS7kqsrj01YB1RXFzJkyjtUnTe3XiJussKw4voYZkyrC\nnpUIZy2bTnlJkDosn7SS715wG5fc/3c0dB3iW9uv4vUn/55xRZUZiy9zOyCJiMgxJ1l5KS3Ov8+8\nuaryJPtZfBn+Ki0u6GvETX6NKyuiIBbp62VJ6unp7ddse2rNuVy38nMA7O36C4/ufjCjseXf3yoR\nEZFjVLaqML1hdvLcS/Vs3d1IR1ec7XXNxOO9NLV10tDSBSQoKSpgVuKvuXhaA7WtGzhr5jkZjUNJ\nioiIZIQvS/WPRGd3D489s4ezl0/3prIxlGzNKho4DJQc7pk7dRzPvHiQSdWlLJk/kXHhe3YKHyMW\ni1JeWJDRPYiUpIiISEb4slT/SCQSCVrau9XYm0bqMFAiEazPsr2umX0NbUCEZ7cdpCAaHXQF3IJY\nlHjP4eu8jIRXSYqZXQFcA0wFNgJXOefWDHLtB4B/BE4KD60DrhvsehERyb58rK4Mx6tlavVwh4+S\nU5ib27ro7IpDJMLqcB2UdCvgJle/bWjpPLr4jureGWRmFwNfA64HVhAkKQ+YWc0gd/kr4MfAOcBr\ngJ3A78xs2thHKyIiw5HPjbVDebVMrR5JE+/4ccVUlhdRXBSjuDBY9bayvKjfCrjJr0wtz+/T35qP\nA7c45+4AMLPLgTcA7wO+PPBi59wlqbfDysrfAucDd455tCIiIq9SvkyT9qKSYmaFwCnAQ8ljzrkE\n8CCwapgPUw4UAvUZD1BERF51igtjLJhRTUEs9+uV+GY4FZbGlq5wOnKcptYuGlo6D/s62iZaXyop\nNUAM2Dvg+F7AhvkYXwJ2EyQ2IiIiQyotLmDBzCp27R/9su2jke/9LIkERCLBPkAdXT3B1OSeBB1d\n8bQNtBD0qIyGL0nKYCLAEQf8zOxa4J3AXznnuo50fapoNDKsclZyk6XYKN/oXFHc2ZOPMYPizqZ8\njBle3XGXlxayeN4EyksL0/7jOpiCWJRoNEJBLDqi+wFEIxFaO7qJRiJp7+vz+11UGGNaTTnHz6qm\nsqyIxtYuolFYelwNz7x4kFVLplFV3j/xisUifVOVR8qXJOUA0ANMGXB8ModXV/oxs2uATwDnO+ee\nH+kTT5hQTmTgjktDqKwsHelTeEFxZ08+xgyKO5vyMWZ4dcY9Hpg+tWrEj5mIxSgtLaKquozxlSVj\nct90cTe2dPLY07s5c/kMqioO34tnrI0fX86cma9MM69v6uCFHQ3MmFrFzgNtzJ5RzYQRvh9D8SJJ\ncc51m9k6gqbXXwKYWSS8fdNg9zOzfwGuAy50zm0YzXPX17cOu5JSWVlKU1M7PUc57zubFHf25GPM\noLizKR9jBsWdTkdnnLmTy+lo6+RQz8j2LGps7qS9vYvGhjYiae47VNwNzZ3UHWihvr6V3u74Ub2G\nTGhu7aIwCi3N7UO+pnTGjy8/4jVeJCmhrwO3h8nKUwSzfcqAHwCY2R3ALufcdeHtTwCfBd4F7DCz\nZBWmxTnXOtwn7e1NjGgKWU9PL/F4/vyQJinu7MnHmEFxZ1M+xgyKO1VhLMrCmdUAI37seE8vvb0J\n4keIK13cw71vtpQVF3DO8hk0tHSOSVzeDHg5534KXE2QeGwAlgIXOef2h5fMJFjkLelDBLN57gZe\nTvm6Olsxi4iIjJRPC9w1tXXx0LpdNLWNqJ0za3yqpOCc+w7wnUHOnTfg9rysBCUiIpJBPm0f4Pui\ndN5UUkRERMQPvlRYlKSIiIjkiWwNFY20wjJWK9R6NdwjIiIig/NpqChVcoXaTFMlRURE5Bg10spM\ntoeBVEkRERE5Ro20MpPtRltVUkRERGRUxrqyoiRFRERE+hnuMNBYV1Y03CMiIiL9+NKgq0qKiIiI\nDEu2V8tVJUVERESGJdsVFlVSREREZFSSlZWu7p4xaaBVkiIiIiKjkqysFBXGxqSBVkmKiIiIeElJ\nioiIiHhJSYqIiIgclbGa9aPZPSIiInJUxmrWjyopIiIi4iUlKSIiIuIlJSkiIiLiJSUpIiIi4iUl\nKSIiIuIlJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLiJSUp\nIiIi4iUlKSIiIuIlJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSki\nIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLiJSUpIiIi4iUlKSIi\nIuIlJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLipYJcB5DKzK4ArgGmAhuBq5xza4a4/h3AZ4G5\nwBbgWufc/VkIVURERMaYN5UUM7sY+BpwPbCCIEl5wMxqBrl+FfBj4FZgOXAvcK+ZLcpOxCIiIjKW\nvElSgI8Dtzjn7nDObQYuB9qA9w1y/UeB+51zX3eB64H1wJXZCVdERETGkhdJipkVAqcADyWPOecS\nwIPAqkHutio8n+qBIa4XERGRPOJFkgLUADFg74Djewn6U9KZOsLrRUREJI941TibRgRIjOH1RKMR\notHIEa+LxaL9/p8vFHf25GPMoLizKR9jBsWdbfka91jwJUk5APQAUwYcn8zh1ZKkuhFen9bEiRVH\nzlBSVFaWjuRybyju7MnHmEFxZ1M+xgyKO9vyNe5M8iJNc851A+uA85PHzCwS3n5ikLs9mXp96ILw\nuIiIiOQ5XyopAF8HbjezdcBTBLN9yoAfAJjZHcAu59x14fXfBB41s38GfgO8i6D59p+yHLeIiIiM\nAS8qKQDOuZ8CVxMszrYBWApc5JzbH14yk5SmWOfckwSJyWXA08DbgLc4517IZtwiIiIyNiKJxIj6\nTEVERESywptKioiIiEgqJSkiIiLiJSUpIiIi4iUlKSIiIuIlJSkiIiLiJSUp4qVwMT8RETmG+bSY\nm1fMrAZ4H8GuylMJ9gTaS7AC7g9S1m+RsdFpZsucc5tyHYiIiOSG1klJw8xOBR4A2oAHCZKTCMHe\nQOcTrIR7kXNubc6CHISZlRKsvFs/cGE7MysB3umcuyMnwaVhZl8f5NRHgTuBgwDOuX/OWlAiIuIF\nVVLS+xbwM+By51y/LC4chviv8JpVOYhtUGZ2PPA7YDaQMLPHgL9zzu0JL6kCvg94k6QAHwM2Ag0D\njkeAE4FWRrizdTaY2cnAIefcS+HtfwA+RPDe/wX4tnPuJzkMcVBmdiVwGvBb59xPzOwS4JMEw7/3\nAJ92zsVzGWM6ZlYE/A3pq5v3Oee6chjekMxsJtDgnGsZcLwQWOWc+0NuIhsZM9tG8AGtNtexDBS+\nxx3OuQPh7bOAy3nlZ/LmcKVy75jZGwl+Jh9wzj1uZucB1xD+TDrnvpvTAHNISUp6y4BLByYoAM65\nhJndSLB0v2++BDwHrASqgW8Aj5vZOc65HTmNbHD/RrDf0tXOud8nD5pZN8Gfga/bHHyfYBuHl8zs\nA8BNwK3ADwEDbjWzMufcbTmM8TBm9ingEwTJ7I1mNgf4F+BGoJdgz6xu4PqcBZmGmS0gqG5OB/7M\nK9XNFQT/EO0ys9c757bmLsrDmdk04D6C6mbCzH4MfDglWZkAPAzEchRiWmb2kUFOzQbea2Z1AM65\nm7IX1RH9HPgc8GszewtBwv1r4HHgeIK93t7mnPt1DmM8jJl9EPg2wYe1j5rZFcB3gLuAHuAbZlbq\nnPtmDsPMGSUp6dURZLWbBzl/GsEvSd+sBl4bfpI4YGZvIvjL/kczO5egKuEV59wXzexB4E4z+xXw\nyXBXbN8tBJKfJj8MfCz1046ZrSFIwLxKUoBLCZK/e8xsGcHu4+9xzv0IwMw2A1/GsyQF+E/gWWCF\nc64p9YSZVRJUB28GLspBbEO5gSD5O53gg8MNwMNmdqFz7lB4jY9N4t8AdgMDK2pR4B8JEtkEQXLu\ni8XA8+H3nwSuc859KXkyrCB+liBx8clHCBLXW8Pf078l+ND2HQAz+xPBBwslKdLnq8B3zewU4CFe\nSUimEPSkXEbwKdo3paT8UgkrQR8ys28DjwLvzlVgQ3HOrQnf65uBteHQiXdDPAO0ATUEZeQZBJ/u\nU/0ZmJftoIZhOrAWwDm30cx6CTboTFofXuObM4DTBiYoAM65JjP7dw7/M/DBa4G3JvvXzOwMgqHk\n35vZ+eE1Pv5dv5Xgw9i7U5vXwwrnhZ5WOOPAuPD7ecD9A87fT1Bt9s08giohzrmHzSwGpA7/PULw\nu/GYpCnIaTjnbgbeQ/Dp5+fAk+HXz8Nj70lmuZ7ZTDDU049z7kqCkvMvsx7RMDnnWpxz7wG+CPwv\nnpW/07ifoAcFggTw7QPOvxPwaughVAcsAjCzhQTv86KU84uBfTmI60gaGDrpm8vhfU0+qAKSFROc\nc50EO7ZvJxjmmZybsIbmnPsg8B/AA2EFIh88Crwr/H4DcM6A8+cSVId8cxCYA2Bm0wmKB7NTzs8B\n6nMQlxdUSRmEc+4u4K6wsa0mPHzA86GIXxD8kP5w4Ann3JVmFiUYv/dW2Mj5GMEY/l9yHc8Q/pWg\n3+dRgsrE1WZ2DrCJoCflNcBbcxfeoH4E3GFm9xFUBb8MfNXMJhJ8ov834O4cxjeY7wG3m9nnSF/d\n/BRBM7tvtgFLeWVoEOdc3MzeQVBR8W3ooY9z7t5w2PIOM3sD8N5cx3QE1xIMbU8HHgO+EM7UTP5M\nXoyfv//uA/7bzG4H3kwwdPm1sMqZAL5C0EN2TNIUZJFRMrNqgl+MbwLmE1Qm9xA06t3o6RT1KEHM\nqwhmxdxA8Mv7ywRT638FXOmc865/ycz+lWBqenJmDwT9HHXAN5xzX85VbIMxsy8By51zh/XKmFkB\nQXX2Tc45b6va4YzGawl6JyYBSz0d7sHMjgM+D7wBqAgPx4E1wFecc/fmKrbBmFk5QeN68mfyKoL3\n+gtAIUGF6GLnnI8VzjGnJEVE8oqZzSNIVADqktPAfRQmImXpemnC8zFgpnPO56ohAGHf2JnAHSlN\nv14KE6vJBB8cfK+ApxWua1XonGvOdSy5pCRFRPKemc0C/sM5975cxzISijt78jFmyN+4M8XbEqOI\nyAhMIGh2zzeKO3vyMWbI37gzQo2zIuI9M3vzES6Zn5VARkhxZ08+xgz5G3e2KEkRkXxwL0Gz7FAL\nn/k4dq24sycfY4b8jTsrlKSISD7YA1wx2OwMM1tOsHqubxR39uRjzJC/cWeFelJEJB+sA04e4vyR\nPonmiuLOnnyMGfI37qxQJUVE8sFXgPIhzm8lWFHUN4o7e/IxZsjfuLNCU5BFRETESxruERERES8p\nSREREREvKUkRERERLylJERERES8pSREREREvaQqyiGSdmV0PXB/eTADNwA6Cbelvds5tzlVsIuIP\nVVJEJFfagNOBVcDfArcB5wNPm9m7cxmYiPhB66SISNaFlZSrnXOVA44XAb8FzgBOdM5tz0F4IuIJ\nDfeIiDecc11mdhXwPPAB4FNmdglwGbCIYHnwjcAnnHNrAMxsSXjstc653ycfy8yiwE7gh865a81s\nBnAjcDZQRbBnyi+cc1dn7QWKyIhouEdEvOKc2wTsJhgGApgL3A68HXgXYe+KmS0Ir38W+DPw/gEP\n9XpgKvDf4e0fAicBVwIXAZ8GYmP1OkTk6KmSIiI+2kmQYOCc+1zyoJlFgAeB04BLgU+Fp24FvmVm\nVc65xvDYe4EnnHO14e1TgWudc3enPM+dY/YKROSoqZIiIj6KEMz6wcxONLNfmFkd0AN0A8eHX0k/\nAeLAu8P7TATeCHwv5Zr1wDVmdrmZHTf2L0FEjpaSFBHx0UygzswqgN8Bs4CPA2cCK4FngJLkxc65\nNuB/eGXI5xKgE/hZymO+E3gI+DxQa2abzOytY/w6ROQoKEkREa+Y2WJgBvA4QV/KdOBS59z/OOee\ncM6tJ2h8HehWYIWZLSMYCrorTF4AcM7tdc59wDlXQzD0sxn4iZnNHdMXJCKjpiRFRLxhZsXAt4AO\ngobX0vBUd8o1qwmaaftxzq0jmOXzTWAJ8P3Bnie89t+BQmBBZqIXkUxT46yI5ErUzE4Pv68gSCwu\nA+YB73HO7TCzDqAV+I6Z3UAwDPQZYNcgj3krcDOwyTn3ZPKgmVUCDxDM8HFAEfAR4BBBr4qIeEiV\nFBHJlVLgifDrHoLZOP8LLHPO/RTAObePYOrxJOBegsTiMmDrII/5i/D/tw043kHQx3IlcB9wR3j8\nQudcfSZejIhknlacFZFXDTN7H/CfwKwwwRGRPKbhHhHJe2Y2h2BK8qeAnyhBEXl10HCPiLwafAb4\nFfAScE1uQxGRTNFwj4iIiHhJlRQRERHxkpIUERER8ZKSFBEREfGSkhQRERHxkpIUERER8ZKSFBER\nEfGSkhQRERHxkpIUERER8ZKSFBEREfHS/wHEFrEV4HwQSAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXlcVOX+x9/PsMwIuADuIqklhuLact0qcc1u2WZ6wTa1Mk2uPzVt4bbYjUpLWyhxueitrqCVN7Os1BS8uZWmZgqJZYioiLIvDgzM8/tjPKeZYRtg2OS8Xy9eM3PmOc95zjBzvud5vt/v5yuklGhoaGhoaFQXXUMPQENDQ0OjaaIZEA0NDQ2NGqEZEA0NDQ2NGqEZEA0NDQ2NGqEZEA0NDQ2NGqEZEA0NDQ2NGlFnBkQIsUYIkS6EOFbB+0II8Z4Q4jchxFEhxKC6GouGhoaGhvOpyxnIv4HbK3l/PNDzyt8TQFQdjkVDQ0NDw8nUmQGRUv4PyKykyd3AR9LCfqCNEKJTXY1HQ0NDQ8O5NKQPpAtwxup16pVtGhoaGhpNANeGHoAjCCGewLLMRYsWLW7o2rWr+t6ZogvqcylLMWMCJEIIBDpAYC4qwWw02/Tp2dqXgpwMSrJL6uMUABBCXBlnWfmYTp060bJlS6cdy2w2o9M1bIyENgZtDNoYGucYqiIpKemSlLJdlQ2llHX2B3QDjlXw3kogxOr1CaBTVX3ecMMNsjJ27twp953ZJ2dvmS3bLWkneRnJM0juRNIDiQ4Jtn/Ltp0os23AgAFlttX139ixYys9t+oQFxfntL60MWhj0MZwdY2hKoCD0oFrfEOawc3Aw1eisQYDOVLK87XtVAjBYL/BRN4Rydl5Z2EdcBLoBzwMLADuBa4H3Cz7zBvbq0w/R44cqe1QqoXBYGDbtm34+vri4uJCUFAQsbGxFbaPjY0lKCjIobYaGhoadUGdLWEJIWKBEUBbIUQq8BJXLtlSyhXA18AdwG9AITDV2WNwc3GzGI+TV47cAwgEertBfxOYrhz9KJDo7KNXj6KiIgAyMzMRQlBQUMCcOXMACAkJsWkbGxtLeHg40dHRDB8+nN27dzN9+vRy22poaGjUFXVmQKSUlV7JrkyTnqqr45fBhGWR7AS0unQ/uWfXW4yJ8vcmUFBvoymDtPKLSCk5e/Ysrq6uLFy4sIxRiIiIoH///owfP56ioiL0ej3jx48nIiJCMyAaGhr1RpNwojub1gPTMbRtz0svvcSiyEXQFZgI5PzZJn1TekMNDwCTyYTJZCI1NZWgoCDCw8NV43D8+HGOHz+uti0qKmLTpk0NNVQNjQZB+X0YjUaH92ndujWJiQ273NAYxqBgMBjw8/PDzc2tRvs3SwOSe6gjOXt2MuvzWfx16V/p/m53/IL68NVD6+jfsX+Z9lJKNYKqIejZsyfh4eGA40tUO3bsYPbs2SQmJhIYGGhjgDQ0rgZSU1Np2bIl3bp1c/j3mZeX59Rox5rQGMYAlutaRkYGqampdO/evUZ9NEsDAtDqL/fz9vYkAIZ6v8IPWUsZsGIQgW8+gsi7Dx8PL+4b5AdAVPzvDTlUNm3axD333FNmiUqn02E224YnK8706Oho1q1bp/lINK5ajEZjtYyHhi1CCHx9fbl48WKN+2i2BqRFjxvV57JwCC/d9C1fJL/BwYsfMqhDOp1dXmDumAAA1dA0JF988UWZbfbGAyA8PByTycSCBQsIDg4GIDg4mOjoaMLCwjQDonFVoRmP2lHbz69xZ7PUETl7YjCm/MLcMQHMHROAn7cH/7jjLxyY9TlP3fQUxzN3UmK+3NDDtEFKibu7e5XtQkNDSU1NpW/fvjahvrNnzyYhIaEeRqqh0XxJTk4mKCiooYdRhhEjRnDw4EGn93vVG5CYmJhyt99///02r6Pif+ft7UmUFtxEUWkRcZee56GYZTyw8js+++kMoav21cdwK6W4uLjKNu+99x4AH374IeHh4URGRmI0Gpk+fTqurq5avoiGRhOjpKT+1DKqy1VvQEJCQoiJiaFPnz7odDr69OlDTEwMxf7HWX5kOcuPLOcP9zfZeO55jpa+zmWvOG7peQu+HbLYdnEx3xsfItv7WYoN2zifdx4pJa3bdiz3WF27dkWv15f7XkXbq0Pv3r2rbJOXl4cQgpiYGAoLCxk1ahQBAQG88cYbLFy4kIiIiFqPQ0NDw8KyZcsICgoiKCiId955B7Bc8KdMmUJgYCATJ06ksLAQgGeffZbevXszZMgQnn76aQAuXrzI/fffz0033cRNN93Enj17AHj55Zd56KGHGDZsGA899BCDBw+2ibxUZhQFBQVMmzaNm2++mYEDB6pL3ZcvX+Zvf/sbgYGB3HvvvVy+XEcrKo6kqzemv6qkTByVCbCWL2k9LFS2HhYqLR+Hhbe2Jsjdp3fLEaumSd/Xu0peRoqXhRz54Uj56tc/yq5du9rIkHTt2lXd183NzeY9vV4vpZS1ljpRjlHT/UePHi11Op1Dn48zaAySDdoYrt4xJCQkVHuf3Nxcpx3/4MGDMigoSObn58u8vDzZu3dveejQIQnI3bt3SymlnDp1qnzzzTflpUuXZEBAgDSbzTI3N1dmZWVJKaUMCQmR33//vZRSytOnT8vrr79eSinlSy+9JAcNGiQLCwullFIuW7ZMvvjii1JKKc+dOycDAgKklFI+99xz8uOPP5ZSSpmVlSV79uwp8/Pz5dKlS+XUqVOllFL+/PPP0sXFRR44cKDc8yjvc8RBKZNm60RftGhRuduFEBaNF+HCMP9hTOjWjruuWcj5whMYWh3g1e9fxcu8kZSUFACGvbGDiTd0VR3uANu2bWPEiBG8vT3JZnttOXPmTNWNKuG7775Dr9djMBjUBMTHH3+cyMhIJ41QQ6Nh+L9v/48jaVXLD5WWluLi4uJQnwM6DuCd29+p8P3du3dz77334unpCcB9993H999/T9euXRk2bBgADz74IO+99x7/93//h8FgYPr06YwaNYoHHngAsPwmrX2Tubm55OfnAzBhwgRatGgBwKRJkxg7diyLFi3ik08+YeLEiYDlWrN582beeustwBKZlpKSwv/+9z/+/ve/A9CvXz/69evn0DlXl2ZrQOxpNSgNfbv2ACw/spxDuRksP+LLlou71Db3dbuNgV0H8kvBF0Qe6oKLzgWj1ykO5bYGXmigkVcPRTJFef7+++8TExNDdna2Tb5IbGwsERERWh6JhkY1sY9sEkLg6urKjz/+yI4dO4iNjSU6OpqdO3diNpvZv38/BoOhTD+KYQLo0qULvr6+HD16lA0bNrBixQrAsoK0ceNGevUqq+dXHzRrA9J6WCgABv++mE2jKLq4A4Cii6MZ6uvCzAHXUnRxNAeTMykxS4ou+hLUooiPz8xj9Z4veShgGcUXe2DWt3HoeLKBExIVvLy8yM/PV2dbmZmZfPTRR/j5+TF9+nT27t3Lli1bNK0tjSZDZTMFa5yZxHfLLbfw6KOP8uyzzyKl5PPPP+fjjz9mzpw57Nu3jyFDhhATE8Pw4cPJz8+nsLCQO+64g379+tG/vyVheezYsURGRrJgwQLAIuI6YMCAco83efJklixZQk5OjjqjGDduHJGRkURGRiKE4PDhwwwcOJBbb72VmJgYRo4cybFjxzh69KhTztmeq96JXhE5e2LUP2PKLzbv7T+VgdFUytvbk9h/KgOAwT18Mbi5MLDtX7mn2/P8krmdtb/OxoyJ5IwC3t6exNvbk6pMOpTl1AKpb5QpsvVYXnrpJdLS0oiOjmb16tVER0cTHByMm5ubmkeiOeA1NP5k0KBBPProo9x888385S9/4bHHHsPb25tevXrxwQcfEBgYSFZWFjNnziQvL48777yTfv36MW7cOJYtWwZYoiYPHjxIv3796N27tzqzKI+JEyeyfv16Jk2apG574YUXMJlM9OvXjz59+vDCC5aVkJkzZ5Kfn09gYCAvvvgiN9xwQ518Bs16BqKQsycGg39fcvZYQn4Hv/RSuUmERlMpBjcXbu38CELo+PyPV+nlPgK4RW2z++RFAnvW5+idw+nTp3n44Yfp0KEDRUVF3H///eTl5VFSUoJer2fatGkkJCQQFBSkLWtpaFxh3rx5zJs3z2bbr7/+Wqadh4cHP/74I2A7C2rbti0bNmwo0/7ll18us61Dhw5lQnpbtGjBypUry7Rt0aIF69evd/g8aopmQKrJ7pMXubGbD0M6TOar029hdk+EUosBOZicydHUbJZkSQ6bLLMXawNkcHNh5ohrG2rolWI2mzGbzZw9exaArKws9b3S0lKioqJUmXmgUrl5DQ2N5oFmQKxQfCL7T2UweeU+BvfwVZewRvRqj9FUSolZqrOTb9KGkFP0G37Sg7ljAnh7exIlZklHXV650VeKMWksvhBHadmyJVlZWWWW30wmU7ly8xoaGs2DZusDsceY8ovqExncw5fBPXyZOyaAwT18SXfdzN6MGDanrCXh8qc8tPGfPLTxnxSWGjh7+Rzprp9X+3jLtp2og7OoGxSfCcCaNWswGo2sWbMGg8FAampqA45MQ0OjIdEMSBXMHRPABP+pfHz/C/i18cDdVceQa30Zcq0vg68JQGImpegrHvj8AXZlfEC6y2aH+5ZSsmzbCSat2OuUTPW6okuXLurzUaNG4e7uzqhRo9TsViEEBoOBsLCwcvfXyu9q1BWNISilKVPbz09bwrqC4kCvjEGtJnPq5BlmDRgFWD78Xq168dbutWw8uhGJxNOlMzmGk+xJ8WRI1yHohMVGR8X/buMTUZ7vP5VBalYhr395lPl3BCFLTHV3kjVESZqEP79wUkpycv6swNWmTRuWL18OYJOYqJXf1agrDAYDGRkZ+Pr6Nqkl4caCvFIPpLwcFEfRDEg5zBvbi9bDQpk3NqaMhc73iWTqt/+x2da9Q3cGB/Qk4dJvFJUUkl1ymPs+vw9PN08CfAPo5duLi9mtcW/rxtwxtgmHFiNimensf38XG2YMqfDH0FA/kvJk463R6/VcuHABgA8++MDGgERERBAaGkpYWJgavRUaGqqV39WoNX5+fqSmplarnoXRaKzVBdMZNIYxKCgVCWuKZkCqQAhh46/wygxj7ROjbNookiXKjMKbNG4baWTTiU18+9u3bP11K646Pb1aD2X1Tx25M+BOOrXsVOExl207wbyxtpmlQgj1Qt7YnPBFRUW4ublx3XXXkZiYSFhYmGpEEhISKCgoYM2aNeoMZNq0aZw+fbqBR63R1HFzc6t2Jb34+HgGDhxYRyNqOmNwFpoBqQP0Ok9C+t5LSN8QikuL+d/p/7Fo+0ccz9rJE189AcAt/rfw6QOfVtjHpBV7GdzDF6DciK7GZkRMJpNa53n16tWqAXF3d1d9JsqYe/bs6VBtEw0NjcaNZkAcRJld5F42qSG+Cga3isXZ3F3cGd1jNL/08OdeGc6Y/sV8ceILIr6P4MHPH+T2Du/Vx/DrFXu9raSkJHQ6nbocmJRk8QMFBQURHh7O3r17Wb16tSbwqKHRxNAMSAVYO9Wts9ITzuXYtNt/KoPBPXxVA+Oqq3hWIISgb4e+9O3Ql45eHXn8y8dxL1mNFw/UzUk0IpTZkrVPKTIykrvvvpuCggLefPNNnnzySVasWMEzzzxDUlISZ8+eJTExkc6dOwNw7tw5LQNeQ6MR0WwNiE6nq9I5rGC9VNQh5HW27viFT/ZYHOzWku1KhFVycm6FfT2y5keMplKk7E0n/VC2p3xEgHkMk1fuI+FcDlNW76/FWTVeSktLy2wLDg7GaDSi1+t5/vnnmT9/Pnq9nh49erBt2zZ27txJamoqzzzzDFJK/v3vf6uCj6BFcWloNDTN1oDUJv7Z4N8XCKXN8Cn0uXOaun3/qQxG9Gpf7j6Hci16N6mykG4dPCkplXQUHSk1/oZOt5F013bgXURyxl/JM5bQ0uDKwWTBjd18Kj2HxuQHqS5BQUGYTCZMJhOurpavYmlpqbrEFRYWxvHjx+nWrRtTpkxh8eLFHDt2jOjoaMLCwjQDoqHRwDTbREJHysOWh71yb+5l27yN+BPpnMyyKPlOXrlPVektvjSaob6htC+ZQD/PSXx8/wvc3mkG6dnpzB0+jLjprzOtz5NMvKErLQ2u+Hl7UGKu2sgt23ZCTUi0rhTWFFB0tQAWL15MQUEBixcvVrdFRkai0+lYtWoV69atUwvvDB8+XHXYa2hoNBzN1oCEh4fXaD9F/l2RPWnVwo25YwKYOyaADTOGsGHGEBbe3EKVQVHeG9zDt4yQYku3tgB8dSxJ9aEojvrUrEJSswrZfyqjSol4e5pKprd1neYlS5bg6enJkiVL1G3BwcEEBgbi6upKWFiYGrm1e/duAgMDnTKGsLAwDAZDldn0GhoaZWm2BqQxLH/oXTxpY2jDDxe+wCz+vBtv1cLNpl38ifRqGZGmUrdDST60fm69rXv37iQkJDB69GgWLFhAUVER3bt3Z/LkyTW+AbAmLCyMFStW8Nprr1FQUMBrr73GihUrNCOioeEgzdaANAaEEKy7bx1phb/x3s9TGeCvZ3APX/y8PZh4Q1f8vD1UYUejqawTuiKayvLO0qVL1eczZ84kOzubmTNnqtuSk5ORUqpS8wBnz57FaDQ65firV69m8eLFzJs3Dw8PD+bNm8fixYtZvXq1U/rX0LjaabZO9IYi3XUzh3I9WH7El0O5GegLfBnVYwpHMr4h6uSjtNWNxnRxLKlZhepSFoBOCDXfxNqYWGtqvb09CYObC507d6awsJDMzMwGOUdHmT9/vvo8KiqKqKioKvfp0qUL2dnZTpGRLyoqYsuWLTz99NNqQEJwcLBNHouGhkbFNHsD4uLiUm6IaX3SvkUPOutv4VzR/ygQP+DVTsfEXk+otUgAUrMKiT+RjqtOsO7xwWX6sJZTUdi5cyc/GdtzJjWVT158FFdX16tCfl1K6ZTzEEKwc+dOvL29ycrKok2bNuzcubNJR7ZpaNQnzX4Jy2Aw0K1bt2rt44hyb3m8vT2J4oujSc0u5NOfznAi9zD/TdjFidzDmHUmfAzdMbmep9jwA/p23+He9js2zBiiLmsN7uHrUGTWuXPnmDFjBmFhYSy8sx9ff/MNS5Ys4dy5c40qQqsmF+o1a9ag0znna6t8FoqqsPLYmD4jDY3GTLOegfj4+JCVlWUTDVRdfj96ACFGA5VfeJRkw/2nMhjsP9Vmu7IEJaXkeHE4idn7GX/NRxRdrJm0e2BgIO3atePYsWPqjMTP9awaudRY8kdqcqEeOXKk0wyIguJfcTSxVENDw0KznoG8//77eHl5Oc1XUNOL8qHcDaS7buai25f07ngT7Vr78siWRziUu4HlR5arSYiOEh4ezptvvklcXBx7T14gOfkPpk+fbhO5pOSNNEWceaG3/581BsOqodFUqFMDIoS4XQhxQgjxmxDi2XLe9xdCxAkhDgshjgoh7qjL8dgTEhLCypUrCQgoq3ZbnwxqNZn2JRNoXzKBod6PYSjqz+/pvzOo1WRmDZjFoFaTq9VfSEgI06dPJywsjI2zR/D1N99UWH+jKRsSZ2B/7s35s9DQqC51toQlhHABPgDGAKnAASHEZillglWzfwCfSCmjhBC9ga+BbnU1pvIICQkhJCSkxneeF2KfK7NtwoQJ5OXlATAPy1JZRkZGmXbWpLtaSuEeyvWghZeR4lI4lLue5Ufacig3g3TXQuDPpa+o+N8rjcYydr+FY8f+qSoHh5QjCW9NeTVINDQ0NCqjLmcgNwO/SSlPSSmLgfXA3XZtJNDqyvPWwLk6HE+leHp6OqUfX19f1XgoZGZm4uvrW8EeFtqXTFCf63XelJhLyDDaRhpZL2UZTaVqlruSBW+d/V5cg8AyRQbFuoBWY6apZNxraFyt1KUTvQtwxup1KvAXuzYvA9uEEGGAJzC6DsdTKatXryY0NLTW/VTkT7Hebh2eO3nlPgB+M22kRPyGm8mAm3sp3q7enL78AwfSTJwvKqRAZwIG8of7myw/MppDuRksP1LWKH11JhW2P8qvmRY9Loscyp9KwQY3lzKSKuWhLOUo4cGN0TdQ12VxY2NjiYiIUEvxajLyGhq2NHQUVgjwbynlUiHEEOBjIUSQlNLGSyqEeAJ4AqBDhw7Ex8dX2GF+fn6l71dEp04Vl5h1FvHx8XTUFfNrpu304NJlMxCMK8EECjdOZpVyfbtYPk75mKXdF/NNgY5fM0vxKXHBO/NGeme34ERmMb19y1b1++Jidwb2OEeSVykD3c6R7FsK5DHQzZIc9/nJYuI5Q3JyMfHx58o8AuU+/8c//sGrr75arXPNz8+v2QflIMePH6/yf13T70O7du0oLCykVSvLBDkjI4NZs2aRkJDAqFG2JY137NjBf/7zH1JSUvD39+fBBx+0aVPTMTgTbQzaGOoEawVXZ/4BQ4CtVq+fA56za3Mc6Gr1+hTQvrJ+b7jhBlkZcXFxlb5fGT4+PhLLslqd/Cks23ZCTlqxV05asVcOff072fP5LTLoxW9kz+e3yEkr9srQVfvklHVvSl5Gfn/6e7W98qj0UR7K+39ftVVtZ91WeV7RY2XPY2JiZJ8+faTQ6Rw617i4uDr9PK0/04qo7PtQWb9t27aVQgj1sVu3brJNmzbSz8/Ppo+YmBjZrl072a1bN7Vdu3btZExMjENjqC+0MWhjqA7AQenAdb4ufSAHgJ5CiO5CCHfgb8BmuzYpwCgAIUQgYAAu1uGYKkXRYtLr9QDo9XobbSZnofgqNswYwsQbutKupZ7enVvTrqWeDTOGsO7xwcwPttzB3rL2Fv7500h+zH6VHy9sJL+k6mTAqPjf1SUsReFXkZVXnh9Mrn7ockhICMeOHWPpt4n4+FRcp+Rq4NKlS3h4eODl5UVRURFr1qxBr9eXyYBfuHAhLi4urFmzRm3n4uLCwoULiY2NJSgoiFGjRhEUFKT5bDSuOupsCUtKWSKEmA1sBVyANVLK40KIV7BYt83AfGC1EGIulju/R2VVV8c6JDAwkAceeIDly5er2+Li4hzSaKotivaVcpEf3MOXhQO2cDJnH8l5B0jI2Mv6378G4Jp3utJBP4hWvncx7rpx+LXyU/s5l32Z+BPpNn1b12931QnmjglQfS81JSMjo1H6RZxJQUEBBQUFGAwGAgMDGTlyZBkjkJqayoQJExg/frxa033cuHFs3ryZ8PBwoqOjKS0txcXFRaukqHHVUac+ECnl11hCc623vWj1PAEYVpdjqA7h4eFMnz6d6Ohohg8fzu7du5k+fTp6vd5pAnvWF915QOthoYx7aDYAqRSqmemWzPUAwJIaM2nFHrp3ymb773Fc55fCNyd38tiXX2BwNfBVyFeM6mGZsZilZHAPX5KT89Tsd+uQ3+SMAtW5XtsZiawgo70B7wHqBLPZzKVLl1i/fn2572/e/OfEuqioSH0dHR1NcHAw8fHxjBgxQqukqHHV0awz0e0JCQkhIiJCLTIUFhZGREQEJlPNJEXsqeiOfdeuXQA2MxDraoZvb0/CzcWFjh496el5P5888AmLbtzDsZnH6OnTk7ti7yLuj7gKj2sd8uvn7cHcMQFMvKGrTdivIxpb5SGvhP1OWrG3SVVDrC4XL160rPlWQ0bl008/xWAwEBwcjMFg4NNPP61Qal9Z7nJxcdGWuzSaDJoBsUNZ5y8tLeXYsWOEhIQ4rfpdZQzu4atWN1RqgFjnedjXRj+c9wm7zu3ioRseokf7Hkz5cgpj148l1/NjDuWu55TL1jofc3OiJnpZUVFRlJSUAFBSUkJUVBRt2rQp0y42NpYnn3ySpKQkzGYzSUlJTJ8+na5du2oGRaNR09BhvE2C8PBwp+SIOIIyAwHULHKw5I6M6NVebVN8aTRFrXw5eCqDyV1v4duUd/nfyc0UmQvJKupNL9cx5Bfn4+XuZdP/uezLNktXyqOypKXUHNGoHjqdDrPZrD4qKKUClMesrKwy+86ePZvc3FxcXCyffUlJCSaTSVVPLigoYM6cOYDmP9FoXGgzEAeozx/t/lMZpGYVknAuh9SsQj776Qz7T2XgqhMYTaWM6NXeZulpcA9fXrhjMHuejCV94Xn6dbgbvYfkmIil96rePLfrOVWUcfmR5RR6fm1jJKwd7GApn1uTOuzNndatW9s8KijLlspjeUt8mZmZ6HQ6lixZQkFBgZp7Yjaby0R2aWg0JrQZSCNBcXhby7srF/e5VehYKbTSt8LHLZB+bQZxOiORE5d3kpafBvSwaWc0laoGCCxOdj9vD5s28SfSMZpKVWPiSPZ6efj4+DT6yojOQJlZWM8whBBcc801aoLh6dOnK/QRdezYkaefftqmSiPAZ599BlhCyk+fPk1QUJCWEa/RaNBmINVACGFTx7sx0r5kAoNa/Y1e5ntJz06nv29/VdV31oBZGPLHl9nH2qAo+SnWr6tTj92ejIyMqz5npCKklKSkpGA2m0lJSak0wKCiYl8zZsxgzpw5PPXUUwBERkYSHh5u4xPRHPAaDYU2A6kGLVu2JDIy0ql95uyJweD/OjqdjqVbf3VKn4dyN5Dllsn1na4n8nAkg3zPoz9yDQBGr1McylWWWV4os+/B5MwyPhKw1dKqLooS8eSV+9gwY4janzIDuprzSWpbrOry5csIIXj77bfx8/MjODjYJhw4NjZWzTexDj0HzV+iUfdoM5Bq0KdPH86fP18nfUspeeWVRU7pa1CryVxrHs9n93xGenY6Ry59TY4xp0w7xS9yKHeDqvRbYpY2Phbr2cjcMQG1mo1UhBL+29xrk5RHSUkJubm5pKenc/bsWYKCgkhNTVXDgSMiItR8Ezc3N9XAREREAGjZ8Bp1ijYDcRBPT0/27dvHzJkznZ6Zbkz5BQBnXzv7tO/DuvvWcd+GiSz6bhGzbpqFS94wBvXqC8CsAZYZQNHFpEr7UWYlQJkZifK+Rt3i7+/PiRMn2L17N6GhoXTu3BmAxMREhg8fbtN2+PDhJCYm2sxOHM2G1xSINaqDZkAcxNvbGykl//rXv5zed86eGPVRiBib7PTKsF9qGtzDV5Vv93eztJnQawLPDdzKWfPHvPvDuyBX0CZlKqO6zHB4fMqfuuD6AAAgAElEQVSsRDmmvVO/trIo9lSU4d6c+eOPP3B3d8fNzQ03NzfVrxQYGMiiRYvYtGmTetG/5557CAwMJCIigtDQUMLCwtT3QkNDK5TB15bDNKqLtoTlIOfOnWPFihUVlr91VkEqBSU7vSKUJSVrZ7eSaT64hy9/7fGn1LuPoQtr7l7D8VnH8dbdzPbU5axOfJy8orxKjtCwXM1Z7TXBzc1yR+Dj44PRaFRFHYODg4mIiOD48eOYzWaOHz9OREQEwcHBJCQkEBMTQ2RkJFu3biUyMpKYmBgSEhLKPUZVy2EaGvZoMxAHCQwMxM/Pj2PHjqHT6ZBSMmHCBJKSkggODiYqKgohBB4eHhQUFJTZ39PTs9zt5aE41hctWsRLL71U7bHuP5VBsq6YwyZ7J7iObj43MaCVH8cyv+PWdbcype8Ufs69DMDyI76ku57BosRfMfbldFOzCq2O4XjRKkfQSu1aUOR00tPT6dKlC2fPngVg7dq15bZfu3Yt7u7uDB061GYGMnToUM6dK7/wZ2XLYRoa5aHNQBxEEVqMi4tT74y///57Fi5cyHXXXQdY7pqnTp1a7v4Vba+KRYuq51hXZFDu7elerizKta730cmjFwN87+BC/gVij8VilraOccWxXhH25XQn3tBV1diqC0d73759q7X9aic1NVX9DlZ0U1JQUEBRURExMTH8+uuvmM1mfv31V9atW0dRUVG5Ib+BgYFMmjQJg8GAEAKDwcCkSZPqRcpHo2miGRAHsRZaBEvGcV5eHtOmTeP555/nscceAyAmxuLPUGQpXFxcEEKo2x1FcazXBYNaTWZch2d5Z9Q7HEo5xImc3eW2U6K00l3ty7jUL0ePHi1jLPr27cvRo0dr1W9TXCKrSMzR29sbIQTe3t42ba3P0T6UWJFIUYxIly5d2LRpEx4elqRSDw8PNm3aRJcuXZwy9h07dmj5KlcZ2hJWNQgJCSEkJASdTkdoaKhN3ZBZs2YhhCAzM1Ndry4tLUWn0+Hi4lKrbGwhRLUudtZLWJ/9dAY/bw91eclV96dzelKfSRw4e4C39r2F3tSOqLtWs+uHX5g1YAhFF5PUKK1dP5R1klsvYynyK9aRWlHxv+PM+9ajR4+q/Tuame8IyufaVJz2iqaWPeVlwisGQ9nH+jtkNBrZvXs3U6ZMYeHChYSEhLBz5048PT1p3bo1OTk5tG7dmuLiYnbu3FnrccfGxrJs2TJMJpMqGDljhiWQQ3PQN120GUgNGDNmDFFRUcyaNYucnBxmzZpFVFQUY8aMASzr1W+88QYFBQW88cYbTpODdwRl2coaxUcBloiq/acy1ITA10e/zm2dprLvwgb6RvUlvegnh46z+6Rt4Uh7KZTdJy+y5VSxjSS9YmSUqDFNb6vhUMoVPPLII6pDvqSkhKeeekoNCPH09OSpp55SFYVrw+zZsyksLLRJrMzPz2f27KqjDTUaL9oMpAZs3bqVcePGsWLFCtV5PnbsWLZu3YoQAjc3NwYOHKg+6vV6jEZjtY6hhPa2HlZ9FeC5YwKIjz/HiBEBqhPdHkXrCqCDfJy5A8axOeUfJJj/yYTPttGSgSw/0gGAdNczLD9yGIBDuRkMajW50tBexUAUU3a2YL1PXSQlapTFXiEYUGcB7777rs32t956S217/PhxpznQlRl427ZtuXDhgvrYHHTSrmY0A1JDtm6tuN5GSUkJISEhXLhwgQ4dOjilmqH9MlZ5lQ3njllX7r7WwonWCYC2BmAI/zTdRf93HuHL45/RyeMEz926kaD2Qez6YR+zBlgis6pKOtRofJQno6LT6fDy8iIrK8vmu1SeoXEWer2e2NhYNcfkzjvvpLCwsOodNRotmgFxMq6urqovBCx3Xu7u7pSWltZoKUCZiVhT0Xp9dX0l9ni4eTCo1Tzeu2cakz59iBtX3ci8IfM4q8u3mYEApLsW2m0rq6ul0Xgxm82qv6S+ggnsv7fVqe6o0TjRDIiTefLJJ1m+fDnt2rXjwoUL+Pj4cPHiRWbNmsX7779fq77d3NzqxZ8yvud4FvT/kuOX3+GN3W8AOjqdvJfZN83G2LIjQgiKL2VUOSs5mVVqM+NRsuaV50CtpOI1mhZGo5GRI0c29DA0nIh2C+BkIiMjmTBhAtnZ2QBkZ2cza9Ysp6j4VmcGo4RMfjpzOMujltuETO4/laFezCev3Kc+f3t7khql1dLdlw0TN3BqzikCPP/GjlM7GPHhCN76eQIH0jeVyR0pj1L5Z8a8wc2ljHMfLL6Yt7cnaQ71qxxX1/LvVXU6nRba24TRZiB1wJw5c/j8888b7PixsbG8//77tGnTBiklpmKTWhJ1bkiITTisfWis9YwBoFubbvRv+RRrp61i/bH1vPDdm+y4tBS9Lpo5391OgG8Ah3IzWX7kT+NgWdIabdOPknxozZTV+ykxW5ZP4k+klzm+Vl736qGimx+z2UxkZKSmvdVE0QxIPdOiRQsuX75cp8dYuHAhOp2ONWvWsDzRlc5uhXzy03/VeH+gTL0Ppf66st3+4u3h5sG0gdPIvjiMnzO+5b+/L+W9Pe8xtOtQhvgsZNaAu9W2RReT2H+p/Ogva0rMUnXwlyfSaG/M6pIWLVtzOa+s5L1G3TN+/HiKiorQ6/WMHz++QrFHjcaHZkDqmeqG89aE1NRU3nzzTYKDg1mRtI9u3brz0UcfMXbsWACbC7a9T0J5PriHb7nJh0IIBrQdz+mCc1zb+RJxyXFsPLuA7odTVSfpodwM0l0LcefWao/dPkERsBmj9Vicyf2zX+SL918mPz+/UqdyU8xeb+wos5OSkhK++OIL9TPWpOUbP5oBqUf0ej033ngje/bscXrfSrSWfaRLeX4He8ozKPZ5HfYIoeOGzjegd9WzMXEjSRlJ9GprK3qY67WN5Uf+ACxGxXqZC7gi3GirEWa91FVRfkldMCj4Tu7o20lVtlUi2vR6PbfOWsy2ZXPq5LgasGTJEp588klWrFjB008/DViMx5w5c9SkRkV2BbTlrcaE5kSvRx5//HF++OGHejnW66+/TlxcHKUlJpKT/+CRRx7Bz8/PoX2tner2TnZlaat9yQRmDZjFe6Pfw1gIZzPPqnXXB7WaTPuSCbTKH2uzTXmu/LUvmVCXH0G1CQkJ4dixY0xasRez2cyybScwGo2MH1+2jryCNiOpPdZJt23atAEsy7A5OTkkJydjNptJTk4mJyeHhQsXAhAWFmYj+qho1DXW+vDW45o6dWqjGVdt0WYg9YgSiVXbcF5HyMzMVEMmWw8LJef8eYcEHe39EVXNSFx1rnRvOYjDaYedOXzAthIilNXccqZsfG1QjEhzqfPubKx9IAMHDmT//v2qvIqSRa/T6SguLiY1NZWwsDBWrFjB4sWL1ZnLM888Q1JSEocPH8bT0xMppTpr2bt3L3FxcSQmJuLv789rr71Wr7MY+0Jd77//PuHh4UDTn01pM5B6xhnhvDUlNLT6sigK1ppWn/10xkbX6ppWfTiVdYqg5UE8teUpjlz6BmNp7SUqUjJts5Ttl+PiT6Rr4b9XAdOmTSM7O5tp06axf//+cjPjrTPiV69ezeTJk1mzZg0tW7ZkzZo1TJ48mW3btlFcXGzTd35+PlFRUURGRmI0Gvn73/9OeHh4vc4A7At1DRw48Kop1KXNQDSqxD46SvFDKNunGv/BioNtiU+O58OfP6TAZKlR4Sn8mbXlr4zoNoK8Yj+geiq6ZinLVd51hp6WfVEs6yTH1KzCWhumisryakteZYmKiiIqKkp97e3tXalGllLnRPksjx8/rlZZNBgMrFmzRg0LHjNmDKWlpQQHBwOoF++wsLB6u/u/mgt1aQakAfDx8bmqROTaGNrw7PBneXb4s5hKTSz4YhM7/4gj120vX/7xJRt/24inwZNt6zrT07enut8f7jlkXHRDf+S2epdDKS8vRWH/qQynCD0qF7g5q7fx7uNja91fc8H6t2G9hGU9C7E3xMrrUaNG2VRgVPYJCgpSl7BeeeWVer1429et9/f3Z8qUKVdFoS7NgDQAoaGh9eIHUShPT6u22Nf/sF5e6uUziPMX/cjOvostC8Zw6PwhHvx0DidyT/B96PfqnfnklfsY7OfLrAEBzVqksaLZSnNBiXgrT8utvCUshQkTJhAdHc306dPZvNlS9Cw2Npb27dsjpeTSpUtlKjcajUbCwsLo3LlzXZ6SDcHBwSxevFj12Tz99NPq86aOZkAagLi4uAY7dm0FF4ErCYf2ar62d/NKZrmrzpWbu9zMwLZ38snv/2Bf6j6Gdh0KQLrrZg7lerD8iK8a5msd7mv0OgWMqtVYmwrN2Ygo38fqfC/1ej2bN2+mXbt26uuioiKklGRkZKiPCmFhYerFe9WqVWrF0PogLi6OAQMG8PTTTzN//nwAbrzxxga9DjgLzYA0AImJieXWaKgvlAtVVTLwzqSP90i6tOzCnTF38u2D33Jzl5tpXzKBQa3+nIFYPwKs+3ZHnY+rMeHq6uqU4k3NAfsSCcprIQS+vr6kp6fj6+vLhQsXAGwu3oMGDeLQoUP1NlYlr8jFxYWSkhJ0Oh0//fTTVeEP0wxIAxAYGEhKSgoFBQXVMiJ1ddckhGDZthPV3s96CUuRQlGwzxhv6e7L91O/Z/THoxn10Sjeu/09SmWPMn0eyt1gMwNZfuSE3ftXr3S8yWRC5+qKrKBsrUbV6HQ61Wikp6fbbFdKTB8+7PyQc0dQDFvr1q1VsdWmjmZAGoDw8HBCQ0OZMGGCunbrCA01YymP8svm/rlteM92bPohy8bI7D8FD/b4N2t+ncm0zdMw6LzJc5tCSH64up8l4fDPGcisAbZLWFe7r2TpNwnMHRPQbJezaot1zXjr5dpWrVqRk5ODp6cneXl59T4u+2W6q2H2AdXMAxFCjBJC3CWEcHOw/e1CiBNCiN+EEM9W0GaSECJBCHFcCOF8b28jJCQkBD8/P44ePVqt/Xr37u30sSgO9kWLFlVrP0WmXanB7uftYbNt5ohrud7HxabN4B6+LLrzFlLm/8L2h7bTo3V/tqW+zzXvXEPMyWf48eyPV80Pq7Ys23YCKWWFM0Ptc6oa6xuurKwszGZzgxgPAHd3d1q0aIFOp0Ov1+Pu7t4g43A2Ds9AhBBLgRzADMwE7qiivQvwATAGSAUOCCE2SykTrNr0BJ4Dhkkps4QQ7at/Ck2TJUuWEB4ejk6n47HHHmPVqlVV7qPEstcVznCwO3qc0T1G81igPxcvJ5Pv9hWrDkbzl39tootnIB4+f2dK3ykYvb4pdwlLWeJS6rNf7ZSX6a5RNfX1fXaE4uJikpOTAUhLS2vYwTiRCmcgQoilQog2Vpv8gX8CEVeeV8XNwG9SylNSymJgPXC3XZvHgQ+klFkAUsp0mgkhISH89a9/RUrpkPGAuo3eqkiMsa5p16Ib741/j5du/J7ldyxHSsnMLTPptLQTWeZ9pBdU/pU4lLuhnkbaOKnoAtlYLpwNifVnoHyvr9alwYbSAKtsBvJfYL0Q4mssM4mPgDjAAKx2oO8uwBmr16nAX+zaBAAIIfYALsDLUspv7TsSQjwBPAHQoUMH4uPjKzxofn5+pe/XB46MYceOHWzcuJEpU6bw1Vdfcfny5TKRJfYkJibWy7nNG9uLeVee/33VVuLjz9m8n5xcbLMtObmY7OzSMmMrLi5WtyUnWyQm7PdTtqWlFjOkRSD3t36H63v9zpfnv2Tr+TgidvzIjB4zuL/L/QghOJFZTG9fy/T/RKayv+1xranof7HzzJec3+RCUlYppXbX2pTLpaQkCVrljyU5OZmTWaUMdDtXpg977D+X8j4HR/uwf6ysf+XG4vOTxdzb0/LZVPd7UlX7hv5N1ZbyfA+N4ZyUMezYsYP//Oc/pKSk4O/vz4MPPsioUY6FsO/YsYPo6GgWLFhA3759+eWXX5g/fz4JCQkO91FTKjQgUso9wO1CiAeBrcB7UsoRdXD8nsAIwA/4nxCir5TSJkRBSrkKWAVw4403yhEjKh5GfHw8lb1fHzgyhtmzZ7Nu3TrS0tLYunUrbdq0Uae4Cm3atGHQoEHs3LkTsERv1fe5ffjhh7y72zbM97ApiREjAmxep5kzGDFiiE27z09u47DJkrCVZs4g4VwOaWY9oDjdXejm68lhkw/X93RhxIhrOWxKYtaYccxiFje//l86dvs3HyR9wHn380RPiOawKV099mGTxaFuPRZ7KvpfHDZ1VoUjDW4u7D55Ua2OKLNzyZeSfCBfunAxr4SoE3pcdYIbu/lUKOJo/7lYfw6O/t+UPuwfK+u/quM7QlXja+jfVF3QGM5pxIgRxMbGsnLlSlUEEmDlypX07t3bIbkV5VqiLHGPHj2aAQMGEBYWxj//+c86HX+FBkQI4QqMA9KBe4C5QojHgBeklD870PdZoKvVa78r26xJBX6QUpqAP4QQSVgMygHHT6FpoujjDBw4kA0bNhAcHIyPjw9ZWVlqm+zsbNV4AKqCZ1Ph3p7uNhe0ySv3sWGGxcjY1xgxmkqZvHKfzXt6XRu++NsXLNu3jGe+ewaBYJj3a04fp9FUyo3dfCpUIFbGbV8zpbHTnJMTmxILFy6kuLgYT09P9f9VXFxsU0G0MhITE0lNTVXlWgIDA3nmmWfqRa6lsiWsTcA+wAOYIqV8RAjRGXhFCCGllI9X0fcBoKcQojsWw/E3wF4OdhMQAqwVQrTFsqR1qgbn0eQIDAxk9+7dqiGJjY1V7z7c3NwwmUxq24Z0BubsiUEJjnP2GCoqYats338qAyEE84fO5/es3/no54/4yw0vO3UMtaEyQUZoHHLz1npc7z0xrkHHolEWFxcXzGYzrVu3thGBDA0NVSXtq6Jz584888wzrFu3Tt1/ypQp9SLXUpkBuUZKeacQwh3YDyClPAc8JoQYUFXHUsoSIcRsLMtfLsAaKeVxIcQrwEEp5eYr740VQiQApcACKWXdlJxrZISHhzN9+nT8/f2Jj4/n+eefx2Aw4OrqqhoPnU6Hu7s7RUVFCCEcviOpKxrSkI3pMYaog1H886eRbDjtT0evjlzKaUEr93a4/9iHjl4d6dSyEx29OtLRqyMebh51PqbKBBmhfmu6O4KmENz4MBqNuLu7YzKZePjhhzl37hyBgYEEBwdXyxFeWFjItGnTVB9KYWGh6lCvy5LAlRmQlUKIfVeeL7N+Q0p5xJHOpZRfA1/bbXvR6rnEoqgxj2aG8o9cuHChWqv8iSee4JNPPlGzVM1mM0ajkRYtWjBnzhzeeOMNdf8uXbpw9qz9imDdYy2DAnVz8bGWVVcy3EvMPRnfdQ7ZprN4exVyLu8cv2elkmfKYHtq2QTLVvpWdPTqiKHEQOClQNWwdPKyGJmzBUWkF7TBLM3oRPMpi1NZSLBmYOofNzdLSt3ly5c5f/68KgK5fv16h/s4e/YsOp2OnJwcAJKTk9Wbvc8++0ydlUyfPh1wbhGrypzo7wP1JxnbDAkJCSEkJITY2FimTp3KqlWraNu2rU0bFxcXfH19GTlypI0BOXeu6qig+qCmMigVYX1RU1R+lW0LeMem7dvbkzDLUh4c6kNafhpp+Wmczz9vecw7T1pBGr+m/sqh84dIy08jr9g2iWzpz6DDBS83H/y8+vDg0E9o59muVuO3XtZSlrR+zSxtdEtbFaHlnNQvijyRlFLNoldUhHU6x29sSktLadmyJQUFBTbZ9opjPTg4mNDQUKZOncqDDz7otBmJJmXSCFD+iaGhobi6utK2bVvMZrP6JUpNTS1T01yv12M0GhtqyI0GnXChg1cHOnh1oD/9y7xvHYVVUFygGprVew9xYw/BF78cJ7c4nUOXtnDbv2/ju4e/q9V4rJe1lIvwQLdzNsEEjW1pS6Nx4qh0kWL0CwsLMZvNFBYWlmkTGxtLTEwMxcXFFBUVOW1GohmQRkJISAgPP/ywKkOt0+nw8fHh0qVLAJSUlLB06VK1vXXpzobOuJ03thcdQl5HPDnU6eOwdkzb1x0xuLlUq/CTp7sn1/pcy7U+1/LjiXbMvjkAU46l7xvb3ctHJ2dyy9pbmHpdDJ5u3k49j+aOFhFWPuUZCUX0sbrad8oMprQcMc6IiAhmz57NmjVrcHNzIzg42CmVGZvP4m8ToLS0FA8PD3bs2MHatWtt4sLfffdd9R/dp08fJkyYoO7XmNaonXmRsBdshD/L6YLlbt/g5hyF4uta38zGSRs5lXWKpJx9Ve/gJKLif7epN68YTOXxYPLVU7kyLi5O1fdqTN/ZhsT+93Lx4kUmTJjgNOHUuLg4TCYTiYmJvP766+Tk5KjO9dTU1FqH+laWB1KpY1tKuayy9zWqT+/evbnnnntsSnKGh4ezadMmm7uE8PBwNSdECEGbNm3IysqiVatW5OXlNciP05jyi9P7VHIuKsrPqC1vb09ic8paAHIvm+iV40n7Nu05lPUNLi3yWX7EB4B01zPAkEp6qjkVRXIp563kxmhcndj/VpUCWc6qF6RcS3Q6HQUFBXh5eQGWCo3OqMxY2QykZRV/Gk4mPDycmJgYIiMjMRqNREZGEhMTUyaBUNHRAssXUEk+vHz5coOpfFqXzfX3d0QqrWFRVIIn+E/Fr40HLp6n0Hul0L5Ve4pc/8DoepwDaQc4kHaAAt0Jlh9Z3ux1tzTqD2fNQI4fP47ZbKakpITLly9z5swZzGYzZ86cITc3t1x/SXWoLAqrevreGrVGmWVYz0AiIiLKrFHGxsayZcsWwHYG4uHhQW5ubr2P254zZ87YvFam6a2HhSKetJSzdWbkVm0Z1GoyxZdGs/b2ISReTGRU7BgSLiQwbcA03FzcSD775/lYDMnVW9RKo+FxZrVS+76U54rfNDOzdkukVTrRhRAGYDrQB4uQIgBSymm1OrJGuSjGIiIigsTERCIiImy2K+9FR0czduxYXFxcyM/PByAnJ0etDd1YqMgnsmjRonoppVtdAtsFckeHF1jz60w2sIHNIZvZ9cNJZg0YYlN2F2yrJyrYy807YmisQ38PJmdSYpakZhWy/5RFP2zyyn246gQlZklU/O+NNgRYwzk4s3CcfV9KMIOfnx9paWm1juR0JArrY+BXLLpYrwBTgLoXWWmmxMbGEh4eTnR0dIUJQIr8SUlJCWazmXbt2pGeno6U0kYCRaNm9PEJ5tMHPmXKf6cwNHoo1+oWUZ4PxLp6ooJ1TXdHqyeWF/oLFsMClmACJXgg/kS6amwacz6JI1SWuKhFbNUdUsoywq01xREDcp2U8gEhxN1Syg+vVA383ilH1yiDMruwTgCyD7dTdLT0ej0TJ07kyJEjXLx4EXd3dyZOnMi6dY3vzr6pcX/v++no1ZEJ6ydw8nIo3d55Dh+3vri1HseZ/M6UmMvWc3c2RlOpmkhpLeSoGJgpq/c3ei2uqqgocbGimXRjm2E3dxwxIMotbbYQIghIA5pN5cD6RpldWDN8+HCbcLvw8HAmT55MUVER69ato0OHDvj4+DBjxgxiYppFVeB6YZj/MA7POMzd0csI8DvP1pO7CPvmKwBWJnrQqUUQl3SjGdp1KIP9BuPrUTbsuC4pMcsmpcVVHYxGIwaDwcZYKMmz2uyk8eCIAVklhPDGspi7GfBC8yDWGcrswrp87e7duwkMDCzTVlHtzczMxGQy8eGHH/LII4/w4Ycfkpqaik6nQ0qJv78/2dnZqlZOQ2EdqVWXKr/OxL+1PwGek9kw0SLnPvHmFoR/vRHvNn/w+fGdLN6zmFJpmQWM6DYCITrCwZvRu+pVf0hydjIJR9RKzpoT3kGU9Xn72UnXrl3LBGpoNAyOGJC1UspSYBdQ9/P2Zo6i0mvvA1Gc6WBZ5tqwYQNpaWmqv6SkpIQnnniCmJgYlixZwrRp09Qf4OnTp2ndunVDnVKVNHQmfXXo2rorA9vewdwxAXRzTWLGCD8OnjtI3B9xxByLISkjnn1nNnHP9ffgVTqSJ/pNZXf2bkYMGKH24ahvpDZExf9us6Rlr8fVlBMUU1JStFlII8ERA/KHEOJbYAOwUzaVX3oTxZFQXmWZy83Njb179zJ+/Hh1qj979mxCQkJISEjg3XffxWg0YjKZah3vXdfUh8pvXeDh5sGt19zKrdfcyou3vcjczz+jxLCL2GOxZF5ezxdLw7nOcB0jzSPp36E//Tv2xyz/9FsouSXWkVu2UVxQk9mKtf8EKKPH1dQTFD09PSkoKGjoYTR7HDEg1wN3Ak8Ba4QQXwLrpZS763RkzRhFpbcilGWutLQ0tmzZwjfffKPOQLZs2cLQoZZci9atW6uqnB06dCArK6vJ/Ojqc1ay/1QGqVmF6h36Zz/ZLo+46hy72xVCcE3L/swd8wDLxi1j5mf/oth9H9//9j1v7H5DXepy17Xg05R+9O/Qn8sFHenseT0PBd5JS33LGkVxOcKWU8VqCWDA5nyhaTjcrcnPz8fLy0v9PrceFkrJkS/w8fHRlrfqkSoNiJSyEPgE+OSKL+RdLMtZzhEh0qg2yjKXlJJVq1YBMGPGDF577TU6duzIww8/TGlpqU2FsunTpzN16lQ+/PBD1aho/CmX8tlPhWqo7MW8ItWo+Hl74KoTau10R3F3cSfIZzRzx8wiPj6ewcMHczz9OD9f+Jl/H4hH55rCJwmfkG201H6JPAY9vHvQ3v0mZo/8GDcXN6eeZ3FpWQkY69dN0eGen59vM27rvCLFb6ItddUtDqnxCiFuAyYDtwMHgUl1OSiNyrGWfx83bhy9e/dWl7lMJhOpqaksW7aMtLQ0Bg4cSGJiIv7+/mzatImVK1cSGmpfWbhxYr+sVVfZ68qFVHkc9saOK7kXtjkYRlNptQ2JgsHVwA2db+CGzjeQc2k4c8cEIKXkpS27OFdwgu6dLnHg3AG+OLGBqIND+ftf/u68E3SAg8mZNhdj+5BgaHqzFNCKZNU1jmSiJwOHscxCFkgpm/R8WAcAACAASURBVMYayFVOSEgIERERREZGlonYAouqZ2RkpOqMj4+PVysf+vn5kZeX1+BRWdVl0aJFvPTSS3V+HD9vjwpzL+yxv+hab6vK0Agh8NZ35o+i7/Fu5cuYlmNIyk5l6cGlXOYyx3Itkv3Lj/jWeeRWVSHB0DRnKWCba2LxBY1o2AFdRTgyA+knpWx4gSWNMlQUseXn58fatWuJiYlRjYurqyvdunUjIiKCJUuWMGfOnAYeffXJ2RPDokUwb2xMo7iDtL/g1lQt2Dqj/bsTv3Hg4qf86/C/6OR1Pe46Dw6keXC+qJCp307lTGYh+iO3AXWrEqzhPK7mzPrK5NwXSimXABFCiDK/Vill/c6xNcpQUcQWWJa3SkpKMJlMqmF55ZVXePTRRwkJCWHv3r28/37TrVjclEJ/q8OtvjN54baHmBA7gR8u7mRKzzdZc/ssm9mQYmx2/dA0IqkUra/kZIsjv7yM+asd61nQvLG9Gng0zqOyGYiS+nywPgaiUTMqitiaM2cOTzzxBCkpKaph6dixI4GBgTZqvkoyokbjYVCnQfz4+I8MXjmOtSeegi8Ocp37rDLt0l03s/zI4XL7qE0IsLNRtL7i421DiRWa6tKYRuVy7l9eefqLlPJQPY1Hw0nMmDGDdevW8d1335VJSFT0tkaOHInJZMLFxaXcMpgK3bp1c5r4Wm2xzmZ3BtZLC4qzftKKvbXq0/6C+O2hyzYhtI7ccXdu2ZnZfWPYduYDPvr5X3i6baFP91WY5Z8X4PYlE5g1oPwlrPpIVtTQcMQHslQI0RH4DNggpTxWx2PScAKjRo2id+/e5SYkPvjgg6relhCCJUuWsGDBggplpD09PdXnVRmb+sTf35+UlJQa71/RuvSuXbtgRs18C+X5P5KTk2tURdFNp+ev18zjjTse467/hHLPhnvwcG3Dgdxx3H7d7Vwu9anRGDU0nIUjeSDBVwzIJGClEKIVFkPyap2PTqNWVLS8pSQiArRq1YrIyMhKaxBkZGRU+F5DcrUkjFn7BKyTGPefymBEr/bc2PlG5vX/L127HGPZ/z5h1+ldbDhuyWDvv6If4661GJRhXYehd9UDZTPcT7n8zvIjv6l9a3pcGs7AoTwQKWUa8J4QIg5YCLwIaAakiaJEbwHcfvvt/PDDDwAYDAb0en2Z8N60tDT1+dXouG5I7MOE95/KsKkNouRduOrc+VvQ3zh/fhD/N7onRy8c5eF1q/Btkcg7+9/hzb1v0krfirsC7mJi74kEed6Nu4tBdbifOLCNWQPGqsfVlrg0nIEjeSCBWJII7wcysGhiza/jcWnUIcqs5KGHHmLDhg106NABsIT65ubmotPpcHFxKde57sxymxo1QwhB/479ud7rQTY8MoT84nzi/ohj84nNfP7r56z7ZR3uOg96e9+GX+epjO85nlMuW8vMQKyrKdZ3SLB1FUb7/BlomkmLzRFHZiBrgPXAOCnluToej4aT2LFjB7Nnz1b9H+Hh4TbLWcrzJ598Uq2LnJ+fjxACs9mM2WzGYDDg4+PD/PnzmT/fcs9wtcazN2W83L24q9dd3NXrLqLujGJX8i5e3PYvjmZuZ9Jn39DCtQU99WOY2PMZ2ntaSvlYa24BfPrTcyw/srzS4zhz2auiKoxgMS7WlRebYqGsyoiLi2PkyJFXxWy+UgMihHAB/pBSvltP49FwArGxsURHR5fRwgLKNSIREREkJCSg0+nw9vbm0qVLeHl50aJFC9566y1CQkJ49dVXycrKIiAggMTExEpnIZqRqT7KBTI1q5DJK/eRmmVRT/7spzPV0uNy1bkyqscojl7blft6vMiNAel8+POH/PvIh1z73rU8PeRp5g2ZV2a/yiK6FOpr2cteSdieqyHsV/n9VKbZ1RQMTKUGREpZKoToKoRwl1IW19egNGpHREQECxYsqLQsroK1oz02NpaIiAguXbqE0Whkzpw5TJw4kbi4OFxcLBcuR9R8m8IXvzFRnsihrUhg9SO4AHTChdu63cZt3W6j5NwwCn2/4eVdL7P84HICWo7DP+Fubr3mVtp5tqvV+DVqT0WlfRs7DtUDAfYIITYD6tVDSrmszkalUSsSExPp27evzTb7srjloRgTg8HAxIkT2bRpE6+//jqBgYH06tWLS5cucfbs2QpnH40pxPdqwXr5Zv+pDAb3+NNv4ajMPIC3a1c+mvQZP6T+wKvfv8q23z5j4qcfA9CnXR+MBb345PhkbrvmNjp4dXDqORzK3VCmMmPZuieOLY3ZF8pS/CeAOkNrystbNaEhpVIcMSC/X/nTAS3rdjgaziAwMJBffvmF0aNHq9sqKotbHo8//jgrVqxg8eLFPPnkk6xYsYL58+fj4eHBV199xfDhw3F3dy+zn2I8/Pz8nHMiDYQx5ReEEPje9hBzx3zUYOOwj9Cyvzt9e3tSGTFHxcAoIcD2/MXvL3wZ8iVvbj3G8N557Dq9i/jkeHZc+pbJn/0XgOvbXs/wrsO5ps01dPTqSEevjnTy6kR2USGm0u7VlppXtL7is+PVyow1rXtiNJXiqhMcTP7/9u48Pqr6XPz455mZZJKwhCxsGiJYiIaIonCtIj8FQcT2irVuZXEpFAU0Wqpchdxe60KrsaX1xoLiJVIuJELpVWkrSzUJL1GxbihoiiCGRWRNAoTsme/vjzMzzAxJyDIzWXjer1demTnnzJznJJBnznd5vsXUuqxP7Z7mvs27rMebdhxuVnyq5ZoyD+SJcASigicjI4OHH36YoUOHNrgsbmOysrIAmDdvHg8//DBOpzW34PXXX/c2izVWi2rw4MFBuIq2V1tbR1RUFL/56+dtHUq96ivmWN8Q4Po4bJFc2e9Krux3JY+NfIzbXnyHOTc62Vi0kYLdBbz2r9c4WnH6/J+nPhYSYxJPJZZufenTxeexO9n06dqH7s7uIflkXOsyp/WReEZ1bd5l7a9vwazOrK3WiW/KMN58oL5iiteGJCLVap4lbRtbFvdMsrKyvIkErISRl5fH7NmzKSwsrDd5eJLKxo0bg3IdbcVTLsXz/RfjLuhwS+02l00cXH7u5Vx+7uXMuWoOAFW1VRw8eZDvTnzHgbIDLP/wM9L6uThQdoADZQf4ruw7th/dzoGyA1TXnd5FGuWIom/Xvpi6HrxT3B/XcRfvyDtc3Ptiv5IsweAZ1XUqaSQQFWH3juQq2H4IgCLbqZUZO1Nz1549e0hOTg57EmlKE9YjPo+jsOaD1IYmHBUsY8aM4amnnmrWazyd6PUN/Y2PjyczM5PnnnuOGTNmeMubiAgiQmpqKjfeeCPPPPOMd332M+natStlZWXNu7A2Vt+dV1RUlPeafwE4nU4qKyvbIDp/vp/AN31b0+xP5E6Hk+TYZJJjkwHYtTeV2fUUQzTGUFJZciqxuBOOJ8n8c88uvjr6FXtL9vLG/jcA6BnVnx6J/8mdl9zZ2stsUH1DhQsKCrwFHTvDaC5fe/bs8V7Tut+ms2HDhpCfsylNWB8HbHpXRP7ZlDcXkfFYS+Dagf8xxjzTwHG3YNXa+jdjjFb/bQO5ublkZGSctrYIWHc0MTExuFwusrKyeOSRR7wd5tHR0ZSWlrJp0yYmT55M9+7dT0sg/fr149ChQ6dtr6ioCNv1hYpv8vCoqqoiKiqqTZNIYPPWuk++9nvuO88CmtchH0hEiI+OJz46nsE9T2++9P3jfeXIK/nbV3/j528+zs/++jN+tfFXDIu/k7srHiE+Wmt7Bcv69evD0rHelCYs39+qDRgGxDbhdXbgj8B1wD7gQxFZY4z5MuC4bsBDwAfNiFsFmadCb0NDf/fv38/SpUt59tlnERH69u3Ld999R3l5OZGRkdjtdux2O7W1tcya5V96vLi4mLVr13LttZ2v1bOhu62m3oWFy4Xx9tM64NtiTXSnw8ktg2/h9cIv6BlXyjt73uH90iUMXpxNcmwyKQkpVJT3JsbRg85Qq8t3xj1Ygxt8m9E+KioO2bmNMdjt9pBWjmhKE9bHWH0ggtV09Q0wrQmvuxzYaYzZBSAirwI3AV8GHPcU8Cwwp4kxqxAoLCz0Vuj18B36m5qaSlJSEtu2WcWYc3NzmTVrFseOHcMYQ11dHXV1dYwbN86v7wSsuSO33HIL4F8K5cILL+SLL75occyezn0VHA2N6PIIZkf0Zd1/wuxrrQT2i9f+j5jYT/jrV39lxScrAOgVPYA5G44z4YIJjOg3ArutY3aC+zajefg2o93xUmgXBaurq+OOl97nL+nXUFdPaaLW/h9qShPWgBa+97mAb4/OPuD7vgeIyGVAP2PM30VEE0gb8lToDVxf3TP0N3D53Hnz5hEVFcXChQu9/ST5+fmkp6f7ve+4cePYsGEDJSUlwKkZuKNGjSI1NdWbQDz9Ic3pF2lvn/ID+TYh/Pe91vf22gnf2IiuUOvX9SJmX/tjnr72aYpKi7j7jTkcrviG5f9azrLCZcRExJASn0Jqz1QOH4vlkKMa+GlYYussnvv7NubeeLHf/5lg9NU1tqTtvwF73ZV4EZG7sDrQdwO/Msa06t5LRGzAAuCeJhx7L3AvQO/evSkoKGjw2LKyskb3h0NHjOHmm29m8uTJzJkzhyFDhrB161aee+45pk2bRkFBAX379mXy5MlMnTqVPXv24HK5mDt3Ln379vWep66ujsLCQu/zsrIy5s6dS3FxMR995N+1VVBQ4BefJ2k0t1P9TNcYit9Fa95PRMjPz29wf1FRNQUF+0/77rvvTK+tT3V1tV/crXmv5vK8l+/vorHrGlo9HewwbnANH5Z8yKYjm3h357ts2L6BCIkiXobjLDMMkpF0dXT1e4+iIv/RYIHnaCiGUKnvHL4xlJZWNOv30pTzAX7vUVpaQVHRCdatWwfAazuquXlQpPu4gtPeo1mMMfV+AZ8A8e7HVwP7sRLIU8Dqhl7n8/orgfU+z+cCc32exwJHgCL3V6X7HMMbe99hw4aZxuTn5ze6Pxw6agw5OTkmLS3N2Gw2k5aWZnJycho8Ni0tzeTl5fm9pn///iYpKanBGHJycsyAAQNMXl6eqa6uNnl5eQaredRERET4fW/qV2t+Ds05T0PnbO3rPcaNG2dExABGRMxld/3SGGPMgg3bvcf4Pq5PY/sfXLy+ycc2ZX9zLNiw3SzYsN08uHi9WbBhu7n9xffM7S++592+MH9nvcf7qqqtMut2rDOXvTzanPP8eabXH3qZPs/3MTPWzTB//PSPZsrqJ73fPa+v72fn++8hmNfYkPrO4RvD7S++d8bjm3u+wPfw/Kybcw7gI3OGv/HGmEabsOzm1F3GHcBiY8xfgL+IyJbG0xIAHwKDRGQA8C3wE2CSZ6cx5hiQ6HkuIgXAI0ZHYbWZhhagqk9GRgZ33HEHDoeDP/3pTwDcdddd1NXVkZub6/c+vsODe/Towbhx46itrfVrf/WUjj8b12e//vrr/YZcGmP4+uuvuf766xn/SFYjr+wYPE1hnjXRPX0tzWkii7RHcv3A6/nymwGs2Z1NjXMrJ+r28Y/d/6C4upijVfDhgRi+qyrn74e30dd5EZd1vyMk16NOsTWyzy4ingQzBsjz2deUvpNa4AFgPVAIrDLGfCEiT4rIhJYGrNqHiRMn4nQ6cTqdjB8/ntmzZ7NgwQJWrlzpN+PdMzw4KyuLpUuX4nQ6SUxMZNmyZaxdu9Z7XFxcnLca8NmmofH64RjH3xH1qruJW/r8nr//+O8UlxRTdLCIHyQ+ySvjX+GHPZ/ihz2f0uQRJo0lglxgo4gcASqAdwBEZCBwrJHXeRlj3gTeDNj2Xw0cO6op76naj/3791NZWUlExKnaSDU1NX5FG32HB1900UWsWGGNsklPT2fbtm1ERETgcDgoLy/H5XJRXl4e9utojzyz4OfPf7pN63G1Z0ndk5h/7XxmvTmLvl3/SNSWC92FGU9pScFG1XQNJhBjzHwReRvoC2xwt4uBddeS3tDr1NnjTCO3wH94cOBjgNraWmpqasjLy/NOYPTMF+nduzcHDx487bxOp7Pdj8AKFk89rvYws709umXwLTyw9gEOlHzHtIueo+rwbu8+z7rwHgu3LDytInC4k8qigq/5145T80ACa3aFcl5IKJxpPZDN9WzrXPP/VYsFDu2tr2ijb5LxPPZsBzjvvPMoKyvzq9tlt9ux2WwcOnTotHPabLZOU/W3KTx3IiLCgg3b2zia9qdXl17cdcldLN2ylJQX/sn3E6dzec+bsdsivFWA4VT138CKwOFWWVPHzYMivfNAAhNG0dGTHWr1xaZMJFSqXp6O8saKNvommUcffZTJkydjjCEzM5P8/HxOnjyJiJCVleVNQj/4wQ+orKxk5syZFBQUUFFRQVFREWDNI+nWrRtlZWVkZma2xWW3mc5W1LG5pegbkj0hG2f11Ww59hJ//vqXvL3vJcYmzeCyxBuDHnNzedZCOfX8KN/ZT3jvgvbb9jL7ut/4vaYtKgS0lCYQ1SpnGrkVmGTOOeccAO655x5SU1N5/vnn/fanpqaSmJjI8OHDyc7O9jZVpaSksHv3bmpqaigvL2fmzJnNqi7c2fgWdbz44ovZunUrYBVzHDJkCJ9/3j5L0Hu0phR9IBHhgh5XsejWe7h31cus2/vfrPr6P/nb7t9y1D6dmcNnBjX25vC9CwLrrufSiP3eu6CNH7RuJnp9pVLgVOIJdRl7TSAq5JoyPNh3v91uZ9WqVd7O+dzcXJ5++mmqqqpIS0vzqxJ8tvNNHh5bt27l4osvbvdJpDGN3Z00VPhRRBgcP4rUuGvYefwD3v0uhwXvL+C37/2W1LhrSDpnFgePHaT34d7ER8dT6+r4q3TXVyolMBmHkiYQ1e4Eds5PnDiRPn36eEduBZvD4aC2tmOuUBCYPM60vSNo7R9EEWFQ7BUMir2C274fw+KPF/OH9xdx++rbrQN8ZrH96uMY4qLiiIuO8/9e37aA706H1mLTBKLanaZ0zgdLt27dSEhI8PaxdDYdqR5XU/k203juTjzrpPsuIgXWUN8nRz9Jt+rbueaicgo+KKDfoH6UVJbwt207GHyunZKKEkoqra/dpbvZUrmFkooSTlSfaDSOaEd0w0kmKo746Hg+OlzJ378aTFy09dwVgp99fc1YvmvG7y8N3bIJmkBUu9OUzvlg+fd///cO3dTTmIbWg/Bs74gd8p5VBzfvOsrmXUfZV1LO6o/LOV5xqoKBwyaMHNQzYL2TSC4/9yLK48sZNWQUAFWljReMrKmrobSy1EouniTT0PfKEvYc28NnBz87Lfnk7Dj1nr2iz2fmgDu52lyNTRqbx910vs1Yiwq+xmETb5LdV1LO4RNVrP54r3fb/tKKoI3u0gSi2qXmlFVpqfj4eFatWkVmZiYPP/xwSM/Vnvl2yHvKznxZWMiSgFUp24v6RikFlp/3LGHbms7kCHsEPbv0pGeXns1+ba2rltLKUha89Qk/GtaDkooS9h7fy3++9SxPfPkEbyx+g6dGP4UxwV1Eq7KmjuH94713Ypt3QVJcDID357P6473en09rk4gmEHXWeuGFF7jvvvt47LHH2jqUdiE3N5dJk7zl6vjiiy+8z9tbEgl0xfkJ9SaWcJWkD+SwOUiMSaRndH8uP/dUDMeOXEVxyXJWHlzJjbk3Eh+Rxps7Mrlh4A1BXUEwcI1435+DJ9n63qG1lCYQddby/FGcP39+qxa26ix8k0fg9vaeQBoSOJqrj89qgKEe4lqfLSdW09dZw0MjH+Kzg5+xbkc+P33zp/Tt2pdrzruG4uMJQL3Vnlrso6Jiv5/DvpJyNu+yHvveobXkbkQTiDqreZrKmvLpLzo6ulOs4362qG8016URVd5Z4G3hsu53WPNALhsFwKhvH2XQucW8s+cdXv3iVWIcPRi9It+7xvx3JXZuP/5L+nbr2+I+k1qXafBOrLXDfTWBKNVEmjxax7dmWkfswG8p3z/Oqz/eS1FCnfcu6FxzMy/fcAW1rlpWfL6CZzZm823xt2wq3UStyxpanvT7l4h2RPO9+O8xMH4g34uzvg+MH0hxpY0ezr5tcl2gCUSpJuvfv3+nHe4bao2NCOvMSSTwk//mXUe5edCpuyBPcnHYHNw99G6KD1/J7OtSqHXVsufYHjLf2sgl/SvZWbyTnSU72XF0B+t2rqOy1iqu2atHLwQbS4qsYcLxjqHERvYGrErEVsHIsSG7Pk0gSjWRJg8VLg6bg/PjzueCHrXM/Df/JOQyLvaf2M/O4p0s2vQuRyr3EB9bzMaijeD6ljlD/4rDFsmsoSlUHf6KzUeONnCWIMQZsndWqpOx2WzeWl5KtRWb2EjqnkRS9yQ+3WH9e5x9XQprd6zlBzk/4O1vFzMu6f6wxKIJRKkz8Kw/4nK5KCkpqfcYm82Gy+Xyflcq3G4YdAMX9b2CT0+sZM8371H+/o/YftxwyFHOwi2feo/75PjRoK3YGJypkEp1cE6nk5SU+keqVFVV4XA4mDhxIidPnqz3GE/S0OShws0qGb+QhVsWcknCeJJ7pFJFKa98/gpfnljPSTl9HZnAxbZaShOIUsD06dPZtWsXkydPpmfPUzOPu3XrRs+ePVm2bBl33nlns993woQJvPbaa0yYMCGY4XYqIsIvxl2AiAR1Mt3ZwioZP4tZQ2cxrPtEJp2zmGFxt5DcNZl9x3ZQU13/n/lgJBFtwlIKyMrKAuDll1/2Wy43ISGBJ598kj59+nDrrbficPj/lznTKKI1a9awZs2a0ATdSXX2kVmv+Sxpu/rjvX77gjW58cq4afx87DOc89sLKSrbysxL/uxNzsFciVETiFJuWVlZ3kSSnp7OwoULqaio4O6776ZXr16UlpYya9Ysv9cYY4iJiaGmpoaamhoiIiKIiIigvLwcgLi4OEpKSrzfVdP53o10lnkjV5yf4DeZcfOuoyErtyIi/L8+U9hY/AKPbnyU/j36A5614C2e1RJbuj68JhCl6uF7R2KM8SYPz3ZfDz30EGvWrKGwsJCUlBQmTJjAb35jLVN6/Phxv+92e/jLZ3REZ5o34rs/9iqrBMvs61aEJbZga2jxLGj9Hcmwnjfx16I/sGXvFjJHWUtA+96B+K4Z3xKaQJRqgO8dSUOSkpJYunQpK1as8K5dMnnyZMDqP6msrKSurg6bzUZMTAxlZWXhCL1TC0wux97NIfaqSR2y6au+IpDNvSPxXf9j9cd7vdV3f/+Pr+ge1YWULpP4x64XeGbTM/zHVf8RvODRTnSlWiUzM5Pa2lqmTp1KVFQUU6dOpba2lqSkJB588EFSUlKw2WykpKTw4IMPMnjw4Hrfx2bT/4rBcP3117d1CGE1+7oUbxKafV0KSXExXHF+gnfbzFHfY1DMLdw2+Dbmvj2X8cvHc7z6cNDOr3cgSrWCb0VfgC5duvDrX/8asFZWXLJkCXV1ddjt9kZXVYyOjqayspKoqKgGhwrDqfkmXbp0CfKVdGzH3s0BYMOGDR16waxQsIuTV29dydhPxvLQuod4f+9NTE9dTL+uF7X6vTWBKNVKjS1+1dRVFU+ePEl0dHS9ycO3acZutxMVFUVcXFzwLqCTq68/pbMlFU8TlmeFxqS4GJ86W9bw6HuH3ctV/a7i9lfTSYw6Lyjn1QSiVIh4EktBQQGjRo1q8Lj4+HhKSkqorKysd78xxnvnkZKSwqOPPso999wDNDzktSP2B4RTZ/r5BC4Wta+k3G/Nj0/3lHDHS+97jxka/WvionvoglJKdQaelRFPnDi1jrbdbqdv377s27ePiIgIbr/9dlavXs22bdvIz88nNTUVaPiTdGf549hZhOsuyBrBleC37cv9x3z2WSpr6oIy50QTiFJtzNOsNWmSNZIoLi6O0tJSZs+eTWxsLD/72c/Izc3lvvvuIz8/v96+FIfDQW1trfe7aj8aG5K8YMPpZUaCwfeuZPXHe08b7RUsmkCUagcmTpzI/PnzycrKYvTo0aSnpzNv3jzvrHgRYdGiRWRnZzN9+nS/vhQR4dlnn2XGjBm8+OKLPPLII3oHovz4DvUNnGsCLZ9voglEqXYiIyODadOmsWTJEhYsWMCPf/xj7rjDqpq6cuVK7zyTadOmMWLECG8SiYyM5LHHHuPhhx8mIiKCyMhIv3Is6uzmGdrru3xtsO5GNIEo1U54EoLvyC2n08myZcu8y8GOHj2aJUuWkJ6e7j2+qqqKPn36cOjQIRISEjhw4IDf+9rtdurqTu8wdTqdDBw4kC+//DLEV6Y6K529pFQ7MnHiRLZt20ZdXR3btm1j//79jBw50u+YkSNHUlhYCFjJwTOiyOVyect82O1271yR7t27+01UjIqKorq6mrVr11JWVqbNXarFNIEo1Y6lpqayadMmv22bNm3yjsJyuVx07dqV4uJiAIqLi+natSsul4uKigrGjh1LaWmpd52S3r17eycspqenM3LkSJxOZ3gvSnUaIU0gIjJeRLaLyE4Reaye/b8QkS9F5HMReVtEgjO7RalOwtMvkp+fT01NjXcUVkZGBgCDBw9usGRKamoq8+bNw+VykZ+fzwMPPMDhw4ex2+24XC6OHDlCbm4u06dPB06NFoqLi8Nms3knK+oaHaHT0ddBCVkfiIjYgT8C1wH7gA9FZI0xxrfB9VNguDGmXERmAplAcNZaVKoTqK9fxHdGe0ZGhrdkim8nu2eYr6dTvq6ujtjYWL9KtsXFxXTp0oURI0YA1ryEiIgIb9n5kpISIiIiqKmpCfdln5U6YgmWUHaiXw7sNMbsAhCRV4GbAG8CMcbk+xy/GZgSwniU6pAaK5VypgTjuy8iIoJ58+bx9NNPe/fl5+f7dcjHxMQQFxfH7t27Oe+88ygpKeHYsWMhvDrVkI4wWz6UTVjnAr7Lbe1zb2vINGBtCONRqlMK7Hj3TR6efW+//TY1NTU8/vjjfq/17ZB3OBzY7Xays7OpqqoiOzsbu91+2iqMjH4HQgAADx9JREFULaHroISWpxnsF+Mu4Iknnghbk1i7GMYrIlOA4cA1Dey/F7gXrE7AgoKCBt+rrKys0f3hoDFoDO0xhuTkZF544QUuvfRS7/ZPP/2U5ORkCgoKqKuro66ujkmTJnHo0CF69erl3dba+GNiYjhx4oS3ppfnO8CIESOYM2cOzz33HO+9916rztMcbf07aYqmxOgZ4h1IRMjPz6e0tIKiohMUFOwHoKio2vu41YwxIfkCrgTW+zyfC8yt57ixQCHQqynvO2zYMNOY/Pz8RveHg8agMbTHGHJycsyAAQNMXl6eqa6uNnl5eWbAgAEmJyfHGGNMWlqaycjIMGlpacZms/k9by0RMZGRkQZo9CsmJuaMxwTrK1xCHWPga2KvmlTvtiFDhhhjjFmwYXtT3vMj04S/x6FswvoQGCQiA0QkEvgJsMb3ABG5FHgJmGCMORTCWJQ663nKpaSnp3uH8QZ2yOfk5JCVlUVlZSVZWVnk5OR4R3y1ht1ux+l0kpeXR3V1NXl5ed59EyZM4PDhw0yYMIHy8nIdVtxKnrVRArdt3bo16E1bIWvCMsbUisgDwHrADmQbY74QkSexstsa4DmgK/Bn94XtMcZMCFVMSp3tWtsh31KeQo++PM1Ya9asoWfPnoBVlqVnz57s27ev1edU9XviiSeCtn58SPtAjDFvAm8GbPsvn8djQ3l+pVTzNJZgWuuGG27wS07GPcIoLS3Nu813rZPAEiwNlWRRbUdnoiulQi4pKYl169b5NY/Z7Xa6devmd9z27dtJTU31JovevXsjIvTu3du7NLBqnWPv5gRt8qImEKVUyGVmZuJyuZg6dSpRUVFMnToVh8PByZMnmTp1KidOnGDq1Kk8++yzjB49mpkzZyIiHDlyBGMMR44cQUSYOXNmk88ZjOHHnV1rk4gmEKVUyE2cOJEHHnjAW+CxS5cuJCYmMnfuXLKzs+nWrRvZ2dk8+uij5Ofnk5WVxf333+9NAg6Hg/vvv5+srCzi4+ObdE5dWCv0NIEopcJizJgxp1Uafvzxx/22Pf74496JjSNGjGDgwIHYbDYGDhzoLbkSExPj9749evQgMjLS+zw6Ohqw5oyp0NIEopRqE41VGs7NzSUjI8OvzyQjI4Pc3Fz277cmwSUmJgJQWlpKdXW19z3OP/98bDabdz9A//79vX0pUVFRYbi6s4MmEKVUm2is0vD8+fNZsmQJo0ePJiIiwruQ1vz5872l7HNycrwT2nznlfje0Ywdaw309NTzOnnyJJWVlYwbNy78F9wJaS+TUqpNNDbvZMqUKQ0upLV8+XKmTJnC+PHjMcaQnJxMaWkpNpvttP6RefPm8f7771NaWooxhrKyMsaNG8f69evDdp2dmd6BKKXaTEOFIM+0kJanM94Yw+7duzlx4gROp9Nb/8n3jubll1/2rtaYn5/fZslj5syZlJaWtsm5Q0UTiFKq3TlT89Ybb7zB8uXLSUtLw2azkZycTEJCAs8//3yDpVrakoiwaNEievTo0dahBJU2YSml2p2mNG9FRER4j6upqSEqKiqkM+lbyrOuR1xcnHexrs5CE4hSql1qKBl4mrd8y5j7Nm+1N3FxcRQXF3P8+PG2DiXotAlLKdWhnGmd+PamtLSUmTNn+s2M7ywlWTSBKKU6lDOVpW9vUlNTue2226isrLTW0LDZmDNnDk6nE5vt9D/Bdrs9bCsKtpYmEKVUh9PYMr7tTeAdU69evVi6dCmvvPIKdXV1OBwOIiIivMfbbDYiIyM7RC0vTSBKKRVCgXdMtbW1lJeXM2/ePGw2G9HR0dTU1BAbG4uIEB8fT01NDTNmzGjr0M9IE4hSSoWY7x3TjBkzvKsuiggJCQlERUVx8uRJjDGUlpYya9YssrKy2jjqM2v/90hKKdWJLF++nJUrV/qNIsvPzyc9PZ1t27a1YWTNp3cgSikVRnv27GmwTEtLDBkyBDg1O79r166tC7AZNIEopVQYJScnN1qmpblcLpe3CQysgpEiQkxMTIMjvYJFE4hSSoXRlClTgjqPpbCwkMWLFzNgwADy8vKoqqrCGEN5ebl3pFeoaAJRSqkwGjNmTFDnsaSmppKUlOT3nmAtrDV//nzvpEXfocJgzZBvLU0gSikVZsGcx+KZZ9KnTx8+/fRT3nrrLaKioqioqODqq6+muLgYsOqFpaSkcPLkSX73u99510hpDR2FpZRSHVh9hScTExMZPnw42dnZLFq0CLCGDH/zzTd069aN5ORkIiMjqaysbNW5NYEopVQHF1h40m63s2rVKm+zlac0Sk1NDQB79+7F5XK1+rzahKWUUp1M4IJcSUlJREZGep97ZsAnJSW16jyaQJRSqpMJrL9VVVVFTU0NGRkZVFdXs379erp3797q82gCUUqpTiaw/tbhw4e57777eP31170jvzIzM9m/f3+rzqMJRCmlOiHfkV5paWncdtttfiO/kpKSWr0IlyYQpZTq5EK1CJeOwlJKqU6usTXmW0MTiFJKnQUaWmO+NbQJSymlVItoAlFKKdUimkCUUkq1SEgTiIiMF5HtIrJTRB6rZ79TRFa6938gIv1DGY9SSqngCVkCERE78EfgBmAwMFFEBgccNg0oMcYMBH4PPBuqeJRSSgVXKO9ALgd2GmN2GWOqgVeBmwKOuQn4k/vxamCMeKp+KaWUatdCmUDOBfb6PN/n3lbvMcaYWuAYkBDCmJRSSgVJh5gHIiL3Ave6n5aJyPZGDk8EjoQ+qkZpDBqDxqAxtOcYzuS8phwUygTyLdDP53mSe1t9x+wTEQcQCxwNfCNjzGJgcVNOKiIfGWOGtyjiINEYNAaNQWNozzEESyibsD4EBonIABGJBH4CrAk4Zg1wt/vxrUCeMcaEMCallFJBErI7EGNMrYg8AKwH7EC2MeYLEXkS+MgYswZYAvyviOwEirGSjFJKqQ4gpH0gxpg3gTcDtv2Xz+NK4LYgn7ZJTV0hpjFYNAaLxmDRGCztIYagEG0xUkop1RJaykQppVSLaAJRSinVIh1iHkhjRORCrBntnkmK3wJrjDGFbRdV2xORZcaYu9o6jnDyGe233xjzlohMAkYAhcBiY0xNmwaoVCfToftARORRYCJWmZR97s1JWH9EXjXGPBOmOC7ESmAfGGPKfLaPN8asC8P5A4dHCzAayAMwxkwIQwzfBwqNMcdFJBp4DLgM+BL4tTHmWBhiWIH1oSgGKAW6Av8HjMH6t353Iy9XSjVTR08gXwFpgZ8s3Z9EvzDGDApDDA8C92N9yh0KPGSMecO97xNjzGVhiOETrD/U/wMYrASSi3tYtDFmYxhi+AK4xD18ezFQjru+mXv7j8MQw+fGmIvdk1K/Bc4xxtS566t9Zoy5ONQxqIaJSC9jzKE2jiHBGHPaZGXVMh29D8QFnFPP9r7ufeEwHRhmjPkRMAr4pYg85N4XrsKQw4GPgQzgmDGmAKgwxmwMR/Jws7nrmQEMN8b83BizyRjzBHB+uGJwf3johnUXEuve7gQiwhGAiMSKyDMi8i8RKRaRoyJS6N7WI0wxdBeR34jI/7qb8Xz3LQxTDPEBXwnAP0UkTkTiwxTDMyKS6H48XER2AR+IyG4RuSZMMQwXkXwRWS4i/UTkHyJyTEQ+FJFLwxFDKHX0PpCfA2+LyA5OFW5MBgYCD4QpBpun2coYUyQio4DVInIeYUogxhgX8HsR+bP7+0HC/7vdJiI/Nca8AnwmIsONMR+JSAoQrr6HJcC/sCauZgB/dv/RuAKrmTMcVmE1HY4yxhwAEJE+WBUXVgHjwhDDK8AO4C/AVBG5BZhkjKnC+lmEwxFgd8C2c4FPsO6Sw/Gh4ofGGM86RM8BdxhjPnT/m8zB+uAVaguBx4EewHvAbGPMdSIyxr3vyjDEEDrGmA79hXUXdQVwi/vrCsAexvPnAUMDtjmAZUBdG/1MfojV7xDOc8YCS4GvgQ+wksYuYCNWE1a44jgHq+kKrP+0twKXh/H821uyL8gxbAl4ngG8i1Xp+pMwxfAwsA4Y4rPtm3D9HtznKwQc7sebA/ZtDVMMn/o83tPQvo761aH7QNoDEUkCao3702bAvquMMe+2QVhtRkS6AwOwkug+Y8zBNg4prERkA/AW8CfPtYtIb+Ae4DpjzNgwxFCI1Tfo8tl2DzAH6GqMaVKl1SDEkYS1UNxerE/hnxljwtWciYikAzcCzwBXA3FYgyquBc43xtwZhhjex7r2WOC3WH2kr7ub0H5nOnhRRU0gSgWRiMRhjUC7Cejl3nwQq3DoM8aYkjDEkAlsMMa8FbB9PJBlwjC4JOC8E4B5QH9jTJ8wn3sUMBNIwfpQsxd4Has2X20jLw3W+S8BMrH6ZGe7Y7kba5DHdGPMe6GOIZQ0gSgVJj59RGddDO6h3d8zxmw7m38O7S2G1tIEolSYiMgeY0yyxqAxtJcYWqujj8JSql0Rkc8b2gX01hg0hnDHEEqaQJQKrt7A9UBgX4dgDePUGDSGcMcQMppAlAquv2GNdNoSuENECjQGjaENYggZ7QNRSinVIh29lIlSSqk2oglEKaVUi2gfiFLNJCJ1wFasAo21WGVrfu8781ups4EmEKWar8IYMxSsEuVYhfm6Y5WsUOqsoU1YSrWCsda3uBd4QCz9ReQdEfnE/TUCrBUiReRHnteJyAoRuUlE0kTknyKyRUQ+F5GwlhlRqjV0FJZSzSQiZcaYrgHbSoELgBOAyxhT6U4GucaY4e7iebONMT8SkVhgCzAIq9jgZmPMCvdaJnZjTEV4r0ipltEmLKWCKwJ4QUSGAnVYRfwwxmwUkYUi0hNr2YG/GGv1xveBDHfl2v8zxuxos8iVaiZtwlKqlUTkfKxkcQir4upB4BKsBYsifQ5dBkwBfgpkAxhjcoAJQAXwpohcG77IlWodvQNRqhXcdxQvAi8YY4y7eWqfMcYlIndjrY7osRT4J3DAGPOl+/XnA7uMMf8tIsnAxViLlCnV7mkCUar5okVkC6eG8f4vsMC9byHwFxG5C2tFvpOeFxljDroXe3rd571uB+4UkRrgAPDrMMSvVFBoJ7pSYSIiMVjzRy4zxhxr63iUai3tA1EqDERkLNYa3VmaPFRnoXcgSimlWkTvQJRSSrWIJhCllFItoglEKaVUi2gCUUop1SKaQJRSSrWIJhCllFIt8v8BKfHQe2aQJSQAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -757,19 +773,21 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAF4CAYAAACRqWnRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXmYZFlZr/uutfYUkZFz1jz2mE1304MIinoUD4ocRWRG\nPSJHveBBLzIc5UI/ggMKV3ngAt7DdAVsbEQQDjSigIqgx6lRoMfqDnqo7qrKGroq55j2sNa6f6wd\nkZmVmVVZU1YWvd7niacyduxhxa7Iil993+/7PmGtxePxeDwej2ejIS/2Ajwej8fj8XhWwosUj8fj\n8Xg8GxIvUjwej8fj8WxIvEjxeDwej8ezIfEixePxeDwez4bEixSPx+PxeDwbEi9SPB6Px+PxbEi8\nSPF4PB6Px7Mh8SLF4/F4PB7PhsSLFI/H4/F4PBuS4GIvoMv4+Ph/An4DeAqwDXhevV7//GmOeQbw\nTuA64ADw+/V6/dYLvFSPx+PxeDzrwEaKpPQBdwK/Cpx2oND4+Phe4AvAV4AbgfcAfzw+Pv6jF3CN\nHo/H4/F41okNE0mp1+tfAr4EMD4+LtZwyKuAR+r1+hu6pxgfH/8B4HXA316YVXo8Ho/H41kvNlIk\n5Uz5XuDvTtr2ZeDpF2EtHo/H4/F4zjOXskjZChw7adsxYGB8fDy+COvxeDwej8dzHrmURcpKdNNE\np/W0eDwej8fj2dhsGE/KWXAU2HLSts3AXL1ez9Z6EmutFWLBApPNz/NP7/p/SNttjLU0KhWMgLRa\nRcfLAzRWSoQxBFmGtRYdxQR5RtRsIixUm02EACwUAiwL1xLWEFiLkk4rGiHIkoSo06GS5VxXFERK\nAVD099N82lPZevPNUP82APH3PA1Zq63pfZpGg/zuewhvePKaj/F4PB6P5wJyWv/ppSxS/hX4Lydt\ne1a5fc1MTTWRcvF9klz5k88jn5oCoH3icfJmk+bx40w++hhC696eFktW7SNut1FSYix0AuVEiVSY\nICCqVgmkotAFaVGgigKsxQKFlFRabVR5viIIKGr9xFmDDjAjA2IVQJqSTxzh8N33ECAJv/L3AITV\nfsToGCQVRH//iu9PKcnAQIW5o5Okf/8PhGNbEZvc+7VTUxRf/iLBj/0XxMjImdy2C05v3XNttDYX\nezlr4lJcM/h1ryeX4prBr3u9uVTXfaYMD/eddp8NI1LGx8f7gCtZUFaXj4+P3whM1ev1g+Pj428H\nttfr9ZeXr38A+D/Hx8f/APgI8EzgRcCPn8l1jbEYszQ7VNl1GZVdlwEwUG7LpidpfvF21FwDZdyH\nxqYp7U6boUaTfMsW8iCgkcQorUEIdBgSSEUgJbTabLv3P5DG4AIrgjwIUEYjyreslULNz5FMzyKs\n5cErr0BKCapCYA3BzCyNv/xLprRm22MHiGc+iEgSxNAw6pWvWlWouPdpMMZSFBZRuPUXrQ7zMzP0\ntzoEAxvzF0FrQ1FszLWtxqW4ZvDrXk8uxTWDX/d6c6mu+3yyYUQK8N3AV3F+Eotr0gZwK/CLOKPs\nru7O9Xr90fHx8Z8A3gX8GnAI+KV6vX5yxc95QdRqhE96EjrNMcKlZ+z0FNQfIJ6bJ7/2WkwYYiYO\nIQQIpUBIyMvISRhy+MYbCPIcCRQI2pUKlTRF2kUfQmuZH91EEUcMtNsEeY4WgrS/hqz2YTsZmdVY\npSAIscZgjx5BTkzAjh2nFCono5Siv9AopU6/s8fj8Xg868yGESn1ev0fOIWRt16v/8IqxzzlQq6r\nSxAoqgMDzM7OU3QjL1KhpWR2YIBCSHKpMEqBtUgESmtElmEtoAuKOMGGEdJaCinIqn0EUhIs9vka\niwlyTBgQHD9BkKUQhFDrg6lJOPAobN0C09PQajk5l2foD38QsXXbaSMqJ5N3Opz4q88z8uM/SbR5\n8/m8ZR6Px+PxnBMbRqRsdMIw4ru+67s4cWKulyPsHJ5g/8ED6Gofl19xNTZJqB94lKDdITAGaS3S\nWkSWUX38ccSunZjA3XKDwAowUrAk2yRd2kdLRSElhCFFEKCVohCCrFolrdU48OTr2Pr4caIsR7UF\nobUuojJ54oxESoFl0uQM5mv2Gns8Ho/Hsy54kXIGRFFEpVLp5QhtnCCERAiI4wQxMkpw5dVEUhKo\nhVurZmao/P3fkdf6MFGEQGAAjEZLibULKsXiRIqw0IkjVCExUqCFoC0lhzaN0hjoJ4gjOlGINJYg\ny7ji4UcI0xRz28cQr3m9O1mngw0EOqtiJ09Aq4WdnFy41uQkot0hSmIWVziBM9Wav/kS8lnP3nCm\nWo/H4/E8MfAi5VyoVBCbNrs0TJcwRMQxIgh7m0SWoVRAkuVoIZHWYvKcTffcS9RpEzVb5JWK85kY\nQ3VqElloonYLYS0WgZWSrFajqCToMhoz+tgBgjTDKImOY8Iix87OYCdPYD7zF9iZaYwQzMYB82nO\nRBKz7eN/QlIadW2nQ/TwQ+yJY4Jn/+SSt5anKVPNOYYff5zgHMWK7XSwhw4idu5CJMlZncPj8Xg8\nTzy8SDkHZF8f8fYdpDPTS7YXhV7y3OocIwViYAAxMIiQEptlTCjF0OQkW/fdz9w14+R9fRhryNIc\nqXMq8w1kkWOUoohiBmdmSrHSDwIa27cjjCGtVBh+7CB0Ou6CnRQ7Mw1xDNUqMgkh12SVCvbEJLa7\nvkKDtdBsYo8ewS7qn1LMzzEZhQzkOWp6CvTS93QmiCRBXHnVwv1oNrH77kNcex2i7/QlaB6Px+N5\nYuJFyjkQxwl7tm7nkX33AK5aJo5j0jRF66K3n+ykmEoFDWgpsFJglUBXEopaDZPE5AMD5LUaRmta\nA4AFwTFUlmKUwqiAQilQCislCFxERWuMgEwIlJREixeYVBB9fchKBHNNOHEcHqgviBljoNGEdgv9\nidswg4O9Q3W1Ctu2UBjNrDUM3/5Z4he86PykftIU+/BDiCuuBC9SPB6Px7MKXqScK1JBUgGpCMOI\na665Hn1S1KFzeILHDh2k1j9AOLaZIAjI5xucmJrCCMiDEG0NRmuMNVgkosgZefTRhZNYS9zpYKSk\nZi2dwUGi6WnX6VYIGqagE4WMACsWFOsCigKUguSkzrl5BrV+GBwqF9yGuTmisVG0NUzGEf3zc8Tn\nEE1ZjBgZQf30zy68NR9Z8Xg8Hs8KeJFyjojhIeT1T0YMuy/4MIwIw6X72DhBSomUiiAICIIQHQTk\nYYhNEiZ3bKcdxRhrCRtN7EA/Okl49GlPQ6UpwloQMHjkKEobdBDQ6e9nZvsOhCkwStHfbGIRDKb5\n6ou1hsVjjdIo4sjOHWxrNoiX7GaJm032npgiVyEGmIojoqJYGqk5X5wismKbDczd93oB4/F4PE9A\nvEg5R4QQxPHy6pjV6PpVbBgQ9g8QIxmdnkFffgUAm+6+h8euuZqsrw+pC3bdeRcIENYSt5yRNo9j\nrBIMHzrYi6TEaYYVIDopNk2XXddmObTbcOxYL91jq1Wy0RFsXsC+e7FRKUHyAjpt7PHj2Gf+KEYI\nppOYTeYkr815qgA6ObKyhFYL8x9fR+29zKeGPB7PWWPzDFuvr+s1xfg4Irwg/7V7wuBFyjkSxwmX\nX371qXeSClGpECUJmS7Q5cMK509pVytYCQKBKnJAIKzznBx4ys1IY7AIpC5ctY8QmCBgfnR0YR1p\nhkUwnWVcGwTLu+LpwnlQpISyOoggcM+jyD1UeZSRLurSbGAnj4POXYXR1DQ2iiFJEP39vQqgkTS9\nMBEWABUghkdcmmoN+NSRx+NZCVuvU/zcS9f1msFtn0Rc/+QzPu7tb38r//APX2Vubo6PfOTjXLmo\n8GC9OHr0CC9+8XP56Ef/7KJcv4sXKeuAGB5CPflG9uzcTViq6k6nQ71+H1EQkY+NMTwySiAVcaWK\nDQMEYIKALFr4+pdaI5aOGcKWARwpm1ip6EQh2hh0UaDTDiqQWJOT5jlFEJDGsRMmQBrHbqhhEMDU\nFBjthIyxzqcSJ9i/vJ1weIg8jihu/WNyIREDg6ifezlFnrkKoOkp1D989YL0VDlllGUlToq8eNHi\n8XguJf7t3/6FL37xr7jtttuo1Uao1QZOf9AFYq0ZgguJFynrSBhGJEml91wphQpDsiRBhgkBEApJ\nJc3ILXSkwAYBWIvKC4YPH6YxOoJZJFyskFgpUBZ0Ofgwb7VoHD+Kng4RUiKkINeGMAxp9PXRLg2w\neZLQ7Kvy0M03cdU3v0VfswFp6sqNjQWRER84wK6JCQ5cczUcOOjSQMag52bRIyOwbQto4+YYnSdj\n7XnFp4s8Hs8lxMTEQUZHx7jxxhuZnm5e1AGDixuNXiy8SLnI6P5+0suvoNpfg/kGBAo5OISqVhBz\nc07JCkGY54w99hjp4CBZsij1IQRIsTA7GjBRyNGbbiIQkiBQKKXQjQbikUfoDA+5wYdAEYVkfX10\n+gcoAjdzyAkNN6cZKSFJXDWQlBAFYCLIMqy12MkT2LERCqOZiwJGVjHWrmv3WqWWpYdslmHu+hby\n6d/voykej2fD8ra3/Q5f/OIXEEJwzTXXsG3bdj71qdv50z/9KJ///OeYmjrB7t17ePnLf4lnPOOZ\nAHzrW9/g137tv/POd/4RH/jAH/HYY49y/fU38tu//fs88MA+/uf/fDfHjz/O933ff+KNb3wzcezK\nJO6441+59dYP88gjD6OU5LrrbuA1r/kf7Nixc9X1PfLIQ7zvfe/lrrvupFKp8NSnfg+/9muvZ7Bb\nGXoB8CJlHThTcy1KggqWCI/TYq0TLCU6SVAyQEQhMlCYTsrQxEQpepxIyZKE+eEhrJAErZYz1ub5\nwrk6bThxAlFNiIYGEVOT0Oo4IfPtuvO0DA1StJpMRiGDZpVIitbrFmlZMT2U59i77oQbb/bRFI/H\ns2F57Wt/ne3bd/CFL3yOz372s8zNtbn11g/zt3/7Zd7whlvYuXMXd975Td761rcwPDzCjTfe3Dv2\nox/9EK9//RuJ45g3v/mNvOUtbySKYn77t99Gq9Xkllt+nc985pP87M/+PACdTpuf/umf44orrqTd\nbvPhD3+AW275DW699RMrrq3RaPCa1/wKz33u83nNa36dTqfD+9//R7zlLbfwnve874LdEy9S1oE1\nmWtPRkqXysGCtVgBeRgh8pz+wxM0xjZhogiLxdpyYKEUYFZWNjYMmbzsMoSUPU9KEYa0B4cwStEe\nHkEJAY0GCFB5QWgsKEVcaPZ++0F3om6EIooA63qvZGc2nHDdIytDQzA3t3B971PxeDwbkGq1j2q1\nDykVIyMjFMUMt932J7z73e/nuuuuB2Dbtu3cffed3H77/+qJFCEEr3jFr3B9adJ9znOey4c+9D4+\n9anb2bp1GwDPeMYz+eY3/6MnUn7oh/7zkmu/4Q2/yXOf+yz273+Eyy67fNnaPvOZT3L11dfwile8\nqrftjW/8TV74wudw6NBBdu7cdf5vCF6kXHSKQmOMoSgKlDWuNT4CDZgwxJbRiSJJmNmzi2ygnzDL\n0EmCjiIQrvNJFoZYC3a+seJ1tBDMbN/moihlxMUKQREGFHHMgeuvJep0oKwukkVB3Omw88Ah4jxz\nhtqV8pPGYJvzLlrRrf6BXgXQyotZ58jKT70A/elPLmxstdD/8k/I2RmfAvJ4PBuWQ4cO0ul0eN3r\nfnWJP0TrgquvvmbJvldccWXv55GRUeI46QkUgOHhEe6/f9+Sc//xH3+AffvuZXZ2BmMsQgiOHTu6\nokh56KEH+eY3/50f/dEfXLJdCMHExCEvUr7T6LbQb7WaaF2QZSl5GHLiaU+l02ohjF5I91gI04yh\nQ4fRccLQxGE6IyPkQYDFiY2o0BhrV88QFTlb9z2AsGbJPlmSMLVnN5sefIik3YJCY5Qkq/bR2DSG\nFcIJlPn5UqjgypMfN86rkmWYr30VW+ujeOhPXet+QAwNo175KleqXBRMbRTPShefAvJ4PBucVqsF\nwDve8R7GxsaWvBZFS/81DYKFr3MhxJLn3W3WLphw3/CG17Jt2w7e+MY3MzY2hjGWl73sJRTFyg1B\n2+0W3//9P8iv/MqvLTPUnry284kXKReJbgv9VqvF0aMTbN26A2st+/c/SBBEhGHI1OTjZI0GUmtC\nXRCmKbIoiJpNhh87wNRleymSGBBIrbFCIKKwTMUsxYYhh294MkGWIhd9vvIgoD00SHPzJLrRgCxF\nRyHt/gEkpUApChf1EKWh1gLS9XKJigKRVN1rQYANQkg72KNHkBMTsGMH2uiL61lZwUx7Knw6yOPx\nbAQuu+xywjDi2LEj3HjjTeftvHNzsxw8eIA3vvHN3HCDO+9dd915ymOuvvoa/vEfv8rWrduQclkn\nrguGFykXkTCMGByMes7oTqdNEAQoJQmCAKkCRJwghUAYEHGEqPahAsXQ8ePMjY+j+2pYaxFDCcIU\niP5BqFbdBXSOzSzWKGyhyZMYHYbIRSq4CAJ0ENB3/DhJq9mLpASdjNbYqOtO2247oSLEgpBoNolp\nsvff/o3Ort1w5RWw/1HnT8kLyDP0hz+I2LoN+5M/ddb3yE5Nof/6r88pynKuvVbON14EeTyetVCt\nVvmZn/k53vved6G15oYbbqLZbHDPPXfR11fj2c/+CeDMS4X7+wcYHBzk85//LKOjYxw9eoQPfOD/\nPWVxxwte8BK+8IXb+a3fuoX/+l9/nv7+AQ4dOshXvvI3vOlNb7lgPVW8SNngWMBKiQ4DWsPD6DAg\njxMAjJJYKbHGYKTEWImRCuIIEcXQakHewQYSWi2qaYe5rVsx0cJwISMkJlA8+tSnEGYZaINRkiIM\nUcaw5dAER697EtvuvIu401lI+SjleqlI5cqUK+VDliYZXbgy5aNHsI8fW+JZyR5/nGmjGX78caIk\nOfUN0MX5j7KsYKZdV3zvFo9n3RHj4wS3ffL0O57na54rr3jFqxgZGeHjH7+Vd7zjbdRq/Vx99Tgv\ne9kvLlznDAWCEILf+Z238+53v4Of//mXsnv3Hl772t/g1a/+5WX7dRkbG+P97/8w73//e3n9619N\nnmds2bKN7/mep1/Qpm9iIzRruZgcPz6/phsQBJLh4b4L2lyn02nz4IP302o1kTJgcvI4adouPwDu\nQ6CylMHHDgAwu2c3OoqwFsIwxBhDkiTcfPP3sP/b+4ikJApDkiRk/t59qH/4GoduuIGitvDFaMuq\noMrsLFIbVKsFWPIkwSrFk/71DqZ37mD3HV8nabVcpMQCceRESrVKeuWVHNm9i21HjhK3W3BowjWF\nGx4GY+hcdx0HNo2xe26OihW0teZAErG7k1EdHUO+4MWYL/0V6kUvRWzatOR+T317P+mf//mS184H\n9vhx9Kc/ueJ5T/XaqVjrZ+Rsz3+hWI/P9oXgUlz3pbhm8Oteby7VdZ8pmzb1n1bd+EjKBkMISRTF\nZFkKGEAgyr4m1lpUrhk+dAgQNLfvwCYKKSVxHFMUBX19/SilIAwRcYyIIkQSOlEBCE4y13bb6htD\nkGVsv/c+rBSk1Spz27ahmk3XO0UXLuVjS09KUZRhHkucZewthVPPwyKE88YYA301qPVDVmALDSJ3\nrxuDOXoEcfQItFrYyclTVwWtgYtiwj1LbKuF/fev+7SPx+PxrIIXKRsMpRR79oyjtWHfvrtpNOYI\nApeeSdMOlVqNqFIlaLepVavktf7StW0xxvQMTcZoiqJACIFSUFiLjSKMlCwOHXU1h0VQRCFHr7oK\nqQuySkJRrdIZHCSt1dj/3d/Njn37iObmUIUhxLpIymqROCkhDF3k5dH9gIGHHnYelyiCy/bCo49C\nY570U59gNk8Z/Oj/R7R5C+qVr4LhwbO7gWs14Z6hmfaC0G77tI/H4/GcAi9SNiBhGBGGoJRECImU\nLtwhhMD21zjx9Kez5Z//GSllT5QsraHXzM/Pu9lAShEEkhSB3LmDvFLBlKVpUmuiRpO0VqPVX0MV\nBVvvvc+dIwhJa1U6cUSnkkAcM7tlK+HAICrPGZmYQBkNWeqiJathLaQd51WJIxeRCQP3c6BASooo\nZnJkiL5mm6CsCrJFilGjq593jawWWTljM63H4/F41h0vUjYQi9vnn4tXSClFf39/KXZKT8rMHGri\nCO2REXTZcC1M22yt1zl8/fXkSYyRkoM33ogwzjwbdjrO6FqrgTbMb9mE0BodhPTPzKAaTYgWpiqv\n+r6MJcpdVIfjJyAKYctmN3l5fh4OPOqqg8rIiv7wB7GVCnPbNmOf8/yzvg/A2ZU3X6Qoi6/68Xg8\nnqV4kbKBWNw+v9Npr7qflZK8VsOeQhxIqQiCgDAMCcOQQEhUniEtmDIyI4EwyxClHhLWouMYKwUm\nCJwXJpgHIRFWowqN0AU6CJdeLM+hm0TK82WRlThN2bt/v3tS5AsDC5Vyj251UBi6cQBhhLUGPTGB\nPTqx4FdZzDl6V07FBY+y9ETQSX9/vurH4/F4luBFykUmTTtMTBxgx47dxPHyclxrDcbY8meLMZas\nr48jP/ADbodSEJhTpVyWntF5SdwJS21hexqj28HW4sSMDgKMgEqjQe3YMYI0dSKlKGhXEo5dey3b\nJg671vngIhZp6gy5q62pOz9IlX8GgTPSzs7A9DQ8sA8DZDonz3JmgpDBP/0IoVyIbCzuaHvad9xu\no2//LOoFL9oQZtquCLLHjy97zU9s9ng8ngW8SLnIWGtJ03RZekcpRRTFWGvRugAoZ/zkrspHqWW1\n6UoFq9ar2zCkPdCPLvuqABhrKaSg/8gRpnfswAQKncSu94pwPVhmhIuqpJUKWV8fqozwTO/cQZDl\nmEri5gWVayTPoVVGgbR2j5PSJsIYonYbYRa9Z2sXqoLKUeKiEJjRUSbHNlGbmyfUpejptLEz086E\nu5ZoijFOAK3DrKBzxrfr93g8nh5epGxQwjDiyivHybKMKIoQecb80aNURgZopCmDg0PLZjNo7Sp6\nVqIYHubQU5+GYFGDHqWY2b0bsJgoRAdhLxXkDrIERQF5TlqpYKVg67cfxEpJ0miSJwnNKILGvIue\nuEWU6R9gZto9Lzvqdok7Hfbuux/0CpGWsirIrdMiKhVEFCKq1Z6osQBpim0uH6ZoJyeXpIfs5CS0\n29hF9+pSKlP2eDyeJzJepGxgwjAqq3MCCELU2BgqqSLznCAIeqXJi1lNpEgpEVKilESWaZMwTRk5\nfBhrLI2xTYDAKAnWugqeQxMUfX3o0F3HKMXh667DCkH/iRPkcUxUFGRbtnJ06xa2TUwQN5vQKQXL\n0LATLBdgzoPNc8xtH8OmnSXbc6OZtbaXHrKdDjz8EMQxttFwzdPWcQrzKVmDQdebaT2e84MxmtnZ\nmXW95uDgUO/f24vF2972OzQaDd72tndc1HWcLV6kXGSUChgb24xSp/6rCIKA4eHRVSdUrgUhRO8B\nC8ZZay0yipx5VWtAEHQ6DB8+zMQNN5D19WGxtAcHYdAZd9PBAYyURJ2UbXMNsmoFG7mpyEvopnG6\n0RVjFsSBNmAMwlqiNEPYM+isqDV2dgYGByGp9DYXRjM50E/f1DRBoaHQbg3NpmvRX6stRFu6ouUi\nsSaDrjfTejznhdnZGb72tb9Z12s+4xnPYnj43FspPJHxIuUiE4YhmzZtWfP+Yr5B/MjDiKsj13b+\nDLDW9h4AWkrag4PIdhvTbb0vBFiLFc40K6xB2gVhYQGEQBYFNgjQYeCiL12Mcb1TLC7dU5SCpFut\n1OksGGeNBWtc+mf/fmgvjYqsiaTSizDYNIX77oddOxcaxxkDjSa0W+hP3IYZHOxFV8w9dxH87tuR\nu3ef+XU9Ho/Hc8HxIuUSoCgW0hI27yA6HUzewZ4UVVm838kYY1xZr7a9SqAijjh48030H5qgCBQa\n60QKoKOImZ07wbrS5CWdZY1FaoNWK/RykdL1TgGX7ulGVvrKycxZtlB6rEvxIyVw9n1hehSF88Z0\nG8ctPmeeudb8g0MQttw15+bcEMaNwiqDD33Fj8fzxODVr/5lrrjiSoJA8cUv/hVKBbzyla/iR37k\n2bzrXX/A177294yMjPDa1/4G3/u934cxhj/8w9/nG9/4D6amTrBly1ae//wX8+IX//Sq17DWcttt\nf8LnP/85pqZOsHv3Hl7+8l/iGc945jq+07Vz/s0CnrMmTTs88si3SUufhVKKOI7RuiBNU9I0pYOg\nPTzCbJ7Tbrd729M0ReuCOI5RJ/ffoPSkCFl6XMLeI9KG4SNHCAqNErIsS7aoLGPo0CGCNGXowAFk\nmrlhhMI9jJTlz5IsDClUQBpFdOKYTq1GnpR9T4KANEl49MorSMv5QcvI84X+KmsupV4Fs1SoFUHA\n5ObNFOFy/w5FgW01l222U1PoP/8z7NTUua3lDBEjI6ifegFUKktf6Fb8bCRB5fF4Lghf+tJfMTQ0\nzKc//Wle8pKf5h3veDtvfvP/xQ033MhHP/pxnvrU7+X3fu8tpGmKMYbNm7fwe7/3B3z845/mF37h\nFXzoQ+/jq1/9u1XP/7GPfYQvf/mLvOENt3DbbX/BS17ys7z1rW/hrru+tY7vcu34SMoG4uRy5DCM\nuOaa69GLDJ6dTof90T1w8ACXXXUtyZatS86hlFqy/2JO9qSAU6lBliMBISVoQAgEoLRGCcHw4SPM\nbdlCXnF9XCwCO9CPEQJVaA7u2U1WrdJOYlRRwN49RO02Vx04SNhuY5sNMq2xM7PL0z3GwOQkYJf2\nVynNtsJCZEyv4dwp71+WuT4r8/NwxA0tLKpVJq+7lj5rCfbdi40iKAqK2VlmN40x9NnPkFx19dJ+\nKxfYWHvK6qJVzLQ2z300xeN5AnDllVfz3/7bLzE83MfP//wvcOutH2VoaJjnPOd5APzCL/wffO5z\nn+bhhx/k2muv5xd/8ZW9Y7du3ca9997N3//93/HDP/wjy86d5zm33fYnvPvd7+e6664HYNu27dx9\n953cfvv/4sYbb16fN3kGeJGywenO8ekihKASJaRpRhyEJEll2TFar96t9mSslM4Ye5oKHNsVNsaU\nHWgt0lqCLCPOMnQcE+Y5QZ6hi4KsUkGrgFBK6B+AatV5aKam3BdwV6RoDQMDgF3SX8VqjTWa2Bgu\na6VrezOnJ7bQAAAgAElEQVRF4c4nhGsQFwTuOkK4eUFB4BrIGUERRUzu2knf7DTxxASMjl7QLrZL\nOIUIWtVM6/uneDxPCK644srez1JKBgcHufzyhW0jI86IOz09DcBnPvMp/vqv/5Jjx46SpilFkXPV\nVeMrnvvQoYN0Oh1e97pfPWneW7HqMRcbL1IuMeI4Yc/W7Tyy754zOk7NzbHrjjs4fsMN6IGB3va8\nVuPg934P1lrnPekaZ4EijDACCinpP3qUfOcudBRiux1qRfextIGctaCDgDSOUWG40FlWSddzJQw5\n8qRr2HZ/nbjdLj0YdqECqNvjxGonPM4UIRbESbvtztvpOGOudO8vynL2fP3fCSsV9Ic/6ARK2cXW\n4/F4LhYn978SQizbBq4b+Ve+8je8733v4dWvfj3XXfdkqtUqf/ZnH+P+++9b8dzttksZv+Md72Fs\nbGzJa1G0Sjr+IuNFyqVIpYLYtmO5d+EkikIjRO48qllG1GiCNksUdLfap9dWX7gKnyJJmLxsL9nI\nMDO7d2OtwQYBtgzr5FK6QYhBwIxSWCkphoYQ1mK0xgSKh5KEynyD3Q8+VJ5bun4l1SrZwAC2WnXR\nhNFRwC70Vxl1/1MQpkAEwRlZaoWxrptt1+xrDEYppnfuZNPxEwSlZ0UiXE+XWg0GBkHQ62KbFwVT\nUcBIUXDRf21LM63tLK188v1TPB7PPffcxZOffCPPe94Le9smJg6tuv/evZcThhHHjh3hxhtvWo8l\nnjNepFwiLJ7xI6pVxI4diGp1xX27hlvnb9GAJs0zisEBtDXL5vy4FvsAAlN+iZsoYm7nDvrSjJGJ\nCYwumB/bhI6cSBHWotKU4YkJiv5+bLexnLUIo0GAMoYsidHBIn9Fd7Dg4tk9YciK1T3GYFstrF76\nmm21XHRkBTNs3G6z9557YdH/CoxSTO/YwfDMLEG6ss/EGgudDnZykkIKJqOQQXNhm73ZmRnMV/72\nlJ1vu2ba4taPLH3B90/xeJ7w7Ny5iy996a/5+tf/jW3btvPlL/81Dzywj+3bd6y4f7Va5Wd+5ud4\n73vfhdaaG264iWazwT333EVfX41nP/sn1vkdnB4vUi4RVpvxsxKLDbdKSYaGqjzIN3j423WSJIG+\n2rJzt1aochFCuIZveY7RGqnKFAoCoQRhUTB6aILJG25Ad78ojXGN05RCGsNaanXSKOLI9q1sO3iQ\nuNXupXuM0fDt+oIA6pLl0Gxg917GypOKTsK6fiw0m9B9n8a6eUMzM9hvfcNppDxDf/iDqIFB9g4N\nEa3Q0fd80I3UDGcZaiN0vvV4PBuClWevLd8myn+Hn/e8F/Hgg9/mt37rFoQQ/MiPPIvnP//F3HHH\nv6x6jVe84lWMjIzw8Y/fyjve8TZqtX6uvnqcl73sF8/fGzmPeJGygVhr99m10DXcBoGkWq328o1C\nuPb4AMH8PKPf+hbHb7pxma8EyqnLQB5FGG2wYsFca1mls4l1JluDQJelylkcU5QeFapV0krFPa9U\nUJ0UKwRZkmCTxPVOKdM9ssjg6nFMvDStZVstmJrsRVp6tNsLZczd4YZdUWfpeVWKMGR2yxYGDx8h\n6PpXALR03pzjjxMBYnp6qaH4PBlrtdFMRiEDxrCmhtmr9E9ZjE//eDynZnBwiGc841nrfs0z4b3v\n/cCybX/xF7cv2/aP//j13s9vetNbeNOb3rLk9V/+5V/t/XzLLb+17PgXvvClvPCFLz2jtV0svEjZ\nQKy1+6wQgjiOV514vCKVhM7wMEEU9b4YhTGEjQZCawiCZVEaay1ZoDixdy8iyyiisCdmrIUiijFC\nIlst+h5/nMaWLRRBQLtawQQBM3IEKySPCoGJYx6+6krk9q3oIKQ5PEy7WqUyP8/uE2U/EiGXDRik\nWkUky9NadmYaHt0Pk5PYMgVFs+Wathnd67silCJsumGIYJ1ISRImd++m7/gJgmYTTpxwx2sXuaEo\nsM0mxa1/jFgUTekaa89EqNj5eWfaXbxtatpV68xOLx2GODOD+Zf/jfrJ5y1J/3RTPvrTn1z9Qj79\n4/GcEimVb1F/CeJFyiVIHCdcfvnVZ3ZQpUpneJg4DBGlJ8V1obWuO/0KaSQhBKJSJd2yhc3f+AaN\nbVspyoiMlJJAF0glCQaHGJw4TOfa69BJjJ2bc63zoxgLxFlGkJWm2HaHIjKookBpU5Yqn0VPQaVg\n9x4YGe15c+zkJBw8AFHo/CpaEzca7LpvHwduePKK0SKscRU/3ShRFEEQIPZettSY3Gn3jLWsUaTY\n+Xn0h97vjluE1Dm7my3UvfdhDh3CHD2CSBJnjj12FPmDP7zm/im9a7Va2MMT2FZrbSkwj8fjuQTw\nIuUJgjPHirI1vivrFaZgrr+G1gVWySVCZXHjN9fwLXMVM93Xy+oeEAv9SMppzQiXRZU48SMLvSAQ\nLGUKxmKtwQSKLIoW0j9FwWInSColh6ox29sZ8UlCSoShi7R0Z/e0WisLkS5ltY/raruo1b8ozbzW\n9sSNqFZdb5fuoeCazZ0JnY4TKHG8ZAiiAtQI5J0O09YyODhEmCRgpqDRwHz+c4iXvXx5NOVUwwjb\nbezhCZfy8ng8nu8QvEi5xEjTlMOHD7Jjx27iOFnzcUEQkiQJg4PDzjwL2CCgMzTErm8/yMFrriHr\n66PVavTESc/OISVZ9fQN34BF3WSdL8RimRuo0Tc5RWPzZvTIMFYKdBCSbY6wgWJ/rZ9OpUL7ad9N\nZX6eqw4fJSr7o1gBmZRYwenH+xSFmw2ki4U2+0Xhnlu7sD3PMQimd2xl0/7HLvwvwaIhiIvRSjIZ\nbqYWVYiSSs9fY+dmvZnW4/F48LN7LjnOpMrnZLpNgbpze5QMEQjCdhuJRUrRHd1TPlwPlayvj8ee\n9lTSxZGF3qTkk9IPSkKcuC/mzVtgaASCkKFjxwilQAEBglgXBEIghasSUrpA9TrVrslOupwgcOma\nJHFRkErFpW6EJGq1EKIsdw5DTBgwvXN3L311obFp6sytix7hfIM9Dz5MON9wHpg0ZXJslCJLsY3G\nqU+4UvpHa8x992Kbyyu1PB6P51LER1IuERYqf87uC1wIiZRqSTbExDHF6Cj2RLfDq+39KfOM/mOP\n0962FR1G5WtLm8DlYciJvXuJT15T2RCOIABTgJQu/WNg2RAei4t4lKLIhCFpHCGAaE0FzEtJKxWO\nXHsN2/Y/6pq1UfZO+Y9vuLTLsmjQeZi+fBpslsHddy4z0EpjiDsdVwYtJQWCyT076ft2neC2WxGv\n/R8u6rPCnJ8V0z9GY/fdCz/4Q9486/F4viPwIuUSoVv50+mcnecgjmP6+weWljdXEvToKDZ027rV\nQkIIoixn9MABHt+0ibwS9BrAdYWMEAITRczv3k1oTvVFLxHKTVc2RtMeGEAWBQPHjjK7dRtFEjMz\nOOhSSlu3YFXAQ319qKIg6bTZcyYVTEWBLQqyMMSmqfNndNvqW+t+FmIhFWSt65cil66/CALmkpgh\nAcH50DBF4QSKUm6G0GKqi8y5xpb+GOlSPqWoOZNhh34Qocfj+U7Cp3ueYBSFpijy8lFgjHZVPsZi\njO0FQQRueKBk5enJK21bESVhYBBR60eMjWGjEGUNI4cOExiDUAFBkhAHisC6QpswLyt/4hhzJiIl\nCFxlTxC4VE+Z7iEIFiI7YejKktO07JsilpltiyBgshJTnMm110IYQBi5x6n8PRZIU+zkpKtYarXW\nkP6REFdcNOWuO2Fx/xiPx+O5RPGRlCcIQbDQKr9b3aN1QVEUzCUJ2miMKUqzrMVaEIuKWVdK93Qf\nhZS0hoYohOiVNS9Blm3wgxB07s4rFoSOlBJZGmGshUBrMJpCnsXHs6uyuu33VyBut9l1732uLBnK\nap9Ff15odAGHj0CRL9kcWdhx/DjzY6MEj+5HfPiD7o4//BDmnrsIfvftyN27VzylGBpGjF/jq3s8\nHs93FBtKpIyPj/8q8OvAVuAu4NX1ev3fT7H/a4H/DuwGTgCfBt5Ur9fPsFb00qIoCh577BH27r1i\nzRU+i1vld+l0OuwX+yiEolqtUK1UyLJjKKUIwwypJGGrzdi+fRy47lqKRbNyFgYTalpRTPumG932\ntFPO/xGrm3utXShF7pYFa+PsKUAhACHRSpFKSSEEqVwkmJREKkV0uhSItaRxxJFrnsS2e+8lzrKF\nqElRuPSKsZC3XZrFmnURKoWUzG7ZxODjxwkWTXmW1qKwTO/cQf/DjxCE0cI9mprCnjgOq4iUblda\nMz8PR4/4fikej+c7gg2T7hkfH38p8E7gt4CbcSLly+Pj42Or7P+zwNvL/a8BfhF4KfD767Lgi4ol\ny868wicMI5Kk0ntUKhWqg0Oo7W5YoVJBGd0ooxwIhDXEjQZBlq+Y7pFSEccJSeIecZwgpUL2+qgs\nQspSDHTLhwxYg2q1qD36KFmgSCsJUyMjTI2NMjMywv7BAeYCxUN9Fe7vr7rHyBAP7txOfjoTsRDY\nICTrr2GV6qV7ynkBLtUjhethUqm4qqS1lFmfI4VSTG7fTqG1myfUfbRarheLNjA/Dw/so3j4QSYr\nCcXcLPqdf4g5cGDlt1p2pUUp7LGjPqLi8Xi+I9gwIgV4HfDBer3+sXq9/gAuQtLCiY+VeDrwT/V6\n/ZP1ev1AvV7/O+ATwNPWZ7kXB6UCRkbGXDntORLHCXv2XE5wchnxCrg29St7UqSUpTBZECeL97VS\nktdqzqBbcT1DRBwhqn1QqaKGhhmamXb+VSlRUYSKQlQYEhUF/a0OcScjLB8qz8nCAL0WQbGKr0QY\n48qST46c5Llrq78eGLOQmpISpCBKM/bcfz9RXkAcU/RVmdy9y5VKz895r4nH43lCsSFEyvj4eAg8\nBfhKd1u9XrfA3+HEyEr8C/CU8fHxp5bnuBz4ceCvLuxqLy5hGDI6uumsS5FPhda6TOOU6RxcSkem\nGTu+9S3CxkL/jcWeFGNMacDVPU9Kd7u1lrxW4+h/+gGKWm3hS7k7p6fbqVYFi0qVDdJYJyRm5+h/\n5GHCuVmCTpug00YVBYQRRRjQUZKOFO4RKNJqhSIMSSsJnWqVtFqlCEPXer9YaOYWz82z9+v/Qdxo\nQqftIg+dDsxMw+wsdj3SPmHoBEivNFq4suR2G7nS9bXGTk9hjx93M4FORinE4CDdqam22cT8+9d9\n3xSPx3PJslE8KWO4buHHTtp+DBhf6YB6vf6JMhX0T+Pj46I8/gP1ev0PLuhKvwMRQhJFMe12C3Di\nIgtDjo5fjQ4CMIaw1cIu8oAs9qSkaacXObHWlJ4UypSUIQzjtSyi1z5eDI+CACUgGNtM3/ETFNff\ngB5yE0WlLqDV5JE8RycJoizrtaHCfPd3k1erPNzXhzQGbS3zo6PMbtrEDV/+G/q6VTLWQuEMukSl\nSNAaav2uGZzW2FYHq8vS61bLdbM9j+gwZHLXLvpmZgmyrByOaKBRCpQjR6Cvitk8xvSmMTYdOgyf\nuA0zOOju086dS4YRipER1I/9OMXdd7rj/dBBj8dzibNRRMpqrNoMfXx8/BnALbi00NeBK4H3jo+P\nH6nX67+31gtIKZDy9BZDVQ7BU2czDO88o5RESoFSkiA49Xq6683zjMce28+uXXuWmG2VkoRhwBVX\nXEGz2WRubpYwDJFS0q5UqGUZQRRS5DlRGJH3UjmCqNVgy4MP0XzKU7Dl0D1jTM+cG8cxxpgV0z9Z\nzbXZ7xbj9Kp9lEREoduAQQYRIo5QtT7or7lr5DlkKXkYEBUFqtvDJU2h0SBpt53osJbCWoQ1pLU+\niiRZSJcYC2gnVrLURXaMgcY8IsuIjxxGPH4cMleBI7IM0hRVpMhV7vnJnxEbCIwQWCnKtnQL927h\n0b0p3VlCZaTJAoFy3XGjmOmduxienCQa6EdUEuzMDLKaEAiDWLQeEwWYapUgChCBu3YQCEhbmPvu\nQ153HaKvdsp1Xypciuu+FNcMft3rzaW67gvBRhEpJwANbDlp+2aWR1e6/C7wsXq9/tHy+X3j4+M1\n4IPAmkXKyEjf6Xt9LGJgoHL6nS4wcSxIkpChoSrVRa3qT0WtFiOEYWCgsuSY7rnGxoaoViOCQBGG\nAVJK8lwSRiFKCLQQZXZmwRCrrKVvdhYtBTpylT9aa2TpFQnDoCdYur9sUgqK/hpHvv/7sNaldIJA\nIRd5XLoemaIwhFFQlk8HmCQszwV5ElEkCWGrSZg7IWGzFNNukTSadIaGnFnWWqQ2LiLUU0S4zrey\nDMBVKgilsFqjxsao6oJrajXk5s29+2RaLez8PENbRlDDp45KdD8jOqsyGwcQh+SBRAQKESjXf6Wn\nU8TCn+5dlD9bhBDEWcrO+x/gyJ7dIARRFCKiAGNylLAMDFaXrEfv3U7zqU+hb+92AJqViL5B9/fd\nvPdO+m66btX1b4TP9tlwKa77Ulwz+HWvN5fqus8nG0Kk1Ov1fHx8/BvAM4HPA5QpnGcC713lsCos\n65tuADE+Pi5KT8tpmZpqrjmSMjBQYW6ujdbr1E9jFdrtNp1OzsxMizQ99dvsrnt+fuVj0rSDtZK5\nuTatVruMhJiyMtiiC4NZMs8H3H/zRelbcQ3idOHuifOnuJ/zvFhU8uzusdYGKSXWdr0rhkIbzOK+\nK4Xu7Z9nBUWhSdMC3cnL8+bkVsDey1zvlaD8GE9NwsQESfM47Z07KeKYIk0xYeCiN5UKnWqVLEk4\ndvnlbL/vPvqmp0FKrJCAwUgJRpGrENTCXB8rc7CS2dkWIlrZ43HyZ8TOtkjnW9hWiu1kblpioV1V\nUn9Z/mytq+YxhiIImN26lcFjxwiyDDs/j0AQtVPsnt1Mj4wS3HWX64LbbiMOH8VMHEdGNezUFMWX\nv4h6ylMp2hnFrIsY5Sv8fPL6V/ps22Zj1cjLRmEj/U6ulUtxzeDXvd5cqus+U4ZP8x8+2CAipeRd\nwK2lWPk6rtqnCvwJwPj4+MeAQ/V6/ZZy/78EXjc+Pn4ncAdwFS66cvtaBQq4L2JzyrbuS9HaUBQX\n+0MjGRnZBMg1r0Vr9z5PXr9SEXv3XlXu03TfmaVIsdaSB4q5PXuI9z+yqNGbQHRn8FhQjSajd9/D\n5M03U1Qr5S+VG4TYFSwLDeR0mQJaEDzG7b6kdUr3/MbYnmDq/j11xQzKVQvZwEVYirDB7JYtRDOz\nTI2NkVWr2CInj2KKMGD/d91MlKboIKA5Mky71seTvvo1wkV//d2qbmMoU0Ll9lJQFIVFnOaed++x\nabQxjzzsmtnNzLj0jVKIMCRKIoTOnQ+mNPMWScLk3j30TU0RpKX/RUCUdti+736OXPskhg8fJchz\nsAbbaJAfmkAOjUCao09MYrXFDg5TWOexMcatuXsvT7X+xZ8NO9dE33EHatdeRLy2aN3FYmP8Tp4Z\nl+Kawa97vblU130+2TAipV6vf6o0wv4uLu1zJ/Bj9Xr9eLnLTqBYdMhbcZGTtwI7gOO4KMxvrtui\nLxLdOT7nG+d1UVjroildA+3x3bvYOnEIY82SSIooUxXCGMJGA1H6T7rpniiKS3EiCEtzazeSIoTo\nVQAhhStRPsceJRaLCQKwBlnkrgooy93cINVH2OkQtTsUYYjQhjxJ0EFAePpTnxUiSeCyy51IyVKI\nIwhD4jxn73376ChVzvMpe7csTjta48QLrgQvKu8vMzOuEilLQUr0J27D7tmLeOazsPfeAz/yY73B\ng/b48RVWtXZslvk5QB6P56KyYUQKQL1efx/wvlVe+88nPe8KlLeuw9K+I0nTDhMTB9ixYzdxnBCG\nEYODQ4RlZ9nZ2Rn6+mo0C42IYipJhTwIeiJjybDCRXQ9Ky6tI3vRidXIqlUOf//3kTWbnHbnUyEV\nCIGwFlloZFEgOx36js9xYu9eVF64KhprkVqv2kPlfCKiCBtGa76WUYrpHTvY9MgjBNosWMeFcObe\nIHDCpjtqIIqwM9OIdgvbaa95EOGayHM3B+jGm311kMfjuShsKJHiWV+sdSmZxZ1rpZQEpcej+7OI\nQhqX7cUmMcLatQ8XLK+hm00qjz9Oa+sWNGJJusetoYNL+yy00++dWyn0wIAzwZ6OKMRGETaKMP39\nmL4qqt2mdmKSyb170ZWEQgqKIKCIIxrJGK3BQZLGBe4jUhSu/0o3cqI1pCkiiojm5xFZ6qImSjmR\nsmsnw4cOEbQ7dG9U1Gqx55vf6gnIIgyZ3baVQSEIOh3s7IwTFYt7oiiFGB5ZuKbH4/FcYniR4llG\nUWiEcEJB6wItFTO796CUwnbaPVGzlrb8QggSY9l08BCPb9lCHqhl6R5XEt01zC7tbKsHBph71o+t\nad3aGNIopFCKdhCShRFRrQ8jJRaY2bwZZQ1GCNJqFSsEB26+if47/p3wQn6JBwEMDbsJzWHoBEmn\nQ9zpsPfue5wQOTndAz2BgjFIa4jnZt0EZaCoxExu20rfo/sJ2m2yZpNZrRl8zztJfu//Ru7e7fqm\nnKfUj8fj8VwMfBH2E4QgCBgb27xqigZAKTcp2U1H1lQqVbTWFEVOUWQURb6ow6yhiCJmrrgCE5+6\nWZsEwjxHLYrALG+rv7yd/pliu1U61iKMRmiN0IagkzL2yH7iZhOV5ai8QBiLsJasWkGHF8qVsoie\n98T5UtbE4hlHXbrzhoRyxuE4hiii6B9gctcOirSzcuv8xVGVs8R3sPV4POuNj6Q8QViL2Xa1SckP\nPng/09OTDAwMMj8/j1IuGkJfjWx0jGhubs3rsNaiGg02PfAAx6+5Bl2plBVAtheZ6aaDVunjtyoi\nirBJQj40hBgYQFYq0GggrWXo8GE6o6PouPSHSIGVEh1GpH1VkALVSQmBNI45OlBju7bE5+KRWQ1j\nXPdarRfm91i7XEAYQxGFzO7cyeCRI25icndA42rkGfqzn4YXvRQxNARJgujvXxJVOWt8B1uPx7PO\neJHiWUIYRsv+ox8EQc8o2+3QK8+iEqfbRj8X0BgYIBeuJHmpJ4XyufvuNsac0X/+81qNQ9/3dFel\nVBRopTBSgFV0qhXyvj4soKXEKEVzZISHbr4JVRRE7TZXPXYAiyBTEmv0meqktVEaXjHGCZNSpAhr\nCdtt8iTp7VcksStLnpwk0GWH3DwjyjP23HEHoSjb+SsFe3bB3Bz2X/+ZYmoSkSSIoWHUK1+FKDsC\nrxmlnMg5AwEKLtpi992HuPY6XxHk8XjOGZ/ueYJTFAWPPfZITxicDTqOmbvqKvRp0j4utaOItGH4\nyFEibcoUU0IcJ71JynGckCQJcRyflRhadEFsr1Gf624rtCFsdxh57IBL+xQFYauNyguyanV9Uj9Q\nDhRcStxqsevOu1wflEUYpZjeuZMiDIHSo6I1cauNLDvUFklCa3ioHFaoIAixxmCOHsFOnjjj5YmR\nEdRPvQAqZ9jxsoy2+GnNHo/nfOBFyhMeWw4CXDlkIIQgDCNAlI3YbPkwy7wpRRSVDddWDz8IIXoe\nFdl9fpInpfv8nAQKLExY7vpfwhARRQTA0LFjSGsRShIkMaqSQLXqvuAvMGkU8eiTn0wax71GbuT5\n8jSOMWBsr+KnCEO3retV0YUTA502utmkXetHGwNHD8O+e2HfPrh/H+a2j608Nfl0nAcfy9ngvS8e\nj6eLFylPYJQKGBkZQ4jVPwZxnLBnz2WEYYgxGmO0q/jRBUWRk6YdiiLvbdO6wNrujJ+1rSNoNNj6\nv/+JoNlcYsw1xlAURWncXfwoep1sT8f/z96bB8mWpnd5z3f2zKz11t33e3vJ7umemZ5FsyCDDBIg\nh0PIyMhIgQMrsJBlwJaQHAReCRvCRgQWq0RoJAEzDIwQEIDkcKAxgS3LAs1M9/Q23T05t+f2Xfru\nt5asyuUs3+I/vnOysqoyqzKrsurW7XueiIyqzDp5zneyqvK8+b6/9/caxyXLO3mK8KnwozOAEQLp\nuEjXRTmCxHWR/v5WQY0QpNUKxvPWjdzy7h6hNUGnY43bHCefL5RTzB7qD2YcB4SDrxTTi0u0jh5F\nBj74uajWdWx7cjx+pqzQsRRTlifFjkFIECCeesqWxEpKSp5oSk3KE4zv+ywsHGN1tbnDdgFHjx7n\n2LETXLv2bYIgwPM8pJQ0myvMzs71vFWklDx8+KCnYwFQQUDz6adtOWhAq69QCrfTQQqB1qqv9GRo\nNpe3BFE2eMmo1XbWWaS1Gu+/9BLnXn4ZJRwyR9hhhmnC9N07tBYWWDq2AAi06/Duc8/iK0XguNiZ\nl/tIEXQ4+QRmbMnn4tdetj/v68TSjsPy2TMcu/k+3oCAw8nblJunT7Nw+/b6P7ax06FNu4U4dmx/\nz2dUdhDgCt+HIwuPYGElJSWHjTKTUjIShXbEdV08z8PzfLzcfXb9fvGY2JBFUVHE6jNPowtB6AAc\nrfGV2qBJiaKII47Hudff4IgXMD9/hPn5I8zOzlGrTY1eDiqCAc9FeD7C8/Ck5OS3ruArhesHuIGP\n4/m4M7NkR4/aEQCdjhWCttsQd/f4Cm4ljSKufewlkkplcMdOXu6BPl1Kf2al6BLKUmi38xEAGmQG\n9+/D7Vtw9w58853dl3z2EdPplGWdkpKSbSmDlCcErTVJEo9cJkmSmKtXv0WSxAghCMNwTx4moyBg\niybFAyorKwSwKRAa/U/XOI4dNuh6CNcB10EIJ589lO8nn25otMLEMXplhaTZJG637E0p5PwR2CbQ\nGpdiMrNxnMG2+ZvLPbAhu7K+I/IXj/X99EpD9rz0wwe7KvlsPPaENSrdbimyLSkp2Zay3POEoJRi\ndbXJ3NyRkS7w/Zb5UVTh8uVnifNsQuEMW2hDpFyf+2gfM/kU48ECWhWGLF++vGM30E4MOnYxIbn/\nllSrXP/Ud9juof5zBIzn0Z2Zye8bmkeO4DWbzDxc4sYnP4Gem+ttH1SqPB+F+zaQcIveBBDatiVL\nb8i/ah50BqurnH3tNW698IKd/XPjJl6aWXFtaw3evYL6J7+C+0N/bNcak4l4rUwI026jGm+jv/NT\n2O7jge0AACAASURBVOispKTkg0iZSXlCKMzc/D202PY70iZJQpomKCWJ4y7N5grdbpc0TXriWmM0\nruttSRKoMGTlqb0FKVpr2u01ms0VlpeXWF5eYm1tFZEk1K5fR3c6vaClCJYGdTAZDMJ1cTwP4bg4\nfoDr+8ylCdHsDOHsLOHsLG5titToDUZ3I5PEkElI86nMmeplOOzJmJ79/aaTJGy1bFtyEYwp+1UG\nAYsXLiBzcamjDUE3xrguy+fOIaMoz8LktzTFLC7u/wyfMbMtxaTlsUs+QYDz1NOIPQa6JSUlh5sy\nk/KE47o72+UXbHakjeOYmzff4/jxU9y/f4dz5y4B0Gi81RPXKqVYXJz83BjHcajVpomiqCfajeOY\n9O4dFq7fQB49Rpq72Zq8nacoVxnHIatW8Lo2M7TZol8UpSbXR3jrQZ1ScvMytieKkPNHyB4+AM8F\nV4CABI0SgjQMkZ5PEkWgFOn0NA8uX+LsG28Sdjq5l4r1d/G7XbJKpVfukUGwbvKWpr1DaschmZ7K\nPVUKjA1ONvmvbIdZWkJ/+V/h/IHvHSvzMna2ZZeTloXvIxYWrMiWtDSRKyn5gFIGKU84o9jlb9x+\noyOt5/mEYYTn+US5XqNfXLuf9It27Vokgo0eLL3ApC+LktVq3Pr4xzn71a/u6/pkFHLlu34P6coy\n+sJZ8AOE5yFWV6m8+y7vf/QjrJ06RffIPK6UKGOIp6c40fiWDVJyCpO3G5/8xPCDKUWw1uLkO9/k\nW7/3u1AYK6rVGpIUtMG88xamNWKXj1KY5aXHZ3py2bZcUvKBpCz3PMGMIqZNkqQnoN3MdoJaKVWf\np4np3TbrRcCWf5pPP42awAXGAJnvo2HLcTYcG1DDdB4TQilFajROpUpgIFASXyqiLGPu7l3Cbowr\nJX6SEMQxbmZt/HtovbUENCSbIwOf5XPncKQN1GyNrV9ECySJvY2I6XZR//KfY5aWxjntnemVhAa/\n/ezGzE34PuJIkVnZ+/5KSkoOB2WQ8gSTpglXr14hTYdfuPoFtJsJw4jLl58l7NMFDNOtFKZv/WZt\nxhgcx8FUKqw+8/RkhLSey8qpU6SOg5QSJ02ZvXULJ003HDsNfBYvXUTv1dV2BLwgwAkCUBrSpOcu\nK2SG327jZNJmOjAo3+fap76D9uycvYjn6+uZvA0x3pOBnfGjgm2yV3l2xDx4MFo7stbQXJl4NqVn\nEjc3P3iDSVvrl1mWkpLHlrLc8wQzjh5lVAbpVt5++w3iuMv09AwrK8vrU5RZL8kMG+yro4juhz60\nrcdKgeM4eFIxd+cOyenT4HmILGXh+g26szNkYYSTt/SaIGTlzBmEEOz3pUt7LisXLqCk1YT4S8uE\nV6/SOnaU2uIiq+fOkVUqSK1JqxUePP002vN5/jd/Ez9vGw47HS6+/Apbpj/2sAJhL46Zff82fruN\n9Fyap/IJymkKy8uoL30RPTu7+8GDk2TEIYZ71ZuU5nAlJY8vZSblCWa7jp/1AGZ8TwzfD4iiSn6L\ncF2npx/pn6JczOvZDlOpEH/oBcyIg+62aFIMeGmKMGaDQLZfr7IFx0FNz2Am5AdijEFhEH6AG4a4\nQYDA4GWS6cVFXCVxtcJVyq7TaLJKZMtR/dGbMSC3F+862uBlKY7SPXGtDAL7XMHGwYO3bj1Sg7eR\nhxiWQwtLSp5YyiClZCD9AcwkJiUXniaDBhTa2/aDCfeCm6acfe11ghE1CdnUFCu///ejc/+USWGD\nM5tFEsYGFMIYHKXtTWsbpGwor2ya3TNERyN9n87c7HA/FWNAKrj6bm/woPrlX0B97u+MHKiYpSXU\nr/yjyWtUSkpKSoZQlntKRmDnScnDBLSu6xIEIa3WGlmWorXCGKtHcV2395yiVdh1i+zK7gIWGQQ8\nfPopsiCw6xVWSCukhPy4UAwS3p+gaEeEwDgOOjeE1flNyIygZQMp5XkklQppGHLvmac5/Y23qPUF\nExsGEWLnI3Xn5tBDNCkyCGheusSs7+Nl0sY+YYhZWcY8fIAKBabZwcj89VlchG7XFpEWF3uPmVvv\nY5rNyQ0d3KWLbWnmVlLyZFAGKU84WmuyLMX3g7Gs5vspBLSD8P2Ap5+uc+2ax/Hjp7h27ds4jkO7\n3dp2MOFuAgitNdL3WDp71u5DSoTns3LurD2G5w/sZDLG7Fh2miTK8+guHKE7P0d27z7d2TnSqRpe\nc4W5W7dYvHgRGUW8+3t+NxhDe36e7uwsz//fv4mvbZZlwyDCPrw45sLXXsaPY9Jqtfe4DEMWz5+j\ntryCRwJaQRhh2i2yf/B5mkaRJhJdBHEyg/sPoLmMXG0ioggTx3D9GqbTQfzkTw/Us4zrr7JrF9tO\nB/W1r2JeegGCqfGfX1JS8lhQlnuecEbp8Nkrvh/0/FQKD5VRBhOOi9W4OPkx7D49mTF3833mbt7E\nkxmO4xDGMWdfe40g1zgcZIACIKdq3Pj0p8kqVQTG3vKyT3WlidAaoRR+HOPHMQbDypnTdGe2F7ka\nIVg9eRJXSpwRZzShFKbZBMfBBAHGtzcqNTh+ArzA6lh8+xVjMA/uYxYfDt/fI/BXKduMS0o+mJSZ\nlJJtcV2PI0eOsrw8OR2ClGqHmT8aY3SvE2cctohiByRkbKmki+jzT+n/eiD0DwDs+aEY0IpwrYXy\n/aImBYDyA7IoGjwtGXqBzeqpU5y48u4GF1pg6PMATJaRvfMOOt70HK3tUMIrDdsKLSUsLUGrhf7i\nFxA/8VP70x20mxJQLq51L14ay7l2UpSOtyUl+0OZSXnC2akN2fd9FhaODezy6Z+UvB2FZsXzPMIw\nRGuJUpI0TUiShG63y9paE6Vk72aMGXva8WaMMaRRyJ0XX2D5wvleuSfzPFZOnepZxysl8yBJHVig\nYgAZRbY1ulIhiyJUGOFIxdytW6jAZ+nCeZYunCeemSGZqnHzEx+zgcoAgm6X2bv3cPus74NOhwtf\ne9lmjLbLFmmF6cZWlBuFEIXIqRqL588ijx+DasU+HgY2cHAEprmy66nKOwlwez4qE9K9HEiWpexA\nKinZF8pMyhPOuLb4/Wxn9NZPv2bluedepN1uc/Pme5w7d4koiojjmPfeu4LnBVQqlZ4upVoNybKi\n82d8hBAYz0dWq8xcuUL75ElMJcKXkvnrN5i+e5fbH/kwzM0jhEBrvWs9zG5Ia1VufubTdq35kEFX\nSqYWF3moLuOCNX3TGiMEzeMn6E5N4TebQ/epHYfls2c5dvUqXpqu2+uPck6e1/NhkWHI4okT1OIU\nr9+l1nV784N2zbgloV2Ka3scRJZlbg73j/4wTK93hJXZlZKSvVNmUkoGMopl/m6wHirrs34KLxXP\n83DddZ2K7/u78mjZjPVKMblXSn4fCJKEyuqqbfvdyTdlnxFCIJyNxy80Kl6cEq6tIZRGuw5mh04W\n7bosnzvbm468kfGCL6M1qQAtM8hS65SrFCiJSRLb7fPgwegOtpv3v7IyUkvzpDMrW9YxgUzLQFv+\nMrtSUrJnykxKyUDSNOG9997l0qWn98WZdhhS2k/XQghcF7Is25LZKLYZeZ9BwIPLl3ptyQbs9xhM\nX+aksM33WmvMvf4mne/89ybulTIUIax5XK5VMY6L9l0cJQk6HZKpKbTnkc7PE6+t4iYJfl+Go5iU\nPMwnJeh0uPD6m/gnT462HiVRccz7R+a5fP06UadjszFpBnEXrnwL9cu/AHn5qXCwHYvDMsRwvzIt\nA7IrJSUl41EGKSU7speS0CAG+aoI4RAEYU+TYkWzijhOieOYIAg36FOCICTr019shwwCVs6fBwQi\n16QsnzsLGKtLURKwwUqaJkijobW2yVRtfzHGoB1BWqkSdLsozyetRARaM7u4SPPUKXQQ8N5LHyF4\n+hJBq80z/+9v4ecC2WJS8tXPfmbg/h2tCbvd0co+sC7mLQzkiuDHcW1GxfetC7DnQxJj7t7BuXXL\nbtPp9LxVekTRZEW2rmszK/s8JHIvjGLHX5aESkq25/D+h5c8UsbJniRJwu3bNzlz5jxhuPOMnUG+\nKq7rcuFCHd8P8vsOc3NV7t5d5Nq1qz39SkGWpTQab490LoXORAhrye9LyfzN9zEY1k6exExN9zQp\nQRDiJTHuIzB6S2o13n/po5x/+WUMGrRCaEV1cYnwZIt0agon74hqz8xw/ZOf4Nxrr6/rTrCalGRq\nqicK3sBuzkkI29njumghyCo+/lrLBpHvXrEdP5mELEX98i9gPBdWmujP/xLCW1/DsFlBxaRl9wf+\nyFjlHHHkCN4P/zHc+RosH3zb8aSCC/PwIerX/jnu8RNlkFJSMoBSk1IykO3m+mxmVAHtzsdcn/lT\nqVSoVqtEUWWTfsXeimBmHArdiQ4C2idPrM/K6dOkOI6Ds88Opl6rxbnf+cpgm34nDwocFxVFqCDE\nkZL527fAsT4oK6dPs3r2LPeeeYasT3sitMbNMuKZGdQeJ/4GacrZd76J29cmnkYR1194gTSKQBvb\n3eO6EIZ2wvDMLGLhGOKppxELx2B2zt5yZ9uB3UCTmrS8V3HtuExKbxL4dt3bTa8uKXmCKTMpJdsy\nCUfaw4YKQ1bOn2fq7l1r+75Jk6IxpJ5HppQVjUKvRXkSCKUI2u2epX0/xnFIq1VM32vtKkVlecV2\n/yiJk+t0onZ7QzgVdjqcfuvtnsPuFtIkL+Hs/Ht0jCGI456XzFB8D4ywWZ9qFfpcbgt0mkIcb7DX\np9OxepRN1vu7LQvt2rn2ESM8HyqVDVmnkpKSdcogpWRb+gW0UbRxWu1eJiX3s93sn53oF9FKaf1V\nirk8NvgYPrhQOw7K9zGbNSnA/YUjpN022tj9a61RSqHU9lOI90paq3H9U98BxuD0mbkJpYlWV3Hz\ns9Gux9rRBbozMwSdDtrzuPPCh5i6/6C3LxkENE+dYvbOHWvuFoQ2S3OAlSyTJPDmG7C22hPaGpnB\nShPevwHXr9u15tb7Ym4e5wd/CPNv/7+RrfV35KCzLGNgOh3M7Vt21MCjXkxJySHkg/HRuOSRMGpJ\naCfTt0KjMoqepcB1XcLQCm2TxJrCZVmKMdbJVinVG1o4KBkgg4Dl8+cxQuC6Xt4CbYchRsDxxSXm\nKzXm548wP3+E2dk5pqenx+5w0lrlWZhi2rNCGYMMfNw45vTXv47Xbm8sleU6EO26aM/FCAcvTTly\n4wZZGNpZP7Uq8cwMVz/7Ga581+8hC8PerB43yxBaI4OAxYsX1tuRjbGi16KVeB+QAh4GHrK44kqZ\nl4UcTKWybrl/6jRE1by05Vjrfa3Rd+/YIYb37k5sjfvdwgx7aGMuyz0lJdtSZlJK9p1JaVb68f2A\n5557EdV3IWs2V2g2V9BaU6nYC3an00YIgZTZBtNVFYYsXboIgDdAkxJISeq6qL40vBrzoqmUZG1t\nDSEEaZrms4kcW0I5dYosDOnMziEdZ+hrYxyHrFIhWl2ltrTMkrbmbkLY2b+ulBt0KX4cM3frNkG3\nu3VnaQpFWUVJjJx8VkgKwWLgMyUV3ubAqxDaFmgN7bYNYvQ7NsOTpagvfRFWlnH+0B9GHDs29tDC\nsZlEpmWXbcxluaekZHvKIKVkR4ogY3Mb8KPG9wP6kzhxHOc2I6I392fdpG30ZLoOAjrPP48eYkE/\nKq7rMT09jRAOSklc17VBUBwzf+cOabXC3J07dE4cR4fhlkBFCEE2NcWtj32Ui//2d3DyQYTCaLxU\nEXS7uHGM8Tw762cbZBDQvHyZWd/Hy7txhOdtW/kJ4pgLb72Fn00gmCmEtmFodSwFvgeL0lrumzzy\nCgK7beEDs89+KvulZynbi0tK9s7hueKUHEpc12N2do6bN6/t66TkYTjO+HoVK4C1t35tSlH6sbHA\n8MuziiK6z3/I+oDsef3rU5/tzcUVAi/NcLS2TrhsP4nZ5GkTIwQmDDGuiyMlYWsNHIHyfdpH5lk6\nf57uENGpDAIWz51dN3szBtPt2tLPsLVrTdiNrTZmEmgFGLQQJEGAHnbO2jx6g7dJMEoHUGH4Njc3\ndJNywnPJk0wZpJRsy3YDBgvGdaQddTAhjKdXcV0HIVyMMT1TuGLacn/AUohrD9IGv9c51KdJ0Y6D\nDIJeh5Hf6XDm1dfw+y5qxpheyccIgcIggwDtulSaq7SOHqV56iTXP/4J1o4f49aLL+B144GdQygF\ny0uwtAgrK/Det+HGdcxBBARaw/Iy3LlDurjI9aMLpIuLcPcudLv269078OABNN6GxUVMZ/hF2Swt\nkX3pH6I2m8YdFBMS4w6009/MkGCnDF5KngTKIKVkz4zjqQL7o1Gx6wiYmZmlWq1x9Ohxjh49ThhG\n+TwgjyAINtw8z2ecMtBu0VrnE59j4jim4zrcfv554qkpVk6dIvM8G8S4Lt35OXR+4Sten7RW4/2P\nvZR7nwg7dBBDdXkZN5M4UhF0WrhpinFdTr/11gaDtx6uC/NHrAvq3BxcegrOXwCtrT4lK2b0pEhj\nWDx1Cuk4+bweZa3133jTTlUeF6PtfhzHusQWX32rycD38+GFrnW1VWq93DMIpezMn33Q1YzCpMS4\nIwUaw7It5WygkieAMkgp+UDhOFb8WgQmVqzKBsO2gx4o6DjW8j8MI6IoIqhNkS4s4BrD3J07+FLa\nWUVZxuztO7h5CWbQ+oQj7EW88DrJZ/04WuNISXvhCK2jR4mnpkmmplCeB4jedr3AwPMQlYoNFm7d\nwjSbVlT74AE8eIBcW2Px5AmkUvYi2OngtFqES0s4cddmRnZD4WBb3Ip5Rf0YA0Zjmit2eGHhq7K4\nOHSQoVlaGmlY4aFjhEBjpGxLSckHlFI4W7JrPohGb/tFr3PIcXv3e9OZ++6HrRbnXn2Nmx//GNnU\nVO/5hcmbFgLjCIywj8VTNdKpGq1jx3AySTwzzdXPfIYg7qJcl6xWRXke7jB/F9eFM2ds0BH0iVqL\nrEYQbAxIdN7GPAGzlUKb4i8uWrt/g8245G3S+tf+Bea3fwsTx3D9GvruHZyTpwYPMjwswwofU0qR\nb8lhpbyylOyaNE24evXKjoLanTQr42hUdsZmSJSSfVoUNulR+gW1jw4ZBCxdurjRwt4Ygk5ni6ak\nMHlLa1NWSJsjtEZog9fpUmk2cTOJH3cJOh2CJCFaXcsDlG2yRo4DrRasrlqtysqKva+UbVtOko23\nLIO1tYHZlEAbLnZiAr3za5tFIddf+BBpGOYZlrwLq8iwRLmviufb7FHPR+WWza7kwxV34kCyLLvU\nqPSbuY3NCKLbkSlLRyWHlDKTUrIj4wpjN7PTFOVJaVRc16VareK6LlJad1hjFEopjLEX1P6Mjx06\nuKdD7hpjDCoIWLx4sTcA0QjRM14z+WNbKMo2+XkUzdV+luHKDGE0nSPzhN0urpQoP8hdZoe/tsJ1\nEXNzmDDamEnxPIiijeUYlWc6pqd7a+jHAcIRApTe6yAEaaVCkCQ4StuJ1LEt9/Dut+zxtbYtye++\nC0raQYaAuH8PvfbHYGFq+4McQJZl123M3S7m9i0rHh73mCNMWR6ZIuCZnpnM/kpKJkQZpJTsyE5B\nxmFhs8FbHMe8/fYbtFprJElMpVLF89b/5LXWdLvtLdoPoRRus2mH43mT/xcpOn36ZwYBKN9n+dw5\nRP49gJOmTD94QOvYsQ0Zl175x3Xt6BzHsZb5eaAjAysKVp6HDHz8bkzQ7Q6dxSNc12pVCt2DI9Cu\ny/Lp0xy7cwev16oscgHsZCzmlefx/odf5PLLrxC1WjaYEvlxggCi0G5YrUAq7fyhmVmIu/YCP2ho\n4Zjsm1ncIbbj38xEA56SkglSlntKPlD0T1KOogjXtf4khcHbul+Jkxu+bU2lOFlGcPsWYhsPkb1Q\n6FP6XW4L4ez8zZvM3bzZE896acqR6zdw806X/o6fa5/+FN25OaTvk0URtfsPcJOEpFZj6dx5ls6f\no3nqBO99+lM4SnPxjTcJRyyRgA18lk8c39Dhg1I2s6Gk7azZD5v9Ilvk++AH9rY5a6MNRkrU4iLm\nwf2RxLVD2adMyygdQKbbhbVV+/WQULY2lxwmykxKyZ7RWpMk8cgC2nHKR0kSc/36Nc6cOT/WbJ91\nii6ewuBtXUex0extHRVFdM9fzFuU94dBnTvS91k5c5rZu/cGPWHrY7112+6e2bt3Wbp4ARVVcKUE\nIfKMSw1VifDHKMP0Woa1tqWIQqvQb7TmODajgejZ7I9SPbNOtm+jRhVbKwm371gNilKYV1+xZad2\ni/YXvoAMKqhud4u4djfTlA+cuGv1PfHhCVJ2a/FfUrIf7DlIqdfrHvAs9iNpo9FoPBrjgpJHRpqm\n3Lnz/sBJyYMYp3yk9e71KoVGRSlJp9NGKYkQuR5EqZ4WRGvdl9HYVr4xEYRS+K0WMvAxfXN7TBiy\nfOECOgh65R7l+6yeOE5tcQkVBKggHLhP4wi066FdFxkGeEmCYwwGUJ6LDEKr6xh1jQj8LCOrVKyP\niTFI36e5sMDsrdt4US52jSJA2GxKmm759G06HZtx6QsOHWMI45h4iKOvdhyyMMQXwqZ6tQaZ5cJa\n11rrSwWmiqjWMI4HmdwgrnVu3YIFW74wrdbI5z0qEysRuXa4Iu7wgO3AO2/G1KeUnUEl+8megpR6\nvf4J4J8B5/OHbtbr9T/SaDS+tueVlZTskUKjsrS0SLvdZm5uniiKkFLSbK5Qq02xsrLcm6kjemLV\nXXqAjIjXanH+K1/l2ic+Rjo9vS6cNabnldI6ehQVhrYEdOMmAO0j8+gwWg/YhMDkeod4bo7W0QXC\ntTVax4+TRSHa99Guy5rr8d6nPslzX/kqo+aGwjTl3Dcb3PjIh3vdNjIMWTx7ltrDRTzhQLuVd9gI\nkBJzpQGbvTzSDNZWbTZkxOgvrVS48dJHOb/cZEPuTDjgGLue5QeQJGRvvokWzkBxLcXspSBEzExY\nEDqhEpGYmYPjx+3XYRxwZmNsfUrf+gyUAUvJRNlrJuXn89vPAVPAzwKfAz62x/2WPAasl20OrzDQ\n9wPCMBqqP+mnyKrsN3YC8yVUEGwxlZO+z/K5s8hBxl2bO356aR/71VWK2tIyq2cTjDYY3+9NTE6n\np1B+MHKQsiOOYwWs1YodDJgmiGfqNuvSh+l0bEuzTG1ZYxJobbMzQiCiKDe2M+vi2rhjW5f9AJIY\nHty3axlkob/HIZIlbMy8rKyUpaKSiTJSkFKv138W+AuNRmPzu8zTwN9qNBpdoF2v1z8P/JPdLqZe\nr/9p4L8BTgKvA//VdlmZer0+C/yvwB8G5oHrwE82Go1/tds1lIxOUbaJd6in72T6ttcW551wXQfX\n9dBakiTkHioZ7fYaSkns8EGnb3sPIfZPU66jiNXLl9BpQtBqIXOTNgAdhqycO9fbtuj4cbSyJZ8w\nHDjxuJjv0++xZgDteegss9mGSVN0BBkBWiGqVWStyorvMZdJvHwtpgimtM5Ftzb7EHQ6nH37He5c\nOL8++XGcWpvjWDdWx10P3qSGZhO++bbtzMokJDGm3UZ+/pcQm3RGYm4e5wd+cBKvxu5wHURU2bbc\nM4zDUmbpz7w8Wuehkg8io14VjgCNer3+3zcajb/X9/hvA/+gXq//XaAK/Hngt3azkHq9/keB/x34\nMeCrwJ8FfqNerz/baDQeDtjeB/41cBf4AeA2cAFY2c3xS/aPNE147713h2pWJtninCQxt27d2CC0\nDYKQM2fOcfz4KcIwJI5j3nvvClJKgiCiUqlsaE0WwjmQ7JAjJVMPHrB65gy639Ctj6Ljx80ylO/T\nOXp0Y5CSBzfx9DQ3X3qJM6++SrS6Sndqyg4vdF3SKKI1P4+sRDYDovYvWySFYDHwmZIKz9gOHFab\nttyTZTYIyTuXHCBQCnH2jNWcFHN4NgUqWgiySgU/zXB2Kq9obfUqrmvblx3XTgW4eAkqFUyarh8n\niTF37yDu3ul1Bm0gikYW3+5WoyLm5hEvfhgxNz/yc3pMsAx0WAKekpLNjBSkNBqNH6nX658C/ma9\nXv8vgT/TaDS+CvxJ4G8B/yDf9N8A//Uu1/JngV9oNBpfAKjX6z8O/IfAnwD+yoDt/3NgDvhMo9Eo\n3rlu7PLYJR8QBhnDhWHEM888v2G7IijRWuVzfg5+LkpR9hFD1LpCCJTvs3biOAvXruMYs9HnpL/j\nRwgQ4KUZ1aVlsr6gRwiBDgPUqVPQ7owcpAitCbrxUG+VkfbheZiZWUhjm0EJww26lcAYLrz2On4m\nbeZDqS2dTGkQcOPDL3L+rXeIRm2L9Txb7unL8hjXhTdeWxcQZxKyFPWrX4I4Rm/KtIi5+dG7hB53\nW/5JBTylKVzJhBk5v54HJZ+p1+t/AvgX9Xr9y8CfazQa/8leF5FnRT6BLd0UxzP1ev1fA58d8rTv\nA/4d8PP1ev37gQfAPwJ+ptFo7L+woOQDg5Q7X1hG2WbSGGNQYcjy+fNM38t1FfkF3O90OPHON7n/\nXJ20VrNqG8dBhqHNHGBvxu4IA9w+fYroylVCOZr/SxjHXHzrrb2bkRVzgAa0UTta24nN/WXA/Wqv\nktIGKK5rnXWLLMuRhS1aGuIuZmXZbr/LVuaRsiuPkeHbKAwS3ZZZmpK9MLYIoNFo/N16vf5PgP8Z\neKter/9l4G/ssfX4KOACmw0i7gH1Ic+5DPw+4IvAfwA8gxXxusBf2sNaSsZkXE3JOIMJPW//9CpC\nCIIgRCmZa1PW15emCUEQblhfGIb7WwZSClcpO7m477j9TrQyt63XrkvnyJFea68RgqRW495zzzJ3\n5y4GcJKUME3IPB/juSSeh8ms1whRtC9uukPRuZ2+1kigeeIEs/fu4SVJTwRrT8SAVusalv0YXOlv\nzbJQrW7YxICdUwTWHG5T+3a/edyW+0WZaITsyq7t9B8nSt+Vkj0w8rtUvV5/FhsUhMBXG43GT9Xr\n9c8Bfx34k/V6/ScajcZvTHh9vQ+DA3CwQcyPNRoNA7xar9fPYIW3Iwcp1oV0ZwsqNxe2ubsQS/+3\ntQAAIABJREFUuD1KDmLdnhdSqZzadg2OI3BdB89z6HYTrl17l8uXnyEIBntlFOuNopBTp4bve6dj\nJUnMzZvXOXfuQk+j4vsuURSSphmXLz+F523Ug8Rxl+vX3+PChUsbNDSe5+L7g7Uj/Wvu/+o4otfB\n038bRNjpcOb1N3j/pY+S9k9ABoRWzN69x9qpU6ggwM0y5m7don00/9Sau7QKBDN379I8eQJHKyrN\nVdTCEbIwZPX0abS2Ohc83xqw9Q8rFPSCBdPLxax3RQlDbq2v+x4WvfjCceidr+NYjxPjCJTIf5iX\nYOTUNIuXLlJrd/AQVkPi5CUvKfNuHRCuk79Wmzqz8jEAWRTiiuL4+brF+jYiL4EVazNGoCjWvPFn\nbHoPMI59Pd24jfzi38csL2/8ucxsJ8sXfhnh+Zg4xlx7D33vLs6pU3g//qfAsxOrPU8gvK1/G6Ni\nQh+OLuCFfm8/AGbA/ndL/75IOui33sJ54QVEbWrX696PdY7LTus27daWcz0MPK7Xm/1g1O6e/wz4\nJeAK0AH+ar1e//lGo/ETwPfW6/X/CPi5er3+Nra75uqY63gIKGCzevI4W7MrBXeANA9QCt4BTtbr\ndW/UzM6RI7WhF41BzMzsbFZ2GHmU6w5DQRT5zM1VqVarW+5vx7jr3rzvTkcghGZmptJ3rBozMxXe\nfvttjh6d27KGTqfD0tI9Tp5c2HF92605DAVB4PUGGRZzAY0ZbCArg4CVs2e2tB/rPMCYebi44XnG\ncXpBRtBuc+qtt1k9foyppSU2t1t7SYLXauNoSYAGmU+uPn4U/fABEvBcF+HlvitehZsfeZFT164T\n5ULXSppw+Z13MGmCiCKE4+Dk2xvPIQx9iAI8zyWKAirGoFVK7DoozLpgNUtsdiFL7CwerWx0kZd5\ngnabCy+/QnThAv7UFDIPKIQjEI7AdV3a1QrXX3yBp5qrVPrKQ9pzkY49F8dzMdpdXxuQeA7Cs+fZ\n/zOnsjH41CpFhx5TgUOrs4aYnUJsLgmdPb2+faeDfHgfb7oKnTVmQwFhlXYloDZbxZ3fmEEo/kbU\n4iLdX/91Kt/3fbgLQ7xJ5mvwp35sy8MqHb7/cenfF0D7G69Re+mFoeseBzN1Fv3jP4ozO2vLQY+A\nYetWaWvouR4GHtfrzSQZNZPyvwD/Q6PR+BmAer3+3cCX6/X6X2o0Gg8ajca/qNfr/yfw57CdOUfH\nWUSj0cjq9forwHcDv5YfQ+T3/+aQp/028MObHqsDd8YpPS0ttUfOpMzMVFhd7aL2sTti0hyGdXe7\nXeI4Y2WlQ5KYLfcHsdt1j3qs7dYwyvpGWXOWpQjh0um0ybIMpTSOY6cySynRWvfKScYYdBiydO4c\nbmFHv6nks3L6FFleolG+T/P0qfVOH60JOh1kGLFy5gzZVK0npsVxcLUhSFOS7/mDdM+ew3MdfM/H\ntNrIn7P/YlIpm9UAUiFIogoa6/rbQxvQYPJ2YiWVDYekJkkyYj9FCoc4Tu18nTjLf3/5LJ4ghKhi\nMzlRBTK1MZOiFI4QhHEMWpNJRSYEGKz3izZIpTB9a5JK9WQsRirQ9jEh833nazMGlLTdP8LZ+DPc\njTONTJxBIllb65AlEioewh2eRTNOhnZclPAQSUqzaccIZN0U2ewggvbAvxGzuEr2/l3SxVWEM55n\ni2l2tux/t/Tva5R1b3juKNkItwKtFBh9dtQk2Ol9ZJKv4SQ5DO/bB8H8CIHhqEFKCLzbd//b2Le/\nnkd3o9FIgb9Ur9f/HrvjZ4HP58FK0YJcBf4+QL1e/wLwfqPR+O/y7f8O8Gfq9frfAP421pr/v8WW\nn0bGznMZ/UKklEbKx++P5lGuWymN1qa3hs33t9OojLvunY5VoLXB9wO0Nlv2P+w546xBSo0QHs8+\n+wLtdptG4y2CIMDzPOI4Jo5jHMfJPVmsSVuaJgTblHy061JkSDY70w4Ms42hsrJCa2EBLUBpxXsP\n7+NgCMOQ5557EU/aC79QEpNm62a7rpsHDXqjpkKr9QVZVS4mr7FoDUYZfKUwyqCN3XevYCuEDUYc\nBxw7rXnx3Blmv30VT279XGHSDLwkX4te91kp9lcEJsamYTPfxye30jf5MMZ8G63p6/gyW37GpvcA\nu25jHf2NAW0Q+Tam0NH0b9/pQJJi2h2QGdk965qgW22ylTWc+Y2f24q/ESNN/jdoEGP+rRnjYGbn\nkcYZ+7lb9tW3DmDomgb9T5jVNuorX8E9dxERjp95PAiG/S/v5fU/CB7X680kGTVI+TngF+v1+r8P\ndIH/GPg/Go3G+5s3bDQat3azkEaj8av1ev0oNmtzAngN+IONRuNBvslZQPZt/369Xv8DwF/DGr/d\nyr8f1K5c8ggJgpDLl58ZqufYyUdlHEYV8YZhxOXLz+7pWKNgpzIrXNfttTp7nswDEzZpVESv5KN8\nv8+mf93kTQgHjEYYg5emvfZgv9Nh9tZtHl68QFqtYhwHoTXVlWafsEvY34HrkSQJSim8KELMzmKU\nIne6s0tx3fVJx5sDCG9wpw5AaAyXOslIr43yPRZPn6Z27RpeN+84yrMpGAMry9Z6PwzhyLx1j03i\nDXOACtIg4MaFc5x/51vsp4esSRLM11/eOgepsOVfXe3Z8huA69cwnQ7iJ396YCuzWVnBfONNzPf8\nQcSxY2OtZaKi2/4uo8e1jXo3zM3hfN/3o799BadaLbuPDiGj+qT8xXq9/hXge7DZk78AfGnSi2k0\nGoXN/qCf/b4Bj30F+F2TXkfJZHEcZ5cTjMdnkDGclJLr169y8eJTB7aOQRRtzFLKPPhYn8Bc3Fdh\nyNLFi0AuF1UKL47JogjcdWdVI2xAY/qErtpzyaIK1z/1HQCEQ23oDUpJ4jjGrdUI//iPQLdFJlx0\nkL8+rRYYCXMDZsoUnToTQDsOy+fOcezGDbwk7zwqsjhz81CtEEjJhbffwTdAGO1Px8+obG5jLlDK\n3s8kGG1t+XMHXfPgPiYfeGg8gXYXsE2I9nkm7j7ywKA/4DEPHuyw9XAet3Zj4fsQRuhXvw5PPVN2\nHx1CxvFJ+TLw5X1cS0nJPmFLKbuZpDwJXNclDMM8eyHJshQbKGiMkX26lK3P9Tsdph4uWv2J61Lk\nRLIo4s6HnrfBC5BVq9yrP0taG5JuN4bK0hLNlWUyrdBa0Wi8RbVa5YULlwnPnCG7c98KWQFUhvQ9\nbp4/y/n3bxNuDkrCMB8uuDe067J89izzd+/hpYMDH8cYwm631/VjnWv1/vmpjELRxgw243T3nnXN\n1Xkm6Jtv22Cq1Yb2ld7AQy0Eq6eOY37kT0LlA3hBfBzbjXdpQPe4BWSPKwdolFBSMj5aa5IkHslT\nZVIIIQjDcKyur+0opjGr/NNys7lCq7WGUgpjTK/E1W63UEpuCKYEMHfrFq1jVntSdOUbzyPuy3L4\nnQ4n336HaKXJze/4JGmthnGcjaWf1VW6rptrWwyu69jAqVJh5id/An13sadJcBvvwL/5MpnrwosL\nOEFPfgaASVPMq6/s6vUQxuStzJt+UJz35nKPUjZ7kQtoWVnOgwFpBbw7oIUgcxw8pXYYMblLtLYB\niuOsN1WFoQ1kPN8GfjOz1jAujdFLSxB3oVLDrDbh/n37teSRMPbU54LHMSB7DCmDlJIDZyeNSj9J\nknD16pVd61Vc1+PIkaMsLy+N/Jz90Kv4ftBzg4/juE+LYnrdZYOCIhkENE+fwk1ThFLg+cMzQsba\n4hcX+7RW21D6EYAjBI7jYIwV7SqlyLKM2KsST033OgnSWhXtOuC6pJWKHYKX4xrw9pDFCOOYi2+/\nQ7y5pbc4/03lHrLMZm2Es/54uwWuhxhhFlEahtycneJ8c41w2y33iONQTKTG97cMXzSui4mNLe8s\nPsRIg1lahCTBLC1uLLOMMTdo4nzAXHBLHm/KIKXkwDlojcrCwjFW+z6pDhpCeFhRYUjr2DHOv/J1\nbnzi4yRDUtLJ9BTvv/RRVOAPnZKc1mp2fk0fWmuuXHmHq1cFaSp7nW7O3bt4a2u05+f5dmD9T5SA\nruczlyTUH8Z23k5uLT8xhECGIc0Tx5mtVPCGBLJBN+bC62/gnziOLuYAKGUzGo+yDDQEk6aYd97C\ntFqkKoNf/BwmCDGLD6HbRf/aP8f89vps1v65QbsdXrhbJu2CW5ZFtlK+JqNTBiklj5xxbfX3yqAh\nhAeJENaQzJZ21n1Ihq1HBgGLFy8gg2BDx08/jtZM37+PIyW1xSVuf+TDZH1GdGmtxs3PfJqpqY0+\nFsZokiRlerpKEKwLc52owtRKk3hmhiBJQAi0lEjXIRMC1WnjZyloCa4HYWgnDG9am+l0rGZjDKTv\ns3j+PLXlpn2D0rpnUV+Ue5xOh7DTwWhlMyzVChw7CsvLdts0XReyHrDL6UD6BLfCFTAzgwkr1qul\nUoHZeZjNy3eb5wYd9uGFO3UGfVDLInsZpvhBfU32gTJIKXnkDOrI+SBTrVaZn1/g3r3baK17c4O0\n1hsCkJ5EIwxZPncOP44xSlnL9k0ULclemuJqjTPmBc33fRxnPWByq1Wco8cQU1N4z72Ac+QIemkJ\neeWbOBcu4X339+L841/BNFfsDlwXOu3cLr4Jc7N2onBuysaAjIgwBj+OrVnbdjiO1XgU5Z6ZWVhb\ny+cFDHlucwU6bVsKCoNttSsayByBrw37Gs4UE553OF2jDcQxpt0auy35UTCpzqDHjV1rWUrGYlRb\n/I+Ps9NGo/H13S2npGRvjDq88FG2Jft+wNNP13Nn2y7z8zaFf+/eHeK4C4AQTi9rorUi6HQ4/8rX\nufnJTxJPbf3klQUBDy9dZP7m+xvs8neLcV30zIzVfVQqiFoN0e3aYCQIcM6dx/2Jn9riFxLfu8v7\n/+63OPvZ30104iRmcdF6hggH8mF8BWEcc67xLW48dXnnBTnOepAShrYVGXBPnEAKh0DAhfsP8KtV\nCIJ1PUtqMylim7+F1HW4Xo240ImJxjB2HAeTpbC0CEqjhIGvv2IzUGkK3S688xYmyAO5TEKWor/4\nBcRP/NTwfR5wGeiDyCMru+wlC/OEMWom5WWGD/rrp/CNKhVXJY+EQcZwg8tJj7Yt2feD3Q1rG/K4\nDkOWL1wAIOx0R/pn7ccKaPsyOdUKyae/A/POOyidoWWG0VkvaMqyjGh6xpYj+kkT0iiE+fn1LEAU\nQaeTO8aaDUJXkUmCTteKgoeVuzyP5pnTzD5YxCvanvOgQ/g+wnFtm7LBXvg3B2jGYLIM0+3asktW\ntDLLgyuhFBb9rmN1PGFoBy66DlQieyu0RI4LWtos1WbTuH4mWAaaWMDzuIluH1HZpczCjM6oQcrv\n3ddVlJTsI4exnFR4p3Q6HdLU+qYYsx4kGKPzLhx7XwYBSxcvoopP20rhJQkyDHsXBEdKZm7fYWpx\niaUzZ8imRpvqqrXm/v37ZNnG9mdvbY1aq83y8jJSStzVJl6Wkayt8u673+TFF1/auUMrihBz85hm\n0wYpxQVVSvA8wjTl4iuvrHug9KYeryNdl8XjZ6itrK4HKcNPxmYneu3L2mZWFhfhvWuwsmIdc103\nt/yXdt7PmGghyIIAP8tGLxGNExAbMBMyzBuJCQU8kxbdHgQmTdGvv4rz2e98LESsT5rodlTH2d/c\n74WUlDxJ+H7ACy+81PNOieOYN998lSzL0Fr3ylXGGLIsxVSqrDz1FCafYRNsMXkDGYY8ePYZ0nv3\nUNHWEtawrJExBiklQjgbzFzN3BytT34CsKlRRzjWBVcI0jRFKcVOQ23F9LTtUvnGm6gr37KfVn3f\nBg3F1N87d9Y/ebdbe+sWcpyt5R5X5Mdy4P793IjNz8sqGWQpJs0wnQ4mz/KYTmdbs7o0CLhx8Tzn\nr98kSkcYA5BluaCX9XMWebuylHD37noGSBvbpSSE1aUMG9pXMhmyDPP6a/DRjz0eItYnTHRbCmdL\nDjVhOLqnyiBG1aj0c1Atyv3eKUBe/rGZhM0zfYRYv6bBIJM3MJ6Hdj2Of+sKy6fPYFyH441vcb/+\nLFm1uqM5neMIOxsoR2vNoAKTMQalFHFfKcJ13aG/IzE9vV4C8HySWpU7p09yqrlKmKZ26OAuSl9D\nEfnEZT8AIwjShEudBNdxobVm11FkUqTEXP02OAZz/aYdHgiQZpAm6/f3ilLWJVc4NpBy3XV7//4/\nAq3X3XS7XcydOzB/BDodzCZNj1lcnIjrb8ljxoT1LIc9M7OrIKVer/+nwI9jJw9veRdvNBqlGqhk\nIuzVU2WYRmU7g7dH26K8PtOnuPVPGi6W1D+IEOyMHz+OcaUk6HZx8g6farM5dqcP2ACl2+3kgYrF\n78YcWVpmbWGBbHWFRuMt3DwDUkxV3hGZYaQmDSOMXLGZjn6dirHnEnQ6CKNhSDFF+j7N48dZcN2t\nzrWbcIzB0xrjeZi5eQhyo7VUQpogLj8FR48hggqiP5PSbiHCCdu/FdFmf5BSoLXV7hSTp9Uq6ktf\nhFoVVproz/+S7ZjKMXEM9+7i/KE/PNEuoIkLch83ncohZ+J6lkOemRn740seoPwS8A3gKPCrwD/D\nJjLvA391kgssKZk0hcGbe4jeNPszEdY7ReftyQqtTa89uQicikGERRbF73Y58/obYDTNEyeQYbBh\nCKHfbnPud76C12qNuCJ7TJE71DqOg+O5BPkAQCEcgiAgDEPcvqnKQwlDW4bRGrIk9z6JbauwzAWs\nebYh7HS5+OrrhNlwfxXp+yyePYPyxvyc5brrWRbfBy/vXgp8RD4FV9Rq9vtc/2PS1JaC2m0bvBST\noZWCLIUsQwNJEKDtL2+8NRUUzy0CGUfA1DRi4RjiqacRC8esl0pxCwIrrJ1Utqdgwr4shU7lg9aB\nZNpt9Ne+imm3H/VS9oXDcn67yaT8NPAXgb8M/Bjw841G4+v1en0aO4Bw1HfBkpInkkHlJN8PuHz5\naZaXl0iSmEqliud5SClpt9fwPB/HcdBakw7QQBQDB2UQcO/550jzT0TN06d62Ravm3fRjEF/2UlO\nT3Prd30WpRSh4/SVj9anKiMzdBCSyAyRt1MDOFGEeLaed7S44Dtw/iJk79qLcSU3nruv7f0i2/CI\nMUkC712FMMIEvi0DrayAVjbrsbgIrRapENx4rs75198kSuLdByqQV/wEOE6v/bu3FtkXuGmrZzHL\nS1v9SQ7QVv+JbYU+5BmIkRlWPjok57ebIOUZ4LcbjYaq1+sKmAFoNBpr9Xr9Z4C/DvzsBNdYUjJx\nDtrltp9h5aRabZqpqSnSNMFxigzGRo3KMF2JEQIVBLiZZPb2HVpHjwKsf28Mzl4unAPOYXl5Mc/4\nmN5UZSEE6ZnTdO/dxnlwt7d9IByeOX4Cb3nJikjdgFQY7j51iVNvfoNQSlv+MAZwbKZjjIGS0nVp\nzs0ym6Rjv6kFSnOxE+MP8EgRYQiXLkNtys7fyctAzM5AtWoFuWEIzabNzESRPb8JD8M0SYL5+ssb\nW5KTFNot1K9+Cb2pk6vfVn/LvtbWtrQ2m8XFjbqX/u+jCOZnhy/usDvibofrIubmYHX1QA97mHQg\nh70dejfv0E3ozem6BXwI+H/y+y5weM+25APPoOGFRVAQBGFPPHsY25LXMb0Sj3WA3axR2UqYm73d\n+vCLvexJ4UArdqGt8Votzn7lKzz4yEeQgy50xiClwnXdPOFhCIIAz/OobBocKKUiVRL++I/gGfDu\n3kV87bdxnqqTvvka5tp1eOoZRKViJyuHob3lmZTe1ORtgizpeSwuHKF2/+HYb2oOEG5j4iaCAPJS\nEDCaUV6WoQVkjoOv9d6dbPts9fHzM3RccB3EkQVrrV+w2Va/D7O2hvrc37E/7388dwrWn/8l6+dy\n/Rr67h1E3kLu/ak/DfOPcbZgCOLIEdzv/wHUP/3HB3vgQ5KleBzYTZDyMvAR4DeAXwP+Qr1ed4AM\n+PPAVya3vJKS8RgktFVKcuPGVZ555vldTVI+KFzXJQhCQKC1zGUaduiflBLXdYcGKVkQ8OCpy8RT\nU3Ty1l43y3qaFGAs/YZQiqDd3jYwAHqZHmMcPM/D8wb3JCslEVNTiKiCkBKmZxDz88jA52b9Gc4L\nl9CYQjeci0ftscMs4+K737ZloIlOMxwfI6X1YFFyQ7nH6lMyGxjEMSwukk7VuPHcc5x/802iSWUZ\nfG99xEDfhGX65jQZGK5TiWMboIQh9P0vCIAFK741nY519J2eAUfkAU938P428ViWfkph76FmN0HK\n/wZcyL//n/Lv/xo2i/I1rE6lpKRkB5Ik4fbtmz1tiu8H1OsfQinVy0rEcUya3sZxHCqVKlprWq3V\nLcGKDkNWzpzBkdLqIRwH5fsbNCnLp0+PlVVx0pRTr7zCnU99amRjuEEopdY1K0BSidDPPUcaBBgB\nSbVG0ulg4i4uBj/u2lbhKLJlk0Kkims7cyZcShkHkXcIBWHAhbv38KenB5d7FhZgqpYPD5w9fBfA\nqLJtmcHkQmJgPGHuY1j6eRwN6A6EIVqVgy5VjR2kNBqN3wF+J/9+Bfj+er0eAmGj0TjYwl5JyQ7s\n1G487DkHoVcZpE2xdvkuu8kYBJ0OZ954k1sf+TDp1BQG0K6LAbwsY/72bZqXnxp5f8IY/E5nx2zK\ndiilWF5eJE3TXstyIf7ttjvIJIFajWsvfhgqFfzTJ3nmxvt4N2/ApadsCajbBfmG7WYJQ5thMaOv\nSXoeq1HIbJxMZl6H6+J4nrXh9/ydnWSNsRd6Y9Zvh4jNglxrZGfN7QCbfVl8iLpXxSQGKmV54lFy\nUEHCUK3KAZeqxn4XrtfrPwr80zxAAaDRaCTAhPvgSkr2TtFuvLra7D22k8Hbo9SrFHb5tqVXWrfZ\n3DwtSeJ86ODg50rfZ/ncWWSeOdFhyMq5c/aHWYZxBMqstzMfBMZopFQIIXrZIYBKpYJRkrZjXWyD\n6RqyUiOdmUG5Dl7R3us60O3Y0orj9DIrQmmCJEYMmAi9Gel5LFZCamm6P0PFCiv+TeUekhiOHYPm\nKrS76x0/WvcCFS0EWRjiJ8n+TmAewkBBrtb2/huv2YAwS0l/8XM0Z6bIqtOIH/3xA+scKhnAo9az\nbMqw7HfQtJuPij8H/O16vf5l4B8Cv95oNDqTXVZJyf4xyODtsOD7Ac8992LPc2R1dZVOp40xBtf1\nqFar+awfq/PoZ1DJpyCLIm4//yGM62CSGGP0BqO2/UYIsUWzovzIZkcyiev4iEoF/cyz6I98jOtf\n+0pvkrJ+9wrq+jV47kM4CwuYTofw1Ve4+HCJYKrGAU64GUxhxT+03DMDcwtw8/q6iVuuE0qjiBsf\nep7zb79DNLKHzQQZJMgFO1IArOGdADEzg4gC9P37OLdurY80YITOoCx7/HQqo/CEalm2ZFj2OWja\nTZByEvgjwA9hg5RuvV7/9fz732g0GsMdmEpKSvrKSYPf3Dbb5U9Pz9But3EcB9f18jbkwZmQoNPh\n5Ftvc+fFF8j63jCM55Ecmaea+5ForXqGcaOWlvxWi+NvvMHtF16AufHHFGw2e5OViOTMGcKbN1E6\nQ0mJcgRxFJGEQW+SslhctP4qUWQFosbY+49Qm7KZIE258Pbb+Flq11UYxrmuncy82bm2mPqs9fqt\nfxL0QZeE+gW5/fSLc4XBfOubqF/+Bfu7KDbZoTPI+YEffOx0KqPwQdGyHKZ26EHsRpOyDPwi8Iv1\nev0ENlj5o8CvA8v1ev2fNhqN/2KyyywpmSyD2pIPiqKcFG/qmJjEzCDp+zx49hk7HXkTxbBCsCWv\ntbVVtFZUq6O9MQmt8fOOn2GXUGd1lanf+Xe0PvNZ9My64K7fV6X/MRPHCGNIlpfJ0gytFdeXl6HT\nJpMpG/JcSbzu+ppJcDNM6oJUCANBp4vIxp9lI4VgJfCYyyTeLmMDR2vCbszQgK8IQJSyAUm3C0Kg\nXQeJQSexfUzK9SFNh027IiUmSa13zOxc7/EdO4Mm7Yj7QeAwZWEedfloB/b07txoNO41Go2/0Wg0\nfhfwvUAX+NGJrKykZEIMEsIWbcmD3FsfFdvNDFq3yZe5X8qQfXjehrbjfor27DCMCIKA6ekZarWp\nDUMFC1QY0jx/HjOmeFgohbu6usXZ1gZIEmPWXWwdx0FMT9M+dxY5NbXBwVYrjS7m+YSh/eSeptZG\nf23V6j1WVtDtFsQx4doqF9/5JmG3O3guzjZIR7AY+MhR/E92S3ExKoYL5l4w2fQMzdOnyaZn1r1h\nXNcOIjyshFFvfADbtLUbbYNQs7xkS0CPopy1A2ZpCfUr/wizNLqwfhJ8oEYFFBqVubmdt90Fe2pf\nqNfrZ7GZlB8CPgYsAZ+bwLpKSibG4TZu255CSNtqtVBKkWUZ1oZ+sJ4kyE3dbnzi4ySbxI1FYAD0\nfE1s2WdAUBRFrJy/wPT9+xM5DxukJL119D9ujOm1JxtjaCUJgZLIvOMkDQNuftd3cfbT30l04iRm\ncRH5838Tcfc2/gsvkrleT5Nqul14+xtW8JlmILONU4YPkCBNuXD1PfwkWS91FKLZJLEZkyzN5xml\n9jGl7OPaWLGzlI/YGWY4o4pu1Ze+CHfvYDodxE/+9OES3T6GLdOHjUKjYtpt9GuvTrxstJvunmPA\nDwI/DHwWaAP/Evgfgf+r1KSUlIzGoAyPlJLr169y8eJTPe+UF154iXa7zc2b7zE3d4R2u4XWimRA\nGl0GAYsXLyCD0TUj/doUkY8U1lojw4CHTz9NFgQYY9BA5vtDSz3bY7uKXNch7HQ48eab3Pvwhzf4\nr5i88wjXerwosf54Gvg9jQpRhDh2HO7egTQBR2OyFFaaNuMi7XRjdH7hmZqauH5Feh7NhSPMrjTx\nhih3HWMI08wGJa67cfpxpWK/RpX/n703DXIkTe/7fm/eAOrsc3p6Znq6p3swMztLcg+JXK2DEg+L\nsmnSYVImKYdsBRUyg6RCVlBBywp+MENSWA5TR0iUghIlMSTSNGWTskiTokJaUxdlilwVcqToAAAg\nAElEQVQul7vcnQs7M33OUT3ddeNIZOb7vv7wZgKJqwpAASh0T/4iEFWFykS+SFQhHzzP//k/xjk2\nKJn7siBFKnBdxKQDFBfJmKJbVlbB/gB9sD/UBfe00a0W8v/5Rezv+KOPR2ZjRkysVZlT2Wia/4D3\ngAT4F5gMyj+v1Wrh0bsUFDw6HNeiPCuGZ3g0UTTonRIEEsdxKZVK2LbJgAwjm44MpvTihiFxEKBH\n1L6VUjSbdeI4Qoju0ECtFZFts3P5smlESWK0ZbF36Qli28aZUi8hhMDSGq/RxNJ6YBaREIKkskrj\nKRfWhs+LEaur2H/8T8Av/QKr/833UPfKxPcfon71lxF/4D9B/bNfSMspRtdj+R5eFEOzZbQslm0E\nocn0fUGJbRsb/nrjROloJQTKslDzLDXNm+NEt6USeoQT8VKglCkjPirZlEXpWZZEqzLN/9efAn6x\nMG4reFxZxhZlIQS+7+O6PuvrG4Rhi3b7ASDS6ciDb7BHlX4yLMuiXF4hDBtYlt0JGoz+RRndSHqf\n2wrZeH+L5oWLnRbaWZAFZFnpx2R1TLAWhi3aucnKTho8ipUVdLmCff4cwltBJNrM13niEuKJS0aw\nmeqNvGadK7dupe2wkfl0n52vIDDdN/NmhHA2QROWSyToXuGs0hCz1OWeocik6wcTJ2ZKc6tl2rLb\n7W5rMix0UvPjxGl3FT0KjrM/PY+FFBQsCs/zeeaZa7z77t3TXsrY+H7AtWvPE4attBU5Hb4nRscL\n+dKPkBKv3UaUKgNZFTNt2UoDkm7mqH/ysgW4cczoBujJMVqVOA1UdNqVq9BacefOLe7ffx8pE+rn\nztDceofywa7xkYkj3in5VNpt8LolI7Gygv19P9Cjk9Db271ZlrX1ruW74xir/XkzotzjCEHQauEI\n8eiVe/qRCbz3fjdDpbKg7BUI23Cw39O+fNSk5oIlZlSGZYSN/kkZ6z+gWq3+OPDXarXa3fT7o9C1\nWu3PnnxpBQXzwXS5+AOlhkUxSTnpJG3J+dKPf3jI01/4Ijt/6BuI1wfLKMM0Kf1Tl2PPaFQSz8Oa\nQXus02hy/pVXeOeFF4hXKmhtwh+TGQLf9/F9nySxse0WluWkTrzS6FQsa2gnlFhdHdQ9lMsmRR4E\nILrZG+IYrSTasdHNJjoTJI85UC8jcV32Lz3B+oNtnGSELC+LKHPBigVYSps2y/70vdYmC5G1XScJ\nxLm/lzhZrhKFUiZAyZyBs3NZKhnNTdQ2JbxS6chJzY8Kj+QwxWHMqHw00kb/hIwbpn8b8FPAXeDb\nOfqDlAaKIKWgYASjyknD5gyNakvOuntmYaehtUpdbEWPJkVKY/jWieVsi/bly2itsJN4aIClgoDW\nSy+hguMDKqG7vivQ7frJsjd5h1rLsnAce8AQbiJ8H7GxOcS7Q+O1GtDncyI2NgdN2EaQuC7bTz5J\nZW8fZ7L4JrcMnesCSsdB33ob+cEWMeAeHJip09nFRCqQyfKVhLI2a1K/F9c1V4XcxOYjJzXPEX14\nOJBlo9Uyw7fzpSg4vhz1mHQGnXb56DjGClJqtdrV3PfPzm01BQULwvN8rl27gTtM8HdKDJsz1E/W\nktxoHKb3aPQYw/YSz2Pn6lXkkIuuEBae5/VoUnQcIw4O0eVyjxdGNkfIcdyhmShdKhG+9JFj15Nh\nRRGXv/AF3vnkJ4grK53sjdaaJElIkpgkSUy3UZKglDTtykmMznxFgHYcca/s83QcMSo8GlYKAqhs\nb3PtV38Z6zu+B5GzeycIutuG6YUsM5KLZdpiG5suFqW7DrIT4IZt1h88wA3b3QxLp9zjwNXniM+f\n404p4JlWk0Cpbkt1lEAcPVoloVNEHx4i//7fNUFqdl8SwwcPYH+X5GAfkQuu51mOemyyMCzh7J5q\ntXqjVqu9OfOVFBQskMzY7FEjm+3z3nvvsLu7gxBGS5Ic06kifZ/da9dYGZHh6Nek2M19nvjsZ3nv\na792oDyU16mcFKE1XrOFlSsvJUnScai1bbsTGEVRhNaKWu1VQBNeOI9cWQHNkeWfnuMNKwWBKQed\nPWtanHNo6M2+hGHqaZI6xLZa3XZnpc0ttexPbJv9c2us378/8o3W0honSbrls3xJyLIQpZLJPjj2\ngPjIDCf08JrNnvKbmWI8ufPuY08Yovd20ZYAOw30XA8uWNBogOOisw8t7RC99T7W9sP5aGYekywM\nsJSze2rVavXzwM8B/1etVntvxmsqKPhQoJSi3Q57tCnjeqesr28SBCUcx8WyLOr1Q6RMsNILdb6d\n2GRbJq8JScvCbjaJK12xbTfTodKRM0bLMsnjZwGTGurloslKLpZldwTCxnhOI2WC53kkiURKSZIk\n2Lbb9RqxZtuWKVZXe7Ivensb+VM/iSiV8ITGeull4677xquwugKXLpnsim2b6cvnz1HZ3j6Zayak\nbbL7JlBKz0nk+9x94QWeuXvbZFgyohiithk5cNLjPmboOIY7d4zINyMzoHuz1vXTiU2WSv3szyD+\n7J/7cIp7l8S6f5r/nf8SM6vnLwJ/tVqt/gdMwPJP07k+BQUFYxBFEe+//06PNmVc7xToOshaVpbZ\nyG69XT+ZIHUSEs/jfrWKv7eHWl1F+l76WEavEsfm+EolmCBl/KnK0vfZe+4a3sFwFwOv0eDSq69y\n+HWf6rPaVh2n3H7E5gbWyx9FbM7emnsg+xIE+I7Ls3duIV5MS1u20x0sOI/p0pYF6+vmk3dW7rHM\n0EVx7TlErmypm01o1HtKF3l0FEGz2d22X5CbZ9nEuSdFShOQBP5wA7oMywaVoPf3Hmlx70lYFq3K\nNC3IvwL8SrVaDTAi2u8Bfhz4O9Vq9TPAz9VqtX8y22UWFCyOZdSrjMIEBuYCY1n5zEn+M/TkWRRd\nKiFXVll/+23Cy5eJUwFrVnpxXRchLFzXAQRKyZkZ3wml8BrNnkGGmStupk3JdCqtVgvbhjAMSZKY\nMAyxbbvntWtLyTtnz/CUlCP1KhPTDiGKzUUezIW+o1FJS2+W1fVjGYEXhlx59TVjnX8cVtq+nD23\ntItGlEqI/tLliEGLOgzh1k3wA7TnmrXu7Zly0rBPzDlx7mOVlhllQJehBUTLqfU5dT3LgjMsU78K\nqcvszwM/X61WV4E/Cvxl4D8HiiCl4JFlGfUqUvaWfGzbwrLstAtH9QhOMzFtPmgwOpLJjql8j/rT\nT6P72rXNY1n0z+BJhrTeZsHENOWmDOvggM3f/izvfeQjROUyDx8+SIOlmNdeew2wiOOYev2QZrNB\nuVzhhRde7gYqG+vEH/0obAx3sJ2IIDAala33TaBymGaD2u2uTiXTgwiMRsX3Rw7iU45DfXOT9YcP\nsUa1Ls8QEQRw9RpUVhDlcifrogKfuFzGjePe9vK8OFdO79D7ODC0M6jZHOwKgvka1Z2ynmVUhkU3\nm+jP/fbpz+7pp1qtfhKTTflu4EmgdtLHLCgoMGRtyQ8e3O8p+RhdygZumvr/4IP7JEncCRZc1+0J\nUvo9T8ZB+j571651W4OlxGk2UZ6HdjRJEiOlKTEppdjf3xvIpmSeMFoPBirS99m7coWVO0eb6gmZ\n4NTrWMrY6Gc6FcsSlEql1P/MGvBSmcdcwUyjYr37LupXfxnrW7/d3P8P/i6e0j2lF+HYcGYDEVTg\n/feH9osnjsP2k5eo7O2d/M143OfgeUYonF5ItBBG33LtKs/cuk3Qn9XROvWQSeZTynoEGNkZtLeP\n+ul/iOiz/f9QGtW1Wkszu4dqtfoSZsDgdwPXMf4pPwf8k1qt9sWZra6g4DEkKyf1e34MM3nL2pJ3\ndh4OPI7ZZpb+r0fjNho8+dnPcveTn0QHJVzXw3GMH4aUCevrGzgIrGYTlXakJElCu91GqYQ47s0U\nSN/n4JlnKL/77ljHNzobkYqDR10sTTkqzH3ijUeUPjpMmL4Wq6tw9mynI4ggINjY5Nkv/x5cebYT\niOhYw6GNrh9As2FeJg3Y1kzHCpwEnSSwt2uEpM0mbG+jwpDY93HbbaxEQpKgvlIjUQrqh8vny7II\n0s4gfN8ItEmrX2fPD9l20Khu0iwMmzPI+o3JqZePjmGaFuQvAR8BHgK/AHxvrVb7jVkvrKDgcSUr\nJ4V9rqaTzAzK/FJM1iDpZCqUkh0jtmHHFWKyTpw8WVeO9DwsugGDEc4aQat/WGft3/xrDr7pm5Gb\nm0DXpK23JGWIPY+Hz13rTFoeB62NFkUpydbWVsdKv79NOcu49GtU+okqZd79/Z/kcqXMeNZtvWQD\nD9U/+wWsb/32jteKs7WF+Nxv4HzLt2G9ew/1e1+EwMcql1CpmDlxHJorKyRHeJ14SvPswSFOuw3+\nbHVSwnHQG5uwtgrlMpw9SwTcvfqsyaocNiBqYz1fxZEJyYOHxqV3mAtuHJtMS/a3J9Xjl3kJSseW\nMvqN6qbJwjg/+Kdhc0FD/U5aPuoE+fMZxjpNJuXzwA8D/7pWqz1Gsu+CgkeHzC8lyxpkF+X9/T3q\n9QOCoITX1+Kb+ZucJEjZu3YNKSXjvh1l2aFu8ERPF5C2bVpPPY3IWdUftzqtwT485PKXv0zjU58i\nXllJHWl725QdxyFJJFEUDu0I6j7ecFffI+nLvoiVlQGvFSuO8Gwb6+wZRP2wmz1RXdM3adu0VlaQ\ntm0u6nrwDFiAL0+m6znuueA45msWzGXfu1HXKbbdMhmhW2+j778/KLrNOmcyW3ylQaeBipjPBeyR\nYKoszLS2xYsn06joBw/m8vgTBSlpR89ZICwClIKC2ZNdMD3P7/FO6bfLz8/0CYKgk1lZW1unXj/E\nssTMum0mod8W37IsXNdDyhilNLZtY2uwwxAZBCjb6rHe11qPVUoQSuE1m7QFSMvOXcC7bcqZpf48\nfM3Gac/0XY+rzTa266E833zSVNqUWFQ2OyjVeWStvjrt1rK67eSj8NoRV958C+9rPj6bJ3UMwnFg\nZRWuPoc4c6YjusX3TFt0HJuTbWdBS5pVsaxFVSSXmymyMAWM/YEI6HT0/EHgdN1dCgoeAzJtiud1\niwxSJty9e5Mo6r5RZboUO6eZGPbp3xicJYBGKd3Tttt/mxeZLb4udctV+WnKQgi8ZpNnfvO38JrN\ngd9BNr352RFmb8NxDg+5+Ou/jlOvD1jqZ6ZvYRgShq2e27F6lRG02yE3b36Fdjs8fmMwF6e1dTh3\nFvvSJcQTF+HiRdNxZAnz9dw580m7UjZD+I7RrVha47fbk72Jn5Ss5blSMdmVcbQ1cWxuj5PfyoLQ\nh4foBw96bzk9y8DvDg+Pf9Bxj72zg/w/fw69s3P8xnNkmnLPZ4A/DPzbGa+loOBDxaxanW3bxnFs\ndnd3sCyRajQSkkQgpcS2bfpt7G3bWfgU6EyPooDYdVG5+8zvzXYmSLnCehCM/QYllMKt1yFJaLc1\nDx8+wLJEp/yTJAlf+cprA9kl3/d59tnnpnouE5WIfN8IIsGIVBMTKCYIYtcjQZiMitbdLEtWhllS\nMtGtcl3iUgm31cLqL/coBZk4dBmHIS4x6uCA+O/9BLIvSFhYV9GSWPdP8x/wj4C/l3qj/AvgPn3J\nvFqt9rszWFtBQUHKMLv8DNf1eO65Krdvv02lskqjUWdz8yye57O/v2e6bvoudkIc1SEze7JgREpJ\n6Lq8/9KLtF0Xlc7pMdt0tiZvtS99n90RwxEHjgOoXKuyEBq3fsiVV16l8ak/gFxb62ybJDIVHs/g\nPBzTISRWVhDPV7FWV/A312m3YxOTtEOk56GvPYe4chX9hc93Jy9HkWkXXlIy0W20tsrdG9d55s23\nCMJwsNxz9qx5YYphiBOhWy30bq+WBSbrKprLukZ1A83J5G2av5h/nn79wfSWD1CyfsiiHFRQMAPy\nbcmDdvldTDuwS6Wygu8HWNbR/9paK5JkcZ+QsnKObdtYrkcSBDhSYrVatGy7MzPFBCaisw8Ynctu\n5tcyZubCjAuwAYWFaZ92hDXwyVPK2RiojWUh7rqd8ohOhyK6SULQaOAmCRrRbVMWLHRmihdFXLl9\nFzeOiSYJjPKiW8dBOQ5xpYwbJ1hI80RdN40ei3LPVIyhZYHx9Cz9rdAwuh1ab28PF3SNyLDMy0Z/\nmiDlG2a+ioKCgqFM0pYMYNsWtu2gVEIUJUiZEEVt4jgminoFuWB0MVE0nq7ipPRrT7xmkyc/+1lu\nf+xjRGupn4RmrmUoKWUng2T0KgntdtdSP89xrct58kLmTgkv/8nSdREbm7C/h9rdhXZinmw7hI1V\nqB92sg0IzIU/CBZW7rG0xp+BwjjyPO6+9BLPvP4GQbueioJj89ySxIhtU3O4YlLzYhnWCg2jy0c6\nDOH+Fta3/1cD08EXyTSze/79PBZSUPBhx/N8nnnmGu++e7QD61G4rs/ly09z4cIltNbcu3eLp5++\nCtD5PsgNnovjiNdf//KJ1z4O/T4psefx8Nq1dO6NRIt8NmX2SCl5+PCDTvbEiIsld7/0Bfw3Xuft\njzxA58pBvu/32usfwTCNSv8nS/v7fgAnabO+XmZ/v0mSaOzP/Sb2V17H/kPfgHPteeRP/SSsrRtR\nquOA55EI2A181h1nIa60+azKRGhlAo84NuMBWq1eTUqSoN+smcxKMal58QxphYYjykdqx2RdTrnb\nqCgQFhQsCUZI60+VSWi32+zubvPkk09z48aLAIRhC8dxO0FJ9v2wjIzp+OnO91Fq0HgNpg8g8pqU\nTneRbZFcvMDKvXeIyyV0Jxjo1aQMQ3oeu1evIsbQqXTWgELKBCGyydGmthI4Dmd3dthznY7upatX\nmZ29vlhdRTjr2JsVhNdAJAp/bYONhw/xP7nRca8l84xJu2Ji22K7FFABnCgxw+8AkvnM0pk6qyIs\n8NJ25FIJEtmrSYnaiBtVKJWOndQ8N+I4NaA75tw9btOf84xbPsqGZx633Zwda6dxnFUc0/Veq9Wm\nKqZWq9U/jTGKewL4PeDP1Gq1z42x3/dgbPl/qVarfcc0xy4oWFZGeafkhbRaa6Io4t692wTBC2N3\nDWX+KgcHJoAQIjUZkzItjeiBjhjjXDvZc+jRpFjdtwen2WLj/fdpXTiP9PyhmpRhGPfbq2wEAUyo\nezUeMkavorWF7Zg1Obbbk+7OMi5xHA04+Ib3t0i+9HuE5RW4+MTQKcxDS0D92GknjG11hxfu7fY6\nlgoNUcXcp3VH25E4DvtPXWbTdZfn06aVWv5blilzaU1SCthf32D9/n28ctk428LISc3zQoch3L1j\nhkK2W0drfqSCOEI/roFKH7rdNsFbnlbLZL92d3qM2nS93rvdnLuApvnb/nMMBilngP8UM2Dwb06z\nkGq1+t3AXwe+D/ht4IeAf1WtVp+v1WqDg0u6+10B/irw69Mct6Bgmci8U/Ilhsw75caNFztZENd1\nhwhpdTrMb/xsh+t6PP/8C2gtAbvjxRKGIVH0PkFQGugMMqLbyQWn/ZoUAO377D11mSQn1hRK4YYh\nulxBWaJnivKo5yZ9n4MbN4y3yozEsABxHPPmm6/T7kt5W7u7+LdvcfPMGdSDLaRMBqYwj9OmLFbW\noVJBrKx3hhf2CxudrS34j/8Orl5FBCVIAx7p2GyfO8NKvYmdz3wsmVtpYjtsnz9HZXub0+xVEkEA\nz1wxWZKVMkemyKIEWk3EAsXLp4Vut9G/+zsDf3e0I2jUkT//T1ArK937PR+RK4vOm2k0KaOCkB+t\nVqs/gwlYpuGHgJ+s1Wo/A1CtVr8f+FbgTwI/NmyHarVqAT8L/M/A1wOLm8pUUDAHpvVOsW2bUqmM\nyNmPCyE65aOjLpSO46WBiN3JzDhOks7mGXSunaUXXOJ5NJ95BugGIFYSs/LBB7TKZWKtOrOI8q60\n/agg4ODGDWSSGBfUGSGlKfvYtpMOUzTYgc9GGLIX+EjfJ0nsgSnM4yAcC19phGPOsVhdHWgfFVEb\n4fuIs+fMEMDU6E/HGvZt9MFBtwSU7bOx2fVlKeiS67A6Fq3Rk+pyHkWSxAQotg1uLiSwbBAaSuVu\nKbYdwoMPADrdQD3dQUEw88nPs84S/izwv2OChrGpVqsu8Angr2T31Wo1Xa1Wfw341BG7/ijwQa1W\n+0fVavXrp1hvQcEjwbCSTx7XdSmXe+vMvh9w7drzAAPDDIdhBhWaACBJ/Usy59o8s3SsNVkV0ReA\nCLRt43s+IgjQcYw4OESVSqh0SOIkKM+j+eKLKD/oXOAnxXHsjs0+gG27AyUiMz/IHjtAAQjOXeDq\nxlnscxeO3tC2sb/zu3A2u58B8wMMnSee6Hvg2V8sRtER2kYRS9+vIyUc7EPYBNsmcV32z51j/eFD\nnHxAIlMR8N07Rtz7YQj4XKc7uwmM4eD+PrzxWrfLLE6gHaIbDZK0G0iHIdy5jdp6H+uJS7Mzk0uZ\ndZDyPBNa7aecw3ir3O+7/z5QHbZDtVr9NPC9wFdPcbyCgkcKKeVAyWf4dgl37tzk2WefGzsj4zg2\npVKJ/f1D4rirw1BKpfb8eqhjrZqR74UpAZnvtU5FsU8/zarv4wB2o8Hl3/1d3v/Yx4hWVnrKP+Mg\ng4DWM8+aHw73T7xeKSVaxiglSWSMTGL07i7eW2+hr15FlsudduYkiYnjaORr1o4j7pV9no4jjnu1\nRKXS0woqorZpbT6zOXmLaNgylizNJsQJieezv7bG+t4eTt4/ZwxxbkdoO68BiLPEts14gkoJXJfE\n99m++iwV2zZTpjOixAxTfObKhyNAGYZSRvxs2xCkAnXLBgHi2atGHA3gNk0JUmvUFz6PtbV1ukFK\ntVr9c0Pu9oAXgf8aI2CdFZk5XP8aVjAZm/++VqvtDuw1ASadffwnM9u2er4+KhTrXhzzWHO5XOLq\n1ee4devtVHhq4TiDj2/bVicrEccRliV6tnNdm1IpwHXtgf1tO+DjH/84u7uHSGn+3fb3d6nXD7Ft\nm7Nnzw/oUpSSPHz4oBO8ZFqT/v+lbgDS/TqKbuBhvkZRmySxsNDsXrpEbNsoJYmiNkrJThkre97m\nePmbyH3tXWfP79K1WZZAW93tLEtg2yLtBDJfpZRsbz/A2t3BazTY3n5IHEfY+/usv/cu+xvrtOM2\nX/nKa4CmXj9EKclXfdXHcF1v4G/Ecm0zxXnI69J9fTLRce9rOur+o9ArZfSZM8bJNIrQYYiKIxLp\ns71SofLgAW5/Z0+phHA9kDGkmliRnisTzqTTtRF4YZsrr76GG3d1QVkAKkg9+7LzLASOIzqlrnmQ\nP9/aEUghUI6Z8Cw8D+H5YDsIz0f0XGkEOnKwfA/HMU9AxjGELcRx14uwBXHceW7aESghwBLH7pud\nlyxbKtLr07HHzO076pyOWkf/69i5P/vWNeeHdBuUxF4pQ5q51ZZA+Z5pbY4iHCGxZviaTpNJ+WtD\n7msD7wB/C/jLUzzmQ0AC/UrACwxmVwCeA64Av1KtVrNTaQFUq9UIqNZqtVvjHPjMmcpE6eO1teMN\ntZaRYt2LY9ZrLpVstrbuAbCxUaacdUfk8H1BELjEsSn9DG5X4Yknzh55nIsXu783naROqmtxcPtE\nhnHcDQbAXASCwB3YzjikW2htkSRi4EOBsbDPggKTjc/+H8tlI9rVlkD4Ho7rIByHcrlEo2FKTkL0\nama0tnqCOVOZ0gSB21lndst+522sor7mq/HWV9Gd7QAka2slPM/pPDdTEVA46WN4roPwXFzPZb3R\noOU6KNdldbWMdXiIvnsHy3VYWfF7Xo/sb8T3L1NpfpzNZy8PfV0B3MMyK7bF+nqZlc1uSc85KOE4\nNmtrJVY3j28pBWCzgvoLP4xumfKffPCQw7/9t9HlCpYlCD7xMdwgYNd12YxjXK0RrovwfZKwgWUJ\nPN/FKXkoGdF2LIRjIxwbrWwSNHa7bQSnaTDi2LYJ+BwL33ex0n2V77C+XsYed+0nYG2thGyV2fNs\nYtvCStcsbdNZdXB2k2B7Bzct1Wllo2yB69qsr5fRrZDtu7cRQXDsqAIdReh2yJpn4WxWkFGZfd/B\nCsxzP4rsvKyumuyN69pj7Zffd9Q5HbWO/texc79jk1iY1y+9X8WgtcSVMZY0waxSMYmSWCoh0Ypy\n1MKL6ohSCWsGAttphLMzD3trtVpcrVY/D3wT8MsAafDxTcCPD9nldeCjfff9L8AK8D8A98Y99s5O\nY+xMytpaiYOD1mxmfSyIYt2LY15rbrVahKFJu+/tNWm3B9PqcRxTqWywtfUO29u7PPHELhsb46Xf\nh6272YwAQZJIDg8bOI7TKf94np/a9cdIqbAsC9u2iSI50IWYbSOl6mhc8slRYw8PoHPVApPZML8T\nKD+g/syVNHgx2wkpcVotxOoqUncrDdlxpFQIoVBKIqXqnD/z/IR53PR3LeGQ3Eiryul2xqE34eCg\nRRQlQIyU3eejNej0cbQWSKlRWiOlOXa7nWC32tAKaTVabG1tEwRNbFuwublKGJpj7+3t8d57W5w9\ne2nk66VDyVMHDaJQsrvb6NzfPGiRJJKDgxZJ7v4xXnHwTLeG9prElkscJyjXIWrHxJbDe36AF7UI\npIIwxmq0cFotlNJmm1aEDmNkYkoCwpLoRKZDBbVpm06/T6Q0gx4TRbsdg232pZ2wv99EeJOsfTLy\nf9vJfpMokiipkOmaY1uRIHiwvs7a9q4pbwAkEi01Opbs7xu/EPXMs7CyYoz2jkA3m1CvcxApxG4D\nvd8kaicQxgj7aNVOdl4OD0NWVwPiWKLH2C+/76hzOmod/a9j5/5EgoJESkQizUDJd9+DdpvWb/4W\nZHPElDLC2w8ewP4+u3//H2CtbSA2N3G//wePLP1sjhGgLk17PfA3gJ9Og5WsBbkM/GOAtHPonVqt\n9iO1Wi0CXsvvXK1W9wBdq9Ven+SgRhg4QX1bKpLk0bho5inWvThmvebswpt/7PxMH+NbYnPu3EXC\nMOTg4BZJIideQ37dluVy8eKTtNvt1JI/IAzDHgfbWu1VPM90BglhIYQ18L9kTCJTaZgAACAASURB\nVNygG4SM97+WBS/9LrVZAGI1mlz64hepf/0KcmW15/wYI7rusfv3795yk5mHrNtMUNYdY7u8wV3i\neRxcv07ieUgpiVpNoiii2WrSti0ePPgAr37A2sNtds+d47XXXkk9YgTr66tcu1ZFCIckkcRxfOTr\npbWFXt8k0RYit41S4EpppANT/r1px0evb6C2H5pMftiEZgMdR8iDA1SW8xcCrWLwPJTlIJRGd85Z\ndn77bwa3HXHl5i3cdttkr7J9tSZJdM9zmhfmb9sEknT+HnPr1qLXvDD7oswaAbTrGqfW0jFBitLQ\nbneem040st2GegNxzLVGN5vQbnfE6Tq9Ph23X+e4R5xTnT3/vscbfB07P3a+6syfJ0lM+tTzezuB\nyiVotqBeR5dXjRXAzg6i3kSUTpYpGytIqVar54Ana7Xal/ru/ypMJ8+LwBbwN2u12q9Ms5Barfbz\n6XH+Eqbs80XgW2q1WuYi8xQwOwOEgoJHhGF2+cNm+riuy+bmWe7du33iY5rOoBvcuvVWj0tt3sHW\neKpkA/OGB2amS+hkFyETIKRpeJ1qVXyP918yzroqtV+34pjEttF6MmHtNGQtz+YHkykQCKycaZ1j\n2aweHnJgWZ1gTilJq2UyIK7roPf30Q8+QO/vw8bm0GONGtzmux5Xm23sMecLDX3s1JvFuX3bdAr9\nvk+b+/u6hhxHsBI1if7W30bLBN1odES3WLYRMMSJyZ6k2arMdM7SGr/9iAhr54AOQ7h1E/wA7R1j\nX5wbF8D60cHQqWFZppW732fGScCyEKWSCeZmZKc/biblf8W0CH88uyM1UfsPmGzH7wEvA79YrVa/\nsVarTWWsVqvVfgL4iRG/+8Zj9v3eaY5ZULDsjGOXn2VWThoQjEvmVGs8QbqfHfIlIcuyOm3NluUg\nxHSeE0Z3YneEsp7nm+zF2bOsra6iNdj7B5z/nc+z9fGPs29P3qY8E3Ii3WwKsxACYVk4joPjuEgp\ngFxNzKRBpjOfyQ8wPMmyV1cRZzY7nULAQNeQcCwcW2Kdv4Dc2TEXoDA0rrFamQGJjtN1Hc0CEscx\nF7VHpGQ7CYmAPddhI05wjoi/RBDA1WtQGbNUdBrjApaYcYOUTwM/1XffD2E0IP9ZrVb7TLVaLQH/\nL/A/Ubi/FhQslCyzcubMuc59Y9myT4nrerzwwsuDdvG5klBWIqrVXgU0H3ww/bTlfIfOMJ8Y6Xkc\nXr3acZxVyuhRlNKQJNj7+8gx5pXMEyll6tQrCUOj/2k82KIVxzQebFG6dKmz7TgTmEdlWOaFtbZm\nNAZ1o9HQ29vIn/pJYj9gv3nIenkV57VXTJdH9ik7s8df0iDFiyKeuvcu7z956fiN+0iEYNtzWUkk\nzjFZIuF5UC6PNTNn0eMCpkb2BddJDEoZUbbWZqBhNlzyBL494wYpl4FX+u77NuCLtVrtMwC1Wq1V\nrVb/DsaivqCgYIYMs8sfhuPYlMsVbNsey5b9KPKOtcNwXW+os3j/IMNsLbPClH/MCLFWq9X50N56\n8lIanKhO+7LWGhG2WP3sb3P4Dd8wszX0I32P3WvXOgMKB34vJXt7D0mSGNBE0atYloV65w5W1Oa9\nd+6wlRPwTzKBeRYIIfCUOtadWKyu9moMgoDEttg+d45KGJmMQl6SIpW5zWkY4kmxtMaLY8SYWqlZ\nMW4WRkfR+IP+mk1jQLcIpIStB72va2aA99orZthkHJmp3ulMqmlN3sYNUnqUUNVq9SJwlcE5Pe9g\njNkKCgpmyLh2+bbtUqmsDLQCT0PesfakZMMKM7FqRiZc1HqoJdJQsnKKEFAqlXoe0whQEzzPx3Fs\nk0mRkvYLL5zIcfY4pO+zd+2a+WFI6cYIfpPO2j3Pw7ZtpOPixDGe42LPcQLzcfhBiWt+BSsoEbbG\nuyhmFx+2H4IloNkgUQn75XXWmy2c/vMQBF3n0iWi45i7QAv8cbIwuhWib90Ezz9eywI9epa5FztV\nGnha6YBMAKFI/ykhmxO6tm6meu/tmvLgHIOUGvDNwGfSn/8LzDI+07fdJeABBQUFS8U8Sz9HkWlX\nMufazC22a8LWbUGehMyMzbZtlMrN/bEGH0f6PoeXnwaMZiY7btatQ5JgN5qmHDTDi6j0ffavXzcl\nKOh5zhlWq4VIEqxWfmyBCWjiOD7SXXiW5EtH4r1WJ6ty5D59olv7+ZdIfun/ZntjjRXbw/P6skqO\nYwx4loyOY+6SIUoB4uo1dLlyrJYFTknPkpXzABONaFPq04CSiHLZ/I+dQEQ77n/kjwM/U61WNzFd\nPD8AvAX8Wt923wJ8eerVFBQUTIVSZjKxZVmcO3cB23Z6BK0nLf3A8eWfYWTalZ2dbQ4O9nEcF8uy\naLfDTrDUbDY6OpM4rcdPu0wTAPWWe5RS7O/vARBFUeoga3W2FYcHrP37X+fgm74ZuTm8w2YaOkMP\nZYJSknY77AQqUn6AEILS3i7B3j51x6X1wZbZT5luprfeeoOXX/4alFILDTAn6RrqEd2ub5rWVHrb\nvjvEMWTZiiWb1LysCM9DjKtlgWP1LDqKzJDK/H3NphFvx31aryReio6ssYKUWq32f1Sr1cvAnwE2\ngc8DP1ir1TrvgtVq9QJGp/Kj81hoQUHBaKIoYmfnIRcvXuLcuQudzppZMm35x3U9fD/Idb30Wujn\nRbEjJmGMjXksq6fcI2XC+voGYIIg41didYIBghKtl15CTfAJVEiJ02giy+WjnP47ZH5M2XO1bdP5\n4wiBd3hIdP582tINQmSBVtQRJp80wJyIabuGfM9oDuI2NOtgm0AkVpJ9rVkXAtfqPuajPqnZU5pn\nmyHuBD5bp8nIVugohr09cOze1zyKjcZklmPPp2Ds3GatVvsx4MeO+P0HDNraFxQUzIFhQlqtzSfu\ntbX1E5cJ5lUeMoLXLMPRa7Bm0Cf+8JZvAQaF1lZn9pC5P/87hS6VCF/6yETHcOp1nvjN3+L+pz+N\nXF2ZaG1dTY0Fno9yHPD8dE0AvaUWvbuHeuXL6I1zcKn7us7rNZq2a0hUKtjf+V2I/+/f4vy+T3c8\nVuKtLXY+9xus5+4DFjqpuQeZmAGC+ojocpzBioB/CgHKuKLbfka1QmdlInyv1/uk2TJlmiHddItk\n+VRMBQUFxzKukHZapi0PjSoJ2bYJDLRWqSusIklipJQdd01zXADd0ZzMmm5nUJbdUGlbcC9Jksxs\nynP+2Jl42GhjNNK1sVwX6dqd42Xr6pwXJU15pG89syjhzQTLNuZdlm3KEv0eKyeZ1jxLggCxto5W\nygiolexaugfB4MXY90/sQTOKk2RhJml97mdUK7Qe9c+mdVqmi8zXU8iqFEFKQcFjgOd5rK+f6ZnA\nbNvOUH3KPBlVEnJdj/X1DTNpWMPh4QHlcpl6vW7KHo75BBeGTbLZPULM9hNc1pqclYTyepV+7xWl\nFFLKAR+YDOn7Rm8youV42LGzm5lL1AAEMpFcODxkP5GEDTNvJVvX4eE+cRyPfJMelWFZNNaZTUqf\n+CTWmU3Uw4ento7jEKur2H/8TyAP9mFtHVEuE4ct9rYfsHH2PG5f9tHoN+YzV+i0sjDDiKVkv1Ji\nfXuntyMrSoOTvV2TaZHSZFYECw1WiiCloOAxwLIsHKfrjeJ5Pq7rcv68qcAuKkgZhW3blEol2u02\nShmr/MxwTcokLX+YAEYIOm6ts8S0/vqdkk9er+L0dfUkSdLRrwyj3xZfSInbbJKUSgxLAWVW/dlz\nMrOOBAQBrtYQBJ1AKRP0ZoHSyDfpERmWRZMPTJddDitWVkzWRJjzHAthPF4Qg1mJU/6fWRTSc9l+\n7jkqtoOTD8qbLZNl2tg0s3niGMK0S2eBJaDTLTYVFBTMFCkld+/eTFt+T0aSJNy5c5N2e3qn2Iys\ny+fll7+GavVlLlx4gueeq7K5eRbX9djcPMu5cxcIghLlcoVyuTIXa/u8XiULVjLL+t6bk9OIjPH8\nGk2e+q3fwm0c/8k706V0boiB+8ZS486Qdjvk5s2vnPi1FraD75cQ9pJ+/s28Xdpt2N+Deh0lJbuN\nOvHutrkvu7XbSynuzUpF3iwzMcIyLeKu17057tCAO3Fdtjc3SWzbZFfytzlkWJb0L6mgoGCW5Es/\n46OJotlpHjKHWiEElcoKQVBKJyiLNFBwsCzR6f5ZFpSSHd2K0ar0CluVUiS+x8Pr14k9r3O+hJS4\n9TrKH93KK32/x6m2d0qzNkFDO0QpRbsdInKtu1lL80ye484urc//Dqq0Cpcmt4jPCJ54guvftTir\n/knJvF0ITTDmbG2hfuvfs4vg/Nd9fa+wFzriXh2ePFCfFQsrFanUQbav3JM4Dtvrq1SUwmm1ulkV\npc0cJ6VM0DMjiiCloOAxQmvduZDmyZd+TpusPBDmLrhJ0hWNCqGB7vo7pmungJSSw8PDXNuy6vFa\nAVPKiWybncuX0wUbd10Rx5S2toiPmAsjfZ+9566lj6OJ4zgt9Zjn/PbbXyFoNPC3trj59ldQOzmv\nzJ0dVLNBnEScWJGSKx2dlvHfohCrqx3nUxG1wXaNBuq0hb3LhmUZ8718uacVgmu60fBcE5Dkg5Qs\no6Jld9jkCSmClIKCxwDP83nmmWu8/XaN/f09oiiiXJ7tQL15XLyMZ4iDUglRZDpqMv1G5iWSudQC\nnfsWhW3brK6u4roejuP0aFUyDYnRjqien4UQPWZu42Kep/GKEcIEl0HgsxGG7LgucU4jk2gTRLVa\nLbw+c7RxBhQetYZZdg0tfQloEsJWx8UnEYI932OjHfXqWR4xozpPKq68+RauJUyJJyVxHPaffop1\nx8VxPROQxBHErumOiuLeFmWlzTbZUEGZoJPkxB1Sj8FfTUFBgWVZrK6u8dRTV3jjjf5ZoJNj2w5n\nzpxjd3enc988Wl5t2+bMmbM8++x1AGo1M3iv0ah3BK1JkvDw4QNs206HFS62DdKy7I5uxfyc91ox\n5A3pJgmihJQ4rRZJqYTOiRGzx3McB6uySuvFj7ATtohl17/Drh+wtr3N3Ts3EfWDnsc9yYDCWXcN\nLXsJaCxSLYve2+1YvMdCs722RuXgAKfPc2UZtSyjsAC/3Yagt1MtcRy2n7xI5cG2CRQs4+uD75mW\n86yzLQtCpDLZk7NnjR9jHCEc58TvF0WQUlDwmJB1r8wC13U5e/Y8Bwf7M3m8YQgh8DyfKIoI0jd0\nE4SM3qdrApdlHBZP3msF6JlH1Pt7fWypym00uPzZ3+bdr/39tEcYm+lSieaLLxB/sIUQVsep17Zt\nVg4PaXt+94LBDAYULknX0EKwbITvH2sn369lAaNnEZ/7DZxv+baRWpYeHocsjGUZvYltdef2HDG7\nZxYUQUpBwWOKUoo4jnBdb8AHZF5MUhLy/YArV65x69ZbQHcYYbPZQMqEKDIX2jiOiOMIrZ10oKBC\nazptyyex0Z+Ufq8VIDWo65rSZYJX01Kt0/LV8NKbkBIrihBj1u+NsNhcFHQQcHD9OkGlgu30RiOL\nbDnXOzuoz/xLrD/8RxBnzizsuLPAOrOJ/8JLtF87PvuY17LABCZ1U2VhTs/3JsNrt7nyxS/hnjtn\nJhufEkWQUlDwmBJFbW7deourV68vbJrupCWhvENt1qbcaDS4d+8WTz99lSAI2N/f40tf+l02NjYJ\ngqBT/nFdZ+FBSr/XCgzXpPh+gGWJznygUcZ0lpR4jQbWFCJDFQTsX7+OP+EFJI6jAZO6dq6DKHsO\nWTeRbds4zuiAsx22uNdu8HTY4tEocHTx/YArTzzJzdfmNxd36ixMVJ/bmsbB0hq/1RoYMuiFIVfe\nuokbhgvxSymClIKCxwjPM54jnjedaDLPdG3Lk9HvUOu6HkEgcRyXIAgIghJhGKYljt5PnFlZxYht\nzX39XU3zoHc20PFordOgwFji59/zo9VV3v/EJ4gWNMMmjiPeeOMV2u1eHx1rd7fbQaQ1SaPOW2/V\nYOcBvu/z8stfBQzPBmmtiSzr9O35p2QRwt6pszBDmHZ2z6ywlDIallQUm7gu++fPsb71gXGsjWPz\nuSFJ0M2m+buIji6nHUURpBQUPEZk5mTDbN4nLf0sS9uybVudDqB225QyspsQvS3KWqu+qcrzxwRL\no8s9vYFTFqgY91nlODQuXjBDBheAlEavYtsOjmN37hOVCs4zz5BUKohWC5lOak40NJsN6vU6Kys+\ncRwhxOi1hltbvPPr/4anvv4bCfozBEvK0gt7c1oWgNi2eOiuUmm1sKXq2W5hKJVa5AsjsD1/nsq7\n7+OEYbe7J0nQb9ZMwBK10WE4lYqsCFIKCj4EnEbpZxSTtjK7rse5cxd46qkrBEFAGIa89tqXaLdb\nXLx40dgypEFKkiRsbz+Yy3DCUZjMij2y3CNlQrlcoV4/BERPEGUlCZX7H3D41GXUDLJf4+I4No7j\nIqVkb++h0bBcOA+tBs7BPmvb2xwc7BIpiVKS119/lTt3fISwef75j4zsGtIyod1uoT8klvLzRJRK\niM1N2NnpaFkAtNAgY/TBwcAk54V1FVlWdwBjqWTEskFgsihZd0/URtyomv/NRt1MYZ6CIkgpKHiM\n8Dyfa9du4LreTKzx88yq/HOcbmXYJGXbtjvlH/Oz0YS4rotlkXb8dPdfNP0tyF3NikJrK50BJAay\nPHkztyPbmuaEEf0mPV1DjmWzdlinadlI2wY0nudh2zat1gm6hh4zhBB4fe7Ds8RaW8P9/h9E1Js9\n90/cVXQMiRDsXTjPerM5WUCQdvd4UcSV19/AjSNzX667R5TL6STlotxTUFCAKffMwmhtWHloUeWf\nUZOU+zFrjAcyKXnX2kVoVManq0kZFqD1tzF3SBLs/X3TAXRCY6xR9HQNlcocPv88ulTGsiy0NiVE\n13VptSYPfB/FEtA4+EGJa34Fa46ZSbG6iij1aoFOomcBBstHUdsMWbx9Fyfnw0MSD+w6DEtr/DA0\nZm5zoAhSCgoKBlim8lA/tm3jeT6NRj2dqmy8QaKonbYoZyJVK93eQQhr4SZwebrHNoFKkiQDJan+\n4KUzAyiOcd97F6tSNjblc6Z3wvPJz9njWgISZ85gf890WpZ5Z2GGMqQVGjDusZaAdthrZa+UCYoX\nOPF4GEWQUlBQMDMmKQm1223ee+/esdqU/vKP63pcv17lzp2bfPSjLxFF0Gg0uXfvFhcuXOL27bc7\nYttsf63VqWZZui3IXSfZ/gtUXmSbCWvBmLm1XnwJ+cEW+TyKkBL38BDOnOuxM58nSinCvmF7bSFQ\nFy7SFgLC1kD78jJzWh4vi8jC9DOsFRrArr0Ov/Yv4fkq1tp65/44bLH37j3Ww3CsQCFxXfYvXmDd\nsXHi2RkBFkFKQcFjyjz1KaOYpCQ0rqfKsPKPmajsUi6XsW2NlArHMT+Xy+WO4yp0DdiOyrIsI8ed\nFxHHlO/fRzz51ELMv6SU7O/vUqu92hN8KKWIKmVa79zG2tsbaF++srYx97VNy2l5vJwkC3Oi4/a1\nQgOIrS2TLelzR46FYPvChW4ZKE5AKRLfNy3HO9s9brmJ67B9+TKV7Z0iSCkoKDiek+pTsiAiMy+b\nB0mScOfOTZ599rmZaGkyQ7i8WVkYhj1ZFs8zwwLBZDgW8Wl/8nKPHtK+3Mu0Zm7TYkzrJLZt4ac2\n/FKaic9upqS17YH25ZbrG/3QLKY1z5hH0eNl5qUi3wPHgXoT9ve69/eXgZIEtCYJArYvXqBy8ybO\nCfxPxqUIUgoKPgRM05kjZcLduze5cePFOepSNFE0+dDC3hJQ774my9K7veO4+H6Quqd2hwUuisnL\nPd0uoYWsT0qcRhNZLqOPCdqMx0pf+3KK1Wrh+j7NVoMkbV++s7uLatS5ffstXnzyqamnM8+LOJHc\n/re/xtVv/iOPhLDXdz2uNtvYMzqPolJBPPkkzic+1dMt1CkDPXsVUa6gWy1IvgQbG+nEY22GCmbu\nJ3MqnxZBSkHBh4BlMWaDfMA0fQbD9wOuX69SKpUIw8ZE+ybJ8anocbZ5nBBxTHlri/rTTx8bpGQM\na19mZYVkZQUB2OkgSNdyiIQgasfL2b6sNVHcfnSEvbaN2Dwz204v2x7oFhK7O0aoHSUmqxJHJhCJ\n4zS7kpC21gHgNRVXXn8d98zZ2a2LIkgpKCgYk1kNLMwCpnDBE1+zMoXRq3QvSJlmpb+s5fs+tj2b\nTMY8yj2zpKejZ0Ly7cvZ9Oehx1CyR3Rr2/bSZVUeBWatZxlVPurPsOjtbeRP/SSUy+BasLEJlkVS\nCtjf2GB9bw9f6bQbqNCkFBQUzBHbdjhz5hy7uzud+xbVljypI+24DNOrQFezkg00zLBte2DbaVn2\nck8eISV205R+JrHuVUrRajV7OpS01uxoI+IO22GP6Nb3fV544eVHNlCZ19/pojmyfNSfYQkCU93R\n3VtiO8Zn5bCOE7dNCWhMj5VxKIKUgoKCAVzX5ezZ8xwc7C/82JNOUobhLrXDGKZXAXoGGuaR0mR7\nsvJPfxszdGcHHb/eruPsqPlC+ftOwzkXwKnXufgbv8H9T38aOZF7qQmysueWBV2iUiFeWQGZdETL\nSSI7HVhLV/4ZE7WzS+vzv4MqrcKlS6e9nOkZt3yU+qyw/RA8pxuItGxotcwtL6QNAiPIjU8WsBRB\nSkFBwcyYpCQ0LFszLeO61E6Kbds9JSIpk3TqskJrjW3bnQAlu0BbljV1gJF3nNVakyQJSRKnwVFv\nSl6pcQKjyZG+z8GNG8i0g+c4MtFtHJjth40IADrOtZloWZ6CBiSOo57sWFsI9Nmz6N3tjrdLxrHl\nKCXNUD81ebZtmbIwo8pH/WWgzGfFuX0b/uO/g3oDsb6JcGzQEvGRl7G83N+M4xhNSxGkFBQUzINp\nOoImKQmNm6056Rv6uFmW4WvsLRGFoSlZWJZFo1Fnfd14gDx8+ADbtjsByjTHMgGHTnWIJug5PDzo\nlFCiKMKyRKd0ZAKZ2ZvSTeo4m4luDy4/OdN1zJo4jnjjjVdo59xWlVJEnoPdanW8XTLmWY56FLIw\nw8pAYnUV6+wZfMtGuJ4ZLmhbELXAC+bi11MEKQUFBUNZREfQOIHQNOWfPCfNsvSXiEz2ZPT2+dLP\nJAGECWwEQhhNimVZrK6uEQQBSZIQx1EnEDKPrVFKnopuJU8W1CgloTFZp9UikdKUmPLZHdu2cb2A\nKP0+K3kkiaTZbBCG4Xw0MyfIwiyMEWUg3/W4elBHJYvJhBVBSkFBwamxTK3R45CVf5rNBlImHSdf\nKU1ZxnXdgSyKcbUdL7PSr0nJl0eGPUZWEspjSkNLfPE7RZRSNBqHPcFj3ttF7XR1RkpJ3nrrDV5+\n+WuWSty7qFLRabni9lMEKQUFBWMxTflnGLNoZW63Q27fvsfLL794orVMSlb+aTQanY4ggNde+xJh\n2GJz80zHzTZDCItWq3mi42Zt0qaU1C33KKXY39/rOY+ZM+xpaD6WHTPDSaYZqSHeLul2QphSWhRF\nSyfuPWlm8cTYNqxvwP0tM1HZsgBF3A6puy4b7ajHLp8TWg0UQUpBQcFYzCrrMYtW5lm+UU+qWXFd\njyCQnY4gMB4slmXNzc3WsqyOj0u+3CNlwvr6Rk9g1C0NDX97V0p2si/DBLm9285HnHva5L1dhjN4\nTgZEt+2wZ5hinnl6wOjdPdQrX0ZvnINLix80IM6cwf7uPwZ//++i93YRSYJngUKw7dhUDg5wdJ/n\nysam6faZgiJIKSgoWCpmlbEZl1l1BimlBkovGSarkV3sp+v8ybQU3YurGuiY6R5veLlHyoTDw8OO\ntmWYIDdPXpw7K2O7R5Fholtrdxd/a4ubb38FlRPcwpw9YGasZ5mmfJSfqFzZ3ubar/4y7a/9OsRX\nXsP5lm/rsdcHTPvyRO3sXYogpaCgYGbMIsB4FHUqnudTrx8SRYPTlz3PJ861YZqSzWmt1WF1dRXX\nzfxKBgW5eZZFnHvaZKJbM7fIBIlifR3/6lX0+jo61649zANm0iyM4yyuLXnarGRnorJtIy4/hThz\nFlx3wF7/pBRBSkFBwcyYJMDI3qRParMPi/edyJeIXNfj+vUqt287Pa61eSfbw8N9dna204DGRanT\nK6FYln2sIDdPJs7tte1/PMi7644zs8hx7G7WatUl/uhXM2yvvB5omizMyy9/FVCZ5ilNzEnLR5nA\nVrz7zhxWVwQpBQUFp0QURbz//jvHalMW0aY8Kf0lIpOZGHStze5rt8NO9mSUO23mk7JIhgly+9dk\nxLm7CAFxHC9sntAimGaw4qRMk4VZ6IDLEeWjZTGcK4KUgoKChZKfgpwFF/3D/fKctPyzDG+2Rs9h\nhp4opdJApRuwZNmMLHZZlCX+MEFunq44dxPbhlar9ViVfk4yWHFSps3CtNu9jq2LEuyOCvwX/f9U\nBCkFBQULJT8FWcqEu3dvcuPGi3MbWriILMtxHUKO4+F5Hq7rEgQ+SSLRulvyyt7sm80GlmUtdALy\noCA3T1ecmyUaRln1d4OvXmv/ZWfSks+iiKKI1177Mq1W2HP/ogS7o8pAi85aFkFKQUHBI4dtO5w/\nfxHHcQY+aZ4G43QIndbAwFlh/G3ikVb9Wht/FhO4ZFmh3kzRMrKIks80JEkyUCYCsAOfjTBkL/B7\n5ivNfGjjhF1E/bN+ZkURpBQUFDxyuK7LhQsX8TyPRuP0g5TjMD4qdkeEKqXJOkhpPEtsO+6ZHAy9\ng/qWAcuycF13pFW/MZFTnflF+aGLy8wiSz7T0FMmAkRllfbLH8WqrCIGWs+PNvDr7zKC0eWjdjsc\nrp0akWHxgxLX/ArWjDOiRZBSUFBwKoyagjwLR9pJWESN3XU91tc38DyPlZUSYRijtSYMQx4+/IDN\nzbM4jtMZVAjGdM1eok/2MJ5Vfz9Z0PUolH4eBXSpRPjSRybeb1iXERxRPtrZQTUbxElET9jRl2Hp\n+f+Zg41+EaQUFBScCqOmIM/CkXYS5lVjz+tUtNZphmGy/ZeZ/s6gYeUeAZ26rQAAHfpJREFUc26N\npmIeE5sLxmdYlxEcUT6yHRKlUPLo12zeGpUiSCkoKHjkWbRL7TjkdSpxHOH7PnEcEYYhUZSglLmA\nG+1BiFJuOhjQBDRmMOHydtL0dwYZx105UO7JRJxKyXSbuBiCeIoMKx+1XvwIaiCLaPRE7ahNmCsD\nxUnUu9WcbfqX5z8aqFarfxr4YeAJ4PeAP1Or1T43Yts/Bfx3wMvpXZ8HfmTU9gUFBcvHOMHFOOWf\nRbvUTloiygYTgmZjo8zeXhMpFQ8e3Ofw8IArV66xurpOrfYqnmfcYIWwlq7c00++Myiz0JdS92RS\n4thc1PLDEIshiMtD4nlsXTiHPNyHw25W097bZ217m9s334L9bknWqzewpexoWNqtBqrZoN1q4KT/\np7NkacL0arX63cBfB34U+BgmSPlX1Wr13Ihd/iDwc8AfAr4OuAd8plqtXpr/agsKCmZBFly4R7Qj\nRFGbmzffJIraI7c5inlkWaZJcbuuR6lUolwuUyqVCIISvh9g2za+HxAEQWqJbjQfyx6g9GMClu76\nTduyeW6+H+B5RpezuXmG9fUNVldXlyrz9WHFBJZJJyjObpZlUdrdpdWsc3BwwMHBAfv7e+zuPMRK\nNSyvvPJF3nqrRqNR5623arzxxiudoHRWLNNfyA8BP1mr1X4GoFqtfj/wrcCfBH6sf+Narfbf5n9O\nMyvfCXwT8LNzX21BQcFcmHVQscyzgDzPJwhKeF5vK2k/pjyiEUIDRiOwjPqOrCMp09NkmRZgYBji\nqCGI80Qp1bkdvd2j4fEyS/onQ2vfZ/vqVXRQwnXN/6JSGtuy2Gi1OEg1LNp3UWl5cqYt0ClLEaRU\nq1UX+ATwV7L7arWarlarvwZ8asyHqQAusHPchgUFBcvLOEGFUoowjFBq8aPqhzGLDiGTdfDTN/pu\nGcQ812ZnkrLWVm6f5datLBNSJjQadeI4QqnkyPNm9DRyKQPBRSGDgIOrV6mUy9i5ydsi1SA5totw\nXJTlIoTAdgTzCDuXIkgBzgE2cL/v/vtAdczH+N+Ad4Ffm+G6CgoKlpAoanPnztusr3/1aS8FOMEk\n2bSlNxtU+MILLw9kGMIw5NatN1PXWrcnw2QEqook6V5MFzr35RHCth0qlRWSROI4w6c+ZyilSZLl\n999ZNForEsfh8PnniR0bncRoZdrpoyjhQO5xcHAAzM6if1mClFGYYRfHUK1W/wLwXcAfrNVqExXE\nTIrr+FY/M3uj+/VRoVj34ngU1wzLv27f97h48Ql838NxumvNSgonXfewxz8OY84msG0Lx7EGfj5q\nv/zXcrnE2bPnKJdLOI6F4wxmYWzbwvd9LEsgpUTrbrkniobPPSqVAnzfHVhLtk5ThhE95ZlhLc9C\n0NnWvBWP3nf0/tn3vfuOc75OSv58Z38zUiZofbTJXJZJaTTqgMK2nZ51H0X/c+s/5+Pt2y2XjbPf\nsOP2M2odo17D7LXL/gaUUrRaLZSAe+fPYdUPoH6Avb/P+sOH7K+sYB8ecltqnLNn8H2fl1766IkD\nlWUJUh4CEujP8V5gMLvSQ7Va/WHgzwPfVKvVXp30wGfOVCbyI1hbW4708qQU614cj+KaYbnXfeHC\nRs/Pvi/wffP2NYt19z/+cfi+IAhcNjbKlMvlgZ+PI1vzOPv5vqBSCbh+/WU8r/uG32w2efPNN7lx\n48bAvo7j9GybfyzPcwgCF9d1se3uBXxYsGeqHRrPc4jjGMsy5z0IBveVUqcXQfPhz8wmEjlPDt1z\nXJBjn6+TsrZWwnE0QeARBH5H1DuKbATAxsY6Z8+uAfSct6Pof27953ycfVdXzd+H69pj7TfsuP2M\nWseovwGtTVCXBT1SmindQgg8z+0Exq7nst5oEFoCmcRUAher5COlZGXFP/HruxRBSq1Wi6vV6ucx\notdfBqhWqyL9+cdH7VetVv9H4EeAP1yr1b4wzbF3dhpjZ1LW1kocHLSQx5jbLBPFuhfHo7hmeDTX\n3Wq1aLeNbuPgoEUcJ0RRhOctxqW21WoRhjF7e03abT3wMxidyr17d3j66SsdnUr/uTbW4xYHB63O\nfqOO1WwmaN29uEQRSGm+2nb/pNp46LiAVqtFFCVI2cK249TaPkmnHQ++9tnQwChKEILU2yXBsmLi\nOE73EWgtUkGqCVQy4akZA2DKT1IqwjBGSojjmChKes7XPMif73q9SRQl6Uwhs+ZRmPZpc3739poA\ntFptkkTjOEeXgbJxAfm/jShKAPPcjyI7L4eHLVZXS8SxHGu//L6jzumodfS/jhnd0Q0KIVTnb6F7\nfsy2iRewf+N5pOuBNoGtloz1+m5uVo59XksRpKT8DeCn02DltzHdPmXgHwNUq9WfAd6p1Wo/kv78\n54G/BPwx4G61Ws2yMPVardYY96BKaZQa/59Eyt7676NCse7F8SiuGR61dVucO3ehM2Cw2Wwt1KUW\nLM6cOQ9YJImZWZNd6LNzGMeSViskjiW23Xtes+1s2+PZZ83cmFHnfthjH3X/0RjtS7vdJo4TpEw6\nLrFaa2zbHsgsGw1MVu7RaSmkG4Tkb/1kF3vzfe++k699eqRUnYtu5t9ylH4ov43ZN+Hg4KDTmnsU\nmQdMFEW4rt95nbLnfBTd89I7SXqca9Rx53TUOka9htlrlz8X3deyO+ZA+j4H16/Dzg4WoDE7zer1\nXZogpVar/XzqifKXMGWfLwLfUqvVsmECTwF5558fwHTz/NO+h/qL6WMUFBQ8pkwyYHAes4CWua35\nKPrFuWEYYqrkikajyerqGo7Te1nI9Ahaf3iN12zbYXV1Fdf1Bs5PP93Bi93tlDKDJI+jcOIdZGmC\nFIBarfYTwE+M+N039v18dSGLKigoWHqO8lZZ9CygSVjEcMN+XNfr+FjYtk25XKbZbKSzdSRxrAcE\nuUpJLAssazDT8mEhb1R3HPkOLSn///buPErSsrrj+LequnqZwRlgxgmOIIvo1VFEXDCjJkfFyPG4\nReMSOTEgMYiKK0RRUVyPiAu4oInjBriAGxCNHBQ1JAIxIygYAleQAdE4KDAzzPR0dXdVV/543uqu\nrq7q7qquqvd5u3+fc+ZM91vv9Nzeb917n+cps3v37raqMNqJd0ZUSYqISCfSrmx0ugHdYpYu1x9U\n2G21ysro6Ch33bWNgw4Kz/1qLw8Pz8zSDA7C1q3XUa1Sd/7OzAZz9S2g2vsmS6/CxCrsITPzOc5V\nQzuwUp6CcmgllkrhcMmlLEeO/yMhIhK5XiZJ9QcV9kKxOMjwcIWBgeJ0UlJ7uVZ5GhjIs3p1kZGR\nEcbGSsksS2hNVKth1qP+UMFaQlV/2OBK1nkVpkIut7iqSj9bRdXqFKVSadZmdwOlMdbdt4NdO3cw\nOVVhaqqC+03TmxQ+4hGP7ihRUZIiIsvaQlWOXsysLNb4+Dg7dtzLxo0Htd2K6mWFpZnBwUE2bTqC\n8fEwA1SbZ8nn84yO7mH16n3YuXPHrLZGbe+NlZ6kdKJcLrN79/3k8wu3iWBxraJmszEhuZm7b0z9\nap5GYXn51Oy9VYaHGd9/HbmRkWR5dzVZBp9b0nb5SlJEZFlbqMqR5sxKWKJb7uiXeK8rLM0Ui4Pk\ncjO/NgqFAvOFPrM6JSurxuIxMDCQDDIXF2wTwcKtolazMWFTwIlkj5vZ12tVslbqk5Sp4WF2PvQw\nVq9aFVb5JGc11f7vTilJERHpgV6cvhyTWhl/795RKpXwC7JSKVMuT1IsFpsuZdY5Q+2pPxV7MeY7\ntLHVbMxMcjM7eSmXQ9Ul7UHp5fndIyKySJ0kE4tpES1mTmViYoJSaYyJie4eb9+u+tbRYqs6jUO3\nGzY8iN/85teUSmPst9/+TZYy5+fd5VV6r9VszHyJSNikrzJv+6eXlKSIyIrWydBrt1pEYdnv1PR5\nPGmpbx2VSmOL/nf1Q7dDQ8PznqNUfxCiDkGMR+0MqNC6md3uqT1WLuenl6iHnWn7l6woSRERaVO3\nWjlhaWYxqgpDpwO5YZnyEHv27GZiYny69dDqIMShoaGo3u+VKp/PT39uGts9k5OTyUxMIakehtmS\n5jvUzr+Lb6eUpIiItKmx+tLpCqGBgWIyI9DBsoce6XQgt1gc5PDDjTvuGJi1x0qpVJqz7wosbe+M\npQgVgbC3SysrbdA3nIycJ58v1F0L+6CUy5N1S83Dx6WWhIYVPuH+kJ9Up5ejd4uSFBGRJerlCqE0\ndqVtR33lpZZw1e+xAnP3XUlDoVBgcHAoOY+nTLWaT16utDyzKO2h0TTV2j+Dg0PTlZRam25wcIip\nqanpfXAAGvfI6RYlKSIiKQnb0q+et+2xmF1p09TpPEu/1So9ExMTFAp5CoWB6b1Imp1ZlNagaEya\nVVgWUqtCdetjpyRFRGSJOp1RKRaLrF69D8UOdrmKvcISo+HhEVatWjW9udhUsjPq2Ngow8Or5rTq\nanMz8y3tXSlm9ruptmz3hIS6lLw+NV1tWQolKSIiS9RshVCvd7KNscLS711w29XsFOht224F4NBD\nHzZrZgZm5mYqlVAhWsyqpOW6cqlWVYH52z21hDkcSrn0r3slKSIiPVCpVLj//l3su+/+LX9YL7cN\n39LYBbdd9adAA9NtnvlmZmob14UKTFjh0mrVEizflUuNZzLN2haf2YlMt5bVL4/vDBGRyCxm/5W0\nT2+uUetofo0VGGi9agmar1xayVWYpVCSIiKywvWydRR7C2ixGiswsLhVS51UYQYGll8VplNKUkRE\nZFq3qypZaAH1UjeqMCuZkhQRkYj1e24lxoHcXsnlcgwODvX87KROqzCw+BZQv1tFrXacrS1BDvuq\n1CpHncemJEVEJGKxzK20kuV5lqGhYQ4++DC2bbst7VDmGBgYYGhoiLGx0nSbCJY+sNuYzJTLZaam\nquRys3fhnW/X3ZCMzL8EeWpqil27dgJhiLz+fWiHkhQRkQyKZWVQ1isvsc7MDA4OsmnTEYyPT866\n3mmrqNlsDMDk5ASTkxNUqwOzEpxqdWrO6p2asIqnMO8S5EqlzNq1+07/H51+nSpJERHJoNgrLFkR\n88xMsThILjf313Qnxww0m40B2LVrJzfeeD1r1jyAwcGZpKdcLrNjx73TyUc476gKhKRk4SXI+enl\n3UvZDE9JioiIdEWWWz/tirUCM59mszFhw8EikJuVTJTLk5TLZarVKvl8fjpRKRTyyWGDc2dSekFJ\niojIClffOup0dgCy3/ppR8wVmHYUi4OsX7+BAw88eFb7aM+e3dx44/UMD49MHw1Qre4kl8sxMTEx\nPbNSn6TV2j/d/PwrSRERWeHqW0dLSVJkcWKrwhQKhabtow0bDphOXkqlEu43kc/n2b37fvL5AsVi\ncdbwbq39080kpfsHSoiISGZ1eyB3fLzE7bf/enrVh8xUYWJvidUnL8PDw8lgbevEamZ+pTtb4oMq\nKSIiUqfbA7krqQW0nNVWB+3dO0qlUqZarVCp5JiaCrMshUJhVmWoUBggl8sv+QwfJSkiItKxbs2z\npCGLg75ptYpqq4NGR0fZtu1WxsbGGBkJ7aFdu3aydu2+06t5Qpx5CoUC5bKSFBERSUmW51myWOXp\n9sBuO0lPsTjI8HCFgYEBCoWZJcb5fHh5YKC4wFton2ZSRERkxSqXy9x55+0rdmYm9vkYJSkiItIV\nseyC254qExPZqqb0QywrkJSkiIhIV9RaP8XGHcOWoeW+aqlVhaV2KON8q3y6KUvproiISBSyOM/S\nDbVDGXfv/mVyWGF11onHjZZ6OrOSFBER6ZlstoB6K4uriuo1HlZYqZQplcaoVCodn87cir5qRESk\nZ3QQ4lxZr8LUH1Y4Pj7O9u2/Z7/91nH33f/X9unMC1GSIiIiK1KhMMD++69nx4770g4lc2qHFQ4P\nj7B27b6USmPce++f2j6deSEanBURkRWpWCyybt0DO25FpGG5D+w2UpIiIiIrVtZmZrrdKoo96cnG\nZ0VERKQHOp2ZyVpy00rs8zGqpIiIiLRpue8JE0uFRUmKiIhIH2WhCtOqwtLv5CXej5CIiMgytJRl\n2WknOK2Sl15to68kRUREJCO6ve9Mt5Kebp/OXKN2j4iIyArVarZmsclLr9s/qqSIiIjILIut2PR6\ndZAqKSIiIrIo/Z6JUSVFREREFqWxwtLrpEVJioiIiHSk1wdIqt0jIiIiUVKSIiIiIlGKqt1jZq8D\nTgMOAG4AXu/uW+e5/yXA+4BDgF8Dp7v75X0IVURERBKVSpnR0VFWr17d1fmUaCopZvYy4GPAmcBR\nhCTlCjNb3+L+zcDXgC3AY4FLgUvNbFN/IhYREREIA7Rr1qzt+gBtNEkK8GbgX9z9Ane/BTgZ2Auc\n2OL+NwKXu/vHPTgTuB44pT/hioiISC9FkaSYWRF4PPCj2jV3rwJXAptb/LPNyeP1rpjnfhEREcmQ\nKJIUYD1QAO5uuH43YT6lmQPavF9EREQyJKrB2SZyQDt77bZ7P/l8jnx+4VMbC4X8rL+zQnH3TxZj\nBsXdT1mMGRR3v2U17l6IJUm5B6gAjTvCbGButaRme5v3N7Vu3T5tnSu9Zs1IO7dHQ3H3TxZjBsXd\nT1mMGRR3v2U17m6KIk1z90ngOuCY2jUzyyWvX9Pin11bf3/ir5LrIiIiknGxVFIAPg6cb2bXAf9N\nWO2zCvgygJldAPzO3d+R3P8J4Cozewvwb8DLCcO3/9jnuEVERKQHoqikALj7N4BTCZuz/QJ4DHCs\nu/8pueVA6oZi3f1aQmJyEvBL4EXAC9z9f/sZt4iIiPRGrlpta85UREREpC+iqaSIiIiI1FOSIiIi\nIlFSkiIiIiJRUpIiIiIiUVKSIiIiIlFSkiJRSjbzExGRFSymzdyiYmbrgRMJpyofQDgT6G7CDrhf\nrtu/RXpj3MyOdPeb0w5ERETSoX1SmjCzJwJXAHuBKwnJSY5wNtAxhJ1wj3X3n6cWZAtmNkLYefe+\nxo3tzGwYeKm7X5BKcE2Y2cdbPPRG4CvAvQDu/pa+BSUiIlFQJaW5TwHfBE5291lZXNKG+Ofkns0p\nxNaSmT0c+AHwEKBqZj8F/tbd/5Dcshb4EhBNkgK8CbgB2NlwPQc8EhilzZOt+8HMHgfscPdtyet/\nB7yG8LG/E/i0u1+UYogtmdkpwNHA9939IjN7BfB2Qvv3O8C73b2cZozNmNkg8Nc0r25e5u4TKYY3\nLzM7ENjp7nsarheBze7+H+lE1h4zu53wBO3WtGNplHyMS+5+T/L6XwAnM/M9eV6yU3l0zOy5hO/J\nK9z9ajN7BnAayfeku38u1QBTpCSluSOBExoTFAB3r5rZOYSt+2PzYeB/gCcA+wLnAleb2dPc/bep\nRtbaOwnnLZ3q7j+uXTSzScLnINZjDr5EOMZhm5m9CvgksAW4EDBgi5mtcvcvphjjHGZ2BvBWQjJ7\njpkdDPwTcA4wRTgzaxI4M7UgmzCzwwnVzY3Az5ipbh5F+EX0OzN7trvfll6Uc5nZg4DLCNXNqpl9\nDXhtXbKyP/AToJBSiE2Z2RtaPPQQ4JVmth3A3T/Zv6gW9G3g/cD3zOwFhIT7e8DVwMMJZ729yN2/\nl2KMc5jZq4FPE56svdHMXgd8BrgYqADnmtmIu38ixTBToySlue2ErPaWFo8fTfghGZsnA89Mnknc\nY2bPI3yx/6eZPZ1QlYiKu3/IzK4EvmJm3wXenpyKHbuHAbVnk68F3lT/bMfMthISsKiSFOAEQvL3\nHTM7knD6+PHu/lUAM7sFOJvIkhTgs8CvgKPc/f76B8xsDaE6eB5wbAqxzecsQvL3JMITh7OAn5jZ\ns9x9R3JPjEPi5wK/Bxoranng7wmJbJWQnMfiUcBNyctvB97h7h+uPZhUEN9HSFxi8gZC4rol+Tn9\nfcKTts8AmNl/EZ5YKEmRaR8FPmdmjwd+xExC8meEmZSTCM+iYzNC3Q+VpBL0GjP7NHAVcFxagc3H\n3bcmH+vzgJ8nrZPoWjwN9gLrCWXkBxOe3df7GXBov4NahI3AzwHc/QYzmyIc0FlzfXJPbJ4CHN2Y\noAC4+/1m9i7mfg5i8EzghbX5NTN7CqGV/GMzOya5J8av9S2EJ2PH1Q+vJxXOZ0Va4SwDD0hePhS4\nvOHxywnV5tgcSqgS4u4/MbMCUN/++3fCz8YVSUuQm3D384DjCc9+vg1cm/z5dnLt+FqWG5lbCK2e\nWdz9FELJ+V/7HtEiufsedz8e+BDwQyIrfzdxOWEGBUIC+OKGx18KRNV6SGwHNgGY2cMIH+dNdY8/\nCvhjCnEtZCfzJ32HMHeuKQZrgVrFBHcfJ5zYfgehzbMhnbDm5+6vBt4LXJFUILLgKuDlycu/AJ7W\n8PjTCdWh2NwLHAxgZhsJxYOH1D1+MHBfCnFFQZWUFtz9YuDiZLBtfXL5nshbEZcQvkkvbHzA3U8x\nszyhfx+tZJDzp4Qe/p1pxzOPtxHmfa4iVCZONbOnATcTZlL+HHhheuG19FXgAjO7jFAVPBv4qJmt\nIzyjfyfwrRTja+XzwPlm9n6aVzfPIAyzx+Z24DHMtAZx97KZvYRQUYmt9TDN3S9N2pYXmNlzgFem\nHdMCTie0tjcCPwU+mKzUrH1Pvow4f/5dBnzBzM4Hnk9oXX4sqXJWgY8QZshWJC1BFumQme1L+MH4\nPOAwQmXyD4RBvXMiXaKeJ8S8mbAq5izCD++zCUvrvwuc4u7RzS+Z2dsIS9NrK3sgzHNsB85197PT\niq0VM/sw8Fh3nzMrY2YDhOrs89w92qp2sqLxdMLsxAOBx0Ta7sHMHgp8AHgOsE9yuQxsBT7i7pem\nFVsrZraaMLhe+558PeFj/UGgSKgQvczdY6xw9pySFBHJFDM7lJCoAGyvLQOPUZKIrGo2S5M8XgAO\ndPeYq4YAJHNjTwUuqBv6jVKSWG0gPHGIvQLeVLKvVdHdd6cdS5qUpIhI5pnZQcB73f3EtGNph+Lu\nnyzGDNmNu1uiLTGKiLRhf8Kwe9Yo7v7JYsyQ3bi7QoOzIhI9M3v+Arcc1pdA2qS4+yeLMUN24+4X\nJSkikgWXEoZl59v4LMbeteLunyzGDNmNuy+UpIhIFvwBeF2r1Rlm9ljC7rmxUdz9k8WYIbtx94Vm\nUkQkC64DHjfP4ws9E02L4u6fLMYM2Y27L1RJEZEs+Aiwep7HbyPsKBobxd0/WYwZsht3X2gJsoiI\niERJ7R4RERGJkpIUERERiZKSFBEREYmSkhQRERGJkpIUERERiZKWIItI35nZmcCZyatVYDfwW8Kx\n9Oe5+y1pxSYi8VAlRUTSshd4ErAZ+Bvgi8AxwC/N7Lg0AxOROGifFBHpu6SScqq7r2m4Pgh8H3gK\n8Eh3vyOF8EQkEmr3iEg03H3CzF4P3AS8CjjDzF4BnARsImwPfgPwVnffCmBmRyTXnunuP669LTPL\nA3cBF7r76Wb2YOAc4C+BtYQzUy5x91P79g6KSFvU7hGRqLj7zcDvCW0ggEOA84EXAy8nmV0xs8OT\n+38F/Az4h4Y39WzgAOALyesXAo8GTgGOBd4NFHr1fojI0qmSIiIxuouQYODu769dNLMccCVwNHAC\ncEby0BbgU2a21t13JddeCVzj7rcmrz8RON3dv1X3/3ylZ++BiCyZKikiEqMcYdUPZvZIM7vEzLYD\nFWASeHjyp+YioAwcl/ybdcBzgc/X3XM9cJqZnWxmD+39uyAiS6UkRURidCCw3cz2AX4AHAS8GXgq\n8ATgRmC4drO77wW+zkzL5xXAOPDNurf5UuBHwAeAW83sZjN7YY/fDxFZAiUpIhIVM3sU8GDgasJc\nykbgBHf/urtf4+7XEwZfG20BjjKzIwmtoIuT5AUAd7/b3V/l7usJrZ9bgIvM7JCevkMi0jElKSIS\nDTMbAj4FlAgDryPJQ5N19zyZMEw7i7tfR1jl8wngCOBLrf6f5N53AUXg8O5ELyLdpsFZEUlL3sye\nlLy8DyGxOAk4FDje3X9rZiVgFPiMmZ1FaAO9B/hdi7e5BTgPuNndr61dNLM1wBWEFT4ODAJvAHYQ\nZlVEJEKqpIhIWkaAa5I/3yGsxvkhcKS7fwPA3f9IWHr8QOBSQmJxEnBbi7d5SfL3FxuulwhzLKcA\nlwEXJNef5e73deOdEZHu046zIrJsmNmJwGeBg5IER0QyTO0eEck8MzuYsCT5DOAiJSgiy4PaPSKy\nHLwH+C6wDTgt3VBEpFvU7hEREZEoqZIiIiIiUVKSIiIiIlFSkiIiIiJRUpIiIiIiUVKSIiIiIlFS\nkiIiIiJRUpIiIiIiUVKSIiIiIlFSkiIiIiJR+n89ZxZRTjjsPQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8VPWd///8nDP3yf1GCImiKG6ArmKhrcC3ilbxVvS7210LddWCutqSdgsYq2zX2v3GK3a/u8Fq5QutdoH62+13LbhasIDuCljt10tLoCK2iSQxEHKbzExmzsw5n98fM+cwk0zukwswz8djHsnMnDnnM8nMeZ/37fUWUkoyZMiQIUOG4aJM9AIyZMiQIcPpScaAZMiQIUOGEZExIBkyZMiQYURkDEiGDBkyZBgRGQOSIUOGDBlGRMaAZMiQIUOGETFmBkQIsVkIcUIIcbCf54UQ4l+EEEeFEL8TQlw6VmvJkCFDhgzpZyw9kJ8C1w7w/HXAhfHb3cAzY7iWDBkyZMiQZsbMgEgp/wtoH2CTm4AXZIy3gDwhxNSxWk+GDBkyZEgvE5kDmQYcS7jfGH8sQ4YMGTKcBtgmegFDQQhxN7EwF263+7MVFRXWc9HublKJsUhFAQQgEYYBkShCgJSgiNg2CuCIRjEMidB1fD1BALKzshAOJ9H8PI4cOTKm7224zJw5c8zWpKoqALquJ/1us9mQUlJSUkJ2dra1fXd3N21tbWiahsPhoLCwMOl5wzBQlFPXKEeOHOHCCy9ECGE9JqXko48+YubMmWPynnqvYSLIrCGzhsm2hsE4cuTISSll8aAbSinH7AZMBw7289yPgWUJ9z8Epg62z89+9rNyIPbu3Zt0H+hzq/2rv5ZP3Hmn3Llhg9y5YYP8jyeekP/3oe/LJ+68Uz5x553y1b/7jnzzX2r7ff1E3Ww225iuSQghhRApn1NVVZaXl1t/161bt8ri4mI5ffp0KYSQ06dPl8XFxXLr1q39/i9mz54t9+zZk/TYnj17ZHl5uZw9e7ZUFEXOnj07aR+jpfcaJoLMGjJrmGxrGAzgt3II5/iJNIPbgdvi1VhfALqklJ+Ox4FFXh6Rjg68hsRrSIpdblyhEJGODiIdHXwcCPD1R2qSrpQnA9FodEz3L08ZcwAcDgelpaUsXboUXddpbGxkzpw5qKrKbbfdhqZpXHLJJTgcDurr62ltbeWuu+7qd//r1q1j5cqV7N27l0gkwt69e7nlllsIh8PU1tYSCoWora1l3bp1bNu2bUzfa4YMGUbPWJbxbgMOABcJIRqFECuFEPcIIe6Jb/IK8EfgKLAR+MZYrWWoeL1e6/ePWlomcCWTA03TaGlpYefOneTk5AAQCASQUhKNRgkGg2zfvp1HHnmEQCDA3XffTSAQoKqqKuX+li1bRk1NDVVVVbhcLqqqqnA6nbz44ossXrwYu93O4sWL2bRpEzU1Ndbrtm3bZhmuOXPmpNW4jOW+M2Q40xmzHIiUctkgz0vgm2N1/IH4syNHcIRC5Pxye2wtEY0sXWeaohCNRom2dbCzuIS6SIT8vDz+5ze+QV71fROx1ElBOBwmHA4DUF9fbz0eiUQAWLNmDWvXrmXu3LkAbNy4kdraWmu7JUuW8NprryGlRAjB1VdfzcGDsfYgVVVZtGhR0vEWLVrE4cOHgdgJft26dWzatIlFixbx5ptvsnLlSiBmkEbDWO47Q4azgcmdyRkj/jBzJs3Tz6Xj0rl0XDqXtgsv5GRlJe2zZuH78z/nxMWf4cKyaaz8+7/nL1atQm9qmuglT3qklLz77rsoimIZG4gZj127dlnhQCEEu3btYsmSJQBUVlby8MMPJ3kBDz/8MHl5ebhcLpYvX05jYyOPPfYYc+fO5Utf+hJSSqqrq0e95pqaGjZt2jSg9zMUMl5MhrOVs9KA6FNL0c47j9acHFpzcmibMoX2KSWcLCzkZGEhvsJCVJ+Pnl/9Cv8LL9DzyivsLC7hh3n5KW9rEiqPznYMw8BmO+XY7tq1y3o88eeuXbuYM2cO06ZN4/HHH2fFihV0d3ezYsUKHnnkETo6OnjkkUdQFIWvfOUr7Nq1iwsvvJBQKMRzzz1HY2PjqE/Uhw8fTsrrzJkzh8bGRsv7GQqmF5PJ4WQ4GzkrDci7DQ10Hf2Y0txcSnNzKTx+nILmTylqa6OorY2cjk5wuVBycgGBcHu4+OKLadT1lLdp6mlRDT1uOJ3OIW0XCATYvXs3N954I5s3byY7O5vNmzejKAolJSWsXr2ayspKDhw4wJe+9CV++ctf4nK5uPvuuykqKhq2p9CbsrIyqqurk07+1dXVlJWVDXkf6fJiMmQ4HTlrz3yV3X6UffsAKPrTnyCh4qoAQbfHw8lwGFlSgl3TmAI89NBDNDc3s3Hjxgla9elBIBAY8ra6rvPaa68RjUYxDIOjR4+i6zrHjx9nzpw5HDp0CCklHR0dSCnZuXMnt912G0IIDh06NOq1tra2cuWVV1r3VVVl6tShCyIcPnx4wBxOhgxnMmetATnyhc9RWjIFgK7Pfw5F1y0jYqgqjkCA8i4fens7Qbebwt276fnVr3AFe7ht6lSOd3Sc2lm88nXr1q0sW7YsZfmvmUDO0JdEg5OYP6mtrWXRokW43W66uroAuOaaaygvL+eqq67i3//930d13MbGxj6PJZYrHz58mMrKStatW9dvUr2yspI333yTxYsXW4+9+eabVFZWjmptGTKcDpyVIaxUnHfgLc7bf4Dz9h/g/H37Offtd8j/3e8o/OgjSg8dAi2C0dmF0tFBvmrjwvx8ptodFCsq0x0Ofvvlm1jym7fpenI9e/fuRUrJm/9S26e3IkNqFixYQHNzMwsWLLAeW7ZsGQ6HA13XAXC73QQCAb7zne/w4osvJhmbdDPUnMa6deu45ZZbOO+881AUhfPOO49bbrmFdevWDet4mUR8htORs9IDaW9vR8yciRZ3CHRV5cPFV8TlT0DImLSJV9Moe+s3GIpCODsbZyCIzM5GJIinSKAnFKb06Ef0HPw96AYVU6fS/oXPU3T4D7R//LG17ZrsbJ7q7h7PtzqpSSwJ7urqory8POnK/fjx40nb9/T04PV6KS8v55Zbbhm1B2KydOlSNm3axMqVK9m+PVbabXoUZk6jqqpq0NLekXqYmXLiDKcrZ6UB2bFjB0tKp1KeHWuOa/D70dxulHiFEIChqNijUf64cAFIibMnROmf/gQ9PUghrJOFlJKe3BxK3vl/GFqsL0IIsFVUIFUVW0JCNpNs7x8z1zGUvEZzczPbt29H07RRH1cIwfbt2yku7l/2Z6CcRk1NDXfffTcvvfQSEGtG/drXvkZNTc2QT/6Jifht27ZRU1NDQ0MDX//614GMEckweTlrQlilpaUoikJpaSkAQWlg+LowfF0xf0LKUzfTkET1+KvTk7u4/fbb07KfMxEzzDeUcJ9hGHR3dzNt2ujFm4dyvIFyGocOHWLr1q1JIa+tW7cOK8F/+PBh/u3f/g273c7y5cs5cuQId955J5qmZUqCM0xqzhoDct9999Hd3c1998U6yn2lpbzU3s5L7e105eWhuVwE3W7C2dmEs7KIeNz0FBUSdTiJOhxpW0cmH3J6sHfvXn72s59x3nnnceWVV9LV1ZXyRO5wOFiwYEGSPMuCBQtwDOMzk5eXx3PPPUdRURGvvPIKjz32GJs2bSI/Pz9TEpxhUnNWxFSEEFRXV7NmzRpUVUUIwbFjx2hrawNi3km+ohCJRNCBHLcbw+nEa8Q0n87/7zexRSJkdXZAJIoUIOJeiUQSHULfQ3jffqItn9L+d9/hh3n5Kbdp0qOZHMkwaBpDhYBrrrmGaDSK3W7n3nvv5a/+6q9S5iU0TePnP/85TzzxBPfccw/PPvss1dXVGIZhhaMGq+by+Xzk5uZy4sQJLr/8clwuF7m5ufh8vkxJcIZJzRnvgTidThYsWGB1R9tstqRKHxMDUBGoCDAMpKYhwyFA8seFl9Hwufmx8JaVQI//LgEEhs8HkQj0o5hrdPtQvF5sFRWZhsQ0MZZl0eXl5ezatYudO3fyq1/9ipaWlpTegMPh4Ktf/WpSI+RXv/pVVFW1OtR37tw5YDVXNBpl/fr12O12srKyqKqqYv369USj0UxJcIZJzRlvQO666y5+85vfWIqxjzzyCL/5zW/6bBeVknZDp93QEW43wuHANmMGSn4+UZeLUGEBh264AX9REf7CotjPoiL8RYWEsrKS9qV2do3X2zurMRKKHtLNJ598whVXXJHUWZ7KG9A0jf379yflQPbv3080GrUS4zabbcAOdafTSUdHBz/5yU+YPn06tbW1vPbaawADhs+GglkefNVVV2XKgzOknTP+ktdUhX3wwQdZs2YNTqeTe+65h+5eoSLF6cQT91I0ESvU7e7uJhwOIxUFCQS8Hj6t/LM+x5BC4AqHyPq0BUWP4jAk4f0HcHR3E65vAEA/0Wpt/9BDD/Hwww+PzRvOkBZMkceXXnqJw4cPYxgGDz/8cB9vYNasWdx8881UVVVZoarly5dTU1PTpyHx/vvvTxmOuuuuu1i7di2KoqDrutUZn52dzdNPP82HH37I7bffzte+9jVmzZrVJxTWX6gssTzYnDKZKQ/OkE7OeAMCMSOSKC8OcMcddyTdN8JhgvGy0CKXC53YF1jXdcLBIA5A6gad06ZZ/SLWaxWFSG4uRHUkki+88irOBZfR1tyMM17Ga/hiXkng5y9iBPz8XelUlGgEIxIlosfCXgqCq10umnWdukgkkxOZQOrq6jh06BDr16+nsrKSr3/96zz++OPcc889SdutW7eOb3/729YsmUAgwHPPPUdBQQHV1dVs3brVOnkvX758WDpbt99+Ozabja1bt1qJ9dra2iQjMFAPSWJ58Ouvv84VV1wx5J6WDBmGwllhQFLR3t5OYWEhEMuLKHY79niFlE7/sT3dZkvSzQJACMJuN1HVhmFTOXDTUopdToKlU/jEFUuw6/Pn4Q4EufC110A3YrmSSBQhBHZFJRoPx7iEoFhRadRDlGdyIhOKlJI1a9ZY98877zz27t3bZzu/309ra8zDrK+vx+1243a7CYVCrFixgoaGBs4991xCoRBZvcKdEJufsn79elavXg3E9Lgee+wxvve977F3717LONx33319GhtrampYvnx5Sg8oo9OVYaw5a89QO3bssH7/8pe/zOLFi/H5fACUZGfjkBJN0zAMAyHlKaMhROx+AhJiWlo2G8IwQBIbl+tygxHbNhoIEvR6Yi/QdVDV2M84DiGQUmJD4FIE387KRgD/0+3BQOIzJP8a9I/Z3+N0pLy8fFyOU1BQwNy5c9m9e3ef51atWkVPT0/SYz09PfT09FjNiWay3263p6wcC4fDSZ5NZWUlc+bMIRwOW0YgMZmeaAQOHTpEMBjs44HU19cza9asjE5XhjHlrDUgiezYsYOLL76Y999/H4BLp5ZRous4p0+nvr4efyAQO+GPgoK6Q2Q77BAKgW7EioDjBsQySEKAlEggQswL6pESG2ATcL7HS9eT6/stA4azqxQ4P7//v0M66ezs5M0332Tu3Lm89957Sc+1t7f3+7prrrnG+kx5vV4WLlyYUn7F6XRSVFSUZIhuuOEG7HY7F154IbW1tWzYsMFKwCcaAYfDwapVq5KkV1atWsWDDz5ozaA3cyB79+5l5cqVmb6SDGkjY0BScOJ4CyVFp6QthKoiDQMYoAlwkAbB9tmzCHo9TKmvBy0Sk0MxpTgSSn9F3BPpjSIUvnrLX6E3NdGY4Ln05mwKe/3+978fl+NIKQmHw5YxSIX5f0v8/5n9IbNmzeLQoUNWf0gqensx5tz5w4cPW82vy5cv5/bbb8ftdvPss88CsSqwRx99lNraWitU5vf70TSNZcuWsX//fq677jrC4TBOp5O77rprwPzHUHtXMmSAs6CMdyQc8ft5443XrUop4fGgZGWhJF7xCpEc1rLbTz0+SoQQOIXALgQ5qorXZiPXYSf89ttoB+t46KGHRn2MkaIoZ99HxjQIA733VFIsM2bMYO3atVx33XWsXbuWGTNmpOxQ709VWErJN7/5zaRRAKaMy/79+wGYNm0agUCApqYmpJQ0NTURCASYNm0a27Zt48UXX2Tq1KkIIZg6dSrPP/88FRUVKVV/M9MVMwyXs+9sMEw++OCD5Af6MRDS9Ari5w/D10X06NFTelsRDUwjMxRMA6WqoCigKCheLzIYm50xUUZkLHsvJjv6AJ5fKo4cOUJeXh4Qkys5cuTIsCXon3nmGfLy8njttdfQNI3XXnuNvLw8ywMJBoNomsZjjz1GIBDgscceQ9M0gsEg1dXVluCkEAK/34/f7ycUCqU0EJnpihmGy9kT7xgh5hcU4idPIZCqesqQxBPsen4+MhpFSklkainuOXMIH3gL52VfAKDhv/+bkNvN+9dcDboRk0PRjVP7AFxdXfzZ62+M+3vMMDbY7Xb8/ljhg9/vx263E4lE+t3e5XIRCoVwu91WSEvXde68886kHMeWLVu4/vrrgVgO5tJLL2Xt2rWsWbMGIQRz587l3Xffpb29ndzcXGv/XV1deDweTp48mWQgzIquTNVWhuGS8UDiBINBCgsLKSwsxOPx0FNZSWFhIW1tbXi9Xo4ePcqxY8fQDQM9FKKnpwe73Y6qaaiqisPhQFGUfsMcEVXFJiUzf72bmXv2ctHuvczc+3rs9nrsVj6MmH54336WuFx9bvMdDn6Yl8+a7Ox0/WkyjJBIJGJ5bIZhDGg8AEKhENA3H/LUU08lhZEOHjyY9Px7771HSUkJACUlJUmJ/lAoRFNTk3X83mtINBDmdMVE0lm1tXv37rQNzcoM4JocZDyQOEeOHOHll18G4MYbbwSw7iuKQmtrK5dccom1vZQSn89H1jBzAo2fm0/hkaMgBO64mGNKBknKG90+fEbfbYptCrPtduY7HCm1tc6mKq3JgBn2Gm74KxHDMLj11lv52te+xpQpUzh+/DgFBQXW81JKqqurLTHHxN6VcDjMvffey/XXX89tt91GR+IoZpINxLp167j55pvp6ekhEolgt9uTEvajYdu2bWzatIktW7aMemhWZgDX5CHjgQyBxLi/oigoDgdOpzM2btVuR9d1enp60HUdwzDQNI3m5mZOqCrNzc00NzcTstkIxcNebTPOp+2CGTReOpdjl84lmJdHT14e/qKivgfX9aR+kcGwC4HPkASlzAg2ngGYhsIwDKSUtLS0IKVk+fLl1jZ2u501a9bg9XpZs2YN9l65tmeeeYYvf/nLScYjEolYZb3m+N39+/fj8/ksLyUSieDz+ayE/WioqanhqquuSpK9NxseR7KvTK5mcpAxIMPEMAwMTSMcDhMOh1EjEVRVxe12o6oqiqLgcDgoK4v1kpSVlVFWVoZbCJyaFhtWZRgx5d64l9E2ffrgB06h8pufn5fmd5cexlIl92zD7DMxQ6PmOIKtW7da2/QOS/W+b742MbzqcDi47rrruOGGG6yr9h/96EfWMRJ/mo+PhkOHDvHrX/86qcJry5Ytwxq8ZZLJ1UweMgZknFCLi7GVlSE8HnA6YxVZNlusyip+ws06ebLvCxOmJOonWjE6OwnvP4B+opVZ+QXMcLspV1Xr5lViP8tUdcJyJEMdmtX7SjnD4FRUVODxePo0MC5dupTW1laWLl3a5zWJeRgTTdN49dVX+c///E8rf2AYBoqi8MQTTxAIBHjiiSdQFCUtlXcOh4M5c+YkeSALFy4c1uAtk7HO1WQYOhkDMs6cLC2l5bzzaJkxg5YLLojdLppJ3bVLaJ0xg5Pnnpv8ArOcN+Hq0bngMtSSYmwVFeRWVjJj0SJKLr6YGYsW4cjN4ZzSUiISfEZMAiVHKBQrKsWKSp4Sy5Hc7Pbww7x86zYRSffEkbRmV/l4dZefbiSexHsbaEVRrLnu27dv71PI4XK5gGTPsL8wUnl5OQ8++CBer5cHH3wwbXIx4XCYX//619TV1WEYBnV1dWzdunXAsub+EuVmh/3evXv7hOIyyfXxJRMQH2f8ubmnZq5LQMROCAI4csXl2Ht6KPv9QS56479i25gSKqqCWlKMEQgMfIBQCNkTIlsRzIjL02cLQeI1pM+QoJDU0T4RHeyJ1UZmfL53kncgrrnmmrSvabJj6mwl0ttDSLxvt9ut6q7ehsdUDj6Z4Pl+8sknLF26lE2bNrFy5Uq2b9+elnWnUlhIbJDszbZt2/qoHH/7298GTiXKEwUkTSOYSa6PLxkPZJwxFAVdVYna7WguJ5rLRcTtRnO7iTqd9OTkUP+5+Xyw9Mt8ePkXR3AAA1QVQ0JYSsJSYgDR+M0hYIbN1ifENRHlv8ePHx/xa4UQ7Ny5M42rOT04fvz4kEOE0DcfYmLuo6enx8p1mCR6M+mivzX393h1dTU2m43NmzcTCoXYvHkzNpuN6upqIGYQDh48iK7rHDx40FImnqzJ9UTP6Otf//oZ4xllDMgQMKXfnfHZ59Jut3o+5AC9H/0hFQVhSEvZ17whJYoRE1p0d3URSmgCSxcCgRNwIaywVqrQ1mTtIylUFMrLy9OSqO994jyb8Pv9VFVVEQwGifYzhnks6J2gh1g4TQhhhdUAGhsbef7555OMwfPPP09jY2O/+56syfXeEjHf+ta3zhiJmIwBiWP2fPT+HWJqvc8//zxvv/02hmEQjUatKizDMDh58iTNzc0DuuTBYJBgMIiu2jBUFcMWS57LuBGSijIsHS39RCvRY8dQT5xI+omuQySCa4CToy0e0jI9lESDkipHMlHGJJVhbjMMmpqaLImQ0TCa3ozTHXN++y233DKux03VF5M4bvrZZ5+1jMjevXuT8hmpZrEkMlmT6709o7lz504az2i0ZAzIMNixYweapuH3+2lpaaGlpQURDFq/d3R09FtZ5PF48Hg8qAIUKWPzQ6SMzw855cYb8fBWy0UzaT+ngg9uvIEPv/g/+uzPTKLrJSVJPyFeamwYlGVnMy07G7fNhktRyLbbUVIYqUSDYu9lSCbSmKSq/sl1OpFS0tHRkbYruClTpqRlP+NBusQsDcPgyJEj/Md//Eef58yhV6mGX40FmzdvTjJoGzdupKCggCeeeIIVK1bQ3d3NihUreOKJJ5IaKHvTX3J98eLFExo+mqyeUTrIJNFHiTaMeDScqoQRvdR8e/8MZ2UhVZWuKVNor6gARTC7+dMhHUOPl2OqNhuGrsemHtpsRKNRBiuaVIkZEhCnOt0TEu7jmWxPlXjtCoetx2tqatKSHB1NLma8SaeYZVZWFh0dHVai2iRRv2s8CMQLQwKBADt37iQcDlNcXIyu69TW1rJ27VrOPfdcsrKy8Hg8/e4nVXL9hhtu4MUXX8Tr9SKlpKenp08yfqwxPaMzcbDXmHogQohrhRAfCiGOCiG+m+L5c4QQe4UQ7wkhfieEuH4s15MOenp6cLvd5Ofnk5+fjy031/pdVVXLNe/u7qbRptLd3U13dzeRSASHw4FwuRAOB9jtCFNpF5LDV1Ki6jrCMLBrGrZolJ6cnKEtUFXRDANht6Pk5GB4vUibDcXtoscwQBl+7qBYUfok28ejBLi/BKsZPx9JE1qGU3R0dGCz2YatEDwWmP9r02g1Nzczf/58GhoakFLS0NDA/PnzaW5uHnA/vZPrL730EqqqsnnzZsLhMPfffz+qqlrJ+PGgt2f03nvvJSkAnM6M2eWkEEIFngauBhqBd4QQ26WUid/6vwf+PynlM0KIWcArwPSxWlM6OHDgAHAqT7Lh0Uf53ve+Zz2fmAe58cYbefkb3wBgz549ZGdnDzjBDrAMieZ2I4XAX5CPVFWitnIOuz1c1CvGmwpFUdANI+mfq0d11Lix8nq9BIKDlAMnYMqjxHZOn4FW4+mVeOx2gvHKorM5CZ4OzAue4VR1jQXXXXcdjz76KA888ADPPPMMEJO/3717N1OmTOHEiROUlJSwe/duq0+oqqqKH/3oR5ZHpqoq9957LxCbMW8O0AqHw+zatcu6+p87dy4vvPDCuJaA9x7sZbfb+du//dszorR4LL/5nwOOSin/CCCE+DlwE5BoQCRgXlrnAgNfXkxCunqFFPpLoj///POsWrVqaDsVAsNmAwQRT+wkqTscNOXlcjInmyw9ijH3EoTNRjQUxuZyEo3q2GwqTq+HC/e+jh6JEGlvj7mYkQhRw8BjzmGPRPDY7GSXl6JpGja/3wojDIXLHA5yEmLxHiGSxuw26WNX1RNMKEsdz+qhMxFFURBCTPjf8ZlnnrEMhykW2dnZiZSS1tZWDMOgtbUVKSWdnZ1UVVXx9NNPI4Tg0UcfBeDBBx9kw4YNCCFYv359krDkhg0buPrqqyfs/SUO9mpoaKCgoIAXX3yRBQsWnPZGZCxDWNOAYwn3G+OPJfJ94FYhRCMx76NqDNczuUlleER8Xno8X6JqGuHCQoquvJLs3FxyppaRa7ORM7UMe14eOVPL6CnIR3E6wWajNRSiyd+NYRjYVRWl1xW74fOhBAIxgzIMWZEcRbG63FMJN2YEG08PIpHIhBsPiKkPCCHIz8+38lGmZ9G7asswDDZu3IgQgqysLB544AEeeOABcuIhXkVRWL16NR6Ph9WrV5Obm8v27duTwke333572jrsh0LiYC8TTdPGNYw2Vkz0N30Z8FMp5VNCiMuAnwkh5kgpky7rhRB3A3dD7Arl9ddf73eHfr9/wOeHSu9S3sTHTbn34VJfX3/qg2RqXEGy8RAiqSpLxo2HFIJQTg6GYVBfX0+W349uSOyhEJHOTiKRSCwcYRgYuo6iqhTm5aEbBsLvR9ps6MSuGKSiIKXEcDjQDQNHfBBW6ZQpqF1dEO9cHohZNhuO+LoVAWUJiVgbgo8WX0XWBRckeSa9Ga20fHZ29qD/63R9HhIZ7f7StZ50vq/B9pXuv2EiXV1dSCnp6urq89y9997L0qVL2b59u+WlmDkbn89nbWfmTnRdT1rrPffcw+OPP84111xDNBpFVVWcTierV68e0/eUSGNjIx6Ph1AoZBWARCIRGhsbrTXs3r2bf/3Xf+WTTz7hnHPO4dZbb+Wqq64al/WNhrE0IE1ARcL98vhjiawErgUBwJjaAAAgAElEQVSQUh4QQriAIuBE4kZSyueA5wDmzZsnr7jiin4P+vrrrzPQ8xPJ9OnT8fv96LqOkBI9biyk6WWkwKzWMq+4IpEI06dPp+fDD1FyctG7u/Hm5dHd3U12djadbSdRVBVD13G6XGiahlAUFNupf7WIS4Ormoaq6ygJ9xlilY9DCMxrKpsEf8JsEqeA0nCIaLevT74kkdHmTnJzcwf9X6f787Bq1apR7y9d60nn+xpsX2P5nUol9mhywQUX8MUvfjFlwcTs2bPZt29fUu4EYv8jswrL7BcqLy+noaGBoqIiDMNg1qxZ43qecDqdbN26lUWLFrFhwwb+8R//kWAwyBVXXMG2bdvYsmULmzdvTpJgmTVr1qQPcY1lCOsd4EIhxHlCCAfwVaC3NsInwFUAQohKwAW0juGaJhy/308kEiEc79UwoJ/w1Qg7rYUSy3MYBjIcRgQCMaMQjcZuigJ2e6wyK16llXgfm42pU6eO5i2OG4NV5KSL782dy+zZs3nqqafYuHFj0nOJsuoZ0k/inJPe1NXVkZeXxy9+8Yukx7/4xS/S3t7OF7/4Rfbt28d5552H1+tFCIHb7ebuu+8e9ya+7u5urrzyShwOB6tXr6Y7wfOezBIsgzFmBkRKGQVWATuBw8SqreqEED8QQpia02uAu4QQHwDbgDvkOJWE2GzjH717+OGHiUQiaPF5IrquI6PR1NMHR/hnUNwuRE4OhseD/YILCBQVIj0elIIClIKCmIR8JIKIRk/lQEIhhKZhtLaCpqF2dFDidLLw/POZX15Ovts9orU46htSSsonlgSPpgR4POronU4n3/5qbF74Pffc06fktaamhuLi4qTHet/PMDCmWrD5c7icOHEqYGG323nmmWfIy8uzvJKGhgarSCQUCvHjH/943EvAe+eaEu+fzo2GY9oHIqV8RUo5U0o5Q0pZE3/sH6SU2+O/H5JSLpRSXiylvERKuWss15PIeDfxmHpapoaWw+FAxENTI0HJzsHwdSHDYQxfF+LEidj9aBQZ0ZADJcV7eyAuF9LhQCkuBocDPT8fkZdndbjjcnH55ZcPf43hUEpJ+UT9rdFob41HHX04HOaOF56nsrKSZ5991tJDM6mrq6O1tTWpQbS19Yx2otNO4gTEdOyrt96WEZe/Mau5uru7J6QE3FQR6P2dT4cEy0TJ2E90En3COHLkyLgeb8eOHUAsput0OrHHBRntUqL2OikBVghLQkzypNeHzrngMgDCB97CedkXOPn2OxR+bj49b72FkpeHISWGrws1EEREo0jzynmwL040ihIIIKWMaWxpGoRCRI8dY+H55yPDYbSsLKJ//OOw3r9TiHiH+yk8QrEkU1LNcJ/I+e1mDwHAy3V1AKxdu5ZvfvObKbdXFAVd162fGYZOOubGJ5KVlYXP56OoqMiq6rrzzjt59NFHue2229KqMjwczBxP7yDLunXruOWWW/B6vTQ0NHDuuecSCAT453/+5yHtdyJnxJ+1WliJoYgJH8GaKnEd/5AJUq+vubmZ+vp6Gm0q9fX1+BRBfX09bYWFfHDzTRy6/nrc115Lx4zz0YuLsV9wAfYLLkD0kq3og82G4fUivN4kD8RWUYGtogK1JH3hGRWswVepZrgPVg48ljHiVN3ZA0VXU50EFy5caHksTqcz6X4iqR7LECOVeu9gpJJg2bx5M3l5ebz66qvMmjUrbesbDuZ7SKVnFgqFaGpqQkpJU1OTNcNlKExkDuWsNSCJX9qJ7sRNSYIHIqXsU6GiaRoOhwOHjI0LzTEkDocDu92ONxJBc6RxXGzcA4keO4Z+ohWlowO3zYZTCJxCYE+jAb7M4RiybMpExIiffvrpIW+7b9++pPDMvn37mDlzZp/tNE2jqKgobWs8kxjMO+mdyzQ9QCllkuqDqfh755138oc//GHsFjwAHo8HRVH6XDBUV1ejqirTpk1DCMG0adOGJbdy+PBhGhsbk0JYjY2N4/L9OGsNyF133WX9PinHqPbyQIaqwhoMBmnKzsbn8fCWy8knn/kMv1+4gN/Omc1v58zmw8/NH/5aenkgRn4+2GyWHHwkjQY4sUlxMK9kvPNYzrgS8HDoXaJaFw+HJTJt2jSCweDoF3gW0js5bc51N8veTb773e/i9Xp57rnnJkwCp7s71tTbe6JkY2MjTqfT0uvavHkzTqdzwNkniZSVlVFdXW3NG6mtraW6upqysrKxeBtJnLUGpLa21vp9OGNUx40UHshQTjKGYeC02bBpGu7OTrLb2nCfPImnsxNPZydBrydW5jsKWXClowOiUXJdLssDyVEU61aSJhnwRBHHVF7Jc5+dl5bjDJXhnnjy8/PZs2cPv733G+zZs4f8/PyUvQ7mrJgM6cGI9zUlfq9NT1DX9bQk69PN+eefz3XXXYfD4eC6667j/PPPH9brfT4fS5YsweFwsGTJEnw+H8FgMMkrqaqqSnui/aw1IImUlpZO9BKGhMfjIRwO09zcTDAYpLu7m4Aikn5Go1HU8nKihYW4lywhUFFOpLgYpSR2Ew4HuF1IIWJ9Ipo2bINieiA4nbhycrC5XLiKCsmvqCC/omLwPMsQMUUc+5NNOfbOb9NynEHXEb+iHe5J3u12c9VVVzHvmR9x1VVX4e6nHHpQgc0Mw8LMGQ5k8Cc879mLAwcOsGLFCjo7O1mxYoUl2joUGhsbCYVCFBQUIISgoKCAnp4e2tvbLa/k5ptv5kc/+pE1EtmcMT9aI3LWVmGZ2Gw2WlpaJuz4YSnxEFfxHWRb8wRWVlZm5UD0Lh9qdrb1M9XVVejccymOh64Ce/ZgmzaNULcf97RphLq7sR0/jjHJvlAQm5I4o1eM2y5gSbxfwNN2kq4n15N739ph77vryfVDllmJjHAGR3NzMy6Xi1AohNPpHLDxMdXskwwjw1TErqiooL6+vt9tJhOKoiSJSiqKMuTZL0IIKisrOXr0qCU46XA4CIfDlgrx888/T15eHllZWTQ3N/Pmm2+yfPlyqqurR1WpdVZ7IF6vl2g0OuwcSKJOVltb26jXYUZxzXCVWboLyTkQj8czaMVONBqltbUVTdM4ePAg7bm5tKkKBw8e5ODBgzRnZ/Pu/Hl8PPeS0S1a0yAQgEAAoWnYu3wYra0Yra3Izk6MlhZUf4ByVaVcVfH2CnPlKAq2QYyWIk6N3T2VbyHJG9GbeqvjDA29qalPfmUoFWADTcRLhVlNM1hVTeIJLfHqWO3HM5w9ezZAv7Lk4ylXPhmRUvZrPCYjhmFY56H+Qp39IaWkrq4Oj8eDEMKKVCTS2NhoaW2ZlVovvPDCkPMs/XFWG5D8/Hzcbve4TV6DU+WhNpvNEnZL15hSSD4R2e12XJqGS0rsdjt2uz0m59DZSdjtthoQZURDaFqsV2SocX6HA7xe8HqRDgeR3ByU4mKU4mJEXh5KaSl6ltc6IQekxGcYSbfoJLsKnCwk/g/N2fbTp09HEYLp06dTXFxsNVHecccdfcYo2+127rjjjnFbb4aRY4bZioqKrAhDMBhk+vTpw96P3+9HStnv+exnP/sZdrvdyoHs2bNnVGuHs9yANDc38+Mf/zhlaeVY8cEHH1BXV8fx48fp6Oiw/umJVxwyrtSbLjdbI3YFHAqFiKoqLX/2Z7F56zffxPs338Tvbr6JD6+5emh9IiNkssWcR4IQYlj5it4XBiO5UBAJr0n1eaiurqawsJA9e/Zw8vEn2LNnD4WFhVRXV4+rZHmGkWF+70+ePGmVJHs8nmF7T7quk5WV1af6zJSxz87OZtu2bXzlK1+xZsw/+eSTw/aoe3NWG5DKykrKy8s5ePDgiPfxwx/+cFjb79ixg+eff57333+ft99+G5/Ph67rfbpUZVypV0/DvAYZD4GZ5Y1Omw1nvErL09mJOxAghCT6aTOyJ4iIy2Qbvi6UQABhH2yS+hDWcAZ4GyMp4V2wYAG/vuMOFixYMKJ55v5wGEVRiEajCCHwer1JYoCNjY288MILsSYyVU0KTTQ2NvLd736X2bNno5wBBvxMJHGQm/m73+/v41UOht1uT/JAzNdXVVXhcrno6elBVVW2bNliiVOqqjrgjPmhcFYbkMRZxWNBfzNFTHbs2MH7779PT08PmqYhpUTXdXRdJ6rrRA0DnVgJYjpLD9XyckR2Nu4lSwjOnEnW3/wNwYsuYur+fbivv57uefPIuu1vcF97LaEvfH7E3eeJOZA8RaFYVZNuDiHIUxTK1Zg21pnI/v37+dJPf8r+/ftHvA/DMGhsbMSIx7qfeuqpJDHADRs24HK5yF27BpfLxYYNG6znfvKTn1BbW8vb99w7qveRYWzofQIPBAI89thjw5Z1iUQiSVVY5vnCnA8fjc/8mTJlCkIIpkyZQjQaHXUO5KyuwjKrD6qqJnYQYiQSweGIXeWbCXPzalUB9HiI649//CMVFbERKx988MGpstKPj1Jhs3F+ee+Bj8NHnTYN2+E/ED0WGyYpDv8BI+EqSWTnQLCnv5cnoWd56dDCBAJBXIpCKN7kZRgGWVlZuDQN1enEHYlghMNc5nBSrKjkiNiVvjpoXdrZg91up8Dh5C9u+xueeeYZKyTo9XrZvn27FR6LRCJs374dr9dLOBwmEAiwYsUKGk6jhPLZyIwZM/j4448t2fm5c+fy7rvvDmsfpu6X+TMRIQSLFy+mpaWF1tZWioqK0pIHOas9EIgZkYMHD05ojL6trY3u7m6klGiahq7raJqGpmmENM26mjBnCDz88MMp9/PGG28MeizDMOjs7CQoRJKGVlAI9u7dy5ErLufkjTdQ8L//iYL//U+cvPEGnJ/7HO5rr8V97bW4Fi4Y1nubN28+Xq/HCv8YhoHDbic7OxtsNoTXS9m8eZR9Zg5zbr+Nss/MsRLvOqd/2CtdRKNRjgf8vPrqq7hcLuvv2V9vSjAYJBqNEgwGrUl4/Y0wyFR0TRyqqqIoCh9//DFCCAKBAOvXr+f9998fcn6iv9ya0it/tnv3burq6jAMg7q6Onbv3j3q0PJZ7YGcDqRSsQXIyclJakyzKwqF8Q7cwWLtuq6jJzTGBYNBdCFoa2ujpaUFxabyzjvvMH9+rHdEnTbN8kgA6OgAGR9SBYM2Ic6bN5/I0aOEDB23O+ay954RnWFgzC96fX19UnxcSonH46GkpIRPGho455xzOHHiBMFgEKfTyVe+8hXef/99Thw/TjQaxev1omkan/6vGn43fx4rV660wmFNTU3cfPPNvPrqq4TDYZxOJ9dddx0fffTRhLznswHDMKyLVykl3ngRi8PhGHJ+or/vuynrMpb5x4wBiWM23kwU5rHNRLfD4SAajRIBFCH6fEhMqQITj81GWzRKcXHxoJLihmEgiF39SECoKnYprTCaKpMVTXs36rUuuQ77sU9QsmLChlFNA330yX4A/UQrC88/n4aGBlRivSOJpPsDe5nD0ecYAB4hrEbDiZSV742iKH3yYfn5+TQ0NCClpKGhgbKyMoLBIJqmsXPnzqSqHCkl0WjUSrivWrWKBx98EIiJ8r333nvY7XZ8T/2QnDWriUQiIx70lGFopDrBa5pG0wh7nBJxu91J5wnToHi93rS0L5z1ISwT8wReUVExIfLax44dQ9d1/H6/Fb7y+/3WbajGLdED0TSNiM2GAVZyPhWaphERgs7OTvx+Pz5F0NLSwt69e2mMeyPjhVpSjK2ighmLFmFz2Pv0jgTSfDVlijf2HnhlzimZbbePauhVukl1tWnKgAOWHDicEmlsamrCSAh5FRYWEtF19u7dS21treUNpmOwUYbRY4aeRuo5JIbjw/EqPhNTJ8zv96clbJ/xQOKYA4SOxUM1lZWVuFwu3nvvvXE5vtlf4Ha7rSZDm81mXW1Go9E+Kp6pMJPwuq7jcDgwfL7Y9MGE6Wy9SfRIALINiR7PU3TKvvMVojk5kDCkSgSDKKqKVOL302WAdZ1pOTl0JxzfBpTH1+lMU96qXFUpUhTMv4ydmNd3vnpq/4lDr0YqnzLemPmPJ598koUfHuHm7b+kpaWFkydPUnR/NUIIPvvZz1phk8TBRp80NHDOhtphDTYajOzsbH75y1/y5+/8lt/Nn8eVV16Zlv2ezqSSLBlJuTecOoclGh5d1/sYis7OTh544AFLNmU0ZAxInN4x+fGeNbFjxw4uvvhi3n//fWbOnElhYSFtbW19Jid+9rOfTfn6Y/F8RDQatUJRIyESieBTBNLvp76+noAiCMW9EYhNe9O++D8oaGrENjUmF93T1ETE5cRbeGqmRfTT/nWf0kkkhTz6cHEKgcEpSRl7/L75iXCImHwKCrHkfvwKfzh6Wuli+vTpNDU1Damsu729nUsvvZS1a9f2uZr95B//F482N/HMM88kJcn9fr81kre+vr5fAciREA6HWbJkCZFIZNh9DmcqIzUWqegvSlFZWZlU9p2fn09eXl5ajpkxIHHy8/MnXBXVDC94PB7sdjsej4dLLrnE8oogVjdeWFhohdlycnLwxRv/IHbFEQqFRvwFlVKiAkZ8brua4I1ArBLMAahTSi0jofp80CVjuZA46pRSqP/TiNZwaidqbGa7lPjiJ2KnEDTGQ3HnFxdjj1cQDZdIXZ1VNuyNS9KbnShD7Ugx9bT6o3yQiYojYbgdyv2Vgp7zvb+3piSa1XurVq0iFApRWlrKiePHKZkyhePHj7Nq1apRj0YtKCigo6ODkpISThw/TkFBQcpy0wzpJ9F4AH2k7kdDxoDEMU/CHo/HSjqNpUJqqibDI0eO8PLLL3PjjTcyc+ZMy/tI3PanP/0pN998M7fffjttbW1J2wFceeWVqKo65ld4Jf/xC+v3fbUbaAn4+cvvfjdpm4+/sADD1wUQ09uKRJHxhkERiQxZdys/Xs5ohrKEIigrncq0KSUjXr999myuufZa3nr8cVBUvJzyQCZz1/ZIPpPZ2dkE/H4rD2JiGAYffPCBdeXa3t6O1+u1yoRdLhcejyctF1YejwdN0yyPJp2eTYaJI2NA4piTzRLzDKerxLbNZrNUeZ1CoOg60XhZJwzfbQ4Gg9aVbyQSQbGpSd37HWrqWgxt+rm446XAPb/6FT6/n6yyWLOjKSM/VPILCvBmZSE0jfJ4Utc0TqPh4osvRj/Riv/EiVHvC5KruhIruRIZTQ5lJJ/H7hRhNEUICgsL+4wyMKt/JKSlCsikubmZSy65hPfeew8JNDQ0MGfOnJQyQlu3bmX58uVpO3aGsSNThRXH1Blyu93W1fvpaDwgZgzNJjIjwSD2jpFqmoYWLxEeyKQYhhGbvx6fuV4e1cnOzrZukUl8xT7eDDaSNzGHMpEYUnIihdGMRCJJc8jTJaGTl5fHu+++a1UEKYpCXV0dXq/X0uqaPXs2W7duHXW4LMP4kTEgCQQCAXp6evjBD37Ao48+OtHLSRsyfiIwTwaKoqAQ631xSGndzzD5uffe9GlaDdSANtDzI8GMuSeWG0spCQaDHDx4kI4n13Pw4EHLeGzdujXlfrZu3TohZfYZUpMJYcWZNWsWdXV1SCl54IEHgNiJNl0NN+OF3W63rvI8Hg+KELFGwTTOHDmuKhgJydygEAivN6lSa/78+UQKC60Odikljs4uonFvRensQkYjCLcnNpckOydt6zudGG4lVzpKLyeCRCmbxJ8yfgEjpUTct5arr76anTt3smzZMvbv38/GjRutrvi77rqLZcuWUVNTQ10aqu8yjJ6MAYmzbt06li9fTn5+Pi+++CIAt91227DnYI8lQ9HGiUQiVj9HMBgkSOyEbn5h05FcjwiBO6FU2CMlmmEkVWoBtP/VV/jzK66wtvvFY49ZifZ9tRuYEwolhXPEwbok4UbEme8XTUQl10Ri9j0k9j/k5eXR0dFBXl4eu3btYsmSJdxxxx3853/+J6+++qrVN7Jy5UoWLFiQssT+Tpeb/xMamshnhvRxZn06R8GyZcu49dZb8fl8LFmyhMrKSlauXDmprvgSZbpHimEYVsFAdzzJbosbHE3T0hq2GIzeieTDtRso/vhjbHHF4e5Nm8ZtLRnGh8QQlskvfvELy0gsXbqUXbt20dTUxPLly6mqquLwoUNUzprF8uXLqampobKyso8HkjEeE0PGgCQgpaSwsBCv18sf/vAHtmzZYl3Nn64VWb0xtZAg5qHYFYUeIfA6nTgcjlgCdQhGpK2tzUq2SkVBOp1WRY1hGPh8PnJzc8fujZxBJFZuFSsK9oSiBBuC+SUOglJSF4lMKl2ukZDKgCQaib/927+15p0Eg0E2bdqU5IHU19ezZcuWUVdpnQkTMicDGQOSwLRp0wiFQlbJajQataa/TQbjUVNTYyUZ29vbrabDwsJCKioqOHbsmDV5MDrAJMPE0ZmKEIi4XpbpgWhCIAepvtF13TKuhq7jCIdR4iEsXdcJBoNEIpGkct/uhDzJiV6KvyZJyr/RaKx3JP63F5EI8gzsYDYrtwCKFYHfOPVZcwpo0Q1ylFgD5ZkW0gKora21jMRNN90ExAo8FixYkGRcFixYQHNzM8uWLeP+++9ParA1yc7ORtM0K2/icDiIRCJJEh/z5s0bkixQhsE58z6NI2Tbtm2Ew2Hsdju7du0CYjmQ5557Dq/XmzR6cqJIjP3u2LEDgBtvvNFqPnz55Ze54IILcDqdA5Zf9vZAdCFwqqrlgTiiUYx05Eris5hNsgMB634qjS1IDmt9+vbbhAyJe9qp3pF0o59oRXZ24k64IjV/syU8Vq6qOIXgL//iL9K+hv7IEQKHEMyw2bALWOJyJfWWdD25ftzWMpZ86UtfSsqLCCEIh8Ns27aN4uJipJScPHmSbdu2YRgGVVVVfPrppyxcuJC39x8gImNabuUVFdhstiSv5aabbkLTNNavX8/ysMYPjn3Cxo0bueeeeyb6bZ8RZAxInJqaGl588UVaWlr4zne+w+HDhznnnHOIRqPoum4ZkHSHsgYbe5vIUFRRw+GwJY4HMYG1/gbOAHQZBnk2G9H4EKtED6S7uxupiAG9mbFEeLwoJ09aDYOi9STC68WQsRBbOiq31JJidCB88iRaPHSXFTccpglWiXlteVlZlHf7iYxTH4ctrskVmwcjkvS4AHp27hx3La6xIFVlls1mQ0qZNGXPFBjduHEjjz/+OKtXr8b31A8B2PDGG/xg105+8pOfJHktubm5fOtb32Lz5s3cd+gQ55x7Lvfffz8vvfTSxLzZM4yMAYlz+PBhFi1ahN1ut8JE5iyExMTyRIay1q1bN+g2pltvVo8VFhZit9stjyQnp+9JNxqNogjBp59+Sk5ODid9Pux2O21tbXz+nHOJ9jPJbqxxL7mGrl/vJrfyzwDQDv8BgJz4fYiFvNKB0+lEahoRXcesiQpLiaoo2FWVc+fPx/B14VxwmRViM/W0EkkcyZsuteD+kMHgGVHBNWXKlCTtLTjlJefn59PR0WH9NJ/r7UGsuOwy1u3Y3mffTU1NXHTRRUmPXXTRReMqljp79uwztuz49PiEjQPmLITFixdbj5mzEMx/vsPhGNNJeoN5I2PZoaulMIyRSIRjxz4hp9cXcLzIvW8tB10uLqpaBcSqtADr/mgwcy1GIICMaBCN4okPTjJCIRS7HVtcBl+GQin3YeppJY4YzlGElc/IUSYuUXuZw0GpqvbroUwm7yTRyzBleCDm7ZtGo6Ojw/L+nU4nzz77LKtXr7b2sfnAAWw2G9/+9rctD9yMGtxzzz2UlJQgpaSnp4dvfetblJWVjdv7O3z4MC+88AKPP/44hw8d6qNJdjqTMSBx1q1bx8qVK9m0aROLFi3izTffZOXKldTU1FBdXW1JaE9JuEoySaXpn26G2n3b3t7OBRdcYN3PyspKGiQ12DpVVY0l1xWFwsJC1HhC3uzt0HWdM6EP2My1tP/dd4jU1RGub0DJj51s9dYT4HTCAFf3iTz00ENATO8p/3e/Q8nJHdJ8+rEkR1EsKZVUTFbvJDFcKqVk6dKl/NOln+U77/4/tm+PeRh33XUX999/PwDud97m+6+8wonuboQQdHV10dnZiREfrGV2u1dVVVk5kB//+McDhnXTTVlZGffffz9btmzhz9/5LUX3V4/bsceayfkpmgDMq/uqqioOHz5MZWVlUtXTrbfemhSTTSTdxuPll19OuroCKC4uHtJrd+zYQUFBAW1tbQBcdtll9PT0WCGt0tLSAY2RWUFlhrDagHKnkyNHjrBo0SI0TUMfYkFBOBy2KtqCwSDh3Fy646W+UVWh409/ig03KipKGrua4ewiKysLv99v/Uxk+/btluEwqa2t5ciRI6xZsybpcSklmqaRk5NDJBJJkox/8MEHWRMvkrnxxhv77HOsCQaDrFixgk8aGsb1uGPNsAyIEOIqwAP8Sko5qMqaEOJa4J+J5SH/j5TysRTb/DXwfUACH0gpJ0yGc9myZSnDRMuWLeNrX/saZWVlaVUoHQ7NzUMf0GSW+EKs8zxROttmsw1a5tsbu91OXl4ehw4doqysDNlrRnt/DrkpwgixL5BL01DiORhbKIRhsyGEIDs725ozcrqjn2jF6PKx8Pzzafnkkz45kssvvzwtQ7CGS+/Z772Vgieyoss0GkOVDNq2bRv/9V//Zd0vz82lPRgkGIkghKCnpwdFiKTPfWKC/rXXXkvj6genqakJm81GV9fo1aMnG0M2IEKIp4AuwADuBa4fZHsVeBq4GmgE3hFCbJdSHkrY5kLgAWChlLJDCDHyAQ9jzKxZs6itrWXx4sUT0oQ0nLnUZokvYHkypkfidDrxer1JM0MGMyiRSMR6vRlXnjJlCtFolNzcXIwhhnpS7dcfn3yYSib+dPRK1JJilJxYA2VZbg4zrr2WQ4cOMWvWLGubaIr+hbEmsdcESKrmgsErutr/7juo06ZNilG+1dXVhEIhhBA8/dd/zWO7dhGMF4lIKa2CkcThW3feeScPlE1j1Ttvs3379nH/Dix6SHoAACAASURBVKdL1Xiy0a8BiRuMf5RSdsYfOgf46/jvvx/Cvj8HHJVS/jG+v58DNwGJ47HuAp6WUnYASCnTM5RhDFi8eDFLliyxTrSKoiCEQNd1pk+fzqefftrvSMl0HX+kmIOqAG6//XYqKipwu92WUSgtLR3xB7yrq4vsEQ4HMoX0TC9lalTHmdA3cqZ4JacDg1V02SoqJsTwpaKxsRGIfX6+Edetu7isjA96eemJuclXX32VHzc0UDJlyrj3dZmVm2Y+Z8b3Hxq3Y481A3kg/xf4uRDiFWKexAvAXsAFbBzCvqcBiZ+4RuDzvbaZCSCE2EcszPV9KeWveu9ICHE3cDfErnxff/31fg/q9/sHfH4k7N69m1/84hfccsstvPnmm9TX12MYBgsXLuT73/8+v//97/ne9743pgbk5z//OX/5l39p3U8szZ1oDMOI9Y/Eq5VMuRTDMOjsjF1/aJqGPWEbNRrFUBQ0TYslPePb9iRcNUYiEXI6O63/ZyC+r+H8fwf7PExpacHh96MaBuH42oQEPRq1JMeRks7OTtRggOP19dhbW/nd668zpaWFSMJJNxgMYvf7MeJX+ub2uq4nXQ2brwc45ze/4aLCIj6NT/3zCmGV/9oHuUoOpbGberB91Se878mCzWbDpSgYUvYxHhBTWjDDYk1NTRhS0tbWxrx58zhw4EDazxMDkZWVlTKfMxjjscbRHKNfAyKl3AdcK4S4FdgJ/IuU8ooRH6n/418IXAGUA/8lhPhMgtdjruU54DmAefPmySsSFF578/rrrzPQ8yNh1apVbNmyhZaWFt577z3r8X379nH11VfH3kiaeyUSx9Ta7XZOnjyZ9L4m0njk5OSgqqoVBohIiVQUgt3dsZCWYeB2u+np6SEvLw+Azs5OhKLgipfKykiEaNz7yMvLQ9M08vLy0HuVSvuLCvHEr+D8RYXYpeSGYfx/B/s8tL/0SyJtbYRPtmGPry3S7UO12TB0PVbGG42Sl5eHoQiKpk8nqqpUXnEF7S/90hJ+hFieKisrywphmdsfOnSI6dOnW9uZrwdo//znidTVMWPWLN544w2cQsQbB8E2SKWQK41jYQfb1/SE9z1chitZP1Si0SgDZU0ScyoFBQWcOH6crKws3nrrLRRFSft5YiD8fv+wqzWdTue4rHE0x+j3EyqEsAkhbgBOADcDFwshtgshLh7ivpuAioT75fHHEmkEtkspI1LKPwFHiBmUScXhw4dpbGxk3bp11NbW9qliMnMIiY8nTl4bLaax2LZt26j31d7ejtPpxG634/F4KC0txWazYbfbsdvtQ/qA+3w+a1pdJBIhGo3SFggQDAb59NNPRyUZr2lav9MPHZLM9MPTEFOyvr/btDEoKRbEmhBNjh8/jiTWTyKlnJCZ7MM1HqF++o8mEwOd3V4CLgEuJ5an+EfgHqBKCDGUENY7wIVCiPOEEA7gq0Bv/+0lYt4HQogiYiGtPw7rHYwDlZWV/MM//AObNm1i8eLFfRLOppFIfHy0U91efvnlpMbCoqIiampqRrSvRHbs2MHRo0dpaWnh/fffp6Wlhfb2dlpaWmhpaRlyGM5MwtvjDXdujwdP/Obz+ZL2c/ToUU6cOIGvp4dPPvnEag7LkIyiKniFIEdRyImr8trj971CUK6qFCvqRC/ztMA0Fibmd9T0mieDth2QNMpXSknX+qeQUp4WxgMGzoGcK6W8MX7yfwtAStkM3CmEuGSwHUspo0KIVcTCXyqwWUpZJ4T4AfBbKeX2+HPXCCEOATpwn5SybZTvKe2Yw6ai0ag1Mzo7O5ucnBxLKuH666/nySeftF6TanDOaDAMI0l+4cILL+Sjjz4a0b7a29upqKiw1HydTic5OTn4fD4rFDca/avE93v06FGampooLS0FYvkRn8+H0+1GJCTMU9HV1UW33YZI6B2RnPLEbDYb06dP76PoOxzUadMIv/026DrSNHq6AdFoTNY+Hp4bS8zS38vOnU53YyP006ncqOsT2t1+OpMoI19UVMTJkycneEUxOp5cT86a1YNvOABSygmTpx/om/FjIcQB4A3gh4lPSCnfH8rOpZSvSClnSilnSClr4o/9Q9x4IGOsllLOklJ+Rkr58/+fvTOPj6o8+/73niWTzCQBkgAhJBiUpoTEihZcgFoWlaJoqdbHBipYeVxSSX0LgkhE6xLQKPStAUUtKCpJrbZSUSkuhFbUR+EpUAPxpchiICSEhJBlssxyv39MzuGcySSZJJOV+X4+80lm5syZe7ZznWv7XR18HV1KWloa8fHx3H333WoMf+bMmbz++uukpKRQUFDQrNEvkCEs8Bz0taW8ivFojxijwpYtW9i7dy8bN25k7969Oo9E8Uba+oF5h7Dsdrt6UaS0XS4X9fX1REdHe0Qdw8JUL8Xph2F1u92YQfV0QqUkREpsNhs2mw0hRKfHDQ9Y/ADWn/0Md2goxiGDMQ4ZjNtoRNhsyNBQj3hjG4ausxiHDMaUkIApIYHQgQMZlJCAbehQQrxCgYoHclWIhYlhYbgrK1vYYxDQz/y48cYb+fZ3jzFhwoReYzwABi1+gNTU1E6Hpxcs6Ly8T0doLYm+Buj8CLx+QnZ2NpmZmXz88cfccsst/OlPf+LNN99ESsmwYcMoLS0lKiqKiooKndyJ0+kkMTFRV4XTUfwRU+xN1VlGo1EtFTabzRhdLuzKaF2DAbNGNbi72bVr1znjM+6HVNbWEGa1AtCQmkpkQz0jd/wTYbMiK8/iPFmMsNpwFhUFTMCxTcxmTEYj1XV2QuQ5D2S3dLNsyVKq16/nKovFZyfn+R7qEoDNZlM/445UQHUHbik5ePAg99xzDwA3dHA/EyZMIDc3l4qmar7uIihl4idaqRMltqqIu5WVlQEwe/ZsXnnlFUpLSxk0aBCVlZUMHDiQo0ePdrj2XOth+COmqAzQaQ/akJY2nKXQU3LuXUlNTY1uVklIdAyWq64EoPCzz4j8wQ84kTyGiRkL+CxnDRN9CDjqhl8BovAb3Uz3QMjNA4xIGIFsaGDA0KHYpJsrf/ITAAwDB3Ld/Pk8/vjjOpVoIQQ/unQs+/btC8jz90Uk/ne29yQGIYiOjqa0tJQFCxZww7K2TxK9ycvL45577lHzJmaDAUc3jaYOGpB2oEidpKamMmvWLDZv3kxhYSGjR49Wr9fV1SGEICQkBCklISEhqrxCZ8nLy2vTiCiaV+1hy5YtSCl57733mDdvHtHR0boy4rFj20x5+UWV5kt91u0msr5eNbJ9kbZmuncXjzzyCOApI1ZUZmtee10Nd4FeZh66Xmq+LbTSKt6yKtC71IK7klNPPc2/x4/j5z//eYe9hwULFmC328nOzmZ2QyMbvvhCJ20vaFluqLN0nyRlP6KwsLDFGQNut5vbbruNmJgYDAYDMTExLF68OCCJ9F/96ldtbtOZElrweCPKmNzo6GjGjh2LxWJRcxedMYS+vsRSSp2uUZDAYBwymHIkXzQ28EVjA2Vufelsmbtj8jOBQpFWqXJLVTVYuSQYjcwKs7J64CCfl0VdnJPqToYsfZCMjAy1n6wjVFRUsHLlShYuXIg1JIQFP/4x2dnZ6v1dKR7fmpRJq6UBUsrVrd3fn4mLiyMjI0OtM6+trSUjI4O4uDiOHz/OgAEDKGiqHAJ01VmdwZ8S287OK9F6I+ApFoiOjlZzGRA4j0RBSsm+ffvYuHcvY8eOxeFwMGHChIA+x/nIxRdfzMf/+levyYn5S1+Vou8IJ7JWkGsJYfHixZ3az+nTp0lNTaXwwAG+P2QoN86bG6AVtk5rn0T/MfMBxm63U1NTwyOPPMK9997LunXrWLJkCUajkaioKF5++WWSkpLU+x566CE1wd7VBHrkbmdwuVyqKrDNZmu2LqPRiM1mU6cmKjgcDj7//HMuuuiibl1vIPDOiwDYDh/BqTlr7rYkPB4Zc4Dyl17mVNVZpPvctEQlvGUwGvpMRVdfGpTlD8OWPYTRaMTtdmM0dqzwwWAwkJ2d7dmPlBwsO0V2djYGg4Hhw4erU0q7gtaqsB5r6b7znYqKCh566CHPnOXFi0lOTmbJkiWsXLmS3Nxc/vu//5ulS5eyaNEiteN7zZo1zJ7d9Ur1Dz74IE899RRJSUm6PIYiLdIRtPLw4JGFEEKoJcothee8q7C8z4QHDRqkS9AnJSURGRmpdgn3FkPYHnyp1X7xxJNcvPzhHljNORyRkVyYmsqnOz/F7XITaRB80eiZj6FUdE2whPp8z4UQNHz+hTqbvifpz96Jy+ViwAOLEIsf4Nprr2Xbtm1+Pc5sNtPQ0EBYWBg1NTWEmkzUNjZiNpv57rvvKLvlVmLf+YvPSYidbTNo890WQoQC84EUPEKKAEgp7+zUM/dxpkyZwooVK9TrH330EStXriQtLY0DBw7wzjvvUFhYSFJSEpmZmaSlpXWLAZk6dSpPPfVUsybDzuQutPLwAA8//DBRUVGdLgxwuVw0NDRQXl6O1Wrl4MGDWK1WtRBgwIABfHf2LDR5biOiojr1fL0RtZFRob4eaTYjHA7PRMQOnpW2xI8m/QiA2pISrrz5Z+rthoEDuXb+fJ544gndCYHBYGD58uVAz8jQ+2KwwcD00FCf91mFYFFERJ/yQpSJoQaDgaOPPc7K4hO88MILTJ8+3S8j0tDQoKucrG0aqqWtpIyNjKQWz0nbsaNHuSAxkTNnzugqETuCP+b6deAbYDrwODAH6L6J9L2Q+Ph45s6dS25urjr+du7cucTHxwMwbdo0nnjiiR5Z29y5c5uFsWw92G8RSL6rqGCgxUL5oUO6sb19mQGLH8B14oRauWV//Q3CLrqI+upqTKWluLu5WkoxFtqKrt6GWQj9bBMtBrpEW6s7cLvdJD6ynOQxY5g2bVq7Bl9pjYWv6/bGRqrq66mpqUECRUVFnQqbKfjzTo+SUt4qhPiplHKjECIX+LRTz9rHyc7O5v777+fOO+/k2LFjXHDBBbhcLlavbruuQJm+F2iUpHdJSQngCTsMGTIEIQQ2m43Zs2eTm5sb8OcNNNoQlsFgwNrU3KdgMBo50dSUOWLEiO5eXpBeQrzRqCtFtgqBETAIGGE0kTLYDBKsTdIvdinZ7xVCPfvMsz0+IMsgRLPQUm1tLXv37g1oCLeyqb1g8ODBnCotZfDgwZSWlnY6L+uPAVHe9UohRCpQAvTayYHdQVpaGp9//jkvv/wyUkpOnjzJXXfd5VejX0JCAgcOHGhzu84ipeSVV14hOjqa7777LqBSB3a7nZiYGDXxbbFYdBVinWk8rKqq0oWwvPtalOFTJ06cCIgBKS4u9sx5NxkxNhmmBrOZkpISdULiGWOw2r0zOPbvbzbaV9uX0pGeFK3sPXjmqDQCJgl1yu0CSlyecFykQTTLm7h6aDy1Fm/j4ZbSM7skQI2AqampFDaNULZareoJZklJSUAKe/wxIC8JIQYBy/Go6YY3/X/ekpeXx/vvv8/WrVvVENb8+fOZMGFCq0bEYrF0i/FQuP56z9ThmTNnqtIqQKeF1w4ePMigQYPUjnzvMl9AN/+iN9PY2EhDQwNOIRAaY9XQ0IAQgvLycmq7WEyxv2NOSeG6n/yExx47V5cTaTgXhgoKROoxGo0BK72eNWsWzu+K+H/VVdTW1noqtVwuQsPCAlIV6o8BeUVK6cIjqnhhp5+xH5CVlaVKu4Mnob5+/XoyMjJaNSAmk6lLpxb6Q0jTwKaodiSktcaiv7Fv3z4iIyMxmUwYm3poQs1mTz+NEDgqK3ELQV5eHiaTiZiYGMLDwzulAOyNtvRXAs6TxRgqzyKdDoTThTvUgjCHYKitRQwdGrDn7W7mzZtHYmIixcXFDPr3v/l0j1+arH2ajgzTCqSUe25uLqvGjuXmTz3NukrCvrP9Ygr+GJAjQoi/A28C22VfrK0MMIWFhUyaNEl326RJk3Ry675QzgBcLZQgdgcmk4nGxkYqKir89kR8GY/Kykq1kTIsLIyRI0eq42uBTnetg+8ciNNgUEuK7Xa7rry4vTz22GNqU6RSiw9Akzy2UUqE0QguFzabjcbGRl0OSyfICJxqCnkp+GtotHH4wibdrc9y1pBaX0/Jx58wOHk0ANWF3xA54txscmHtH8UR/RllmFZLdHXZcXV1NT//tLnSQ2RkZEBOCv1Z/WhgJnAfsEEIsQX4k5RyZ6efvY+SnJzMzp07VQ8EYOfOnTq59ZboSeMB+nJexYBop7Npp7i1xqpVq9T/Z86cSVJSkq6IQErJq6++qhoAk8nULFfij5y7dw7EbDar4TKTyURCN+tOaWkmyOh0YdFc72yxxIDFD1AQGsr3m4QcC3PWqP+D5+zWW8zR2fT9ctfWYowd1qnn72qGx8Vxwscs85joGE6X9x7J9b6Md2hZobKyslmpb0do04BIKe3An4E/N+VC/oAnnHXe6kVnZmYyf/581q9fr8uB+DMx0Gq1MmTIkA7Ju3e25A48VWDKl0Y5gGuNivcZP9DhoVgWi4W9ez1hirFjxxIWFqb7QitDplrCZxWWxgNRchQdoby8XG1ctFgsmEymc1UvBkOfaGL0JeaoGJiK//Pbbhd1bC+jvueZXl3TlJ8zGo388LLLGG4wBA1IgJBScvSmWSS+u1l3e2hoaKeNB/ipxiuE+DFwG/ATYDfwX51+5j6MVtq9sLCQ5ORksrKy/KrCqqur67Dr2FHvRSsJP3fuXNasaXnMS3FxMZdeeqnutkBVhLSXtjwQRfSxIyiKw1arlcjISPX5wNNnIIzGFicD9gW8JVVM1dW6TnK3jxOF7kSZwpgYGoqMjeWioUNVb85x6BCpw+LYdqT5dOtLLrmEMo3OXJC28TYecO6ksTs60Y8Ce/B4IYullL1jmHAPo0i7tweTyYTRaOzwnAKLxdL2Rm2gGA+tUdE25Sln3tqO8JSUFPY3lQIGaR2lLBg8ml75+flUREZ0KDfSGby9kxNTphHTNEcE4IyP0FF3YhwyGEPkAADcVWdpvDgVS1PjomLoHp17O6Bvaqz7+997YLX9l86eHPrjgfxAStl5XycI9957L88//3yHrf5dd90V4BV5OHToEKNHexK1yshe7Zm/oqnVm4QaeyuNjY1qrwp4QoZRVdW6XElXNJL2J1ynPAPaGj7/AoCQ6moajh5T7wsVAkfwe9graE3OfYmUMhvIEkI0+7SklL/p0pX1YT755BMWLFighrcULaycnByAVkNIrdHVEufh4eG6JLdyIIyKiqK0tBQhBCZT2+ccgZoDHyRwNIaHt5hwh95V0WUcMhgAy4SrACgvLtZ5J/WnSlt8bJDupbWjgVKTurs7FtJfyMvLY/369WzatEmXYAdUI5Kfn8+pU6eQUnL6tP/JQn/zLB1FSql6INOmTWPHjh0AxMTEUFpaitvtZvDgwW3uR6nuMpvNuhxFZGSk6jLbbDYMBgONjY0BKfntq7RUCnwqwF3wJZeP54caReD2VHQpdKcMfUu4TpUxKCyM2rp6XQe7xWDAKKVnQl7QO+k2WpNzVyRYv5ZS/qub1tPnycrKYvHixa02GU6ZMoU1a9YwaNAgPvjgAwoKCliyZEmb+26rz6QjaHMh2pnt+fn5hISEYDAYyMnJYdq0aUgpdR3tLaEk+2NiYti4caN6+8KFC9VSX1+Dqs5HWioFrpSe8NepbhJTbK2iqzdhHDIYZ3UVwmCAFuL3NiEo6+Z1+Yt2lC9AnMHIp0PONYd6a3b1Br2u1vAnB7JKCBELvA28KaUMlkC0QmFhIRdffLHuNu8mw/z8fIQQnDlzhuuvv97vhj5/+kw6i1I2q3Ssu91upkyZ0iW5jzNnzug8lISEBF2hQE/lW5wADge1jY1QV0doJ8cEt4U28a5octUaBEePHsUuBPn5+YSHh3fpGvoUoaFYDUaq6+p0SWAhBCaDAZfbzWBppNpspqaxAberuaHR9j51J8ooX4U4I5Q43Zr79ZpdvUGvqzX86QOZ0mRA/gt4UQgRiceQPNnlq+uDJCcn8/XXX3PNNdeot3k3GR44cAApJVFRUbzxxhu8/vrr5OXltblvbeNiVzFy5EjAI6dw6aWXYjQamzUI7t69m/fff7/FA7y/OZD3339fV5rs7ZVMnTq1oy8joDil5B//+AcjRozoEo0vbeK9CkFDUwGD3W7H1dTroog77tq1q8sruPoCwmZjQFSUaniNFRWYjEZwuwmzWAgJCWFIYyMX2WxUVVVhlFIVdDSZTUycMBFHsLKw0/jVByKlLAGeE0LkA0uAR4CgAfFBZmYmixYtYuzYsa02GQ4aNIj09HTuvvtujh8/7te+taWggUYJZe3fv5/LL7+c2NhY9uzZw/Dhw1m0aBHgafQaOXIkF198cavegb+eQ1+r6Dp9+rQqoKklOztbzeF0dqa7S4DJaEQCwmjELKVqXIySDpeA9yRKT4q5rAyn0Ygo/Aa3JlwqIiI7/RzSZEKEhIDTibDZcIeHY7GGYYgcQAye5HvqD35AY2OjehLQWwZkdYaOaG0FEn/6QJLxNBHeApTj0cRa1GUr6uMoEwlbazKUUmI0Glm7dq1a0ulPt3d3Kfm+8sorgKekNyYmhvT0dF544QXcbjcnTpwgNTVVt/3AgQMRQhAeHk5NTQ3D/Uy2+nq92vG5BoOhWWVYZ6TifeGrE13xoBS5eq1H9dVXX+kMiNZ4KCgz3ceNG9eptTU2NuISgsrKStxuN8IgqC8pUU8kuqOfJBAoMfx/79hB8uTJFOasYfC33+o75Xu4L6Ur8TXOOVD0tNaWP3vfAPwJmC6l7L+fcgBpayKhxWLh+9//Pv/zP/+jhnDCwsJ0SWxfBELKpD3U19dz+vRpjhw5ohq4GTNmsGjRIl3yvbKykvj4+DbX741icLRox+eOGjUKg8HQpYn2qqoqvyrLWqKl6rFAHDDcbjeCc597hFviMpvVpPuRI0cCIuYYpGtZtmwZK1as6DIj0pO0akCEEEbgiJTyD920nvOCu+66izVr1qhn9nfffTcbNmxo83GBPvv2l4KCAjXRv2XLFp+eQ2NjI1JKbDYbxV5nky15V21J2yuznpXEvrf4W6BKfxsaGnT9LcprVTwPIQQJCQkYDAaSkpJ6TeWY0+nsUjHHIJ3HsX8/rqLjLJrsyV/WFRZSrPn+hAagys67sktLV8+Ib9WASCldQogEIUSIlDIwAvLnOXl5eepZ4gsvvADASy+91OaoW19n692NyWTC4XCwe/duPv/8c3UgzZw5c6ioqMBgMGC325uFsPyZvWyxWBBC6BR7i4qKVM0qgKSkJPV/8BzYb7jhhoC8NqfTqRo5xYAoCVqTyURRURFWq5WDBw8yc+ZM4JwgoxbtSN5jx46dK2P+6kvCwsL8KtcO0n8wp6ToQnW1JSUcP3VKvR4egGFa2sou71G/ZgGzwqy6OfGBzIv4NQ8E+EwI8S6gxiiklG0PAA+iIy8vj8zMTNavX8+CBQuYP38+v/vd76ipqcFms7VqQIxGI/Hx8d24Wg/vvfeeekANCQkhPz8fm82mzhORUpKbm8vYsWP5xS9+0eLcdV9CkE899ZSaoG9oaEBKqfNKKioqSEhIUHMiVquVsWPHUqRJfvZkeavWuCloNcS8lYTr6urIzs4mPT29y9dWXFxMbW2terLirccVHNPbP7EIgQUIEwIhBAKwGgXXNjUIA5gQXBcaxof1dZ02JP4YkG+bLgYgoo1tg7SCdpLhww8/TGZmJjabDYvF0mZ4KiQkhOzs7G5aqW/q6uq488471T4XKSXp6ek0NDRgt9v57LPPAJqFsMD3GN0nn2y9kG/Lli1IKdV8i3Lmr82/vPrqqx16LeHh4URHR6sJdG2iUwjRZQrE3dVx39jYiFmTL/HW4+quBsWW8FYL7muzTHozJiFACFx4DtpOCTWa3hNL00c/PAAJdn/6QB5ra5sg/qGdZKhUZc2ePRtoe075H/7why6VMfEHJccBnrCO2+1m1KhRTJo0iW+++Ybc3FxiYmIY6jV2dcyYMXz77bfN9qeVtVfyDdp8ia+wlzlATX3jx49n48aNzJs3j4SEBAYPHqyGCMPDw7tdwn7nzp24XC5iY2NxVFQwwGgkNCYmYPs/a7NSp5lBozQoKnR3wr2vzzLpDKGhFurre3a0daDwp4w3H8+oZh1Syt7R5dWH8J5kmJaWxm9+8xu1TBP0vRFt5UV6gv379+uk3R988EFmzJjBxRdfjN1uJyQkhMzMTN1jysvL2bp1K9u2bdMNiVq1apWux0T5q7wXvsJevb2SRZsDMZvNzXIk0HxK3Ndff938tUqJ3W7HqlH27Qwuo1GnEmyVUueRtFXRBd1nZNryToQ5MO9JT/H974/m0KH/UFtrb3vjAGAGojRJdgNgNhqxCsHqgYOo+D+/xTh8eIckU/zxYbR7DcXTD9Iz5UB9HF+TDM+cOUN4eDhms5nTp08TFhamhjmqq6vVPENXCyl2FKfTiZSS+vp6amtruf3223XrNJlMVFZWMn36dDIyMnC73eqBSlEnBhg+fDhCCIYPH65Oa2yro727y5r9oaqqSpcD8c6RwLlQnEJL3k53Nlq2VdEF3VfV1ZZ34ti/X5V876uMG+cxxPVffw1NxShdhRACp+a7ZAIc0qO7ddzlwpSQ0OGmSn9CWP/rddNnQoiv/Nm5EOIneEbgGoE/SimfamG7W/BobY2XUvZb9V9fkwzdbjc5OTnceeedgCdGrsh5DB06lOrqaux2e7c1EXaEefPmYTabmTlzJvPnz2fChAnqa506dSoffvihOmtdm2RWwmEAGzZswGazUVtbq0qYtNWf0R3J6K6mvLxc57VYLBZPPgYIMZlw9dA0yN6KcfhwGr76CunwVMgJux3MZo+wotMJfowb6G2YzCacjubn5D2l19Ue2izFEEJEaS4xQojpwAA/HmcE1gIzgDFAmhBijI/tIoD7gS/bvfo+SFpaGgUFBbhcfOD/rwAAIABJREFULgoKChgzZgzx8fG43W5VP6u8vByz2czUqVOx2+1MnDhRF36A3nX2feutt/LPf/6TqVOnsn79ep1sy4kTJ5g1a5ZqNBoaGnRnugppaWk88cQTOu+lsrJS/d9XjkjrwfRVoqOjqaqqory8nPLycrUgwW63e0qLnU6OHz9OaWkpO789xL59+1i3bl1PL7vHGLD4ASyXX45p+HDMo0bhiI7GGR+PtFoxREVhiOy8LEpXYjhzxiPpUlSEs6gI0djIFQkjGBFiJt5oZLDB87vuKyXf/pjr/8WTAxF4QldHgPl+PO5y4JCU8jCAEOJPwE8B71PpJ4CngcV+rrlfoYS1RowYwZIlS/j4448BT6z/rbfeIiIiQqfWqtDR+ehdzdSpU3Whp8LCQvbs2YPZbGb16tUIIVi+fDn//Oc/ufPOO1m0aBEjR45UK7cqKyvVsJ22pFcJ55hMJm666Sbefffd7n1hPYRDSlwul+49LS0tZd26dUybNq0HV+Y/ysyTkiYZFl8d8+1B8UIADPX1UF+PcDqRTd8XEYDRz12Fe9AgHKGh2AYOBMDV1BOSEO8pGnDU1LB04kTAM5FRO8e+JTwnVz2jK9emByKlHCmlvLDp7/eklNdJKXf6se/hgDawdrzpNhUhxGVAgpTy/Xatuh+RlpbGDTfcwPHjx7nuuusAuOyyy4iJicHpdFJdXd1MX8pf+ffuRBvr1yoPK4UD4DEODz74IM8//zzgCVvNmjWLo0ePqnkAt9vdYuw/MjKSOXPm8NVXX/VIT0xXERkZSXR0tFpWbLVasVqtmEwmjCYTVqtVJ3MP+DWXpbegzDxRyorjnS4iIiLUS3sbZAcsfgDrz36GOSWFxqFDaRw6FIfVirB5LpiMyNpa3LW1uKvO4q46GxDBxq5AhoRgSkhQL+5Bg7BMuEq9mFNS2tzHD37wg25YqW9aG2k7HihqUuJFCDEXTwL9GPA7KWWnMj9CCAOwGrjDj23vBu4GGDp0qDopzxc1NTWt3t8dtGcNn3zyCX/5y1/Izs6mrKyM559/nn/9618IIZg9ezaXXnopK1eupKamhuXLl6uDnVrCH1HGrkDbm3Hw4EF27NhBTU0NP/vZz5gzZw6LFy/GbrcTGxtLQ0MDV199NYsWLeL3v/89UkrCw8NVQUalvNc7TFdVVcXrr79OVVUVCxcu9Os97orvQ0lJCTt27KCkpKRTj1f+1ybeWzsbj46O1pUx19XVqQUHAGGVlWqprnJQVu6XUupDgo2Nuse2ti8Fh8PRofeypKSE8vJyGpue03vfDoeDyMrKFvdd6+u+8eNg/DhqNfNkbD86J3JZ++lOEkpKMGsq3pz/2gNRUZwo8yTgHdHR/LuLjxVDS0pwaKIFoY2NuM1m9bMwu926z0V6fS7msrJW1zjiyy8xVp4lvum3EmkyEiIMSJcLA56wUVtHg6NHj7b5PC3RWgjrReAaACHE1cBTQAYwFngJ+Hkb+z4BaIu545tuU4gAUoEdTWfUscC7QoibvBPpUsqXmp6TcePGycmTJ7f4pDt27KC1+7sDf9aQl5dHVlYW+/fvJzExkdjYWH7729+yYsUKIiMjqa6uJjc3l9zcXKKiorjvvvt45513WhVpBI+CrnIw6ikcDgeTJ09mx44dPPHEE4wZM4asrCymT5/O2rVrWbVqFd/73vcYN24c1113HUOHDqWkpITdu3czbtw4hBAYDAacTievvvoqX375pep1RUZGYrPZGDNmjF+fc1d8H2JjY5k8eXKH5fWVx4NHol9bINHQ0KCWKnvnvRSU0mCDwUBiYiKPPaZp1frKk0qcN28egCpdXnjiBAOawiYAdbW1utkm//nPf3TXG06WMNRr9kl1dXWH3sv8/HwiIiI4evQoiYmJzfZdXV1NyOlyJraw78++Lmj1PgXtNp99XcAPNCN8AT7LWYPj4tRuPT5UbP6brqel4l97cBiNDGz6LOqLitRwFkBtfT2xmvfGaTSS3Mp6K664Asf+/Zyx11Jba8ciBDbhxiwEblCNSGskJia2+Twt0ZoBMWq8jNuAl6SUfwH+IoTY68e+dwHfE0KMxGM4fgHMVu6UUp4F1E4pIcQO4IH+XIWloJU0ueaaa3jppZe455571PuVcskPP/wQgLlz5/Liiy+2KOKnzQn0tPHwhdIsOXLkSI4ePcrs2bP58ssvyc/Px+Fw8NOf/pTU1FQuvPBCDh8+DHhCWampqYwcOZL6+nr1jLqmpoaJEycGrKy5oqJCVf1Vzu695bd7wqODc+KZdrsds9lMeXm5rjR43LhxeuOhYd++fVxyySXdttYgPcu4cePZvXsXNHSvZGGrBkQIYZJSOoFpNIWQ/HgcAFJKpxBiAbANTxnvBinlfiHE48BuKeX5kQX1gVbSJDk5GZPJpM5NB0+iODo6mmuvvRaA3Nxc0tLSWjwj7c0J5ZbyNU888QRHjhzBaDTy9ttv8/bbbzcr4z1w4AAjR45UDarRaGTatGn89re/DZgy8ZYtW4iKiiIpKUntvwkLC6OhoUEVdjQ15SG6S4bEXxoaGnw2KoLHU7Pb7Tz++ONIKRk7diz2775DCMHVV1/dzSttjrYwxOFwYOinUvTeTZGcOYNxQCTuJhFFGYCyY9epMtxnqxg7NBbn6dOIpuo9f7yPztLa6vOAfwghTgN1wKcAQohRQNulAYCU8gPgA6/bHmlh28n+7LM/oJU0yczM5LbbbsNqtXLs2DF1G7fbTX5+PpMmTcLpdFJaWupX8nzkyJEcOXKky9YeSAoKCoiOjubs2bPs2bOHq666ij179qj3e+d6jEYjV155JXfddVfASlmvv/56jEYj5eXl6pn9VVddRV1dnSofHxUVpQo4RkdH95r55BaLxWejInj6baqqqpq9h7JpPK/VauVPWVlcdtllzJgxozuWq0M7xhdgmKZxsbi4mJKSEtXr7MtzTrybIsumz6Ah6XvENIWp6v76TqefwzhkMIZIT2eF8/RpALWSUUGr0GsACFCTaosGREqZJYT4BBgGfCjPrcaAJxcSpIN4S5qAZ3iTlvr6eubOnUtxcTEjRozQaUwZDAaklISGhlJXV6eTei/qY2M6Kysrueeee1i2bBnXXnstH330kXqftvJozJgxahJ269atAevS3rZtG9dffz1xcXGq6q/ZbObgwYMkJCRQVFSE3W4/J8vOOQFHRZBRISEhQbfm3uaxeON0OvmqqRx21KhRPbyac3gLQQbnnPiPDA1F1NR4vA+NEdEe6AUwsA2VB39pax7I//i4zfcpTxC/0UqaPPnkkyxdupSnnnqKwYMHc/fdd7NmzRpqamqwWq0sWbKEV199FSGEqjGlVC0pPyRtGeTMmTPZvHlzj7yu9pKamkpcXBy33norzz//PLt372bLli0IITAajWzdupXnnnuOlJQU9u/fz4UXXsimTZsYPnw4J0+e7PTzR0VFUVFRwXvvvadT/V24cCEbN25k5syZvPfee82kRxQUQUaFmTNnqioCPU1kU0OdEuLSdruDXpTyq6++Ug2ILqfy4TYAHn300a5ebpAAIk0mj5S7wYBwu3G7XNRqKsFMQK2UlLk730sWHArQA6SlpZGVlUVGRgYHDhxg/fr1WCwW3nzzTZ588klycnJwuVyUlpby1FNPYTKZdGq8Y8aM4Te/+Y26v8TERJYuXUpiYiJ79/pT39DzvPfee+zfv5/S0lJuu+028vPz1bAdnDvAjRgxgv3796sTAy+99FI+++wzfvzjH3d6DcoQrO7UnOouqqqqqKqq4uDBgy2GuZKSktRLQ0NDiwn5lm4PEqTvCcf0E9LS0khLSyM1NZWcnByuueYaNS8SHx9PSkoKe/bsITQ0tFlYKjMzk8zMTMxmM1lZWYwbN4758+ezYsUKTp48qSrc9ja0vSIKDoeDsrIyNXGu0NDQQFpaGuPHjyckJERNuO7Zs4dZs2bxn//8JyBrCg8PJyoqKiD76s1oe02gudDjuHHjemJZ7aa4uJiKigpeffVV3G43rpBzntT/27BB7SUyBgdmdQtBA9LDaKVMduzYgclkYv78+WRlZbFz505dV7eCdpaIVi9n3rx5hGomj2npqQbDjhIeHq5rsJo1axZRUVGkp6dzySWXtPg624vD4WDDhg2sXr2a0NDQZrmo9lJRUaHLiwBqLkWhtyThtbRW0QX4lNPpCZQ1KGXXsul6I57Qrtvtpra2FmkwdEoupT8hpCQyJISGptJ0A2ADMBhZeu11fkum+CJoQHoYxRgsWbKE6667jsTERB5//HFiY2NVQ9LS4xYsWEBFRQUmk0mVVa+urlZnavTl0Ex1dTXbt2/n9ddfZ+XKlaxZs4ZHHvEU8LVkWDtCXV0dt9xyCxMnTmzTeHhXtvhiy5YtzW5TcikKHZ2i2JW0VtEFnu9bZ5PX2nzR2LFjsdvtAQlFAsim5lO3243BYMDS9FtQDE5JSQkGkxH3yZOqYelL1VydQQoBISGENuXA3I2NWCIiGDBkMJYJVwF0WM496Of1AtLS0igqKiI3NxebzcYdd9xBRkZGm81ylZWVGAwGnn76aWpra3n66ad1PyItfcn7UMjIyOD06dMsXbqU2bNnM2bMGI4ePcr8+fObDa3qDNrJiK0hpVRzMYEiPDxcp38VFhaG2WzGbDb3Oa+xNVrKo/zjH//osudUSoVDQkIwm83EO11qdVdHNLgCgTMyUqfGy5kzql6Xu+os7qZha32FoAHpRShS72+88QYAv/zlL0lNTSUvL8/n9m63mwceeIANGzYQERHBhg0beOCBB5BSIqX0OU+gNwoxtsT+/fvZsmULDoeDrKwsnnzySbZu3RqwLnSTydQug9AVEvrjx4/n0KFD7N27l71791JXV0dJSQklJSXU1dX1SmWBIB2n8uofUXrvPUT9398T9X9/T21KCmbNxWEwqMbFWVSEcfjwtnfagwRDWL0MrcyJMrVw/nyPer6vg2ZMTAwFBef0gJ555hnAY1wUyXeLxcKMGTPYvHlznw5rbdmyhZkzZ7Jy5cqAGBClm10ZduWN4sUpRvfll19WB38F8Z/y8vJm+RVtWXF/NpKKlL3CKa8w2pkpPybl179W79dOX+wLBD2QXoZW5sRsNjNlypRmQ5oUoqKiWLp0KatXr8Zut7N69WqWLl2q3j9//nxqa2tZsWKFGptXmhH7Ml9//XVAJKyFEEybNo24uDj1NsXL0IaPlNDVJ5980kxWva39e1/3JUOvJN6jo6NV2ZTY2FhMJpMazgqUdEtPEB0drZYTKxftEC1rHwvbtAdFyl65eIfRHJ2MCBiHD9fJ1lNf75nOqFwC1DDYEkEPpJehlTlRmDRpEoWFhc22XbNmDffeey9Lly5l0aJFmM1mwsPDqaqq4rLLLuPtt99m69atHDt2DJvNRk1NDaeaBtj0VZRk9Ndff93pfUkp+fbbb9UqLJvNpp4Na3MPYWFh/PjHP2bTpk3qzBZ/9694MYpBGjOm2VBOXeJ94cKFlJeXq13tFouFqqoqgF6pxxUI9u3bx8a9e9XGRUVJOEjbDFj8AK4TJ1TFX/vrb2BsbITGxnPjfTXCoIEm6IH0MrQDmBRaK+ddt24dSUlJGAwGkpKSVI2ob7/9FofDgZQSIYR64PEV8+9LeREt06dP79TjLRYLEydOVEUsw8LC1A5u7XtSV1fHzp07mTVrFidOnGi2H+1sd+11m83GiBEjEEIwYsQIbDYb27dvb3VNBw8eZOPGjezdu5evvvqKqqoqioqK1DLg06dP67yV/si+fft6eglB/KR/fgP7MFqZE20OpLVyXu98wK9+9SucTieDBw/mu+++Izk5mbFjx7Jp0yafoZC+mhdR5O47yl133cWaNWsAT8JeYdCgQboRurfccouazPfVf1JbW8ugQYMQQjBo0CC1qispKYm9e/eSmprKsWPHGDt2rE4ssi22bNmik1jxLgfuy2fq2hyI2WzW5UgUJeE33niDw4cPe06CPvqQCy+8sJl3HqRnCRqQXoZiDDIyMigsLCQ5ObndVUfKgfHRRx/lvvvuY926dTz44IMAqkfSV41GIFGMhzdnzpzBaDRisVh48MEH2b59OxaLhdjY2Bb7TxTlWyXcBJ6uecWwDBw4sF3GoyW0s0p8iTkqnorFYtE1YvY2tJ3x3l3xVqtVDS8qKNfj4uIYMmRIt6+3N6OVjJfgyYM4neBsCl1JiXA4wKWcPIqAzY0PGpBeiC+voj3k5OSwceNGMjMzWbJkCRaLhXvvvZc1a9YwdOhQnTS8tyEJGhcPw4YNw2QyMW3aNMrKynjwwQcRQrToCSqhr8jISF1fyS9+8QsmTZpEfHw8L7zwQqfXpR105UvMUfFQ5s2b1ytEHTuCtxCkFiEETqezxdk45yNayfjCHM9JUWp9Pa6mcOuZbR9isFiwDvbM76uz1xFiDQvInPigAemn3H///WzatEkXCluzZo3abf1f//VffPnll7r5y+CpQurLFT+BoqioiFdffZWMjAwuvPBCjh49qg728mbMmDHq2bLdbmfMmDEcOHCAsLAw/vjHP1JUVMS2bdsICwvrtiS4t6SKt95Xb07GK16cr854q9XK4MGDKS0tVY3pAIMBo82GpQ8YlVKjgZqaGvV3ZxdCJ7lyJkAaXlqj8t20azBHxxB9xeWe5yguJkpTedgZggaknzJt2jTGjBmjC4VFRUWpvSFvvvkmQ4cOJTIykpCQEE43DaJRZFG0bN++XRU7PJ88lNTUVAoKCnj77bc5fPhwi17hN998wzPPPMNVV13FlClTWLx4MeAZTKV4e0lJSQwdOrTNJHpb+Nud7i2polR3KSQkJOgMTF9JyEdGRlJTU4PFYlEVmx2AyWjEbrf3es/E0SS5oqzTALrPpdqHhldvllvpG9+aIB3COxSWl5fH/fffj9FoxOVycfr0aVwuFzEx6mh6n3pQ2mqn88WA5OfnY7PZyM/P5913321ROiU+Pp5Tp06xaNEiNYSkqAdv374dg8HAyJEjKSwsZP/+/c0qtvxFSd5brdYOSXAcPHhQl4Dvqwn5qqoqwsLCMJlM+u+h0YixSUzRbrdT6XDQcOQIUkqGDx+unjj1NtygM3pWKdVBWtD7h2cFDch5hFa48fjx4xgMBlwuF+Hh4Zw+fVo1LN5o4+6KUGN/RwldHT58mAceeKBF72PWrFk8//zzxMbGIoQgNjaWU6dOqQlt5b1S/k6cOLHF51TyUt46ZnDOsNfW1hIXF0dxcXGnXp/yfMpBuLWEPHgOZL1F0dbhcOB0OnXfy6iICOpdLgwGAw0NDWoYzG63U1paitVq5a2mWTlCCFWYs6/jq9Md0AlGuiMiCDt7Vk20i8JvcHr9zjsqmRI0IOcZileSl5dHVlYWhYWF6lmxy+XyaUS0pan+0FfCIW1x8803c8cdd7B79+4Wt8nPz+ehhx5Sp0BGR0ers1kmTpyoPtZisTBu3LhWxQMVA9KagR4yZEhApjEqz6cYkNYS8tA7FYTborVS4T/96U9ceeWVPbW0gKF0uiuEOF2cMhrV26qrq6m48gqctnBVIiWQcin945cepN14h7eUg5dSRaSNtdvtdvW6P6GA3houaA85OTm88sorWCwWvve977W4XWFhIXv27OHJJ59k9+7djBs3ThV/3L17Nw0NDYBn3ob2ui9aMxzK51NWVoaUssOhMH+frz/QWqkwwA033NATy+pXBDvRg+hQXH/twWXr1q3qmao/B53hvVxBtC0OHjzI1KlTOXPmTItluwotKQeAx2ikp6eTlpZGenp6q8ajJZTch/b9NxqNzQQgtZIp5yON50FeriWKi4s5evQoR48e5bjJSJVBqNdLSkqo9aHKHSiCHkgQlalTp1JaWqp2ZSsT+u688071AJaYmMixY8d0CcyhQ4dSVlam81j6MorOlhLC0VbBeBcQaJUDlKS7op4shGDUqFEYDAZGjRrVagFCS/cpuQ/FYMTGxlJaWtpMUsU719Kb8JVf0YpS9uaS4kChzENRBmkBARumpcw9AajC46lqNd0cISEc51xeJFClwhA0IEE07Nixg2eeeUadqa4cvM6ePTfu0mazNTvYlZaW6vZTUVHRDavtOo4dO9bifd6vPS0tjblz5+pmuis5oBkzZrBs2TKuvfZaPvroI2bMmMEHH3zgc7+hoaEtHkjDw8MZOHCgKqny61//WtU8CwSBCIe1hq/8SnR0dJ9tdGwP5eXlvPfee2r+RZuXKSgoYIjX+OPO4hLgAlwNDee+p0JQLQR1Td9rh9HIW2+9RWJiYqdLhIMGJAjgKUctLy/XycEraD2K06dPt3gWrajFng9lvgqhoaHN+maU659++ilbt26lrKyMhQsX8tOf/tTnPkwmE6GhoSxcuJBDhw4RGxuru7+urk6dyJifn68LKSp4q/56/++NEILw8HBqamqora1t/wsP4heKlL2C1WrV/Z6GeTV4BgKpqeaTUiLcbkINBkRT34yroQEhREAmMp6fAdMgzcjOziY8PFzNX5hMJgYMGMBrr73G1q1b1e2EEAghdNMOV65cycqVK8874wG0mteorq7mlltu4fXXX+eWW26hurrapxy8y+XCZDLx4osvUltbS1lZme7+K6+8ks2bN/Pkk0+SkZHBxIkTdSGgyZMnk5ycjBCC5ORkJk+eDHjCF+Hh4WrDnTcXXHABU6ZM6cCrDhLEQ9ADCQKc6xFRksYDBw4kNDSUO+64QxUQFEJQXl6O2+3WnXU/9NBDAEREROB2uzuULO6PXHfddXz00UeAZ379ddddx7Zt25ptN2bMGGbNmsWzzz6LEILRo0czevRo9bGfffYZc+bM4b777uOLL77gwQcf5N5771Ufv3fvXv76179is9mora3l5ptvBjyf15VXXsnJkyfVKq4LL7yQI0eO8MgjjzBu3DiysrJ0nc/K45S/XXVC4C210peEIIOcI2hAgqhoe0S8x+pOnToVg8GgNm9pm7iUxHp0dDS1tbV+J9G1yrL9ke3bt+vk2FuSMcnMzCQzMxOHw8FDDz3E+++/z7///W8iIyPVg/mmTZs4e/YsH330Effeey85OTmAp7Hz7NmzpKWlMX78eHbt2sXZs2fVfp6PP/6Y9PR0Jk2axJYtWzh8+DDg+fxWr17N8uXLm61HMRpd6U16S630FyHI842gAQnSDF+S8uAJtaSnp7Ny5UoeeughVV1WSazbbDbmzJmjNtW1xfjx4/n888+75kX0AnzlRnwZzbS0ND7//HPWrl3LihUreO+99/jZz37Gm2++SVlZGV9//TUNDQ1ERkY2k5pJT09n7dq1qpaZ8jc9PZ2XX36ZcePGsWHDBoqKinQexYoVK/jggw+QUjYLq3WHB9IabXknfVnsU5tEB6h1OjlZUAB4QorOLhju5haCBiE8Mu94kuw1NTU4HA5dx3pHEupBAxLEJ74aDa1WK1u3bmXdunVccMEF6lnugQMHSE5OZtasWeTm5rbZO6HQWePRnvnkvQVfB7+8vDx1NolyFu5wOLjtttu44oorcDqdzJs3j4KmA40WxRN5+eWXAU/u6q677iInJ4e1a9dy4sQJXSJ/+vTpqgFzu91cfPHFurCa9yx4f8UbA0lr3smNN97I5ZdfrlaOWSwWGhoa1CKC3ljGrEXb3AjnpOvBU/03PCpKJ1PT2NjY+ScVAgEITY+QwWBQZ7NDxzW3gkn0IH5z3333qd6G0+lUtZGSk5P55ptvyM7O5oYbbmimG3XllVd2ycE+UHX0Pc3s2bOb3fbee+9RVlbGhRdeyGuvvdaqlEhOTg719fU8+uij1NfXq0ZlzJgxzJkzh4yMDN544w3mzp2LzWYjMTGR5cuXs337dmpqasjLy1P35Xa7ddMVe9sBecuWLXz11VdUVFTQ0NCgFiAIIXC5XKrH1Fd6SxwOB+Xl5erl0IkTvPzyy7z88svExcXpPLHeSNADCeIXJpOJP/7xj/zlL39h0qRJJCUlqT9epfEwPz9fnS+u5euvv2bYsGHNZo+0V2PLG1/zyfsbhw8f5rnnntOdZfuLkltZv369GgoLDQ1lxYoVGAwGpkyZwvr168nIyFCNvtlspqamBiklNTU1vTJPtWXLFtVLmTlzJuAZPuUtV9/XmxUfe+wxFi5c2Oo25eXl2O12tXDFKQRuPN5jd4QfgwYkiF/ce++9PP/886SlpamNg0IIrr32WlJTUyksLGT06NEUFhbqHqdUBvma06D9gd90002sX7+e+fPn8+677wJtz77wfq7+ipJTevfddwkNDVVDVG2h5FZmzJjBtddey9GjR1VpFUXkcdKkSbr30el06sJBvc0DaQlfcvVCCN0grbFjx+oUhnuLunBnUDyUL774AvAoFUSEhuI2GgkJCfEYki58/qABCeIX3rF2IQQ//OEP+c9//qNWa+Xk5LB06VLy8vLUM1olDOKraUnrfXz66acMGTKEgQMHqrf5OnilpKQwePBgduzY0eJ88v6E9qAInr4TJV/SlhHJy8vj/fffV3MgBQUFvPPOO/zoRz9SBSJ37typvo/x8fFUVFSoHofBYMBisTSbZtgZlIO20sTYlbSWS4G+qTDsiyNHjqiGxGKxIIxGtWLSaDRCFyTmFbo0ByKE+IkQ4v8JIQ4JIZq1OAshFgohDggh/i2E+EQIcUFXridI51Bi7VJKNm3axL59+1iwYIFuZO6SJUt0SfTi4mLuuOMO9azWaDSSnp6OwWDQVRSdOXMGKWWbIa3f//737Nq1C6DFIU/nA4oRgXPNnePHj1f/B09Pz/r165kyZQoGg4EVK1YghGDZsmW43W5Vt0v7PkZGRrJt2zaWL1/Otm3bdEneQKAkkLWJZG3VV5D2U1VVpeZQvHG73bilpM7pxG63U1dXRyB9yi7zQIQQRmAtcC1wHNglhHhXSnlAs9keYJyU0i6ESAeygdu6ak1BAkdaWhpz5sxh/foJ29GCAAAgAElEQVT1LF68mOTkZLKysvj5z3/OypUr1e3i4uJ455132Lp1K2+99RYvvfQSr7/+OrGxsaxevVrdTglXtRW20pactjTk6XyipYOuaBqdOmnSJPW2tLQ0nE4nc+fO5cknn+Tw4cNkZWWp72NxcbFuDvzhw4fJzs7mjjvuCNh62xJ9jIyMVBWh+wPeQpLe3lygS5IbGhowmUwYvYyyNn/mljJgzb5dGcK6HDgkpTwMIIT4E/BTQDUgUkptC+z/AL/swvUECTBjxowhJydHJ4eRn5/fLLSkKPp+99132Gw2qqurqampYdmyZT5nsLeGYmAiIyN1obIgzVGk5rWfT3x8PCkpKWonuvf28fHxFBQUqLNNfH2egebGG29k0aJFGAwGNf/VX/AWknz44YfZ2zQZETx5mUCj/J6klKpHqjUYoUYjFqsVq9Xa6efqyhDWcKBIc/14020tMR/Y2sr9QXoZipR5fn6+2pTkHRI5ceIELpeLEydOqPOqlbOhUaNG4XK5uOaaa3x2P6ekpGAwGDAajeqZlNlsZsGCBWzevNnvfpPzlczMTKZOnYoQgltvvRUhBFOnTmX//v1quEt7dqz9PFsKcXWW9PR0li5dSnp6unrbu+++yzPPPOPTeAwdOlT3N0jvolck0YUQvwTGAT4L+4UQdwN3g+eLtGPHjhb3VVNT0+r93cH5soZhw4YxZ84c1bsYMWIEv/zlLxk2bBg7duygpqZGNRZPP/00ZWVlPPfcc2r8u7y8XJ0jrpX5mDJlCkII5s+fz8UXX8x1112H1WqltraWv//974DnLKuwsLDN19gV70Nn9xeo9bS1H1/9Jd5UVFQQGRnJu+++y7Bhwzhy5IhOmh5QP8/OctFFF/HCCy9QVFSkS2aHhYWpAp3actvBgwerFX+lpaUMHjy4mdCkL/ztpO/p36g/lJSUtLrOkpKSDu23sbERt9utltY7HI4OvR9daUBOAAma6/FNt+kQQlwDZAI/llL6DMxJKV8CXgIYN26cVNRGfbFjxw5au787OJ/WMHnyZJ544okW1+ByubDZbIwdO5bbb78di8VCSEgIZ86cITc3l5tvvplNmzaxc+dO1QgpP/zs7GxOnTqF0WiktraWqKgo9TUpoZW2XmNXvA+d3V+g1hOo/VRXVzN58uQW8ylTpkzpdE9BfHw8Z86cYfv27dhsNhYuXKjqqymFGfX19cTHx3PixAmklJSVlelk6v0xHuC/lldP/0b9ITY2ttV15ufnc+DAgRbvb4mQkBCsViuJiYnAue9Ae+nKENYu4HtCiJFCiBDgF4DORxVCXAq8CNwkpTzVhWsJ0oPccccdZGRkcOLECSIiIrjnnnsAz4EpPT292Q8+PDycsLAwVflXieWmp6e3GCrrDMrY2CBdR3Z2Nm63mzvvvJMnn3ySO++8U73v2WefZdmyZTz77LOUlJToDvyBmrSoSNqbTKYeHftrt9uJjo5WL1FRUVib8hHKPJ1AI4TAbDarF7fRSGVlJUeOHKG4uJji4uIOi1d22TsppXQCC4BtQCHwZynlfiHE40KIm5o2ewYIB94SQuwVQvSvDFo/Iy8vj9TUVIxGI6mpqToJjJaIj49n48aNas/Cfffdx8aNG4mPjwcgNzcX8NSyu91ujhw5wt/+9jeio6NJSkrCYDAwevRo7rvvPjZv3kxoaCgZGRm66qHO4i1QGCTwpKWlMXnyZE6ePImUkpMnTxIVFcVNN93EsmXLWLFiBcuWLWPmzJmkpKQAzSvMOlPmGxUVhRBCHTnQUxw8eJCNGzeql+PHj1NUVKRewsLCdAYmEM2OUkocDod6cTqdNDQ0UFVV1WnJlC7NgUgpPwA+8LrtEc3/13Tl8wcJHL4k3pXZ360dyLOzs7n//vvVM86lS5cSERFBTk4O+fn5HgG54fraikmTJlFcXKzrGu5KFFHIthBCeBqzgrSbvLw8taNeyX80NDTw2WefsXXrVjWsNX/+fLKyspg9ezbz58/n5ZdfZvfu3WzZsoW77rqLP/7xj6SkpKjyOQrKGGEFxVgoIoGlpaVqn5HBYOhRL0SLrw76vtTs2CuS6J3F4XBw/Phx6uvrGTBgQI9LXPSWNRw5coT4+PgWJ9K1B21TGuBTR8kX2kFVSkmh2Wxm3rx5qqKvd5/Bzp07iYuLUyVSkpOTyczMDHjJrlKVVFJS0uyA5AspZZ9UAO4NtJTQLysr0/WdKJ7l7Nmz2bBhA8nJyVx11VWsXr2aDRs2AJ5qMWV/SUlJXHHFFbzzzju6/UopdQqzisEQQuB2u1Uvp68THh6u+04qUvGKt6aEf7uKfmFAjh8/TkREBImJidTU1KgSxT1FdXV1j6+hqqqKxsZGjh8/zsiRIzu9v8LCQl1TGjTXUWoJrTR8Xl4eWVlZVFRUYLPZSE9P56WXXmLTpk0cO3aMCy64gPLyckJDQ8nJyWmXt9NepJT84x//4Omnn2bRokVtbn/TTTf1uz6F3oC270QhKiqKiooKlixZwowZM9i6dStut5uoqCjVwIDnDP7gwYPNDpLLli1jypQp6ueqeI4GgwGTydTjJ3iBYvz48axdu1bNYVx99dWAR9JECdV15UlP7/DjOkl9fT3R0dFBKQQNSo1/oOL7SlOaFq2OUmtocydZWVlkZmbicrkoKChgwoQJujWDJ9E4ceJEMjIy1JzH7NmzA973kZKSwsyZM1m2bFmr2ynrWrBgQUCfP4gHXzIsa9asITIyUleFFRkZyZo1a8jLy1O3U0JX3hVXK1as4IEHHlCvNzY28uijj/Lxxx/zzjvv9OmhVN4oA7iio6MxmUyEhYWpYTqDwdClqrz9wgOBoI6OLwL5nihNZt45kLYO6m3lTrKysnjzzTd13dIGg4H333+fbdu26R7jLQcfiNd0//33+5Sa16L8AG+99VY1+R+k69D2byihz6SkJDWMmZqaSkxMDJWVlaohUAZMKY8Hj9fhdDqbVdn5GszVl9GKRi5cuJDY2FhCQkJUDyQkJESXI3K73QEzoP3CA+kNPPfccyQnJzNnzpwu2f/vfvc7nn322S7Ztz8oB3utV+BPJZQ2d2I2m9XciWJ4fIXGQkJCcDgcuscsWLDApyR8Z6mvr/drrogQgurqambNmhXwNQTxzeeff86hQ4fYsmULhw4dUidYFhYWcvr0aYYMGaJuW1tbq/6vKDorYeT6+npWr16Nw+Hgz3/+M0uXLg2ownBv4uDBg/zzn//kk08+Yd++fezbtw+n00ldXR2lpaWUlpZSVlamCit2ln7jgWg5OfYy3H42HfmDYfBghu39V6vbPP/883z88cfEx8d3eDxkb8d7zK0/tJU78aXX1NjYiMlkIj8/X/VAcnJyAjPeU8OSJUsIDw/nb3/7G7fffjunT59uUWRu+PDhzJs3z+9570E6R0ZGhk5xWCtjHxcXx/Hjxzlx4gQnTpxQZ3+AR4wxLi4OIQRxcXGMHj2aL774gqVLlzJ9+nS2bt1KeHi4bt+9jUBI3Wu9kpSUFEpKSjh48GBnl9aMfumBBNJ4+LO/e++9l8OHDzNjxgyysrL49a9/zeWXX86ll17K3/72N8BTjjdr1iyuvfZaEhMTWbNmDatXr+bSSy/lyiuvpKKiAvDM2xg/fjyXXHIJt9xyi072WuHbb7/lJz/5CT/84Q/50Y9+xDfffBPQ1xtI2sqd+NLTMplMzJw5U+ftzJkzhzFjxgR0bcePH2fjxo2qdMqgQYPIzs7WbWMymcjNzaWoqIhHH3203yRfezstHeDXrFmjmxkOnrJgJeR1zz33UFBQwCOPPEJBQQHLly8HPNVaQggSEhJYt25drxHh9JV/03pTvZ1+aUC6m3Xr1hEXF0d+fj61tbVcffXVfPXVV+Tn57N48WL1C1FQUMBf//pXdu3aRWZmJlarlT179nDVVVfx2muvAXDzzTeza9cu9u3bR3JyMuvXr2/2fHfffTc5OTn87//+L88++yy//vWvu/X1toe2BBd9hcbuuece9u3bp84fycnJITc3t0vnfxQXF5OamsqSJUvU2y677DLcbrd6sGmtaMCX6J/BYFBLqM1mc6/pPejrtNYI+Mwzz+iS8tdff32veN9bykdqRx8odMco2kDRL0NYPcmHH36I3W5n7dq1gCf++t133wGe3omIiAgiIiIYMGAAN954IwAXX3wx//73vwGPkXn44YeprKykpqaG6dOn6/ZfU1PD559/zq233qreFiht/65AOfhmZGSoPR3euRNfobEJEya0+phAEB8fz6233qpOTfz4448JDQ0lNDQUKSX/+pcnbGkwGLjggguora3lD3/4g899KfM3tAcKRYYFPOKPfenA0Nfwntyoxe12s3//frXXRykB7k4vRErp05C19J1o75iD1nA4HFitVrXbPCEhQdekW11d3eGO96ABCTBSSt544w0uu+wy3e1ffvmlrh5bGReq/K98We644w42b97MJZdcwquvvtpMIdPtdjNw4EDdTIHeTkdyJx15THuZNWsWa9eu1cWblbJn7WclpaSmpqbFs8iQkBBVt6u8vJyQkBA1X+OvsF970VYdBWk/s2fP7jYDEh8fz8mTJ9tUO1DKmGNjYyktLQ1Yor+8vFzX8R7Ibvee9+36GdOnT2fdunXqAWPPnj3tenx1dTXDhg3D4XCwadOmZvdHRkYycuRI3nrrLcBzYNq3b1/nF34esnnzZgYMGEBCgkc0WjkLq6+v5+zZs1x//fWAR848NDSUN998s1nZclRUFA6HQ9VaUq53NX0pTn6+Y7fbVeOhPXArHmtMTAzg+S1LKSkpKcFisfTqRL9C0IAEmOXLl+N0OvnBD35ASkqKmsTzlyeeeIIrrriCiRMnMnr0aJ/bbNq0ifXr13PJJZeQkpKiJuqDtI/jx4/z5z//mSNHjmAymXRlwgaDgS+++AKTyaSK3vnqvF+zZg0RERFUVFQgpaSioqJLVQgSExODelx9DKVAxhsllxMaGqp+Z4QQJCYm9riShd8oVq+vXH74wx9Kbw4cOKD+X1VVJYsvuVQej4sP2KX4kkubPWdrVFVVtWv7rkBZg/a96W7y8/N77Ln9WQMgP/zwQymllFFRUdJgMEhAAjI2NlYKIWRUVJT88MMPJSC3b98uU1JSmu1nwYIF0mKxSEBaLBa5YMECdT+rVq2SW7dulatWrVJv87UOfy+rVq1S19nex7Z2aWtfnSVQ6wzkpbtobQ27du2SKSkpctWqVTIlJUXu2rVLSilb/K61tf+ZM2fKmTNn6m5buHCh7jbv+1vY527px/G4X+ZA2urZCBIEPLHpuXPnkpubS2VlJWPHjlUT5yUlJYSGhlJRUcHtt99OTEyMz877vLw83n//fbZu3dqs095qtZKTk6MOyrJarT7Lsv1BUZbdsGEDF154IYcOHerciyewidogHePxxx9n//79PProowwcOJDHH3+cw4cP8+CDD/aJkvFgCCvIeUt2djYul4s777wTt9vN3r17CQsLIyIigqFDh6oJ9dLSUkJDQ31WgrXUaQ96RVTt9Y6gJPovuuiigBgPIGg8egFKw19NTQ3z5s3j4YcfJicnhyVLlhAXF9fDq2uboAEJct6SlpbGH/7wB7WiyWAwsHDhQtauXavKYmsbCX1V7bTUaQ+e5Gl9fT1CCOrr67Hb7S1W1iiJ1JZQjNC7776LEEKnyeVdHtrevodgRVfvICsriyuuuEIdMeAvPSnLEjQgQc5r0tLSKCgowGAwsGHDBjZv3swdd9yBzWbjtdde0zUS+qKlTvv4+HjCw8N15b2tSWicPn26VdltpSFx6NChCCGaaXKtWrWK2tpaVq1a5dfrVrYVQgQrunopx48fb/djtFVe3VFsETQgQYLgMQTx8fEUFBSoUvPx8fFtytW31GmfnZ3Niy++qI7lTUpK4sUXX2zVGPkKKcXHx5OZmcmoUaMAj6fy0EMPkZ+fr25jNBpZtGgRNpuNRYsW+XXgiIiIYMOGDSxc+P/bO//gqOv0jr+e3fxggwSCejklh8YelGEBwWM8iTNtkDvRcRqYHrYFVHJ2wsgUOalTPJuhpQxgVNSpuToF5eCkhpu74ybVjhwaAo7cD/GURIM/SGpzHjByGGNaKOmS7NM/vt9dNptNyI/d72bD85r5zu5+vj8+791k9/l+Ps/zeZ6/veSxxsgmPsorYkQiocNPP/106jofiKd9JG0DicJKNyNJg0VhDUxDTU2NFhcXa319vYZCIa2vr9fi4mKtqakZ0LnBYFB9Pp8Gg8Fe51xKA240TGFhoYpIjwgZn8+noVBIn3rqKc3NzVVV1VAopD6fT1Wd6DERiZ4beZw4cWL0fPqJQFq5cmWvKKyCgoIej/QRqTMYEmlI9+YVqdY4kOtYFNYo5tChQ2zdurXfdAxGahlIypX+zh3uquYpU6bQ0tLSa8V6OBymsLCQjo6OaM6z2JxceXl5dHd3R302gUCA/Px88vLy+OKLLwiHwwmjrTo6Onj00UfZvn17Lx9ITk4OIpKS9PnG6GJUGpDdu3cnJdd9hEAgwL333pu06xkjEy/SpyRi7NixNDc3s2rVKh577DGWLFlCXV1ddH97ezuBQICbb745OkUWCSc+deoUu3bt4vHHH0dEGDt2LBs3bqS8vDxamCmyYC22UFOkZkYgEOD555/voefMmTOoKmeSnNXaSB+pujkdlT6QZBqPgV6vtbWVadOmUV5ezpw5c1i+fDl1dXXceuutTJkyhSNHjnDkyBHmzZvHnDlzKCkp4eOPP+51nXPnznH//ff3SgdvjF4KCgoIBAK88MILTJgwgbq6OnJycigqKkJVqampobCwkPvuu69XIa/+fDcFBQXAxRXPEePh9/vx+XwEg0F27NgRvVZubi5Tp06NHqeqTJ06NaU1teFiYEBsJmMjMxiVBiRdtLS08PDDD/POO+/w0UcfUVNTw+HDh9m6dStbtmxh2rRpvPnmmxw9epSNGzcmrAWwefNmbrvttoTp4I3RyalTp3o43MEpERCpe7F06VKOHz+Oz+ejqampxyipv3T57e3tjBs3rkdK+XHjxhEOh6PGJvZaFRUVtLS0UFhYiM/no7CwkJaWFioqKlL6/iNJBK0sdeZhBiSJFBcXM3PmzOjd3YIFCxARZs6cSWtrKx0dHdx9993MmDGDtWvXRtNLx/Laa69RVVXF7NmzKS0t7ZEO3hidxI8igsEg7e3tPSLA+qpF0l+p4ZycHDZs2EAoFOLgwYOEQiE2bNjQp2+jpKQkYehxSUlJ0t5rJEIsNlIsPpOxkVqSOZ1lBiSJXCpd+/r165k/fz5NTU288sor0ZXOsagqe/fupaGhgYaGBj799NNLhpIamU38KGLx4sU88sgjLF68OGERrngia1niRxWhUIjq6moOHjxIV1cXBw8e7Lc08ObNm6mtrSUUCqGqhEIhamtre6VvGQ6x02MRqqqqOHfuHFVVVT0yGcePSGyEMvIwA+IhHR0dTJo0Ceg7B//ChQuprq6OfsEGmw7eyDziRxG1tbU88MAD1NbW9hpVDIbp06ezfPlyHnzwQRYuXHjJ0sCXql+fDCL+mNiqguvWrWPs2LE9qkECUb9I7KMxshiVUVgjlXXr1rFixQo2bdrEXXfdlfCY9evX89BDDzFr1izC4TDFxcUW3nsZkIoIsMrKSiorK9mxYwfd3d34/f6ECSEjRFbVz58/P9rWXxnfwZCbm8vVV1/NyZMnUVVEhOzsbC5cuEBWVhbd3d1kZWVx55130tzcDDihzfv27UNV+fLLLykrK6O5uTnh1G8sgUCAzs5OxowZEw2A8fv9dHd34/P5+i2JawyOUTkCicTEe3m966+/nqampujrXbt2sWTJkh775s2bx/Hjxzl69CibNm2itbUVgNLS0qiRCAQCbNu2jffff59jx46Z8TAuyZ49e5gxYwZ+v58ZM2awZ88eoOfIJjIC6W8kc6n69cMhFArR1dXFgQMHCIVCHDhwgPHjx6Oq7Nu3j1AoxL59+2hsbIwavsbGxoT7wJkWjs35FetTOX/+PKraI3oysirbjEeSGchqw5G02Ur0wWmwleijW8NAV9APZkV+f6vqh0owGNR77rmnx7UrKyu1qKioz/760hJZZe/3+7WoqKjXquuysjI9c+aMlpWV2Ur0IfbBAFeip90gDHYzAzI4DWZARreGYDCo9fX1PdoSFSNK9+dQU1Oj11xzzZBSxSQiYkQim9/v19WrV2t2dralMvHQgJgPxDAyGC8c38lg6dKlfPDBB0NKFZOItra2hO0lJSVs3rw52sel/CUjkcLCQk6fPp1uGQNi1PhANCYs0HCwz2T001c6+ZEY+r1gwYKE4cbJJD6kuaioiLy8vOhiSr/fT15eXo96KiONTEohMyoMyJgxY2hra7MfzBhUlba2NsaMGZNuKUYKSaXje7SQn5/P/v37CYVCPPnkk+Tn56dbUr9EHP1e1PMYLqNiCquoqIgTJ05w5syZaPheOhkpGiZMmDCi77SM4TOcLMKXA5Fkk5HPZ/LkyTzxxBOUl5d7piESQjyY48PhMKtWrUqhquSQUgMiIncA/wz4gRdUtSpufy7wIvANoA34S1VtHWw/2dnZFBcXA05q9Dlz5gxT+fAwDYaXpCuLcCYQmyYGnO+Fqno6xRcOhxk3bhydnZ1cuHAhuiBS3dX+hw8fZtGiRZw/f56uri6ysrKoqKigurraM41DJWVTWCLiB/4FuBOYDiwVkfglsH8NtKvq14FngMdTpccwjMuP+Cm+o0ePej7FN336dNasWRNNlnndddexaNEicnNzo5kGtm3bxoULF1BVOjs7M8J4QGp9IDcDLar6iaqGgB8Di+KOWQT8yH3+M2CBWL4CwzCSRHyamGeffdbzKb7Kykpqamqorq6ms7OTNWvW0NjYyM6dO5MSUHD77bcDiXOFpfrnNJVTWJOA38e8PgF8s69jVLVLRDqAK4HPU6jLMIzLiNgpvkOHDlFaWup5/0APP8yWLVuSZsT279/PwoULef3114GLhcMKCgo4e/ZsjwSVySYjnOgishJY6b48KyK9KzFd5CrSb4BMg2kwDaYhIa2trVctW7bs82XLlqXk+m40arC9vb0d54a8FZja1/Ei8k6C5usG0lcqDchJ4Gsxr4vctkTHnBCRLGA8jjO9B6q6Hdg+kE5F5LeqOndIipOEaTANpsE0jGQNySKVPpC3gSkiUiwiOcBfAS/HHfMysMJ9vgSoV1vMYRiGkRGkbATi+jRWA/txwnh/qKrHRGQjTp6Vl4EdwG4RaQG+wDEyhmEYRgaQUh+Iqr4KvBrX9g8xzzuBu5Pc7YCmulKMaXAwDQ6mwcE0OIwEDUlBbMbIMAzDGAqjIheWYRiG4T1mQAzDMIwhkRHrQPpDRKbhrGif5DadBF5W1ZFVEMFjRORFVb0v3Tq8JCba75Sq1onIMqAE+BDYrqqpW1FlGJchGe0DEZFHgKU4aVJOuM1FOD8iP45P3phCHdNwDNhbqno2pv0OVf2FB/3Hh0cLMB+oB1DVMg80fBP4UFX/W0QCwPeBm4APgC2q2uGBhpdwborygC+BK4CfAwtw/tdX9HO6YRiDJNMNyHEgGH9n6d6JHlPVKR5oWAP8Dc5d7mzge6r67+6+d1X1Jg80vIvzQ/0CTplKAfbghkWr6hseaDgG3OiGb28H/hc3v5nb/uceaHhPVWe5i1JPAteqarebX61RVWelWoPRNyLyFVX9Q5o1XKmqicsZGoMm030gYeDaBO3XuPu8oAL4hqouBkqB9SLyPXefV4kh5wLvAJVAh6oeAs6r6hteGA8Xn6p2RfSo6kOqelhV/wm4wSsN7s3DOJxRyHi3PRfI9kKAiIwXkSoR+UhEvhCRNhH50G2b4JGGfBF5TER2u9N4sfue80jDxLjtSuCIiBSIyESPNFSJyFXu87ki8gnwloj8TkT+1CMNc0XkoIj8m4h8TUReF5EOEXlbRDK+3kKm+0AeAg6ISDMXEzdOBr4OrPZIgy8ybaWqrSJSCvxMRK7DIwOiqmHgGRH5qft4Gu//tk0i8l1V3Qk0ishcVf2tiEwFvPI97AA+wlm4Wgn81P3RuAVnmtMLfoIzdViqqp8BiMhXcTIu/AS43QMNO4FmYC9wv4h8B1imqv+H81l4wefA7+LaJgHv4oySvbipuEtVv+8+fxKn3tDb7v9kDc6NV6p5DvhHYALwK2Ctqn5bRBa4++Z5oCF1qGpGbzijqFuA77jbLYDfw/7rgdlxbVk4hbK60/SZ3IXjd/Cyz/HALuA/gbdwjMYnwBs4U1he6bgWZ+oKnC/tEuBmD/v/eCj7kqyhIe51JfBLnMR673qk4WHgF8DMmLb/8urv4Pb3IZDlPv9N3L73PdJwNOb5p33ty9Qto30gIwERKQK61L3bjNt3q6r+Mg2y0oaI5APFOEb0hKqeTrMkTxGR14A64EeR9y4ihUA58G1V/ZYHGj7E8Q2GY9rKgb8DrlDVAWVaTYKOIpxCcb/HuQtvVFWvpjMRkQeBPwOqgD8BCnCCKm4DblDVez3Q8Guc9z4e2IrjI611p9Ce0gxPqmgGxDCSiIgU4ESgLQK+4jafxkkcWqWq7R5oeAJ4TVXr4trvAKrVg+CSuH7LgL8HrlfVr3rcdymwCiedeRaOMavFyc3X1c+pyer/RuAJHJ/sWlfLCpwgjwpV/VWqNaQSMyCG4RExPqLLToMb2v1Hqtp0OX8OI03DcDEDYhgeISKfqupk02AaRoqG4ZLpUViGMaIQkff62gUUmgbT4LWGVGIGxDCSSyGwEIj3dQhOGKdpMA1ea0gZZkAMI7n8B06kU0P8DhE5ZBpMQxo0pAzzgRiGYRhDItNTmRiGYRhpwgyIYRiGMSTMB2IYg0REuoH3cRI0duGkrXkmduW3YVwOmAExjMFzXlVng5OiHCcxXz5OygrDuGywKSzDGAbq1LdYCRRzfOoAAAGXSURBVKwWh+tF5E0RedfdSsCpECkiiyPnichLIrJIRIIickREGkTkPRHxNM2IYQwHi8IyjEEiImdV9Yq4ti+BPwb+BwiraqdrDPao6lw3ed5aVV0sIuOBBmAKTrLB36jqS24tE7+qnvf2HRnG0LApLMNILtnAD0RkNtCNk8QPVX1DRJ4Tkatxyg7sVad646+BSjdz7c9VtTltyg1jkNgUlmEMExG5AcdY/AEn4+pp4EacgkU5MYe+CNwDfBf4IYCq1gBlwHngVRG5zTvlhjE8bARiGMPAHVH8K/ADVVV3euqEqoZFZAVOdcQIu4AjwGeq+oF7/g3AJ6r6rIhMBmbhFCkzjBGPGRDDGDwBEWngYhjvbuBpd99zwF4RuQ+nIt+5yEmqetot9lQbc62/AO4VkQvAZ8AWD/QbRlIwJ7pheISI5OGsH7lJVTvSrccwhov5QAzDA0TkWzg1uqvNeBijBRuBGIZhGEPCRiCGYRjGkDADYhiGYQwJMyCGYRjGkDADYhiGYQwJMyCGYRjGkDADYhiGYQyJ/wd/kkMQsMx5HAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -779,20 +797,31 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 14, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEMCAYAAADqG+D0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt4VPW97//6zj2ZIZmEQAIEGGq1BNgVuvXsbqQ1lBZKbTHPbrtt0KNU1OIpsd2CUGVXLt3US3U/u6IV9YC3kuhpe5rynGrBArE/xLa7u+AuEIraTmiCE4jJJMwkc13f3x9r1spMMkkmyeQCrNfzrGcya9as9Z1M8v2s7+fy/ggpJQYGBgYGBoPFNNYDMDAwMDC4ODEMiIGBgYHBkDAMiIGBgYHBkDAMiIGBgYHBkDAMiIGBgYHBkDAMiIGBgYHBkBgxAyKE2C2EOCeEON7H60II8YQQ4j0hxH8LIT4xUmMxMDAwMMg+I7kCeQH4fD+vLweuTGx3AU+P4FgMDAwMDLLMiBkQKeVvgNZ+DrkReEmq/BZwCyGmjNR4DAwMDAyyy1jGQKYBf0t63pjYZ2BgYGBwEWAZ6wFkghDiLlQ3Fzk5OX8/ffp0/bXG0yZA9HpPNOmjWYliJZQ4TqK9wywUpkzwEw6bELE4ofgF9XhLAY58E+GJEzl9+vTIfbAhcNVVV43YmMxmMwDxeDzlZ4vFgpSSyZMnM2HCBP34Cxcu8OGHHxKJRLDZbEycODHldUVRMJm671FOnz7NlVdeiRDd35eUknfffZerrrpqRD5TzzGMBcYYjDGMtzEMxOnTp1uklJMGPFBKOWIb4AGO9/HaM0Bl0vM/A1MGOuff//3fy/44dOhQynOg17aCrfJqnpe3XX1U3nb1Ubms+Khc5vz/5NU8L6/meXmn88dy8/WH+nz/WG0Wi2VExySEkEKItK+ZzWZZWlqq/16rq6vlpEmTpMfjkUII6fF45KRJk2R1dXWf38XcuXPlwYMHU/YdPHhQlpaWyrlz50qTySTnzp2bco7h0nMMY4ExBmMM420MAwH8QWYwx4+lGdwL3JrIxvok0C6l/GA0LvwhM3DjxeP243H7+eRsPyWWFtx4cePlZDDKE2/ekXKnPB6IxWIjen7ZbcwBsNlslJSUsGLFCuLxOI2NjcybNw+z2cytt95KJBJh/vz52Gw2vF4v58+f58477+zz/Js2bWL16tUcOnSIaDTKoUOHuOmmmwiHw+zYsYNQKMSOHTvYtGkTNTU1I/pZDQwMhs9IpvHWAG8DHxNCNAohVgsh1ggh1iQOeQ34C/Ae8Bzwv0ZqLJnizHXqP7fx/hiOZHwQiUTw+Xzs27ePvLw8AILBIFJKYrEYnZ2d7N27l+9///sEg0HuuusugsEgVVVVac9XWVnJ9u3bqaqqwuFwUFVVhd1u59VXX2Xx4sVYrVYWL17Mrl272L59u/6+mpoa3XDNmzcvq8ZlJM9tYHDJk8kyZTxt2XBh7eJG+XOul4ecN6ib9XPy13xGHjIvkW9wvfwpN8qjIJ8HWet2S/nd7465+0rb+vpMY70JIeQnPvEJCUi73Z7yXSxdulR3jQkh5NKlS/Xvx2QyyUgkkvKdRSIRaTKZpJSqq2zWrFny4MGDMhKJyIMHD8pZs2Zl7Obqz10w3HNnynhwWRhjMMYwGMjQhXVRBNGzzW4qmIeXkiKPuqOlhZDJgsOhPn03MIXHHcdZtf4WdYfXOxbDvKiQUvLHP/4Rk8lEOBzW9y9btoz9+/djMpmQUiKEYP/+/Sxbtox9+/ZRVlbG1q1bqa2tpb6+nrKyMioqKnC73TgcDsLhMFarlYcffpimpibq6+uZMWMGGzZsoLKyclhj3r59O7t27WLx4sUA+uqnqqpqUOeuqalh+/bt+vg3bdo07LEZGFwMXJYG5D3mE8VDTotL3dHZiSIFpojq/2+VbvJDzVBbCz4fBIMcBY71cb4zwObRGPhFgKIoWCzdf1b79+/X9yc/7t+/n3nz5jFt2jQeeeQRHnnkEdasWcPOnTtZv349AI899hj33XcfX/nKV6ipqaGiooKjR49SV1fH0qVLqampGdZEXV9fr8d1tMl/48aN1NfXZ3yOmpoaNm3axK5du1i0aBGHDx9m9erVAIYRMbjkuSwNSDPH+CRe5l9Tru74wx+IRMCWq/46TneWErc5we1WDYjTyfwrrqD2nXfSns8zOsO+aLDb7RkdFwwGOXDgAF/60pfYvXs39913H2VlZZhMJoqKirj33nvZvXs3b7/9Np/97Gf5xS9+gcPhYMaMGRQVFbF9+/ZhTdJTp05lw4YNVFdX65P/ypUrmTp1asbnyNYqxsDgYuSyNCAAS/Bi/cP/A+DjwSMoCGgXidcE9dHpNP2hFEJF5JsusLikmS2bN1NXB3Vvbh3DkY9/gsFgxsfG43HeeOMNYrEYiqLw3nvvEY/HaW5uZt68eZw8eRIpJW1tbUgp2bdvH7feeitCCE6ePDnssZ4/f57PfOYz+nOz2cyUKZkLItTX17No0aKUfYsWLRrUKsbA4GLlsjUgP+DbfKTIDcCWzg04RBgSabshaWeSbObLRX+Alha8oRIWn7kHamuZ7YOZtsm0R871Omd1dTWVlZVp0381/79Bb5INTnL8ZMeOHSxatIicnBza29sBWLp0KaWlpSxZsoSf/vSnw7puY2Njr33J6cqZxDTKyso4fPiwvgIBOHz4MGVlZcMam4HBxcBla0B68m3l33UDEpNmcgkyx38WIp34406IRKCtDVcgjMsqKHHkEQwGicXjuITg/UWL+Mi+fVBfz6FDhygvL2dLeR1b6srH9oNdJCxcuJCf/vSnfOUrX+HIkSOAGkNobm7Wj8nJyaGlpYWdO3eycePGEa2L0YzXQDGNTZs2cdNNN+F0OmloaGDmzJkEg0F++MMfDup6RiDe4GLkMjUgZwixCH9ITbsKSRv/yveIS/XXYSKOlQie2IfcEn2GCBY+6JzClNA5ZDwOSF08RQJu2c7i4+/A738PisI1e/bApz5FxSkfrHpBv+pWjGB7Mt6k7Lb29nZKS0tT7tyTjQdAV1cXTqeT0tJSbrrppmGvQDRWrFjBrl27WL16NXv37gUYUkxjqCtMIxBvcLFymRqQzVzFDD472wPAT85N5kOKcJgi+hEhxYbbEuAxcR9IhRJTCxWOX6kZW5jQpGxicWhkOovzNqurlHhcXcl4PPhne1Ii7DNG7fNdfGixjkziGmfPnmXv3r1EIpEBjx0IIQR79+5l0qS+ZX/6i2ls376du+66i9raWgCcTic333zzoAL8yYF4bSXS0NDA17/+dcAwIgbjl/Gt6JVFSkpKMJlMlJSUABAA8PvVDUAqoCS2eFzdF4uBlKQTaxwKq267LSvnuRSRCQkV7bE/FEXhwoULTJs2fPHmTK7XX0zj5MmTVFdXp0ixVFdXDyrAX19fz09+8hOsVisrV67k9OnT3HHHHUQiEUPWxWBcc9kYkPvuu48LFy5w3333AfAO89n6jput77g5KT9KC4U0ysn4TFPxiSm0iol4LR8lICYQwJW1cWQyYRmMPYcOHeLll19m1qxZfOYzn6G9vT3tRG6z2Vi4cGGKPMvChQux2WwZX8vtdvPss89SVFTEa6+9xsMPP8yuXbsoKCjoJetiYDCeuCxcWEIINmzYwLp16zCbzQghkPIY4E0cMZt8IE4I4uC2OwhZXHjcfkIBF+vjj+BSgsyOvAcyikQg1Ho4FKCDvIEHcegQNDXBqlU838chRkHi4Ghqahqxcy9dupRYLIbVauXuu+/mq1/9atq4RCQS4ZVXXuHRRx/VCyE3bNiAoigZB8Y7OjrIz8/n3LlzXH/99TgcDvLz8+no6DBSgg3GNZf8CsRut7Nw4UK9OtpisbBw4cJex0lUa2oB1Y0VCqkb8Bjr2Wn6X+p+Tf5JJjYSKwq/X42BRKPpB9LeDi4XeDx4Ie1mxEgGx0imRZeWlrJ//3727dvHr371K3w+X9rVgM1m42tf+xq7d+9mwoQJ7N69m6997WuYzWY2bdrEjh072LdvX78qw7FYjMceewyr1YrL5aKqqorHHnuMWCxmpAQbjGsueQNy55138rvf/U5XjP3+97/P7373u17HRYAPExu5ueBwwOzZUFREwJzPGesVfNv6FKeY3Wv7gNTCM1trf518DbKFJosyEpw5c4by8vIUdeB0q4FIJMKRI0dSYiBHjhwhFovpgXGLxZJWZVjDbrfT1tbG888/j8fjYceOHbzxxhsA/brPMkFTG16yZImhNmyQdS55F9aOHTsAeOCBB1i3bh12u501a9bw5JOpx0VwAWparz/kIKaY8HqhtRVicRsRKfkrU/m//FPK+ySgYGJK54fMjv4JOyGm0Q51dXi8QF3iQJ9Pf8+WzZvZstWoZh/P9BR5VBSFrVu39loNzJkzh4qKCqqqqnRX1cqVK9m+fXvGOlt33nkn69evx2QyEY/H9cr4CRMm8NRTT/HnP/+Z2267jZtvvpk5c+b0coX15SpLTg/Wukwa6cEGWSUTyd7xtA1Wzr1vueLnJWxObB9IJx9I+KuEv8qZ+W2y2HlBXn+9lMXFUjpMYVnsvCCLzedlPm3SyQV9y+WCtBKSV1tPyKvFO/LjHJMXrrhCys2b5aHrN0u5ObFdfbW6zZghZUGB7HQUSGm3yyhmGQIZAhkG+SHoUvJbLyI593TjPHTo0KhcZ6h/DwOdWwghH3/8cfnaa6/J4uJiabFY5Nq1a1POkdyZ0WQy6Z0ZCwsLZUlJiTx48KB844035MGDB2VJSUlKV0eNtWvXSiGENJvNKddfu3atLjn/+OOPyzlz5vSSnO9Pkj65A6T2ezh48KCcO3fugL+3kWA8yJgbY8gMMpRzH3ODMNgtewZka8KIPC/hQ2mmU8IHEj6Qxc4LckZeW1oDYiUkrYT1zUJYmojKYtM56eSCNBOW86wn9Va5Wtvc2wp+Ib9bvFPKggIp8/Nl2OqU0myWMZNVRrDIMMgIyE6QH4DcnDAihgEZOwPSc5s1a1avybe6ulrm5OSkHJeTkyMLCwul2+1OafnrdrvTGhC73S4ff/xx/bnJZJKPPvqotNvtuhFI7pGSbATmzp0rN23alNISOPm51mtF+z0kn2e0GQ8TpzGGzMjUgFzyLqy+2Zz081birAU0N9NHKcgJ6XFxk+j2tSuYsBBPOZNE4BBhAuRgRa1UV9vlJh3kO4s3klB5jcVQTBbAhFRMCGJYUWcfC6oj7buJt61M7G8Dns3OB79kKC0tHZXrFBYWsmDBAg4cONDrtbVr19LV1ZWyr6uri66uLr04UQv2W63WtJlj4XCYNWvW6M/LysqYN28e4XBYF2tMDqYnx2JOnjxJZ2dnryp2r9fLnDlzDJ0ugxHlkg+iZ8Zm1CTaWqCW2UUtVMw+RUUFzJgBE6zhAd4/MOWB/0dFVw10dUEkgiUWgngckxLD1MsgQRSIA52Jn23AlTYbPPggz0Of2+UUWSkoKBiV6/j9fg4fPsyCBQt6vdbaT8LE0qVLcTrVNslOp5OlS5emrQ+x2+0UFRUhhEAIwYkTJ7jhhhuwWq3Mnj2bHTt2sHr1ajZt2gSkGgGbzcbatWtTWgKvXbsWm82W0oM+Fotx6NChlPMYGAyXy3gF0jc+ny+1yYfJ1F2d3hcDFAjWub6INzKVCvZBJEIsZsGiKCiKCRGXqBUlas17ujMJEoHPM2f06pV0ePp57VLjT3/606hcR0pJOBzm2LG+WoqRqC2S+iOg14fMmTOHkydP6vUh6ei5ipFS7TtfX1+vF7+uXLmS2267jZycHHbu3AmoWWAPPfQQO3bs0MUcA4EAkUiEyspKjhw5wvLlywmHw9jtdu68885+A+iGqKPBYDBWIGn4czhE3Zt1bN26Rd0xYQLk50NRUeIIAcKkbgh1s1rJluSJAKyYsCCYgBmX2UyB1QqHD8PRo2zZvHnAc4wUJtPl9yejGYT+Prt2jEy6kbjiiitYv349y5cvZ/369VxxxRVpVyDJEvY9z/nNb35TN0zQLeOiKRZPmzaNYDBIU1MTUkqampoIBoNMmzaNmpoaXn31VaZMmYIQgilTpvDiiy8yffp0zGZzr7ReLWsrOSXZkFIx6I/LbzYYJO+8k+6uU9KrkDAWI2Xt4PfDqVPdeluRSMLIZIpqmKTZoq6AzGa1EDHRO2OsjMhI1l6Md+IDrUJ7cPr0adxuNRDmdrs5ffp0n8aiL55++mncbjdvvPEGkUiEN954A7fbra9AOjs7iUQiPPzwwwSDQR5++GEikQidnZ1s2LBBF5wUQhAIBAgEAoRCobQGIlnUUXOHGVIqBv1huLAGpJ1ELyOiUYhjIY6F7tWGApjwu0qJdKrF6l0zZkDFHKirg/JyAA7tPEVTZDKrAk+CohCXJswyhiIFamheMp0zfM8QM7lksFqtBAIBAAKBAFarlWhfSgWAw+EgFAqRk5Oju7Ti8Th33HFHirz8nj17+MIXvgCoMZhPfOITrF+/nnXr1iGEYMGCBfzxj3+ktbWV/Px8/fzt7e3k5ubS0tKSYiA0qXqju6LBYDEMiE473REEN29SARwD/sq0adfj9b5FPO4E5mInSBih/nN2BIjl5uF2q4uQvm5S2yO5uGwRtsT+VV25CAFSQSaiHgLoShQyZsShQ1Sk2e1CDaYbulpjTzQaxWw2A+rKbaAVTCghndMzHvL444+zYMECPRZx/PjxlNePHj3K5MmTaW5uZvLkyRw9ejTlnE1NTSiKgqIoveRfkg3ESHdXPHDgAGvXrs1KfMWI1YwPDAOic4juHCZt6lWfv/++AP4KKVO2pL29nfxB6jG9YP8G5ZH9IASe+Ht9HidQEGnD6Qna2/Gn2V0CzAcWkV5byzAso4tmNAbr/kpGURRuueUWbr75ZoqLi2lubqawsFB/XUrJhg0bdDHHdevW6a+Fw2HuvvtuvvCFL3DrrbfS1taWcu5kA7Fp0yYqKiro6uoiGo1itVpTAvbDoaamhl27drFnz55hN80yGnCNHwwDkhHJE7k5IXuiEpAgu1SlEs293dSUQ10d4PXoUia+rnyIqHejdeYlalxDXo8iBYvlrxFAG27K+HPKlU1KoidJ4k52IGygGxZvmtc9GZ3FYLxQWFhIa2urHnvyJSRxVq5cqR9jtVpZt26dbjh6usqefvppnn766ZTzRqNRfeLVYhxHjhyho6Mj5ZhoNMqRI0eGPTFv376dJUuWpJV8Gey5k2M1MLiukQbZxQiiD5o4NgKQ2Fyik5wcKCkBp1PVYJw2rYvycij3eNXHcijJ66TE1qr6uBRFDagkAvF1LO73ikBald8CtzvNgWPPSKrkXm5odSZaBpjWjqC6ulo/pmdcpedz7b3JWWQ2m43ly5dzww036JPuj370I/0ayY/a/uFw8uRJfv3rX6dkeO3Zs2dQjbc0jFjN+MEwIKPFlClqVaLLpVoZqxUsFhSzFSXxNczmlH645r4SyZ0SfT5V3bGuDnw+rs7P56NmOx7QN6cQeFDdVxVptkWMfMGhHKAmRsM6qKw0A4Dp06eTm5vbq4BxxYoVnD9/nhUrVvR6j7Z6Sc6gi0QivP766/zyl7/Us7AURcFkMvHoo48SDAZ59NFHMZlMWcm8s9lszJs3L6Xx1nXXXTeoxlsaWqwmGaPCfmwwDMgoc6jzH6gNfZ7a6A3Uxr7I3vgN/IIVfJv/YD9LOUQ5oIXVQQqT6u5KrkEoL1eXPB4PsdJP4rn+eph5PZ7rr8fuduMpLiaC6sryA27U2EgJUIgaI1nJ2FewJ7ek1arKR6u6/GIjeRLvaaBNJpPe133v3r296lUcDjU5I3llqE3imhtJo7S0lAceeACn08kDDzyQNbmYcDjMr3/9a06cOIGiKJw4cYLq6up+05o1KfqeNSvJFfbRaDSlwr6v9xiMDEYMZJT5c/QjSTUkKjJhLrawhYm0Ukk1W9gGSBSTBZNJUWMgJSWQSAvtk85O6OoiH5id2KV2W+wmXYzEM6xPNTSSs4204G7PIG9/LF26NOtjGu9oOlvJ9FwhJD+3Wq16dldPwxMMBnn22WdpaWnR9505c4YVK1awa9cuVq9ezd69e7My7uQKfY3kAsme1NTU8K1vfUuXggkGg3zrW98CugPlyfEUzQgawfXRxViBjDIRaSUk7QRw0oqbFgr5kIm0MJEO8jjDdJ5kLV9nF5vZMvgLKKqxiQOhxBYHYonNjmpYerq4RsO11ZPm5uYhv1cIwb59+7I4mouD5ubmjF2E0DseoqGdo6urS491aCSvZrJFX2Pua/+GDRuwWCzs3r2bUCjE7t27sVgsbNiwAVANwvHjx4nH4xw/fpzKyspxXQiZvDL6+te/fsmsjAwDkhFnUO/RXYAgTC5aA9yYNGeaIKUTw5JQ9BWJskR1M6NgQ/2H99DAmRFocitQ1X5z6HZrpXNtjVdRxkmobpZsBOp7TpyXE4FAgKqqKjo7O4nFYqN23Z4BelDdaUII3a0G0NjYyIsvvphiDF588UUaGxv7PPd4Da73lIi55557LhmJGMOA6Gzt42dQKye+DlSj3s9H0LKw4kg6Onw0NPiIx1NDFcn4fOrWJR1EsBLCThwzMSz6FmcQE5rPB14vbr835ZF4HCIRHP1MsJbEp9BWKMkGJV2MZKyMSTrtqfNAU1OTLhEyHIZTm3Gxo/Vvv+mmm0b1uunqYpLbTe/cuVM3IocOHUqJZxw6dKjfc4/X4HrPldGCBQvGzcpouBgGZFBsBoJAC3AKOEV+0s+hkI8JE9K/s6RE3XKsMWwihoMwZuJYUO/+ZCLvKoSdIE5+wQoOcx23x5/jwXia0r9EEN3v9qQ8gvrPqUjJtNxcim15OISFHGCCxZL2C082KDZSDclYGpN02T9uux0pJW1tbVm7gysuLs7KeUaDbIlZKorC6dOn+fnPf97rNZfLlfI40uzevTvFoD333HMUFhby6KOPcvvtt3PhwgVuv/12Hn300ZQCyp70FVxfvHjxmLqPxuvKKBsYQfRhEhrsG7SMKqltUjceEpFQxRL4KCGCjXf4OEeUf4SoYBv/J6NLxBUFs8mE2WolHlfjBRazhVgshn2A95qTPlNypbs38egZxEcdLukCr/5wWN8/lCK0dAwnFjPaZFPM0uVy0dbWpgeqNZL1u0aDYEIgNBgMsm/fPsLhMJMmTSIej7Njxw7Wr1/PzJkzcblc5Obm9nmedMH1G264gVdffRWn04mUkq6url7B+JFmpCVixpIRXYEIIT4vhPizEOI9IcR30rw+QwhxSAhxVAjx30KIL4zkeLJDB5AHlAKldDBN/xlshMNqgpXXC7WnZuP1qj8HAqoiPLm5KXUgWgBFS9tNaPDiIIKNKPniAi5TF2fk9MyGZzYTAaTVCm43IYebuNmGKTeXLujbx9YPJfQOto9GCnBfAVbNfz6UIjSDbtra2rBYLINWCB4JtO9aM1pnz57l2muvpaGhASklDQ0NXHvttZw9e7bf8/QMrtfW1mI2m9m9ezfhcJiNGzdiNpv1YPxo0HNldPTo0UumsdeIGRAhhBl4ClgOzAEqhRBzehz2r8D/kVIuAL4GDL/kdcR5AXgCuBK4kjya9J9hIm1t8Je/TODFFwXvNO/kxRcFL74oWLQIkm5A+kRBEMdMC4W0k8ef5Uc5o0zjsLKQB9v+JaMRCnrfqcZiMUyJuIirxx3nQGjyKH7UyI+3x5b9UH/fOC0WPeh7OQfBs4HZbCYej49qED0dy5cvp62tjeXLl+spx263mwMHDlBcXIzJZKK4uJgDBw7osa+qqiq9Kl8IgcVioaqqSi9U1ILyjY2NvPTSSynxh5deeqnfYHy2qays5IYbbmD58uXYbDY2btyYogBwMTOSLqz/AbwnpfwLgBDiFeBGIPm2UaLezoNartD/7cU4pL3H876yg1588QU2b141wNm639tJDiBooQgQdOKk+sKXqAvP5SM/DkHz34HVSldHlJwOK11dkNMBM5SlbDZ9l3g0SvT8eewxC6ZYmHg0htNiUSWDIxFyTFY806fi94Mr1kIg4UbIhMWoX5aGpgCscSbjMw2eYNJkN9YT38WOyWRCCDHmv8dkrS5NLNLv9yOl5Pz58yiKwvnz55FS4vf7qaqq4qmnnkIIwUMPPQTAAw88wJNPPokQgsceeyxFWPLJJ5/kc5/73Jh9vuTGXg0NDRQWFvLqq6+ycOHCi96IjKQLaxrwt6TnjYl9yWwBbhFCNAKvAVUjOJ5xTupXYUZiQmIljllIhEngIsBZ2yw8tyzCc4UZz8fzKCu9gOfjeeQU5+H5eB5nTB7MOTlIi4VzkQjNkQ4UqWCxWHrfsfv9OEJ+3aBkSj7dK5J0q5LRXJEYDJ1oNDrmxgNU9QEhBAUFBXo8SltB98zaUhSF5557DiEELpeL+++/n/vvv5+8PPU+1GQyce+995Kbm8u9995Lfn4+e/fuTXEf3XbbbVmrsM+E5MZeGpFIZFTdaCPFWAfRK4EXpJSPCyH+EXhZCDFPSpnifxFC3AXcBeodSl1dXZ8nDAQC/b6eOX159rcyVEF0r9dLIDAdRRGYpZmYlAipCrf37ISuBdWlyYQiTGASBAoL6eoy4/V6KQoEiAGOUIiQ308o5MDvD+l9J8xmMxPdbgIBC0qoFZPdRAwwRSJIs5moIog6HARiFqzxMFFFUFJciLW1Na1wY0/mgx6QN5FqNCyA/+MfZ+qcOSkrk54MV1p+woQJA37X2ft76Ga458vWeLL5uQY6V7Z/h8m0t7cjpdoeoSd33303K1asYO/evfoqRYvZJCsHa7GTeDyeMtY1a9bwyCOPsHTpUmKxGGazGbvdzr333juinymZxsZGcnNzCYVCegJINBqlsbFRH8OBAwf48Y9/zJkzZ5gxYwa33HILS5YsGZXxDYeRNCBNQHLktzSxL5nVwOcBpJRvCyEcQBFwLvkgKeWzwLMA11xzjSxPdPlLR11dHf29PpZ4PB5cLrW7rSUWQSpWTIokGichqChBbzCVCKoLgclkSnS0denn4dgxcLvVVYTbjd8PbrcDv6lT922rHe7UuzKLJfFVS6nWikgwh0IQA7OS9DzDLB87oIVeLaipBRrmYgrGAAAgAElEQVQOoKSzk5Dfn1ZSXv99ZHSlvsnPzx/wu87238PatWuHfb5sjSebn2ugc43k/1Q6sUeNj370o3z6059OmzAxd+5c3nrrLe6///4UufrkplVazKS0tJSGhgaKiopQFIU5c+aM6jxht9uprq5m0aJFPPnkk3zve9+js7OT8vJyampq2LNnD7t3706RYJkzZ864d3GNpAvrP4ErhRCzhBA21CB5T22EM8ASACFEGercc34ExzTmtLV1EQzGaQ9biEYl4bhZV+NNRkFbmQwSs1k1EPE4hEJYOjsQSlyNfcRi6us2G3GzTc/SSn6O1Yo7f2YWPunIM1BGTrb4/sc+xty5c3n88cd57rnnUl5LllU3yD7r1q3D6XSmNMnSOHHiBG63m5/97Gcp+z/96U/T2trKpz/9ad566y1mzZqF0+lECEFOTg533XXXqBfxXbhwgc985jPYbDbuvfdeLly4oL82niVYBmLEDIiUMgasBfYB9ajZVieEENuEEJrm9DrgTiHEO0ANsEoORuhnGOh35KPI1q1bgK7EFgCimAkj6H3nZUrEQAZNTg7k5xN3uWD2bN4zXUXYkQ9FRepmtUIkgjke6Y6BdHVhiXZ3xXIFfJRYrZTPnMn8/JkUOgbRajcJ17vvppWUT04JHk4K8Gjk0dvtdtZ/9avU19ezZs2aXimv27dvZ9KkSSn7ej436B9NLdgxxL+zc+e6HRZWq5Wnn34at9utr0oaGhr0WpNQKMQzzzwz6ingPWNNyc8v5kLDEa0DkVK+JqW8Skp5hZRye2Lfg1LKvYmfT0opr5NSXi2lnC+l3D+S40lm9It4ND0tC2q5Xi5qxceQzIRaVOL3QyikGoKWRvV5NAqRCEp/vTZ6rkBycohZE12x7HYCrhIoLOyucM/Jofz66wc9RHMolFZSPll/azjaW6ORRx8Oh/nnn/yEsrIydu7cid2eWop54sQJzp8/r2ffCSE4f/6SXkRnHU3wsS/hx8Geq6felqIoel/48+fPc+HChTFJAddUBHpmamZDgmWsZOzHOog+Zpw+fXqUr6iFixehJr46AAtWYkSY0MuIqB3RBTHFlL6jrVZUUlcH5eWcesFLSYUHfn4UgoWqQIrfjyvahVlEusvLByokjEZxSL/q7vJ6cfuBcBd4vZTPnAmhED5KoPmdQX16B72r9l10S6ak6+E+lv3b7Xa7vtqo/bPaZnj9+vV885vfTHu8yWQiHo/rjwaZk42+8cm4XC46OjooKirSs7ruuOMOHnroIW699dasqgwPBi3G09PJsmnTJm666SacTicNDQ3MnDmTYDDID3/4w4zOO5Y94i9bLaxkV8RYt2A10fsfR3NhWUxKWrXfQ4egtlatdq+thVMtRdTWwuHgAlbxAg84H4eKCg5bF9OePwNmz1a3vsS6NKxWdVXicqWsQPB41K2kJBsfGVDXYVrjq6EUKI6kjzhddXZ/3tV0k+B1112nr1jsdnvK82TS7TNQSafeOxDpJFh2796N2+3m9ddfZ86cnvXMo4P2GdLpmYVCIZqampBS0tTUpBdUZsJYxlAuWwOS/E87SmGXQaEF0WOKiXi8d2Zte7sa83Y7QrjdMLuoBbc277taOBucmL3BdKkrELxe8PlwBXzkmM04UFcWg29K2jeLyVw2ZSx8xE899VTGx7711lsp7pm33nqLq666qtdxkUiEoqKirI3xUmKg1UnPWKa2ApRSprT91RR/77jjDk6dOtXzNKNCbm4uJpOp1w3Dhg0bMJvNTJs2DSEE06ZNG5TcSn19PY2NjSkurMbGxlH5/7hsXVh33nknTz75JKAWMg2mE95oYEIiAYtJQUmk8WaCzwe1kU/QFrWzqtbFe9EuXm//Ajmn1Gl+RuAk23hwcIPRViAAfj8BH7ji7YQS/9TZ/CPSihQ1vD1e9yT9PNpxrGS3Vqb0TFE9ceJEr2OmTZvWq8e5QWb0DE5rfd2llLpYJMB3vvMd1q1bh9lsxmw2Z1WUMlO0zKueHSUbGxspLi5OSeOtrKzMWG5l6tSpbNiwQU8TPnz4MCtXrmTq1KlZ/ww9uWxXIDt27NB/Hm/GA9KvQHy+gd8XiYB7QhwXATx4mWeuxxN9Fw9ePHg5EymBeBxFDD2I6Ar4IBrFbbfrKxB30lYySK2tvkgWcUy3Knklzd38SDLYwGtBQQEHDx7k9P/8nxw8eJCCgoK0E1dnZyednZ3ZGuZlj6IouuS/hrYSjMfjWQnWZ5uPfOQjulbW8uXL+chHPjKo93d0dLBs2TJsNhvLli2jo6ODzs7OlFVJVVVV1gPtl60BSaYki379kaSkBFpb1bh5op8UXr875bGrC5g1i3BxMVRUcCr3EzQ7P9LdkMRuV7OupFmtE4mFBm1QAq4SNR3Y4cCRnw9WJyH7TNwz1Y0s9ZFIFnFMJ5ty9re/zcp1BsKaEOwb7CSfk5PDkiVLuOrll1myZAk5OTlpjzNWH9lFi2n2Z/DHOu7Zk7fffpvbb78dv9/P7bffzttvv53xexsbGwmFQhQWFiKEoLCwkK6uLlpbW/UuiBUVFfzoRz/SWyJrPeaHa0QuWxeWhsViwZfJrf0IEYZEH0IFBigc1IZZXk6i8hzw+sHj1h87Onq/z1uwAE+FR33y48PgmkGLF1yz3epj6BShkIOhZeGPHDmo/duTsaGuRABcH3wADz4I27YN/uQPPpixzEp0iDGys2fPJtQAQtjt9n4LH9P1PjEYGlJKhBBMnz4dr9fb5zHjCZPJlCIqaTKZMnazCSEoKyvjvffe0wUnbTYb4XBY70Hy4osv4na7cblcnD17VndzbdiwYViZWpe1AXE6nQSDwSHEQJJDud5hjyM1PKj+YaeLgZSUqH1F+qOzE/7wBwiFcnniCejqKIOAif9+InH2wHxWubaRF/qAJxjG3Uc4rEf2LXFJofCBZocVBdrbsVgsesxCS1xOZqA/PhPpG3Ylx0g4M0Tt3zNnhiSz0l9HvHRo2TQDZdUkT2jJxsRiMhFLM5HMnTsXgKVLl7J/f+/yqb72Xy5IKfs0HuMRRVH0eWiw85GUkhMnTlBQUEAkEiE3N7fX+xsbG3nttdf44he/qGdqvfTSSyxdunRY476sXVgFBQXk5OSMWuc1Fe1adsAKOFGn0tTVhxxaeaEuZWW1SvLyoNjWRrErSF4e5OWBMJnw4KU5VtRdgBiJqK4sVTgrswvZ7aqryuUiZs2h1VbS7SYrLIRp04jl5enupgC93VFjrwM7Pkk2JvaEG8bj8WASAo/Hw6RJk/QiylWrVmHtUTRqtVpZtWrVqI3XYOhobraioiLdRdrZ2anq3Q3yPIFAAClln/PZyy+/jNVq1WMgBw8eHNbY4TI3IGfPnuWZZ55Jm1o5cuwFfgX8GVXt/kPUNUgcTYNXW4UoQzQiPfGHHLS0QEsLBJRcaqngMItYxQv69oDlkczqRC5jhBCDilf0zPcfSj/z5Hekc7ts2LCBiRMncvDgQSL/+q8cPHiQiRMnsmHDhlGVLDcYGpqbqqWlRU9Jzs3NHfTqKR6P43K5dJl7DU3GfsKECdTU1PCVr3xF7zH/gx/8YNAr6p5c1gakrKyM0tJSjh8/PoyzZNBmMIXNwNeBWqAa1e8To9uRpRoQTeI9Fh/+fXpMMWGxdHfQdU+IM8nq1zOzPNYmzl/IgcZGCAaxBz5UVXs1raz+ZFEuIwbrN1cUhYULF/L2V7/KwoULh5Q6eiEaxWQyEYvFEELgdDpTxABTOu6ZzbprorGxkcbGRr7zne8wd+5cvRulwfgimNTITfs5EAj0WlUOhNVqTVmBaO/XOjR2dXVhNpvZs2ePLk5pNpv77TGfCZd1DETrVbxr164RusJACk+bUYPna1DDw/lAaophHIhHI8Riku4OHMNk1iwI+9QsrRe8lKzyUL/TB++9B6tW8bs6KF/lAeBUHZT4a4d0GUtHhx5LKIRekpHWxH4PveMjlwpHjhzhH4d5DkVR9JqAEydO8P7776fUozz55JN86UtfIhwOY3/4YZYtW6a/9vzzz1NTU0Pp889z1csvD3MkBtmm5wQeDAbZuXMn991336DOE41GKS4u5ty5cxQWFuoSLtrNsdYWQjtm8uTJnD9/ftitfS9rA6JlH1RVjXUjxBCauKK6KDSjrUjUdYia1/7+++9TXHwFAO+8cww9nNzgZSYM2m+alhkzcId+r+cGuE/5wJXkU83PB1/vxj/piOXlcV5RCHaqDXq79M8DJlHADFMHZocDRywG4TDlqLUf7sT7jY7n3VitVoqsVipuu42nn35aT0N1Op3s3btXd49Fo1H27t2L0+kkHA4TDAa5/fbbabiIAsqXI1dccQXvv/++Lju/YMEC/vjHPw7qHJrR0B6TEUKwePFifD4f58+fp6ioKCtxkMvagIBqRCorK/Xq1bHBi+rGygE6SZYeTAqnEghcoLhYk4Wv6HkS3nyzDqu1vN8rRaNw6hRE2vOprQVfSxH+WjjTns+qVTBjxjZMs+uY/4J6ntryOuZ7XuiuRAf4c+YrkmuvvZb//M//RCYChBKwWiw4nXmqSKPLRcns2eD3c8pdQYm/lrp3VKHGKRlf5dInFovxQTTK66+/rqcGA33WpnR2diKlpLOzU++EZzab07awzSSjy2BkMJvNmEwm3n//fYQQBAIBfQWSaXyir5Tf5JiblJIDBw7oz0+cOJFWFWGwXPYGZLxjQxUc7E3yvXp3ams8rlajK0p6n7eUarJVOGrR60p8PuiKWjh2DA4fBldgNkpyecWMGWrVojam9vPqhRKT0UBFiNdeey2cOoXP79C1GP3+ft9i0APt5sbr9ab4x6WU5ObmMnnyZM40NDBjxgzOnTtHZ2cndrudr3zlKxw7doxzzc3EYjGcTieRSITgxo0c/sxnWL16td4bo6mpiYqKCl5//XXVHWa3s3z5ct59990x+cyXA4qi6KtJKSXOhIqDzWbLOD7RV2wtWdZlpDAMSAKt8GbsCKA6eCyobqxcIJJkPHqKyflIrohwA+2A2ezBZoN4vO8/mlgMzCaJwwGEYuqCxxHG7VYnJncslFpe0aNQ78yvPk9h5PdqXjAQ8pO+YGMo+HyUz5yJt6EBM8kmUiXbf7CLUSNPPXGBXmg4lrLyPTGZTL2kOAoKCmhoaEBKSUNDA1OnTqWzs5NIJMK+fftSsnKklMRiMT3gvnbtWh544AFAFeU7evSoaqC2bIEtW4hGo0Nu9GSQGekm+EgkQlNTzw7ggycnJydllaoZFKfTmZXyBcOAJNCMx/Tp0zl37twYGJNjwMeAFrqnzeTb9Mz+iZNXIH4/EHMRkWZiiQk+3c2K3w/hkF11bUXAFymi8TCsWgXHTvVYjYw0JSXgdqvxnCNH8PeYLLM9lWnijZ4e57ah9imB7l4l48GQpLvbTJ5oNDlw6BZpbG9vR0lMUp2dnRQVFRGNxzl86BA7duwgElFvU7TGRlr1Mgy+sZHB8NFcUkNdOSQXoobD4RQXl/YYCASyon5wWafxJqNJLP/tb38jHA5TVlbGggULRnEE2i1/Hmq2lRMoTjzPS7w2cPA60fIcq1Wqcu+WADZzHIcDHI70dYLJKxKbTZWGT7QDwe0I9Sr2brdPVoMpoZDed92mhPTnZKu/RTxOiT0/RajRhTrZe1CdeNnAg/qbdiW2AtTf+McS2zRUY6J1T+TBQaoZjxFa/OPhhx/mxM0365pvLS0t2P7t31iyZAlFRUV6fwytsdGsWbMwb9vGrFmzuOmmm7LW+XHChAkp9SoG6WuDhqoUrM1hyUZBk7ZPxu/3c/fdd2fFtWWsQBJod2Eao99rYjOwArU+pBx1WvMCdT2OS99atiHxGI1GsNmG3qEjEIBTgSIiHehBdm01Amo4xDTrdq63HoFEoVrLMT9+3BQmC1cNMz0wY44dG/YpHKgOQi28bENNOdbWoHa614Je6JZPGYSeVrbweDw0NTVlpCjb2trKJz7xCdavX8+6npPIhg3cf+ECTz/9dEqQPBAI6C15vV5vnwKQQyEcDrNs2TKi0SjWRx7J2nkvZrIpK9+X16SsrCylB3xBQQFud0/n8NAwDEiCgoKCcaCK2o5qONyo05obNduqe5KcOhXef9+Deq8M6n14shhknK6uriEbkXgcHPYY2BINq4pa8LtcehKW15vQiZo6VTcSeeEurOEPoTFp5aEOdEhj0DGbCTncxK1xLiT8tQ661cc+OnEizJ/f17v759gxPW3YhWo0tH+GjNOHh6inNRwGW6HcVyqo+9FH9S6Jb775JgBr164lFApRUlLCueZmJhcX09zczNq1a4fdGrWwsJC2tjYmT57MuebmlFoFg5El2XgAvaTuh4NhQBJ0JGRsc3Nz9aDTyCqkpisyPJTYvxl1FVLX69jf/GYVQnwd1Zni7XEcwD0oSjZ7BPbBb36j//hEeR11x9zUvZc6mcevuKI73SoSwRaNQ0idni0xMtbdmjhR7a6oGRGTEEyZMoXSSZOGPv758ymvqODY1q26EdFWIOPZrzuUv8kJEyYQDAT0OIiGoii88847+p1ra2srTqcTh8OBlBKHw0Fubm5Wbqxyc3OJRCL6iiabKxuDscMwIAm0/PjkbmEXr8S2jVAoTkPDBew4iAJKewi73YGiqIFy4pmX6fl8qjsLVBfXscBsvKu6X//rXz0IeuflBq68EtcnP6k+qa3lzCkHhbPVULUmI58pEydOxGyeiCUW4tPXJHxlWcgFnn/11eDzEcjS3XByVldyJlcKQ5WgZ2gy5FonvGRMQjBx4sRerQy07B8JWckC0jh79izz58/n6NGjSKChoYF58+allRGqrq5m5cqVWbu2wcgxnm+2RhVNZygnJ0fPs784jQeolSMRwI8jaWIPh1Nzbf1+VWgxEoFIPwYlEkm4sxI91ytmn8LjQd/aw0aap4aW1dWz+VXyNmQJ+iyiSMm5c+d67Y9Goyl9yLPVvc/tdvPHP/5RDxqbTCZOnDiB0+nUtbrmzp1LdXX1sN1lBqOHYUCSCAaDdHV1sW3bNh566KGxHk7WMBNBLdQIYTKpmVY2c1w1Co6Q/txg/HP33Xdn7Vz9FaD19/pQ0Hzu2k2ZlFKvlD9+/DjxBx/k+PHjuvGorq5Oe57q6mo928hg7DFcWAnmzJnDiRMnkFJy//33A+pdUrYKbkaPHLrDwG5CQDwpRJyNOeHQXz20J3mPzrTn44vbUjK1tm2D0OTJ3RXsUjIp0qQH2vOau8AShNxcdSmUn66c7zJgkJlcWse6iw3NcPQ0TlJKvbhNbNvG5z73Ofbt20dlZSVHjhzhueee06vi77zzTiorK9m+fXtWZDgMho9hQBJs2rSJlStXUlBQwKuvvgrArbfeOug+2CNJZto4Xag5RQD+RCqqBS1EbDIN393UHnaQkgWY347fT0qmFoD39tvxlJfrh93sPqYH2p8or2PLpw+muHPcv/ptqnDjEPpnXHSMQSbXWKIVtSUXt7ndbtra2nC73ezfv59ly5axatUqfvnLX/L666+z6OBBXXZl4cKFaVPsvw38xyh/FgPDgOhUVlZyyy230NHRwbJlyygrK2P16tXj6o7vySefHPY5FEUhGFSNSbDBjx1QrEDcjN+f6FI7Wh6CHoHkXsKNTzzRWwPe4KIm2YWl8bOf/Uw3EitWrGD//v00NTWxcuVKqqqqqD95krKf/5yVK1eyfft2ysrKeq1ADOMxNhgGJAkpJRMnTsTpdHLq1Cn27Nmjt5y8eDOyeqLQLc/oxwG0Ry04rTbcbjOZKrgcPZrI5gLikSIURZ3vQTVCf/nLKMqfXOQkZ26V0L1+BPUfdBFqQP4Y40NOZTikMyDJRuIb3/gGjz/+OCdPnqSzs5Ndu3alrEC8Xi979uwZdpaWMBpsZQXDgCQxbdo0QqGQXqwVi8X07m/jwXhs3749KUPlDN1Fhx5UsY1jqF+pme466nRoU5Q7oYFoI5K0AvFLB2lUv1OIRLoVS2JxhSJrK+SpUhmhEJw9C7t3e3jhhe73nOqcocdJ+tTYSlb+jUaxhDvAoY7XEoOY+dILoGqZW6AakI6k1xxAI+q37OXSc2kB7NixQzcSN954I6CKmy5cuDDFuCxcuJCzZ89SWVnJxo0b+dvf/tbrXBMmTCASiehxE5vNRjQaJRwO6//D11xzTUq6vsHQMQxIgpqaGsLhMFarVe+JcOutt/Lss8/idDpTWk+OFam+381Jj1uTHhehViD0J4+bugIJY8Fm7l6BuO0hQllQYD13zoFWBgIwO/cMHo8ax/Gm0dgCUi3K4cO0tLhwzVYDLi1edXd2RBgS+HzQ2kqycLZ2b5qXtM+DOpl/+Z/+KZtX7xc3qjdxNqrJr6BHbclFosk1EJ/97GfVuMj3v6/Lm4fDYWpqapg0aRJSSlpaWqipqUFRFKqqqvjggw+47rrr+P2RI0SlxARMmz4di8WSsmq58cYbiUQiPPbYY6xpaWG9389zzz3HmjVrxvpjXxIYBiTB9u3befXVV/H5fPzLv/wL9fX1zJgxg1gsRjwe1w1I9l1ZWxm49a1KZqqoAdRGsRouUsU5UseuyjPa6IrSawXi9QJ+N11jpXLvdOLwBfTbc0dLQC1E0W7Xs5G5lRAY7Go+TzQRcJmQeEmrgDADZpOJfJeLkg8/HL5ES4ZYUDW6tFuBFD0ugF/8YtS1uEaCdJlZFosFKWVKlz2z2YzFYuG5557jkUce4d5771Vl54F/f/ttHnjzTZ5//vmUVUt+fj733HMPu3fv5r6TJ5kxcyYbN26kVquMNRgWhgFJUF9fz6JFi7BarbqbSOuFkJwPP5aurMxUUTXdLG268ZDc4VDVne1JBDPQ3n4WKKY93gxhB6HQeywqLaWjI6v3/Jlz4434nv09JfPVSV6rmtaeA6rLKwtYrTlIJUQsHtc7r4RQK7btWJn+qX9ULWx5ebeLLaGnlUxym68RL68MBi+JDK7i4uIU7S3oVoYoKCigra1Nf9Re67mCWPP3f8+6NN0Um5qa+NjHPpay72Mf+9ioiqXOnTv3kk07NgxIgv56IWhfvs1m66Xam136X4mMZIVuunrjeDzGmTNnwO0Zsev2y7Zt1P4mtb0uoD8fFlqsJRCASAQRi+DKVaf8WDCExWZGETk4HBAN9LEES+hpbdna/b256TbdY2R2ATUwP40+pFQYX6uT5FWGxWLRjYcQQjcabW1t+urfbrezc+dOdQWSYOd//RcWi4Vvfetbelc/zWuwZs0aJk+ejJSSrq4u7rnnHqZOnTpqn6++vp6XXnqJRx55hPqTJ3tpkl3MGAYkwaZNm1i9erXqP120iMOHD7N69Wq2b9/Ohg0bdAnt4qS7JI2+ehJnk8yrb8+gxkE0ikhtijtQxbkFdeqzAB5apdq6XLvpDoWy14djTNFiLatWwbFjhANnsBapUY9oVwuWHEvGXRa3bFan4ro6mO+vBbebuoTC7ViRT7eUSjo8ozaSwZHcs11KyYoVK9h15ZWsfvdd9u7dC8Cdd97Jxo0bASg8epT7DxzAFwwihKC9vR2/34+SaKylVbtXVVXpMZBnnnkmbR+OkWLq1Kls3LiRPXv2sOjgQWz/9m+jdu2RxjAgCbS7+6qqKurr6ykrK0vJerrllltSfLLJZN94bIUezpFJGSvPbkbtn+dNPF9FtzoTqCFZV693dRNLHKsKp7cDhPL4299O8KlPfUrVL/T18/Yk3n3XldJ3vb2jjP9OpPp2dUzjv36mpgMvWJDoM5LZaS9qjOTR3rhcLgKBgP6YzN69e+n5l79jxw5Onz7NunXrUvZLKYlEIuTl5RGNRlMk4x944AHWJZJkvvjFL+rGaLTo7Ozk9ttv50xDw8AHX0QMyoAIIZagNuv+lZRyQJU1IcTngR+ixiH/t5Ty4TTH/DOwBTW6+46UcsxkOCsrK9O6iSorK7n55puZOnVqVhVKB8PZs2cHcbSW4guqIUiOE9gYOM23JzkoynTefLOB4uKZEHARjYK2Elfi5rSzfyhkZvp09WefD4ptbXqqb54SJORwI4RaN6j3GbnY8fnA76d85kx8DQ29YiTl11+flSZYg6Vn7/deSsFjmNGlGY1MJYNqamr4TVI7gRl5eXzY1UUwGkUIQVdXFyYhUiTjkwP0b7zxRhZHPzBNTU1YLBba2wfuKHqxkbEBEUI8jpq0owB3A18Y4Hgz8BTwOdRU9v8UQuyVUp5MOuZK4H7gOillmxBi8uA/wugwZ84cduzYweLFi8ekCGlwfamTvduHUO97/5p47kLN0rLRHeYdyKB0oa1ompu1RjQfIx4Pk5/vJqYMTYgxEFCVTGpr08vEX5SrkkRPd4ASt5uSigpqa/1UVCRFRAbZFCobJNea6MNIfjJARherVnWLnI0xGzZsIBQKIYRg15e+xLbf/IZgQjVYSqkrCCc337rjjjt4aMIEbj11ir179476/3C2VI3HG30akITB+J6UUvu7mwH8c+LnP2Vw7v8BvCel/EvifK8ANwLJ7bHuBJ6SUrYBSCl760uPExYvXsyyZct0H63JZEIIQTwex+Px8MEHH/TZUjJb1x86WqMqUO8759NdmgaqWytDh38P2tv9OK25Ax+YhnhcVQbWdLUqSk+BpzvCcsmsSi4GBsjo0peJ44DGRCdMKSW3J1xRC4qLOdpPbPL111/nmYYGJhcXj3pdl5a5qcVzJj3++Khde6TpbwXyf4FXhBCvoa4kXkKdiRzAcxmcexqQXCraCPxDj2OuAhBCvIV6G7xFSvmrnicSQtwF3AVqyl9dXV2fFw0EAv2+PhQOHDjAz372M2666SYOHz6M1+tFURSuu+46tmzZwp/+9Ce++93vjqgBeeWVV/jyl7+sP7darePmrkZRFBQUIiHVCEUiJrq64iiKgj/R9CkSycWmdB9jSdTXRCJx/P5OAgELfvz4kyYpn8+B2+/Xv0/tXIP5fgf6e5jt85iLOu0AACAASURBVOEKBFAUhVBibFJKYrEYimIiFlOQUv0clkCAFq8Xh8/Hqbo6Zvt8KWbX73cTCAT0zoba8fH4hJS7Ye39ANccPsycggLOJrKNXHSvCwfqK5nNauqBzuVN+tzjBYvFQo4QKFL2Mh6gdkHU3GJNTU0oUvLhhx9yzTXX8Pbbb2d9nugPl8uVNp4zEKMxxuFco08DIqV8C/i8EOIWYB/whJSyfMhX6vv6V6JGjEuB3wgh/i5p1aON5VngWYBrrrlGlicpvPakrq6O/l4fCmvXrmXPnj34fD6OHj2q73/rrbf43Oc+p34QS7bzEer0n6xWKy0tLSmfa2yNRwnqV6e6AbriJlrjuQSbQ6pLKwaFheqk5E4sL3w+9Y7QoVW4h0KY42ZsNjNutzpVut1ujv7Vg+YqDgTAF/gk/hfUVckxn498e4j/KPdkPNIB/x5eeEHtSGhq1cfWJQKJdFKwWExERVz/HK6E0GNJebn6Xk34EfUG3YWLZKlil8fDsWN+PEnH6e8HWLQIjh3D8/GPU/fmmykVOwP9RWWzLexA5/Ikf+7BMkjJ+kyJxWL07rXYTXJMpbCwkHPNzbhcLn77299iMpmyPk/0RyAQGHS2pt1uH5UxDucafbqYhRAWIcQNwDlUFYWrhRB7hRBXZ3juJmB60vPSxL5kGoG9UsqolPKvwGlUgzKuqK+vp7GxkU2bNrFjx45eKbUmk4lYLJayP7nz2nDRjEVNTc2wz6X+u2r3uW66hTIciS2TeIYPNVsrlNgiBBOZXu3tXlz9JXkNQHt7390P3Y6Q0f3wYiQhWd/Xlp1S0FQEahGiRnNzMxK1nkRKOSY92QdrPLQV8Ximv9mtFtVZfj1qnOJ7wBqgSgiRiQvrP4ErhRCzhBA24GtAz9y5WhL5qkKIIlSX1l8G9QlGgbKyMh588EF27drF4sWLU3LVodtIJO8ffle3VImToqIitm/fPsRzJbMZOAycQv31n0I1KqcSW6bNsyx0Gx0bqjFSt+bmIK2t3Ue+++67NDf78IdDNDQ08OGHH2bhc1x6mE0mXHT/Jm10/2ZdqPGgS6IGZxTQjIWG9j+qBc/Hg7YdkNLKV0qJ3LwZKeVFYTyg/1XyTCnlFxOT/28BpJRngTuEEPMHOrGUMiaEWIvq/jIDu6WUJ4QQ24A/SCn3Jl5bKoQ4iXrre5+UctzNLlqzqVgspveMnjBhAnl5ebpUwhe+8AV+8IMf6O9J1zhnOCiKkiK/cOWVV/Luu+8O8WxnUO8NPHRPTyWoKwvN8z6cP+DuStt3332Xs2ebUFc66muBwAVyrDYw91+r/d578ET8H+C/1eddHdOIS8FHP6o+dzrhxhuHmRg0YwYcPoxZiapVkoBJiUIMTAoQAylGOBcskfr7qenTCfRTJ+BlbKvbL2aSZeSLiopoaWkZ4xGpxB98UNfzGipSyjGTp+/vP+MZIcTbwJvAvye/IKXMKJFdSvmalPIqKeUVUsrtiX0PJowHUuVeKeUcKeXfSSlfGeLnGFEqKyspLS3lrrvu0v3kX/ziF3n55ZeZO3cux48f71Xol00XFkBra2tKKm+38chMiDGVzairj68nHpNXJNpqxDvAOVJdWN3Fin4gQGEhdHRYOHvWimqoXISSVikd0VwGCuNEIpBnD5OXB3l5UOwKUpgTorQUSktBCNIr+g6Gbdtg5Uq6rHlqCm5JCWHs4HIRsbnA5aIzt2iYFxmAkhJ0P52zGPfMmZA/E5vVmnKYB9XMlwNLTCZSlnkGvUieVL/0pS9xft06Fi5cOG6MB4B52zbmzZs3bPf02rVrszSiwdFfEP1JYPgt8C4RHn30UTZt2sSvf/1rvvzlL/PKK6/w6quvIqVkypQpNDc3U1hYSGtra4rcSSwWw+PxpGThDJVMxBTHU3ZWXl6MQMCbeObAQUivNnEAYevY3U8/+GCy8dmGz/Q5SgLqhNPBOeaFm/h2/GFw5aC0d0Fjo7rk8XqzJuA4IDbVidUeDWKnewVyxGrlgQcegCee6FWoqHG5u7oE4HQ69UD6UDKgRgNFSk6fPs03vvENAIaqdrdw4UKqq6tpHeWbCkPKJEOSpU4036om7nb+/HkAVq5cyfPPP09zczMFBQX4/X7cbjder3cYuefd/plMxBS1BjqDI9mllezO0hhJAcmx4cyZlAQqPNfGVaVd4IWHfeTdWMIT3r9jS1252r+9rrz3SZKbXwHuU77Unu7ZkJsHZs6cCaEQIcdsPG4/8ysq1BcKCym/5x62bt2aItIvgPKrr+bYO+9k5foXI5LMK9vHEpMQTJw4kebmZtauXUtlVdWgz1FTU8M3vvH/s3fu8VHU5/5/z+4m2SSbkAQwESIuFWlIsFyqbRXUEKzWS21aj7XBFhCqgpL2HK0IRMpFAopifzZBUQtFLMmx1UNKj6VwlARF22pbggLBekm4JyaGBDbJ5rL7/f0xO7Mz2d1kk93NjX2/XvPandmZ2e/uJvPM97l8nvvVuEmEwUB7iLX5FMIGpAcoUicTJ04kOzubkpISKioqSEtLU9dbWlqQJInIyEiEEERGRqryCr3DfWkoLi7u1og0Nzf34j1WIAsMrEIuNLSiTSOWk/ACp7Hzc3sLdnsjaWmD9H65u57ufcQKjZijmpG5aZPq7gK9zDz0gdR8N2ilVTxkVRhYasGhxJ6Xx/6sLP7jP/6j17OHRYsW0dzczPr161lQV8emf/5TJ20v0bkLUPAYdEoRA4GKigqfPQacTid33XUXI0aMwGAwMGLECB555JGgBNLvueeebveJ6OQ37znHcbfJteLug6fEL4Kv57Ovn5VrhyQpKXwhSZQh3wpUo0+d9VMPM2Qo0ipyxEw/trHALGSj4m3pTdRvoGLOzyc3N1etJ+sN9fX1rFu3joceeoiYyEgeuvpq1q9fr74eSvH4rqRMHvL1GoAQ4pmuXh/KjBo1itzcXDXPvKmpidzcXEaNGsXJkycZNmwYhw4dUvfXZmcFgj+V7oH3K9HORpR1K/qgenBmJG4EBw+Wc5AyIAGj0cb06dO7OyhMN3zta1/jf48coW2AxMT8ZbBK0feG80uWsMl1kxkIdXV1TJw4Ue7EOGIEt/pxsxkMunJhxXXx2gVNc3MzNpuNX/7ylyxYsIBNmzaxePFijEYjSUlJvPTSS4wfP159benSpWqAPdQEv+Vu7zl3Tu4pIpMEdJ6FRbi2W9E6VRyODvbv34/BMAiNSKe4CMCo48ehaox+nz5i2bJlADQ+uZEGe516N2rG7d4yDqKMrsHUKMsfYtetw2g04nQ6MRqN3R/gBYPBwPr16+XzCMHRujoOr1+PwWBg9OjRnDhxovuT9JKusrCG0kwxqNTX17N06VK5z/IjjzBhwgQWL17MunXrKCoq4qc//SlLlizh4YcfJiIigpiYGAoLC5k1K/RK9Y8++ihPPPEE48eP59///re6PTo6OoA4jFYeHuTaYQPuP5+OzgcAnllYnrUlo9EH6DNRvPUOh1suflDhpSilaHIJ39ga7Flbz2iMHsml38zgnXfeweF0koDs2orUZHTNwLu7QwI5wNLQWc+37xnKsxOHw4G0ahXS6tV8+9vfZvfu3X4dFxERQWtrK9HR0dhsNqJNJmzt7URERMgdRTMzMb79ttdOiIGWGXQbRJckyQzMBzLQ3CYKIeYF9M6DnBkzZrB27Vp1/f/+7/9Yt24dOTk5HDlyhB07dlBRUcH48ePJy8sjJyenTwxIVlYWTzzxhEeRYWDCe53v6Q4gG5FzAZwTZMOjXA6US5q7KazTeTHHGhugUV6/dNgQLKNzFTIqGO1NYAdTB+Bw4JS6k1TsGddeey0A1UcbWLlAY9SSkrj+Zz9j9erVuguNQZL4pdIrZICo8abg24lqQXa+DqZZiMMhywcZDAbqf/ELlp4/z/PPP89NN93klxFpbW0lPj6ec+fk/0dbe7tuHWBUXBznJYnExESOVVVxqdXK2bNniYsLzNHkTxbWK8iVZTch55TeDfRdR/oBSGpqKrNnz6aoqEhtfzt79mxSU1MBmDlzJo8//ni/jG327NkebqyYmFh6lZw1wDjW2EAsZj755AyXXz7gJNN6x+rVupzixk9/R3RaKnVVYLEfxW4392nGlGIsdBldA4xIPHubaOk7B2FwcTqdJD31FBPS05k5c2aPGl9pjYW39eb2ds7Z7dhsNgRw4sSJgNxmCv7MX8YJIZYDTUKIl4Fb8ZRlv6BYv349DoeDefPmERUVxbx583A4HLrMB18EavF9I3scq6urVWmD5ORkQC6o6ovZT3BIwZ0BZkSrsQUJtGHh9OlTAci4hBkKWJHFcZTlSuSL0gTgB8hz5APAJ67lAJ7ZXP3ZhVHB4EWCpKmpifLy8qDGMutdHoiRI0dikCRVOSPQuKw/MxAlhaNBkqSJyBmAA7ZzYF+Qk5PDe++9x0svvYQQgjNnznDvvff6Veh3ySWXcOTIkW73CxQhBL/97W95771rOX78UnbvDmYnuUbcYoogOw60RVuB6GhV476/vJjO95qRmGkHTp8+xciRgc9CSktlBWCq09S3qmsfxv797g6JlZVWVgb8Thcw5eUeFfPaupTezLA6R9QsyD01TYB2sn3S9ahtn6YSsA5O4HSOSziFkHuXBKkQcOLEiVQcPgzI/VGqq+UE7urq6qAk9vhjQF6UJCkRWI6spmtxPb9gKS4u5o033mDXrl2qC2v+/Plcc801XRqRqKioPjEeCrfconQdXgG4G+7ILq5AzlyKHABX/j2teP57WgN5gz6jsRHOnoVWm0VXHFFfD7Y2C+XlUP1liLWwhjqTJ5OZnc3KVe68HHekKywQ2Rmj0Rg0OaLs7GxEZSVHmptpamqSM7UcDszR0UHJCvXHgPxWCOFAFlX8SsDvOATIz89Xpd1BDqhv3ryZ3NzcLg2IyWQKaddCf4iMjKStrY3ExCQ0atddkpiYqJPGHkocPFiOfD9shiZ5FhVBFC2NIIloGj+GVnsM48bJUlhTpoSgNbgu9VfAyZPE17SAqYmoliYwREBEBGZ7Q9DkUfqDuXPmYLVaKSuDyQ0llF0IUiu9aKYVTCn3oqIiNo8bR9aHsqS1ErAPvF5Mxh8DUilJ0l+AV4G9YqAUGfQjFRUVHoVu06dP18mte0O5A1B+xP7AZDLR1tbG2bP1fs9EvBuPU8g9wgDikT3Q7n5ho0bBZ58FOlolBuKmCXdtSXWA5dSrVq3Enc9jQklHdhKJ0QgxhnaIMkK7g9RUAw0N+tbgekFGKD8qu7wU/DY0mp02VZW59beu28vHL77P5O/IUi/Vf6kmZWyKewCxsT39yGH6GlczLV9YQ/z258+f54bKSo/t8fHxQbkp9MeApAG3AQ8CWyRJ+hPw30KI/V0fNnSZMGEC+/fvV2cgAPv379fJrfuiP40H6NN5FQMi14jI2+TZhj9nytQ8X+Fad38fb78tuOwyB24DEIlnrKS778KBZ76NGcVd1tTkAC7zZ7AhwUOQMe0oWN26XgFnva5eTcnbZUzemgm4tLZczwHZgnUWc1Te32aD0aMDHEBoGT1qFKdOn/bYPmL4cOrCTceCgq/mbQ0NDR6pvr2hWwMihGgGfg/83hULeRbZnRVY/tcgJi8vj/nz57N582ZdDMSfjoExMTFcdNFFvZJ3DzTlDuQsMOWPRgnUaY1KTEyMhwHpbVOsyy+38fnnJa61bDxDmWkex+jxnIGgmYHYbGbK/epM44l8XCay+8qCbODkfwcnRoSDga8U503MUTEwc+f2uahjT1FSsZtdRsRkNDJ16lRS29rCBiRICCFomjaN2Hff1W03m80BGw/wU41XkqTrgbuA7wD/AH4Y8DsPYrTS7hUVFUyYMIH8/Hy/srBaWlp6PXXs/ezFHbycPXs2hYW+27yc9nJHGKyMkJ7T9QwEEpg8uXdKvpMnw8GDZcgGSjEisgvLgAFDEIx1v9JJUiXaVg8N7qJEe1Q/x1JcXRgvj4iA5GSGmdPc9u74cSYnJ1NSU+Nx2ORJk6i/EGInQaSz8QD3TWNfVKJXIadR/x655ezAaCbczyjS7j3BZDJhNBp73acgKiqqV8dpcRsPt1EZN24cn34qP1dCXDExMao0fEZGBoddqYBhukZNC0b2Is2dC+8fn8rcue59gh6E90anN6jcmcXI7OvU9aqyfs6TS0mBBNfssqGBqoRMrJmo6wArFywAOhU1lpQQJngEenPozwzka0KIwOc6YViwYAHPPfdcr63+vffeG+QRyXyqWA/kqa3dru8romhqDSShxoFKY6P7ugiyFylhzL9IsLrroweIIsjARcmOKCsDwFqFuz1NdTXRDMUWZ4OTruTcFwsh1gP5kiR5XDWEED8L6cgGMW+99RaLFi1S3VuKFlZBQQFAly6krrjmmmuCOUwPLBaLLs1YTvmFpKQkampqkCQJk8nUbS/zYPWBDxM8zkaO8B1wh4GV0ZXiGpdr2lFVhm520uLFtRWmf+hqBqLkpP6jLwYyVCguLmbz5s1s375dF2AHVCNSWlrKF198gRCCuro6v8/tb5yltwghMJvNtLfLel5lrjvAESNGUFNTg9PpZOTIkXT3/yu55BkuusiO3lGSjFu5Nwl33XBoGlUNBnylAiuPwaqC35Uyi5s0isA9yuhS6EMZep9UV5NkNmOz23UV7JEYMOEc8HkPQ42u5Nz/5Hr6kRDiX300nkFPfn4+jzzySJdFhjNmzKCwsJDExET+/Oc/c+jQIRYvXtztuburM+kd7liItmd7aWkpkZGROJ0GCgoKmDlzJkIIavy4+1OC/fPmVfHKK9rGNqW4U329Naq68PCVClxltmO1QnlrH0kpdpXRNZBISYHGRjwVpNxY+mwwPUfbyhdk4UetqpsN0CUW/vKXfRAw6z3+xEA2SJKUArwGvCqEONTdARcyFRUVXHHFFbptnYsMS0tLkSSJs2fPcsstt6h37N3hT51JoMjBc3fFuhBOZsyYEaLYxwn0M5TJ6P/9+yf7ywE42ttoxA6tdoxEITe/Cg3awLuiyVVdN4KGEjjeOIy5c+Wb//DdtYvoaGKNRhqbmjz6lxgNBgxCkCIEDVFRGNvbcXgJFEeb+6crvNLKV2EMbkEg8KLZNQD0urqi279JIcQMZMNZC7wgSdJHkiQ9FvKRDVImTJjARx99pNvWucjwyJEjCCFISkriz3/+Mz/60Y/8Ore2cDFUjB07FpDlFCZNmoTBYOSZZ9zdi4UQrFixskuj528MxGhcBdyjWUqA/a7HEiCQHibBwwHs21fGyZMnu923NyiB94QEOGs3qzHk6mpoaTdRXg5FRVByNG0gCMgODCwWhl16KQyTF6PBiDkqCqPRSExMDJbYZNJMJq6Ni2MKMA656icTuMFo5NFvfpNeFxGFUfGrDkQIUQ38WpKkUmAx8EtgTSgHNljJy8vj4YcfZvLkyV0WGSYmJrJw4ULuu+8+vy9MpaWloRiyC9mVdfjwYUaMWIjJlMKBAweA23n44YcBuZBx7NixVFXNxXvvOhl/ZyuDLaPryy/r+POfPyQ9/Rbd9ieffBK7XTF2gfV0b+0wYTYD9g655MXcSkKCPPtJ6LAP9BtS77hqUswuy5hwtBosmlT2IOh7OYyRGM0m6OgAiwUbKVhSgIQE2WXU0AAJ2VitVVgVn+FQSIfrhdZWMPGnDmQCchHhHcCXyJpYD4dwTIMapSNhV0WGQgiMRiMbN27k/PnzgH/V3n2l5FtXtwiQU3pjY0fwwx8u5Pnnn8fpdHLq1Ck6G49hwxJobJSzuGw2G6P9lNDw/nm17XNNwAiCJxXvDc9KdLfIgrnTOnzwwfs6A6I3HjJKT/eJEwPr6d7QAK32KI4ehbY2qG4bwcn9qDUlfVJPEgxcgzxaVkZKZqYcX7Fu1Qd/yvpjYH1DZEQEbUFS1/Wgn7W2/JmBbAH+G7hJCOFZphzGg+46EkZFRfHVr36Vv/3tb2rAOTo6WhfE9kYwpEx6gt1ux26v4+2331YN3M0338xXv7qYp55yB98bGxswmSK6HX9nFIOjR3u/NB35T7Sql5/AH6qRHRy9o7PxUHA4vPeJ7wkdHWA0CBR3fVp8HQ0Wi3rd3bEjSGKOYULKsmXLWLt2beiMSD/SpQGRJMkIVAohnu2j8VwQ3HvvvRQWFrJwoXxnf99997Fly5Zuj+voCPyi1BsOHTqkxjz+9Kc/sXOnZ+fFjo52QBAbG+shh+JrdtW9tL0NfeuhFHRNO4KW+mtDTitWUOI7Js36ZNd65oBxnTc1hVjMMUzglJdDVRXLXDVctn8cpa7JnckYHYS36JzZpSXUPeK7NCBCCIckSZdIkhQphAgXfwaB4uJiNZbx/PPPA/Diiy8SFxenurO84f1uvW+RiwjbWbkSCgoK1IY0s2bdzV//GsWxYwaam5s9XFhK7+WupLyioqJobZVcj4phKUeehJe51jPR+zok4PpAP5aLNtw1KkoSgFKNH+UaSwJQxuTJmfLoVEFGLW6Dd/BgDQcPyr8xB8sxm6N59NFHgzTeMIOCyZN1Vt52tIEqjQGJD8JbaDO7rNCpPgZmoe8TH8y4iD/pMpXAu5IkLZck6SFlCdL7X1AUFxeTl5dHQUEB6enpbNiwgbi4OCRJIrabSmCj0UhqamqX+4SGVersIzIyktLSUhwOB/X19er2oqIiqqur+dGPfuQzMO5NCPKJJ55Qn8tGQ3SalRxHvhhbXUsCsqqvsn5pv9a2TZ4MskHTLtXILrcq4Ixuf7u9hSeffLJPxlZaCvtd8ZK5c2GPS49LWUorrX0yjjB9i9m1JALDkQ3UJcDtmuU/kcUNV/k4R0/wJwbymWsxAHFBeM8LFm0nw8cee4y8vDxiY2OJiorq1j0VGRnJ+vWerqO+pKWlhXnz5rmysORkgIULF/LaayOprW3mXZfqpzdFX2/Nq9as6S6RbwVyLcgqzTpo//RXr57bw08hIxseK+4AulaoUqL7XiW9w1fMJNjISQ3um9/Oelx9VqDoi05qwYOtl8lAxoT7L9gAtANaMUPllw/GvZc//UCCYajCoO9kqGRlzZo1C6DbYsJnn302pDIm/iCEUGdKJpMJp9PJuHHjuP/++9m58xy1tW2MGDGC5ORk3XHp6el89tlndA55aGXt5TiJPl7ize1lMkUQjFDQ6tXw+OP3AL9Fjm+MAxRZmRG43Vl9wzvvvIPT6QDSoKlO9mnHBq9b+F+r02jVCNkqBYoKfR5wH+S9TALBHBWFvZ9bWwcLf9J4S/GS9C+EyArJiIYwnTsZ5uTk8LOf/YyGhgb1oql1AXUXF+kPZFn3w+pF/NFHH6Wj4zxRUTdhNjcTGRlJXl6e7pgvv/ySXbt28e1vmxDCQExMDDYbbNiwQVdj4nQqj/J34c3tJQfrBzLaoL8ZzxiJZ/3ahx9+iBCen7WpyUZsRKTH9t5wvi2Gi7T2aFgjVqs7hNtdRhf0oZHpbnYSETpVgL4gLS2NTz75hCaN4nUoiUC+JVIw4u4P+ltAlTroxY/rjwvrF5rnZuR6kP5JBxrkeOtkePbsWSwWCxEREdTV1bnay8pujvPnz6sS6qEWUuwtsutN0Npqx+Fo4ic/+YlunCaTiYaGBm666SYcjj2AU00GUNSJAUaPHk1VleR6rALcsxJf9HVas39U4w5pykH3zihBeAUh+qthl5vuMrqgD7O6upudlJe7Jd8HKVdddRUALX//EOyB9ybvCgOeF+w25NzDKpB/+F7+uP5ImfxTs7wrhHgIb7dVXpAk6TuSJH0sSdKnkiQt6WK/OyRJEpIkXen/0AcfOTk55Ofnk5ubi9lsJjc3F6fTSUFBAQ2uJjotLS0MHz4cgOTkZKKj5bvEvioi7A2zZ8/h2muvY8+ePbzxxhsUFxerr2VlZdHa2orFImtcxcTEqK9pEwe2bNnCY489pktnHjlyZJfvu3DhwmB9hH5Dno2k4E4MsAAJNJIARGJv908n7YJhzBh5FtLWBnY7puZzmDrsSE6Hq3BmIN5UdI3Jx5j7S6+rJ3RrQCRJStIsIyRJugnfacfa44zARuBmIB3IkSQp3ct+ccDPgb/3ePSDkJycHA4dOoTD4eDQoUOkp6eTmpqK0+nkhhtuAGSXT0REBFlZWTQ3NzNt2jQiI/WujIF0971t21d45523ycrKYvPmzTrZllOnTpGdna02qGptbSUuzjMXIycnhzVrHtfNXhSjCt5jRNoZzGBFzuTSZm7ZkGcwDUAbBlo5fvw4NTXV7DtWxcGD5Wr69wXJ6tUwfbpsSNLSqIsZQ92INFrNw2DECEhM7O8RdonFVi1LulRVQVUVpvYWpqem8hVJwop8KwGy8RgMKd/+uLD+iRwDkZBnQpXAfD+O+wbwqRDicwBJkv4b+B7Q+Vb6ceBJ4BE/xzykUNxaY8aMYfHixbz55psAtLe384c//IG4uDhOnz5NW5u+DKf3/dFDS1ZWlk5MsaKiggMHDhAREcHo0Z/wxRcSy5cvZ/HiJubNm8fDDz/M2LFj1cythoYG1W2nTelVYkNGo4lbb72dnTt39u0H6yfaATq5uL74oobnn3+euLjBMQNTep5UV6exdav3ivkeKQ2PGSPnKAPmDhvU2TA62twqN1FRMEBj1DZLCuYUMCttK0/KNSFjXPnotjo7K69Mk18rK1Pb+3ZFf85R/cnCGtvLc49G1utWOAl8U7uDJElTgUuEEG9IknRBGpCcnBzee+89Nm3axI033gjA1KlTOX78OHV1dZw/fx6z2awrzhuYrWXL1Gda5WFt4kBDQwOPPvoozz33HDCHLVu2kJ2dzR//+EdMJvlP0el0+vxscXHxfP/732fPno39VBMTKrSBdwvuREtl1plA53/VL76owctEbkDi7nki9zjxVjFv7ckJlRjJ8eNUK7EQ2ydEWzSX0rrzoF0PgmBjKOiIiCZCW2hob8CiNoDHr9jEpEmTKDt4MOhjhCOC+QAAIABJREFU84euWtpeBZxwKfEiSdJs5AD6MWClEKI+kDeWJMkAPAPM9WPf+4D7QI4LKJ3yvGGz2bp8vS/oyRjeeustXn/9ddavX09tbS3PPfcc//rXv5AkiVmzZjFlyhTWrVuHzWZj+fLlamMnX/gjyhga3IHPf//735SVlWGz2fj+97/P3XffzSOPPEJz8xQSEhJobW3l2muvY/XqTH71q18hhMBisXD2rOR6lIOKndN4z58/xyuvvEJ09Dkeeughv77jUPw9VFdXU1Z2lOrqtICOl5+noQ+8j/B1GJ3rjFtaWqiqclc1JzQ00OC64Nhs8nmqquTUZKdT7xJsa2tTkxXkcyX7PJd73GZ13D1B/ox29T07n7u62kxCQ4PP36nB22tZchJoSbn7M2X/P3eaWcl/NvCfX/sfzF98oW6Lef9tjEZJNTr2iy6iKsTXirTqap38p6GtjQiHUf0tTA5Hl7+Lubqao12M8cr9+4msr1cNcBxGoiSQhAMD8uyku6tBlUspuav38UVXM5AXgBsAJEm6DngCyEVOmn8R+I9uzn0KuQhSIdW1TSEOmAiUufzbKcBOSZJuF0Lo2ugKIV50vSdXXnmlyNRa6E6UlZXR1et9gT9jKC4uJj8/n8OHD2O1WklJSeG//uu/WLt2LfHx8Zw/f56ioiKKiopISkriwQcfZMeOHV2KNIKsoNvcR+mBetxGrb29nczMTMrKynj88cdJT093xUUK2bhxIxs2bODjj7PIzIQbb7yR5ORkqqurWbkSVq5cgSRJGAwGOjo6uOOOj3jnneeQJIkvvoD4+HgiI2NJT0/363cOxd9DSkoKmZkpbN0a2PGA6xzajCIbbl9MDN7JBKClJRqr1cqqVSvdLx2Uc4QnTZK3Wa1y8sL7huMkJLgvsA3VdqyaWUB0NG6Zc4CqKhK81GIo4+4JW7cqiT4uKXUv506wJ/j8ncoSfP+GZQllmrFl6rZbt23T7bsps4zM5fr99KMIAcqHd1EdWY7RiPpbtBiNWDS/i726gZRO301KV3+/06dDeTm1ra00NTdjxoEQ8tzVCaoR6Qrld+/yfXzQlevRqJll3AW8KIR4XQixHP/kSz8ALpckaawkSZHAjwDVcS2EaBRCjBBCWIUQVuBvgIfxGIpoJU0MBgMvvvgieXl5FBcXU1xcrNZ+7Nmzhz179hAZGckLL7zgMxPr9ttvV5/3j/HomlmzZrnqR8qoqqpi1qxZOBwOSktLaW9v53vf+x4TJ05k1apVTJw4EZBdWRMnTuR//ud17HY7tbW1gDyjmDZtmkd/ld5zHNltZMQtBBGFfG+lLP0Vb2pzLQ24ky6rUWRTkpLQGw8NBw8OEMXHMH3CVVddRWyMrxuO0NHVDMQoSZJJCNEBzMTlQvLjOACEEB2SJC0CdiP/d24RQhyWJGk18A8hxIURBfWCVtJkwoQJmEwmtW86yLUTw4cP59vf/jYga03l5OR4ZGIpDOSAsq8K+zVrHmfHjtcwGo289tprvPbaa+zdex1ZWdeR5XJPKAbT3TPFyMyZM/nf/10VRGXiFciiDpm43UjDkC/YFtdjJHIcIljqv8FB1rLM9PFqCtXVsGrVKuTZYTYV+z4H4PrrfR3Td2jb+NpsUG4bolL0nYoiIxtrMVncBZwOQxCKIquroaGBq0aOpO10nZxQ4Gz3a/YRKF0ZgmJgnyRJdci9Rd8BkCRpHH7+Jwkh/gz8udM2r005hRCZ/pxzKKCVNMnLy+Ouu+4iJiaGY8eOqfs4nU5KS0uZPn06HR0d1NTU+NU7fezYsVRWVoZs7MHk0KFDDB8+nMbGRg4cOIDTOd3VBVGmc6zHaDRy9dVXc9ll97Jp06agjOGWW27hL38x4nRW4U4EmItsTBT5+DHIarwA1n4VcNSSlARnz5b5eDWBmppqvHWO3LevDEjg0JrfMHXqVG655RaPfUKN0sZXITvVHVhXhCCVyvhB3eek00CP/+U7JExPweJyG9k2lWAJ9D1SUtxf5mk55iWh/+W1FSU9ynjrBp8GRAiRL0nSW8DFwB7h/m82IMdCwvSSzpImIDdv0mK325k9ezanT59mzJgxOo0pg8GAEAKz2UxLS4tO6v3EiRMMJhoaGrj//vtZtmwZra3niIpyK/TK0u7y8/T0dI4caaOyspK3394VtCy03bt343R+E7gCt0fcjGwwJrseG5F7tssoAo5uQUaFyaC7HAysGUtnHI4OPvjgfdda3xsRX3QWggz3OfGftkgL0S31HkZCe6GX0He/CYQujZEQ4m9CiB1CiCbNtn8LIf4VpPe/IFFqP0pLS1mzZg1LlizB6XQycuRI8vLyGDZsGM3NzbS3t7N48WLsdjuSJKkaU0rWkiJ5ou0Tctttt/XLZ+oNEydOZNSoUdx5553Y7XZWrFipGlKj0ciuXbswGk1kZGSo7qzt27czevRooqKiujq1XyQlJeFwOJCklUAJspG4BzjqelS2ee9FL99c3qNZSoD9rscSn8f1DSmuJdO1aKvdrbhL1tAYETmmsmrVSlbtK1OfhxlcOIyREBGBISoKQ0QETozYQF1agHr0qRu9JZizmTB+opU0OXLkCJs3byYqKopXX32VNWvWUFBQgMPhoKamhieeeAKTyaRT401PT+dnP/uZej6r1cqSJUuwWq2UD5R2ed2yisOHD1NTU8Ndd92l9hlRmm1FuATzxowZw+HDh9U6kSlTpvDuu+9y/fWBN5Kqr69XZ3NDj2q0AXfvZKpLfb3vgHzYiITxhT+V6GFCQE5ODjk5OUycOJGCggJuuOEGNS6SmppKRkYGBw4cwGw2e7il8vLyyMvLIyIigvz8fK688krmz5/P2rVrOXPmjKpwO/Dw7AzQ3t5ObW2tGjhXWoS0traSk5NDTc0CIiMj1Ur8AwcOkJ2dzSeffBKUEVksFpKSki4At4i21gQ6Cz0mJWVyNrSafkGhtBQ+/FBWLOnogNbm6eprG+LAZJJdiwkNVlb23zAvGMIGpJ/RSpmUlZVhMpmYP38++fn57N+/X1fVraDtJbJ48WJ1+5w5czD7EGDrvwLD3mGxWHQFVtnZ2bz77kU88MAD5OW1+/ycPaW9vZ0tW7aQlbUPs9nsEYvqOcfxrC5QYikyAyUIr6XrjC6/VTVCTmMjSBJERrqKy42y+7bBbqZDmLDb4cQJONGS7NHv5EJ1txhwYjFG0eFoda3LkboUYOX11wf044YNSD+jGIPFixdz4403YrVaWb16NSkpKaoh8XXcokWLqK+vx2Qy0dHRgRCC8+fPqz01BrNr5vz58+zdu5cf/vAIS5euo7CwkGuvlTNafBnW3tDS0sIdd9wB/Kxb4+GfhIy3btMrCEYXxVDSdUaXXHwX6Czt5Ze3atYSgIagpRR3OA24vJxERkJKZCOVldFqqvD+/WCxpfG3J1ALQAdVNlcAODHQYTJjtsg3XW3NHViSLFhSUkApHgyVnHuY0JOTk8OJEycoKioiNjaWuXPnkpub220PkIaGBgwGA08++SRNTU08+eST6kxDK2gIDKrZh0Jubi51dXUsWbKEWbNmkZ6eTmVlJfPnz/doWhUIZ/303Qgh1FhMsJBnI7KEu7wMw13QaGSotN7xFUeRU4pDg5IqnJAgZ3Vlpx0lJcWlx2XVN9DqKxqjLtKp8UY21sp3/67FHjUwNbt8ETYgAwhF6v13v/sdAD/+8Y+ZOHGirr+GFqfTyS9+8Qu2bNlCXFwcW7Zs4Re/+AVCCIQQai8RLf7UkgwU5Or1lbS3t5Ofn8+aNWvYtWtX0JprmUymHhmEUEjoy3fA2sytRuQssKOu5wPAbxQmaJSOncfRJUvkadDWrXx00UxZ09+1NLRGq8aFqqqB6e/UEHZhDTAUmRNt18L582X1fG8XzREjRnDo0CF1/amnngJk46JIvkdFRXHzzTdTUlIyqN1asJLa2hWsW7cpKAZEqWZPTEz0GkCWJAPy1yUb3Zdeeol58+YF/L4XGnJiYGanrW4F4upq3GLEQwxFyl6h/KjejVbJavZttaqv67ovDgLCM5ABhlbmJCIighkzZng0aVJISkpiyZIlPPPMMzQ3N/PMM8+wZIm78eP8+fNpampi7dq1/OlPfwJQixEHMx999BFf+9rXAj6PJEnMnDmTUaNGqduUWYac3qu4/WTX1VtvvdWj+pPOsz1JknzI0CuBdytu2ZQ013PFnRVocL//kJtmlXVa3E20UnquzzhoUKTslaWzG62xNcBkEKVDo8sFZrQ3yd0ZnU55CbHHITwDGWBoZU4Upk+fTkVFhce+hYWFLFiwgCVLlvDwww8TERGBxWLh3LlzTJ06lddee41du3Zx7NgxYmNjsdlsfKGRtx6cyMHojz76KOAzCSH47LPP1Cys2NhYVYxSGzMym6OZNu16tm/frvZs8ff8Sl93JTaVnu7RlBN94L0MuWebUtVuwV3yNfD0uILBwYPlHKQMXPEQRUk4jB+sXq1tuELjp7/Dgo0IbKhZBW0238cHSHgGMsBQZE60dJXOu2nTJsaPH4/BYGD8+PGqRtRnn31Ge3s7QggkSVKr1r35/AdTXETLTTfdFNDxUVFRTJs2TRWxjI6OJj4+HtB/J3Z7C/v37yc7O5tTp055nEfb2127Hhsb6+o0JzFmzBhiY2PZu3dvN6MqxV3VXoRsPMpxpwFXosxWOr3tkCGsJDx4CM9ABhhKXUjnGEhX6byd4wH33HMPHR0djBw5kuPHjzNhwgQmT57M9u3bvarYDta4yJ49ewI6/t5776WwsNC1dpg6WYeOhIREGhrk78RkMnH77Xfw+utyMN9b/UlTU5MrjiK5HuWAyvjx413KAIJjx44xefJknVhk96xA7uqwSrPuTgeeMmUuH37Yg9MNKLRdGM3oYySykvArr7zC559/DgjYt4+vfOUrxMX9pK8HGqYLwgZkgKEYg9zcXCoqKpgwYUKPs46UC+OKFSt48MEH2bRpE48++iiAOiMZrEYjmLiNh56GhrMYjUaMxigeeeRRNm7cS3HxIVJSUnzWn5w7dw4QrkeZAwcOqIYlISGhh8bDOxEREbS3twO+xByVu3cL+v5tAw1tZby+Kh4SaGpqoqbmM802weeff4bF8hkREZf11SAHBzrJeIHR3gTYwZXKL+HE2NHq7hMvDHLf+CAQNiADEG+zip5QUFDAyy+/TF5eHosXLyYqKooFCxZQWFhIcnKyThq+syEJGxeZiy++mPp6EzNnzuTYsTEsW3YDkiT5nAnGx8dz9qzy6E7p+tGPfkRDQw4JCTU8//zzAY9LMR4gu78ff/wezavaGcpvkYPUg5EUZH3QTI9XbLZYzGa5WDCMC0015KaqMgBWXrdXTf+q3vYWRnMUKeNkpej6akhJJCh94sMGZIjy85//nO3bt+tcYYWFhWq19Q9/+EP+/ve/6/ovg5yFFLxmTYOXEydOcMcdH5Gbm8Phw3cCVWpjr86kp6fz2Wfy3XJzc7NLev4I0dHR/OY3v6G9/SIiIn5DdHS0GosKPZ0lVTrXEwzkYLySNFDm5bUEoqNTXL1O5L/lYUAbJkwMfKtSWmnl1MkRKJqnxxuH6SRXKiuDpOGlMSofFd2OeUQSKdlWAI6WQUpmMN4kbECGLDNnziQ9PV3nClPkywFeffVVkpOTXT3GI6lzBQAUWRQte/fuVcUOL6QZyhVXXMHrrx9izpxK/vnPP/icFR49epSnnnqKL7/MZfjweB555BEArr76ampqajh8WGL8+PEkJyf7EUTvGv81zTpLqpQhB+AVJqM1MIMnIJ/C2bMtyC46OR7VCBiIpLHRTkREcDTSQkVjqxlLYofa/6na6EAroH38C08Nr4EstxI2IEOYzq6w4uJifv7zn2M0GnE4HNTV1eFwOBgxYoS6jzc9KG2204ViQGR5+esoLX2bnTs/5LnnvEunpKam8sUXX7gUkM8Bq1T14L1797okZQQVFRUcPnzYI2PLX2ShR4iJidH1f+nBJ0KvhjxYA/LVyHOOSLSXL6freXu7k5oaQQ0WqKnGYGjnkksuwW5nQBYrtjmMus6MDGvEanUrSAx0leiwAbmA0Ao3njx5EoPBgMPhwGKxUFdXpxqWzmj97opQ41AnNzeXw4fvZMeOP5CVVUxOzhVe98vOzua5554jJSWF6mqJlJQUvvjiCy655BJOnDihflfK47Rp03y+p2ycUWtHtCiGvampiVGjRnH69OmAP6P2ZqDrgPxAU9VoAdrQFldGMIJ2OpAvaTYUN5jT2cCxY58BCayqKYN9ABIrVngTvRx8eKt0B9QWwGPGwGWGFCbZj6shsYSj1boOj+qOvSBsQC4wlFlJcXEx+fn5VFRUqHfFDofDqxHRpqb6Q7AFB/uLH/zgB7z++gpWrvS9T2lpKUuXLqWkpITqahg+fLjam2XatGn84x//oLVVrjm58sor2bdvn89zKQakKwN90UUXcebMmQA+Vef3kw1I1wF52Lp1blDes2/xnSq8alUZkyZleh4yyNDUEAJy+9+yKqu6raoK3jY/QGZagyqREky5lHAh4QWKItzocDh0WlpKIZ1Wzbe5uVld9zZD6Yw/+wx0CgoK2Lt3r08hS4WKigpWrFjBoUOHdI9CCJfxkHMnW1tbdeve6MpwKFlztbW1CCF67Qrz9/2GBm65FH13RnmRJVbCBMLQuFUMEzSUOgbtxWXXrl3MnDnTY7svRo8eHZrB9RllZGWtAlaQn/8S//EfvlOqFeWAGTNmqNsUJYHW1lYWLlxIQ8MsEhK+6FUab1SUmdZWd7q10+nEaDSSmJio26+zZMqFRnv3uwxZSktR+55QnUa1zUJDibxqs0G7PYXMEKk6hw1IGJWsrCxX1tBhALVD37x589QLmNVq5dixY7pAenJyMrW1teqFS9GTGrz82fW4isOH4fBhiVUub07nBAKtcoASdFfUkyVJYty4cfzrXwbGjRvXZQKCr9daW2U/v6IYnJKSQk1NjYekSudYy0DCe3zFolkfyCnFwcHdDyUbauSLebCaaSl9TwAqq+QstGpXJnRbG7S0JVJyNE2NiwQtVZiwCyuMhrKyMp1cuRK4bWx0/4PHxsZ6aGfV1NToLlz1cn/UQcwHPl/p/NmVZmBZWVmsWWMiKytL7WF/8803s2zZMrZv/x3Lli3j5ptv9nnerlr0WiwWEhIS+MEP7uDMmTMsWLCgh5+na4LhDusKOQ31Hs1Sgr4HSmlI378/KS+X4y1y/CUTOS5jBazs21dFS3tw7+FbO0zYO0zU10NdnWxc2oSJj+uGs3Mn7NwJfz2ZyqRJcgA+UMIGJAwgp6NGRUXp5OAVtDOKuro6n3fRMTExg1aYsbeYzWaPuhll/Z133mHXrl385Cez2bVrF++8847Xc5hMJsxmM3l5ecTExJLSSd+8paVF7chYWlrKrl27PH4DJUaljV117kqpR8JikWcBTU1Nfn3WMD3HU8peG5epIjoi+EW7HU75dzeZwGiEaEMbyZYm4uMhPh4ijU4kKTgdGcMGJAwA69evx2KxqPELk8nEsGHD2LZtG7t27VL3kyQJSZJ03Q7XrVvHunXraGlpuSBqRLR0FRQ/f/48d9xxB6+8so077riD8+fPe5WDdzgcmEwmXnjhBZqbm6itrdW9/q1vfYuSkhLWrFlDbm4u06ZN0/UlyczMdGl0SUyYMIFMV59rp9OJxWIhIiLC6/guvfRSXewmTJieEjYgYQDZFfPss8+q7oyEhATi4uLU/uwgG48vv/wSp9Opu+teunQpS5cuxWKxEBsbO2TSeAPlxhtvpKFB9nc3NDRw4403snv3bo/90tPTue+++zh//jwgkZaWxle/mqYaiXfffZfJkyezbNky5s2bx6uvvsq9996rHl9eXk5BQQGPPfYYBQUFLgVg+ff61re+xfjx41G6Kn7lK19BkiQ1Y0xJjtCizCJDO5vUNtGyAtma5xYuhLjIUCBsQMKoKKm9RUVFxMXFsW3bNux2OwUFBYDsElGKCrXFhVarFUmSGD58ODExMX6n8fq6Mx4q7N271zUjW4UQwqeMSV5eHkVFRbS3t7Ns2TKys7P5+OOPXSnV8kV8+/btrF2bz7Jly1iwYIH6mxiNRhobG8nJyWHNmsfJycmhsbERo9GIEII333yT6667Ti0i/fzzzxFC0N7ezjPPPMPy5cs9xqPMIkM7m1yBZ1xEeb6foRwXGUqEbxXDeOBNUh5kV8vChQtZt24dS5cuVdNSlcB6bGwsd999NyUlJX69z1VXXcV7770Xmg8xAPAWG9HKsSvk5OTw3nvvsXHjRtauzQfyMZnW8Oqrr7Jlyxj2799Ka2srNls8587ppWYWLlzIxo0bVS0z5XHhwoW89NJLXHnllWzZsoXW1ot0mV5r1+ZjMDyOEMLDraYUNPafbE1nIcjOMvVtfT2gIKItboSzdti3rwqASy+1YrdZvB8WAG1OE3XNRnD9Odo7jBw/Lqf4KrpbvdXcCs9AwnjFW6FhTEwMu3btIjExkV27dqn9w48cOUJaWhrZ2dkUFRWRl+ddN6ozgRqPnvQnHyh4UzouLi6msLBQna3I+7Vz11138bvfvUJHRwdz5szh/PlzHscWFBTw4IMPqm5Dk8nEgw8+SEFBAW1tbZw6dUoN5L/11lu6WZ/T6eSKK67QudXkXvDuGUjXgfhQ0dXspAhZqkTpFz/C9WhEvh8e6ErS+iC6lmPH5PWyMveiFVrsLU4kTAYnJpMcWDebHERGgsXi7tXe24B62ICE8ZsHH3xQnW10dHSoWTwTJkzg6NGjrF+/nltvvdVDtfZb3/pWSC72119/fdDP2R/MmjXLy9ZV1NbWMnbsV9i2bRtbt271eXxBQQF2u50VK1bqXI7p6encfffd5Obm8sorrzB79mxiY2OxWq089thy9u7di81m01XbO51OV5Gi3F1x4NWVrEA2IseRDUkbsjExuJ4r4x0sMZQWtAalpulT9u1byb59K8nMZMBXy4cNSBi/MJlM/OY3v1EvViaTSc0eOnz4MA6Hg927d1Na6um7/uijj7j44os9tneupu4p3vqTDzUqKz/n17/+Na2trUhSz/5dldhKQUEBP/nJT9R04bVr12I0GpkxYwabN2/WNcmKiIhwqf0KbDbbAI1TrQCmAJcDv3YtfwN2upa/ICv2WpDdRQkMHoPixl186JvycrlosKpKXmxtkbQ5jDgc0NEBoVYVChuQMH6xYMECNVgbGRlJVVUVTU1NZGVlMXHiRIxGI4sWLeLIkSO642JjY2lqatIVIypoZyW33347tbW13H777eq27twnFRUVAX6qwUFJSQlnz55FiBWYzWY1K647cnJyuPXWW7n55pt55ZVtVFVV8f3vf183Q5w+fbrue+zo6NBVtQ+e5mKleLq9ipBjJ+XIvVC0mV7WAaQu3HsmT4aUFDh2rIxjx8poaq8HZwtOZ5taBxJKwgYkjF8UFBTwwAMPqGmpkiTx9a9/nU8++USdlcyfPx+TyaRziSQmJhIdHe21h4VW4fedd97hoosu0hXbeXOfZGRkqHUOvvqTDy1W6dZaW1spLCz0y4gUFxfzxhtvqDEQq9XKjh07dL/P/v371e8xNTWV6OhoXVFidHQ0qampQfs0ittTeQwtXcVS7hnQjZp6wsGD1WhToB1EAkZaWztwOMAZwst8SA2IJEnfkSTpY0mSPpUkyaPEWZKkhyRJOiJJ0oeSJL0lSdKloRxPmMBQDIUQgu3bt3Pw4EEWLVqka5m7ePFinUvk9OnTzJ07V70oGY1GFi5ciMFg0DWvku+wRbey8b/61a/44ANZasTfYP1QpLCwUH2uFHeuWiWpzwHy8/PZvHkzM2bMwGAwsHbtWiRJYtmyZTgcDkpLS5k/f77ue4yPj2f37t089thydu/eraozBwtF1UCrbtA3dSdDGW1gXo/T6UAgaGyFxkY7jY122hzBm5aEzIBIkmQENgI3A+lAjiRJ6Z12OwBcKYT4GvAasD5U4wkTXHJycujo6GDz5s2qWyU/P58VK1boXCKjRo1ix44d7Nq1i4ULFwLwyiuvkJKSwjPPPKPu502Kwxs33nijKr3hq8XshYSvi64kSVRUVDB9+nR1W05ODk8++SRVVVVqVXt+fr76PZ4+fZr169eTm5urvr5+/fqgNK9S6E70MdgGq79xC0kqyxjccZkEgp+SbHOlEUjIl3fJtZjUpd0J9fVuwcVACOUM5BvAp0KIz4UQbcB/A9/T7iCEKBVCKLcifwOCN1cOE3LS09MpLCxUU31zcnJ0LhEFRdH3hRdeUFuynj59mmXLlvW4al0xMPHx8d326rjQUaTmtaSmppKRkaFWomuN8IQJE0hNTdX1NklNTQ25q/C73/0ujzyymO9+97tqO4GhgqeQ5HHcIpIlKJ0Tg0sbcjqz8uhAzliTlwhaSEqSYyeBEkoDMho4oVk/6drmi/nAri5eDzPAUKTMS0tLaW9v9+oSOXXqFA6Hg1OnTuF0OnXNqcaNG4fD4eCGG27wWv2ckZGBwWDAaDSqd9oREREsWrSIkpISnassjCd5eXlkZWUhSRIvvzwWSZLIysri8OHDqrtr+PDhuv2V39OXiytQFi5cyKOPLlFnowA7d+7kqafWs3PnTo/9k5OTdY9hBhYDohJdkqQfA1cCXhP7JUm6D7gP5D+ksrIyn+ey2Wxdvt4XXChjuPjii7n77ruZN28ex48fZ8yYMfz4xz/m4osvpqysDJvNphqLJ598ktraWn7961+r/u8vv/wSSZL7iGtlPmbMmIEkScyfP58rrriCG2+8kZiYGJqamvjLX/4CyNlCFRUV3X7GUHwPgZ4vWOPp7jze60v01NfXEx8fz86dO7n44ouprKwkKysLgDVr5H2U3zNQLrvsMpd6wUWAu7lWdHQ0LS2S67FF3T5y5EhqamoAuWXAyJEjPYQmveFvJX1//4/6Q3V1NWVlR7s9NJsBAAAeD0lEQVR4Pa1X521ra8Nma6Oqqs51HnOX7+MTIURIFuBqYLdmfSmw1Mt+NwAVwEX+nPfrX/+66IrS0tIuX+8LwmNwjwEQKSkpYu/evWL06NEiKSlJJCYmCkDs3btXJCQkCEmShNVqFQaDQVitViFJknqcwWAQJpNJACIpKUk99969e0VGRoZfY/AF0Ksl0HMEcxy9Pban5wqU1NRUkZSUJPbu3Ssee6xD7N27VwDCYDC4fu8VQpIkkZqaqv7+yuuwwvXobWwrNEvn7d72Dd5n8hf9GA50GvMBAaWaRf/6nDldn3vOHNHpHGcEnBfQKqDF9dgm4Ky6RHBeJCcLMWmSECtWyEvn9wH+Ify4HofShfUBcLkkSWMlSYoEfoRc5aMiSdIU4AXgdiHEFyEcS5h+RFH0PXXqFHFxcdx///2APNNYuHChh/vKYrEQHR2tKv8KIZAkiYULF/p0lQVCV82cwgSH9evX43Q6mTdvHmvWrNE1Lnv66adZtiyPp59+murqat2sIVidFpWCSJPJ1E/yLAqNdB1UD0XBowFZ7kVe2omkpsbGwYPVAUumhOybFEJ0AIuA3cgzjN8LIQ5LkrRakiSlWuwp5HLRP0iSVC5JkqcTNMyAobi4WC0anDhxol9B7NTUVF5++WVVXuPBBx/k5ZdfVmsLioqKAKisrMTpdFJZWckf//hHhg8fzvjx4zEYDKSlpfHggw9SUlKiy/gKVhaWNp04TGjIyckhMzOTM2fOAIIzZ86QlJTE7bffzrJly1Sl4dtuu42MjAzAM8MskDTfpKQkQCIuLq6f5VlK0QfVP8Jd7FiOXEFvJbjFjk7ArlnakAPq1YFLpvgzTRlIS9iF1T9jKCoqEmPHjhV79+4VbW1tYu/evWLs2LGiqKioyzEUFRWJkSNHCqvVqrokhg0bJrZt26a6MUaPHq07rq2tTRgMhqCM2x8XltFo9MvNI0mSMJlMXs/Rk8XXOHpznt4e29NzBUpRUZHX844cOVLn1lL+pgDx05/+VAghu1iEEOKnP/2pAERGRoaHC8tofLzTuVeKuLg4ry4sxS3aV3gbg7/r3dEbF5b8+hmhuMsCcWENiCB6oLS3t3Py5EnsdjvDhg3rd4mLgTKGyspKUlNTg6JnpC1KA1Qdpdzc3C5nAspr+fn5apFbREQEc+bM4dJLL8VoNDJX0ZR2sX//fkaNGsXEiRNVOfm8vLyg130oWUnV1dUcPny42/2FEINSAXgg4CugX1tbS25uLocP38mOHX9QZ5azZs1iy5YtTJgwgfb2XJ55poAtW7YAcraYcr7LLx/PN7/5TXbs2IG+M69wNeiSMRgMOJ3yb+50OtVZzmBHnqFoq/qHuR6VOhAnslJxiPDHygykxdsM5PPPPxe1tbXC6XSKc+fOdWu1Q81AGENjY6Oora0Vn3/+eVDOZzAYRFtbm25bdzMFb3f/RUVFIiMjQxgMBpGRkSEWLVqkzlCUYHpcXJx6Z+rvbKcnY1AAhMlkEhs2bPDrLv3222/3uCv057jOi7dx9PY8vT22p+cKlO7OrcwyFJKSkgQos8MV6ixRSaRwH7/CtazUnXPZsjbd7xoREaGeJyoqasjMQOTz/1bzPZzRzEKUGUfoZiBDQgvLbrczfPjwsBSCBiXHP1j+fW9Fad6KBr2hjZ3k5+eTl5enFh9ec801ujGDLHMxbdo0cnNz1ZjHrFmzgl73kZGRwW233cayZcu63E8Z16JFi4L6/mFkvMmwFBYWEh8fr1MoiI+Pp7CwkOLiYnU/o1FxogjdOdeuzecXv/iFut7W1saKFSt588032bFjxyASifQHbXvgSORZiNIfxUTn7yaYDAkXFoR1dLwRzO9EKTLbvHmzqn01f/78bi/qxcXF5OXleRwHsnsrPz+fV199VXWNgXyxeOONN9i9e7fumKqqqqB9HuUz/fznP+fiiy/u8tzyDRnceeedQRUWDOMdbf1Gfn4+hw9LjB8/XnVjTpw4kREjRtDQ0EB7u2wIYmJiUeS1lDoQo9FIR0eHR5ad0iBt6LBC87wM+CoQg7u5Vgygdb06kIPpgTMkZiADgV//+tdMmDCBu+++OyTnX7lyJU8//XRIzu0PysVeOyvwJxNKGzuJiIjw6EHRWa8JIDIykvb2dt0xixYtIjIyMuify263+9VXRJIkzp8/T3Z2dtDHEMY77733Hp9++imwkk8//VTtYFlRUUFdXR0XXXSRum9zszsAkpAgt4yNi4sD5N/4mWeeob29nd///vcsWbLElZU1FCkFNgH/D3d/lFbk9OCPXcunQAPBSBkeMjMQHSkp4KpgDQrJyd0qjz333HO8+eabpKam6oJ3Q4mcnJweB7K9GQhtDwrFNaadgbS1tWEymSgtLVVnIEqL1mCyePFiLBYLf/zjH/nJT35CXV0dra2tXvcdPXo0c+bM8bvfe5jAyM3N1SkOKzL2IAt0njx50mX4VyHfgcuz7fj4eEaNGsXZsxKjRo0iLS2Nv/71ryxZsoT29nMYjS9isVh05x5oWCwWr+0PeoZ2VvId4Cjy7CS4DM0ZSDCNhx/nW7BgAZ9//jk333wz+fn5PPDAA3zjG99gypQp/PGPfwRg69atZGdn8+1vfxur1UphYSHPPPMMU6ZM4Vvf+hb19fUAvPTSS1x11VVMmjSJO+64Qyd7rfDZZ5/xne98h69//etce+21HD3aCwmCPqK72Ik3PS2TycRtt92mm+3cfffdpKd3FnMOjJMnT/Lyyy+r0imJiYmsX68XhDaZTBQVFXHixAkPpeEwocPXBb6wsNCLOvAqFD///fffrxODXL58OQDjx48HJC655BI2bdo0YJScly3zLIZt0qeTDWiGpgHpYzZt2sSoUaMoLS2lqamJ6667jvfff5/S0lIeeeQR9Q/i0KFD/M///A8ffPABeXl5xMTEcODAAa6++mq2bdsGwA9+8AM++OADDh48yIQJE9i8ebPH+913330UFBTwz3/+k6effpoHHnigTz9vT+hOcNGba+z+++/n4MGDav+RgoICioqKQtr/4/Tp00ycOJHFixer26ZOnYrT6VQvNl0lDXgT/TMYDGoKdURERD9XQA8duioEfOqpp3RB+VtuuWVAfO++4pFr16712KbEfwYDQ9OF1Y/s2bOH5uZmNm7cCMj+1+PHjwNy7URcXBxxcXEMGzaM7373uwBcccUVfPjhh4BsZB577DEaGhqw2WzcdNNNuvPbbDbee+897rzzTnWbL7fLQEC5+Obm5qo1HZ1jJ95cY9dcc02XxwSD1NRU7rzzThITE3E6nbz55puYzWbMZjNCCP71r38BsiG49NJLaWpq4tlnn/V6LkmSMBgMuguFIsMCsvjjYLowDD5W+XzF6XS66nwOU1Xlrknpy1mIEEKtRen0itf9TSZTEDPF7MgyKVbX+mTkqneZqip6XfEeNiBBRgjB7373O6ZOnarb/ve//11XhGYwGNR1g8Gg/rHMnTuXkpISJk2axNatWz0UQ51OJwkJCZT3VrymH+hN7KQ3x/SU7OxsNm7cqPM3K2nP2t9KCIHNZvN5FxkZGanqdn355ZdERkaq8RrFaATbeMTGxgb1fBcas2bN6jMDkpqaypkzZ3A4HF3uJ2ePyerUNTU1QQz0VyHHPxQjuwKtwd26dW6vz9z/c7shxk033cSmTZvUC8aBAwd6dPz58+e5+OKLaW9vZ/v27R6vx8fHM3bsWP7whz8A8oXp4MGDgQ/8AqSkpIRhw4ZxySWXAO4+3Xa7ncbGRm655RZAljM3m828+uqrHmnLSUlJtLe3k5SUhCRJ6nqoGUx+8gud5uZmjfFwX7hl15rEiBEjAOUmQ1BdXU1UVNSADvQrhA1IkFm+fDkdHR187WtfIyMjQw3i+cvjjz/ON7/5TaZNm0Zamnet/+3bt7N582YmTZpERkaGGqgP0zNOnjzJ73//eyorKzGZTLo0YYPBwF//+ldMJhMvv/wyJ0+e1GWPKRQWFhIXF0d9fT1CCOrr69X00VBgtVoxGkMoTREm6CgJMp1RYjlms1nzNyNhtVpD+jcUVPwpVx9IizcpkyNHjqjPz507J0RyshAQvCU52beOgBcGgpSJMgbtd9PXDHRRSUDs2bNHCCFLZ2h7TqSkpAhJkkRSUpLYs2ePAHz2IFm0aJGIiooSgIiKihKLFi1Sz7Nhwwaxa9cunayGt3H4u2zYsEEdZ0+P7Wrp7lyBEqxxBnPpK7oaw4oVQmRkZIgNGzaIjIwMVdLF3343nudXJE2020o7beteLgU/pUz63SD0dPHLgPQzA2kMYQPiewypqalqsyuDwSCmTp2q+8cym80CEMnJyWLEiBFe9bh8qRQDIiYmRtcoKyYmptcGRFGWzcjIEOPGjQuKAVEadYUNSGjpehwrBSAsFotITU0VsFJkZGSIbdu2+a1I3Z8GJOzCCnPBsn79ehwOB/PmzcPpdFJeXk50dDRxcXEkJyerAfWamhrMZrPXTDBflfbgTt2U/x8Dk5ZRAv2XXXaZqzo7cIaWHtRgZSUg/75z5szhscceo6CggMWLFzNq1Kj+HZofhA1ImAuWnJwcnn32WTWjyWAw8NBDD7Fx40aio6MBfSGht6wdX5X2IAdP7XY7kiRht9tpbm72mVmjBFJ9oRihnTt3IkmSTpOrc51DT+sewhldA4P8/HzWrDGpLQb8pT9lWcIGJMwFTU5ODocOHcJgMLBlyxZKSkqYO3cusbGxbNu2TVdI6A1flfapqalYLBZdem9XEhp1dXVd9hpRChKTk5ORJMlDk2vDhg00NTWxYcMGvz63sq8kSeGMrgHKyZMne3GUO8urL5ItwgYkTBhkQ5CamsqhQ4dUqfnU1NRu5ep9VdqvX7+eF154QW3LO378eF544YUujZE3l1Jqaip5eXmMGzcOkGcqS5cupbS0VN3HaDTy8MMPExsby8MPP+zXhSMuLo4tW7bw0EMPdbtvmIGNZ5aXbETcqcMzCBn+BEoG0hIOovdsDOEgun9j6E3LXu2x2iZZnY/pbgy4gpnJyclCkiRdgFNp5LVhwwYRFRUlhNA38kpKShKSJKnHKo9KQyZtZhleAqf33XefRxA9MTFR94iPQGtP8DaG/l76ilCP0b9zhSaIHq5EHwCUlZXx9NNP87//+7/9PZQLFn8kV7o6NtCq5ssvv5xPP/1UjXUoOJ1OkpOTaWxsVDXPtJpcMTExOBwONWYTHR1NfHw8MTEx1NfX43Q6vcpiNDY2snTpUl588UWPGEhkZCSSJIVEPj/M0GJIurBSUkCSgrekpPT3JwrTFyjxEMWF1VdSF7GxsXzyyScsWLCAhoYGbrjhBt3rZ8+eJSoqim984xseYpSnT5+moKCA2NhYJEkiNjaWgoICTp8+rWZ9KQVr2iywhIQEnn/+eaKjo3nppZd071dbW4sQgtra2lB+7DB9im+tsEAYkgakj9XcAaiqqiItLY25c+cyZcoU7r77bt58802mTZvG5Zdfzvvvv8/777/P1VdfzZQpU7jmmmv4+OOPPc7T1NTEvHnzPOTgwwxdEhMTiY6O5je/+Q0JCQm8+eabREZGkpqaihCCoqIikpOTmT17tkcjr65iN4mJiYDbgCizG6PRiMFgICMjg82bN6vnioqKYvz48ep+QgjGjx/fZXA/GCiJAVol4zCDBH/8XANp8ScGAiLoS3dUVlYKo9EoPvzwQ9HQ0CCmTp0q7rnnHuF0OkVJSYn43ve+JxobG0V7e7sQQoj/+7//Ez/4wQ+EELKP/NZbbxVCCLF06VLxyiuvCCGEOHv2rLj88suFzWbrfgCdCMdABs8YDAaD2LZtmxpHAcSWLVt0hWTauIeWrmI3kiSJuLg4ERERIQAREREh4uLihCRJXsexaNEiYTAYREpKiu5x0aJFAX1+Ibr202vfr6v9gr30FaEeY8/PG7wYyJCcgfQXY8eO5YorrlDv7mbOnIkkSVxxxRVUVVXR2NjInXfeycSJE/mv//ovl8S0nj179vDEE08wefJkMjMzdXLwYYYmnWcRGRkZnD17VpcB5qsXSVethiMjI1m5ciVtbW2UlpbS1tbGypUrfcY2rrnmGq+px9dcc03QPquSIabNFOusZBwm1ATPnRU2IEGkO7n25cuXM2PGDA4dOsSf/vQntdJZixCC119/nfLycsrLyzl+/Hi3qaRhBjedU4Gzs7N59NFHyc7O9tqEqzO+YjdtbW0UFBRQWlpKR0cHpaWlXbYGzs/Pp6SkhLa2NoQQtLW1UVJS4qFAHAhC4x5TeOKJJ2hqauKJJ57QKRl3rtwPpJI/TGgIG5A+pLGxkdGjRwNyi1tv3HTTTRQUFKj/YD2Vgw8z+Og8iygp+f/t3XtslfUdx/H3Z21tQSmgIqIVhKkzNENUoo4lG4qChKw1012oKDiCkQwQs4yZNWzZoozBNjPqyCQiqLMab2FkURHHIMO7cvECbnUMFYiIFdjY2lHa7/74PS2nxxba03Oe09N+X8kJp7/ntM+3Bzjf5/ldvr/V3HbbbaxevfpzdxWdMXLkSG688UbmzJnDxIkTT7g18In2r0+H5vGYxF0F58+fz8knn9xqN0igZVwk8U/Xvfg03hjNnz+fadOmcddddzF58uQ2X7NgwQLmzZvHqFGjaGpqYvjw4T69txfIxAZalZWVVFZWsmLFChobG8nLy2PGjBnt3lE0r6q/8spjC8+Ot41vZxQWFjJo0CD27NmDmSGJgoICGhoayM/Pp7Gxkfz8fCZNmkRNTQ0QpjY/++yzmBkHDx6krKyMmpqaNrt+E/Xp04f6+nqKioqoq6sDQpdZY2NjtCtg+1viuk7qyEBJd3p0ZBA9y9XcfSFhJBcGsHtCDMdbyHiiRY7JPyfVxZQnIqml8nHzzx40aJABbZ7veLFAWCCZuEgyLy/PB9HTeA68nHv2dKcYPIH07Bg6+qHfmRX5HU04nVFaWmpTp05t9bMrKyutpKSk08mveZV9Xl5eVAK99QdiWVmZ7d+/38rKyjyBeALxBNKVGDyB9OwYSktLbf369a3a2tqMKNvvQ3V1tQ0ZMiRtdzfNSSTxDmT27NktU5b9DiSeBOJjIM7lsDgGvtNhypQpbN++PaVSMW2pra1ts33s2LHcfffdLec40XhJdzR48GD2pXs1dIb0mFlYIWm6RP6e9HztlZPvjlO/x48fn/FSMclTmktKSujbt29LOfy8vDz69u3baj+V7iaXSsj0iARSVFREbW2tf2AmMDNqa2spKirKdigug9orJ9/empHeqLi4mLVr13LkyBGWLFlCcXFxtkM6ruZZYnHs59FVPaILq6SkhN27d7N///6W6XvZ1F1iGDBgQLe+0nJd15Uqwr3B3r17WbVqVcv7M3ToUBYvXsz06dNji6F5CnFnXt/U1MSsWbMyGFV6ZDSBSLoW+C2QB9xvZouSjhcCDwGXArXAd8xsV2fPU1BQwPDhw4FQGv3iiy/uYuRd4zG4OGViDUlPkVgmBsL/CzOLtYuvqamJfv36UV9fT0NDQ8uCSLOw2n/Tpk2Ul5dTV1fH0aNHyc/PZ+bMmVRVVcUWY6oy1oUlKQ/4HTAJGAlMkZS8BHYGcMDMzgPuAX6ZqXicc71Pchffli1bYu/iGzlyJHPnzm3ZnXLYsGGUl5dTWFjYUmngvvvuo6GhATOjvr4+J5IHZHYM5DLgfTPbaWZHgMeA8qTXlAMPRs+fBMbL6xU459IkuUzM0qVLY+/iq6yspLq6mqqqKurr65k7dy7btm1j5cqVaZlQMGHCBKDtWmGZ/jjNZBfW2cBHCV/vBi5v7zVmdlTSIeA04NMMxuWc60USu/g2bNjAuHHjYj8/0GocZuHChWlLYmvXrmXixImsW7cOCEnDzBg4cCCHDx9uVaAy3XJiEF3SrcCt0ZeHJX1+J6ZjTif7Cchj8Bg8Bo+hTbt27Tq9oqLi04qKioz8/Gg2aumBAwcOEC7IdwEXtPd6SW+20TysI+fKZALZA5yT8HVJ1NbWa3ZLygf6EwbTWzGz5cDyjpxU0htmNialiNPEY/AYPAaPoTvHkC6ZHAN5HThf0nBJJwHfBdYkvWYNMC16fgOw3nwxh3PO5YSM3YFEYxqzgbWEabwPmNm7kn5OqLOyBlgBPCzpfeAzQpJxzjmXAzI6BmJmzwDPJLX9JOF5PfCtNJ+2Q11dGeYxBB5D4DEEHkPQHWJIC3mPkXPOuVT0iFpYzjnn4ucJxDnnXEpyYh3I8Ui6kLCi/eyoaQ+wxsy614YIMZP0kJndnO044pQw22+vmb0gqQIYC+wAlptZ5lZUOdcL5fQYiKQfAVMIZVJ2R80lhA+Rx5KLN2YwjgsJCexVMzuc0H6tmT0Xw/mTp0cLuBJYD2BmZTHEcDmww8z+JakPcCdwCbAdWGhmh2KI4RHCRVFf4CBwCvA0MJ7wb33acb7dOddJuZ5A/g6UJl9ZRlei75rZ+THEMBf4PuEqdzRwu5n9MTq22cwuiSGGzYQP6vsJ21QKeJRoWrSZbYwhhneBi6Lp28uB/xLVN4vavxlDDG+Z2ahoUeoe4Cwza4zqq20zs1GZjsG1T9IZZvZJlmM4zcza3s7QdVquj4E0AWe10T4kOhaHmcClZnYdMA5YIOn26FhchSHHAG8ClcAhM9sA1JnZxjiSR+QLZna0OR4zm2dmm8zsZ8CIuGKILh76Ee5C+kfthUBBHAFI6i9pkaT3JH0mqVbSjqhtQEwxFEv6haSHo268xGPLYorh1KTHacBrkgZKOjWmGBZJOj16PkbSTuBVSR9I+npMMYyR9BdJf5B0jqR1kg5Jel1Szu+3kOtjIPOAP0uq4VjhxqHAecDsmGL4QnO3lZntkjQOeFLSMGJKIGbWBNwj6Ynoz33E/3f7jqRbzGwlsE3SGDN7Q9IFQFxjDyuA9wgLVyuBJ6IPjSsI3ZxxeJzQdTjOzD4GkHQmoeLC48CEGGJYCdQATwHfk3Q9UGFm/yO8F3H4FPggqe1sYDPhLjmOi4rJZnZn9HwJYb+h16N/k9WEC69MWwb8FBgAvATcYWbXSBofHftKDDFkjpnl9INwF3UFcH30uALIi/H864HRSW35hI2yGrP0nkwmjDvEec7+wCrgH8CrhKSxE9hI6MKKK46zCF1XEP7T3gBcFuP5/5bKsTTHsDXp60rgRUJhvc0xxfAD4Dngywlt/4zr7yE63w4gP3r+StKxt2OKYUvC8w/bO5arj5weA+kOJJUARy262kw69lUzezELYWWNpGJgOCGJ7jazfVkOKVaSngdeAB5s/t0lDQamA9eY2dUxxLCDMDbYlNA2HfghcIqZdajSahriKCFsFPcR4Sp8m5nF1Z2JpDnAN4BFwNeAgYRJFVcBI8zsphhieJnwu/cHfkUYI10ddaH92nK8qKInEOfSSNJAwgy0cuCMqHkfoXDoIjM7EEMMi4HnzeyFpPZrgSqLYXJJ0nnLgB8D55rZmTGfexwwi1DOPJ+QzFYTavMdPc63puv8FwGLCWOyd0SxTCNM8phpZi9lOoZM8gTiXEwSxoh6XQzR1O4vmtk7vfl96G4xdJUnEOdiIulDMxvqMXgM3SWGrsr1WVjOdSuS3mrvEDDYY/AY4o4hkzyBOJdeg4GJQPJYhwjTOD0GjyHuGDLGE4hz6fUnwkynrckHJG3wGDyGLMSQMT4G4pxzLiW5XsrEOedclngCcc45lxIfA3GukyQ1Am8TCjQeJZStuSdx5bdzvYEnEOc6r87MRkMoUU4ozFdMKFnhXK/hXVjOdYGF/S1uBWYrOFfSXyVtjh5jIewQKem65u+T9Iikckmlkl6TtFXSW5JiLTPiXFf4LCznOknSYTM7JantIPAl4N9Ak5nVR8ngUTMbExXPu8PMrpPUH9gKnE8oNviKmT0S7WWSZ2Z18f5GzqXGu7CcS68C4F5Jo4FGQhE/zGyjpGWSBhG2HXjKwu6NLwOVUeXap82sJmuRO9dJ3oXlXBdJGkFIFp8QKq7uAy4ibFh0UsJLHwKmArcADwCYWTVQBtQBz0i6Kr7InesavwNxrguiO4rfA/eamUXdU7vNrEnSNMLuiM1WAa8BH5vZ9uj7RwA7zWyppKHAKMImZc51e55AnOu8PpK2cmwa78PAb6Jjy4CnJN1M2JHvP83fZGb7os2eVif8rG8DN0lqAD4GFsYQv3Np4YPozsVEUl/C+pFLzOxQtuNxrqt8DMS5GEi6mrBHd5UnD9dT+B2Ic865lPgdiHPOuZR4AnHOOZcSTyDOOedS4gnEOedcSjyBOOecS4knEOeccyn5P5C5AmcIRilYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "survivalstan.utils.plot_pp_survival([testfit], by='sex', pal=['red', 'blue'])" ] }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ "## summarize time-varying effect of sex on survival" ] @@ -806,19 +835,21 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAF4CAYAAACsOwi3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXl8VOXV+L93lkxmAiFhB0UQkUEBxSq4geIu1F1r1ddf\nK1bqUpXivlO38or7hisgVl+1r13FpfraWrW4VEERKiMY9hAEss9+l98fd+5kJpkkk8nMJJOc7+eT\nT5J773PvudvznHvOec5RDMNAEARBEASh0LF1tQCCIAiCIAjZQJQaQRAEQRB6BKLUCIIgCILQIxCl\nRhAEQRCEHoEoNYIgCIIg9AhEqREEQRAEoUcgSo0gCIIgCD0CUWoEQRAEQegRiFIjCIIgCEKPQJQa\nQRAEQRB6BI6uFiATvF7vzcCZwDggCCwHbvT5fN+10ebnwBLAAJTY4pDP5/PkWFxBEARBEPJAoVpq\npgGPA4cCxwNO4F2v1+tup10dMDThZ2QuhRQEQRAEIX8UpKXG5/PNTPzf6/VeBPwAHAx83EZTw+fz\n7cyhaIIgCIIgdBEFqdSkoAzTrVTdznZ9vF7vRkwL1QrgFp/P95/ciiYIgiAIQj4oVPdTHK/XqwCP\nAB+3o6D4gIuB04D/wjz35V6vd4/cSykIgiAIQq7pCZaahcD+wJFtbeTz+T4FPrX+93q9nwDfAr8E\n5uVSQEEQBEEQck9BKzVer/cJYCYwzefzbe9IW5/Pp3q93pXAmHTbGIZhKIrS/oaCIAiCIGSTtAbf\nglVqYgrN6cDRPp9vcwbtbcAE4K1021RX+7HZ0lNq7HYbpaVu6uuDaJreUfG6jEKUuxBlBpE7nxSi\nzCBy55NClBkKV+6OUl5ektZ2BanUeL3ehcD5mPExfq/XOyS2qs7n84Vi2ywFtvl8vlti/9+O6X5a\njxlYfAPmlO7n0z2urhvoutEhWTVNR1UL70ErRLkLUWYQufNJIcoMInc+KUSZoXDlzjYFqdQAl2HO\ndvqg2fJZwIuxv0cAWsK6cuBZzPw0NcCXwOE+n29tTiUVBEEQBCEvFKRS4/P52p215fP5jm32/zXA\nNTkTShAEQRCELqXgp3QLgiAIgiCAKDWCIAiCIPQQRKkRBEEQBKFHIEqNIAiCIAg9AlFqBEEQBEHo\nEYhSIwiCIAhCj0CUGkEQBEEQegQFmadGEITehxGNYPh8GbXV7DYipcVo9SH0NFPJK14virMoo+MJ\ngtA1iFIjCEJBYPh8qBf+NKO2KrCzg20cL72GMmFih9rU1dVy4YXn8txzLzJ06NAOHrHn8Oabb/Do\now/y7rsfpN1m2rTJzJ//AFOnHp07wYScsHjxs3z00QcsWfI/KdfPm3cz++8/gZ/+9L9yLou4nwRB\nELLEiy8uZtq0o+MKTVXVdqZNmxxf//bbyzj55GOyesyVK79k2rTJ+P2NWd1vZ1GU9Ir/tsa0aZOp\nqqpKe/u3317GVVdd2qljFiJXXPFL5s+f39ViJN3vxYuf5be/vTP+/89/fglLly4mEPDnXA5RagRB\nELJAOBzizTff4NRTz0hantjZG4bR6cG+OdY+jY7V2u32ZHKdsn1texOqquZs36NH78Mee+zB3/72\nds6OYSHuJ0EQhCywfPnHFBUVsd9+45OWGzFtY+XKL5k//y4URWHatMkoisKsWbOZNWs20WiUZ555\nkvfff5fGxgZGjx7DZZddyeTJppWnqmo799//36xa9TWqGmXYsOFcccUcRo3amzlzLkdRFGbMOAZF\nUTj55B9zyy3zWsj39tvLePTRB7njjrt54omH+eGHHRx++FRuu+03/P3v/8fixc/S2NjISSfNZM6c\na+MKQkNDA488cj/Ll39MNBph0qQf8etfX8+ee46I7/utt95g0aJnqK+vY8qUwzjwwINaHN90TzzP\nxo0bGDRoECef/GN+9rOLsdvtKa+n0Uktbe3a//DMM0+ybp0PVVUZM2YsV199DWPHjotvs3nzRubP\nvxufby177rknd9xxO7NmzUpyg/3www6eeOIRPv/8U+x2GwccMIk5c65j6NBhacmxbNlfeO21l9m2\nbSulpf2YPv1Yfv3r6wFobGzkiSce5uOPPyQajTBu3HiuumouY8bsCzS5dc4770Kef/5pGhrqOfTQ\nI7jppttxu9389rd3snLll3z11QqWLl2Koij8/vd/ZejQoVRUrGfhwsf4+uuvcLvdTJ58KFdffQ39\n+pUBcNVVlzJ69D7Y7Xbeffdt9tlnXx599Kl2ZQL43e9e4H//9xXC4RDHHHM8ZWXl7V6HI488ivff\nf5czzzwnvRuYIaLUCIIgZIFVq75m3Lj9Wiy3lIOJEw/k6quvZdGiZ3jllT8CBm63B4CHHrqPTZs2\nctdd8xkwYCAffvgPrrvual5++feUl4/j/vvnE41qLFz4PMXFxWzcWIHb7WHIkKHcc88Cbr/9Rl59\n9U94PB5cLlerMobDIV5//TXuuuu/8fv93Hrrddx88/X07duXBx54jMrKrdx66w0ccMAkjj32eADu\nvXce27ZtZcGCh/F4Sli48DGuu24OL7/8v9jtdtasWc19993DZZddxbRpR/PZZ8tZtOiZJKvJ119/\nxb33/oa5c2/gwAMPYuvWLSxYcC+KonDRRZeklLWzVpdAIMCMGacyd+4NgMErr7zM9dfP4dVX/4zb\n7cYwDG666VqGDduD559fSigU5OGHH046rqqqXHPNVUyceCBPPbUIu93G0qWLuPbaq1i69FUcjraH\n0D/96XWeeOJhrrjiag499AgaGxv55puv4+tvu+0G3G4PDz30OCUlffjLX/7Ar399Ba+88kf69u0L\nwLZt2/joo39y//2PUl9fx+2338RLL73A7NmXM2fOtWzZspn99x/HRRf9ElXVKCsrp7GxkTlzruC0\n085kzpzrCIVCPPXU49xxx808+uhT8eO/886bnHHGOTz11OK0ZXr//fdYsuQ5rrvuJiZOPJB33nmT\n119/lT322LPNa7HffuN58cUlqKra7nXrDKLUCIIgZIGqqu0MGDAwadnQocP48MPPAXA4HPTp0wdF\nUSgvb/qy3bGjirfeeoM//vHNePvzzruQTz9dzrJlf2XixHHs2LGD6dOPY++9RwMwbNjwePvS0lIA\nysrKKCnp06aMmqZx/fU3x9tPn34cf/vb2yxb9i4uVzEjR47ioIMOYcWKLzj22OPZsmUz//rXRzz9\n9BLGj58AwLx5d3PWWT/mo48+YPr043j99Vc59NAjOP/8CwHYc8+fsnr1Kj7//NP4cZcseZYLL7yI\nk06aGb8ul1xyGQsXPtaqUmNdt3SZMeMUZsw4Jf7/j350SNL666+/mRkz3uWrr77k8MOn8tlnn7B9\neyVPPvk85eXlOBw25s6dy6xZs+Jt3n//XcDgxhtvjS+76aY7mDHjGFau/JLJkw9tU6YXX1zMBRf8\njLPPbgpwtxTfVau+Yu3ab1m27L34IH/FFXP48MMP+OCD9+NuTMMwuO22OykuLgbgpJNm8uWX/2b2\n7MspKemD0+nE7XZTXl6Oqpoz+/7wh9cYO3Ycs2dfniD3bZx99ils3bolbmXbY48RXH75VfFt0pHp\n9ddf4bTTzmDmzFMBmD37cr744nOi0Uh8Pxdf/MsW12LgwEGoapTdu3cxZEjuguhFqREEQcgC4XCY\noqKOTwGvqFiPruucf/7ZSS4XVY3GlZ9zzz2fBQt+y2effcIhh0xh+vTj2GefMR0+lstVnKQQlZf3\nZ9iwYbhcxfFl/fv3p7a2GoBNmzbicDjYf/8ml1ppaT/22mskGzduiG2zgaOOSg5+njDhgCSlZv36\ndaxevYqlS5ssArquoaoq4XC4TetSptTUVPPsswtZuXIFtbXVaJpOJBJmxw4z+HjLls0MHjwkScGc\nODF5ttv3369jy5bNnHDCUUnLo9Eo27ZtbVOpqampYdeunS2UK4v169cRDAaYMePYpOWRSJht27bG\n/x82bFhcoQEYOHAgNTXVbZ77+vXrWLHi3y3kVhSFbdu2xpWa5pbFtmSqrNwGwMaNGznjjGQX0oQJ\nE1m58ss2ZXK5XBiGQTgcanO7ziJKTY7QdZ1gMIiup5cTQxCEwqasrIyGhoYOtwsEgtjtdhYvfqmF\ny6VvX9PyctppZzB58mEsX/4x//73p7z00gtceeVczj773A4dq7nZX1GUlMt03VKuUse1JAY8pxP8\nHAwG+MUvLuPoo1vO/MqFQgNw993zaGioZ+7c6xkyZChOp5NLL51FNKqmLXcgEGTcuP2ZN++eFjE+\nicpQKto7r2AwwIABA3niiWdb7NtyPUHLewaJ96f1fR955FFcccXVLfY9cGCTNdHtdmckUyauwfr6\nOhRFSSv+pjOIUpMjwuEwGzb4GD58FE5nbl5aQRC6D/vu6+W999qe3eFwONB1LWnZ2LFedF2nuno3\nBxwwqdn2TRNUBw0azOmnn8Xpp5/FM888yRtv/Jmzzz4Xp9MJgJZmUsGOMGrUaDRNY82a1UyI5eyp\nq6tly5bNjBo1Or7NmjWrk9qtXr2q2TmOY8uWTe3GXWST1atXcd11N3HooYcDppuvrq42vn7kyFHs\n2FFFTU1NXEH55ptvkvbh9Y7jH/94j7KycjweT4eO7/F4GDp0OF9++W8OOujgFuvHjh1HdfVubDZ7\np3IaOZ0ONK35MzWODz/8B0OHDsNmS3+SczoyjRo1ijVrvuHEE2fElzW//6moqPieQYMGU1raL215\nMkGmdAuCIGSBQw89jA0bKmhsbD1fzLBhwwkGg3z55b+pq6slHA4xYsRenHDCSdxzzzz++c9/sH17\nJf/5z2p+97sXWL78XwA88sgDfP75p2zfXonPt5YVK75g1Ki9ATM+RVEU/vWvD6mtrSUYDGbtnPbc\ncwRHHnkUCxbcw6pVX7Fu3XfcddcdDB48hKlTTdfGOeecx2efLeeVV15i69Yt/OEPr/HZZ58k7WfW\nrNm8886bLFnyHBs2VLBp00bef/9dnnvuqVSHzZrs77zzFps2bWTNmtXcffcdSW6cyZMPZfjwPbjn\nnnl8//16vv76Kx555JGYFcK0RJx44sn061fGzTdfy9dff8X27ZWsWPEFjzzyALt2tZ/O8eKLZ/Pq\nqy/x+uuvsnXrFny+tfzhD6/Fjz9hwgHccsu1/Pvfn1JVtZ1vvvmaZ59diM+3Nu3zHDZsOKtWrWL7\n9sq40nbWWedSX1/PvHm3sHbtf9i2bSufffYJv/3tnW3OKktHpnPOOZ833/wrb731Blu2bGbRomfY\nsOH7duVcteorpkw5LO3zyhSx1AiCUBAoXi+Ol17LqK3dbqO0tJj6+lDaFg3F6+3QMUaPHsPYseP4\n+9/f47TTzky5zYQJB3D66Wczb97N1NfXx6d033LLb1i6dBFPPvkIu3btpLS0HxMmTOToo81pxZqm\n89BDC9i5cwclJX047LAjuPLKuYAZgHnxxb/k6aef4L//+25OOmlmyindmXLrrb/h0Ucf4MYbr0FV\no0ya9CPuv//R+FTs8eMncOONt7Fo0TMsXvwMhxwyhVmzLuGFFxbF9zFlymEsWPAwS5Y8z//8z4vY\n7Q5GjhzFqaeeHt+mPZfGT35yGjNnnsqsWbPTkvvmm+9gwYJ7ufji/2LIkKFceumveOKJR+PrbTYb\n8+c/yH333cPs2T9njz324Oabb+LSSy/F5TJjo1yuYp588jmeeupxbrvtBgIBP4MGDebggyfj8ZS0\nK8OMGacQjUb5/e//h4ULH6NfvzKmTz8uvv7++x/l2WcXMn/+3dTW1tC//wAOPPAg+vfvn9Y5Alxw\nwc+YP/9Ozj//HCKRSHxK91NPLeKppx7jmmuuIhqNMGTIMA499PD4dW7tercn03HHnUBl5Taeeupx\nIpEwRx99LGee+RM+//yTlPsDiEQifPjhBzz88BNpn1emKJ3NBdCb2LmzIe2LFY2GqazcWHDuJ4fD\nRnl5CTU1/ngkfXenEGUGkTuf5EvmTz75mIULH+N3v/t9VvZXiNcasi93OBxi5szjePDBx5k06UdZ\nkLAlDoeNioq1XHjhhbz66p8YPnyPnBwn2xTCM/LnP7/Ohx/+k4ceejzjfQwa1DetQB6x1AiCIGSJ\nww+fyrZtW9m58wcGDRrc1eL0GFas+IKDD56SdYXmww8/wO12M2LEXlRWbuXxxx/iwAMnFYxCUyg4\nHE7mzr0+P8fKy1EEQRB6Ceecc15Xi9DjOPzwqRx++NSs7zcQ8LNw4WPs3LmDsrJypk49kksvvar9\nhjFOOOGoWImKZCO+oig88MCjLQK/eyunnHJ6+xtlCVFqBEEQhF7JySf/mJNP/jGQmRvnhRdSV6UG\nxFLXRYhSIwiCIAgZkM8p6kJ6yJTuHOFyuRg/fjw2m42dO3cQjUa7WiRBEARB6NGIUpMjbDYbbrcb\nXdfZtesHNC13Zd0FQRAEQRClRhAEQRCEHoLE1OQYl8vF6NH74nR2vNCdIAiCIAjpI0pNjrHZbEkV\ncAVByAxd15Jq93QEu91GNOqnoSH9jML9+pVhs9kzOp4gCF2DKDWCIBQEdXW1fPDBu3k73vTpJ1Je\nPqBDberqarnwwnN57rkXO1WksNB58803ePTRB3n33Q/SbjNt2mTmz3+AqVOPzp1gWeTKK3/J11+v\nRFEUFi9+mTFj9u1qkZL44ovPmTv3V7z33kdJNa/a4oorLuGbb74G4MUXX2PvvUe32OYPf3iNFSu+\n4N5778+qvNlCYmoEQRCyxIsvLmbatKPjCk1V1XamTZscX//228s4+eRjsnrMlSu/ZNq0yfj9rRfS\n7Araq+XUHtOmTaaqqirt7d9+exlXXXVpp47ZERRF4bTTzuQvf/kbe+89msWLn2XatMkcddQUpk2b\n3OLnqKOm5E22RBk7wn33PczTTy9JavfFF59z3nlNtcxOO+0sVq9exerV36TaRZcjlhpBEIQsEA6H\nePPNN1oU7UscIAzD6PRg3xxrnz2tjF8m1ynb17Y9iouLKS8vB8zCkmeeeU583S9+8f8444yzOfXU\nM/IqU2fo27cvZWVlKSp5N11Xp9PJ8cefxB/+8BoTJkzMr4BpUJCWGq/Xe7PX6/3c6/XWe73eHV6v\n909er3dsGu1+4vV6v/V6vUGv1/u11+udkSsZo9EolZWVkp9GEHoJy5d/TFFREfvtNz5puTVArFz5\nJfPn34Xf3xj/cl+y5DnA7C+eeOIRzjxzJiecMI1LL53FypVfxvdRVbWdG2+cy4wZx3LCCdP42c9+\nyqefLqeqajtz5lwOwIwZx3DUUVP47W/vTCmfZSVavvxjLrjgbI4/fiq3334T4XCIt99exk9+choz\nZhzLI488kDSoNTQ0cPfddzBjxrEcf/xUrrvuarZu3ZK077feeoOzzz6FE06Yxq23Xk9dXV2L43/0\n0QdcfPGFHHvskfz0p2ewZMlzaJrW6vXsbLHlFSu+YPbsn3PCCdM4+eRjuOKKS9ixo8ny01yeRYue\nRdfNeKuVK7/kmGMOZ9Wqr+Lbv/TSC5x22knU1NSkPJ6p4PSP/9jtdtxuT9KyVCxb9mdOOeV4Pv74\nQ84//yyOP34q8+bdQjgcZtmyv3DOOacyc+ZxPP74Q0nt3n57Gb/4xf/j2GOnMnXqVH7zm9uorW07\n5uyrr1Zw+eW/4LjjjuScc07l8ccfIhwOpXU9EznyyKP46KMPUNXul6qkUC0104DHgS8wz2E+8K7X\n693P5/MFUzXwer2HA/8D3Ai8CVwA/Nnr9R7k8/n+k20BVVWlsrIyVqVbgg0FoaezatXXjBu3X4vl\nlvVg4sQDufrqa1m06BleeeWPgIHb7QHgoYfuY9Omjdx113wGDBjIhx/+g+uuu5qXX/495eXjuP/+\n+USjGgsXPk9xcTEbN1bgdnsYMmQo99yzgNtvv5FXX/0THo8Hl8vVqozhcIjXX3+Nu+76b/x+P7fe\neh0333w9ffv25YEHHqOyciu33noDBxwwiWOPPR6Ae++dx7ZtW1mw4GE8nhIWLnyM666bw8sv/y92\nu501a1Zz3333cNllVzFt2tF89tlyFi16Jslq8vXXX3Hvvb9h7twbOPDAg9i6dQsLFtyLoihcdNEl\nKWXtjNVF0zRuueV6Tj/9LO66az7RaIT//GdNfJ+p5Ln//t/idhdxwQUXcdBBB3PuuRdw9913sHTp\nK2zbtpXFi5/lnnsWxC0z2SQQCPDnP7/OPfcsoLGxgVtuuY5bbrme0tJSHnzwcbZu3cJtt93AAQcc\nxNFHHxM/x0sv/RWjRo1CVQPcffc93Hff3cyf/2DKY2zevInrr/81l112JbfffhfV1bt56KH7ePTR\nB7nhhls7JO+4cfsTDof59ts1TJx4YKfPP5sUpFLj8/lmJv7v9XovAn4ADgY+bqXZHOBtn89nqbvz\nvF7vicCVwBU5ElUQhF5CVdV2BgwYmLRs6NBhfPjh5wA4HA769OmDoihJA+OOHVW89dYb/PGPb8bb\nn3fehXz66XKWLfsrEyeOY8eOHUyfflw8cHPYsOHx9qWlpQCUlZVRUtKnTRk1TeP662+Ot58+/Tj+\n9re3WbbsXVyuYkaOHMVBBx3CihVfcOyxx7Nly2b+9a+PePrpJYwfPwGAefPu5qyzfsxHH33A9OnH\n8frrr3LooUdw/vkXArDnnj9l9epVfP75p/HjLlnyLBdeeBEnnTQzfl0uueQyFi58rFWlxrpu6TJj\nxinMmHEKAH6/n0DAzxFHTI2f6157jWpTntmzTXkuuOAiAGbPvpwvvvic++67h4qK75k581SOOCL7\nRTXB/Ai+4YZbGTx4CABHHXUMf//7e/z1r+/icrkYOXIUBx54ECtXfhFXaqwikVbNqjlzruGXv7yY\nSCRCUVHLFCIvvfQCM2eewtlnnwvA8OF7cOWVc5k791dcc82NOByp1YFDDpnCq6/+MWmZx+PB4/FQ\nVbVdlJocUQYYQHUb2xwONFdh/wbktHyoqkapra2lrKw/Tqczl4cSBKELCYfDKQeT9qioWI+u65x/\n/tlJLhdVjcaVn3PPPZ8FC37LZ599wiGHTGH69OPYZ58xHT6Wy1WcpBCVl/dn2LBhSWkn+vfvT22t\n2ZVu2rQRh8PB/vs3udRKS/ux114j2bhxQ2ybDRx1VHLw84QJByQpNevXr2P16lUsXbo4vkzXNVRV\nJRwOt2ldyoTS0lJOPvnHzJ17JZMnT+GQQw7l2GOPjyuNqeXRUdUo4XAYu92Jw+Hg9tvv4uc/P49h\nw4Zz1VVzsypjIh5PSVyhAfO+DB++R9J16d9/ADU1TUPct9+uYcmS56moWEdDQ0PcdfbDDzvYc88R\nLY6xfv13bNy4kbfeWpaw1Hzeduyo6nAdK5erOCPXVa4peKXG6/UqwCPAx+24kYYCO5ot2xFbnhY2\nm4LNlp5JVNfN7QxDo7p6J2VlZTgc3T+EyW63Jf0uBApRZhC5Mz1uPo/XkXe2vLyMxsaGNtvYbAqK\nQtI24XAIu93O0qUvY7Mlt+3Tx7S8nHnmWRx22BEsX/4Rn332KZdc8gJz5lzDOef8NH5dHI625bXZ\nFJxOR9I25jk6k5bZbAqGYeBw2OL9ncNha+EOSrw+za+V1c6SLRgM8stfXsb06ce2kKukxJ3QrmPX\nvC3uuONOzj//v/jkk+X8/e/v8dxzT/H4408xfvyElPLYbDb69i3G43HHcxmtWbMKUKivr8fvb6Sk\nxBPfXlEUFEVp95q3dz42my3lfXE6W94XTTPvhd/v59prr2batKO45575jBgxnG+/Xcc111yNYWg4\nHDbsduvemTIEg0HOOedczjnn3BbxSkOGDE24l033vC3ZGxrq6d9/QLcb1wpeqQEWAvsDR2bQVsFS\nVdOgf/+StP28gYC5XUlJMcXFTsrKTHNdoVBa6m5/o25GIcoMIne6RKP+vB6vb99iystL0t5+0qQD\neOONN9psU1bWB13Xk7aZPPkgdF0nGg1w8MEHp2xXWuqmtHRvvN69mTXrZzz00EMsW/YXZs++mP79\n+8bl7dev9WOXlLhirq+mbdzuorj7wsLlchKJOCgvL2HSpPFomsbmzeuZNGkSADU1NWzZspmJE/en\nvLyEsWP35bvvvk3ax9q1a+JyA4wfvz9VVduYMMHbqnwAffq4OnTN22PKlIOYMuUg5sz5Feeddx7/\n/Of/MXXqoWnJs3nzZh577CHuvfce3nrrLe69dx4vvvhifL3DYaO42NmqvDabgsdT1O75eDxFLe5L\ncbETuz35vhQVOQDz2dmy5ftY7M1NDBxoWp9WrFgBmNe8vLyEvn3Na19WVoLb7WbixAls2bKR8ePb\nnlPT0OBJ2k8qNmzYgKZpTJlyUFbvVzYoaKXG6/U+AcwEpvl8vu3tbF4FDGm2bDAtrTetUl3tT9tS\nE4mYZjm/P4TfH2L9+k0MHTqs27ug7HYbpaVu6uuDaWde7WoKUWYQuTtKQ0N+Td0NDSGczvQVqQMO\nOJiHHnqILVuq6NOnb8ptSkv7EwgEeO+9f7DvvmNxuYrp128QJ554MtdffwNXXfVrxo4dR01NNV9+\n+W/GjvUyY8YJ/OY3d3HYYUcwYsRI6uvr+Ne/lrPXXqOoqfFTUlKOoigsW/YORxxxJC5XMW53S4XT\n7w9jGAY1NU3nFAxGUFU9aVk4HCUSUamp8VNaOpBp047mlltu5YYbbsHj8fDkk48xePAQDjroUGpq\n/Jxxxk+49NJf8MQTT3PUUUfz6afL+eijj1AUJf6M/Pznv+C6635NWdkAjj32eBRFYd2676io+J5L\nL20KaWxsDCfJkimVlZX85S9/YNq0oxk4cBCbNm1kw4YNnHTSTGpq/Cnl+f779WzdupGLL76UaFTl\nmmuu5bDDjmD69BOZOPFHXHjhT3niiaf4r//6GQCqqhMKRVuVV9cNAoFIi/WvvfYKn3zyMY888iQA\ngUCkxX0JhaJoWvJ9iURUolGNmho/Hk8ZDoeDZ599njPPPIdt2zby1FNPA1BfH6Smxk9DgzlnprbW\nTyikc/75P+OSSy7i9tt/w6mnnk5xcTEVFd/z5ZdfcM0118ePU1cXSNpPKj78cDkjRuxFcXFpVu5X\nOqSrPBU3V3gJAAAgAElEQVSsUhNTaE4Hjvb5fJvTaPIJcBzwWMKyE2LL00LXDXQ9PcOOphnx35qm\nsWvXD5SXD0BRCmMmlKbpqGrhDLRQmDKDyJ0uffqUMn36iRm1tdtN10JHyiT06VPaofMbOXI0Y8eO\n49133+W0085Muc1++03k9NPP5rbbbqK+vp5Zs2Yza9Zsbr55HkuXLuKxxx5m166dlJb2Y8KEiUyd\nehQAqqpx//33sXPnDkpK+nDYYUdw5ZVzUVWd8vIBXHzxL3nyyce49947Oemkmdxyy7wWx9Z1A8Mg\n6ZzM/sxIWmYYJG13883zePTRB7juul+jqlEmTfoRCxY8gmEoqKrOuHHjufHGW1m06Bmef/5pDjlk\nCrNmXcILLyyKPyMHH3woCxY8zJIlz/PSS0ux2x2MHDmKU089PX4cRVFicS2pr/lPfnIaM2eeyqxZ\ns9u9F05nERs2bOStt96krq6OAQMGcvbZP+WUU85sVZ5Ro0Zx3nk/RdN0Fi9+nqqqKu677xFUVadf\nv/5cd90t3HnnbRx88KGMGbMvhmFgGEYbz4iCrrdcX11dzdat2+LLdV1PeV+a79swjPj++vUr56ab\n7uC5557i1VdfYeLECVx99VxuuOEaVNW8htYYpKpmm733HsMTTzzDc889xaWX/gJFgT322JPjjz8p\n6TiaZuY9svaTir/97R1OO+3MbtlvKZ3NBdAVeL3ehcD5wGnAdwmr6nw+Xyi2zVJgm8/nuyX2/+HA\nP4GbMKd0nx/7+0fpTuneubMh7YulaRF2766ipKQfFRXfA7DvvvtRXNy9XQ2WKbqmxt8tH9hUFKLM\nIHLnk3zJ/MknH7Nw4WP87ne/z8r+CvFaQ/blDodDzJx5HA8++DiTJv0oCxK2pKMyX3XVpYwd6+Wq\nq67JiTzpku1rvXXrFs4//6xWyyRUVKznmmuu4pVX/pjSIpgrBg3qm5abpHtF+KTPZUAp8AFQmfBz\nbsI2I0gIAvb5fJ9gKjK/BL4CzgJOz0WOGjAjw8ePH09RUXo1N6LRKDt37pBkfYJQwBx++FROP/0s\ndu78oatF6VGsWPEFBx88JWcKTab86U+vc+KJR8c/XAuda665klmzLmgRsJ7I7t27uO22O/Oq0HSE\ngrTUdBUdsdRY2nNl5a540FxblppQKMiGDevZe+8xXWrNKcQvw0KUGUTufFKIMoPInU86KvOuXbvi\nU5rN2UNdE82RzWvdXc4pFelaarqPxD0Um02hqMhFJBLpalEEQRCELGHNOupJ9IRzKlT3U8FgZukc\n3a00XkEQBEHoiYhSIwiCIAhCj0CUmjygKAoul6tTBdoEQRAEQWgb8YnkAZermNGj287iKAiCIAhC\n5xBLjSAIgiAIPQJRanJEOBxizZo1aVcxbctFJTlsBEEQBKF9RKnJEbpuEAwG0y6rYLmoXK6Wyfo0\nTWXXrh/QNDXbYgqCIAhCj0GUmgJAAo0FQRAEoX1Eqckx4XCYiorv0nZDpaItK44gCIIgCCai1OQY\nw9AJh8NIOQpBEARByC2i1AiCIAiC0CMQpSYPqKrKpk0VnXJBCYIgCILQNqLU5AWDSERcUIIgCIKQ\nSySjcI5wOBwMHz4cVZUZS4IgCIKQD8RSkyOcTifDhw/H4XCmtX04HOr0LClBEARB6M2IUtNNMAxD\nZkkJgiAIQicQpSbHOBwO+vcfiKJkfqnFiiMIgiAI7SNKTY5xOp0MGDAIu92e8T7EiiMIgiD0JHJV\n01CUGkEQBEEQ8kquahqKUpMH7HYHAwcOxm7PzmQzcUcJgiAIhUyuahrKlO484HQ6GTRoSNb2J+4o\nQRAEoZCxahpmG7HU5Ahd1wkGg+i63tWiCIIgCEKvQJSaHBEOh1mzZg3hcDit7bPhohK3lCAIgtCb\nEfdTNyEbLipxSwmCIAi9GbHU5Bhd1wmHQ51yQ3XUiqOquZkqJwiCIAjdGVFqckwkEqaiYh2RSHpu\nqFRYVhynM72SC6qq5WSqnCAIgiB0Z0SpEQRBEAShRyBKTR6wYl2yNRMq23lvBEEQBKEnIEpNHtA0\nlc2bKzrlgkqko+4oQRB6BrlKLS8I+SZXs3VFqREEQRAEIa/karauKDU5wuVyMX78eIqKXGltn91Z\nUnY0TWP37p3yRScIPQix0gqFSr7yqBVkUIbX650GXA8cDAwDzvD5fH9tY/ujgX80W2wAw3w+3w+5\nkNFms+F2u7HZ/GltH4mE2bBhPXvvPYbiYndGx7Q6vFAoiGHoVFfvYsCAQdIBCoIgCFklGo1SW1tN\nWVn/pDEmHA6xbdtm9thjL1yu4vjyfOVRK1RLTQnwFfArTOUkHQxgX2Bo7CdnCk226agVx2530L//\nQBSlUG+vIAiC0J1prcp2VyeBLUhLjc/newd4B8Dr9XakxOdOn89XnxupUuNyudhrr9Fs27Y54310\n1IrjdDoZMGAQ9fV1GR9TEARBEAqN3vQprwBfeb3eSq/X+67X6z0iHwe12Ww5Ka8uCIIgCOnSW2bO\nFaSlJgO2A5cCXwAuYDbwgdfrneLz+b5Kdyc2m4LNlp5yYrfb4r/tdhs2m4LdbsPhSK1HtrVN83W6\nrhOJRCgqKsJmS70/l6uIIUOG4nIVtXrMVOi6RmVlJS5XHxwOe9rtupLEa11IiNz5oxBlBpE7nxSi\nzJC+3NGoTnX1TsrKyjo0JrR13FRjVrrL0xkXM6FXKDU+n+874LuERZ96vd59gLnAz9PdT//+JR22\nuJSWuunTx0V5+SRcLlcbSohCcbGTsjIPHo+nzXWBQIANGzaw//77t9g2kcGDyzokKxDbd2W7++6O\nlJZmFmDd1Yjc+aMQZQaRO590Z5kjkQi7du1i4MCBFBUVJa1rT+62xphMaG1/6S4vKXECIxk4sLTF\nuXSGXqHUtMLnwJEdaVBd7e+Qpaa01E19fRBNMwN8Q6Fgq9sHg0FCoSi1tQHCYaPNdW1t21l0XWP4\n8OEEgyrhcHozt7qaVNe6EBC580d3kzmVtTXVsuZyq6qK399ISUkfHI7u2313t+udDvmSORqNUlNT\nTXl5/w7PTA0Gg1RUbAKKcLtNJSZdubM9brS2v44sd7v74fdH8fvbd4mVl5ekJVf3fStyzyRMt1Ta\n6LqBrqf3MESjURoba3A4PChK+24cTdPRdSPWceltrmttW13XiUYjOJ2tu6Xaw+GwM3z4cGpq/C3k\n6O6kunaFgMidPzorc6bvWPN2oVCwRfB/qmXN5a6urmHVqi854ICD6d9/QMbnkS964zPSHuFwhB07\nqvB4+qQ1NiTS3jjRltxttc2E1vbX+nFs9O8/CLDl9PoWpFLj9XpLgDGYwb8Ao71e74FAtc/n2+L1\neucDw30+389j288BNgBrgGLMmJpjgBNyJaOqqlRWVjJ8+CiczvYf3KIiF6NH74vTmbkZLhu5bgSh\nt9OW4pLpO5atdzMajRAKBYlGIxnJLwjZorUahK0tt/Ko5ZpCfeIPAVYCX2Lmn3kQWAHcGVs/FBiR\nsH1RbJtVwAfAROA4n8/3QX7EbR9zllRxVjqhbGQnFoSeTFvvSCQSpqJiXdZqteWbtuSXvqHr6UxB\n4q5qm4rWslt3ddbrgrTU+Hy+f9KGQubz+WY1+/9+4P5cy5UKVY1SW1vbIutiR+ioFScSibB9+1ax\n2AhCK/RWq2Y2z1ssQpnRGYtFV7UtJORJzDGqmjrrYkfIphVHEHojuq4TDAbFQpFFCt2iJfRMZJTs\noVipqqUTF3oTrblXwuEwa9asIRyWATgXiFtL6C6IUpMHsl0x23JHtVUBXNNUNm+ukK8ooVch1oOu\noaPXXZQgIVfPgCg1ecCqmN0ZF1QiuXRHiZleKDRkgCw8EpUguX+9k1x9gIhSkyNsNgW32512sr7u\ngpjphe5Ka4NfIVpnUllb07HAlpT0YejQ4ZSU9MmHmHmh+f0TJadnkq/7KkpNjnC5ihk/fjxFRcVp\nbZ+NYmNNnWL2Uk4LQnchFAry3XfftpmZO9eko3ik0y6VtTUdC6zHU8J++03E40kvu2ohUghKqmnR\nDhAMBnqt8tWaktLVHx+i1HQTNK37zpKSLyehOxCJRKip2U0k0nriuWzQluKS6TuWrXcznf1kqngJ\n6ROJhFm/fi3r16/t8CDdmf60q9qmojUlpauVUlFqcozNpsQ6l8zdUB214hQVudhrr9FZS7LU1Q+p\n0LuxOmPDyJ5SnQvFpbvQlvyi8HQ9nelPu6ptIVGYb20B4XIVM3Lk6E4Vn+uoFcfs1FwdrijeFjJF\nXMg26X45NnXG2bPQFLrikinZPG9RkITuSO96o4WMkSniQkdpT2nJ55ejy+Vi/PjxuFwyAGeL3qoY\nCt0beRrzgKIoWbWcpOOOytdXlMTbCK3RFebu1p57m80Wm40oXV4uEKuN0F2QNzwPuFzFjB49Fpcr\nvZlQ7ZGOOypfX1G9xU8rtE13UW7FetA1dPS6ixIk5OoZkDdfSCJTM313GdSErqErldtCHCBTWVvT\nscAGgwHWrVtLMBjIh5g5I1EJKsT7J3SeXH2AiFKTI8LhUCyJXSit7bPhospGrptMzfSRSEQsNkJO\ncTqLKC8f0CIPUz6tM5m+Y83bpbK2pmOB9fv9bN5cgd/vz+wEuiHN758oOT2TfN1XUWpyhK4bsXID\nRlrbZ8NFlY1cN51BZkj1TqLRKLt370TTtJwep7i4mLFj96O42J3T47SluGT6jmXr3dQ0lWg02uZ+\nsvFx05UUgguxqMjFmDHjGDNmXK9VvlpTUtqKa8vHfe2+T40Qp6NWHFXNbqeWbt4bmSHVO9E0lerq\nXVnNI5OKbHaKuVBcugttyV/oCk93wbRoe3C7PR1+Hjtjseiqtqlo7X3saqVUlJocEw6Hqaj4Lm03\nVCo6asVRVS2rnXJn895IvE1h0d0GvlyYrQtdccmUbJ53d3tOCoXODPpd1baQ6Nln1w0wDJ1wOIxh\npOeG6q50ZmCxgkhDoaAoNwVAvgb8dJ+pbHTG0WiUyspKGYCzSG9VDIXujSg1BUg67ihN09i9e2fW\nOvFsDCwSTNx9ycVXd3tKSy6+HFs7D1VVqaysRFVlAM4FYrURugui1OQBVVXZtKmiUy6oRNJxRxmG\nTnX1rjx+bUtl8EImF1/dXWHuFutB19DR6y5KkJCrZ0CUmiwQjUYIhYItfqLRKOFwCFWNEgj4CQat\n5bmtMtwZOmqmz1fwppB9snm97XYHe+01uktmghTic5PK2pqOBdZms+FwOAo+LiJRCSrE+yd0nlx9\ngGSnjHMvJhqNsHbtasLh5i4VA11X2b27mvr6esCMLbHbHbhcLsaNm4DTmV3rRjZy3Vhm+uHDR+F0\n2tNuZ82Q2rZtc8bHth7yvn1LcTqdGe9HSI9QKMimTRUUF7s7db2Lilzss89YnM6inA620WiU2tpq\nysr6J8mb+NzkmkzfsebtLGtrIqmWNae0tB+jR+9LaWm/jgnejWn+3rd2n4XCJl/3tbDV/W6ApmmE\nw03KivVTXOymf//+uFxu7HYHdruDoiIXdruDcDjcIqdHOBzK4iyp/H8t56IyuHzB5RZN0wgE/C2e\nxY4GhefLzWQpYaFQMKfHaUtxyTSfVLZKpaSzn2zXmss3heBCjEajbN++je3bt/Xa/qm1/rm15fm6\nr6LUZAmHw46ipHM5jbjJNWlpLHFdNmZJKYoSG5DyV0ATsj/1thA6t0IlGo1SU7M75fPWXad+tqaE\nZUIuFJfuQlvyF7rC010w+6Yd7Nq1o8P9U2c+1rqqbSpa65+7ut8W91OW0DSN2tqmwFxFUbDbbaiq\nRjQaQdO02DoFXddYv34tEyZMSssFFQ6H2LZtM3vssVdaHa3LVczIkaPZsGF9Z08LSN8tZA2GQvcm\nGo3yww/b2b17Z1ypsRTSbLtEs4Flts7mQJyOq6cnks3zTlSQCj1lRT7pjJu9q9oWEt3rU6yAMQzT\nAqMoNux2e/zH4TDdTjZb03JFUYhEIml/cWbTipMpnZkinq0ZUuKOyg5WBmCbzUa/fmUUFRV1iXUm\n3fvZ9OWXuYXGZlNiNc3EQpEtCt2iJfRMRKnJMorSvuJhKkAaoVAoZzOhsm1m7swUcWvALC52d8o9\n1dVmzZ5AYp0mh8PB6NFjc1ZLqT2lJRf3s7Xn3uUqjlWflwE4F4hbS+guiPspixiGQTAYwjKo2GwK\num5gGEZMkQkAZtkAw6jF51uDx+Nh3LgJHTpOOu6ofJnXOxLRnkv3VCQS4YcfdtC3b1mPNq12lkQr\nzciR+9C3b2nOrDNdYe7urW6lrqaj111cV0KuFGGx1GQRwzDQdQNFUbDZbPHflhvKbrfHl5tuKlvK\nmVDpHCdX7qiOmumz+bXdmUBjVVXZubPjQXu9FatDyZZC05WuQbESFB6Jriu5f72TXLkvRanJAabS\noiQoMMk/FoZhKgWhUIhQyEzSZ/7dPIlf/pL1ZWqmz0Zl8OZxHbkoZGjRm+Jzmp9rthPlWYHHO3Zs\nz6lSqShm4rlUrqVCi+1IlcIhnbQO9fV1fP75x9TX1+VDzLzQ/P6JktMzydd9FfdTnjGtORrhcCg+\npdbnWxMLHg4TDP6nxdez3W7PySypbGJVBs+mqyGX7qpUrpGekvSr+Xkknms6ifI6eh0sl1aucblc\nDB06nOLirlNeMn3HmrdLZW1NxwIbCoWora0hFAr1qAR8iRSCC9EaoA1D6bXKV2tKSltxbfm4r6LU\ndAGGYWCzgc1mxzB0ioqKcDgcuN1uNE1L6tRUVSMYNGNxQqFQ/Ldl1UlUeHLllrLy3kQibVuMrBlS\ngwcPy4lSkOtpx+GwmdzN7e5cht2uxLKa1NRUxxW2xOuWjqLYXad+ulyuvHSKbSkumb5j2Xo3DUOP\nxeS1Xum+Kz9uegsuVzFjx47PqG1nLBZd1TYVrSkpXa2UFqRS4/V6pwHXAwcDw4AzfD7fX9tpMx14\nEBgPbAbu9fl8S3MsahuY7inDAIfDgcPhbJHrBkDXzaniqqry3XemFUfTVBobGwgE/Hg8JS1KLoTD\nYSort2StU0s37401Q2rAgEE5GQzbGpCLi4vZZ5+x2GyZP9KqaiZ3U1UzxsmyWPTp05fGxoZuZ8FJ\ntKgA1NZWU1zspq6ulhEjRsXdS+koMs331Z3Ihdk6F4pLd6Et+UXh6Xo6M+h3VdtColBjakqAr4Bf\nAe32PF6vdxSwDHgfOBB4FHje6/WekEMZO4xh6Clz3djtdvr2LcXtduNyueLlFmy21CUXctEpd2Zg\nyUf8is1mo7g4/Twr6cTrWBaLcDicMhg6H+dlHSMYDCQdq3kciyWr3W5nn33GpjWrKVH+rpgun+4z\nlYuYmUJXXDIlm+edjdIugpBtCtJS4/P53gHeAfB6vemMspcDFT6f7wZrF16vdyowF3gvN1Jmjs2m\nYLOZxSQNo61BpinfDZDTgOLOaPnWgOl2u7tNzEoq60WfPn2ZNGkyHk9JWvvIh5vGOobTWZR0rOZx\nLM1dTOmQrYKWrdGe0pLPL8dwOMSaNRsZMGAodnv3y5pciPRWxVDo3hSkUpMBhwH/12zZ34CHu0CW\ntNF1nWAwiKZp7Nq1Mz7N2kreF4lEMAwdn29N3KJjuaFUVWXTpgpGjdonp2bmjlhwchFMnE0cDkdS\n8KWlKGSj1lC2KSpyMWbMuPjfHQ2qjkaj7Nr1A35/I5qm5eR+dIW5uzX3iq4bBINBdN3Ann7xeSFN\nxK0ldBd6i1IzFNjRbNkOoNTr9bp8Pl84nZ2YFpTkwdtut2GzJU7ZNpcn/k71IaMo1jbW9O+WU7/N\ntjqKYhbMTPwCdzqd6LqOpmkxpcKMpXE6ndjtZttoNILNpuBwpO9ltNttSb/bw+HwMHbsOILBYFyx\nsdttSce0rpHdrsR+21LKZBZZrKa8vGOWnI7KnD42iooc6LrOvvt64+UELDwed8rl6ZKO3NYxHA4H\nffqUJBzLRlFRnw4f0yIa1amrqwEM7HYl4R6ZsrR1n5rLbba1UVRUhNNp79Dzlm2iUSXlc6/r1rNp\nLk883+byZrqudZkiRKPhWCHbMHa7jWDQTzgcorGxjmjU7H7C4RDhcIhgsBG73UYgEEDXI4RCJUQi\nGppmEAw2xj52GmloqE06jsvlwuMpybr8rdH8mUm87u092+FwiC1bNjFixMhuowTlrh/JLYUqd66e\ngd6i1KTC0k7Stp3271+SYpqaQlGRI2YpscWVEWu7REXHOqyltNjtNgzDoLjYGVNGzAfT+tE0I75t\nUZGzxcCpqipg4HKZt9HsMMHpJP41WlRkymjWoGrf7B4MBlmzZg2jR4+mtDQ9NwxAcbGNsrK+hMNh\nyso8eDyepGtUXOyktNRNdbWzxXqLQCDA5s3VjBgxFI/HQyQSYdeuXQwcODAt2UtLc5PuP9fkW+5I\nJEJNzQ4cDgWHw05pqRuPx0NxsXlvgPjfqe6ThSV3cbGNQYP6M3r0aNzu/N+DYDBIRUUFo0ePxuXy\npJQ9EDBfwr59zXO1nslU55i4zuFwxN4zE00z3y3rvUrEescikUi8TSQSwedbTWNjIw0NDYRCfmw2\nG9XV1USjUXbsqIzns7IssNXVO+nXrx/bt29H1/XY+1+Eoihomlkg99tvV2NvZnJyuVycfPLJrV6D\n5ufW1r1Nh8R9QepnprVnOxBQUBSd0lI3iqLE719XPD/NkX4kPyQ+A519FhPpLUpNFTCk2bLBQL3P\n50s7EKW62t/CUhMMBolEVGw2A03TYyURTBeR1VElWmqSyyaY24dCUTSNWMCmDigYhhKbumk2VlWN\nRJ1G13X8/kZ0XWPbtkrAjL8IBsPU1zfQ0NAAQEODH4fDgcvlYv/9J7Y7HToSCREMBqmvDxAKtT5t\nNBVDhoygomIdtbUBwuGmkw4Gg4RCUerrzd/N1zffzlpvDlabgKI2Ozu73UZpqZv6+mDs+hUGXSF3\nNBqlqmo7O3dWEYlEUVWN+vogkQjxa2+zKRiGjfr6YMr7lEru4cNHEQrphEL+nMne2pddMBikpqae\nmhrz2KmesUjEjDtraAjGn61QKMquXbU4HIGk44RCQRoaAmzduoPNmzcQDid2EQaqGqW2tr7FR4bL\n5WLffcexbt1awmHT+qKqKrW11YD5PqtqbSwWxZTHyi7udrtjFls7um4QiZgzHq1+xAoQt/5XVTXu\nFrX6k1AoxIYNWygp6UNDQ4Cqqt0UFyefm6pG2nwHO0Li+9r8urf3bDdva92/UEjvMiuO9CO5pfl9\nbd7ft0d5eXof2b1FqfkEmNFs2Ymx5Wmj62YZhEQ0TY+VRjCSFBjDaN31ZK23lB+rvIL1d/JP4vaJ\nibrMfBWmPJaipSQUJ7QsRabFp7Gxkbq6BkpKStpUbDTNiP9W1Y69ILpu4HQWoevJba1rpGlG7Lee\nct9N25nrm//fXlK41vbb3cm13InXrWmWU5MCrmlG0rV2Ot2MGrUvQJty5ft6NzYGqKzcRnn5oKRg\n30TZgRbPWDQaIRQKEI1G8fsDRCJmcH0wGGL16m/Q9eRzMAxTcWloqKe+vi4pE7jd7qB//wEtrCRm\nPqkQgYC5X7vdgcNhR1FsKIo9XiLFlE8nEonE/zfzVlklVKwZkEqsD7GhKGZOq1Rxa5as1gfQ+vXf\nxXJKhWlsbKR5E5vNjtPpxO8PJA2A6Sb4TKS9625t09673rxtNGpey2hUw27P//ucznMdDofYtOl7\nDENh1KjR3cKFlu/3sbU4qtaWN7+vzfv3bFGQSo3X6y0BxtA0mo/2er0HAtU+n2+L1+udDwz3+Xw/\nj61/GrjS6/XeBywGjgPOAWbmWfSsYg5KOqFQMP5/bW0NimKWLTDz3piWH13XkgpodqQDSzcIMNeB\noW3NNpKClk20lVG4NQohNb05gKsdmm0TjUZYu3Y1wWCAYNBPdXVtzBqiEwoFCAQCcfePhaW4GIb5\nMWApJFbSO7OWWyqluslN5XA0bWPF4jVZdowkRam980lVYiX5uoDZFRrxJJ5FRUXU1OyO51wytzM/\nhDyeknjOKwuXy9VmvxCNRloEzCcmAQWSEoI6HF0/yOcSa+aX9XdH6ExQdVe1TUVrs9+6elZcQSo1\nwCHAPzDjYQzMpHoAS4GLMQODR1gb+3y+jV6v98fAQ8DVwFbgFz6fr/mMqILDMkcrimneNjtgswMN\nh0OxL0qzw0ssoNmRcb+zD2k+BkyroKXH0yctpaanlERoTqqMwq1hxnXZY/en+ybmsjrjPn1aV8oS\nSUxzEAqFCAQCKIoRd+9YMwUVpSQ+CNvtZleYqLhAS4WkO5v3zfvpiCtTif2B+b+ZyLNv31Icjqau\nX1W1NvsFSzG0BnEL0+JklnYxDD0pIeiECQdgphMTmtOZ/rSr2hYSBanU+Hy+f9JG4kCfzzerlTYH\n51KuriJdZcEwQNdVotFogpsqPTozRdwaMMPhULexBqSy+gSDAbZu3cyee+6F2529wLV8YClpxcXu\ntOswORx2Bg8e2mW1lNL9crQ645KS5M7Ysh4kWgxUNcoPP1RRX1+H3W5H0zTq62vjMwyj0cRs3Trh\ncBi73U5JiTP+XHZnxaWjJOa8Ah3DsMUzmCfSVtJFTdNi18l0qVmlXEyXlbkfVTWThhoGBAJ+Ghsb\n6dPHRTAYBJSclTYRhOYUpFIjJGMGHavoukEg4E8IUDbQtEB8G6uA5vr1a5kwYVIHOxqDSKRzWn53\ntgaAOSV++/atDBo0BLfb062tOVaeGYCBAwfHlbRhw/ZMq72igNtdktM8Ru0pLZ35cky0HiSWDTHd\nSsHY9GJbQvyKOQPQfOateDMzXYIVj9IdlO3ujBUj1LyUCzTlzqqvVzEMnW+/XcOmTa7YJAp7vIiq\nRWuuK8htElGhazDj2pLvefP/E8kkxstClJoegjUwNI8PsNbpuh6LJTCT9pn+8ZZ+8mg0TDQaJRRq\niqQ3Hz41ZaefTT9td4vraC8Tcj6UntbqT5mymamXyss7Xq/JbncwcmRuAxxzYe5OnDkUCARiuVLM\nwSTSsvYAACAASURBVNYMtrXjcDjigbc2mxlgbin61myj2N5oCssT0iGxlEvzmaAOhyPu4ioqKqK4\nuJhotJGdO3+IW8Qs956u60SjERobGzAMA7+/kYaG+pi7zLQANS/YKxQm1geIacEzPz7sdkeS+zLV\nTMKOxn5adEqp8Xq9xcBooEXP6PP5VnRm30JmtBZQaJrfbfHqvtFolHXrvm3hJwcDXVepra3H6vA1\nTY2Z8x1Eo5Ek11U2B67mlpzuouS0lgm5K8skdI6mvCfZIttBiImBqdYXXTAYwO9v5LvvvsVut8fc\nSrZYPJlGXV1N/HlsnsSyq5+hnkayWyuRJheX0+lEUcwPKTPZn6NF8HIoFI7N4tSor68HjFhMk4NA\nwI/b7WHMGG98cBMlpzBIFddmBsjbkuLarL7Miu+D9mO82iMjpcbr9RYBC4H/18Y+JBl5N6a5n9xC\nUcyEWqFQNCFHjj02NVxtNd4g25XBofu7qwoRRVEoKSnJ6n0Kh0Ns3Ph9rGxH55XbaDTCf/6zKt4p\napqG39/I7t07iUYjNDTUYbPZiETCNGXktuFyuWLToJsCe63p2qLTdC12uyNuqbGClw1Dj5euAOte\nmVN8i4qgoaGehoZ6IpFIfMDrzBd8pliuk0Srdjgcij+fdXW18b/tdlusllrPUrxam/0WDoeTzh8g\nEGhkx47tKePaAOrqalp8ZNjtDgYOHBy/z50prJuppWYecBJwEfAyZrVsP3AhsA9wVcYSCXklceop\nELfkpMIy/VtTyKHJ/52PyPruYrkpNBKvWzqKYketLoZhxBSM7BAKBfnhhx2xEiFKzFURRVVNRcVy\nhTYpLKalBkgqNyJ0Tywrj66bkxcSXeZm/6HgcpnWYMuVZWZ27twXfCZEoxHWrPmanTt/iD9jlpzW\nIL979864/DabncGDh7D//gfgdBalNRXeorkVKt22drsNl8ssD6Iojg61be3Yza9BqtlvqqpSU1NN\nVdW2pPfNCnGIRiNxRdZSTD0eT4L719redGmaY0/nbSGZKjU/AX4D/B5Tqfnc5/N9Cbzo9XqXAqcC\nb3VaOiGvaJrG7t07AT2enA2sQSuKpkX5/vvvkkoW5LOIZlsDsig8iSS7lzpq8erKqZ/RaIRAIICm\nqfGp1mZCOg273YndrsU7Rauek5mB24gnvBQKi+ZKaKKlrflsrc58wWeCadEOxV1ibdV4s9xoTVad\n9qfCt5YrKJ1p9FZbm80s1aModsaOHQ/QoeM2P3bqa9DSqm/mI3Ik3S+wPjpUHA5nLM7KjJ8yY9ps\nKa9hNmccZqrU7Al85/P5NK/XGwLKE9a9BLwCXN5Z4YT8YgUBWl+7Fopizhyx1iX6PkOhUELOi87P\nkMoUt9vNmDHetDNT9lQlKFP3UqJ1Jhek8+UYjUZZv34tjY2NhMPhWKCvLWEmnxbbh1UewLzXqWM7\nBCF7KIotVlS49WfNHLwTsymnVgaAFmVfmluhOtLWjEeBYDAcf8fSbZvq2K3R3KoPxMeD5tfFUnRM\nBSa/AfmZKjXbgbLY3xuA6YCVyE6CIAoYs4ZMuIXmbH6F6NTX12O3N8aWmbOq2svpku0g0myQynph\ns9koLi7OqOJ2V2MpacXF6VtlEu9LZ60zVu6SRNO2pbQ0NjawZctGIpFIXNam6dZNX46aplJbWxOf\nIaMoyZXpzVl8GlYH2cNziAk9hFTKQCpSWaHSaWsqFqZSk8lxWzt2oZKpUvMBMA14A3gOeMDr9e4H\nRIAzgP/JinRC3rGmf6cyCUNz/7ceS+YXIRwOxSsTNwXNma4pa8AMhbqfcpNIaWk/pkyZGv+/O1tz\nLNkMQ8k4I3AoFKKqqpIBAwbjcrkyliUajVBdvRtNU4lEwknZec0aRA1JNZQS6yclfjmqqvnFZ9VF\nSx0b07zqvSAIQhOZKjW3AgMBfD7fI16vV8GspeQGHgPuyo54QlfRfECxlJ1QKJik1FgzUyoq1tHY\nWA8QH9gsP23iPgopTXd7mZDzofRYx7Bm9yTGyVj+80wwK+ZuzGjGkhn3ohAMmrmMAgGzWKQVAGq5\nJ60pm5qmJS1vq36SVSFcEAQhEzJSanw+XxVQlfD/w8DD2RJK6J4k1pky/1cwK4MXxwI6rcA1ezxd\nut/vx25Pb5Dqjm4qaD3QNh9TzhOPUVraL2v7NQwjo8ytgYCfdev+g2FoRCJaLIg8QjgcxG53UFNT\n3czCZ1WYJpasTelRZQgEQeheZJqnpgI40+fzfZ1i3QTgrz6fb3RnhRO6J02Vkg103aC+3swb0lpl\n8KKiorTyNjS35HRXJafQCYdDbNpUgapqGIYez9DbWtp6C13X8fnWsHNnFXa75SYy4vE05u9kv76i\nKLEkbGJ9EQQh92TqfhoFtOaE95BQIVvoeVgKjfUbzMBPh8MZj8dpinbXm82Q6thxCsldVQhYifIC\ngQC6rhIMBvn+ex92uz2ewlxRbCmnftrtdkKhUFxRsWJf7HYdVVVblOiwXJYy1VoQhHyR9kgTK4ng\noWm0KvV6vc2LzhRjBgpXZkc8oTuSrNRAJBIiGm2aemt94RuGQV1dHYZBVqpei+UmM5rPcgoGA6hq\nFFVVY7OJjKT6SVaKewuzbpJ5nxNzTRiGEn8WEssSCIIgdBUd+Xy+Ebgj9rcB/K2NbX+TqUBCYZBo\nPUlMqJSYsM/60XUtYYZU82yY6ddyactyEwwGWb/ex7BhI3q9wtNc+TMMg0AgQDAYRFWj7Nq1E1WN\nouumhaWuzqzrpWkaqlrdol6S3e6grKy8naMKgiB0PR1Rav4MbMS01CwG7gG+b7ZNBPjW5/N9lRXp\nhILA+kI3DCMeb2MYejzmwipWt27dtwSDgXg1XoCiIhde73g8npJOydBRV1VPtfqkqsMUjUbYuXMH\n9fV1aJpGINAYvzfWdbPbzen4qhqNB/e63W4Mg1gKc3EBCoLQ/UlbqYkFBX8N4PV6DeBNn8+3K1eC\nCYVJk2sKzEBiLT7TxiyIqdHY2BhTgppKMUyYMCnvcjZXgurr61i79hvGjZuY1ZlG+cBS0gYMGNyi\nDpPf78fvb4jX7Gqe2decmt/0v2WlMStgZzeFeW9A17V4ziZVVeOB1DabHluvx5dZ/5sxSUosoaWV\nOdnKpGzGLaVy7VlxS6bxXBCETKd0LwXwer3lwATMwOC3fT5fTSz2JuLz+XpNT2gN3JqmJSWuswIp\nk7fV41/IPRvr/MyO2KzfYgeaYjU0zawJEgwG8fv9QPKsm8Q0+pZlJ5eYeXhC8UKJ3dmaY85g+h7D\nUBg1anSrlqpoNMLGjetj8TPmrLRUJBYyTfXc9lQSFQtrNp+lZABJComlcFjrErHikzRNo6GhIZY6\n3oamaXFl0lJKrOzciYpkINAY7zNMOZK7z3QLhqaSTRB6E5lO6bZhup+uxgweNoDJQA3wR+Az4M4s\nydit0TSVhoYGwKy3YXZsZsdiuWRStzM7wJ4eV5mYiTixPoiu6/EsxPX1tXz77TeAadFpbGyIDwh+\nfyMNDfW43R5GjBiZpOSkG4uTKe1lQs6H0mMdY+DAIezatSMpTsYqWNeWghwKBePbmZYXJT6YJj6f\nyVWSoSd9+Sd+RJgfHebf5keIhmEQSyppKXQ6dXW1saD3JoXEUjhqa2taKNmW9QWgb9++OJ1WZWkz\n43ZTHRxz20AgkPS/x1OSZKnxeEoIBgPx/Vu5flqeGy2qRzcFgSdbd3S9N3xMCb2dTKd03wVcCVwL\nvA98l7Dur8Al9BKlxm530Ldv3/g02HA4HA+0TEWiudj8+jLiNXGad0SWVadnYpVjAFAIBBrRdSs/\njXk9LOtXQ0M9DQ31BINBgkE/gYAfj6ek1aqyWZe0FStIPqacW8cwlcCOHSsajfDdd9/S2NgQH+ya\n7zvV34VOcyXGLOdhPmvBYDD+bprvYuJ5K1jKXN++pdhstiSFxFI4ysrKW6QosJQXq7hfYmXp/8/e\nmwdZsuX1fZ+T+11q767e9359X79tFmDEgJEBITGAAFkyAmQsIVkiJEuEhSzZDsIOORRhyZZCKCQk\nJDAKwVgoAsSE8JgZBjQwbLM+3rw3b+Yt9y29Va+1L3fJm9vxHydPZt6lqm5VV1dX9bvfiIq6N2/m\nyZMnz/I9v1VlG8+T/iVJnElyIE8Yq/NhxTGF8gWGoWP99E8qKhVFrn5qtZqZEXgQBGly2tyIX7fF\nCCM8qdgtqflR4Cfr9frP1mq1Xr3Au8Clh6rVIYMOAa93ZqZpZsSmd61Qu8Oga4La2FjPJjSVnVhN\nRDprtorCqnTsGk+OGkup6pJEphN9noJBSpWULUlkIXu40RWt2PNiTNNAiN125ScLURRkKoiNjXUW\nFh4Mrbo4rMi97JLUsDnOpBdaOtHNB/QXmZFq1/UwzZy4OI4iy0VCUiQcg1I89NoqPTxyN/nN3OV1\nbCAtRapWq1QqVaJI5eHqlhCpZ1PqtZzg5q79I4xw+LHblWAGeGOT3wyKhhPvMRQnIC1OLkJPMIZh\npmqEhImJSSzLIggCms2N9EztGq0+dzp+T2CzXNydE5xH/XSPFjp3kLJt6WQ7Sr1ora+vp6qBEClj\nXn/91ZTQCEolldyxNwrufqipHieUzYZ65k6nwzvv1FlbW0MIZfjc2x6HHcWQAfmx3AZKbSRy2yFN\naLTxczELuyIp6tpccpJ02RcdBhTnBdO0siCYypOtW1KTJEq1VgyqqFVnW2VqLtoS9aq1us97EjZa\nIxxm7JbUvAX8SZTqqRffBnxt1zV6DyAnPUYqjch3fq7rZburOI4Jw7BAVnoni9w2oChuL05YwCGU\n6HRnCteTsWVZCCFptdqpF9V6OmEnrK2B55V5663uKLiu63LpUq2vTYpGyBqdjp8uBjvPifQ4EIYh\ny8tLtFrK9qLRWCeKokxaqNzrD9cCnUP29dvhpZN5RGvlnm6k0lPS/3lfeFKDBRqGgeO4fZKaOI6y\nTZRGrjobvBxou0FtR9Sr1ipipOIa4XFjt6TmnwH/d61WC4FfTY+drtVqH0YZD//oHtTtPQlNdrT+\nXf/3vFKmmgFFZIIgRMqkS81VFL1raGnP4SI23ZnCdbvo51B2CHaa1Vm5kY+NjXcZcEZRTLvdpl5/\nrU81EEURvt/u2rUqI+V16vXXAeWd5fttWq2NR6Ba2D20MfXi4gK+3yYMlTpTuc3HmTHwYXvfGrre\ncRz1LI46LcdgOI6bqZD0O9XtsZWd25OK3rlESaGMgeqzrfq3thvUEs9etVYRRRVXGIaFPHEjjLA/\n2K1L9y+kKRL+d+An08O/BrSA/7Ver//K3lRvhG7voe5JRElzkkxlA2T2PEXk9gaHj9hshnzCNlJp\nhMSyrL7dZhAog0nHcVOXcjWBr6+vpvmPchWXNuCen7/P+voaoIIJ3r9/F8dxOX78RFbufriYa+iA\neb7fZnl5kbt3b9NsNmi3m5khrJZo5e/3cO6W8/eQxzwq/Lrltbo/9JLhER4e2vh5kFqriFzFtUK7\n3cD3O4RhkGWEH+QI0Wuw/qTMUSM8HuzaurJer/9UrVb7OeCbgCPAMvC5er2+vleVG2E4FBevKIr6\ndqQ6emyn4yNl8p6MZWFZZtfuVBtem2a+o1c2UKBcy0O0VEhLQ1577dUsJ5JtO5w5c35gNmvYnS2P\nlrSEYZjtnFutBvfv32Fu7jphGHH37u3UuyVf8HvJi4qrYmTG5ocFymOnU7BD65auSLkZQRkRmP3C\nILVWEbmKa4pqtcTy8hqNRoNGo4FhGF2qK20XmHtBdkuVR+9zhN1g16SmVqsdAf428I3ACeAe8IVa\nrfbP6/X6wh7Vb4QtUJTiaJWT9uboPq9759NuNw+UOuXxQWSi+Sjqj7JbRBzHrK4up7tT1Z7Ly4tp\nPJF23wTvuu6OXM7DMODNN79Gu61UYrn3Ttzlyr2ZMWd/TCSBEAfHeDyXwIiu4HZFKLspOyV2pJI3\ns6uMIMg9mTSZU9K6A/Kg7wH0q7WKyFVctm3jOA62bTM2Np46Q+SqK9UP4q7s7r1S5dF7HWGn2G3w\nvT8GfArl6fRplOHwMeDHgR+v1Wp/ql6vf3HPajnCptATjHbrtKz+eBZ6onBdjziOqFTGME2zLzqq\njpPTL/Z/L4mFu6UE+SMLTNNKbXh0wDNBtTo2IGaJIiJxHGMP6QcYx3Ea40iRI3UvIyMAcZz0LeYH\nCYP6RzGhqUqWqQx4dXC7XiKo7TC6k6X2EvT3nm3MYUcxDk9RdaUNiosu90Wpsvp+ONWoIzw+7FZS\n86+A14DvLqqbarXaBPAbwL9ERRgeYZ9QtCEYJLbNva1yz6piOHfIxf9KitMr+ldE58kOCJijuHj2\n2jXpxdowBhtdwuYSle1gWSpWTx4bJU4jAW/uRrvf0EERFUGRWXRsTfQKZw4IbqcwNjaexYLR0F44\nOn3GQXneEfYGvaqrrSQ1WsJZjKsziqczwjDYLal5FviBXvuZer2+VqvV/k/glx+6ZiM8Upim2RXO\nHZSrpo4+q6QUxbg46n9vEED125NPckZQ0BIlFbxNReDVbrz9eaVy6Y1tOziOjVI/qeB2g8igDnOw\nWY6qEQ43iqor3W/iuF9SUzQs1lK9YeLpjDDCbknNO8DkJr9NANd2We4I+4jecO4AjuMUdkO9aiwG\nRkke4clD0QspV4FFaT4iWYhiq1MLKNVSr2GvEEolmksExaEyXh7h0UERHHOgpEbnUivG1dkuns6j\ngk5Aup0abBR48GBgt73j7wH/qlarzdXr9d/TB2u12rei3Lz/1sNXbXvUarW/Cfxd4DjwFeDH6/X6\ni5uc+5eAf0c+AwP49Xq9vB91PSzIA5UZXeJ/pZqKu9zHi+g27BsN7MMOnXBUf97YWCdJYkqlEiBx\nXQetflITvuxanCBXUw3ykhlhBOiOwF48pvtMb1yd/XZwiOOIZrNBGAYkSTTQjV1D24+NbIAeL4Ym\nNbVaTaVRzjEB/E6tVlsDFoCj6bEV4P9C2dY8MtRqtR8E/inwY8CXgJ8AfrNWq12p1+uLm1y2Blyh\nmPxlhD5snmtGDByw2vhPyn6vodEAP5wQQnTZNYyNjRNFKrq1Jr5Sdmf5HtRnRnYxIxxmmKaV5tKK\nU3u3zUlNkvQnjR1h/7ETSc1LdJOAl/a4LjvFTwA/W6/XPwpQq9X+OvA9wF8B/vEm18iRu/nuMMh9\nvPAr2oV4M4zEsocLyhNJZ0tPCqk7RiR1hPce4jhCynhbSU0cxzSbG8RxhGlafR6mm2FkBL13GJrU\n1Ov1H32E9dgRarWaDXwd8A/1sXq9Lmu12qeBD29xabVWq91AuaJ/GZVp/PVHWNUnCrlYWNtRKGh7\nCTWoE/oFYKNAWocRjuOiMqiPVEgjvHdhGEbqULG9pCYMgzRkhtWVM2u78TMygt477K/F1d7hCGAC\nD3qOPwBqm1xTR0lxXkWpyf4e8LlarfZsvV6/86gq+l5AksRImWTRQLuRJ90s5q560tI2PGnQKibo\nVymOMMJ7DVsHHNTIJZrQnTOrN5ZVLwYZQQ8r5VEbj/23NzqoOKykZjN0ixAKqNfrXwC+oL/XarXP\nA2+gbHL+/jCFG4boWpgBTNNIw353J80r/h+0bguRR/9VA0Z02SUMKq/XmK5X+LGVMETfT5drmvk9\n9TN1lz+4DH1ekYwUA8UNcvkGlQSvqG9WUp0o/Zxkhsmbx9kptld3myjXc9n3fvKy+p/zYYO4Fduz\nt0/oY6ZpYFmb79B0igbTNAb0o83bYj+gjH7V583qU+y/myFvp/5YSoPaTb+XnT527z2669h/j/xz\n8XpR+J+fo23F1J/MkmQWoaRZ+bhSAQcFcRxn1+gxo/N1xbEeJzJVbxgZ2dd5yNLaodzj+587N8xX\nP+oxMOidFZ+td5xs1V+LfbPYhpuP0+JY677vMH27+P6L9R12XO0WxfFYPDaoX2xebz2/qjJ0ZGV7\nmyicqp8lhWdLaDQ2snhVW1+r/oIgBBJM08pSUAwzf6i+mQz1/gfNr4Pmhf733t1G/fXfu/d8WEnN\nIhCjohgXMUu/9GYg6vV6VKvVXgYuD3vT6elK3wtxXYHjqHDuvQMABpEP0dXxpZR4nur0ppkvcKZp\npPEb1MW9ok/9W7EjqIBw/QNPRcDVA03iOCbj4yUcx8ruDWT31+hedER2TPQQNdXp1SKoI+72SmB6\nCUeS5M+mFgS767n1ffIIvgLLMrtywug2SRKIogTHsbomD9OEKFJdfNBz9pPQ3oGpFpPcnkgUnk+1\nZ7Hc4n0hZnKyTLm8vXPd+HgJy5Jd/ai3LeK4u0/1tm/vsd7n2Q10AlDl7WQBaufYO/n3vi+NYjsp\nyY+Rtelm7ab7KGzWZwZPilLm/VDXJSe8uh/J7Bxdb91u6nz9X9VFqR2s1N4hJyPtdoNKpdI1Hk1T\nRZeenZ1ifn6MdrsNxAihFot8J66lXzINrCgyOzUdedlxHAwjf6dFr0L9WY/93ujLnufgef1ziWo/\nBrb9dv1Vz3Gep8dPd7lF6Hs4jhp3jqM2PK5rpXNcf98u9pviWE97Udf8uJNxtVuMj5f6nn2rZ9ZQ\nfSTGcUwmJ1X9eufYzdD7bK4rmJmZztJMbIcwDAmCgJmZcaIootVqZFGct4MO2VCtOoyPV/p+d11F\n1lWf6n5eNRQlRXtKPTw1KdlqHdPl7OV7PpSkpl6vh7Va7SXgTwAfB6jVaiL9/i+GKaNWqxnAc8An\nh73v8nKzb3fZbrcJggjDUPYkatIhm3j0dw0dy0Dbn6iEiSFxTJrIUAUxk1J0Re9VkTeL5eTqm2J8\nBD3xF1G8Xxwr1+z1dVVvUPeG4v3zuvZ+VvfqLl8nV9RxS9Qio71iNJFyu0SweiDpyLxRFCOESgeg\nJD4JOgO3DtKl8zP1ton2sAqCiKIEVg30CBBZGxefs/huelVneWI9utq2uLDEcdJVbu99V1dbdDqb\nq9dM02B8vMT6eptGo9XVj4p9QLe9rscglV1/ioKH9zzT7R3HCZ1OlLaveje2TdqGkLt0i64+093P\nwTCSrLzN2k2XD7ovd7+TQSrOPDCkro/MSEyeM0ulmQjDqECm8/r7fifrb0mSsLi4TKlUolSqdLWj\nSlRqc+HCZTyv1FUPyzIJQ8HFi7WuXGJhGNJqNbh9e47Tp8/guh7NZoM7d+Y4ceIkpVIZy7LpdHxu\n357j3LnzgGB9fSPNh2VmfVXlxQqwbSdNdaJ35NqQW80nvXOJet54YNtv11/1HAdh1pbFcovQ9wiC\nCNu2CYIoDQ+gxuagvl3sN/qdFftecX4cZlztFsXxqPugfnY1HyUDn7n/2WNWV1sAfXPsZuh9tna7\nTRxL4hi24yVCCGzbxveD7L7lcnUotRfkqq9GIyCOm32/NxobLC0t90mNkiSm1WoxKPxHFEUEQViY\nH5L0XnHf8/T2y83e89RUP+EahENJalL8FPCLKbnRLt1l4BcAarXaR4Hb9Xr9J9Pv/xtK/aQDB/5P\nwDng54e9YZL0hn0nXYTV5Nu7SPZKNIrQE3QvMen/K57fu2D0l7kZeu8Xx/k9exfNYv2HLX8zaPG9\n6vjF3pxk9w/DCIhS13ADnUlcS1L0QqaID4X6FsXvgxbBfFHrfc5B7bcTFNuzt0/oY3GcEEXbEwu9\nkHf3o8ef0C/ve4PrU+xPW5VRbCvIycagdss3BTuva3GMFIloTo5V1GzVx5RKSEvGqtXxbBduGIq4\nnD9/Gc/zuu4ThgG3b9/Ctl1s2+2rRxQlCGFh2/nUatsuhmHiugtUqxN4XgnbdllZWWF6ejYjR7bd\nxnUXKJWqmKbJsWMn6HQ6OI5JEMTpBshnbW2FcrmK53nEccz6+ipCGKmExxo4l/S+r17yuVV/1X2z\n2LabvffeMdE77wzTt4vvv3d+3Mm42i2K5fduVLfv6zmRB/rm2M2v7X62Yptvd60mCcX7CmGkfXv7\nJV6RSGOLdjWoVvttg3QE+kHmBlJKOp1OmstN5XQDQRCEmGY3w1PrapzlfYuiKMt3t5v3fGhJTb1e\n/5U0U/g/QKmhXgG+s+CyfRooWllNAT+HCtS3gnJJ/3C9Xn9z/2o9goYWu0spsSyrYOQmu/5rexk1\nSHy0/QGIzH6nSGxGUHicZGi/kS98SUaEtU2K7l9a4lepjGFZZup626BSqVIqlbl8uZbF5dHExfO8\nPmnMfsG2HZ555gVAMjlZZnW1RRwnLCw84Gtfe4WLFy9z9OgxfN+nXn8tFfXb6YYgSVVmmuTnkaFH\nGGE3GBR9HsB1vS7jaFDSUEViIJ+f1Tzebrc22SxLVldXuqSPu86ft6urDgjq9frPAD+zyW/f3vP9\n7wB/Zz/qNcJwyG1V1I5C61uViD3awi5EHQuCTpdNRJIkXTrf9xJ6SUy3oemTh+JEqf/UQq4kgsrA\nUB0fG5tACIiigGeeeZZSqYrv+8zNXefMmQtUKpWM0BwkqJ2xQblcptORqd2YcrN3HBfPK2GaZvp7\nJ9vhKnVaK10UJFIWbX8stoq1MsIIO4HenBbVUqYpUzsqD8vSJKUBQLlc6TPh0JKaycmpPUmHcahJ\nzQhPDnoHh47toElLkiTprjnXt9u2k9lOkGYQL3pY6QkeRJdrpD7eq556skjA4X+WfnWXTrSq7bX0\nLk9JZ0qlMrZtZRIY0zRxHJfLl2uAZGHhLtXqeKY2siwbz/MOJKEZFrbt8PTTz3W58/q+z/Xrb2NZ\nKolocXHQXjZFsX7R/meEEfYCvfO5luQMMl5WpIc9S4cxIjUjHEj0u6MKiobDoAJd5R4gkrW1la5d\naDEqbqfjZ4NJ5bEKiOMoE8kPSu9Q9OR6XK7V70UUPXuKk5u2bcgNE5W9gePYRFHMU0/VKJermQTG\n87zUsNchDDuZ59GTBtt26HWQ0URNifHzNlR9v4PjuF2Li+u6T2z7jPDewojUjHCooMkNaH1uTmom\nJqa6JuYoivD9NiDwPC8zclMGbuvpArmZsWLS5bEwrJHjo0DRXuS9Yitjmga2bfeQVO35Y2MYwlaI\nZQAAIABJREFUZkpEJZXKOFEUMDY2nqps7MdqD3MQYJom587V+qRQRbVb0Qhak7+toCQ6ss9Wp4iR\n3c4IjxsjUjPCoUNui2Nk0htQBqG9elid1qHXyM22nSw41bBEIQiCLulNHEcDI37uNo+LisycB2oz\nDGUwp++xE0KjXekPEgnSLvHa5bMXOqN3HIfYtsP4+CSmaWQSNylhYyOmWh3DcdQC7DguZ86c4/79\ne/uiRhJC4LrujiV3vdcNKmeYsjWpH+b+tu0MJHY7JX2maeK6Lp1OJ5VuanIjMg+yYn10MM4RRngc\nGJGaEd6T0PpeLdnpdDoMY4eSkwTlsqgt9ovYjfW+zhMDpNIlulRrO0W3qm5/0B8rJ5dqqQCCcVan\nIAjSeBTdqpBKZQwpk8wWxradTLowOTnNu+++xZUrzzAxMQmoBVctrPN79hxbkQvX9bh48cqOy+y9\nblA5w5Ttuh7V6hiu62153l6iaLdT9LZSJHOdsbHxLldfIURKRMNRLqMR9h0jUnMAoXa0cZdbahRF\nXbuf7uB7ed6lwbEjDs5u/SChaLOj2lZm4nPDMDNDVC11UWqPPMaJ47iZxX4Ru7He13lihDCI4yiT\nQiVJQqulPFl0XQe9z8ermhJZXYt1UEG3FJEpl6uZ14MmLHGcDFSFQL86xLLsjPy4breUIY7bO6/x\nIyAu+wHP8zh+/GRfez1qaLudordVkkSoYIUxYSi7CKoaM3EqfTN3LNkaYYTdYkRqHgGKgb9615li\nICe9i9GieC1+j6KYOM7PVRE5/UzMm6sodPyJ/LMynu0XT2tX6RHBGQ7dKRR61V2KPJrm4NgNsDvr\nfS050n+GYaIzZEuZv9ODkLhOE2ndnzzP7evrURTT6bSpVse5evX5bCHWhMX32/tm/2IYglKplBGr\ng0xctsLjrnev1EaTUqDHQNtgcrLM/ftLvPHGayMj5BH2DSNSs4fQO39l1JnvnnVkyDyXEBkxMU2L\nMAwzUXypVOkKTpQkY1kY7NOnz+O6Hp2Oz927c8zMHOX+/TsEQUizuZGpPEzTyiQORX23WiDNbNKB\nbnfOoqtzr8pjRIZGgNymQ/W1JCMyxQi9xf6mjbT3KxbMZhIY1/V49tlnWVlpPtJotAcBu7X7GRZF\nbytNSoufPa+UxdfxvFa2Ues1Mi5GPtYYzTMjPCxGpGaPoAK/qR2ojqehEtnFGVnQicksK2FqaobL\nl2u4rtdlNzBIFK8jnE5MTOJ5JXy/zfLyIrOzxzlx4lQarC6k1Wpy9+4cR47Mcv/+XQDOnr3QpX9X\nSRjVrrho/AfKrkMbvyqClqu7cunTkx3UbYTNIYRO4GlhWQZBEGXqz07HJwgk1Wo125Xr3XwxWu+j\nqVe+iD9uScZBwEFqA8va3Mg4DMNs81UkYMX4VCOMsFOMSM1DougZoI0cQauOYpJEJQQTQmXx1QHB\narVnKZe7E3TtRhSvd00qn4zN8vIiY2MTrK4uA2REaBB6g3aFYcibb77K/PyDLj24tukpeuZo9Gch\nH+FJgCYroA2flZ3P5ctP43luV+h+HewN4MKFpzJS7vs+t2/fpFTam4zKKlKwNVAKc1AW8YOORy3F\n6cUgI2Ptubayspzl2SraCw7KQD7CCMNiRGoeEoMiegKEYYcHD24zOXmEublbQD7hDxMTYj/QG7TL\n80o899z7uHXrGjMzx7AsFXm101GL1urqKpVKhUZjgzAMUxsTQTFJIfTbEY1w+BDHSVdwwzhOUnWC\nR6nkdYXuBzJj6V5Svpe2FK7rPhYj2ScJj4MAFucZ1R90eovBKDpAjDDCTjEiNXuAQRE9dfAwlf9i\n8IR/EGFZDp7nMTExlYWT9/02nlfCcVqpzQRoT6s4VhKpolSne4c1YjiHEYYhKJerOI6deSspaeD+\nk3EtXfC8kUTmIKEo9RlGqtIb7yaOI6SMiSIyw/teCdIoV9UIO8WI1IwwFEzTZHp6htOnz3H9+jss\nLS2gd1xhGGJZVurCq2xxtLE0kBpNP87aj7AzCEqlMlevPku1Ov7IJIvDqkIOknqp0/G5c+cWp06d\n3VGsmN7rBpUzTNm7vf+jQPG96NhKW6FXFXX9+tu0221s26bZbDAxMdkXHkEIY+Q5NcKOMCI1IwwN\n0zSpVsd49tn3Ua+/luZPimk2G3heiVarkQZaM9LEkqIrrUFRnKyjy47w+KF22qA88wwcx2F6+gjV\n6vhDSRa3Iy0HiawUsRVxkFIFXdypvUfvdYPKGaZs3/e5f/8uMzOzj53UFDEsQe32nLJSL8zNrykm\n3xwl3hxhGIxIzSHAMCHWtzq+1yiXKzz33Pu7YlXMzp5gbu4mq6vLuK5Hs7mBEEYW1C4Igh53X+UO\nrDwdHml1R9gGOtyAXksNw9hR4MDNcFBJCzwa4rIf6HQ6NBobaQTsg4PdvGtFoF2CQKmj1P9406Sb\n6j6jxJsjbI0RqdkXCBzH2Tany7ARTjebQPTxTsfHdV2kFI+M4PTGqnBdD9d1OHLkKCdOnObGjXcx\nTbU4RlHUF049iiJWVpayHEUj7B96bSA0gVFRkh2mp6f71ABDlLptH3+c6HR8XnvtBjMzxzFN50AT\nl62gIvgmfVnlDyN00s3eyNJbhbc4KE4WIxxcjEjNI4YQBpVKZVsd+F7ual3X48qVZ3d1bW/k1Z1C\nh1HXodTVzitOxcghnY6P47iFvERJFjlXqaT6g3IdtoXnoEJLY3QspTAMMAwjXTgEnU6bsbEJLl6s\nsbDwYEflDtPH9wObSWCSRNJut0kSyZO+0T9IdjebQW/i1Fwg+8JZjDKtj7BbjEjNI4ImB6XSwRXB\nD8KgyKt6AhpW8tPr5l5UUc3P3+PMmQuYpsk777xJEAQkScL6+iphGKQGxiKLbFxMUaCIECjJzsGU\nCBxsCISQKYHM4ynltk4q+q/rujsq9XGrmYqL+GGVwOwlDkMb7NTI+HFDScjUpmszjFzQdwZrY4OZ\nl19m4f3vJy7tHfkekZpHhCcpLPtuJD+9bu5aRVXcgWm7nDAMeeedN2m325nRMWyg49+oPEgi9a5S\nxMY0+/NbjdCNfvdYgySRGIaJlCCExDQtKhUVBVhH/3Ucd18DtA2LzSQQh2ERPyg4DFKcgwQdLFXn\n6pNS2fgMSguizu8PDjmCgt1scvzlV1j+4AeJxsYQSYLdaCD2OJfdiNSM8FB4GOPkYjTk5557P81m\nM5Po3LjxLpDQbLYG2uKYppmpqKRMdq0ue1KhU3UIoSRcpmnhuiWSJMIwLCwrSVN3OFy58gyeV2J+\n/h7lcuWxS142w0H1/DlMOIgEcL+jHO8Etu1w+XKNIAhwHKdrHlpbW+1zQ4/jOEtQ/F6F6ftMXb9O\nfPkpqFaz4xmJecQSrVFUoxEeCnoB9DwPx3HZrVrItlXQP8uyM5scJalJSJI4k+i02800bH9MGAaE\noXIrVyqrmCgKC3/FZJ3F36LMpfxJiYTcv0jJjNio35M0705+rmlaOI6N55WYmJjkqaeuHkiy0On4\nXLv2Fp2On6XreFwwTYsjR2Z37B3We92gcoYpWxnK2gfCA6j4Xh4Geg45iH0P1NyUR0LeGod5Dtkp\nRLvNxDvvYPjd798IAqavX8cIgsdSr5GkZoQ9get6nD9/iTt3bj30jkvb5GjJTdEr4saNdymVKl36\nayEEjmPSaGxgWU6XG6jregihkucVE3cmSZTmscoNaA/S7nUvIISRZYRXButjeJ6XeT/pHfJObWj2\nCsOqQrR0oVLZn/ezFbmwbZujR4/tuMze6waVM0zZrquifR8EAnAQpT6PAr2RkIE08W/IxsYanlfu\nmXOU23lv6pwnDUbHZ+Ldd+kcP07ck8fwcWJEakbYM2ymttiNeFlJbuI+LwjXdbl06akut07TNHAc\n+OpXX+f06fNdbqDFjNEavu/z1a++nMXUMQwD328BIpu0QO+6Dv6EXWxXvcDoIHqgssLbtsvVq8/i\nuh43brybZmIHx3l0Yv/tSMvjXBQfBXHZD3heiXPnLh44r6C9tNU5aOqoQfn9NkviCrnbeRwfLANo\n0W7jXr9G58JFZOlg9Z+9xIjUHAIME2J90HkHBZrs7JWXgyI8+aC0LAPXFdj25m6gRaNl0zSzSUi7\nmys38iSTAHXH/No6Ad9+Ig+UV4wzY6aSpiSN6KyMG8fHx1Mja7XTrFbHs2uEgFKpwvnzlx5ZXzlI\nO3nLsjh58mRm/3CQictWOKj13st3fRBtugbl9xs2p98wkZCHjZb8MMTE8H1Kr79OeOIk8YjUjPAw\neNicLsOEWC8e932fmzffRUrB+fMXDwzBOSg7MG38t7Gxnk1GUq4SxzFBEKeRkIs2CzJzMe9P2Lk/\n6CUyRRWSZdmpii3Atm0sy2FmZoZLl57G8zzCMOD27Vtd5Zmmxblze9c3Dgqh3kwCY9s2s7Mnnwhv\nxO2wW7ufEfYWg9RWALSacPsOnD4FBbXNMNGSDy0xkRKSRP1FEYSh+q+/RxGy1UaaATJOj+8So17/\niNHpKDuQIAi2XAz3cqejy9Kfd4LeyKt7ie12YPtJekqlMrOzxzl9+lwWM2d9fY2VFeXlYJpWGsMl\nzghDMb6LIhXJQE+Hh8lRE0VxKjWKMQyZERf9p5GfY6RJJw2azQZjY+M4jrul1Gqvo/8O28cfFYqL\n+EGVZOwnDkMbHBQS/DCQQQjLS8hT52CgdLhfbQXg373D3PXrnDl9Hu/kqez4ExUtWaKIi/7z2+C3\nkRvryLt3kGurREHA2tgY8fISst0iuX5Dhe0wDGS5jHzq6sB23Q4jUvOIoMlBpTJBEBysPC1bYVDk\n1U5nfyQ/vaTnUZIc2Wph3L+Pe/IMpckpnnvu/SwsPOCVV/6IsbEJHMfJknWqXFbr6ASdOQSNxkZm\nl9P9LDvLUaN3de22UtHFcUQcFz2VzCxZqJbShKGgXFbZtC3LYW7uOidOnOLevTub3udRRP+VUu5L\nHzdNi3K5gmV1t+thWMQPCg6KFOcgqSZ3hXYb+949gqUFeGZztfogtZVM5wvXfQIiJicSolgRF43A\nhzhCLswjmyrJMa5DbJisHZsljiJot0mA9SMzaqMYBGDZSi+eRMigA7vMbzYiNY8ImhyUSuPbn3zA\n8TCSnx3dp9lEvv4a4plnEZUKThRzfmkVcewUuIqIyDt3kMdO9jH4pNkkuXMbefTEcOy+3UbeuwPt\n5wA1+ZT8gEqzyZWLNSbOX+iKhHzv3h1OnDjVRQSiKODevTt7kqOmuKtTnlpqd9fp+Ny9O8eRI7Ms\nLs5z8uSZzK5qbu4GlmVltjKWpVRPW2EYe4WDuov2PDdVmR3yheAx4jAQwN554CDCjWJOv/02tybG\nHul9eqW+Mg5V6Io4JI4UkVDhLHouDENkHCML5FW2WhAEah51nEKZQ6h7BpW3vgGtFvL+feTGenY8\nCUOWT58ikQmi3VZExbaJHZv1M2cwkp41RCibRWGaCMuCUBGb3WJEakZ4KAyzAOpJinPn4eaNzSer\nVovkj76Eef4CVCp934XvY9+ZQzzzfP89Wi3k3btQewhj5LU1WFvFaft4XgnZamE+mMepTOAsLjJ+\n9gKlyansdN9vY1nze5ajphiMsHiP5eVFxsYmaDQ2mJiYxPNK+H6b+fnhXLGHkXgd5FQDWrrguqUu\nY+fHgSRJUtslp086t5PrBpUzTNm7vf+jQFHq02UzMgSKGxS/3eb2Ky9x+v1fhzc13T8PvAdhmiaO\nMAiaDYq0xlhbZ8W26aytkwj1/oUhcBwLx1TxdKK1NeTbb5G0Wl2hL2QQ0JQJ0dde7SI126l7ZKMx\nsLzE91mdnSVJlORFIzZNNs6cpdxqYiVSkZZs6hEDouPtrSR+RGpGeCgUjZNvX3uHk2sbeM+/0E1a\n0knKGBt/qMnKtR0utDqYAyQgQgicNG/UMBjqfC3NmZntkupobCU5erzotpnZTDrzuInMsKqQ/ZYu\nbEUcgqDD9evvcOHC5R0R2d7rBpUzTNm+3+bdd9/i0qUrlB9zbJDie4k21nc2FgqSUgl0bt9CXrkK\nU9OPttK7hNzYgEKQObm0hGj7OI4NKytIp7DB8DzE2NjA6wDk8oqSfCxvfp3ld3jq936fqCABAehI\nyZ2xCmf/6CVcnRdPCGzXQrplrMtXiTodpb4xDSjMldL1aI8N2BRsp+7ZpLzEslibGMdMEozivGEI\nLN/HbrawkCRAud3CiCJKnQCjx5M0QRDZFpZXVmr2KCYWu5+HRqRmhD1B0mrReOdtbiwucOHsWbx9\n3mGVXJeL7Q5iSJXPVgRpaPSosB4FMuLklodaNHZiM/Ooicx2pOVxqkIeBXHZD/i+z9LSAqdOnd2U\n1GylvtlL1U6xLLMTMH3zBuaz73uoMg8iknv3SP7tzyHXVrNjstPBuXWTc+Pj8M67RDpVgmkijs5i\n/tjfACD+uX+NXF3pKi8SEjk+TvQff4lI5psqMTmF+WN/QxEb38daWcZy3e7xbhqY42O4hoUX6/AT\nAldGdJaXuwhUbDsIa3u7vjgyIAq3PMf0fSwpsKyC3CiKKXVaWGHYJXyJo5iz165jykQdTxJKi4uA\nSM/rnW8EUkB04iTCtknihAgJ3/X929Z9EEak5hBgmBDr3cf3L4S6XnTBQC7ME4h+u5tOGDBXdjkd\nhRRt5oq7GNlsIO/dQy4ukrzzNszdQs4/QN6eI37pRcTRYxB0kIuLxF99FTExmU3KiQWhIaHVRC4t\ndVdQ27r07JaSuVvIe/dU2ROT6bGbmH6H5MY1klKZZHEe2WqRzM/D44oOuom0SLZayHv34cgMkKuY\nPG/4GB+dToeVlaXUTmfvowofJPuNJElSA3i1EBxk4rIVOrfnaD+4T+f2HEzPDD5pK/XNXqp2CmXZ\nlsWRIMK0tl5S9JjX0orkzh01rlstkuvXSDYa+EsL3EkiTr31Jl6jgSjkDypKM/YDcmOD+Od/FvnF\nzytJhZ5zk0RJNtbXodHIl2k99+p5bXUFeoiJMA0YH0OYNqTEBL+tzvV90FKeIADbGUo5I6VU5wOm\nYVJqNgktm8TO30ciBB3Lwo2iLsmKCCNKUYhpbLJu+D5HXn0VCwPDzOlLEoTM3r+L6A0tgkAKQXNm\nGinU543ZWZCSlUuXwe6+j5bUTKaSmiiK6QjJrLc7e75DTWpqtdrfBP4ucBz4CvDj9Xr9xS3O/wHg\nHwDngbeA/6Ver//Go6ibbDWJ524jS+MIYTA1Nb1NTpfhI5xutljo42EYcuTIsazch3+WFsntOUD0\nuy8WFl0AGSfI5RWSMARfiTPjxXk6vk88dxOrQFqSj/1HZKupIt1dv6YGdBAQf/YPoLGhrOqTBPnb\nnwbLhOqYEtt+6hNKTzs+AYZBBASeg5w5ipyfR1gF6lSuqFQBzWb+PGEIr38N5ueRv/Up0lwCOK7L\nbO0Kzq9+jMiyVRyI2hWSz3wGefVp4tdfJ9loqEJcFxk+ntwmgPIeuHcHNwzgwlM4jttlVL0dtKHx\nXrlhD9PHHxabSRmKx5MkIXjtqzjPPo9ZWPz8lWXe+f2XOf38B3AmprdUHe72ty3r3nPdoHKGKntp\nETq++r8JkiShYwi8JOFRbG8yYrK0pAxF9Uai8FlagjgoI9daJH6IsCxks0Hy7z+q3HllgqyUiD/5\nGxBHUKsRf+pTRH6HqOTRqdWIfud3iKREXKll0TO7pBn7Ad9Hrq8BUqleinNL7zuKQqWqKaqpBhAT\nIcGNY4oaFplI5QGkv/u+mhNdD+nk95SuC+fOIG/OIVN1USIEURIjmy2k72MBlz/3BaTnIQquV77r\nMnf2DGduzeEVVE0yDBGdDtaf/eHBbeB5LL7wAq4UXZ6HURSz1rnSJ6mJELSqVewkydRPLc8jsSxc\nyUD1U2wIqsIEyyIKI+L3oqFwrVb7QeCfAj8GfAn4CeA3a7XalXq93jfia7Xah4H/APzPwCeAvwD8\nWq1W+0C9Xn99zyvYbhPdvo15/DRHH8wzubSKNTlDn39fir3c1dq2zfHxSTXRj09ues9BMAOfo8sr\nmEeOg52uju028t59ZaTebiM3NpBLi+B3cmnGvdvQasHqMtG/+WmimzcgUCLNuFyCq1fxf/d3uXvs\nGCf+yT/CbbdhdVWRlaOzyiXQcaFcVsGYNjbUrse206BNEixL/TUbiogYhvoex8ggQBw9inS8fMh0\nfHhwX32vVECrY6JY1U0IMExlp9bp4G4EnP/Sl9Q5hokol3HW1hBLS7C2RvLT/4xIuy7aNtEL70Oe\nO9OvG4dd7Si31L+vr3Xr4VdWqLTanHzrHdwPfTNEqd3S7DGSL/8RIDA++HWISqVr0QeQr79GcukS\n4R6RMtO0OHbsBJOT09iFvradqmNYVYg+T1bHSD7+nzBnj3WdnzQa+F9+Ee/sOYIo5Nrbb3DxzFlK\nxfZPxyOXn4YJtlYd7va3rdB73aBydll2b7/pzM9zwzY5f/MGpZVu1YdsNruJiMY2/TUjMgViIjsd\nuD1HcvOGGqvr6yS35xCuS+I4rLkWnUab5OYNxNlzyDiGN14H08CyHWaqFayFeSLXVZLQVguaLTUe\nXRccB5pNpGEqQtHxkfMPMAvSjH2B78N62sZbGWfHiSI2t27mxGYAMXGAc+nnbK4KQiWx8n0EIDwP\nLlyEShVRLmfXZlIep4QoqJ+sJCReXFHXQSqJ677WMg2M8TEsx8OKCwbErRY0G9m1Ax/N84ikBCOn\nDJEZ0S57mHHcJfmJDINWpUy52UImCYkQBOUyCHCbrf6sn0KAMJFxpMhdEsGQtpGDcGhJDYrE/Gy9\nXv8oQK1W++vA9wB/BfjHA87/H4DfqNfrP5V+//u1Wu1PAX8L+O/3unKWaTIbx3hxhPPyy8po85ln\nNxX57kQPvt2OlXPnkV95BfnGazsWM9tBSOmrXyU6f5k4vcw0TI60VewB4949op/718hXXlZSFdeB\npy6T/M5n4KlLipy8/poiLKRW7+PjYJlIr0QwMYF059WuRCYQKbUR7TadsTHuXXiKE2+9heu3uzu2\nlLC8rK7Ru4zlJTXJJFLtB27eUMRIIwhhY12VUx0DPbH4HVhdUXXQ9+hVLyUxbrPB+RdfpFMu42xs\nIBob6lqZBuD7yis4jk38K79E1CMk3umOUm5sZPp3GYZZfWIBdrmE/PLL2J5L/MUXCQEzCDi3sABX\nrijJF6Squ3eQX/o8wnHg6av9XmRA6wuf49adW4QyRkYhcnkZOTmZSwlgR9IIKwiYfvNNQCBTIqVu\ntI2qY1hVSHqefN8H8BcXKLVaXTvDIAq5Ufa4uI1dwH6hz6i02cC4c4fphUWMGzdINhrEt28h19eJ\nX32F+P4DRKWSbxDu3EE6LvGN67C6SGtqklgqgUZy6yYgSW7dJP7855DtFvKTv45sbIDrIcbHlc1G\ntUr8z/4J0cZGV90S2yY8eQr7oz+PaeYL7Vb9tatv+j689jU1roWhxtC1d/PFfmEe6TjI555X0szV\ndVheRp48pYiJlCAMLGBmeUWRTdOEJE4jzQbQ9tWGpNFQEtvbt9Tmpmfh3w9I34c7t9MvQ0o0T53O\nCcKFi2rjtV1ohI4PUdRFLITjgDG844MoeDTt6FpDKAK5GVwX4bjEvq/eT4qk02F8bZXW9DRJQe0o\nwoCpuSWiSiXdNKp6mEHA+NwcrZkZEsfBCAKqi4tszM4SVypp2WqzKsplRWx3gUNJamq1mg18HfAP\n9bF6vS5rtdqngQ9vctmHUZKdIn4T2J010jawLYtjcUxomgwVQmgnevDNzi16GX3l5V0FrZONJvHy\nMsk7b5GMKYGXubLM7M1b8HYdXn4FeeO6kpYYhrp/kiiXvihSAz8M0wlAqq1IGmyJ1WU4Mq3IyPp6\nTk7iGDwPKQRByUMaBpgmnXKZe1evcuKNN3BbLTh6VE2mD+ZV2dMzmaRGCIk4dx7pFCaPjg9a7VSU\n1LTbsLiQkyIdwrt30kq/u60W51/8I3WublMpcVeWOd9sQaXaLVDdzY7S90nmH6jneuttVXfATRLO\nr62B7zMmB8SSuH+X+JWXVb3abeTvfwbKFWTtKuKdtxFLS2p3noq2O2HArZJDe3EeKRN13dqaWoBS\nKYFpmDsz+my1SL74BdXfNJF6SHTZW6VqjvbqMtfOneHi9XeoCqFUl50O8eoycqNBcv1aem1DkYVb\ntxTJFZAs3CNZXye58S7J6gbG0iLTC4uIN9/ISIWGsbHBzHoDY3WtS43a+9sg6Rx0G4fKMIS36gjf\nZyYI4NOfJgKMVpOZI0cwfvmXiZMExieUuvPKU8S/+3uE09Pw4pcIopjAEKm0VcCpU/A9H4FPfJz4\nzr9WfbTTUePCspF//FthekpJPMNQXaNVBlFEYJrcuvo0Z9c38HQMlO36q+6blqWITKOhJDOayBTc\neVW8E4m8/i5xqYRcWYWVZZi7pVQ3y0u5lFWHyNdxUqIw/14Mq3/iJFSqAxf+Rw3heXD2nLq37WZt\n2XFd7p07w4mbc7h6HosiiMK8fp6HMXtM9YUCGZBRCKtrMDmRq8oNAzF7LLcB9DzE5JS6tqgqEhLi\nELm+DtrIWAikayGmprLrh75WP+dkfm0vrIkJ3GefJ2i3KCqF5NIS1stfhpkjJOO5V5W1vs7MW2+z\n+I0fRk5OItKNqLm+zmSrTfD8KcLxcaz1dSbmbtM6dhwxPoYxfRTDNDHiCJEk3bZUO8ChJDXAEcAE\nHvQcfwDUNrnm+CbnH9/bqj0eKJVQquNeWVYLHPSLmSETNQ/aUYb/5l8iP/dZ+PVPKJYNuVFcqwm3\n57qiR1pJwsz161jtlpJgbLabcVyYnFa5TqZn1K5tcUH9Nj6uJu3qmCIeY+OwvoF0XYJqFWk7YKfS\nizBQE2ocd0lXhOsgFxZgerprouDY8dymJp1YpN7Rp+QJhFJJITMpDKaV5rGU+X30RK6yR6rv9+72\nq/d2saPMdOgIuH83fShl64Pvb96uUaQWCp10s9UEYxke3Cd+6cW0rgnYNsnaOsFYlSAOmnN+AAAg\nAElEQVRsIdMdEZUy0W9+AmmYTC8sIBs+TE4xc3MO48Z1kpTwiGo1m/SS1SWCOwbJRoskArmyjJyf\nV0G8CobXcm0Vee8eya1biGYjJwdpeX02GaQG48vLJL/6y8iGsl9KgoBweYn2tXdYu3KZzr/7ebyV\nVUVYZUJSrsAH3kf86f+sCrlwnuRjHyNutbLdamKaTBw/TvLrnyBKJCJJmOl04GO/SlywzwIQlsX0\n0Vm4fp3o7be6bB2EaTI9cwTeeZvQ6n7vYmoa84d/JCcArqf6VaejxpKepKMIqxMwc+dufrFhYAnB\nzMKiGkvBWOG+KZkWBthWGszMUvWN036bSAg6cPM6tBpw6qSSRrZaOflIJJRLsLYKd+7mC942/bVo\n36HriiFIbIvQdbA7AUYxeFsSIy5dwj4yQ3jnPnJtDc6cVWN+dUU9h2Uqdc3qChYGM3fvYWEoiYGd\nRpZ1HZBVRJKosdu78O8HPA9x7Djy1k31PtK5Q0pJkEhFEOI4b2PHRczMZHOs+WN/o1+lvLRE8omP\nY3zP96lzi/dKSeVm19oP7uN+/g+wP/K9WMfU0mVZgomJMmsdSVxS5HzQtdb9+4gXP4v1nd+Ldbxn\n2dtC/WjbDldf+EBfuoe1G9e4dvsWE7PHsGZn8x8WF7FsB6PkEZfLSgoXx+q9WhaUSjnpVoG5wHEQ\n5RLCshGpbdJucVhJzWbYaTrlHZ1vGAJjaJGekf03DIEQqvMJa7BOVloCaYi+c+TGBnJtCem3MNeW\nEJbIvht35+DuLeTqCsknfp1kZQ05fx9e+yoszEN1jPinf0pFaTQtNRGaJsbRWcwf+YtE//6jyILO\nXfo+8uWX1GLRaqnJR0PvmnoWVysImJm7TeR5TN25y9qxTeyCkliFzw4C9ZckqoOD6uRGKsr2fdWh\nKxU1qZkmVCtQLtG5cJF7nsuJdofS2Bj2D/wgolJCGAZlYtY//uuYf/p7ETNH8vtq9UkhQ7hsNOj8\nq59Gfv5zakDp4FA6T4kmLcXIl0Kouug2sUw4chTj4qX8OTQ6PoQRdrW06fsGMFNPAtM0sKslkouX\nlF651VD3MU3VJg/uD+F9VahrEoMfZ5Nap1zm3uVLnPjUr6t2/vA3gm0jDAOv3cb8nc9graygptff\nVKW5HvGLX1D9xnUwak8jJiaRYUD08ssEUUCSFCRxK8uQSJLP/mGXNAsk8ct/pNooTPd5aXmJgLDR\nxP5//i2maSPDEPnWm8hGUxHeVDoRVMrcet8LTN2cg8sXlJRPE2LIpHUYJlYcMTN3GysK1TuNleTA\nShJmbt+GmSP5+zKM3D5Le7bEKuS7cWyWJIrSRTglFClpF+Nj0LtZiCK4dRPjI9+JuHE9swmRvp9K\nJ4xcHRAnPQuOhOUlLMNg5u5ddZ8CkcokoUJgra3ira9jra1Cu6XavzgmpyYxzp6FsSpMTUGpnHvk\nxLEilJOTGKaFUZDUbNVfZdo3sS1kIpVrs2kSVCrceuoyZ99+B08/T6yM+42U8BmOTVIpK1sQJNJz\nkZ0gnwcqFSwpmVlYVGOxXIZKWZGDS5cwJ6ex/+KPIqqpJM0rPTIj4eJ4zDA1gfW3fwK5uJBJTwGS\nxXnESy9hlkq43/09CB1fxy0hjhzJ6zg1gTLiyiEtQVitYB87gjg6y6YYcK1lCS4lEvvUiexa0zQw\nx0tY6+3MzmbQtWEcIBwH6+g09omd2W9aVj+RDEolDCHS9a2wLqaf1TSapI4IUhFmQXcuO6HWRv1d\nl2UYAtM0sLaYPzet646vOBhYBGKg983M0i+N0bi/w/P7MD1dGajSSdbXke220pUvLSF9n2RlBf/G\nTZwjr5EsPFBGUq+/ijE1hYxjjEoFo1JBeB7GWJU4aNGKA7yVBYygpcptNmn90i+RLC0rG4c7c0pN\nE0WIpSWCz/y2MiSN45zZ2jbMz6uJcWkReeuGWu5MJZ40bBuThLGkw8bqEsJOmTOQkKh0CIbRbxAn\nDCUWtqx80dcwTaw45ujNWzi+j2UI8Fw14Y6PI44cwTp/jrGPfITld99l8od/iLFjx0hS1ZCZ7lbW\nb97k3osvZr9vPHigvv+FH2b83Dma6+vc/cxnmP62b2P88iWMgsizcesWc8eOUjt1jOrZs9u+y43/\n8Sd48/+9yOUPfYhKWpfwzTdp/sIvUvqz/xXWmTMka2t0/vAPsZ97nvav/RrmsWMIrec1TWUntLKI\nMTXV5WWA52CcPM748RmM8e1VMePjJRJmWD93mvjBA8JySRlhyphEJoUd+XDolMvce/YZTrz2Om6r\nhTQMgnJZqfUKMJIEZ30dKxxgiyLInzUMcEiQSwvIjk/YaYNlY7hq+pCRibRSCUIx6aaA0Haw4wgj\nSTBsW/XFMMDxXPyxKnMXL3BxfR0njpGtNp0wVIaCKvFV+uypOkJu0QZSql1/q8VMkTAkSbdt1tJi\n/l1LIJGwsNAlhRPXr2EZBpF+JkMokX0CzlOXMXoX1nYbGUWMnTrOxtNX1EaiVFLPtL6mNjmWbq9I\nSRXT8PAkEjE7qzyEogiSGOv0GcK7qSTHMDLi70qYuv8AV5KrfoMgU/06rouMAgy/jeE6GEEnbzcD\nDM9B+G3sKMiCt23XXxNT9c1keRkZhoSeg+x0EIEPgY8IfGTgEwqBLSWW52EFPslKjGMZiG/5Fqp/\n+UcxxqokGw2k7xMvLeF/8pN43/3dANlnc2aGxuoq9774xYHjfD8wPt5jRzZVgbPdkg3n5k14u87d\naoUXnrs61JyjEQdlmiWHykQZc2pnqtqtru2rdw+s9RKWZTI+XmJsh/cdhGSygmlZ6VKRj81ERjTG\nx9TcRUpohCIppmFgWgbSUv8NQ3lUmaaB59nYtp1y8JjJyTLlgqHzsDiUpKZer4e1Wu0l4E8AHweo\n1Woi/f4vNrns8wN+/5Pp8aGwvNzsk9TIjQ3Cf/MzJPPzJG+8BouL2e4QmeB/8pNZLILO7/yuuiiO\nlJh1clLpXWtPq7IWl2j+50/nO9o4htVVJeadmsZ+9zqGECRCEJom9tIyhu8rIiMliWEQlkrYnQ6G\nJI+BICUEEdJYI5aSRMLanfuEb76VexlAbjhrmunkXnhQLV42zX5ic+48jI9j3b3DTLsDzzyHcF3E\n2Dj2D/wghmUx/cXPER85Rnz7Dv7sSYxTZ/ra12+HxK6X/e5LM/8+c5xWOyQ2TJp2CRmbsJKSItNA\nSEkzSVhbaxGuNPvK7kUrFrS8Eq3Zk5DWJUkEyfgE0df/MZKnn0EuzBPP3UV86BsRSysY3/VdXVIg\nubRI/P99HON7v09JAIrN5ZVYK9RxEEzTYHy8xPp6mzg2kT/619SC02hku8Lkzh2Cf/HPlcFzs6ne\nV7OZvtN+76VOucytD36AsFTqIzG9MOKYqbnbWAPKwfeR8/OAUP342nXoBEoNsLiENHMDwC7JQ2F4\nBJUqt55/jrOvfAXP90m0OlMmdN5+m874BNHZM3RuzSG0K+zCQk7gtO2FKKhfBsAKAmZu3MSqVJRk\nbmkpr0dGjOLUaH1CSWUSqdpYS+Sq1VzdalvEjpuqQdczLz79W3B/HhHG3aEDADE1w4bhEk3OKAlo\n2FQ2NbZN0vah0ew2yAzC1IPPVFKqIFTvdKxKaJjq3DhWz556AHorq1z6/T/EjgoeImYqiS158Jf/\nqvr/hc9i/cTfw5noJgTR2ga8+hJ84zfD8RPZ8a37q+qb+G0EZP0zWpxHvPoV7O/9fiRw89WvcOmF\n92GfOoc5PsbYmMfGhk/iuDQ0CZxRKjjplAnHJpEn1NjTn8XRWULjLlNRQserbjuG9hLd43HrXEit\n9TZRlBALhp5zNORai7AdEK21EM7Onm3QtcPW29/wMYKQxoZPtAdt6rcjSqUSZ84/RamQbXzNeZd3\npt9kfGIKa2aWKIqI43ncKCaREEcJUZQgooQkkURRTBwn+H6YCkpDgiBidbVFp5MvQlNDErFDSWpS\n/BTwiym50S7dZeAXAGq12keB2/V6/SfT8/858Hu1Wu3voFy6fxhlbPzXhr1hkkglci9ANlrEy8tq\nAYklkFqSm0ZmE5EIg9B1FdnI9LJC2ZlIkKUKSalEUBnDfvBAiW4tU+2+gMD1uPX+93H23Wt4vk/g\nedy6eIGzD+7h6QVASoJSiVsfeD+nX3kFkeRGroZWGyWKaMmTp0jK48jzF7ot88MQ2m1Ex1fulzJ7\ncCXqDgJ4+pluY0KvpCRA3/rtJJ/+LQDMH/ihTK8sx8YwFxaY7oQEUmWajmNJFPUPvtjx4PhJYsdT\nE8Y234uwy2U4Mfi3QRhUVrtU5fZ3fAenS1VKUYKMZDroILFs4okZxFSB1ESSxCv3Hc8wRD0A4lgN\nckoV9Ve8x8QMxh//Vnj+fcjP/gHim78F+dv/Gfngvoq101E2Rp1SiXtP15i+do2wtL3HkhHHzNy8\nxdFr1waTGs/Lg7tJCafPqv7Y6UCcYLgOiWYOUUSyskLoudhBmNtXuK7qX5OT6jrTRnV4iTxzHlmt\nwMQk8pRE6ky/zZYicCvLedbeLjIjCv9VB7XCMFctGVpNJHKCXh1T0hcD5FNXVH9P3ZGpqdD85p/7\n85mxsGw2kb/72xjf831K4lgwFC7+1mUPkbZZMjaG+Kt/HdFjqybv3SP59G9hfMefQkxNk9y9g/zt\n30J8y3+JOKpc1OXKsjrnu78X4+xZ4hvXsVYXqUxN0pLpdPDGa7j//hfhr/xVzKvPdt//6FG4/JRK\n7GrZyOMnSU6d7jpF3rmNfN0mGZ8i7u2zW/VX3Tch65+yVIW330aeuaiOp5+TU6cxLANzqoJ0msRR\n0ld2PrbUO9SfRZQgMJnuhAjMocbyXiMbj1ud43hw/DgSMfScoyGdEnzwG4icEmKHz7fVtdvV26xO\ncPHqC4jqxJ60a+x4iBOnsccmsO3caN6yHLUXksr2SP3p5SchjmPiOMaIY/U9kdl5SZL/H+Y9DMKh\nJTX1ev1XarXaEVQwvWPAK8B31ut1rWw/Dbmxdr1e/3ytVvth4P9I/94Gvn/PYtS4Xmq8l3obmBbC\nEMRAY3KCe5cuce611/HW1nMph7bwBwLT4ObUBGejQAVG0rvLoAMdS+3OF+bV/0oFjs+Cft/akwDA\nNAknJ7lz9SpIycWXvozXUAaVlMtgGBjHjsPExEDL/OTCRRK/ibC9zC6ITgduXAfHxfxbf1vp7FPI\nRoPkU59QOuXxcYxnn0OcOdPtll4uY3z9hzBnZjh6/jJmdbBOXJTLiFOnstgK230vwqhUME6dHvjb\nMPcCCKpVFs6eYbZapVSoN9PT6n9v2fr3XYhIdwTHwTh5iuTIEcznX4Bv+BDyzh2av/IfuFcpc+qZ\n5xBA8PabyLGx3PuoVoPXB3dvI0mYur2JlAZyWxnLUnYYlqVIQxjA/H1FzGO9IMWqjz9d49wrr+K1\nWmkZaR+3HZQxtrapcRFJDH4LGhb4LUTqjSFrNdXvLQvjOz6CKJcwVpfh2tsYL3yQ0sJ9zB/6bzBO\nnET6bUVewgD58pcxv+/PqPr8xicQ3/TNymDZcRGVCubGMuZn/4DkT38/8cRMt7HmqVNddhpyYYG4\nXEbMzCCOHu1uli1+0xBjY13EXxw9iqxUka98GePyU4ijRxEzM8T1NzC/7huycuTCgjrn7FnE0aNY\nR49iWQblqQqdlSYyneBj18W8+izmh79p4P0dy+Z8y8fpkSQdJCSeR/iBDyr1u2F0j6P9GlcPAVEu\nY5w+k33eCQLL5M7MJKcsc5g4md33rVQQ3/ChHV718NcOLG+T+dioVIhnZwktg7jTIY4jkkR58d2r\nXSE0DZI4wkiUel3KBNO0EJtIYneKQ0tqAOr1+s8AP7PJb98+4NjHgI/tdT1kECgvB7+dRcVNTJOw\n5BEbJrcvXFCko9FQholxeu6D++r6+hvI8XE4farf8M8w1W5zrAonT6ryPU9NmqWSkqC4HjhSHS+V\noDKuxNFJrETotq1o8lNXEEdnMf67H8M4cQIxwEI+WLzPzRe/wPlv+EbsI0qPHC8u0vpPvwqWReX0\n6e7JvLDwm9/0XwyMs6MHkwvMnjy5aTsOm+DwUUFKSRRFWYTdbPKZGMcdMBns9SQxEAOIlahU6IyP\nMXfyOKFpYrzwflWfxQeY3/Bh+NrLgMD6c38B0xCIt96Ea2/DlasAGBurTCwsYp0+o2L/fNM3q35T\nfwu+/kMwNYV44zWM70oNIHu8n8zVJcYcg42NlvLWX5zn9isvgUwwvuMjmJPKaNJYXYbr72L+4H+r\nvCN6vJ+G9cZw7t3jyN3bjF16ijOvf5XKd/8ZrGdzKYVcWCBeWsS4/JT6fuJEF1kAMFYWMd94DTlz\nJJeqaXKyn4Hc9gGGYeAmcnAW71IJceJUZkf3UOgpayflhrbFjYkxLtgWnlfqGkf7Mq4eIx5H8tj9\nhDMxycTTz3L69Dk8z8P3fer11zAMg+b4BJMTk1iWhRibQHx9xPSpM1Cu7Fl6n0NNag4Culxxl5fV\nblQIAs/l1gsvcOzNNxW5QKS7W220Z8KsslsWtavKur/kwdSkUinYlhLHd4JUD58aKuo/7RbpuqD1\n5o6jvB1OnkjdIm24cAGEgRifwPyRv9Rlmd+7owQQqYW8mJrOFoUw6HDt1HHEzBGu2BbFaatrAiq6\n9e0CvVGVDwLJ0RnIdTbrYpLIYpbr7ZJH7haaWB3xXBYLuzvpeYSnTgEiJbfKu0t4JTBtpbWZnsI8\ndRprchLRWMP+9u/ENEyOfuyXmYzBdMvg3ML6oR9RkoNf/WXM//rPkyQJ/voK3sVLGAO82YypCZyp\nCsZKEyNKMO5U4a03lLbnhfdjpioPTUbsM2cxTpzoK8eKImYkWEeObCr1ALK8QsKysJeWsXonv56d\n/WZSNffDHyYaRhqw29+2Qu91g8oZpuwTJxHf8q0qdsuw9yrAnZzi0rd8K/bDJHJN0SdJ3USK+iTC\nNC2mp4+wsrL8uKvy2KDzzQ1ynjFNE8/zsrxqpmlimiaGYWBZFpZlw5hN+Pz79jyVx4jUPCSycNaG\nqeJDrK7mMVc8j/+/vbuPc+uq7zz+ka6kebA9Y4/HTjKOnyaxfwllCZCSECgFNmx59RUoKa9toZQQ\n6LZLAylhl24DlC5LWAgEtqQ0KSVpSYHSwlJYsrCwac1DKJRmQ0sppXCSYJNnJ/ETTuwZSTOa/eNc\n2RpZ0kgz0n2a7/v18sszutLcn8czV7/zO79zLmvHTvasrBvzCckTj/u5+votAOryeSgNw/FZmK/4\nZCgX7qEyM+N7DcrlcNfNGf/1C0WYPst/rdFR2LSJ4NnPhbu+D+QoXPoyiqefvrIbwY2MkD9jC0xu\nPOWi1eluxyuVlBsithtZRTHiqp+jVqstOldz+XuBcKQ8Pu6Xeh5qsT8RYYIwWw53YT6p8X5BjTv0\nrmQ8v9RNDotjY2x+ytPJLbW6JXyTXti0mfzzL4aJiUWHm0f2rUb5uTVrGXrWRRw/fAzmah2rAcs9\n1skpMbb4Ot187WDHDoK3/l5P52qUz+cHloAv1yCvIYNSLBbZuHETR4/+JO5QYjM01P3Nc8HfK6pW\nqzE3N7fk81ZCSU0f5Eolv0FcaWjRttCtn8yJrf3re09w9CcsVGdhvgqnnw6TDQ181apPirZtJXjR\npRQmNxMceBS+/12CS15CYcvWEzsvzh0+RO6Ob5AbG180Wu80Cj7FyAiFM89cVEbOjY6SO6P1HoX1\nux1v3z5NEAQDvTDFXblJshOj5okJclNTPmkO/w+DtetO9jIVCuQvfCYLs2VqMzPMHdxFfv16qsUC\n9551FjuLfj+jnqYoRkbCn4/c4tcsUXnoNkFY9LwdO7qLSQauVBpienoXxWKJSmX5m6Wl9Y7pcYii\nOtxvQRAwNDTE8ePHmJ+fo1IpMz/vE5xKpUypNHTKe8bQ0NCyp6P07tAv89WTd3AtV6BY9lNRlXK4\n9DbnewoqVd/vsmGD73HZOEnwysspPPHEif6CYlN/QT1Zye+cJr/lTPIPriW37+4Tn9flGi8sQd43\ndvY4d54bXUOw9Uxyo73tY1CpVHjoofvZsmUb69aNDSSx6VS5KRQKbNp0WtcJT5YTpPzQEBue9GQK\n63wFpDQ+zubnPPfE8SD8eG52hvv23cPO9eP+Vj7LnErIjY4SbN3Ohg0TJ84J2e+NWO2SWPWJUhzX\nkDT04zRPSxWLJc4558kcO3aM++/fx9atO0/02jR+3qg+QF6O7F3Roxbeo4Mjh1mYnvbNvLUaBHny\nExMwPR0mFjk491z/99p1BL96Gflwy+/cunXkHnzA7/LaorKS63UUNDzUdrpokObn57jvvr3s2nXu\nohFXFOXlUqnE5s2ndb0EMClTW/1WKAQt75jdSr0UXKvVVvz/EgQBGzduWvKckk2NVZuVSst0VFav\nISvValqqWCwxPDxPoVBc1GvT/Hk/KKlZobb39ziwn+DOv6f4nJ/1d60mR+GlL19Wf0vzEs12SzZL\nY+NM7zqX2qbN5OaWXw7ut7SUl4MgYLSPXfhRqo8ah4ZGWLt26R1Ya7UaTzzxOIcPH6RSqZwyUlrO\nubNY9ZLu9LNqk5brRdqkcepqOXQV6oOOq4jGxgnyBbYcO87Q5s1t+1s67S3RvEQzv3YtI09/xil3\nMQ3WrWPkmc+iVqtxdrisutR8J+ElFAoFpqamKLRp7lwJ3+w6m9gR2PDwCNu3T6fmQprL5dmwYYIg\nKPQ8aqxUyjz44H3UaivfhEsjVpHuxTUIiHvqqtNqqX5SUjNgpaDAzqOPU2q3b0So494STQ2XS/Uq\n5PN5RkaWN+1ULBbZvHmKw4ePnZjK8b+Ep534eLkqlQoPP/xA2xFY3GXn9kvKk1e5CYJC19NMzZpX\nUrX62qq8yCD1q8k4jVbrIKDX1VLLpavWgAwVi+yqVskVi1Tna0tnpx1WisTdcFksFjnjjC0tj/Xz\njb+57JyUJKdarbZ8k4/izf/ktNLQonMt98JYq9V4/PGj3Hvvj5hvc5PM1XrRleikvck47muTtKf/\njQHJ5/MMLyyQz+V8A/B5T+24qVZuzRryz7jglN14k67+Bjg8PMLExGTftroGn+Ts3Xt37CO5+r+x\nuSLS7vFBnHtkZLQv56pUytx3395TEhpVZ0S6l5RrU5zK5Vn27r2Lcnl26SdHSFewQRsZbXv7gCyJ\nYjMqjY6Wp/H71o6qMxKXfq6cyrokDT5W2qMzqB4bvTMMWG50NJUVmOUY9C9cp9FRrVZjdna268bX\netNyPxplk6b539bu+xYEAePj6ymV9GYi8alPRaVtoNK423dUoqgOR6XeY9Pvach0/RSlSXivmSTf\nabbf2v3CRdFwOzs7y49+dFfX5eCslo/rPTPdfC9yuRyFQiF1byaSPNVqlccee4RqtRp3KJGp78uV\ntWvISsU9LaWr2YDU7zWTW7N26SdnXFpGF2mu3tRjn52dCXtmOt9fBXylZtu26Z6X/Ys0m5+f48CB\nR7v6uVtKfTpKP5f9FdXUVdxLx5XURGA1jmLSaHZ2hrvu+gGzszNxh9KVxiTsZOWp0tVrgyBg+/az\nBnZLC5HlSut0VLfiGjylZXC5Utn8qUmQarXKo48+zCOPPNyXUUyaJX0EVqlUTuywC8mu3PQyzdRK\nvUkvq28cEq1eqwCreaCX1anvpUQ1LaUr2oBUq1UeeughZmdnOHz40ImdX1ezpUZgSUt66hef2dmZ\nlslNFElP/Rxzc3OnNP92O83ULAgKmnaSvuq1CtDP6SpJh6impZTUDMjc3BwPPfQQc3Nzutlfl5qT\nnqQkOZVKpeXIKooRV/0cTzzxeF/OVSoNcdZZuzXtJLICpdIQ27ZNr+qBapKWlzfSVU0SK+tz63HQ\n91SSJo1TUf73aPD3MWqWpCnxpPbo6Mo2YIVCMrPZNEpK5SZt9H2TJNNUVPey1I8zqB4bvdMOWKGg\nnVr7pdP9YoaHhznrrN3k8939SGd5F9MgKLBly7YTSUza77MjkkRZvoasRLfTUoPqsVGlRjIhn88z\nPNz9tEpWp2FKpZJ6ZiTxOr3xpWU6Km3XkKimruKelkrH/0YKFQoFpqamKBRUDEuLUqnEhg0bU3nb\ngPqocXh4JFUXWlmdOr3xaTpqMLI0ddWJrnwDUiwWmZqaSlwTlbQ3PDzC7t3nMjw8EncoXWlcmp22\nUaPIarVae9yiWi2lMoJIqLn3pH7xmZ+fjzGq1upLs3XHcpF0Wa09bvXq3KApqRFpo37xqdVqLRsC\no2gUrJ8jCAqLzrVaL4wiSVCtVjly5BDr10+s2mp8rVajWq0kbmCVnEhEEqrd1E4UUz71cxQKBU0v\nSSbVb9kR9Z4vK6G+n+T26KhSIyIisRkaGmZ6enfcYaRClpaRD6rHRsM+WZXSsmxURJJpfn6egwcf\ni/QakoYFAd0uHR/U0u/kfmdEpGdK1iTt0jIdtbBQ49ChA6t6CqqVuKellNTIqtRqlJDmhKAe+9xc\n+mIXaVSfjlIjfH+tlqXkSmpEQnNzVY4cOZyaxKAxCas3LuZyuUTeZE5EvLgGT3FPXUW1o3EqG4XN\nbANwA/AioAZ8BrjKOXesw2u+Bvxsw0MLwIedc68bYKiSIoVCkfXrN1Ao+IQgycs2q9Uqjz76MIcP\nH2LdurG4wxGRLtUHIOvWjSXuujJIlUqZffvuYefOswe6wWlaKzV/AZwLXAxcgk9WPrzEaxaAm4DT\ngNOBM4DfGWCMkjLNU1L1i0+5PNNyZBXFiKt+jpmZ44vONT8/x6FDB1hY8KOeqHbrFBHf9+OncZLd\n97Mape4KaGbnAC8EznfOfSd87LeA/2Nmv+2c29/h5cedc49FEaekXz1RWFig5cgqihFX/RzFYqnj\nuaLarVNEfN/P9u3T7Nt3T9yhxCapy8vTWKm5CDhcT2hCe/CVmAuXeO2vmtljZvY9M3u3maXjJj8S\ni7jvNisi0ihJixlW2qMzqB6bNCY1pwOPNj7gnJsHDoXH2vkE8ErgecC7gcuAj8pDr5wAABAfSURB\nVA8mRJHBy+XyTExMaspJJAZxLD3P0k7Gg1r6nZiroZldC1zd4SkL+D6adnLhc1pyzv1Jw6ffN7P9\nwB4z2+mc29dNjPl8jny+ux/gIMgv+jst0hj3oGMOgjz5fI4gyFMo5Jd8vJev2/h353PnFp1raKjE\n1NQWNmyIvolZPyPRUdzR6TXmQmGU3bvPWdZ5lnvdaPXapH2vR0dH2LXLKJUW3xOqOfaVXj/bSUxS\nA7wfuGWJ5+wF9gObGx80swDYADzSw/nuwCdCZwNdJTUTE2t6zsrHxtI5w5XGuAcV85o1RWA7k5Nj\nlEqlJR/vVae46+cYHx9neDhYdK7Nm9cv+5z9oJ+R6Cju6Aw65qGhHMPDRdavH2V0dLRvr10q7kql\nwoEDB5icnFzR9Wq5mmNfyfehk8QkNc65g8DBpZ5nZt8C1pvZ0xr6ai7GJyh39HDKp+ErOw93+4JD\nh471VKkZGxvh6NEZ5ucHuy6/n9IYdxQxj4yMc+xYlWPHql093o1u4x4ZGadSWdm5+kk/I9FR3NGJ\nKuZyeZaFhTxHj85QLredXGhpZmaG2dkqR44cP/HabuOemZlh7957gRIjI9Enm82xt/q3dLJhw5qu\nzpOYpKZbzrkfmtltwM1mdgVQAv4Q+Mv6yiczmwK+DFzmnPu2mU0DrwC+iE+czgN+H7jdOfcv3Z67\nVlugVuvth3B+vsbcXDp+qRulMe40xgyKO0ppjBkUd5QGHXMQlNixYxdAz+eZn69Rqy20jHGpuDu9\nNgpBUGTHjrMJgiJzc7WBxZO6pCb0Cvzme3vwm+/9FXBVw/EisBuo17QqwAvC56wB7gc+DbwronhF\nRERWrfpqqUFLZVLjnDuCX8nU7vi9QNDw+QP4VU8iIiIrUi7P8uCD97Fly7ZVe4+qpO64nox2aRER\nkZRYWFigXC6zsNBbO8JKJekO5kldXp7KSo2IiMhqU7+DeRYMakdiVWpERER6EAQFxsfXc//9P6Zc\nno07nETpdtfjQd01XEmNiIhID4rFIhMTk8zNzUU+BbVcUU1dxT0tpeknERGRjMvS1FUnqtSIiIhE\npFyeZe/eu1bdtFVUN+NUUiMiIhKRuFZOxS2qaSklNSIiItKTJC0vb6SeGhEREelJUnt0VKkRERFJ\ngSz14wyqx0ZJjYiISI+CoMDk5GaCILoJjzT043Q7LTWoHhtNP4mIiPSoWCyyadNpcYeROHFPS6lS\nIyIiknFZmrrqREmNiIhIROKYtoL4p66iWi2l6ScREZGIrNZpq6impVSpERERkUxQUiMiIiI9SWqP\njpIaERGRFIirH6eVlfboDKrHJv7vjIiIiCwpS/04g+qxUaVGRERE+iLuaSklNSIiIhkX1dRV3EvH\nNf0kIiISkVqtRrVaoVgskc9HV1fI0tRVJ6rUiIiIRGR+fp6jR3/C/Px83KFEKqppKVVqREREIrJa\nKibNopqWUqVGREREepKk5eWNkhWNiIiItBRXP04rSa04qVIjIiKSApVKmb1776ZSKccdyooNqsdG\nSY2IiIj0RbfTUoPqsdH0k4iISMZFNXUV97SUKjUiIiIZl6Wpq06U1IiIiMhARbVaStNPIiIiMlBR\nTUulLqkxs7cClwBPBcrOuYkuX3cN8OvAeuCbwBXOuXsGFqiIiEgfJWlvmCQtL2+UnEi6VwT+J/Ch\nbl9gZlcDVwKvBS4AjgG3mVlpIBGKiIj0Wb3aUSwW4w4lsT068ad7PXLOvQPAzC7v4WVXAe90zn0+\nfO2rgEeAS/EJkoiIiERkUFWnNFZqemJmO4HTgS/XH3POHQXuAC6KKy4REZGsqdVqlMuz1Gq1js8b\nVNUp80kNPqFZwFdmGj0SHhMREZE+iHtaKhHTT2Z2LXB1h6csAOc65+7q42lz4dftWj6fI5/PdfXc\nIMgv+jst0hh3GmMGxR2lNMYMijtKaYwZuo97dHSEXbuMUqk/jb1BkCefzxEEeQqF/JKPRyURSQ3w\nfuCWJZ6zd5lfez8+gTmNxdWazcB3evlCGzeu7S6jaTA2NtLrSxIhjXGnMWZQ3FFKY8yguKOUxpgh\n+rg3bFjD1NRk149HJRFJjXPuIHBwQF97n5ntBy4G/hnAzMaAC4EbB3FOERERiV4ikppemNlWYALY\nDgRmdl546B7n3LHwOT8ErnbO3Roeux54m5ndA/wYeCfwAHArIiIikgmpS2qAa4BXNXz+j+Hfzwe+\nHn68CxivP8E5d52ZjQIfxm++97fAzzvnKoMPV0RERKKQ6/dtv0VERETikK42bxEREZE2lNSIiIhI\nJiipERERkUxQUiMiIiKZoKRGREREMkFJjWSCmfW827OIiGRLGvepSSQzmwR+DX/n78abaP4d8GfO\nucdiDG81KJvZec65H8QdiIiIxEP71PSBmT0DuA04DuzBJzM5/P2lLgZGgRc6574dW5BtmNkIcD5w\nyDn3r03HhoFfds59LJbgWjCz329z6Crgzwlvt+Gc+8+RBSUiIomgSk1//CHwaeA3nXOLssRwWuSP\nw+dcFENsbZnZbuCvgW3Agpl9A3i5c+7h8Cnj+BuNJiapAd4IfBc40vR4DjgXOEaPd1+Pgpk9HTjs\nnNsXfv5K4Ar89/5e4Abn3CdjDLEtM7sSuAD4onPuk2Z2GfAW/PT1Z4H/6pybizPGVsysBFxK6+rp\nrUneUdzMzgSOOOeeaHq8CFzknPt661cmh5ntxQ/m7o47llbC7/Gsc+5A+PlzgN/k5O/kjc65b8UY\nYltm9iL87+Rtzrlvmtm/BX6b8HfSOXdTrAHGSElNf5wHvLo5oQFwzi2Y2Qfo8Y7gEXkv8C/AT+Nv\nH3E98E0ze55z7r5YI2vvd4HfAN7knPtK/UEzq+L/D/617SvjdQvwJmCfmf068EHgZuDjgAE3m9mo\nc+4jMcZ4CjN7G/A7+OT3A2a2HfgvwAeAGvCfgCrw9tiCbMHMzsZXT6eAOzhZPX0a/o3rATP7eefc\nPfFFeSozOwN/T7rz8QONvwBe15DcTABfBYKYQjyFmb2hzaFtwGvCGwrjnPtgdFF15TP4+wB+wcxe\ngk/QvwB8E9gN3G5mL3XOfSHGGE9hZq8FbsAP7q4ys9cDfwR8CpgHrjezEefcH8QYZmyU1PTHfnzW\n/MM2xy/AX1ST5lnAC8KRygEzezH+l+Nvzez5+KpHojjnrjWzPcCfm9nngbc456pxx9WFXUB9xPo6\n4I2NoykzuxOfsCUqqQFejU8WPxvePPYfgMudc5+AEzePvY6EJTXAh4DvAU9zzh1tPGBmY/jq443A\nC2OIrZP34JPFC/EDjfcAXzWzn3POHQ6fk7Sm+OuBB4Hmal0ef5++Kr5KlrSk5qeA74cfvwV4q3Pu\nvfWDYYXyGnyikyRvwCe6N4fX6S/iB3l/BGBmf48fiCipkWV7P3CTmZ0PfJmTCcxp+J6a/4gfpSfN\nCA0XorDSdIWZ3QDcDrwirsA6cc7dGX6vbwS+HU7lJG7KqclxYBJf1t6Crx40ugPYGXVQXZgCvg3g\nnPuumdWAf2o4/o/hc5Lm2cAFzQkNgHPuqJn9Hqf+HyTBC4BfrPffmdmz8VPbXzGzi8PnJO1n/Wb8\nwO0VjY36YfX05xJcPZ0D1oUf7wS+1HT8S/hqdtLsxFchcc591cwCTt7MGeBr+GvjqqQl3X3gnLsR\nuBw/uvoM8K3wz2fCxy6vZ9EJ80P81NMizrkr8SXw/x15RF1yzj3hnLscuBb4GxJUjm/jS/geGvAJ\n479vOv7LQKKmQkL7gScBmNku/Pf5SQ3Hfwp4NIa4lnKEzkniDk7ty0qCcaBekcE5VwZeCvwYP+20\nOZ6w2nPOvRZ4B3BbWN1Ii9uBXwk//g7wvKbjz8dXoJLmILAdwMym8MWJbQ3HtwOHYogrEVSp6RPn\n3KeAT4WNfJPhwwcSPjXyv/C/1B9vPuCcu9LM8vj+g8QKG1e/ge9BuDfueDq4Gt+vdDu+8vEmM3se\n8AN8T80zgV+ML7y2PgF8zMxuxVcdrwPeb2Yb8RWD3wX+Ksb42vkT4KNm9k5aV0/fhm/eT5q9wFM4\nOVWJc27OzH4JX7FJ2lQIAM65z4VTqB8zs0uA18QdUxfejJ9qnwK+AbwrXMla/518Gcm8/t0K/KmZ\nfRT4BfxU6v8Iq6gLwPvwPXCrkpZ0i0TEzNbjL6QvBqbxldKH8Y2JH0jokv88PuaL8KuG3oO/2F+H\n36rg88CVzrnE9V+Z2dX4pf71lU/g+1H2A9c7566LK7Z2zOy9wFOdc6f0+phZAV/9fbFzLpFV9nC1\n55vxfR+bgKckePoJMzsL+O/AJcDa8OE54E7gfc65z8UVWztmtgbfqF//nfwt/Pf7XUARX4F6mXMu\niRXUgVNSIyKZZmY78YkNwP76svokChOX0Va9QOHxADjTOZfkqiRhz9vPAB9raHBOrDAZ24wfaCS9\nwt5SuK9Y0Tn3eNyxxElJjYisOma2FXiHc+7X4o6lF2mMO40xg+JOq0SWMEVEBmwC39yfNmmMO40x\ng+JOJTUKi0jmmNkvLPGU6UgC6VEa405jzKC4s0pJjYhk0efwzcGdNqpL4tx7GuNOY8yguDNJSY2I\nZNHDwOvbrV4xs6fid0dOmjTGncaYQXFnknpqRCSL/gF4eofjS41045LGuNMYMyjuTFKlRkSy6H3A\nmg7H78HvGJs0aYw7jTGD4s4kLekWERGRTND0k4iIiGSCkhoRERHJBCU1IiIikglKakRERCQTlNSI\niIhIJiipEZFUMLOXmNkVTY/dYmb/HFdMIpIs2qdGRNLiUuB84EMNj11D5z07RGQVUVIjIqnlnNsX\ndwwikhzafE9EEs/MbgEu5+QW8AvAR8OPf9o592/C570a+AjwDODdwM8A9wOvB76Cr+z8RvhlP+Kc\ne2vTec4B3gs8Fz/o+xrwBufc3sH960SkX9RTIyJpcA3wRWAvcCFwEfDO8FjjyKz+8UeBz+OnrB4E\nPgv8AXAmcBlwA/BmM3t5/YVmthP4O2A98CrgV4BNwB4zKw7kXyUifaXpJxFJPOfcPjN7DNjmnLuz\n/riZtXvJB51zN4XPeQj4Hr6i86zw+N+Y2UuAXwI+GT7234BDwAucc9Xwtd/CJ1L/Afjjvv6jRKTv\nVKkRkaxZAPY0fH5X+PeepufdBWxt+PzfAbcCNTMLzCwAjgDfwU9niUjCKakRkSw6Uv+gXnVpfCxU\nAYYbPp8E3ghUG/5U8H05WxGRxNP0k4iIdwj4AnAjvgG50ePRhyMivVJSIyJp0VxZ6bc9wJOBf3LO\naVmoSAopqRGRtPgB8JpwxdLdwIE+f/23A/8P+Gszuwl4BDgdv7z76865T/X5fCLSZ+qpEZG0+FPg\n08AH8cnH21m8nLuThTbPPfGYc+5HwAX4ZOlG4P8C1wKjgG7FIJIC2nxPREREMkGVGhEREckEJTUi\nIiKSCUpqREREJBOU1IiIiEgmKKkRERGRTFBSIyIiIpmgpEZEREQyQUmNiIiIZIKSGhEREckEJTUi\nIiKSCUpqREREJBOU1IiIiEgm/H+MzFyDf7CoaAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEMCAYAAAD5zKAAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXt8FNXd/z9n9pZssuRGIIQEggWEBBCRIJdgCUIoGBGvfYDaVlSUmtRfRSg8sWJtsZU2Pq1gpVpRbE3UqhUelApKKKKPFVRUDAoUEkDuuZDsJtnr+f2xnMPM7G32vknm/XrNK9ndmTNnZs6c7/lezvcQSilUVFRUVFQijRDvCqioqKio9ExUAaOioqKiEhVUAaOioqKiEhVUAaOioqKiEhVUAaOioqKiEhVUAaOioqKiEhXiJmAIIfmEkDpCSD0h5CtCyP1e9plGCLlACNl3cXs4HnVVUVFRUQkebRzP7QCwlFL6KSHEBOATQsh2Smm9bL/3KaXlcaifioqKikoYxE2DoZSeopR+evH/dgAHAAyMV31UVFRUVCJLQvhgCCEFAK4E8G8vP08ihHxOCNlKCCmKacVUVFRUVEImniYyAAAhJBXA6wD+H6W0TfbzpwAGU0rNhJA5AN4EMMxLGYsBLAaA5OTkq/Lz8/2e0+VyQRACy9YjR47A6XRCnE6HEAKNRoPLLrss4PHh1OHgwYMhlTt8+PCAx2dmZqK5uRlDhw71WYezZ8+itbUV2dnZSE9PR2trK86dO+exH7sfOTk5OHHiRMD6paSkwGKxAAA/v9JrZdcWSZS2BeDSPTGZTOjo6AClFC6XC4QQCIKAfv36wWQyRbUO7F4JggCXy6XomOHDhwe8x+w5OhwOaLVa3u6jcc99Ecx9CIb29nacPXsWhBB+fZRSr88rWnUIBnEdDh48iJycHDQ3N8NmswEA+vfvjzNnzvBnQynFoUOHFD2rcPsVUTnnKaXZAQ+klMZtA6AD8A6ABxTu3wCgr799rrrqKhqIurq6gPtQSmlKSgoFQJcsWUJbW1vpkiVLKACakpKi6Phw6sDOU1BQQAEo3sTH+9pWrlxJAfitg8FgoNXV1ZRSSmtqamhRURE/vk+fPh5liutZXV1NLRYLzcnJkewzYsQIeuWVV/LP7PyBrkmn00muLZIobQuUUlpUVESrqqqoVqvl17xixQpaUFBAc3JyaF5eXtTrAIAWFhZSg8EQVJvw9zshhAKgGRkZVBAEmpGRwb+PJcHch2DIy8ujOTk5dMeOHdRms9EdO3b4fF7RqkMwiOvA2lxRUREVBIESQmhRURE1GAxUEARaVFREFy5cSA0Gg6Kyg+lLvPUronL2UiV9tpKdorEBIABeBPAHP/vkACAX/58A4Bj77GvzJ2BYR8keTE1NTcCHMWnSJP4yGwwGOmnSJMWdnb/zKREwSUlJvHMNV8BoNBrJ/5mZmX7rAIBaLBZaU1NDhwwZQnfs2OH3vP379/eoQ0VFhdd9TSZTUALGVyOPBMF0KIIgUJvNRgHQbdu2UUoptdlsVBAEum3btpDrGKyACaVzULIfayMajYYLnVgSrc5d/LwYvp5XogmYiooKqtVq+aBt+PDhvC8SDwbKysoUlR1rARNPE9kUALcD+JIQsu/id/8NYBAAUErXA7gFwBJCiANAJ4D/unhxQVNbW4uqqio899xzcDqd0Gg0uPPOOwEA8+fP93nckSNHsHXrVpSUlGD37t1+9/V1PnaskvOJ6erq4upwuDidTv6/Xq+H0Wj0u7/BYMD69euxYcMGPPfccygtLeW/ZWRkoKWlxeexdXV1KCkpwZYtW7z+3t7ejszMTMV1D8YcFE1GjhyJX/7ylwCAsrIyFBUVYd68eRg5cmRMzl9bWwsgOvdj4MCBOHnyJAC3iWbo0KE4dOhQRM+hEjx1dXX4+c9/jg0bNmDZsmUQBAE6nQ5WqxUAYDabYTQaUV8vD75NEJRIoe60+dJgioqK6I4dOyill0YIO3bsoEVFRX6lfXJyMi0oKKCEEFpQUECTk5MVjezE52OIz6dEgwllU3J8amoqJYT4rQMbORFCaGtrK62urlZcByVal8Fg6HYaDLsnaWlpNCcnhy5ZsoRqNBo6b948OmDAgKibyMRmSqZhKL1vSvYTBEHyN1r33BfRNJGlp6dL3uP09PRuYSJjWjMDAH377bepIAj8u2C053D7FVE5ijSYhIgiiwUHDhxASUmJ5LuSkhIcOHDA73GdnZ04duwYKKU4duwYOjs7o3o+OdFwOOr1emg0Gr/7rF27Fvfeey8AID09HQ8++KDf/QsKCniZYm1JDiEEAPgIrDvBRpMmkwmnT5/GX/7yF7hcLrz11ltwOBxYs2ZNVM8vbjs0NEXeL2lpaSCEIC0tLeJlx5N58+ahra0NXV1dIISgq6sLbW1tmDdvXryrFpCRI0di9+7dku/2798fM605XHqNgPH2oHbv3u33QWm1bgsiM0ewv+z7SJ9PTrRMQ3q9Hg6HI+B+a9euxX333ccjpAIhv0/eCKVjZEIp3hw4cACrVq3C8ePHUVNTg+HDh4MQArvdjj/+8Y+KTZ+hkpubG7WydTodzGYzKKUwm80wGAxRO1esqaurw8qVK5GVlQUAyMrKwsqVK1FXVxfnmgWmqqoKd955J+rq6mC325GdnY3ly5fjq6++AiEEhBBcd911yMvLi3dVvaNEzelOmy8TmdhZvX37drpjxw46ZMgQWlNT49MZj4vqYXJyMhUEgZvHoEAdFZ+PRa6w81Gq3ESWmpoacROZkigyRl5eHjUajQHNXuLfmSlCfszQoUMlEWhKTWTM+RwNgo0i82f2jHYd8vLyPO6J0jah9B7H4p77IlrmKWZmEr/nhYWFXqPkEs1ERqk0WIgFHDETKfs7evRoRWUH05d461dE5SR2FFm0tmCjyPwJgmBuuNLzMeLpg2EhmkpeJsAdlhwoXFr8O7uXYlu+t627+WBqampodnY2v1YmQPPy8gJGJEaiDoHuZzgCBrg0mBEPamJJtDp3Fuorfs+rq6upTqfzeG6JKGDEsHbH2p74fyWoAiaKAoYhjzP3NSplN1c+WojEixdPAWMymWhNTY1iAZOZmRkwTFkcBKA0tDpYARNMiLlSghUwJpNJEs6bmprKO69Q6xSKkz8aAiZWQt0X0erca2pqqE6no9XV1ZJBJJtfEos6BEMgAdO/f3/JgJhNEVBCrAVMr/HB+EKJM575ABLFFxAuSvwvYtztyT9Lly7l/zMnf6TvF8sAYLFYcP/99/Ow3VixfPlypKamIj8/HytWrEB+fj7MZjMef/xxLFiwAKtXr47q+auqqqJafk9l/vz5cDgceO6555CUlITKykqsXr0aq1atCjroJhFISkrC7NmzodfrMXv2bCQlJcW7Sj7p9QJGiTOedbBKOloxtbW1GDVqFDQaDUaNGhVShxhK6pFAdHZ2oqKiQvH+XV1dmDVrlt995s6dy/9ngiXY+6UEVqbdbsfy5csjXr4/Tpw4gY0bN6KxsREvv/wyNmzYgLfffhsOhwMvvfRS1OciRDuIgHVUidxhhUphYSHWrVsHp9OJ/fv3Y/78+UEH3SQKjY2NPG2MzWZDY2NjnGvkm14vYORRGnV1dbjzzjslo8VQBAybaLl27Vp0dXVh7dq1qKqqClrItLe3B7W/UpqbmwPuU1tbC41Gg87OzoDRbJs3b+b/+wtTjhSUUkW5zyLNunXrQClFQ0MDZs+ejfXr1wMAKisrodfrY16fSNLV1SX525MoLS3FrFmzIAgCioqK8NBDD3m8592JUAe94Zwr5IN70hZKLrJAUWTetkAk8kRLtvmrAwt+6Nu3LzUajUFFLflzRocSRcY2sd05PT09Ij6CYGzuLDcdADp48GA6d+5cCrhT+gwZMiTk3F2JkiomlHYeSaLpgxH7zlgbraioiFkdgiGQDwaQpvUJ5lkpfe7l5eV+y4Xqg1HO/PnzsX//fon6HC4HDhzAiRMnJCayEydOdBub7+rVq7FgwQKcP38eHR0dQWkl99xzD1pbW736YNra5AmzlbNo0SIkJSVh0aJFsNvtIZcTKlarlc8PaWxs5FpbV1cXFixYgMLCwpjXKZKwSb3xziYcaSoqKtDR0YE1a9bAYrGguroahBDU1NTEu2ohw97HaFsLlMz580fPakkJRG5uLpYvXy4xkS1fvjzoyXLhPmB/vPfeez59RPX19XjppZf4ZK6MjAy/ZYmFydNPP4309HS/qnUonVhDQwNcLhcaGhq4wz+WOBwOpKamom/fvgDcadNZTrWamppua25hKJko2x1pbm7Gbbfdhg0bNsBkMmHDhg247bbbFJmJezvhDuRUARNF5CP4UKKqgo34CoZ169b5jMzS6/WYMmUKV3X9JbcEgrfThtKJZWRkSIRdrKP6CCFwuVw4f/48AODMmTO8k1q9enXUnfAqofPWW2/BYrGAUgqLxYK33nor3lVKWMrLI7dCvSpgosTJkyfx+OOPo7KykodGPv744zxjrT9iFX4rCALGjh0LnU6HhoYGnDt3DnfffTcAtznolVde4fsmQoi2OFeW0WiMiYNTDBO0RUVFaGxsRFHRpQVWQxUutbW1uOOOO8KKNFQJTFtbGyorK2E2m1FZWRmWqTbWiKNRuxuqgFFAKPNgRo4ciby8PIlvJy8vj4dF+jJPseizaMIaalZWFt58801YrVaMHDkS06dPh8ViQWVlJQwGA77//e/zY5TkIos2KSkp/O99990Xlzr06dMH9fX1GDx4MOrr69GnT5+Qy2LP+qc//amiSMPKysqQz9VbEd+zpUuXIiUlBWvWrEmIAZMSamtrcf/998fFJBwRlEQCdKctkitaIozoGnFaEUEQaEFBAc3OzubpaQYMGOA1PQ2LPvN3biX1Urr/kiVLJKv8IUAUWCS3YKPIxJtWq6VarVbRc/RHpCK4QoE9a3Ed/OU2CyaST163UJ9RpDMn+CPSEVxseQUAdM6cOfx/jUbDIwCjXYdQENchLy9P0leE2waVPPPy8nIeReanHDWKTCmRmBDpDyoz5axevRrLli1DaWkpdDodSktL8dxzz2H16tVeMwtEk7feeotHZrE5Ny6XC2lpaUGlbY/FiFA8EdDhcGDAgAFRP6dSQmkzLNJQbCLzF2kY7YghFnghfpb0os8iHpkTwuXZZ5/F448/jry8PHz44Yc847DT6cSuXbsSNgOx2Lpx4sQJ/OhHP+J9RbdDiRTqTluwGky0kl3K19KWf96+fbtkf5YcMpIajJKcYCyxYf/+/bnmotFo+CJNodSBEKJoQaxgNRjx0tVFRUURWTM+UhoM006Dga0V/8QTTwRcKz7Q+QO1iVCPVVKvSBFp7QFwL/tdUVFBCSFcg2FtNBHnwcitG4B77lheXl5Ay4ISlDzzSGowcRcIkd6CzaasJNllKA+TrZwnFlwsjX1RURF94oknvJ6TCbxICJhAmzj9+8iRI+mVV15JAdDFixdTQgjt27dvyPVQsoWT7PKZZ55R/FL5I1ICJjk5OegOmJk/xALG38qYwaxiGSkBw+73ihUrInK//RFq5+5rorTBYKALFy7kgkU84ErUFS3lfUNmZiYlhFCNRhPw+StBFTBREjBinwjr/LOzsykhhL744ouSBvriiy8GHC0EsksbDAZaXV0t+a66upoaDAa/PhhKKS0rK4uJgMnJyaHz5s3jmgHbWD0XLlyYUAJGfL9MJlNCCRjWXoJBEAT64osvcj+duO15Q/6cYiFg5P65aBJK5+7PAiF+j/7xj3/QGTNm8M+DBw/2ej3xFjBy6wYTMMG8+/5QBUyUBAwzR4gXHMvJyaGCIHh09mwUGaiz85ainY2mAPeIqaqqStLwmVnnoYce8jrqqqioCMvJHkxD+sEPfuBhwsvMzOQjvmg7+4MVMEuWLKGtra10yZIlFABNSUnx3vqDIFICZvHixX5fSF/ac1VVlUTAeEshr+T80RIwrB0bDIaIBFX4Q266VrI8gz8LRFFRER0/frzH9ej1erpgwQIKIOHWg5FrMAAkpj0l774/lJSjCpgQBAwAum3bNkrppUa0bds2CoALHrm9OdDDlEf8iEdTGRkZkpFHZmampPPwJWC0Wq0k51UonQm7Xl8bi0bypUVVVFREXJh424IVMOJ1eWbMmOFzpB8MSjuUQD45fyN8X6PssrIyqtVq6ZIlS6jFYqHV1dVUq9V69Q1QGj8BIx5oRBP2LAKtBitGEAS6ZMkSiX9uyZIlVBAESgihQ4YM4dru3Llzueai0WioyWRKuPVgvPlgANCFCxdSi8Wi6N33h5LnrQqYCAuYGTNmeO28Aj1M5phniLUA1oi///3v0379+lFBEGifPn14mHJ6erqHuY51YuyFCLUzUdqQfAk5dnyoYbFKt3Cc/PPmzQt7qWJxW/CHEr+YvxG+r1E2uw7mGwh0XeG0iVCPZe0zKSlJcScWKuxZBLM0dWZmJtVoNLS6upoLaY1GQzMzM7mZmg0WmXABQNPS0ujAgQM9BinxFjCUSgefrF101zDluAkCAPkA6gDUA/gKwP1e9iEAngRwGMAXAMYFKtefiYx16mxeSnp6uk/7JhMSvjZv5gw2YtLpdHTNmjW0qqqKdx45OTm8A8rLy+OrRHrTmkK1tYsbhJKOI1DW1smTJ0dEkPjawpkHA4CWlZX5rL9SlHQoSiP7fNWHrQkvhnUW2dnZ3FQr9gt6I5w2EeqxrF4sC3Y0Yc/C1/3yprFqtVqakZEheZcyMjKoVqvlwlEQBDpw4EBJJu+BAwfy99hbHeKJuA7ApSXLu6OTP57zYBwAllJKCwFMBHAfIUSejnY2gGEXt8UAng71ZPPmzUNbWxs6OztBKUVnZyfa2tqYIMPkyZNx8uRJTJ48GUDg9VIWLVqExx9/HKWlpfw7vV6PiooK2O123Hfffbhw4QIvv6WlhecVO3HiBFauXCmZB/Piiy/y9U2sVmuol6kYVi9/c4A+/PDDqNcjGOS5yLZv3x6T8yqZm5ScnOxzwTFfi9oB7jkZy5cvR1dXFzZs2ACn05lQKUFYO4nFGj8Mb/frl7/8JXQ6nUc7dTgcuPXWWyUrPN56661wOBwoLCzE2LFjQSnFt99+i7a2NhQVFWHkyJF8gTzx+5soiOfBAO4FAr/99lv+LLoVSqRQLDYAmwDMlH33ZwDzRZ+/ATDAXzm+NJiioiJJxBQzRwBu1Vn8vViV9rdlZ2dLQh3Fsfa+5qAw/8aCBQsk5ikWBgood+p525SMVNga3g899JBXW3ei+mDE3HXXXREZUUdKg/E1M5xS3z4FXBydijUYf5pCOG0i1GOZ2UkQhIj4vPzhywdTVVVFtVqtR8BMTU2NXw2GBcywe8rMfOz99GaOjLcGI/fBeAtSUPJ++EJJOUyD8Rcli0Q3kUkqARQAOAagj+z7LQBKRJ/fAzDeX1m+BAwzX4mjyMKZb2Kz2bgPh/lVdDodXbhwoV8nPSGEhx72799f8jeQWS6YRqZkX3EqG+aDEZv10tLSwq6Pvy0cJ/93vvMdxS+VPyLlg2Gbr4gnb1FR7B6z519QUMDvuTfCaRPhPCedTkdNJlNEJrb6w1cUmcFgoFVVVZJ9mU/Gnw9GbBaXX1NFRYVXs1u8BYy3eTDBvvv+CFSGIAh00aJF9Pnnnw9UjiIBE73FRhRCCEkF8DqA/0cpDSnFKSFkMdwmNPTv3x87d+702Eer1cJoNGLWrFmw2+3Q6XQYPnx4yPXW6/UwGo3o06cP/vu//xsAMGHCBNTU1PhVZSmlfI0Fm80GQghfX9tut4MQEpYq7O3afXHu3DksX74cY8eOxZdffomlS5fCbrdzU15RUVFUzWRmszmo+up0Ov7s/vOf/wAI7npDrcOAAQOwcOFC/PrXv/a5j16vh81mw5133omlS5eivr4e1157raSMdevWSY7RaDRwuVz46U9/igkTJuDLL7/EqlWroNFowr4uMeGUJQgCBg4ciJKSEuzevTui9ZIjfhb19fU8waPVaoXL5ZKc2+l08pQ6Y8eOxdKlS7F06VIAwLhx47Bv3z40Nzfjd7/7HS5cuIDHHnsMaWlpfNmJv/3tb2htbcWgQYMk5QbbJiMNSx80ZMgQHDt2DC6Xi/cJW7duxezZs30eG4l6izOoR+Q+KJFC0doA6AC8A+ABH79HzESGixKahQ9nZGREZBSu0+l4ahSTyeQz+kx+vsmTJ0vMcszEwj6HWh+lIxXgUng2g5mBWHRNJO6Pvy1YDYbVKZJhs5GaB8Mi7gLNZRHD2gw7NpCmEE6bCLeNswhIMUrnqijFl4mMaXYsXYr4Hou1FKYFsln6AOiKFSu4yVmr1dLvf//7/H3UaDQJNw8mLy+PpqamKnLq+3r3/RGojD179vAtQDmJbSKDO0LsRQB/8LPPdQC2Xtx3IoCPA5XrT8DodDpu/hH/H8qm1Wr58VqtlhoMBp7SQcnxcrsx84sA7olg4XQmShoSALpy5UrJi8xMfmlpaRJ7dbS2cExkV1xxheKXyh+RmgdTVFRE9Xq9x4Raf+Tl5Xm0QZ1Ol1C5yARB4D4i8fycYOaqKMVXmHJFRQXVaDS0f//+HvOFxOZmABJzsz/zkq/MC/EWMOx62D0P5d33R6AyepKAKbl4UV8A2HdxmwPgXgD30ktC6CkA/wHwJQL4X2gAASMIAq2urqZbt27ljkt2Y0PRbLyNMJT4LbRaLTWZTJKXUzyDPpxNaUMC3DP5xRNKs7OzqSAIISe5DHYLx8kfaOa8UiLpg2FhyizVTiCYr44lHGVtz1eGgnDaRLjtSX5NwcxVUYqvMOWioiK6cuVK/g6LNRjA7bwXDxzZ4EjuC2XvKwthBjxn8vubGxYLALcFI5TBr9Ly/W09RsBEa/MnYKZPny5pPNOnT49JRyrfCCHUaDRKXgpmGgm3bKUNyd+WnZ0dk/vQXVLFBJPhuqCggPbt21eRBgNcmqDJ2gEzj/raP9Q2EW57YrPIGcHMVVGKLw1GEAS6cuVKajAYvOYL9BZFxuo/adIk/r8gCDQ5OZn/D0jnwQTKERgLAPeAQ8nESl/PKlD5/jZVwIQhYFi0CdNgIjVTPVjBkJeXJxml6HQ6ajQauTYxaNCgsDuEcK4n2kku2RbOREu5/TxUf4ASAcM6UyX1Ej/LQADuzlGcTZl1jr72D7VNhPOcDAYDnTJlSsw0GPlifSyTsDhMWZwvUD5pWWwa82VREGsIrM3k5eX5zHIeKwC3Rqb6YBJ08zeTX641GI3GmHSk8s2f3Zi90OF0Jkoakr8tUVe0FDtrCSG0rKyMrwvjLbGoEiETKQ2GDVbEYbJiysrKJD4kluk3KSlJMg/GX0qWcNpEOM+JmfBGjx7N6+JvxdZQ8SZgxH5NZsIVO/0BtxAR10MsVAJ10jqdjrcZwO2XFBOuVhYs4TynSJSvCpgQBUxNTQ01mUweZqlId5rsZZRvcse93N8STsCBt0YW6euKxhZOun5mX9+xYwctLCyk1dXVEqGidOQZ6Xkw4ohABhMmchOfvM2ITTveCKdNhPusNBqNJNear+UvouHkZwMI+X0mhPgNlFB6bUyDyc7Opn369PG6SGCskLeJYJ+z0vJ9baqACUPAeHsh4tW5etNgIlGu0obkrT6xvgfhLDjGFkOj9JIJq6qqitvpCwsLFflBIhVFxrQ+b2unEELokiVLJOUxIWMwGCRhyv6SZobTJkI91td6MLF08ms0Gn5/xZkFNBoNF97yEHalayr17dvXY40h8aRNf9mtowFrB0wjC+XdD1S+v00VMCEKGLY2hNhMEUwaBn9boJDIWG5KG1IibOEmu2TXy0aabMDAhLe3eQ5yIjUPhm3iiEDxcXfddZdk3hNLdcOczmxLTk5OuHkwBoOBFhYWStpXLJ38gDvDeEFBgYefhU0REFsm5IETSq/RaDRSQkhUsnYrBQDt169fyM9ZSfn+NlXAhChg2A30Nlkv3K2mpkYVMCFswQoYZmYUmxspdWsXbH2PwYMH023bttGcnBxup/eHUgGjND+btygywC30xCNjscbI2iLrFOX+m3CfaTjHnjt3TjIJmBFtJ794jg0gXZe+qKiILl++nNeJZRuW53NTunkzW7LNn8CPBuG8T5EoXxUwYQqYaGyjR48OuI+3UUlqaiolhIRkbw3UyKJ5vZHaIqHBiDshtsgUiyJjE0f9oUTABLPKqK9lHADfPhhWNjOV+dICwmkT4T4r+cTEaE60ZOWL10RJSUnxmtASgMecslB8q+LAmoyMDCoIAveJqQLGazmqgAnmxvaUrTtdb7ACRmwGYVqMuBNasWKF5JlHSsBotVrFGqq3jhZwz8ESm2fZHCw2uVec9NRXncNpE+E8J1/1ilaqGDlMwIt9liyzgLyO4owYwWyBpizEinCeUyTKVwWMKmAUNbJ410PJFqyA8daJsA5Oq9XS9PR0yUiWzZXwhxIBA4AuW7ZMUR29dbQGg4E7ydnGPstH2+xzJNtwOMcy4XHttdfGNJuyHG9h3uLrYgJCLihCsQ6IzyN/r6JNOO9TJMqPtICJ54JjKipBcebMGVBKcebMGf6dxWIBpRTp6elobW3F9OnTodfrMX36dLS0tGDNmjUROfdTTz2laL/Dhw97ZKBOSUnB6dOnodPpALizQp8+fRoA0N7eLtlX/jneuFwufP3119ixY4d7RBoHamtrcejQIbz33nuw2Wx47733cOjQIdTW1kKr1cJgMEAQ3F2ZIAgwGAzQat2J4s1mc8DyBUGAyWTin/v16wdCCPr16xedC+pFqAJGpVvDVvpramoCABBCALiXbbDZbBFZboAQgo6ODkX7Wq1WPPXUU6isrOTfNTc3gxDCl2lgyzJ0F1i6+MzMzLicf/Xq1ViwYAEqKyuRlJSEyspKLFiwAKtXr4bD4YDNZoPL5QLgFog2m40vOaEEl8slEewdHR1BPfOeQjQGEKqAUenWsI6FvRxMNT99+jR+97vf4dlnnw37HJRSxQJhyZIloJR6aDypqakoKCiAIAgoKChAampq2PWKFQ6HA1qtFm1t0uWa/C23HUnq6+tRU1ODtWvXoqurC2vXrkVNTQ3q6+uh1Wqh1+slGoxer+cajBLES6X43ewjAAAgAElEQVQDbi1SLnR6KuXl5VEtXxUwKt2avn37enT+giBg1qxZuPfee2G1WiNynokTJyra7+mnn4bRaPQYDXZ2dgK4JAjZ5+6AIAhwOBwSraC2thZVVVWSTr+qqipiQkYsvAC3WXH27NnQ6/WYPXs2cnNzodfruQbz29/+FhaLBb/97W+D1mAGDhzIF7BTiTBKHDXdaVOd/N3neiMRplxdXU2vvfZayXcsvHT48OEB0+YrdfIrTYw6efJkn8+C5RlTstZOJNtwJNqDPIos1vNgAHeosjh8mG3Dhg2TOOaHDRsW0Xaq0WhCvqZgCaeeoZRfXl4uOT7STv64L5msohIOK1as4L4NBlsW9+DBg6ioqAj7HMGYW/yNhLu6uiR/uxNUppEdOHAAJSUlku9KSkr4MsbhsHr1ajz33HMoLS3l32m1Wr6Estls5stnA8ChQ4eQkZGB1tZWpKen49ChQ0Gf099S5U6nM4SrUAFUE5lKN0cuXOSIbeuhIjcP+UMc4daTGTlyJHbv3i35bvfu3Rg5cmTYZbN16cUmMnb/mRlM3um3tLSAUsoHF8HiS7iohIcqYFR6NKtXr453FThiR7SYpKQkAEhIx//hw4dRUFDg8X1VVRXmzZsHvV4PQgj0ej3mzZuHqqqqsM+Zm5uLyspKHoIuJiUlBQ8++CAGDBgQ9nlUoo8qYFR6NPX19fGuAqdfv34QBMFjfgUzmSmZsxEsKSkpYR0/dOhQNDQ0eHz/4Ycfwmw2IysrC4IgICsrC2azOSJh4R0dHWhra/MbCPHtt9+GfZ7eiHxwE+j7sM8XlVJVVBIEZmKJN4QQNDU1weVyoampKSbzYFJSUqIitADg2Wefxfz585GVlQUAyMrKwvz58yMSFt7c3AydTscn1srx9h27n91pflE8cDqdHsJEEISo+ZlUAdPNiHbcencj0MgrmHDVSOCrPpRSyUTLaNr8586dC0pp1IQL4J5Qunv3bkmY8u7duyMWFu5wOFBdXc0d+wxBEJCcnOyxP7ufqi8lME6nE5RS7NmzB6tWrYpqEIMaRaaiEkHYxM94odVq8Ytf/CLq5yGEoL29HdOnT+ffZWZmRkyDMBqNuPLKK3l6HYbL5UJnZ6ckikwlcVE1GJVuTbw79EShvLxcoiVFG0opmpubJU7+5ubmiGkQHR0dPK+cN1Th0j2Iq4AhhGwghJwlhOz38fs0QsgFQsi+i9vDsa6jioqKb2w2GyilsNlsES1XHTj0DOJtInsBwDoAL/rZ531Kqep4UFFRUelmxFWDoZTuAtAczzqoqKiEjq+5PSoqQPfwwUwihHxOCNlKCCmKd2USgT179nj9Xo2gUYk14jT5kUYNOe7+xNtEFohPAQymlJoJIXMAvAlgmHwnQshiAIsB9zogO3fujGklY01DQwPq6upw7NgxAMCgQYMAoNtdt9lsjkmd/Z0jmnUIp9xQjmXHnD9/PmohykrqFep1y59FIg2YusO7FWwdz58/D0A6wZd9J/8+ZJRkxIzmBqAAwH6F+zYA6Otvn56eTbm8vJxnOt20aRPdtGlTt71elj03Pz8/qufxh9JsyuGcN1J1DtQuGN4y4Ub6XoZ6v/0Rieza8WhDkSSWdfSWNblXLZlMCMkhF/VkQsgEuE16TfGtlUqkOXbsGPLz8+NdjR6Nr/ur3veeAU0gbU9MvMOUawH8H4DLCSEnCCF3EkLuJYTce3GXWwDsJ4R8DuBJAP9FE/VOqoTFsWPHEvYl6Ql4E+L5+fnczKrS/dizZ4/YupOQxNUHQymdH+D3dXCHMauoqIQJEyZ79+7F+PHj41wbld5AQpvIVNwkev6xefPmJfQoSkVFJT6oAkYlLAwGA18DRBUyKioqYlQB00OJdmfPcl/Jl/9lNmFfc3VUVFR6D6qA6QYMHz48pONUjUJFRSWeqAJGJWrIBZzYl6QKPxWVno8qYHyQqB3gqlWrgto/WtehtB5ik9ndd98dMKxSTQ+iohKY7jJ/SRUwkHaC4g4wUYQMW5Y21Pqw6wo3bp5pING8Lx9//LEqZFRU/NCd5i/1GgHjq9MK1JnFeiKTr3MlirCLBR9//LFEIKqoqFwaKHYX4QL0IgHjcrk8hAkhJCEXNpJrVIMHD474OUJVsdUOX0VFRSm9RsAAbiFDKcXf//53UEqDEi6R7OQTQUs5duwYsrOzPb4nhCAzM1Py3a233gpKadD+HxUVld5NrxIw4fDkk09GtLy6urqI+EXC4dVXXwWlFJs2beL1cLlcaGpqktRt+fLlMa+bSnBotYm+8oZKb0QVMDGmoqIi3lVQ6YGwbAoq3ZuelvVaFTBBEKppi0VfVVRUYO3atRGvl0rvJNFz1KkEjzfTdXeKGpOjCpggYaYjpSHN5eXlfP6HKlxUVFQCwUzX3TFqTI5quI0gTMjs3bsXADB+/Hjs3bsXJ0+ejGe1VFRUVOKCqsGoqPRy1NBzlWihChiVhEftAKOPOKpRRYra/kJHFTAq3QL55FMVlWgR7+kDPQnVB6OioqJykbq6unhXIS7s2bMHZrMZTU1N/Lv29nb+f2pqKoqLi4MuV9VgVFRUejWqtgKYzWaYTCbo9Xro9XoUFBTAZDLxzWw2h1SuKmBUuiW9uTNQiRxqO4ouqolMpdvCOgc1vb+KNyilXttGeXk5Pv/88249vySS7NmzB6dPn0ZTUxM6OjoAADabjf+u1+thMplCKjuuGgwhZAMh5CwhZL+P3wkh5ElCyGFCyBeEkHGxrqNK4hOPyKd4CLVESJKaaAS6J/LgkD179mDVqlWqcBFhNpuh0+mg1+uh0WiQnp7OTWV6vV4ibIIl3iayFwB8z8/vswEMu7gtBvB0DOqk0g2JZufrrYyf/exncenYxR3mqlWrolKH7ibIfC0YqBJ/4moio5TuIoQU+NnlBgAvUneL+YgQkk4IGUApPRWTCqp0KyilkiwKkS4bcGdpGD9+PDZv3gzArT0VFxcjIyMDjzzyCIYOHQpBEDB48GAcOHAAAFBfX4/GxkaPMgcPHuzze3asL1j2ZLafVqv1+r+vY+W/p6Wl4cCBA/y3+vp6AIDVaoXBYJCcCwC2bt3qs/xAdfcFq4O/ssXI75O/62a/ye+b/Dj5fYgHvuoQ6HOwaLVaOJ1OmEwmpKamAgAGDBgg2cdqteLs2bOhnyPkI2PDQADHRZ9PXPxOFTAqCQOlFEePHoVer0dubq5X89nIkSMBABaLBSkpKZLv29vbIQiC5PtAWCwWAODHiMuVn8PbsfLf29vbYTKZPH7zVZbL5UJnZ6fH98nJyfxag4XVYeTIkXygIGb8+PF+r03Jb/L7Jj/O132IJUqfRbh1tFgssFqtALwvyEgpRVtbGwRB4PsFC4m3OnlRg9lCKR3l5bctAH5LKd198fN7AH5OKd0r228x3CY09O/f/6qXX37Z7zlPnjyJ3Nxcj+/Pnz+Pvn37ej3m2LFjGDRoEN8PgM99xb+fP38eHR0d/FiG2WxGamqq33Oy3w4dOoTU1FRYLBafi6QRQmAwGDzOIy5Hfi5Wh2PHjsFoNHrUQ36c+Hhf/8uPFX+W3wd2fn/3LlC53urCjleCtzr4g52LtQf2OS0tDYMGDYJer/d7vN1uh06nk3zndDrhcrk8vg9UDgB+jLhcb+dQUgeNRuPxm7+yGhoaJB2PwWBAQUGB4muQw+rgr67+6qPkN/l9kx/n6z7EEqXPItw62u123p/4M4s2Njbi8OHDEu2mtLT0E0ppQDNBomsw3wIQL4SQd/E7CZTSZwA8AwDjx4+n06ZN81voa6+9Bm/7MPOHNzZv3syPCWSG8ZbsUn6+nTt3Ytq0aQHPyWzKOp3OZyPQaDSglMLhcCAlJcVjQhQ7h/xcrA6bN29Gbm6uRz3kx4mP9/W//FjxZ/l9YOf3d+8CleutLux4JXirgz/EJjLx8ztw4ACSkpICjih9aQ86na5baTAAMHr0aEXnUwqrg7+6qhpM7DQYwC1gBEFATk5OUO8JI9EFzGYAFYSQlwFcDeBCb/K/2Gw2mEwmEEKg1+t5AxA3BJfLBUEQ+N9QJ0SpqKj0fCwWC5xOJwDA4XBINBgW1h3JCMl4hynXAvg/AJcTQk4QQu4khNxLCLn34i5vAzgC4DCAZwH8JE5VTRjYssZsA9wNxel0wm63cxORSnw5NXYcvh2Y77G1Dh/h8V3biEKv34u3U2MDR+h3dnbiu9/9LpxOJxoaGviIc9++fXj77bdDuo7W1lb86U9/CunYYBk1alTA9ltYWMj3UWKOC8dkFw927tyJf//731Erf/Hixdi8eTM0Gg3mzp2LEydOAABuvvlmXLhwIeIReHEVMJTS+ZTSAZRSHaU0j1L6HKV0PaV0/cXfKaX0Pkrpdyilo+W+l57Knj17UFdXB7PZjIaGBlBK0dra6tf/wjaHwxHj2qp4w3XuXMzL27BhA2666SYPP0Y4AubChQsxEzAqoQmYSLzzt956KzZs2BB2OXLiPQ9GxQsNDQ1oamqCw+HgM2uZc1IJTECxraGhQfJXTcneM3nppZdwww03AHD75TIzM2Gz2fDwww/jlVdewdixY/HKK6/AYrFg0aJFmDBhAq688kps2rQJAPDVV1/hu9/9LsaOHYsxY8bg0KFDePjhh/Gf//wHY8eOxbJlyyTna2howIgRI3DPPfdg+PDhWLhwId59911MmTIFw4YNw8cffwwAaG5uxrx58zBmzBhMnDgRX3zxBQCgqakJZWVlKCoqwl133SUZPf/tb3/DhAkTMGnSJNxzzz3crCNGvrSwN8T7zJs3DyUlJRg/fjyeeeYZ/v3GjRsxfPhwTJgwAZWVlaioqAAAnDt3DjfffDOKi4tRXFyMDz74wOd5zGYz7rjjDowePRpjxozB66+/DgDYtm0bJk2ahHHjxuHWW2/lJuyCggKsWrUK48aNw+jRo/H111+joaEB69evx1NPPYWxY8figw8+kNThmmuu4XV45JFHcNddd2HKlCm4/fbb4XQ6sWzZMhQXF2PMmDH485//DMBt8aioqMDll1+OGTNm4JxooJKRkcEHI9/73vfwj3/8I+D9DBbFPhhCyHUAigAkse8opY9GvEYq3FlPCIFGowEhBIIgeH3JvMES1508eZLPwhWngTh9+rRH5lSV7o3NZsORI0dQUFAAi8WC/Px8vPHGGwCARx99FHv37sW6desAAMuWLcP06dOxYcMGtLa2YsKECdi1axfWr1+Pn/zkJ1i0aBFsNhucTiceffRRfP3119i3b5/X8x4+fBgbN27knXBNTQ12796NzZs347HHHsObb76JVatW4corr8Sbb76JHTt24Ic//CH27duHX/7ylygpKcHDDz+Mt956C8899xwA9xyVV155BR988AFsNhuWLVuGl156CT/84Q8l51YyUBLvs2HDBhgMBnR2dmLatGm4+eabYbVa8fjjj+Ozzz6DyWTCd7/7XYwb5zZH3n///fjZz36GkpISHDt2DLNmzfI57+RXv/oV0tLS8OWXXwIAWlpacP78efz617/Gu+++i5SUFDz++ON44okn8PDDDwNwRzp++umn+NOf/oTf//73+Mtf/oJ7770XOp0OVVVVsFgsuPvuu3kdvv76a9x44428Dl9//TU+/PBDJCcn45lnnkFaWhr27NkDq9WKKVOmoKysDJ999hm++eYb1NfX4+jRo7jqqquwYMECWK1WPP/88wDcQig9PR1WqxXNzc2KIzCVoEjAEELWAzACKAXwFwC3APg4YrVQkdDV1QW73Q6n04muri4eIRYsNptNEjar1+u5ZtTY2AibzYba2lpYLBY0Nzfj0KFDAACj0Yjc3Fw0Njaivb0dTU1NOHr0KCwWCw4dOgSr1Qq73Y4vv/wSSUlJsFqtOHr0KG+Yqampan6wGNPU1IT09HRF+7733nvYunUrfv/73wNwt7cTJ05g0qRJ+NWvfoVz587hpptuwrBhwwKWNWTIEIwaNQqCIKCoqAjXXnstCCEYPXo0GhoaAAC7d+/mI/rp06ejqakJbW1t2LVrFxeC1113Ha//e++9h08++QTFxcVwuVywWq3o169fsLfEgyeffJLX4/jx4zh06BBOnz6NkpISZGZmAnBrOSyNzLvvvssnnAJAW1ubz7D2d999F+LpERkZGdiyZQvq6+sxZcoUAO73cdKkSXyfm266CQBw1VVX8fvgrVxWB5fLxesAAHPmzEFycjIAt6b0xRdf4LXXXgPgNm0eOnQIu3btwvz586HRaNCvXz9MnTqVD1gFQZD0K3379sXp06djL2AATKaUjiGEfEEp/SUhpBqAsum2KophazKI49MDxakHi9PphCAIvDy73Q69Xg+r1cobW3t7O86ePQtCCMxmMxwOBw9XZILPaDTC6XQiJSUFKSkpaG1t5RrR6dOnodPpJOtJiP9XiTxJSUno6upStC+lFK+//jouv/xy/l17ezvGjx+P0aNHo66uDnPmzMGf//xn5OTk+C2LzfIHAEEQ+Gd55xUMlFL86Ec/wm9+85uIhQvv2rUL7777Lnbs2AGj0Yjrrrsu4P1yuVz46KOPkJSU5Hc/X1BKMXPmTNTW1nr9nd0rjUbj816J6yC/F+L/KaVYu3YtZs2aJTk+GN+b1WoN+Vp9odQHw6bsdhBCcgHYAQzws7+KD5h/5NSpUxK/SF1dHQ4fPoz29nY+woh0yKAYJrg0Gg00Gg0EQeD/A+7AgeTkZOh0OiQnJ0MQBL6/N2Hncrl4cjyWOO/48eNobGxEY2Mjzpw5g7Nnz6K2tha1tbX4+9//rka8RZCMjAyu8coxmUwSAT9jxgysXbuWP8fPPvsMAHDkyBEMGTIEP/3pT3HDDTfgiy++QGpqatiDg6lTp+Kll14C4HZi9+3bF3369ME111yDmpoaAO7UM62trQCAa6+9Fq+99hpPUdLc3Ow1pY6YESNG+P29ra0NGRkZMBqN+Oabb/DRRx8BAIqLi7F79260tLTA4XDwFEAAUFZWhrVr1/LPvsyEADBz5kw89dRT/HNLSwsmTpyIDz74AIcPHwbgDhE+ePCg33rKn5XSOsyaNQtPP/0099UePHgQFosF11xzDV555RU4nU6cPn0au3fv9no8pRRnz571OlE7HJQKmC2EkHQAvwPwKYAGAN7FsgpOnjwpcay3trZ6CBGdTgeTySRZ2Een04WVuTSRsNlsXNtxOp1cWNrtdtjtdlgsFrS1tWHTpk0eAQnie9ddAxIEBQ7oSJdXVlbmtQMpLS1FfX09d/L//Oc/h91ux5gxY1BUVIRf/OIXAIBXX30VxcXFGDt2LPbv348f/vCHyMrKwpQpUzBq1CgPJ79SHnnkEXzyyScYM2YMVqxYgY0bNwIAVq1ahV27dqGoqAhvvPEG8vPdc6oLCwvx61//GmVlZbj66qsxc+ZMnDrle/rb+fPnA2r4M2fOhMPhwLhx47Bq1SpMnDgRADBw4EA8+OCDmDBhAqZMmYJBgwYhLS0NgNuktnfvXowZMwaFhYVYv369z/IfeughtLS0YNSoUbjiiitQV1eH7OxsvPDCC5g/fz7GjBmDSZMm4euvv/Zbz+uvvx5btmzhTn5xHa666io8+eSTaGtr4xaHtrY2tLW14bbbbsN3vvMdjB07FqNGjcI999wDh8OBG2+8EcOGDUNhYSHuuecen6tSfv7557jqqqt4rrZIoShVDCHEQCm1sv/hdvR3se8SifHjx1NveYzEvPbaa7jllls8vhfPCN+0aRN3ilutVthsNn7zmZnpsssu48eyJUU3bdrEzUtarZarvuxYh8MBvV4Po9HoEaPPbNYtLS38WEKIz/BkBjN5EUKQkpKCnJwcmEwmNDQ0eKQuYXVj18HU7K6uLq6l2O12CILA7bvsd8Btiuns7ERycjKcTie3mzc3N3M7NhOSra2tXCNyuVwS9ZulRzEYDEhJSZEI1o6ODhiNRnR0dECn02Ho0KH8xUikmfxz586VzOQfNGhQyDP5I5GL7JtvvsH//M//YP369TGZyR/MPkoIdSb/li1bcOTIEdx5550hzeQ/c+YM+vfvD4fDgeuvvx6LFy9GWVlZws3kb25ulpgkveF0OtGnTx+vv7W1tcHhcPD3HAA3f1dVVWHWrFm45pprJL+zVDFtbW0oLS3l3xNCIpoq5v8AjLt4QisAKyHkU/Zdd4X5PBhNTU1cPW1qaoLBYIDJZOI5f1hHzyK6xFFYx44d45FZTGizkTvgflB6vV4ye1bFjbdgBMAt2HU6nZqdQCHjxo1DaWmp4mjDnkJ5eTmAS0I3WB577DH861//QldXF6ZNm4Z58+bxwWVvYcSIEbjmmmsiXq5fAUMIyYE7e3EyIeRKAMwh0AfuqLJugVyQmM1m1NXVcWc0y4IrHj3Jw4JZKhYGExiAe8RhtVrR1NTkcQwARVqIivs+iu8fM6fZ7XbU1dWp0WkKWLRoUcgdbW/lsccek+Qi89fGnn/+efzxj3+UfDdlyhSJ/yVS2O12tLW18c8soo4hCELEEnLefvvtESlHTiANZhaAH8OdZPIJ0fdtAP47KjWKAmxeCCM1NRUmkwlNTU1hr9gGXNJUfOUL87V0q4oUeTZdjUYDp9PJ/VXeTCgqKrHkjjvuwB133BGTc8kzbLPQYvHviY5fAUMp3QhgIyHkZkrp6zGqk4oKx26385Q5drtdYsYE1Dk3KiqJjFIfzAeEkOcA5FJKZxNCCgFMopQ+F8W6qShEPFcm1IWBEhU2/4aZI+WBEapWo9JTYJmOmWlMbhKTm+m7A0oFzPMXt6qLnw8CeAWAKmCiiNL1xcVRZIGiTHoC4hQ4cq2GBV5QSn2GZKqoJCLMROxwOPjctO5mEpOjVMD0pZS+SghZCQCUUgchpHeFqsQQSmlQkUA9WYPxhjjqjIUyM8HCon8OHz7M03qogkZFJT4oFTAWQkgWAAoAhJCJAC5ErVa9HJbkkmklwcyDMRgMfETf0dHhIXDYynXdTdX2BTMjyKPPXC4XmpqacPr0aQAIWciwCMTz58/D4XDAarXi0KFDsFgsqK2thd1uR3t7OzIyMiTH/fWvf/W6Zn2oJCcnB4z06ezsxPe+9z387//+LxoaGvDjH/8YO3fuxL59+3Dy5EnMmTMn6PO2trZi48aN+MlPor8U06hRo/DJJ5/4zYVVWFjI9ykoKOBzx3yhZB/A0zzF1lhiaDQapKSkYNq0aXjhhRdQUFCAGTNm4O9//7vHs1e5hNJe5gG4V5e8jBDyAYAXAVRGrVa9HKbBsMXFgiUrKwu5ubkwGo08SwDb5Gp3T4CZFtiWlJTE/TbhzqNhEYidnZ18AqrdbudZCWw2G08gKl5SIZLCRWl56nowocPaEBvcGQwGSZvyZlG4/fbbe8W9CQelPU09gH8A2APgDNyrS/pPqqMSdzo6OtDe3i7ZXC4XT98CuM1NNpvN43uXy8V/Y6nbnU4nOjs74XK50NnZCavVysvt6QuduVwu3tEwQcI0pY6ODp7xOlZzUOx2O6xWK08VYrVa8eKLL2L69OmwWq2wWq3qejCifSwWC6677jpMnDgR48ePx/PPP4+2tjb861//QllZGaZOnYrrr78eJ0+eRGdnJ6655hrs2rULgDulzaOPulcmyczM5AJ87ty5PhNZqrhRaiJ7Ee65L49d/LwAwF8B3BqNSvV2gjWR+cJoNHqkirFYLCCESLINAN4DCry91BqNhne24noxkxT7X5z5gJXfExBH8rD7Y7fb+f3r6uqK2kx6+Xrq7C8bDBw9ehQDBgyAy+VC37598cILL6CrqwsrVqzAvn37eHr+VatWYdKkSfjDH/6A1tZWXHvttXj//fd75HowO3fuRFtbG95++2307dsXf/3rX+FyuWA2m9HZ2Ylly5ahpqYGmZmZePPNN/HYY49h3bp1WL9+PX7wgx+guroa27dvx3vvvQcAkrT6GRkZfIJ1VlZWkE+zd6BUwIyilBaKPtcRQup97q0SEsxBLTaRRXyN7ItZmgF3B8nyjSnNRabX6+F0OvlfFiJst9sluci8pdoQT2hlQqo7wwYA4szXbHAQDbq6uiSph9jgg1KK5uZmnqRRq9VK7i/zu7HP//rXv/DOO+/wjMqdnZ04evQoxo4dizVr1uD48eOYO3cuvvOd7wTUTBN1PRgmjFmbGzFiBB5++GGsWrUKZWVlmDhxIr7++mscOHAAN954IwD3+9C/f38Abl/P/Pnzccstt2DHjh0eAzVGv379cPLkyR4lYOQDWvHgMViUCphPCSETKaUfAQAh5GoA/jNKqnjF5XLxpZBPnjzpdZ9IaTDxxGg0oqurS1J38cheHCkXqXQXPR1xcAYTGoD7XhoMBsURhJRSvPTSSxg+fLjkmDFjxmDcuHH45z//iVtuuQXV1dUYNGgQX+gKuOTsZsRzPRixRgdA4phnfjI2j2rYsGHYsWMHtm/fjt/85jeYOnUqysvLMWLECLzzzjte6/zVV18hLS1NssywnK6uLslArLvhbQArz0IiCELIAtSvD4YQ8iUh5AsAVwH4kBDSQAg5CnfyS2XpanshzDnPNvZZPIJnq0aKN6PRCKOx26R4CwjLlaTT6aDRaJCcnMw3g8EgCTVub2/nTnPx1h2FazxIT0/3uR5MamqqJNBhxowZWL9+Pe9cmE/k6NGjGDRoEJYsWYI5c+bgwIED6NOnD8xms8TZzZZaYD495guy2+3o6Ojw8EMFsx5Me3s7rr76arz66qv4z3/+g87OThw+fBj79u3jiWTb29vR1tbGBzAajQbjx4+XOOblkZKnTp1CcnIybrvtNtx333344osvMHToUJw/f56b2ux2O0+nv2nTJrS0tOCdd97Bgw8+yNeqEUMpxenTpz0m/3YnvGXBEGvj4WbJCKTBlIdVei9E7RCDw2AwSKKvvBHo90QkmBUmlZYXiNLSUvz73//GtddeK/m+pKQEa9euxaRJk7B06QwVyvUAACAASURBVFL8/Oc/x/Lly3H11VfD6XRi8ODBqK2txRtvvIGamhrodDr0798fDzzwANLS0jBx4kQUFxejrKwMjz76qCRqD7ikxbBOXe6DeuSRR7Bo0SKMGTMGRqNRsh7M/PnzUVRUhMmTJyMvL4+b2h5++GHceOONPBfd7373O96Rs8XxmP9JycJ1Bw4cwCOPPAJBEKDVarFmzRro9Xps2LABVVVVaGtrg9PpxOLFi9G/f3+sWrUKW7ZsQV5eHhYvXowVK1ZwYcj45JNPMHHixIivoRJN2ICXEW3faKBcZP6XkQsTQsj3APwRgAbAXyilv5X9/mO4Fzn79uJX6yilf4lmnWJBd2qQsYAFI/jrkOWZlhOdm2++mdfXm0/GarVCEAQ+IJFnYJCv68HmZvhj0aJFWL9+vYeAycjI4BFRDLZKothEtnTpUlRUVHjMHn/++ecl9WIMHjxY4mj/85//zPcpKCjA/v37AYA70OVkZWVh27Zt/HNTUxMXpLfccgtuueUWfp8Y+/bt87hXe/bswd133+31njCmT5+O6dOn82tijB49Glu2bAFwyUQmCIIkqOEnP/mJ17b317/+NSbzgyKJfJpCNPy8YuLW0xFCNACeAjATwAkAewghmyml8uCBVyilFbGun81mAyEETU1NfAQtb2TM8cV+D+QIY45xFe8wU5oYcTblnrLaZ7S44oorMGXKFMk6RL2B2bNnx+W8o0aN8hDmiQzT+BJGg4kyEwAcppQeAQBCyMsAboB7zk3c0ev1EAQB6enpaG1t5ZFVDKfTyR1fra2tsFqtyMrKwtmzZz3S8zNHmUrwuFwuPlve6XTi5MmTkgwFbIVQFTcLFy70CCFXiQ6BtKZEg62SG0sNRtGSyVE5MSG3APgepfSui59vB3C1WFu5aCL7DYBzcE/s/Bml9LiXshYDWAwA/fv3v+rll1+W/H7q1ClJpBLLZdXa2sojTeSdlHiJYOZslgsNps6z3wPZ3ZmTlC1tLD8nc8Qy7SmUZ6PVapGcnMxnsMsFm7x+TGOQr74p/o39Lr4GFuUmXn2SmS5Y58aug5UpLk8sdJnaLt5ffF42K9/lciE1NZU/N3G95Mex58OWZR4wYIDX+8XylfmCtZ2WlhbuX5DfJ0IIrrjiChQUFEhMEOLf5YgFgDdnqrxN2mw2xSNPVpY44szXAEe8KJ6viEV5h+TrmnzVXSnenr+/+ohXmJUjzs8XCG/XIi8z1GsKBvF77+1ZBIr4YvhKeCtvQ77KlP/e2NiIw4cPS96h0tLSiC6ZHC/+F0AtpdRKCLkHwEYA0+U7UUqfAfAMAIwfP57K11h/7bXXJI2jo6MDqamp0Ov1vMMsLCyUHLN///6AGgyL22caTHp6ul8Nhq1nr9VqodfrPaJP2LyBlpYWPtoIJkxZo9HAZDKhb9++MJlMaGho8Hgpzp49K+mcmZD0Ng9G7FgWC9zOzk4kJSVJ7kFzczP/n5myWltbJXMxxOU5nU7e+bNVRcX7Mzo7O6HX65Geng6bzcZzS7Hram5u5k5fMaxuNpsNWVlZkLcJxs6dO33+BgB1dXUwmUwwm83Q6XSS+8R8IlqtFp2dnTCbzUhLS+MveLg+GPEyBPL11FnbAKQdLaWUz4NhZXZ1dfnsdMQ+GBbqLPfBiI/1d02+6q4Utky5vH6+6sPq7u3a2HHy95aVAVy6X+KBDrvHgZ5HNGhra4NGo+GDNfm1OxwOif9W/mwC1VPehliZciEjHiCx6M6cnBy/74kv4ilgvgWQL/qch0vOfAAApVTs1PgLgDWhnCgrK0ty0202G3Jzc7kmk6i2ffFoBpCONlgnQgjBZZddxr+Xh6T2dFhHK/dtuVwublaLxSS4hoYGCIKA5uZm3gn4G+3L6yvvsMUaMgCPOUXyeTDsPOIOk5Up75h81cNXzi255unrmnzVXSkWi8Wjnv7q40/Ysd+YBiyvH+B5v4BL2l6g5xEN2ERaZiFgc3nkdRPXST6HzF895W2IlcmOA6TaNMtMce7cuZATesZTwOwBMIwQMgRuwfJfcKeg4RBCBlBKT138OBfAgdhWMT4wrUVsthBnTHa5XBg9ejROnXLfmtLSUsnxdXV18ah2XNBqtQEDJ0KdhcyObW9vh81m405S+fmcTiccDgeOHj0Ko9HINVO2Ro23ESXTwtjgxttCauLnWldXx5f4BqTaoVi7FGturMxDhw5h2LBhXq9PnGlYrh0CkJQT6Jp81V0ptbW1HvX0Vx9Wd2/zUNhxZ86c8ZhbJr9f7HemRYufYbjXFAxMW25oaEBBQQEaGxsl197c3MyzZQCezyZQPeVtCAC3zoi1OrmlIZy5eXETMBfXlKkA8A7cYcobKKVfEUIeBbCXUroZwE8JIXMBOAA0A/hxvOobS7RarVefkXhkU1xcjM2bN3s9PjU1lau2gNskyBoJ84X0JCewr+gzFnkWjgbDtN+zZ89KsisAnv6B7jhfRyVxEC+zIQ9mAdAtE8rG1QdDKX0bwNuy7x4W/b8SwMpY1yveyCersRXu/Dk1xbC1T9iI6OTJk8jNzQUAiS/BH97MTiyTMKUUHR0d0Gq1sFgssFqtoJTy0Xgimx1DhQn9QC+5txxsKipKYIMZuQmf0R0HMInu5O+VMBMHw2q1wmg0wm63c4e4EpgmY7PZ0N7ejqamJhBCJAt0sfQs4qg1ZoNmWk9HRwfS0tJgNpsxePBgpKamghCC8ePdQSR79+4FpVTi+zl+/LhHNmW5vb87alHiKDFf9Wc55sLVnlRiB9MWWLobeZ7AnjZgihWqgElAmLbBaG9vR0FBAdrb24OKZGGazN69ezF+/Hj+F3DPfj58+DBycnJw/Lg78ltslmPOVtZBZmVlQa/Xc/vu3r3SXKfyFSP37t2Lo0ePcnMSG9mL7bndfdIpuzYmLHU6Hc8xB4ALdea3EHPhwgUeRabT6QJ2aE1NTfwYwPtoluUAa2pqgsvl4mX2hmW0w4Vlk2A+B2/voErwqAImgdDr9bBYLLwxs3UmWESUv/kawVJcXAyLxYJp06Zh8+bNyM3N5cKHIRdMcqESiIKCAolW09HRIRnR2+32Hp82Rx7ByJBHMAbq0Nh9C8bJz8psbm72mbn7wgX3yudMyMnt/t19ECA23TLYNXV2doJSyi0DYg1GJTL07Le7m5GbmyuJAmEd+8mTJ31qDomMWKvZu3ev5DoA9xyUlJQUHD58GMClWftiTao3pTyJFgaDwUOAMcSdrze7f080Dck1T7aOjliDUYkMqoCJMSzMmKU/ka+GF0ktpTvAhJDZbIbdbuemH/aSs1TxKrHBmwYj1n6YwPFnMoqVUGKahjftTGxO9IWaGzD6qAImCsjTvLB8PyzMOCUlBdnZ2Zg2bZrEL9JbYUJmz549aGx0J/DOysriM7t1Op3HyFolOsiX2Rab2gDl82BCwWq1eggLuaAQ+5YY3rQz1l7OnDnj0W66Y3BJd0UVMBGGqd9i047T6YRWq+WRYAUFBR6LMqm4BQ27b8znE2xgg0r3xZspz5vJju3TE813PQ1VwPiARfiwRux0OrlWwmbWs9/EaTuYo5XBTD4GgwFZWVlITU1FcXExdu7cGcOr6b6wUGuGePkEIPCcIBUVlfihChgfpKenw2KxICsrC1lZWThy5Aj3C7AkdMx3wiYeWiwWnmAPcAsVpo4PHTrUI5RXJTDewp/Fc27sdjssFouHGUT126ioxB9VwPhAHtHV3t6OuXPnArgUyeXLdyL+nUVPqcIlcojvZV1dHY4fP84zOauoqCQOqn1BRUVFRSUq9CoNZv/+/Xj//fdx7tw5ZGdnY9KkSUhPT1dDhrsxqampEl+ZOLEnADXyTEUljvQaAbN//368/vrr/PPZs2exadMm3HzzzXC5XKisrMRll12GI0eOoKqqCvPnz/coo7a2FnfffTc3m23ZsgVlZWV45513PPbdunUrSkpKMHPmTIwYMQLbt2/H2rVro3eBvZTi4mKcOnXKI9IsUgMFFmTAZnyzYA/xSpD+VoxUUenN9BoB88Ybb3j9/vXXX0dWVha++uorDBkyBF999RUWLHAvSzN//nweHfbAAw/giSee8Dh+27ZtmDVrFt555x2kpqbCYrGgvLwcwKUcUC6XC+vWrcPzzz/fqxYDixXiNDeB/GPBIp6jYzab0djYiNTUVFy4cAEajUYiWBI9sECuwU+dOlXV0nsZ8kznLDs6i5B1Op24cOECrFYrNBoNkpKSwvJv9goBk5qaKlmoJz8/nyd4BNy5muQsWLCAC5pAbNu2jQsXf1gsFgwaNAjHjh1TWHOVRIEJms2bN8NkMqGjowM6nQ52uz1hTHItLS3o6urC559/jpSUFBw4cACzZ88G4BYuO3bswNy5c3kb3Lx5M6ZOnYqMjAwcPXoUW7duRW5uLgghfKlwSim2bt2KqVOnYtSoUXG7NhVIpkYA7iwX8kmt/gYM8t+ampqQlpaGrKwsnD9/Hq2trTh9+jTy8/ORnZ0Nh8OBDz/8EFqtFgMGDAipzr1CwBQXF2Pjxo38c3l5ObZs2RLRcyidOMkEGzOzievCRhGzZs3C9u3bcd1112HLli1YvXo18vPz0dHRgcmTJwMA/vnPf+L++++H0WiExWLxatLrruzfvx8//vGPFZksV69ezfcrLS1FR0cHzp075/e4cGDa0ubNmzFgwAA0NjZyc1xTUxNMJhN/6WOxfHVLSws315nNZqSkpGDq1Kk4deoU/vnPfwJwh8i///77mDt3Ll8BsaCgAHPnzsU333wDAPjss89w0003gVKKU6dO4dixYxg0aBAGDBiAK664gi9uN3jw4KheD4NpW0zgDRo0CP369YvJuRMFubbhcrkkpl9xdnMleAv5By5p+1lZWZgyZQo+/vhjAG4z//XXX4+6ujrs378/pGvoFQIm0fCVwJEQgrKyMmzbts3jtxMnTkg+OxwOUEphsViwYMECvPDCCx6+oMrKSjz77LOYOXMmtmzZgvLycmzfvh1333031q5di2XLlmHv3r144IEHcPDgQdTV1eHZZ58FAN5xb9u2DTNnzsT27dtRVlaGzz77DABw5ZVX8k5cvMytvNMfOHAgtm3bhvLycgwfPhw33HADMjMzPZYxzsrKQnNzMzcvik2WixYtwt13383Nj1u2bEFKSgpsNhvsdjvf76uvvuLH19fX45577gGAiAgZudBnJlPxAKG8vBxvvfUWZs6cyZ/Fnj170N7ejs2bN6OlpYVrz4WFhbjsssvwzTff4KOPPgLgfv6XXXYZfvCDH3itg16vx5dffomuri706dMHycnJsNvt0Ov1EAQBycnJsNls+OSTT9DZ2QmXy4VPP/0UQ4cOxblz5/Dqq6+is7OTl5ecnIzLL78cZ8+eBaUUGzduxNixY9HR0QFCCBobG3Hu3Dns27cPGRkZeP/99yUCZuvWrfj000/hcDig1Woxbtw4rjGFg1jbopSis7MTBw4cwJEjR6DRaLhG1dPMe+KVaNk6Tv4ESiQT3w4aNAjNzc2SFFdOpxNvvvlmWAlne52AYenhtVqtx+qE2dnZ8aiSBG/CRelxlZWVPJCgsrISf/rTn2AwGCT72Ww2PPXUU9i0aZPETAi4tbCFCxciKSkJNpsNQ4YM4X4ktmrliRMnQAjB2LFjcfDgQSxYsIB3svn5+Th9+rRHpy+nubkZWVlZPOiCCRdfeFt9M5DGSClFe3s7KioqwhYws2bNUvxcKKUSv1xxcTHGjBmDL7/8EsAljfX666/HwYMH4XA4kJWVxQVPa2sr3njjDdx4442SclNTU7mQAtxm3ra2Nhw/fhz5+fno06cPv9f5+fk4f/4875xYmxcLF/Hnrq4uD01L3NEA4OdlbN26lY90AfeAh30uKSlRdK988f7776O9vV0i8BhGo5EH6MyZMwcZGRn429/+9v/bO/fwqKos0f/Wqaok5EWIQCAPRHwNBrBHxVd7W5D20SPazow9Y7RHuuHqp1e42D4Yv8Zur3cahwvSLR/2TF+ftO0N9qhXRVpHWgFnHJ2+RAUkoqKAvBEIj5CQSqpq3T9OnUNVpSpUknqkkv37vvpyzj6Pvc4jZ+211t5rs2XLFnc66zFjxrgyOBaZk6W7tLS0z8bKHAtjzZo1cfMUOgolthHXXUt91qxZPP74425j7GTenNh3oTsMOAXjKJV4U9/u378/7jF9qYdQ5MvgtKAdHn/8cVfB/OY3vyEUCnX6qDgvS6xyidwee0y8faDzpFeJzhmPSIXSlXLpLak4d0+UfuQxjnKJ5PXXX49aj3XbPvLII1HbJ06cyIUXXhi1PxBlPcVbBrjrrru6jEHCiV53kftBZ6XkEKlcYst7q2C++eabk+4TCATYuXMnhw4d4quvvnLLVZWvvvqKyspKysvL3RlbwW5cHThwwLV8Dh48iGVZblC7qqqKjo4O/H4/69evZ/fu3Zx11llceOGFGbWWFi9ezDXXXON6DoqKilzrPvK5Oo24adOmAclZ6o5yyRQDTsH0hFzMvnqyueMNA4fuxCAffPBB1q1blynReoUzEV88mpub+eabbzjttNM6bQsGg/h8PkQEj8dDeXk569evdxWb4ypy7tHMmTMzNsRg1qxZvPrqq+663+8/6YykHR0d/PjHP05KwWRSuYBRMFnFsixuvfVW3njjjS6V2Ny5cxNuS3VnBcPAJnbW0VhrJxMdF1KBM+A2FApRVFTkusQdd2F7ezt+v5+jR4/S2toapYCBhJ6BdNNTBdBXp8XOqoIRkWuAxYAHeEpV58dszweeA84HDgJ/q6rbulvPkYWPcnD23e5LVLPta64oG0Kt10ehJbSq0tjR4ZYDTMrLx2cJh0MhysSi8MWXuW2EnSbc+/F62i3L3RdgVzDAom7OgxEKhXjuuecSKhejPKKpra3l7rvvZuvWrW68IdcCvVVVVXHLb7755m49b2e+nER0pQhuvPHGhHXt3buX+vp6dz3W2lm6dClr1649qRLKBK2trQwZMsSVJVKOgwcPcvDgQdavX8/rr7/uXke8uEOkMjGklqwpGBHxAL8GrgR2AmtFZLmqfhqx2wzgkKqeISI3Af8L+Nvu1tW2ciVW6WB+eMUUwI61XH7W2bSvXw9eLy1HjnA0pJzibwePfUuG+7yAYBGkWAQrGMTnzPWiSkEwyKT8Anvf4mI6Wlu5YVAhIywPvo9sF8OSkVXIR+vg4/X8eMRIDodCtKqysu14t5VRX+f66693u7Km6wPT2NjIY489FtVxIBda05Hs2rUrbnnkRz0ZulIu0PV9eemllxJuO3r06EnrPpnLbenSpSc9Rzx8Ph/Nzc2uwiguLmbMmDFR98yZM8bv93Pw4EE2b97sxrNuuukmXnjhhR7VbUgP2bRgLgS+VNUtACLyAvB9IFLBfB/4H+Hll4DHRUS0m90aCq66iuCuXScsmOpqdnyygVqvj/FnnsG2poPsCAYgP8/+C1xSMgzJy2Pnnt1UejyUigdnlhcn5O93xOjowCdCueUhX4ROnfpUKRWLPEvIE6Gy0ENVWJFFWk21Xh8INMYEzx16YiVlgtjWcK599A19g6FDhzJp0iSuuOIKtyxWeXUVP+rpe/fTn/6UyZMnc++997pl8WbJzDSOOy+XyeYVVAGRXVl2Ahcl2kdVAyJyBDgFONCdigbff19UX+6pl32bFRvDPXsOfBO3fFcw4CoBFAqKCgiE/ZxeyyIkQgBbwRzy+8kToSkUpMjjJVEnSJ8IPhGGeD3UBOxzR1pNtYMHA3B6SwteEVeRRSqs2cWlKHBUQ65F1NjRkXHlczJ3Tux2Z+yIwdDXeOSRRzq9r7HTMmeD/tBRJ/dVJCAitwO3A1RUVKRktsjYj/U9t57IRdZV//F7S0q4cdhw8kMhWlpbKSosxOfL4/CRwwCUiUUAXEsp0moqPXKE008/nfzWVhQ6W0LhMgmfp8xjq6A/8/oQ4M6iEjZPnsLxc8byy4gYU9HGRv5+eAVFGxv51YhKLAGngnaFvBdfxgoGWTLSjg+IKh0AH69n4YhKvB+vZ/GISvjwI3sdCAABlMPh+FGRCC1hi65VFRTGeL14w4o9hBL6/YtuHCuAkj/nATYXFfHW0OEUWkKZWBR8vB7ArfdXIyppC9fTqsrRbV8zK7y/U2/hug0sjIiPAfxjhEtyw10zafrBjXGf87Fjx7p8X8pffIlflg1hUl4+gyyLgo/WsWRkFdYL/8LssAt0ycgqQiiBdRuYNWy4a4FuuGsmAL+MiNUlE/9zjo2UufzFl/jyokvYs3ULAMPWbcCjysIRleQB1kfrWDiikgBKx8ZGV45rrr6azZOnxJUBOlvNl3y6ib8fXuHu6/30s05yJbqmRLIny8meRTbpq3JFkk4Ze3rubCqYXUBNxHp1uCzePjtFxAsMxg72R6GqTwBPAFxwwQU6adKkdMibFIuam/n88ssB3KDiWWedFTdRJsRYUwAHvuE/h49gsGVRIEII8IU3JRpP61g6+SLI19so9Xr44RVTOPT++wQAXyBIvuXBFwhS4MSRLEFV8QhYwWD0uUXwACFVO+4UCuEJH+cRu0dGEBAEK/yhLxYhP6xgnIQeBVEjgOXE+cLHyv79WAf2Uzt4MEdaWigWgfA5fCKIKpYIeeF6hgO7/O1Ueb04bbtiESQUIhQRHwPIEwvLEk4rKsL7xRdMSPBOOIPaErFv3iP88IopHP/gAxTiWqfe8BX5QiFGe7wcDSmXX345oS++AOCHV0zh3XffBU5YrKO9XooGD44b/3OOjZR537xHCBw4QLllS1AYCqHh++TINEgEQfAHbEv6aEgZ2hGg/ettcWWAE1bz0cN2A2iYvx2/deIq8/1+amLkSnRNiWRPlg13zaTa54vqkNOVwqs7/3w2bNjgKsdYxVloidvwiWxkAa4C3hUM8HkSsmXzm5Is6ZSxp+fOpoJZC5wpIqdhK5KbgNjsksuBacAHwI3Aqu7GX1KBk/8rksmTJ6etl9fF3+wFbGuoyuN1/1lGxInxaMTfDlVKzv0W3lNH4a2pYdu//5v98Sop4WBTE6eUlFDT3EwIKCospLWlhaZQiNLSEvKPt+GPsEbaVAl6vfjDg9QKRfCJbZ0UIrQTbcH4k7Bg2kMnHl0AZVBFBSUjR7LuvfcotISQWHhF8Ho8BEIhvJYFoVC0BZOfR8ehgGvB+EUo9OWhYXeCNzwoti0U5HAoxM6jR7joqqt6/CwKrrqKZx555IQFE76eSPdlMHx9AcvDto52dgQDPL/qHab/9KcAPBM5aDJssZaKUHioiVbVTvG/yGMj5fjTgoXudXu8XjyqBEIh24IJP7MASoc3j/3+NleOWyZN5vlV73SSAWyrGTlhUVfn5xGIiGV4CwvZ0WKve2qqyau6iOCuXXhravjgj/Zg0rNKivli7x4Arrr0EgLdGHAbSfFHHxGstK1oR6l1pfCC276mtnSwqxw7KU6vl+DRoxSp4ukIUGR58HQE8KpS7vVR6fHgRTj86WdRVrFjKUdaZUcWPsrg++/r0XUly5GFj3ZpGRbt3kM2+pXm5Ej+cExlJvAWdsPwGVVtFJH/CTSo6nLgaeB3IvIl0ISthDLO+++/z8UXXxxVtnr16rTX25OYir7yMkcWPsrTv/gFtV4fIzwWRR3t+MJ/AbwC/pYWvAJllkWevx1LlULH4lClA6XDY9GitgJpUVIe71m9rJ5JkyZxdYJcR/ECulMvujDa4qPzKHaIdl9qLz4Mg++/j3vm3N+prkS5yCLr/Um43qjjYy3WBOU/iZF58P33cXWMHJDcSP6fvPIy9ySKQcaTIzKofuFEd/2exY+hqu77VR1OuXJKe7u7/PQvftFJOSbLsfPOo8zni+qh1pXCKz1yhAnnnsuOD8M5uSIU52WjT0VbWwkdPYpPBCtsDVuqeLAbZEO8PlClSJWasEI6cuSIaylHWmVtK1emXcEEd+1ixoMP8vDDDwPwLX87pT6fu/3Ub/bz7wmsuWnTptF090/wVFUllPPIwkfZM+W7fBnOLFG0sZHCQNB1LwdQjn36Gf5wL9Dfzr4bT4Ju9cmS1RiMqr4BvBFT9vOI5TbgB5mWK9eJ/Sg6JOqB4yS77PQxT0PWaUPu00npnkQ5JkvTD25kwqRJ3LP4sehzJ1B4ALzzx7hy3PPO2wC8dMpQKjweigoL3ZhoYSBoW7yBgP1RlXwCzUdpVeWM00+neGQlodNGc35ET7KeWmXdoaOxkeCOndwx8ULKyspo+/hjrPIT4420uZniISdS+YTa292hF8EdO91zJFIwwV27EBHOvuy/AHa2A+/OnXiCQTh+HEIhyjo6CIUbj8dXroRAgONvrWTQ1Vf1SMH2iyC/oX9ilFvPSTTQsqKigrvuuou1a9eyb9++qG2+iNZyf+HGg3aH05MNtDz73Xep8nhp/Owz+OwzajZX82Y4g/m0adN63ZJPBmc4xYqwO3NSWRn7m+yQ87nnnot/124GjR3r7t+ydy/5l14SdY6uFGFHYyOBrdsg3P3ZFwwifj+EQm7sE0BLSwGw8vJQvx8RWzn1BKNguiBeUsB4jB8/npEjR/Y4E3JfxXzgc5dEY0L27dvHr3/9607KBeycVgUFBVFlDzzwADU1NfzzP/9z3PMNGTLE/Rubcbm3ZFLhxbp8o6yhsGsw3cQOp/jfY8bQEo4vNTY0cEl5OYH3/h2A008/HW093kmhdKUIfbW1AFildseO5uZmfF9+iUTMOUMwiOeArZRD4U43gSTnuoqHUTAJqK+vp66ujlGjRnWpZMaPH8+GDRsAotKyGwy5SOzUCPPnz++yoeEolVQrF+icrbsrrr/+eu69914sy3IzSuQ6r1eOZMVHH7rrUe7Cb/bZVlnYnZiMAvRUVeGPyIIt+w/Y1owqBALg9aIihMIWTF7YgvEMH+Yqp+7Sd/LQp5nq6uqE5fX19dTW1iIi1NbWusoFYPv27ajaYF5BQwAAF5dJREFU3U6duasfeughHnroIVTVVS4AGzZsoL6+vsuZ9+rr6ykqKoq7LVG5wWDomuXLl7Nw4cJ+o1y6SzKTgg2+/z4K//IvqW9ooL6hgQ+DAQ6HQjS3tYHHCneJDCLt7Uh7u+0ei5lPqrsMGAtmwYIFzJ49m6KiIkSE0aNH09LSwoIFC6irq6Ourq7TBD+Q+ME5Pt3YlkNdXZ07w+PNN9/M22+/7SquyImBfvSjH0VNh1pQUMCTTz7J0qVL+52rLZUMZLedZVndnjrCmcsoPz8/bsbd/Px8Ojo6cnJKCkP3KYvpnHFJfj5NK1dyQ6iQMydMoHW/7R6ToiI8hYPs5ZLSHtc3YCyYuro6Fi9e7FoJRUVFLF68uMs5FJJpFXS1T11dHXfeeSff+c532Lhxo1tXXV0dc+bMibKannnmGerq6njrrbe4qhfjNgzRjB8/vtfnyPQMiIme//PPP9+t81iWRTBoZ9Bra2vrNLtpfn4+bW1tSZ83Uq50WuF9aYK//s4Hfj+Lmpt59Xgrvtpa2isqaK+owF9cjK+2Fl9tLd5RNT3u5DCgnmRdXR0bN27k1ltvjfrgZ4MpU6awceNGfv7zn3eSxZnP3XByulLwkfGx3hAKhSgpKenWMTU1J5JUzJw5M+4+M2fOjPpoiwhXXXVVwudfV1dHfX19lLvXcfE6LlvHhauqrnJxaGtri9ruxFvq6up48MEHoxo848ePd+9tPLmefPLJTh0CHCu8tzz//PNJNe5S0Xgw2CxqbuaUxY9xX56Xl0uKeLmkiPLHfuX+ejoGaMC4yFJNLrtq8vPzefbZZ7n55tjECXZrvbKyslvTH2eTUChEQ0ODm7Ldmbc8dkri3nDOOedwww038OijjwL2/euqlV1TU8P27dvddWeyKufjm5+fz2233eaWr1mzhuLi4qRkjnTnAq5L11nvKVOmTOEf/uEf4s4DH08up0E0b968uC7g3hDv3EePHo16J53Gw7hx42htbWXr1q3uttNOO43CwkKqqqqMu7kHfOD3c0l+PiLS695zA8qCSReZdqH0lra2NrfVGtsa/t3vfhf1cTTYM4rW19fz5ptvMnz4cPx+f1TMwukY4lgG8e7fkiVLaGtr46GHHqKtrS1jMySmE8cjEM8KT/W5nc42sZ1rnNleV61axc9+9jNWrVrllht3c+8ZNWpUr443FkwKyNUAqdNqXb58OXV1dZ06OOQCsa6UtWvXprwO58M5a9YsxowZQ21tLWPHjkVVo1r8vbUiDN0n9tls2bKFefPmueWOW2/p0qW8//77UccWFBR06pYdj4HYu/ODcIeQ3noyjAVj6Fc4eZxSTWyLuquu6IbMkowlNW7cOA4ePOgOMaivr2fkyJFRls+wYcM6eSNSFVdKlr5ocSUTD0uEsWCIfwOzkLTZYDBkiHiWz+LFi/n000955ZVXUh5XSpa33nqLiRMn8uGHH5585xxgwCuYRNq5N1rbYDD0feKNf1uzZk3czg6ZZOHChUyaNMntYJHLGUKMi8xg6AYTJ05ERHjyyScRkbS55AwGhw0bNrgdHLrq8t4XGfAWTF9k1qxZ2RbBEEOsRRvZTT0V3TkNhmQ4WZf3voaxYPoYs2bN4vHHH8+2GDnLihUrePjhh3vdvTIS4y419CV60+U905aOUTB9DKNcUsOOHTtSqmT6KiKCiLiuO6MMDV2RaUvHuMgM/Q7HfZUr2Qi6y8mUyMSJEwHwer3dSnlvGBhUV1ezZ8+ejNRlLBhDJ/pTKzjd1+Ios0xZS925nkAg0C9nqTT0jgULFlBeXk5ZWVna/z+MBWOIoj8pl0yyY8cOHnvssW5nPE43gUDAXTbjvQxwYgzQ22+/nfa6jIIxGFLEkSNHsi1CQroa72WUzMAjct6qLVu20NjYmJZ6jIsshUQGXB9++GFjDRgMhj7P3Llz0/atyoqCEZFyEfmjiGwO/x2SYL+giKwL//r0XKiJHlBfGojnxAtyLfuzIf1MnjzZ9EbrI0yfPr3Ts0jns0lnKpxsWTAPAO+o6pnAO+H1eBxX1W+Ff9dnTrz+TSgUMkomDaxYsQIRSduMjBMmTEjLeU26pL7DhAkToua2SUSqn80555yT0vM5ZEvBfB/4bXj5t8ANWZJjwJKrUwzkAqqaFiWTq/mocolsW3LdecaplNGZVyf2vfV4PDmZTblCVZ2O2HuBigT7FYhIAxAA5qvqq72pdNSoUVFjIyKntTUYUokJnOceudwRojsyRl7n1KlTWbFiBarKnDlzKCgooLW1FbDHy0ybNo1XX+35ZzdtCkZE3gZGxNk0N3JFVVVEEt2ZU1V1l4iMAVaJyCeq+lWcum4HbgeoqKhgzZo1nU70N3/zN+zfvz+qLFMD8Q4fPtxJpmPHjrFmzRoOHDjAsWPHUlZXvGtPhCPD4cOHaW9vT5kcPp8vqQF+Tv3ppqs60ilD5HkXL17MH/7wBzo6OvD5fFx77bXMnj2byZMndzpu9erVaZOju2zbtu2k70Wq3uF4zyL23F3V1dW2yPvsfFS7Qybe096SjIzx3jewlc6DDz7IV199xdVXX83w4cO54oorWLhwITNmzOj59atqxn/A58DI8PJI4PMkjlkK3Hiy/c4//3yNB5DR39SpU92/r732Wid5Vq9eraqqa9euTamc3TmPI8Nrr73mytHTei3Lcpc9Hk+36k/3s+gKR4au6G29M2fO7NZxIpJyOdJ5H2Pf4Z4S71nEnruruhJtS/c7lErSLePJjn/22Wd1+vTpet1112ltba3W19cnOk+DJvGtz5aLbDkwDZgf/vta7A7hnmWtquoXkaHAt4EFGZXSkDSRMZ1gMJhFSfoe3c0vp33UHZMLrqJYCgoKsi1CziAirF27lnHjxgGkZD6cbAX55wNXishm4LvhdUTkAhF5KrzPWKBBRNYDq7FjMJ9mRVqDwZBzFBQU4A/PLW/IDlmxYFT1IDAlTnkD8F/Dy+8D4zMsmsFg6CcY5dJ9Jk6cyNSpUwF4/fXXe30+M5I/x5k9e7ZJaGgwGFJOKro/GwWT4yxevLhPpGQvLi52l0ePHp22wYYGgyF3MMkuBzD3338/H374Iddeey0i0iuXQuSx27dvNwM5BwDxxpVt3749ixIZUsGKFStcN1lvMc3MLBGbb6inaUB8Ph+33HJLj45taGhwewWpKitXruzRecCeG9zBKJf+T6xygYEzi+hAorduMmPBZIF4+YY++eSTHimZjo4O3njjjVSJ1mMiB7gVFxfT0tKSc11aDcmTaJByNmYRNfPc9F2MBZMFEuUb6k4eosjA/uHDhznvvPN6LVeqOHbsmPkHN2QEk6izb2MUTA4ybNgwgsEgQ4cOpb29nXfeeYfdu3dTXV2dbdEAuPPOOzl8+HC2xTDkMOlOUW/omu6m0kmEUTA5iJOGoampiby8PK6++mpaW1tZsKBniQ5WrFjR6xdq0aJF7vJTTz1FWVlZr84XD+cjYz42/RtjlfQtejNNhFEwOUhBQQHFxcWMGjUKy7KoqqqKCrJng2eeecZdLi4u7lY35WQtr8gOCYaBiWPRRHaLN6SX3kwTYRRMDjJ48GBee+01tm7dSjAYZOvWrfz+979n3rx5WZOppaXFXT58+HC3epLdcIOZDsjQPVpaWoySyQGMgslBNm3axGWXXRZVdtlll7Fp06aM1B/PVXX8+HF3uaysrFsWTKrT0xsGBpGNGkPfxCiYHGTs2LG89957UWXvvfceY8eOzUj98VxV+/btc5cPHTrULQvm009NDlODoT9iFEwOMnfuXGbMmMHq1avp6Ohg9erVzJgxw532NBuMGHFibrlFixbR0tLCoEGDkjrW4/EktZ9jFZk0NAZDbmAGWuYgdXV1AMyaNYtNmzYxduxY5s2b55ZnGhFhz549rsvsmWee4f7776eyspKdO3cmPMYhEAgkVY9jFZlMAQZDbmCagjlKXV0dGzduJBgMsnHjxqwpF8uyUNWoOMqSJUtoa2vjueee67T/0KFDKSoqMj3BDIYBgFEwhh6Tl5fnWhPf+973yMvLA+w8a/n5+UyfPh2wuy3X1tZiWRYVFRXcddddcc83ZcoUKisro8rMVAQGQ+5iFEyaSNVI2EQsW7aMcePG4fF4GDduHMuWLUtrffFob29n0KBBjBw5kunTp9Pe3u4qhEgXmKq6Vs2SJUt46qmn8HqjvbODBg1i1apV7N69O6q8oqIi/RdiMBjSglEwGeDdd99N6fmWLVvG3Llzoz7ac+fOzYqSOX78OHv27OE3v/kNF1xwASUlJezZs4dQKMSePXsYP348ra2tXHnlleTl5XHllVdy6NAh7rjjjqjzVFdXx3WbxSocg8GQOxgFk4PMmzePp59+msmTJ+Pz+Zg8eTJPP/10xgdaDhkyBMuyGDJkCO+88w7btm2jqamJN998k/b2dt588022bdsGQDAYdI8rLi7m0ksvddfLy8vZvHkz119/vdtDTETIz8836UEMhhzGKJgcJNsDLR1uuukmysrKaG5uZvLkyXi9XjweD7NmzaKgoIBbb701Ko0/2Irm7LPPjlKGjz/+OADLly93YzqqyiWXXBKlmAwGQ25hFEwSJDtOI1Nke6ClE8x/6qmnmDFjBoFAgNWrV7N3716CwaDrumtra3MTc1ZUVGBZFpZl0dDQQGNjY8Lzl5SUICKsWbOmU7llWZSUlKTz8gwGQ4owCiaME3SODT7n5eX1uYF92R5o2d7eDtg50Z544gnAHpPj8XioqKhwXXcHDhxwj1m2bBltbW3Mnz+/0/nmzZvnKh/LsvB6vVx33XVA9KDK5uZmQqEQzc3N6bw8g8GQKpwWZiZ/wA+ARiAEXNDFftcAnwNfAg8kc+7zzz9f4wEk/JWXl3daFxG1LKvL45L5TZ06Ve+5556kZUnmp6paX1+vtbW1almW1tbWan19fUrrSObn8/k6LQ8dOlRXrVql7e3tUfuOHj1aRUQrKircstWrV6uquvf59ttvT8k9j3e/EuHI0BW9rTdVMvdGjlTfy57e72SeRSbe3VS+Q6kk3TKm6txAgybxPc5W03wj8FfAvyXaQUQ8wK+B7wHnAHUick46hGlqaqKgoACwU+E3NTWhqtTW1gK9S02yYsUKfvnLXyIiKR3T0RcGWnZ0dLjusvLycgBGjx7txmAirUFVRUTYv39/p/OMHTsWn8/H2WefTTAYZObMmVH3ygn2O67KvuayNBgM8cmKglHVTar6+Ul2uxD4UlW3qGo78ALw/XTI4/F43GByMBh0P2BffPEF3/72t1OmGAKBQL8YOOj07Fq0aBHHjh3Dsiz27t3LLbfcQkNDAy0tLahq1KRjX3/9NdXV1W5+skglMXfuXAoKCpgzZw4LFy6ksLDQfR7l5eUUFRVRWlpKTU0NlmVRU1OTwas1GAw9pW8FF6KpAnZErO8Ml6WcwsJCqqqq3Mm7CgsLAfD7/cyYMYMzzjgjZXUlm3erL6Ph8Sp33HFHVOeC7373u+4+8SaF2r59u5sEMzKfWF1dHdOmTUNVmTNnDgsWLHC3l5aW0tTUxMSJE6PG1xgMhr6POB+LlJ9Y5G1gRJxNc1X1tfA+a4D7VLUhzvE3Ateo6n8Nr/8dcJGqzoyz7+3A7eHVs7HjNrGc34W4ISAA5AHt2ElALWz/o1tNF8dnmg+T2Ker6+0tIez7sx8YDOwCmoAJ2Pfuo4h9zw2XKfY9dPy6QWA3cAAox248bANOi9hvJ9ABnBU+VzsnnlFeN+Tt6n4NDcvQFT29l069PTk+nsy9kSNV70My15TM+xkP51mk893tKT29pu7Sm2tP53ch9tynquqwkx2UtmzKqvrdk+/VJbuASF9IdbgsXl1PAE8ke2IRaVDVC3onXu8wMmS/fiODkcHIkF76sotsLXCmiJwmInnATcDyLMtkMBgMhiTJioIRkb8UkZ3AJcAfROStcHmliLwBoKoBYCbwFrAJ+BdVTTw6z2AwGAx9iqxMOKaqrwCvxCnfDfxFxPobwBtpECFpd1oaMTJkv34wMjgYGWyMDCkkbUF+g8FgMAxs+nIMxmAwGAw5jFEwBoPBYEgLWYnBZBIR+TPsDADOIM1dwHJVzWxu+z6GiDynqrdmW45MEtEbcbeqvi0iNwOXYncieUJVO7IqoMHQz+jXMRgR+XugDjvNzM5wcTX2R+YFVe2c2jc9cvwZtoL7k6oeiyi/RlX/NQP1x3bvFmAysApAVa/PgAwXAZtU9aiIDAIeAM4DPgUeUdUjGZDh/2A3qgqBw0Ax8H+BKdj/C9PSLYPBMJDo7wrmC6A2tmUabsk2quqZGZDhvwN3YbeSvwXMjshk8JGqnpcBGT7C/pA/xYkR9cuwFS2qmto5nePL0Aicq6oBEXkCaAVewv64n6uqf5UBGTao6gQR8WJbspWqGhQ7udp6VZ2QbhkMiRGR4ar6TZZlOEVVD2ZThv5Ef4/BhIDKOOUjw9sywW3A+ap6AzAJ+JmIzA5vy1T6mQuwUz3MBY6o6hrguKq+mwnlEsYKj20Ce4qGu1X1PVV9GBiTKRnCjYsSbCtmcLg8H8hIFlIRGSwi80XkMxFpEpGDIrIpXFZ28jOkRIZSEflHEfld2E0Yue2fMiRDeczvFOD/icgQESnPkAzzRWRoePkCEdkC/ElEvhaRyzMkwwUislpEnheRGhH5o4gcEZG1IvLnmZAhnfT3GMzdwDsispkTiTNHAWdgD+LMBJbjFlPVbSIyCXhJRE4lQwpGVUPAr0TkxfDffWT+2W8UkR+r6rPAehG5QFUbROQs7HxjmeBp4DPAg61sXwx/VC7GdqNmgn/Bdk1OUtW9ACIyApgW3nZVBmR4FtgMvAxMF5G/Bm5WVT/2vcgEB4CvY8qqsPPYKZlpdFyrqg+ElxcCf6uqa8PvZD12wyzd/BPwEFAGvA/8RFWvFJEp4W2XZECG9JHMpDG5/MO20i4G/jr8uxjwZLD+VcC3Ysq8wHNAMEv35FrsuEcm6xwMLAW+Av6ErVS2AO9iu8gyJUcltmsM7H/qG4ELM1j/5z3ZlmIZ1sWszwX+AzgF+ChDMtwL/CswPqJsa6aeQ7i+TYA3vPyfMds+yZAMH0csb0+0LVd//ToG0xcQkWogoOHWasy2b6vqf2RBrKwhIqXYGZO9wE5V3ZdlkTKKiKwE3gZ+61y7iFQAPwKu1N4niU1Ghk3YsclQRNmPgPuBYlU9Nd0yhOusBn6F7V14CDsOlil3KSIyC7gOmA98BxiC3enjCmCMqv5dBmT4APvaBwOPYsdoXw276BZpjie9NArGYMggIjIEuwfd94Hh4eJ92Ilc56vqoQzIsABYqapvx5RfAyzRDHR+ian3euCnwGhVjTfFRzrrngTciT0lhBdb2b0KPKMnYobprP9cYAF2TPgnYVmmYXdCuU1V30+3DOnEKBiDoY8QEaMacDKEu66frqobB/J96Gsy9BajYAyGPoKIbFfVUUYGI0NfkaG39PdeZAZDn0JENiTaBFQYGYwMmZYhnRgFYzBklgrgaiA21iLY3VSNDEaGTMuQNoyCMRgyywrsnlrrYjeIyBojg5EhCzKkDRODMRgMBkNa6O+pYgwGg8GQJYyCMRgMBkNaMArGYEgDIlImIv8tvFwpIi9lWyaDIdOYGIzBkAZEZDSwQlXHZVkUgyFrmF5kBkN6mA+cLiLrsDMXj1XVceGcXzcARcCZ2Pmn8oC/A/zAX6hqk4icDvwaGIY9d85tqvpZ5i/DYOg5xkVmMKSHB4CvVPVb2EkkIxkH/BUwEZgHtKrqnwMfAM401k8As1T1fOA+7NTtBkNOYSwYgyHzrFbVZqBZRI4Ar4fLPwEmiEgxcCn2fDXOMfmZF9Ng6B1GwRgMmccfsRyKWA9h/09awOGw9WMw5CzGRWYwpIdm7KmZu42qHgW2isgPAMTm3FQKZzBkAqNgDIY0oKoHgf8QkY3Y0/F2l1uAGSKyHmjEnj/GYMgpTDdlg8FgMKQFY8EYDAaDIS0YBWMwGAyGtGAUjMFgMBjSglEwBoPBYEgLRsEYDAaDIS0YBWMwGAyGtGAUjMFgMBjSglEwBoPBYEgL/x/S8M4cpygTlwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -835,19 +866,21 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAF4CAYAAACLlYlfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcJHV98PFPVVdfM7uzO3uxzMKyLLtbCwtqYhDxQjCe\nRI08IgQVBSEqoiRAlCsij4h4ICogaiISRR+MxkjwQJN4kBgvQAkubC3LLnvNssy1O0d3V9f1/FFd\nfU33THdPXzXzfb9e85qZPqp+3XV96/u7FM/zEEIIIYToNLXTBRBCCCGEAAlKhBBCCNElJCgRQggh\nRFeQoEQIIYQQXUGCEiGEEEJ0BQlKhBBCCNEVJCgRQgghRFeQoEQIIYQQXUGCEiGEEEJ0BQlKhBBC\nCNEVtE4XIKDr+kuBvwOeDxwJ/KVhGP9W9pr/C1wELAV+CbzXMIwd7S6rEEIIIZqvmzIlvcAfgPcB\n0ybk0XX9Q8ClwLuBFwBTwI91XY+1s5BCCCGEaI2uyZQYhvEA8ACArutKhZdcBnzUMIz7c685HzgI\n/CXwz+0qpxBCCCFao5syJVXpun4ssBr4z+AxwzDGgd8Ap3aqXEIIIYRonlAEJfgBiYefGSl2MPec\nEEIIIUIuLEFJNQoV2p8IIYQQIny6pk3JLJ7BD0COoDRbsgr4fa0L8TzPU5RKzVWEEEII0UI1XXxD\nEZQYhrFL1/VngFcA/wug63ofcApwR63LGR2dQlVrC0oiEZW+viTj42kcx22g1J0RxnKHscwg5W6n\nMJYZpNztFMYyQ3jLXa/+/t6aXtc1QYmu673ABgrR1Hpd158LjBqGsRf4LHCdrus7gKeBjwL7gPtq\nXYfrerhufbU9juNi2+HbUcJY7jCWGaTc7RTGMoOUu53CWGYIb7mbrZvalPwZflXMw/jtRG4BHgFu\nADAM45PAbcCX8HvdJIHXGoaR7UhphRBCCNFUXZMpMQzjF8wSJBmG8RHgI+0ojxBCCCHaq5syJUII\nIYRYwCQoEUIIIURXkKBECCGEEF1BghIhhBBCdAUJSqpwXZd0Oo3rShctIYQQoh0kKKnCNE22bt2K\naZqdLooQQgixIEhQIoQQQoiu0DXjlAghhOgunpXF3fpEW9ep6DpKNNbWdYruIUGJEEKIitxtBvbb\nzmnrOrV7voVy4kltXaeozU033cDk5CQ33fSplq1Dqm+EEEKILnf22W/g29++t9PFaDkJSoQQQogF\nwrbtThdhRlJ9I4QQItR+85tf8bWvfYVdu3aiKCpbtpzEZZddwZo1RwHw2GOP8pnPfILdu3dz3HHH\ncf75F3LNNX/HV7/6TTZs2AjAzp07+MIXPs+jj/6BZDLJySefwgc+cDlLliyddf2e5/HNb36N++//\nHs8+e5Bly5bzxjeexdvffgEAzz57kNtv/yy//e2viURUnvOc53HZZVeyevWRAFx99dWMjIxx4onP\n5d5778G2LV7xildx2WVXEolEeP/7380zzxzgtts+w+c/fwuKovDgg78F4NFH/8CXv3wH27Y9ztKl\n/bz0pS/nPe+5lEQiAfgZljPPfAP79u3lv//7F7zsZadzzTXXz1om13W5447P8oMf3I+mRXjd696A\n53nN3XAVSKZECCFEqGUyac477+1897vf5fbbv0gkonLNNX8HQCqV4qqrLmfDhk189avf4KKL3sud\nd96Goij5909OTnLZZZeg68dz1133cMsttzE2NsaHP3xNTeu/887b+OY3v8YFF1zMPfd8m+uvv5H+\n/mWAn5m4/PL309u7iDvv/Ap33vkVenp6uOKK95dkLR5++HcMDu7nttu+xHXX3cCPfvR9fvSj+wH4\n2Mc+xcqVq7joovfwb//2Y+677wEA9u/fx5VXfoDTT38FX/vat7jhho/z2GOPcuutnywp3733foON\nGzdx113f4J3vvKimMv2///d1HnjgB1x77fV84Qv/yMTEOA8++LMGt1DtJCipIh6Ps2XLFuLxeKeL\nIoQQYgannXYGp512OkcffTQbN27igx+8jp07d7Br105+8pMfoigqH/zgtRxzzDpOOeVUzjvv7SXv\n/5d/+RabNm3m4ovfy9FHr2Xjxk1cddV1PPLI79i3b++M606lUnznO9/ikksu49Wvfh0DA2s46aTn\n8hd/8UYAfvrTfwc8PvShazn22PWsXbuOq676MAcPPsPvf/9wfjl9fUu4/PIPsnbtMZx66ks49dSX\n8NBDv8s910ckEiGZ7KG/f1k+4Lnnnrt59atfy5vffC5r1hzFiSeexAc+cAUPPPADLMvKL/vP/uxk\nzjnnrQwMrGFgYE1NZfr2t+/l7W+/gJe+9OWsXbuOK6+8mt7eRXPdVLOS6psqVFUlmUySyUzJqK5C\nCNHF9u3by113fYknntjK6OgYruuiKAoHDz7D3r17OO64jUSj0fzrjz/+xJKqiB07nuSRR37HK1/5\nspLlKorC/v37OOqoo6uue/fuXdi2xfOff3LF53fs2M7evXumLduyLPbv35f//9hj15dkb5YvX8HO\nnU/N+Ll37NjOU089xY9//KOiR/3PdeDAftauXQeArh9fV5lOOGELIyPDHH/8ifnnIpEImzefMGN5\nmkGCEiGEEKH2wQ/+DQMDa7jxxhtJJBaTzdqcf/452LaF53kUXesBprWNSKdTvPjFL+OSSz4w7bkV\nK1bMuO7ZsumpVJrNm0/g+utvnLbs/v7+/N+aVno5VhTwvJlviNPpNG9841mcffa505Z9xBGr838n\nEsm6yhQ8Vv69tYMEJUIIIUJrfPwwe/fu4dprr+eFL3whY2NTPPzwI/msw9q16/j3f/8xtm3nL/zb\ntm0tyUps2rSZBx/8GatXH4mq1teq4aij1hKLxXjood/mq2yK6fpmfvazf2fp0n56enoa/pyapuG6\nTsljmzZtZteupxgYWFPXsmop0/LlK9i69Y885znPA8BxHAzjiWlZl2aTNiVCCCFCa/HiPpYsWcJ9\n932XPXv28NBDv+X222/NP/+qV70G13X4xCduZPfup/nNb37Fvfd+AyAfmJx11lsYHx/n+uuvYdu2\nx9m/fx+/+c2vuOmmG2btcRKLxXjrW9/BnXd+ngce+AH79+9j69Y/8v3v35df/5IlS7n66it49NE/\ncODAII888hCf/eynGR4eqvlzHnnkAH/4w+8ZHh7i8OFDALz1re9g69bHuPXWT/Lkk9vZt28v//Vf\nP5/W0LVcLWU6++xz+cY37ua//uvn7NnzNLfccjOTkxM1l7dRkikRQghRkbpZR7vnW21dp6Lr9b1e\nUbjhho/zuc99mte//vWsXXsMl112Je9//7sB6Onp5ROf+Cy33PJxLrjgrRx33HFccMHF3HDDdcRi\n/nD2K1asyPVC+TyXX/5+LCvLEUccySmnnFqSUanmggsuRtM0vvKVLzMyMsTy5St44xvPAiAeT3DH\nHf/AnXfexnXXfZBUaoqVK1fx/OefTE9Pb82f813veg+f/vRNvOUtf4ltWzz44G857rgN3Hbbl/ny\nl7/ApZdejOfBmjVrOOOMVxV/Q9OWVUuZzj33bYyOjvCxj92AqqqceeYbOO20M5icnKy5zI1Q2tHv\nuFsMDU3U/GE1TaW/v5exsSlsOzwNXcNY7jCWGaTc7RTGMoOUu53qKfNPfvIjbr75ozzwwM/zgUmn\nhPG7bsTKlYtraqEimRIhhBDz2gMP/ICBgTWsXLmKJ5/czhe/eDtnnPHKjgckYjoJSqqwLIvBwUE0\nrQdFiXS6OEIIIRo0OjrCV77yJUZHR1i+fAVnnPFKLr74vTW99+DBZ3jb296CoijT2pcoisI99/wz\nq1Yd0YpiL0gSlFRh2zaDg4MMDKwjGpWgRAghwuq8887nvPPOb+i9K1as5O67vznj86J5JCgRQggh\nqohEIvk5dETrSZdgIYQQQnQFCUqEEEII0RUkKBFCCCFEV5CgRAghhBBdQRq6CiGEqMh1HcbGRtu6\nziVLlqKq0uNxoZKgpApVVUgmk6hqB6ZJFEKILnDo0CF+/vOftHWdL3/5q+jvX97WdVbz5je/noMH\nn0FRFH70o5/S27uo00Uq8f3vf48vfvF2vv/9/6j5PWeddSZDQ8+iKAo/+cmDJBKJFpawfhKUVBGP\nJ9iyZcu8H/pXCCFEZYqicPHF7+X1r38Tvb2LuOmmG/jRj75fcSA1gNWrB/j2t+9rdynrevVXv/oN\nHnnkIa6//poWlWduJCgRQgghqkgme+jv7wfgb/7mSt773vfnn3vDG17Ntdd+hFNOORUAVe3+ZppL\nlixl8eK+Thejqu7/BoUQQogqfvaz/+Ad7ziX0057Eaeccgof+MAlmGYGgPvv/x5ve9vZnHHGi3nb\n287mX//1O/n3PfDAD3jlK1/G/v378o99+tMf521vO5tsNltxXT09vfT3L8v/ACxatCj//5IlSyu+\n7x/+4U4uuuh87r//e5x11pm86lWn8dnPfhrXdfna177KS17yEl73ulfyjW/8U8n7vvnNr3P++efw\n53/+Es4660xuvfWTZDKZGb+PX/zip1x44Vs544wXc+65b+Luu/8R1w1Ptl8yJUIIIUJpZGSYG264\njve97284/fTT0TSPBx/8HzzPnwn4rru+zOWXf5CNG3W2bzf45CdvJJlM8prXnMlrXnMmv/rVf/OR\nj1zLl770VX796//hhz/8Pl/60l0tmahvz57dPPzw77j11jvYu3cPf//3H2Lv3j2sX7+ee+65h1/8\n4pd8/OMf5eSTT2HTps0AaJrGFVdcxRFHHMng4D4+/emPo6p3cNllV1RcxyOPPMTNN9/I3/7t3/Gc\n5zyPvXv38MlPfoxIJMLb335B0z9TK0hQIoQQIpRGRoZxXZeXvezlrF59JP39vaxYMYBtu9x115e5\n9NK/4aUvfTkAq1cfya5dT3Hfff/Ca15zJgBXXnkN73znX3HrrZ/iwQd/yoUXXszGjXpLyqoocPXV\nHyYej3PMMet47nP/hP379/G5z91Of38vS5as5Gtf+yqPPPJQPih5y1v+Kv/+1atX8653vZvPf/4z\nVYOSr371Hzj//At51atem//MF1741/zjP35RghIhhBCilTZs2MTzn38y559/Di984Ys4/fTTOOWU\nl6IoEfbv38fNN3+Um2++Mf9613VYtGhx/v/Fixdz1VXXcfnl7+ekk57L2972zpaVdWBgDfF4PP//\nsmXLSSZ7Sl7T37+MsbGx/P+//e2v+cY3/ok9e3YzOTmJ6zpYloVt22ja9Mv3U0/t4IkntnLXXV/O\nP+a6DrZtV31Pt+n+EgohhBAVqKrKrbfewR//+L889NBv+PrXv85nPnMrN998CwAf+tB1HH/8lpL3\nRCKlY6D8/vePEIlEGB4eIpVK0dNTGig0S3lAoCiVHlPwPL/9x/79+7jqqst585vP4T3vuZTFi/v4\n/e8f5lOfuqlqgJFOp3jve9/Pi1/8slnX362koasQQohQO/HE53DRRe/me9/7Hpqm8dhjj7Jy5Sr2\n79/HmjVHlfysXn1k/n2PPfYo9957D5/4xK309PRy662f7OCnKLVt2xMoisIll1zG8cdv4aijjubZ\nZw/O+J6NG3X27Nk97TOHaZbjcIROHWCaGbZufZrly1cTiTS/0ZMQQoi5efzxP/Lww7/j5JNfyMqV\ny/n1r7dz+PAh1q1bz4UXXsznPncLvb29nHLKi7CsLNu2PcHExDjnnPNWUqkpbrzxet785nM45ZRT\nWblyJRdf/A5e9KKXcPrpfz6ncn3hC5/n8OFDXH31hxtexlFHHY1lWfzLv/wzp576Yh599Pfcf//3\nZnzPBRdczDXXXMmKFSt5+ctfAcCOHdvZvftp3vWudzdclnaSoKQK1/VIp9O4rkdERjwWQixAS5cu\n5eUvf1Vb11mtW20lvb2L+MMffs+3v30vU1NTrFkzwAc+cHl+3JBEIsk3v/k1vvCF20gmE6xfvyHf\nePRzn7uFnp4e/vqv3wfA+vUb+Ou/voRbbrmZk056HitWrJh1/YpSeeCykZEhRkfrH56/eHm6vplL\nLvkAX//6V/niF2/jT/7k+bznPZdy0003VH3/qae+mJtv/gx33/0P3HPP3WhalGOOWccb33hW3WXp\nFKXSqHTz1dDQRM0f1rJMBgefZmBgHdFofPY3dAlNU+nv7w3VSLRhLDNIudspjGUGKXc7taLMZ5/9\nBt7ylvM4++xzm7K8SjrxXf/ud7/hiive39Zh5leuXFzT0LPSpmQWpmmyc+f2/GA8QgghFo4777yN\nV73qNFKpqU4XpSnOO+//cNVVl1fN8nSaVN/MwvNcTNOsOM+BEEKI+ev227+MbduAP5rrfPCZz9yB\n4/ifqdsm4wMJSoQQQoiKjjhidaeL0HSrV3f3Z5LqGyGEEEJ0BQlKhBBCCNEVpPqmCk3TGBgYwLa7\nszGQEEIIMd9IpqSKaDTKwMAAmhbtdFGEEEKIBUGCEiGEEEJ0hdBU3+i6rgI3AG8FVgODwN2GYdw4\n4xvnSNM0VqxYRSQSmq9KCCGECKUwZUquAt4NXAJsBj4IfFDX9UtbudJoNMrKlUcQjUo1jhBCCNFK\nYbr9PxW4zzCMB3L/79F1/TzgBR0skxBCCCGaJEyZkv8BXqHr+kYAXdefC7wY+GFHSyWEEEKIpghT\npuRmoA/Ypuu6gx9QXWsYxr2dLZYQQgghmiFMQck5wHnAucDjwPOAz+m6PmgYxtdrWYCqKqhqbeOO\nKAqk02kUxZ/FMSwiEbXkdxiEscwg5W6nMJYZpNztFMYyQ3jL3SpKWCaa03V9D3CTYRhfLHrsWuCt\nhmGcUMsyPM/zap0ZMZVK8fjjj3PCCSfQ09PTUJmFEEIIAUBNF98wZUp6gPIIyqWOdjGjo1M1Z0qy\n2QwAExNpTDMcgRv40XZfX5Lx8TSO43a6ODUJY5lByt1OYSwzSLnbKYxlhvCWu179/bXNshymoOR+\n4Fpd1/cCW4E/Bf4W+MdaF+C6Hq5bW4DhOP7rLMvBslJEozFUNTzpNcdxse1w7eBhLDNIudspjGUG\nKXc7hbHMEN5yN1t4rrJwKfAd4A78NiWfBO4EPtzKlWazJjt3Pkk2a7ZyNUIIIcSCF5pMiWEYU8Dl\nuR8hhBBCzDNhypQIIYQQYh6ToKQGnudhmiauK/V9QgghRKtIUFIDx7HZs2entCsRQgghWkiCkiri\n8ThbtmwhFot3uihCCCHEgiBBSRWqqpJMJkPVDVgIIYQIM7niCiGEEKIrSFAyi3g8ztq164lEQtN7\nWgghhAglCUpmoaoq8XicWufMEUIIIURjJCgRQgghRFeQoEQIIYQQXUEaStQgFouzfv1GotFYp4si\nhBBCzFsSlFRhWRaDg4NoWg+qGiEeT3S6SEIIIcS8JtU3Vdi2zeDgILZtd7ooQgghxIIgQYkQQggh\nuoIEJbOwbYuhoYNYltXpogghhBDzmgQls7Btm+HhZ3EcqcYRQgghWkmCEiGEEEJ0BQlKhBBCCNEV\nJCipgeM4jIwMSbsSIYQQooUkKKlCVRWSySSqquB5LqOjw9KuRAghhGghCUqqiMcTbNmyhVhMBk0T\nQggh2kGCEiGEEEJ0BQlKZqGqCrFYHFBmfJ1lyXgmQgghxFxIUDKLeDzBMcesR9NmnibIcWQ8EyGE\nEGIuJCgRQgghRFeQoEQIIYQQXUGCkhooikI8HkdRZm5XIoQQQojGzdxQQgB+u5L16zd1uhhCCCHE\nvCaZkipMM8PWrVsxzUyniyKEEEIsCBKUVOG6Hul0Gtf1anq9VPEIIYQQcyPVN00iVTxCCCHE3Eim\nZBamabJz53apxhFCCCFaTIKSWXiei2maeF5t1ThCCCGEaIwEJUIIIYToChKUCCGEEKIrSFBSA9u2\n2b17p7QrEUIIIVpIet9UoWkaAwMD2LYCeGSz0q5ECCGEaCXJlFQRjUYZGBhA06KdLooQQgixIEhQ\n0iSmmZGuw0IIIcQcSFAyC03TWLZsBYoy81fleZ50HRZCCCHmQIKSWUSjUZYvX0kkEul0UYQQQoh5\nTYKSNrAsi6Ghg1iW1emiCCGEEF1LgpI2cByb4eFncRy700URQgghupYEJTWIRDRWrFhFJCI9qIUQ\nQohWkatsFa7rkk6ncV2XaDTKypVHdLpIQgghxLwmmZIqTNNk69atmKbZ6aIIIYQQC4IEJU0iVTxC\nCCHE3EhQMgvXdTHNDK7rzvi6oIonGpURYIUQQohGSFAyi2zWZOfOJ8lmG6/GkSyKEEIIMbtQXSV1\nXR8APgG8FugBngQuMAzjkY4WbBbSUFYIIYSYXcNBia7rCrAZOBJIAiPAdsMwRptUtvL1LQV+Cfwn\n8GpgGNgIjLVifUIIIYRor7qCEl3XVeAvgHcAZwB9gFL0Ek/X9SeAbwN3G4axu1kFBa4C9hiGcVHR\nY81cflXBvDaxWBxVlRovIYQQohVqvsLqun4uYADfACzgevzA5CRgE/AC4Bzg+8BZwJO6rv9Drsql\nGV4PPKTr+j/run5Q1/VHdF2/aNZ3NYHj2OzZs3NO7UqEEEIIMbN6MiUfAT4GfMswjHSV1zwEfAe4\nStf1LcDlwPnAzXMpZM564L3ALblynAJ8Xtf1jGEY9zRh+SXi8ThbtmxhZGSi2YsWQgghRAX1BCXH\nG4bh1fpiwzC2Au/KtT1pBhX4rWEYf5/7/9Fc4PNeoKagRFUVVLW24kQiKslkkmg0haIo+cc0rXJy\nyXVdstkssViso1U8kYha8jsMwlhmkHK3UxjLDFLudgpjmSG85W6VmoOSegKSZryvggPAE2WPPYFf\nVVSTZct68wFGrRYvTpJI+GOPLF3aQ09PT8XXpVIpdu3axQknnFD1Ne3U15fsdBHqFsYyg5S7ncJY\nZpByt1MYywzhLXezzalLsK7rG/DbkyTKnzMM47tzWXYFvwT08iJQR2PX0dGpujIlfX1JslmP1auP\nZt++PRw6lMI0K8dY6XSaTMaq+Jp2ZlGCco+Pp3GcmQd86xZhLDNIudspjGUGKXc7hbHMEN5y16u/\nv7em1zUUlOi63gd8Fzg991BwpS++GkcaWfYMbgV+qev61cA/47cpuQi4uNYFuK6H69aXuPE80LQY\nngeO42LblXcax3FxXa/iazKZNLt27eDYYzeQSLQnGp6prN0qjGUGKXc7hbHMIOVupzCWGcJb7mZr\n9Lb9E/jjk7wUPyB5E/By4CvALuCFzShcMcMwHsqt56+Ax4BrgcsMw7i32esSQgghRPs1Wn3zGvyg\n4De5/wcNw/gd8KCu67cAVwDnNqF8JQzD+CHww2Yvt91c18WyskSjnW0UK4QQQnSTRq+Iq4C9hmE4\nwBSwvOi5H+IHLfNGLBZn/fqNxGLxpiyvGfPpCCGEEPNNo0HJXmBF7u8ngTcUPfciIDOXQnUDy7IY\nHBzEsixUVSUeT0hWQwghhGihRqtv/h34c+Bf8Rug/pOu66cAWfyRXW9pTvE6x7ZtBgcHGRhYRzTa\n7Da7QgghhCjXaFDyIfxZejEM4+u6rk8Cb8afmO9S4EvNKV54BFU80Wis00URQgghQqmhoMQwjBSQ\nKvr/X/GzJvOObVscOnSIpUuXEY1Gq74uqOIRQgghRGMaaiSh67qj6/oLqjz3fF3XnbkVq3vYts3w\n8LM4jt3wMprdUFYIIYSYjxqtvplpWFQNmDdBSTNIFkUIIYSYXc1Bia7rq4GB0of08vRBAriQOoZ+\nF0IIIYSA+jIl7wauxx9K3gPurvAaBT9LcsmcS9ZFHMdhZGSIVauOnLFdSa2kUawQQogwa9UgoPUE\nJXcDP8cPPH4KvA94vOw1WWC7YRgjzShcJ6mqQjKZRFUVPM9ldHSY5ctXNiUoqVadY1kWhw6Nztqo\nVgghhOikbNZsyZxuNQclhmHsJlcto+v66cAjhmFMNK0kXSYeT7BlyxYGB4fbts5IJEJf3xIiERkX\nRQghxMLTaJfgXwDoun488GfA0cBdhmE8o+v6BuDgfA5YKmlGlkMaxAohhFjIGgpKdF3vAf4ROAdw\n8bsWPwA8A3wcf6bgDzapjB2lqgqxWJxsNjvj6xzH7zq8eHGfVL0IIYQQDWi0dcqngTOA1wJ9lHYR\nnlcT8sXjCY45Zj2a1mjvaT+LMjR0EMuymlgyIYQQYn5pNCh5M/AhwzB+gt+4tdjTwLo5lGneCbIo\ncxmATQghhJjvGg1KFgEHqjzX2+AyhRBCCLGANRqU/C/wf6o8dybwUIPL7UqKohCPx1GUmQayrZ1U\n5wghhBDTNdpQ4qPAfbkGr9/GH0ztBbqu/xX+iK6va1L5ukI8nmD9+k1NW540ihVCCBEm5T1MWzUI\naEOZEsMwfgCcC7wE+B5+Q9cv4PfGeathGP/ZtBJ2iGlm2Lp1K6aZads6JYMihBCiG5WPoxUMYdHM\n0Vyh8UwJhmF8B/iOruubgBXAqGEY25pWsg5zXY90Oo3retQyllkzqngkgyKEEKIbtWscrcb7ueYY\nhrEd2N6EsoRas6t4hBBCiIWm4aBE1/UTgGuAFwJH4vfG+TXwccMwtjaneJ1nmiZ79+5mzZq1DUeJ\n9WZRbNtiaGhc5sARQgixoDRUGaTr+pnA74FTgfuAG3K/TwUeyT0/L3iei2maeJ7X8DKCLEqtQY1t\nOzKuiRBCiAWn0UzJp/CHlX+TYRhu8KCu63+HH5x8CvjB3IsnhBBCiIWi0WazxwJ3FgckALn/78g9\nL6po9rgnQgghxHwwl8HTqgUexwJ/bHC5Xcm2bXbv3tm07sH1VucIIYQQ3aRVQ1g0Wn3zPuBeXddT\nwPcMwzis6/oS4E3AFcBfNauAnaJpGgMDA9i2Anhks3NrV1ILyaAIIYToRuWDp7VqCIuagxJd1yfw\nR24NxIC7gLt0XbeAoFQW8J/4sweHVjQaZdWqAQYHh9u2ziCDksmk27ZOIYQQIlAefATaNY5WPZmS\nWygNSkQR08ywf/+eOXUdFkIIITqp04N41hyUGIbxkRaWo2tpmsayZSsYGxud8XWe582563BAURQ0\nTWN0dJiVK1fLWCVCCCEWhOYOWj8PRaNRli9fmR/vvxGmmWHnzu01N5SNxxMcffQ6Dh8+JGOVCCGE\nWDBqDkr51H+TAAAgAElEQVR0Xf+WruvPq+P1CV3XL9V1/cLGijZ/NJJFkUavQgghWqVbJ4Ctp03J\nXuCXuq5vB74D/BL4X8MwRgF0XY/hdwd+PvBa4A34c+K8p6klXiBkLh0hhBCt0um2I9XU06bkSl3X\nb8EPMt4FfBTwdF13ARu/Nw6AA/wIeKthGN9vcnk7IhLRWLFiFZHInOcvBKRRrBBCiHBrVTa/rqus\nYRgHgOuB63VdPw44GX8yvgQwChjAbw3DSDW1lB3gui7pdBrXdYlGo6xceUTTlt3MRrFCiPCQGxIR\nVuVBSKuy+Q3f+huG8RTwVBPL0lVM02TXLoOBgXVEo/E2rVNOWEJ0o/Jjs9KxWsvxOz5+mJ07n2Tx\n4iWsXCnHuOicapmOao+3q0nBnOojcqO4noSfLTkAPGYYxuFmFCxsmlHFIxkUIVqr0cC//NisdKzW\ncvy6rott27iuW/U11QavEgub49hMTU3R29vblKYE1YKMTrdnbOiT6bquAjcC7wd6i56a0nX9duA6\nwzCcJpSv41zXxTQzRKMxVLV6Z6VmV/EIIRoz00U9DIF/tzZAFJ0ViWj09S3pdDFartFxSj4FXAl8\nBngusDr3+1bgcuCTTSldF8hmTXbufJJs1mx4GfVmUUzTrGtcEyEWmpm6MwYXdRnjR4jwaTQH9E7g\n7w3D+ETRY88Cj+m6nsYPWK6YY9nmjXqzKGG4mxOikxZqNkGqdsR812imJAI8UuW5h3PPizmwbZvd\nu3dKtkQIkSdZIDHfNRqUfAc4t8pz5wLfbXC5XSnIXMzUOK0etVXneGSzki0RAvwMweDgYNeNPimE\naK5Gq28eBD6m6/rPgO/hV92sAt4EHAdcq+v6WcGLDcMIdZDiODZ79uxk48bjSSSSc15eKxvFmmaG\nrVufZvny1UQisdnfIEQI2LbN4OBgrot+eBOxkUiEaDQ6p7m0mkWqgsRctGoIi0aDkrtzv9cAp83w\nPIBHCKtz4vE4W7ZsYWRkom3rLGRQGv+6XNfLDfrm0QXnPSHmhfLsZqVsZy0Z0N7eRaxdu57e3kUt\nL/NsFmq7HNGY8iCkVW0fGw1Kjm1qKbqQqqokk0lUdaqm17uui2VlZ+06PJMgg5LJpBt6vxBiZo2O\nJ1Se3ayU7awlA5pM9rBx4+aWlFHUZ6FniqplOqo93q4OGA3t9YZh7G52QcIumzXZtWsHxx67oSlV\nPM200A8+sbDMdFEPw3hCnShjveeI+XBOaTRTNJdqi069t5JqQUane382dEuv6/rHdF2vGNDour5C\n1/V/mVuxukc8Hmft2vVzumsJBmCrtaFsJKKxbNkKFKXRdsilpMW+CItap1OvJfAI68VyJq3KotR7\njih+ffk2q3UbdpJlWYyMDOE49Y/xOZeLdqfeGyaNXvU+APxG1/UTih/Udf0NwFbgT+dasG6hquqc\nZ0KsdwC2aDTK8uUru6IxnBDtVO3iqGkaAwMDaJp/MZ7PgcdMmvm5mxXglG+zMNwEOY7N6Ogwntec\nHpWieRoNSp4HZICHdV2/Qtf1Jbqu343fE+eHwHOaVL4FS+qVhSiIRqMMDAwsuCCklYoDHDnfiG7R\nUFCSmyH4JcD/BT6GPxnfq4G/NAzjAsMwWt5lRdf1q3Vdd3Vd/0yr19VstVTnLNQ7QbHwFKf75eLY\nGfWeb2Q7iVaZS6OFKLAi99sFLCDVjELNRtf1k4GLgUfbsb5YLM769RuJxeJNWV4z5tOppjzNLUSY\nzPdgvN72Zd1KsiyiVdu90Yauz8UfTv7C3M/RwP8AP9Z1/XZd11vW/UTX9UXAPcBFwKFWrad4BEm/\nXUmi4a6+tWrGCatamttxHEZGhrq68ZlYmMIQiJQfm5WO1VqO31Rqiscff4xUqrahBsKgfPtJkDI/\nlW/XVh23jV5lfwsMAc81DOOfDMMYMwzjXOA8/GHm/9CsAlZwB3C/YRg/beE68iNI2nb7Gmu1MoPi\neS6jo8Nd3fhMiFZrNPAvPzYrHau1HL9TU5McPDjI1NRk08vYLcIQZPoX2CNYseKIBRs8VQseqz3e\nru3aaFDyIcMwzjAMY0/xg4ZhfAu/ketTcy5ZBbqun4vfyPbqVix/LppdxdNMze5iLEQ3m+mi3srA\nv1nCUMawi0ajHHnkGo48ck3dF9m5ZII69d5KqgUZnQ4qGx087bMAuq6/BjgZv/rmxlyQsgG/aqWp\ndF0/Cvgs8ErDMBqqg1BVBVWtrWuv6yq53zajo+P09882SJBKLFb564xEVFRVIRJR0TR12v/lr1MU\nsO0ssVj9o8NGImrJbwBNizMwsIZkMkk8HitZZzeoVOYwkHK3T3mZXdclm618jKTTJk8/vSN3k5Cc\ntpxKx14t65/tGK72WOlvJf+72vpnKuNMn7uZ5sM+0iqaFieZPLJp76213HNZb5g0FJTour4SuA84\nBdiLH5R8EdiD38ZkEri0SWUMPB9Yid8NOYgsIsDLdF2/FIgbhjHjqDLLlvXWPN5IKuW/LpHQeOaZ\nUY4+ejU9PT0NFXzJkiT9/c8jHo/n2qcoJBJRli7tKVlm8HgiofL007s44YQTGl5nX9/0Zj2rVi2d\n9lg2m2V4eJgVK1YQi3V2Ar9KZQ4DKXfrua5LOp1m0SL/GEqlUuzaVfkYqXZ8zfbcTMrfV2k5My07\n+K4nJxOoqsKiRQn6+3trWlexmT53vfyMkpk/L1USpn0kEMYyQ3jL3WyN5oE+i9/z5kTgSSBb9Nx/\nANfNsVyV/AdwUtljdwNPADfPFpAAjI5O1ZwpyWYzAExNZchkLA4dSmGacxtJL5jTJp1OV1xm8Pj4\neJp0OsvBg6P09Tl13RFFIip9fUnGx9M4zux10pZlMTGRQdNSRKOdaQRbb5m7hZS7fbLZDHv37uLo\no48lFktUPYag+vE123MzKX9fpeVUeqz8u56czOC6HpOTGcbGKjd2bUX5q61n584nWb9+I/F4vCQD\nE8Z9JIxlhvCWu17VgvByjQYlZwIXG4bxhK7r5cOO7gWOanC5VRmGMQU8XvyYrutTwIhhGE/UsgzX\n9XDd2g5kx/Hyv13Xw3FcbLs5O4zjuBWXWXjcw7Isdu16io0bj29oLp1ay6soEZYtWwnQtM/XqGZ+\nx+0k5W6eahNbFh+Ptu1WPYb81zT23EzK31dpObOt139f6eeoZV3NKP9s60ml0hXn7qq2nmZMQNoq\n3bhf1yKs5W62RvcmDajWp62f0sxJK7VlEoBmd6dtZaPYIM0d1pb7YuEpbpgqjTzDoXg7hb23kGhM\nq7Z7o0HJb/DbjlRyLvDLBpdbl1wPoMtbsWxVVUgmk6iq0vTutK0c98Q0TbZu3YppyklddJdqJ7GF\nFIjEYjESiWTH2281U/n2kyBlfirfrq06bhu9Kl4H/IWu6w8C78PPWPylruvfBt4AXN+k8nVMPJ5g\ny5YtxGJznyK6VoUMyvw5YQkRyGTSbN/+RL5tVZiUZzcrZTtryYAuXryEP/3TU1i8eEnLy9wpYQgy\n/YxyinQ6tWCDp2rBY6dvHhqd++ZXwOn4wcgtgAJcCxwJvMIwjEeaVsKQaMZ03a3KoMidi+ikYP8z\nzQxjYyNks+2q3Z2u0arT8mOz0rFay/GraRp9fUtmnAaim8c8mi+yWZMdO7axY8e2ui+yczmfduq9\nlVQLMjodVDZ89TMM41eGYZwG9OE3bF1sGMZLcgHLvKGqSu7kMHOvnW6erjubNXnqqe1MTIxLYCKa\nptaTZOEk155gZKaLerumjJiLMJRxIZvLRbtT7w2TOe/1hmGkDcMYNAyjLZPxtVs8nuCYY9bPaYK7\nerMosVictWvXN3X4Y8ex2bNn57zfoUXzzBZ0dPIkGfbAo1GSRRHz3fw7artQvVkU/6Qar3mgt7mQ\nqh1RTTfdmcXjcbZs2UI87l+M53PgMZNmfm4JcEQ3WlhHdIi064QRXHgymbQEJwtYtwenqqrmesPJ\nKatZigMcCVBEt5AjvAaKojQ1c1FLdU677wSz2WzX3BWL9uuWrIhcHDuj3vONbCfRKhKU1CAeT7B+\n/Sbi8eZ0D25lo9jyNHc9PM/DNM2uvVsW81PxBW6+V8s0o5deN5Asi2jVdp+fR34TmGYmNwhZpm3r\nbFa34kbT3NUaw3Z7al/MjWVZjIwM4ThOS9cTjcbo718+bRyeMAQi5cdmpWO1luN3amoCw9jK1NRE\ny8vcLuXbT4KU+al8u7bquO3es0CHua6XG669tpHsm1HF063dirsltS9aw3FsRkeH8bzWBp2JRIJN\nmxqby6lZGg38y4/NSsdqLcevaZpMTk7MOOJy2LMpYQgyY7E4GzZsZsOGzQs2eKoWPFZ7vF3btXv3\nmpBpdhVPMzWri7FkTMKh2y5qwUkukUi25aQ20+fv1sC/WBjKGHZ+RrmHZLKn7v1xLpmgTr23kmpB\nRqeDSglKZmGaJjt3bp9TNU69WRTbbu5FRVVVFi/u47jjNs1ph5bGsOHQrotarSfJVpzkwh54NKrb\nAs6FaC77c6feGybz+9M1gee5mKaJ5zU+IXG9WRTbdpp+Ul0oO7RontmCjnbuU5ZlMTg4mL8Yz+fA\nYybN/NwS4IhuJFeoLuU4DiMjQy0/YcgkgPNDKy4w3RTI2rbN4OAgtr2wgpBWKg5wJEAR3aLzZ5sF\nqJbqHM9zGR0dbvmdYHDhSSSSTR/aXrTPXO+gIxGNtWvXd7zRn1wcO6Pe/Ue2k2gVCUoAy8qSyaSn\n/ViWlZvdNM2OHQaHDx/KPT63icVa2Si2PM1dq2YMbS8nqvZq1vcdi8U57rhNLF7c15GsSPHnmO/V\nMoqioKpqW6aQaCXJsohWbfcFf1tsWVm2bftjhS56Hq5rMzIyyvj4OOCPMRCJaMTjcTZvPpFotLlV\nHs3oVhykuQcG1hGNRup6b1CV0+jnCk5Uixf3EY1GG1qGqF0mk2b37p0kEsmS77ve7Rhky1rNsiwO\nHRpl6dJlJeUt3m+6VfmxWelYreX4TSSSLF3a39Fu0c1WftxX284i3Mq3a6vO9ws+KHEcB9M0iUQ0\nNK1wEVcUhUQiyuRkmkjEnwDZT20rmKaJ4zg0+3gLMiiZTLq5C65RtYtTcJFr9eBaoj6O45BKTeE4\nDr29i/KBSLuCjHpVC6LaqdHAPzg2q/1f7bFyfX1LeMELXtKSMnaLMNycWJbF8PCzAKxYsapry9lK\n1YLHWm4eWvl9SfVNjqZFUJRavg4vn7IsZpqZOXcdbpW5ptkabfAoad3WsSyLiYnD9PUtJRaLdVWj\n1HLBfmCamXwQ1UozXdS7eTyhQBjKGHb+BfYgw8MH664qnMt5rVPvraRaVWmnq1AXfKYk4DgOhw4V\nGpYqikIkomLbDpaVxXGc3HMKruuwY8c2TjzxefkUeTBvzFy6DgcURSEWi5PNzq3tSsBxbA4ePEA2\na7Jq1ZENR7n1VguE4Y4pjCzLYnR0mCVL+lmxYlXHLl61pumD/WDZshVNW3ctgcd8FPYsynwwl/Na\np94bJt13W9UhnudnQBRFJRKJ5H80TctPFBY8pigK2Wy25ju+erMo8XiCY45Zj6Y1L2ZsRm+e2e7G\nZxvXQjInzRGJRFi6tJ9FixY3NCJlrWbbXu28o1JVJTenk38xXqjZhGZ+bglwRDeSoKSMqiqoagRV\n9QMQ/28VRVFRVbWhlvONZFHadcJoZqAw28RcnU4Lzhftqqrppu0Vjydys18vrCCklYoDHAlQRLeQ\noKSM57m4roPrOjiOk/vbzT1e+HEch0wmM+fuwdW0604wuPCYZrrlg2/NlEnJZrM8+6xkUTqlW7JY\ncnHsjHrPN7KdRKtIm5IinueRTmcIEhqqquC6Hp7n5ap3/F44fpByCMPYSk9PD5s3n1jXekwzw/79\ne1izZm3Tg47yNHetgqHtW1lfOVOvEE3T6OtbgqrW141ZzJ1lWTz77AHGxkY7Ul9dfIGbz+1B5pPi\n7WSaGQlQFqBWBaaSKSnieR6u65UMcBS0JdE0LVed4z/utz1R892D611PsxrFlptLmrtdQ9tXoqoq\niUR39h4Jm3qzHo5jMzo6jOe1dvZnRVHRNG3aSWwhtQ/p5l56jSrffpJFmZ/Kt2urjlu5AlTgBx1K\nUQBS+hPwPP+EnslkyGQy2LaV+7t8ZNjaqng6fcKq1hi2W1L7orowjIoaj8dZvXqARCJ8wUf5sVnp\nWK3l+B0fP8zOnU8yPn645WXulDAEmcEFNhZLLNjgqVrwWO3xdm1Xqb6pk59NcTDNDGNjI3ieh2Fs\nzfXIMUmnH592tx+JRGrqRtuqDMpcuxgvlK5oYVPcJbebR0UNTnKJROerZhqtOi0/Nisdq7Ucv67r\nYts2rls9K9XK6l3hi8cTbNq0paH3ziUT1Kn3VlKtqrTTVaiSKWmA53koCvmeObFYjGQyyZIl/kBW\nxV2KPQ/S6VRufp0gi1LIqrSqoWyxeDzBunXH0dvbO8ch7CVj0i38OY72smvXjo6NAFzrSbLdd84z\nZSxaWXXaLGEo40I2l/25U+8NE8mUNMyv3vE8v5GmpkWnDcAG4Lr++Ce2bbN9u59FcRybyckJUqkp\nenp6p82jY5omg4N7m3qn1Izod7bGsDLnRXsEDVOHhg7mR0htxfc9W9DRyTuqmbIJ8/miLlkUMd9J\npqSJPM+tOABbJBJh8eI+kslkrh4zTiSioapaxYay7TypNjMlWN6WQdqiNF9xQNLq/aOb7sxMM8PW\nrVvz2Y/5HHjMpJmfu9Nt2ISoRIKSFigegG3ma71X1FC2tEGsbdvs3r2z5SeM4MKTSCTyEw42iwQp\nzVHeiNXvKdPsi7Hf7qhbG/25rkc6ncZ1F1YQ0krFAY4EKKJbSPVNC7muSzqdxnEchoeH8mOH+GOe\nOGSzWTzPxTC25jMqhWocj2y2fXeCwdD2u3btaNk6ZmowGwyetnjx0pqqIuZzVdFMU4S3gqIo9Pb2\ndkWVwHyqnrCsLJblEY8rufOAmz+ms1lzWlugWhvEt0K9GZj5tJ1Ed5GgpKW8fCt7f4yTwl2opmk4\njottu/m2Kem0PzibaWawbT+7kMlk8u+v5YTlp7mfZvny1UQi9Z3gOjm+gG3bDA0dpKdnUU1BRqUA\nJ51OsW/fHo46ai3JZE+ri9xUQSCyaNFiRkeH5zSQWb3bsdOt7YsvcN1QLRNMwFn43yKVmiKTSXP4\n8CEymQyp1CSTkxMMDR0kmUyiaTFM0894Tk6OY1kW27Y9hmlmicUiOI6X/2yWlWXHDoO9e58uWW8i\nkeCkk/60zZ+2MeVZFglQFp5WbXcJStogGPOkuKuw67qYZibXOHYMIN8gdufOJ5mcHAcgmzWJRDTi\n8fi0BrGVFKe5I3UOjlrt4hSWwZBM0+TAgX2sXHkEyWRPyYV+cnJiWlalHdmWamWwLIvh4WcBWLFi\nVT7IikZjjI4O172eMIyKWu0k1spApDzAKO75Vi6SO2C2bfsjpmkC/nF6+PAhHMfvxnvw4AGAfMZj\ncHAviuL3wAtePzT0LMlkDyMjz+Z66in5kYr9mxSPw4cP5c8H/uf2UNUIAwNrSSSSVcvYjt569Srf\nfhKkzE/l27VVx60EJR1TmkUJHgtS9EHWJGjnETSI7URNRXCR61TX00YVX+grVRu1Y/yVamXwHz8I\nQH//soaWrShKftbqbg1EimUyGZ55ZpDly1c17WJV6SIdBB6TkxPs3ft0yfg8nudh21bF8YTi8Tjr\n1h2Hafo3ApoWyWcsNS2af70/1ohF0P7K87z888E8Waqq5E7WStF2Aii9Uwiqch3Hw3UtduzYlhtT\naG5jHnVSN2S7ZmOaGXbvfgrPU1i3bv2CDJ6qBY+duHkoJkFJKBQaxDZyUmrWnUtYMiYLgaJAMtnD\n4sVLun6E1GD/W7SoD9u26z6p+WP8pLEsi0zGb5uRyWQwTZNt27ZOG4gsCDwmJycYHz9cMhJzJKKx\nbNnyohsBn207ucDfX5amRdA0P1BVVSU/YziA6zr5WcP9/100TcsHJY5j55ZfGAW62uziflkdFEXJ\nBTcayWSSZDKJ4zgl35VtO/mblfIsShiClW4SXGCDv+sxl/Npp95bSbUgo9NBpQQlHRSMDptKTeX/\nHx4eQlH8gcr8OygbUHBdp2QCwHpOQJ7nMTU1xdNPP8W6dcc1vEPPdjcuQUu7KCSTvXPals1Q60ky\nOMn19tZ2kgtm4Aa/+mvHjm25HmpTDA2N5i/+ppkhnU5NqxoNAg/P85icnMzPWRVkMfy5rKZnxjo9\nLL+fUalvzKPAbNW75dVYML0qK/jb/366O9DtpLlctDv13jCRoKTDgjrn4r9VVUHTorium3suuMi7\nuQZ3mQbuilrfm6c8aJEgpfna2VNmtqCjFSdJy8oyPPwsU1MTRCIajmNz6NBYbh/ysO3x/Gtd18Wy\nLCKRCD09PShKaeABQfd8JX8BDzIh3a54zKOggbyi+G1PFi/uQ9MKp+5Clqdy9a5lZae1k/E8N/f9\nZZmcnMjduEwyMTFOMtnD5s3H53sNgSJZGNE2EpR0Cb8hnUcmk86ncj3Py9/FeJ7H4cOH8TyPHTu2\nceKJz2vKiaKVjdIkSGmOTjVibfWdWXD3XnzHbpoZLMsimUzkpmnw8m0yYrEorusRFCe4qPqvUUMX\neNQiGPPI5+J5an4E6WIzZXkcx8m3k1EUGBsbwbYLWRPTzObbtkxMjDMx4fce6umJk83aqGqE447b\nVHK+qZZlge5sjCvCQ4KSLhGc+CvVPfvVPC6qGsF1/fFN/FTs9JSsZZklde8QnEDsqnXapmmSybS+\nxfxMF9R6A5b5HeAoxGKxaVOEt1K7ekwEXUgnJsbZsWNbfl/279IncF1/LI+xMScXlLiYpomqKti2\nRTLZU7TN/YakojaaVugBVD5EgS+aryKKxWIkEgksa5KhoWdzQU1k1ixL0PYmGo023AZOdJ9g7rbi\n4HO2nmyNbncJSrpMcaO88sf98Uz8QMOyLJ588ol8SrbAw3VtDh0aJzhhO47N+PhhIhENy8qSSCSn\nLb/T9ZXJZJING3Rsu7a73EoXalVVSSQS03oshEEQZKmq2vaBzEwzw9NPP5UbzK8527+4DUNw8kqn\nU0xNTbJ9+xNEIhHGxw9R6MHiMDk5nr9j93u4BA1FwW9X5ZZUd4rGlWZgihWyMdFoFEXxb4QiEf+x\n8ixLJmPiui6u6zA+Pg54ueozjVRqimSyhw0b9PwFSoKUcKjUriudTudvHoIA1Q9MC+22ArUOYVGJ\nBCUhVZySDe6AwL+4JRJRMhkrf4Gx7QiK4k8EOFNqOxjavtMNKBvV17eEF7zgJfn/iy/0lbIq7ci2\nVCtD8LjnKdOqZfr6lsxpnfVmPYIRRpvFsrI8/vj/5k9qQSZkZGQIy8oyMXEYVVVz6yz0Tkkkonie\nfxIs7tkSvEZ0TiSi5S9EQZbF89ySof+DMVgcxyUWI18VlM1m82185nKxalRwl1+cVfYHuvP3z2BA\nPP9zqiQSyXkXOFVr6GyaZsnnB0ilJjl48EDuRjaC4zi5GwhyjcfHS45H08yU9GqbrY3TbCQoCbni\nrotAPpNSSZA6Lx5vpLT+t3Jj2LAOhjTbhb4d1SLVyhCPJ9i0aUvT1tMto6JaVpbDhw9x8OABXNfL\ntY/yG6RaViT3GgtFUXAcF0XxAzTX9U+YqqpUzRaK7hBkWVwXPK+0yjkYmyUe97OxQVWQpmlzvlg1\nwrKybN36KENDz+b3saCcwUV6ZGQoX35VjbBq1RGccMJziEZjNfVaCpRngWp9bySiEo8rWFYWRdHq\nem+1dZd/B8UNnQO2bTM2Nsozz+wvOd6CJgKWlc0HokFgGTQoL1apV9tcerJJUDKPOI7DyMgQrutn\nRIKLkud5+cnctm9/gliscEaIRLSK1TnFOl21IyprZyBSy0kySPNOTk6STqdzAYaab7RdGKMkaKzq\n//YDF3J/t6T4ooXKg8gg8wVMa5jb7m7XfkY5k69SmqlqN6iGKmRVKl/Mg3ZP5YPbFWeBqgUCld6r\nqgqxmIaiRPI3KvWst3zdlb+D6Vl1P4jQSrYXkGt/aKNpUTRNq9qgvHQdzWtcLkHJPOJ5/kiT2ayZ\ni15Ln/M8j1RqkkwmUvQYHHHEkTUt3zRNBgf3hi5jMh+ZZoYdO7YxOjqaGyE1PqflBQN1Fd+FVRsZ\nNTiJlZ8kg+67wZ2TokRLBinzg2O/Osb/Pwhy/O6+QrSKoqhoWqRKOxqff/EtXFyrXczBbwNXrDwL\nVM97/d5lkE6b+cC/1vdWWnc15Vl1mD4wYHGZCuP/tLdBuQQl80xwV1o8voH/uAo4ubsF/3Hb9oe2\ntqxsTZMAznY3HtZqnrAJGqamUmkcp/4RUstZVpbR0REcx87PtQSFO7PykVGL64+LT5K27Z/cClmP\nStUwimRDRKhUuphXUikLVMt7/cDAD0oaWW+1dYeVBCXzVPkFIehWXNyexB+gyW81/+STTzA1NYmi\nKKTTqdy4EHE2bNBrXqdMzNV6hYAkRaPZBcvKkkr5A2M5jksqlco1LvXbCgTZDT8o9UcXLX58plFR\n/QaQ4ev9JIToDhKULCBBsOC6Ti6jEqTUs/meOa7rMDExgaIEvTKyxGKxhlqjS5DSHOVtR/xeK40F\nJKnUFE8++Tie55DNOvltbJppIhGNsbHRsvYBfuM//7c/uvB8GpxMCNFdJChZYIJGhb7CgG1+fatC\nNusSiaj4Fx8b8Cc/Kx7WulEzVf+k02l27DA48sijawpY5nOAU88U4f7gYtNH1azUSt91XQxjK0ND\nz+QGJiv0Qij8Lk0hK4qSG69Csh9CiNYLTVCi6/rVwJuAzUAa+B/gQ4ZhbO9owUKo0APCv8hlsxks\nS81X8ThOOv+6sbExAGKxWK7dSXl3tuYMhlRv75FKrx8fP8y2bY+xefNJcx7ro92CQGTFiiM4cGDf\njAOZOY6DbdvYtkUqlcoPRhYMbKQoSn5Qo6C7pqqqRCIRMplMPtAI2n5EIi62bU8bTTjYH6RXjBCi\nXT8xdU4AACAASURBVEITlAAvBW4DHsIv98eBn+i6frxhGOkZ3ymmKb7gBd28glmLg6ngg9S+57lM\nTIyzc+eTpFKTpFJT+caQnRgMqRq/zUwmX/7iC/3w8MFpWZV2ZFuqlcE0M+ze/RSep7Bu3fp8kBU0\nLi1XPEfM8PAQtm3lu+r5g5FFcqNqBg1SyWdQIhGNJUuW5segKWxvJR+gBm2QZHwQIUQnhSYoMQzj\ndcX/67r+TuBZ4PnAf3eiTPNF8cUo6DURTHzmV/coJBKJ3IRear7Ro207c5i1uPWKL/SVsjDtGH+l\nWhmCx4O/Z5JOpzh48ABjY6O4rj86apDpCtqYBI1Q/So3Jd8zxs+GuKEcer9TXNfJ90SzbTtfvaWq\nbu55N/9Y8L+fafKPG9d1cl07vVy1mJ+Nqjb3VDASqhAiREFJBUvxj+TRuS4oaPgZzLkRXKSD9Hbp\na938xWC+Cu6e/SGj/e9mfPxwbiwKh8OHx/IjcrquzbZtf2Tz5i04jlt1wqbi8SpE7VKpKbZte4yJ\nicMls0cXCwYmK+bvwyqKEv5Zc4s/s398Fv4OsmLlQUHwfRQHFOXPFbNtOx9MBHN7BPt70GMtCCqC\n9RaPJZdKTRa11/Ly5QrUOox/pbIJsZCEMijRdV0BPgv8t2EYj89lWY5jMzExAZC7o3Xyfb6Di0C1\n9/nDZVNyVxUENVAIYMKovNyqGsn1m9dyz7tkMn6vnZGRIf74x0cBLz9zaHBCD2YPTSZ7OProY0qC\nlG7MrnQTy8qyffsTjI6ONhAIh3O/g+lBSDArraL4DaKDhEOQsQCPVGoq12MMwOPQIb8tVHFAUfxc\neZBcWBYsXryYaDQYGt3GsrJFA0n5r02lUiX/9/T0lgRFPT29pNOp/PKDHkzTPyvThj+3bWvaucRf\nz/y+GRICQhqUAF8ATgBeXM+b/HEYSs8MsViMvr4+FEXNDyI20wBPxYGGafonvMOHx4hEtNycAWbu\nDlXJZV/s/Nwexcssb2wKMzcm9OcIKVS1RCJKfp6Q4DOVd+WstIx6Be0TIhE1347E/x78i0FQnlRq\nimDenaCRZmH20EOMjx9iamqKTCbF5OQEPT09bNq0GU2L4boKihLJfS4VTZu9qiESUXODDhVeH4kU\nvhtNU4teo0x7bbVl1MPvpVT4PXM5S8sQiRQalQbv98f4sPMXx6mpSYaHDzY8WV6wvYvbi0zfR2Zu\nR1LY7wr7V7Cc8mOpsI769rXCseDiukouY+nkn5t+jATl8EebVBSFnp6e/DwdruvQ378M8HshBQFF\n8XPlvcmC4CMW0/Iz5Pq9jhQ0TSsZ9dKfNbcwK6qqKkSjWr5dj+P4DYlzJc4NIx7Nl7uY34aoUH2T\nTk/hOPa0c0nxdxHMHRTws0Fu1f042AfLt1/l2cih9JxSet6pti9NX0bwd2FfCX43erzNptLxGBxn\nxZ+hmtLza2HbVtrXp793+vFdz3uD/bje9VZad7lqZZnpvDB9u5d+R6Xrb+52Dl1Qouv67cDrgJca\nhnGgnvcuW9Y77QuNxxWSyTiRSISJiRiOM70XQrFgKG5N0+jt7cXzPI44YhXRaBTTNEmlpgDyd03B\neypdWIIMSzAEvN8IEcrvcoM7QH+H9YjFIvT1JYnFNBKJaP4EGImUHpClO7SSf6xwR1l4XVDe4pN+\n+bqLdzDH8Qh6dfjdiSESieZP/qlUKp/CDgK5TGYK13WZnBxnYuIwlmXmLw7+YG0xYjF/mwSC58vT\n2n49PSWvj0ZBVSGZ1Ojv7yUe92dM7utLMjoaZenSHnp6evLLCJ4vf7xefX3V5w6qVobgccdxiOUT\nRg5PP72D0VG/RjKVmqg4+VYt/ItpkA3wiMc1wK+6KD95O46X3y9KRwEGz1NyJ7XiQMor2e8Chf0v\n6GpeehL0jwd/yOriQKMQzAbHSHF7Jq/kpBkEH365nfx7k8lEft+zbZtFi/xtcviwP9R9ELAEz5WX\n3bIsMhll2nEVfKbgp/z78m84lNwxoOLv8l5uLhOl6GRd+ZwSfOdB9+xly/pZvHjxtHNJsD1c1yOd\nnsQ0C8di4XPF6OvrnbaOeNwPioPkUHCOCarBysujKBCL+cddLKblZrjWct9H4buotN/4ZSzd94q/\nS3DmfLzNpvh4jMf9eWXKt2ElrusHnLFYhKVL/fKVn2OrKf9swXpreS/4+180Wv96K627XLWyVNq3\nwR/9u/gGMTjXA/n9vFiwzzdrO4cqKMkFJG8ETjMMY0+97x8dnZoWeabTabJZG1X1iureCyeTYJCx\nQPFJMrhTcxz/Yuh5KrFYDFUt1EcH84UEM6YGiuucLcsmOJFns9lpJ68g7WzbTu7OymF83C83WPm6\nbX/SvcJyg6Co+O+gAWux4GJRaENTfMHwf/szuhYvuxBI+ZP/kRti3D/B+q9X8hcxcHPTn5MLWBxG\nR8fyvX7AI5nsYWLi4ZKd3g9KFGzbKimzbduk02kOHhzKvz6b9Xui/O53D+XauDiMjY0Tjw8xNZXh\n0KEUpln4bOl0mkzGmvZ4rSIRlb6+JOPj6artNoJ1jI8X1jU5aTI5OcnY2DiHD48yNDQC+JkRv2Gl\njapGyGTMaW0TauVXA/g7huO4mKZNNusPkOc4bm5+Djd3EfHbWxQH0sEySrevm19eJlPY7wLB/hdM\nBmnbTsm+VtwGpJLCrMKU/PYzHZHcBdPvNeQrHCe27aCq5DIVfvmCsvpBkFLyXKWyZ7P2tOOqcEwp\n+fUWf1+FyQZL1+8vozDJYPl5pPAdFz6HovgneMeZfi4J1us4Dr29fSWZniDLMzmZxXGmpq1jcnKC\nkZHRfDCXSqVKMjCl5fE/z+RkikWLekilMrl5XGwcp/z7nL7fFH8fwfcffN/Bd9zo8TabSsdjcH53\nHBdVdYv2nekK287h0CG/6q38HFtN+WcL1lvLe/19HCyr/vVWWne5amWptG8D+eM3OOcX1w4E+3mx\n8uOqWnn6+6cHzJWEJijRdf0LwF8BbwCmdF0/IvfUYcMwarqd9Ot7Szea31jTv2soPnEUTiaVlxVc\nwIODsFDfWwhYVNXLp3wTiWTZXaObb1wXiUTy7Vj8k295UOLlXu/kG+M5TmGdxSeE4vKVn3MarY4u\n/qzFZSo8XvpdBK8r7dVTCOKC70nTovkTO3gsWtRXUtdv2w7pdBpQiMXi+bsvx3GYnBwrycYU92J4\n5pkDufFV/Aagg4P7iEaj9PT0kkz6B0ZwZ5DNZpmaSk0LKupp8+I38HXzM+n6B3swsVaGyclJDhzw\ny7Rr11MMDz9LOp1mcnI8lzmayn+GICAsn5G3EYV92Zu2bYLnZ2urUr59gyxH8X5XeK2X66YctLGy\n6pqTw2/H4Wc0ggux4zglKeTi76j8eC0epbi4l1Phh1nK7k07rip9d9MbGldef/ExWOl4rCQ4R5Wf\nSyDIYri5zE/h1O0HAWp+P5xOZdEiv52Mv79N5L/DyjwOHz5EOj1FJmOSzWbz3cmD/bIwhk35PhWU\nv/B/8Xfpf8fVytkcxcsPLrC17+uFQByYdo6t/t7SzxZcV2p5b3CRb2S9ldZdrlpZZj4vlJ/TS7+j\n0vU3dzuHJigB3oN/JP287PELgK+1vTQ1Ci7KxQ3lyp8rvnsszwgEPA8ymVTuLmY8X+9eXK0RNI4r\nPnEX3t9djeQKd8Aqfgrey9Xdl+6SuUTTtMmpggaOhZS6UxJE+t1tCxd408zwhz88XBQY+t2ck8ke\n0un0tG1T7/grwVTl6XSaw4cP5dtEBOOOBNv4wIF9094bVEEU87NO7WsoXWn/KJyQ3FwKF0Cp2oPF\nH64+U3TiK59/CWa6GGqalq+TLm7/IObOb6gejC2UqHg+AnIXE5slS/pZtCjJ6OhhJicn8wPxmaaZ\n20b+cetPc6+UBF/keu3N1FFAiGpCE5QYhjHvBloo1NNpWJZ/9Y1GY1UzJfF4Atd1WLSoD6Ck6yIU\nLoD+Bbu0sW4QqIS5R9B0Sj4TZdulJ0E/+PAzM0FAEHxXwYXW82DRosUVGj3WNhV4sWCq8uCu1p+N\nOWjjYJVkGSpdmMtP4P4+0JqTeuGOV8n/XWhcWrzvlWYL/ADRr46r1oOluLiappV8t/4ysvn9Mtgu\nfgA2X/bJ7ldcJTadi+ep+ca+/rxXURYv7kNVVaamJnKv80p+F9L//r4SDNzneW6+CjvIDAsxk9AE\nJfNVcUM4z6Nig7jghK1pWq79ij9keHHXRfDvVCcnJwgazBbXEwbn/CDDUGn580kwRodfbeR/vuKg\nJPge/Qvn9Mij0anAgzmEgt4afq8rFUVx84FGM6pmGhUET35Gzg8wgiBteu+QoPG1QjQaIxr12/e4\nrsPSpf1Ve7AE49VU2peL76pFOAQ9kDRNK8my+FWV9rTG8eUmJsbzAfr/b++8wyRJ7/r+qdDd1d3T\nk3Zm82y+fe92L590QhI2yAQbhCyETbAfY4KNjZAA2RgbnLDBNskGGRBghJElgx/0mCBZsoSkA+mE\ndHfS6YLufKFub9NtDpOnYyX/8VZ1V4eZndmdnene/X2eZ57prqqufru76n2/7y+9WgBvbC2WJJbp\nWvFZknLdH4goGWASk2x6UM1ms6nZSO+A2U66fYtyYw46rRibVvxSEPhx7YxWQGkiTPT/Tuuafm7b\nmZTVwyAIWFbMJeJ6pUFKGFw6rSyJ0E+nLYdhiOPoDBjtChptq/nS6aK9mQSBT7m8FFuQPVZaWFK3\nvbdrUtg4RJTcYiRWlM7o+sQ838vPm9RF0AFL7bOJ683+EDaXdCXSZO2iMAzI5/NARC6XJXHftLIo\nuhfkC4KgZ+yBIEDvmieJcAGarqBEwG60ldCybAqFQiq1/toTrqRWTFJ7ajUiRVxT64eIkluQXh2F\n7iSM2KXQLjRaGqXXDds740DobxKrV3INDA0NxXU9WsK1tSDf8gW1JNBUGHQsy25m760ksMNQV6Qu\nFktYlk1S7Tsdt7f8a7tdU6sVNLrWzcYLtn5FRMltRHoG07n9WoOPjrJvPU98tP2W1SNoTNMkn9eF\ni8IwIJPJEkX1Zeup3MrobKAgTrcNl1n7Juj5XM+AI6IowDSj+HxhMyMJkpRcvxk3ofelY7eWD1hu\nuUvlHrqZrBzcmxC2ZSVZlt0Vt7ccna6ptQiapE5Jvd5Ys4Umee9byUojouQ2JEnnS9CpmEkgWu8V\nS+v1Ko1Gt2kfdCXObDbXTM/tFCsiXDaedOfaK+V40Eiun84F+ZJg3E5RkKSqmqaJ7wdxQTItpBcX\nF+K6Qd1p4NlsllwuF2df+U2rou97bfVT0llshmE2U/nDMMS2M03xl7jH0vU9EgtW4kpNiheutqy4\nsHH0ittbjrSlYy2CRldPhaWlypotNNDbStN9TLfI6bUCtt4epIKDgw3P2BRRIvQshd26CJOy4oVU\n6Wh9A5bL5WYH63kNwtDvWb+gvXaBuIJWQzpQ9XoYJLdLq/BSUl0yaqYnJ0IgWZBPr/uSZFD5zQHd\n91vrwRiGydLSIrmcQ7FYahNlpmmRyWTYt+8QjuO0tSMpmHfnnXe3DTCe51GplDl//gw7d06RyzlU\nKkucO3eG7dt3ks/nse0s9XqN8+fPMDW1F8uyeeqpJ/A8D8sym7VbdMZKA9vOxi601vISSSxYa0G+\npBR8K2BZGBxWK2h0th7NFPu1CBrottJ0spzI6bUCNrQCfmu1anyNhs1sveR6TtO5+vaNWm5ElAht\ndIqSJIW2s+ZEKy4hilOVk4uwV/2CdO2CqOsCT0zYvu+3CZakGNzKJtdbg06hdiuYY3tV+9TXQufa\nN63fX/vXw+ZADUlnrQNxS6USpmmRrEBdKg2Tyzns338Q29aF7ny/wYUL55ia2t8lPDyvwdmzr+E4\nTjNDpBOd/tx67jh6rZyZmauMjIziOHkcx2F+fo7JyW3N89RqVWZmrjI0NIzj5HnTm76eIPBSpc8j\npqev4LovoNRRtmyZxPc9Tp06TqPRiMVLGC9NUCEIfKKofaVgPZPu7WoSbh3WYqGBleNRlhM5vVbA\nBr3sSbVabi4RktRYgohqtbJMpfBW7aIbTf0WUSJcN61qtbrsdRJItlL9gl4XeBSX4LasmTYBkhQe\ny+eLXZVrk4JfrWPbb8pkZt2rLPJm0A9t2CjSron23yhx67UPtPqhSaFQxLb1Gjf5fKFpudi//yAQ\nMT19iZ0795LJ5KjVapw5c5Kpqf0Ui8W2yru1WhXbvryi8NgI9OcxGRsrYlllfD+kXq9hmrrs++jo\nGAAjI6Nt31OtVuPUqePk88UeQekRS0uLZLO5toEkl8t1FbPrRIuXqMsCk0asMbcmy4mcZLHK9omf\nQb1ukcs5zWUfgmAJ0Nd0p4sxsZQktYtuNPVbRImwLqxUv6C9dkHUdYEnM+XR0fGOtW+0Yq9Uyk1F\nD4nZsRbHCPSeISQVW9PoFXKttiqmvYMer8/8qNOqozY/bRJYeSvE1SSukuWDRZOg0BDLMslkMm11\nIcIwoNGIyGYzbQsxFgpD+L7HkSN3Y9vZpthwHKcpTDyvTrk8H1stcoCun+I4zqqXAuhXOi0zoEXG\nwYN3dH22tBhLW4FWWqvJsqyOOJlEnOhCftpt1G6NkTTw25vO/jy5HpL4wzRatLTXLrqRTCIRJddN\nUrI97PCltSL10+vQJIF4Ce2r7AYkix7pGX63daFVdXMw6EwxbWX+RF0X+Epr31iWTbFYwnGcpunR\n933q9Rr1er0pMpZbMyhNEPhtJsV6vbpsufS1mh8Tvy3Q5qdNrpG1crPXvklKwieCMfEjd65Vk7TB\nNI34OtXPG41GvBpovTlrTy+OmMvl49Lk+jvwvAZRpDurUmmYbFYPoNlsjqmpvVy8eKG5fEIiNjbT\nytEPZDLZnt/BWr+fdJxMrVbDdV+I3aa62mqp1L7qcHLd6oUlpZCYsLGIKInREcctkaBn+O1LuQNt\nHW9ywyYddL1ea3buOto/mVnqeIpkRtISImGbD123w2u6M9ILmhmGEReyap/VpP3J6QX5Ok3k6UyF\nQUs/7FUOPjE7JoIiScFMZ0S03Df6N9OrEpvN7z+Xc1Ysl74W82PitzUMkyDwm37aMAwpl8trtrzc\nrLVvEnGoRVdLmKTXw2nFFYXxa6BYLDV9ydlsjkOHFEEQds3akxWStaVEC49kdj86Os7x469w+PAR\nRkZGAeIVsgMs6/K6fk6hncQaY1kWhUKBer1OGPpNa6PnRR0CMwCCZp/TWtW85fpJr4uUMOjWQGHz\nue1FSWLarFarzcCetEjoXCQtWUo8l3MYHh7FcZy2Dvquu+5pGzx936PRqHHp0sVm5H4Spb9t2454\ngAg5c+YUjUadWq1KLufEfnGdnpi4QZL/+Xy+K3URWsIjCRhM4jnSJeQTF0OazhLzg9iv9ArQTURJ\nIizTa98kz5df+2bt5kcdW2O1+WnDMGgGaiZt7HXu9V5RtbPMfBDozCjHyZDJ2Ni2SaPhN49LFoUs\nFIptQq9er3P33fc34x+g5SrQ12j7rH252bttZ5oDXi7XPssPguq6fW5hZTqtJomoBDrcZiajowWu\nXJnn2LGXm1axtOvH87zmNdZZqFFWCBaul9telKRv0sTaoWeRDaanL1MqjXLx4gXAYNeuqWY9jlxO\n+7I7O+ihoVJXx1yrVZmfn29G7idR+uPjE81jt27dRrlc5syZk2zduoPz588AsH//HatOXQRYWJjj\nxRe/im1nm/5Anamw2ByYEr9/gk6nTOovdFpSpGMZRIJAu0xalrmQQqHAwYOKTMZmdLTA3FyFIAip\n1WqcPHkMaL/earUaZ8+eZnR07JZxpRiGQS6XW3PKdOfrep1nNefuTL3fDNIxLImoTD92nDy2bVIo\nFBgejjhy5N6erp/5+Tn0Yn2ZNtd0kvYvQbPC9XDbixJo3aSOo/3gAJ5Xx/NqjI9PNmMF0ul/N6MN\njhNg25k46ln/NGtJXQSwLJM9e/YwObmzGRCYDDphGLJjxy7Onn2N2dnppkUoqSKYCJz0LEenZupY\nkHQn0y1ehH7CskyKxRKZjN10t+gg0WxzwKnXI3w/cW31vt6uldGxWawkAFbal8s5HDhweM3v1/m6\nXudZzbkdJz9wIm8l148OXPfxvLArYBbaU5gldVlYDSJKbkEsy2rLUoDWoDM+PsHk5DZqtVpsnteu\npImJrVy4cJb5+Tmy2RyVSrktpTcJKk06nWQRNy1gwpSbpNvXLGbcjSWXc5ic3MYdd9zVlsEyCCwn\nKExTuy2TdMSVBMD1Co+NYHh4hIcf/toVj7lea87NptP1c+rUcTxPx9OVy0sUi0PNOhWe12hakn3f\nbyYDrCZ1Wbi9EVFyG6JnPkkQonYllUojzM3NkM3m2L17bxzj0gAS988S+XyhuY4KwOLifJwtZDY7\noiR7qJV1ktQyMeNiUO0lw0EHVEp57RvBaJrMHSfPxMQk+Xyh7zJYDEMHLPda9C8ZhJcTFLmcw9Gj\nR5mdLTetO7cqK4mqzRYsaetskrbcGfC8XNoyrJy6fDPRAb29a7MkiLtpZax6neELF6ns3UvoOJi1\nGkNnzrCwaxdBZv2khIgSoQ3LshgaKnH33fc3za5JJ7N16w4uX77Q7GySTIsoCjh16gTVarUpXiqV\nJYIgaJYJ16XovWadBL0midcMHrasTFcQbntmUWeWURKU26ogO8gGme7g4+46K0l5ddu2m9+VaVqM\njIxgmlYzKLVYLHL27Gsb2PrVkcvl2L59Z9dA1c+WjX5jPb+rtMC5XmtmIlI6A577Ja3bsiyy2Vyz\nbEA6IL5XjRadtXd7T5CsWo2xkycJDt0BQ0Ot7Y0GI6++Sn37dkLH0SLl2DHKExN4IkqEm01nvEor\n1qXV2aQ7nKGh4Wag7tTUfizL6lovpF7XgZN6cbNWvRLDMMhmLZaWFuMA3XSlSqdN0ACxsPGbokev\nkdIe49JyHd287+h6WG3n3z1rM8hmk+9GZ4mBQSZjc+ed95DLOc2g1I1itbP25DjHEfHRT6QFTlJb\n51Yjk8mi1FGApuUXtPVXV8bNkss5bX1RPp9vpqr3E0a1Su7kCer7DxDlb1zsGdUqI6++SmXvXigU\nm9vNRoPxkyeZ3rN3U6IGRZSsE2sJvFvu2GS7aZpks7m2m6jfSQfqJqKlc72QxFW0e/eeNhOuZZlk\ns/D88y+ye/e+rkqV0J5G63keL730VS5fvtSsJdJaxE3TWRckqfOSLkS32mXs10Kr3k26gF6Smrv6\nqq564bjE1WGQyWQ4cuQestkcZ86cbladrVarcYqtc4O+ei161pJNstpZu1hC+p/NdgvdTAqFYpvl\nF1g24wxaLqYkVb2zPzCqVZxTJ6nt298UB6vtM25EWJi1GvkXX8TbsZNgHUSJWa8xcuxV6hOTBGmX\nmufp2VytBpUKRCH4vt7u+1CtQiaj/3uePi6bIapUiawGUeDDDbjCRJQsQxJYl9QxiSJjxRt2LYF3\nK/nNk+25XI5z515bcyfRGRAIiSVi80VOVKkQnTuHvW0nTmmkud22TTJ+BevyJXI79/Q0+XYukHbn\n3kPkZmbZfufdWENDnDp1nPLVqyzOzWDlsuDk29ISE7dRKxVax2Ekq8n2WsZ+LYN8ut5N8n5BkAQE\nh81YmyR4OF0rpVQawTQNqtUqhUKRbDaLZdns2bOfXM7B9xtcvHiB8fHJ+PtKKtuuunkrYhgGxWKR\nXbv2kMu1OmcRE7cPa/2t18P1s5F0Wn6jSgUzLvWQ23uwZ5/TWZ4/wZyfxzh5ksbYOOFK6w95Hl7D\nI0qtqmvNz5F75mkqpSGCuICgTqs2iLyg7bVREBClCjhGlQo0GrofzbZExKpEQK/zLSxCpUJ08SLR\n4kJze+h5zOzYQXD1CsbMNJFhQKlEEPjMFfL4588RXb2C32gwn3cILl0kWlokPHmSEIPQNIkKBaI7\n7oLrcN+JKFmGdGDd4cNHN+X9rzd1sTMgMJdz2LfvYE+R09a5NDyYmSbatbftYkrERJQr6P/bdnZd\nbNHiIuGli4QnjhNmHELbJrhylfDMCYKlGmGpRHj1MuHxYwSYBGNbMIraZBja0AgaRKdPEU3uIgpS\nN1gyg6nV2t7POv0a1unTDA2Nkp/YSik/zCyzvFypcHB0K0NKUV+c58KJV9mya4qrly8wecedZJuV\nRE2oVrjw4gtMHbwTZ3y8/fxrDMjrrHeTzMoSl9Xo6DgzM1fZvn1nLBDrXLhwBsuyOXjwTkAXr9qx\nYxcXLpwDaLMwraXi6VpnvSI+hKhcJnrxBYwjR5v35Upk/YB903NQHKa2uNi876ORUcL5ubbnbTgO\nRql0kz5Fb6LFRaLpq1CrN7eFVy8TnTwFBoSlUcKJrXpHLocxMYERr6qrdu8jqFTazlezMpzdsoX9\nE1txtm5vbrcKhWafYVar5J59Bq9RJz138H2fi/k8PP8cxJMLA4PQMsjZWczDR3UV3eefIyqX29y4\nkedRrlXxv/JlopTCikwTs1hcVgRES0uYzz+HubiIka6+W6tRyefJXbkE06nVgy2TRi5HbnEBOwgJ\nDQN7dhZMA99xcJaWWsc6DrnFRax6HTuTxTItCOsEvgf1OteDiJJliMpL1F96jmjPAcgVNrs5N0zS\niRjbdhE1WjepXa2y58Rx6tu2kXntJNHVy4R+iJ9zILas+L5PeO40YaNBeOY0oVMgnNhKeOUyNDzI\nZgk/9qf4CwtEk+P4H/kI/unTBLZFdPQowe++H79WJxgagrsU4Yc/rG/0oRKYJj5QGx0mfPBB/N//\nPby06B/S5c2juFYMAJ5HcOY1OLif4KMfxa/WMAIfa2wM4y1fh/OxX6doZbCcHJndu8nPfJLs4UOM\nlmvkh2MLTWGIupPDPHeW7M695DoFiOPAGrME7Fodu1YjW15qdoDVxUWcM6cZXapSm77MOBnypRLV\nxUWmz5zFyObI7T+MUShg2xlse/XvqQOErWaw8LUyWAaB5QbHzvtxpUF0pX212RnOPvsUu+9/p6aE\nZAAAHldJREFUCGesXYiuROfrep2nc1u0uEjk1wkaBaL5CpEfUTl1kvOPfZ6db/qrFPbtb342anU9\nIA4N6UnAMRd27cIw2q11URjA+XMYdyiMQqpfusZgHy0uNoV98n5RtUp04jjGgYNQqxI+8mlM38fY\nvoNotNRsd1jzMOIBNLx0ARaXiObnCP/iz2FhnqDRIDM2TPDHf4IXRfi5LNHunfif+ASeYULK1WCM\njWP/6Hs2TJhEi4t4v/LL8OQTuq+KCRwH7r1bP/7kn+Enk55MBuMNX4P9T35St/e33oc1O9N2TssE\nY3wc6w//ACvVVxlj40TxZ7OXyhz63KM6JiNlPak7DmcO7GfqhZfIxe9pGAYWEWEQYr/1HeD7bPvy\nlwgMM1lvRLfTsqiMDFM4fRorHe8SRVhRhPVNb4WJye4vYX6eLV95EjOMSNuDwyAge/kSRhRhpIxd\nURSRrVTwCoWkEh6ZSgWDiEah2Nam5mtMA2/bdkzbJoxCfMOEb3l7j1/k2ogoWY5KhfrjjxMVhglO\nnAQMzAcfWnYWsZZOMv2cMIRajai8RDQ7R3TiOOzYSXTqJIYBxp1HMNL+w5SST3c0CcHMFRae/Qpe\nsURg6zolUa1OdOxlOHEC7r0PnngMTp6EJO7C98lksxz0fGjUIeqIySgUyD74INGnPwOHDhL830/g\nl8swPxe3yQGvAYUC5B+AYy7MLcBQUZ9vYQGWyto36Xla7NRqEIRgGjpmM1HWl660PlOg/ZiRYehZ\nRWJ6bNRhZgamdsXnjpV7Pq99oZUqXDqlI8e3jMPpk5DPEn3kI4TJrMc0CaZ2Ez38hm4hxNo7z2hx\nEf/X30t0+RK8+kqzAwwch+jOw4THjhEdPEjw/G/jl8sETh4eeoAom8V7/gUoOAS2hecFBEMFyGbw\njp/ErNVozM4RBA0a/p+BlSWwQoK4IxlfWsR84ksYpsXu2XnYt4/G+Dhmtaavt3y+OdglVqdwbprG\nOZNwsULoQ1StEj77NPgexqHDGPFxUa0G589jPPCAHgCTmWbH4JkeIJMBL1xYwIhN3lGtBq+dIhwZ\nhWeegqN3Yw6PENWqEBlgAtMzmA88pAfHT/5fjOmrGCOjkM0RVcpEl8+z9OwzhH/16wiGRvHnZll6\n8ssUXj2G7eQx8i23k+95VF56gSGvgRmEUG7N7CLPo3jsZYxsnnDLRPuPOFzC3LmL8Pw5WGiJ4PDK\nZaIL5yi+9CLRlav4wyOEZ89QfNUlfOEFGuOTmONjeAvz1C6cxVsqk9k1RfCbv443N0M9myW0bIhg\nvuBw6nUPUnz/b5Kp1CAI4OJ58ANwcnD0Hh3HPDMLVy53++hsGya3wvgYpJZHWOl6bV6bszP6/kuu\nzzDU911yHt8nePSzkMsRKEVUcKiXa0RnXoPdU7qtzz1LvLAXeD54DXLAvtaCXRjFIllCjJdcqNf0\na+0MBD7Ra6eJ5uY2TpTMzelr7vJlwEgqFIBfbH23S4tQLjej4qNnntavA6Jnn9bb0+tgOY7uWzr6\nqvRnM0ZHse97QH/nKXwTzEwGa3ICO+5zzDjQ3xsawRgdJQOMH1T4C3Ntr61jsDA2QsmwyXWEoNrD\no2QmOq7nGGt8nIUHHsRrtFsuAt/Dqx4gwsBMuZjwfZz5ebyhIoZpEwIN28LyA0auXqE6MkKUyWL4\nHoXZOcrjYzSGhhgxDCwMAsOgUSqxdWSE60FECa1ZRFReIpqZ0YPj0hzRqdMETzxG8Njj+rjyEsbI\nKJEfYBQKWnwkHfT0NOHnP4dhWRipSOaoUtZi47G/1LOQsXGi2RnCRz5NdPoUfPYRWFyC82f1YN1o\nQDYLQUhEpIMpEsVs200lb/3QOwk+8LvtF73nwcsvUr96RafjJzdgREuAPP7F3l9Ch7hJk6tU2PfY\n49RLRbIT4xjzc3rgT9S6AWzZgmHZZAMfozCkBzA7A6ap/zs5KA7pz5PNxje2tpQAMDoMuRxsm2wv\nJbCMpQSi1rkzWS2KrkWyGA7oDnl+QQ9Y5861zaIAuHyJqFZbvSiZm9MdWL0OV64kyTHQKOhtlTgo\nrFxuiahYkPLZz+nnDz0IL7tw7z36nI8/oY8dGtL7nnpaH/c1byATBGQaDaaeeZZch3kZILQzMDzc\nvGa44zCMjYPXwHv2aWq+D8lik74PC/MQRUSm1ZoJJYs3jo/rTjnpxJPzGejBe7ikf4dkwKtUYW42\nNk83FyCK/wfw0T/tWS0iGBsnsG0qtkXhM5/Ss0EDCAI806IyNkrh0UexwhAjiijFwXcRaF953GzT\nMBga3wJf/ALhpYtt/nbLMNgyvgUe+yK+2W6FMPJ5wp/+N0T/6ee0YAL9mS6cxwpCtkQhfPxjhFGE\n7XtsSX/fmQxWNseWbVux/uiPdCDiZe1yS39Wc9cujAfuwzx3Tl93aRaBY69Qn5jgwo7t7Dh9klyl\nmrqP44E/n283jV9jsG9em7pIEFyd7ohBqOrfOYz0exkGUTaLn88R1Rpw8YI+3ognEMmfaeh7MH0u\nwyBXrbLvhZf0/Tw0pEVJ7G4wxsYxRjtcOjcRY3QUHnhIi6/0Pe44TfcJQ6WWMMtkMB54sNlG4/4H\nu4QFJroP6+ir0p/NKJWwf/Q9Xf2qf/EixpNfxP7WbyezXbt+bNtgZKTAfD0iyOuxw3n3j3e7rC9e\nxH7yixS+5e3kt29v27eSpSw7No76nu/tckMtnDvLiSe+QGb3FFb6N5mbo/iXn+fSnUcIRkYIo4hK\no0Z2YZFt8/Ms3HMv3vAwmYUFnC99idkjR6kNlyiNT2JaFmGgF4Y1UunEa+G2FyVtM9xXXtYz8DAi\niOJCO//nY80bMvz8o/pFvhffcCX9P+mgZ2bhzz/T6rzDUKtwgJyjZyHJTdyow5/+Ue8ApZ4CwYCM\nrTuMZ54mPHOmW8X7HszNaQtEm5C+RiCaaYJptQYO04z/G/rmzeVAHSH3utex74X/h/GuH8cYHtYz\nYCuDuW8vRqmENTvHgRPHMX7gIEQh1uwsuUvnsL7tO7BGx7CjkNzpE1jf9g6swlDTomTbUMiYnHvh\nRezDR8mk/dDLxJR4F89hvPQC5lu/HatQJKpW4OoVKM/Dd3wnxti4FhwzV+DofbA4D/e/DqMY3yiZ\nLIZtwvkzWH/jbdiJTzlhuIQ52cMUugzG6KjuwC5f0haepAPMZtvMtzeKEYYU5ufZ8cKLPcVIE9+D\nxcXmIEMmA6dO6kH2ypXWQAf6d09mv73SIKenY/EYpyIbRrt7q1xuvefVaS0Qw7Dp/kuoFwpcOHqk\nq+2BbVMZG6OwuIjl+1psdGDhU7p0SQ/IphVf0okKMaFUag0yiTVheLj9t0jv67A0ADA2jjkySnDn\nXZAMRJ6nP0+t3m5VWFzQ1g3T1Pb8oRI2sGVmFkrDsGsXXL3aur+zWcAgV28wfPESuXoDsrnY4tBo\nfY6pPUQjJRojI0RbJiC72NbE+tAQF+65mx2VCrkoFcy+wmDfvDaTz7Rtu+6jgkDfI8Uh/fjyRdi6\nHSYmyf2972V4+xYWFys0FiqYiSWsUoZ6XbtvPv8oxsNv0MGXX3oc4w1v1P2CF8CzT2F+4zdjbN/R\nPjhtcEyJUSqR+ac/2RVTYi8tkj3+Cp5pYL39u7CTNqUs0UBvYTE/h+G+gK26+6r0ZzNKJX1dpttj\nmRiX9mHs2okxrmWtYZtYY0WM2TLEcYCrfe1qyY6N60lJCs+2CF87TrRlnLDY+o0CEy4ePUIjnyey\ndYXe0LQwMln9PJcjdBzCep3ItglzOchmMQp5DDuDcQPxJCCipDWLCALdiSTpUNA+swZI99e12PRq\nmq0OulGH6autWXIYuyug5apovjG93yctEIx4JmIY+rWxCDIeeBBzaoqol4qf3Io1P0OQyenzgG7D\n5UswOqYHbCerLQ+eBzkH0/eItm6HuOBW04SfzWl3UyaDMTMNe/fBPfctHwy3D3jggebTInBHancB\nuON1r+96mWmbOI5JPjKwdkxh5JyuYzpvUHu4RL5YILNrD1Z8fGZuFuO5p8jc+xCZ0TH8mWnMp5/E\nPnAH5oljZB58PZnUzZzsN48cxVzjTd5JemYUpWJKrMVFjJOvwF/5OlhcwHjLN+lUuoUF8OJr6Fsn\ntQUhCmDbPGQyZOoNjG3boFrFCEOylQpGGGqr1ZNfuXaD7ExroM5kYN/+pqWEZ5/Wg1IPSwmrtZRM\n7em2lED7gPfg68HJ6oHv+edgag/W5Yvwlr8GwyPaQoiBlctSqtcxXvewftuXX4LRkdiiVsAo5LEq\ni2SrZfzDdxLYTtMlFE1uwxgqYW5ticp03AVR2DYYLRuTAc1BxegYiNKuVePAQW1Rmb6qrUJ79mEM\nj+j7JInRuOsuzMmtBKdOYs9dpTg2SiXSX0vu4gWmnvkKuXf9GNb2Hfr8VZ1VwZYtWPsOEC0uMvnK\nS+Te9o6uGCOvUcM7cwrrGgNimuVm7bX5ec698iK7Dh8hl8m0XHHj41hjI2THipizZeweFXSjchlz\ny4R2QQPR/gPt7unt21YdNHuzMUqlru+mABy85x7OnXsNe9cezF59Dr3FgVkawvRqmLt3Y6wxu8Qo\nFDB27eq+9m7ya3uRHRll5M6j7N69ty0lemlpkefCiILTqtcSRXMQRVw4fJiGAaHXIDQNpvfvw7NM\nDMNctzWObntRYjgO7D8ARHrmc/lSLAjiA6J4u0FrkG/UdRxFKbaUJB30zCxsmVjWUkIm07KU+D6Y\nsTtj95QeCCwLRkYx3vzmpum3UyCklXxn5wlgNarkz52iumsfQVbfME3f/z33Ym7rMPutloMH9f+t\nW1c+7jrJ5/McOqRWXUK8VzCnaZo4TqoQUnITj49j1Ltv5vW+yZMOzEhZWKxaFXPIIbNjN9aFs2T2\nHyLr5AlrVaxjL+viTfsOElUqOM8+ReZvfzfFV1x2mhny995HtLSIc/oU+55/Dh56gz7p6ZN6oA2B\nypL+bTIZiGNKuEZMiTU3TSlrsrhYwV/nmJImqUEyiaGyJrey9wuPYn7zt7SJiG7e0bXFtk3GxorM\npmaTK3JkhYy5lfbRPRAZk5NdgtsEeHOPNWxSx9iTk3rxw7Ei9dkykR9SAArv+Fsrvn9ucpJtBw70\n3GfVqpgZa80DYs+Zd2kIz6ti7N6F6eRh797Vn69YxHj9w63n6ccd+/qVQQ4IXy/0OmndlXe3bt3e\nFCue5/Hqqy/rit2FYmuNo6GQ2sgo+XVe4+i2FyU4DubWbURzs0R33QX798fmbJ9MtYJn2XD+HGBo\n8ZDLaevC29+BOTHZ7KBrly5y9vG/ZNf9D7XV4IgqZWpLS5y/cpFdew/gDJWoLS1y7vQJ/XzLRNO8\nWatXOXfMZfLIPUyXF7rqRnTSU8XbJoX7j1KfLRMmpkBYU4czqHQudpYuRrdSsbqbWTBquTZ01QbJ\nORx6yzcBMHrX3W3nsI7eDd/6bevWJjM1Czbja8RKDaarZbXXVdsgtW/fmt9HaGFZNhMTW5tFA9eL\ner3GuXOvXbPPEW7tQnMJabHiOHnuvvv+tordN3ONo9telBilEtY/eme333D6IqefeIwt99zH2TNn\nwTDYd/Q+nJGR3qZSy8TbfwDj4KEuV4BVq+KffBVz/yFMJ0/G8xjdu4fM6DhmKt/c9jxGcjmyQyVK\npoFprk8sQhD4lMtlisXiundm/Ux6JjQ83B0JvhEzpeXaILM04XrIZDJMTm5bl3OlBU4Q+NTr9VUX\nQrudRcyN3LuDKmh6VeyGm7PG0e0zQq1AL4tDlLUIDx0imtqLH1fPM3bvWtZkapeGmbzvAezScNe+\nztnNch1Lens+v361USzL7jkoC4Jw+5Lub9IVS1dDFEVrEjGC5nYUNGvFvPYhtydGoYg1tRsjn8cw\nTMbHJ1a0MiQ3eCaTWdM+QRCEzeZG3EL1eo0TJ16hXl++rIBw4ySCZr0sU/0qckSUXAPbttm2bQdb\nt+4QUSEIwi3JWidOaRHTaTURkTIYrLfIWS/EfbMMtm2zc+dObDtPPn99RWAEQRBuRVZy/YhrZ7DZ\nbAuKWEqWIZPJsHPnTrGOCIIgrMDNygi6mYg1Z3mWs6BslFgRUSIMJEHgs7Awv+YAPUEQ1pdBjJmL\noohyucypU8dFmKySTrFys0TK4EhbQUhxK2QU3a6p2sKtzeBYTiIaDXEzXS83q6yBWEoEYZNIhFX/\nd96CsHoG0XKyFsT1c3MRUSIIgiDcVliWzfj4BIax9iHwRgJ5RdBcGxElgiAIwm1FJpNhy5bJ616f\n5XoRQXNtRJQIgiAItx2DE/uiWe9U634VOYPxawiCIAjCOnK96wgNmphZjn6tJyOWEkEQBEFYJRLI\ne3MRUSIIgiAIG8AgWFmWs6BslFgRUSIIgiAIG8CNWFk2W9Bs1BpH/SvXBEEQBEEArj8GZjluVOTc\nrJgUESWCIAiCcJuxnMjZbIuMiBJBEARBEIDNFysiSgRBEARBWJFOsXKzRMrAiRKl1LuAfwZsB74K\n/Kjruk9ubqsEQRAE4fZhvWNcEgYq+0Yp9d3AfwF+BngALUo+pZSa2NSGCYIgCIJwwwyUKAH+CfDf\nXNf9kOu6LwM/DFSAH9zcZgmCIAiCcKMMjChRSmWAh4A/T7a5rhsBjwBv3Kx2CYIgCIKwPgyMKAEm\nAAu41LH9Ejq+RBAEQRCEAWbgAl17YACrqt5imgamaazqpJZltv0fFAax3YPYZpB2bySD2GaQdm8k\ng9hmGNx23ywGSZRcBQKgM9x3K93Wk55s2TK0OkWSYng4v9aX9AWD2O5BbDNIuzeSQWwzSLs3kkFs\nMwxuu9ebgZFmrut6wFPANyTblFJG/PyxzWqXIAiCIAjrwyBZSgB+BfigUuop4MvobJwC8D82s1GC\nIAiCINw4xnovpnOzUUr9CPDP0W6cZ9HF076yua0SBEEQBOFGGThRIgiCIAjCrcnAxJQIgiAIgnBr\nI6JEEARBEIS+QESJIAiCIAh9gYgSQRAEQRD6AhElgiAIgiD0BSJKhL4gLoQnCIIg3MYMWvG0m4ZS\nagL4QfSKw9vR6+lcQleL/R+u617ZxObdDtSVUve5rvvSZjdEEARB2BykTgmglHo98CmgAjyCFiMG\nel2db0BXjf3r/VikTSmVBx4CZlzXfbFjnwN8l+u6H9qUxvVAKfUry+z6ceD3gWkA13X/6YY1ShAE\nQegLxFKi+XXgfwM/7Lpum0qL3Qq/HR/zxk1o27IopQ4Dnwb2AJFS6gvA97iueyE+ZAT4ANA3ogR4\nD/BVYK5juwHcBZRZ5arPG4lS6kFg1nXdk/Hzvwe8E/3dnwZ+w3XdP9zEJi6LUurdwMPAJ1zX/UOl\n1PcCP4123/4J8G9d1/U3s429UEplgW+nt/Xyo67rNjaxeSuilNoNzLmuu9SxPQO80XXdz29Oy1aP\nUuoEejJ2bLPb0ov4O665rns1fv5XgB+mdU++z3XdxzexicuilPo29D35Kdd1v6iU+mvAPyO+J13X\n/Z1NbeAmIqJEcx/w/Z2CBMB13Ugp9avAMxvfrGvyi8D/A14HjALvBb6olPp613Vf29SWLc+/An4I\n+AnXdf8i2aiU8tC/wYvLvnJz+QDwE8BJpdQ/BH4NeD/wPwEFvF8pVXBd9/c2sY1dKKX+NXpZhk8D\nv6qU2gv8JPCrQIheP8oDfmbTGtkDpdQhtPVyJ/AlWtbLB9ADz1ml1Le4rvvq5rWyG6XUDuCjaOtl\npJT6X8CPpMTJOPBZwNqkJnahlPqxZXbtAX5AKXURwHXdX9u4Vq2KPwZ+Dvi4UurtaIH9ceCLwGHg\nUaXUd7iu+/FNbGMXSql/DPwGenL240qpdwG/CXwYCID3KqXyruv+101s5qYhokRzEa1aX15m/8Po\nTrHfeBPwjfFM4apS6m3oi/svlVJvQVsd+grXdX9eKfUI8PtKqY8BPx2vAN3v3AEkM8YfAd6Tns0o\npZ5EC66+EiXA96PF3p8ope5Dr7T9fa7r/gGAUupl4JfoM1EC/BbwPPCA67oL6R1KqWG09e99wF/f\nhLatxC+gxd4b0BOFXwA+q5T6Ztd1Z+Nj+i2o+73AOaDTWmYCfx8tWiO0EO8njgIvxI9/GviXruv+\nYrIzthD+LFqo9BM/hhaq74/76U+gJ2m/CaCUegI9kRBRchvzn4HfUUo9BPw5LQGyDR1T8o/Qs+R+\nI0+qI4ktPe9USv0G8CjwdzerYSvhuu6T8Xf9PuArsSuk71w2HVSACbRZeBd69p7mS8D+jW7UKtgJ\nfAXAdd2vKqVC9EKWCU/Hx/QbbwYe7hQkAK7rLiil/g3dv0E/8I3AO5L4M6XUm9Gu4b9QSn1DfEy/\nXevvR0+8/m460Dy2Xn5zH1svfaAUP94PfLJj/yfR1uR+Yz/aCojrup9VSllA2p33OXTfeFsiKcGA\n67rvA74PPbv5Y+Dx+O+P423fl6jYPuNltOumDdd13402If+fDW/RKnFdd8l13e8Dfh74DH1kzl6G\nT6JjSEALvr/dsf+7gL5yJcRcBI4AKKXuQH/PR1L7jwKXN6Fd12KOlUXePrrjkvqBESCxiOC6bh34\nDuAU2m2zdXOatTyu6/5j4N8Dn4qtC4PCo8DfiR8/A3x9x/63oC1A/cY0sBdAKbUTbRzYk9q/F5jZ\nhHb1BWIpiXFd98PAh+NAtIl489U+dy38Kfqm/J+dO1zXfbdSykT73/uWOPDyC2gf/OnNbs8K/At0\nvM6jaMvDTyilvh54CR1T8jXAOzavecvyB8CHlFIfRVv9fgn4z0qpLegZ+78C/mgT27ccvwt8UCn1\nc/S2Xv5rdPB5v3ECuJeWqw/XdX2l1HeiLSb95koAwHXdj8QuyA8ppd4K/MBmt2kV/BTaVb0T+ALw\nH+NMyuSe/G76s//7KPDflVIfBP4m2hX5X2IrZgT8MjoG7LZEUoIFYZUopUbRHeHbgANoS+MFdGDd\nr/ZpyriJbvMb0Vkrv4DurH8Jner+MeDdruv2XfyRUupfoFPFk8wb0PEYF4H3uq77S5vVtuVQSv0i\ncL/rul2xLkopG219fZvrun1ppY6zDX8KHfcwCdzbx+4blFIHgf8AvBUYijf7wJPAL7uu+5HNatty\nKKWK6EDz5J78UfT3/R+BDNoC9N2u6/ajBfOmI6JEEIS+Rim1Hy1MAC4madn9SCw8Cr1iYeL9FrDb\ndd1+tgoSx3x9LfChVIBu3xKLqa3oiUK/W7h7EteVyriuu7jZbdlMRJQIgjBwKKWmgH/vuu4PbnZb\n1sIgtnsQ2wzS7kGlL02IgiAI12AcHZw+aAxiuwexzSDtHkgk0FUQhL5DKfU3r3HIgQ1pyBoZxHYP\nYptB2n2rIqJEEIR+5CPo4NaVCo31o+95ENs9iG0GafctiYgSQRD6kQvAu5bLnlBK3Y+uTttvDGK7\nB7HNIO2+JZGYEkEQ+pGngAdX2H+tmeZmMYjtHsQ2g7T7lkQsJYIg9CO/DBRX2P8qumJnvzGI7R7E\nNoO0+5ZEUoIFQRAEQegLxH0jCIIgCEJfIKJEEARBEIS+QESJIAiCIAh9gYgSQRAEQRD6AhElgiAI\ngiD0BSJKBEHYEJRSb1dKvbNj2weUUs9tVpsEQegvpE6JIAgbxbcDDwG/ldr2s6xcs0EQhNsIESWC\nIGwaruue3Ow2CILQP0jxNEEQbjpKqQ+gl2NPSmhHwAfjx69zXfee+LjvB34PeD3wn4CvBc4A7wL+\nAm1Z+aH4tL/nuu6/7HifO4FfBL4OPen6HPBjruueuHmfThCE9UJiSgRB2Ah+FvgEcAJ4A/BG4Ofi\nfemZUfL4g8DH0C6fc8CfAP8V2A18L/AbwE8ppb4neaFSaj/wGDAK/H3g7wCTwCNKqcxN+VSCIKwr\n4r4RBOGm47ruSaXUFWCP67pPJtuVUsu95Ndc1/2d+JjzwPNoi8qb4v2fUUq9HfhO4A/jbf8OmAG+\n0XVdL37t42gh9A+A317XDyUIwrojlhJBEPqNCHgk9fyV+P8jHce9Akylnn8T8FEgVEpZSikLmAOe\nQbuDBEHoc0SUCILQj8wlDxKrR3pbTANwUs8ngPcAXuqvgY5LmUIQhL5H3DeCINwqzAAfB96HDqBN\ns7jxzREEYa2IKBEEYaPotGysN48AdwPPuq4raYWCMICIKBEEYaN4CfiBOGPmGHB1nc//M8CXgU8r\npX4HuARsR6cHf9513Q+v8/sJgrDOSEyJIAgbxX8H/jfwa2jx8DO0pwOvRLTMsc1truseBx5Gi533\nAX8G/DxQAKSUvSAMAFI8TRAEQRCEvkAsJYIgCIIg9AUiSgRBEARB6AtElAiCIAiC0BeIKBEEQRAE\noS8QUSIIgiAIQl8gokQQBEEQhL5ARIkgCIIgCH2BiBJBEARBEPoCESWCIAiCIPQFIkoEQRAEQegL\nRJQIgiAIgtAXiCgRBEEQBKEv+P8gocGO6FgohgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEMCAYAAAA4S+qsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt4VNW9N/5Ze2YySSaTG4TcBphYQJNBQIqt13oCilI5vPRItQMWNSCSp0lpRbkYz+OpGit4Yo/GKkgJmGpSfKtFvHAIMlhf4dSDApUAiv2VWwhiCAmQkGQymfX7I6zF2pO99+y5JpH5PM96kpnZe+211+27vndCKUUMMcQQQwwx6IHU3w2IIYYYYohh8CBGNGKIIYYYYtCNGNGIIYYYYohBN2JEI4YYYoghBt2IEY0YYoghhhh0I0Y0Yoghhhhi0I2IEQ1CSBUh5FtCSL3wXTohZCsh5OuLf9Mi9fwYYoghhhjCj0hyGusB3OHz3TIA2yilowFsu/g5hhhiiCGGQQISSec+QogdwHuU0rEXP38F4F8opScJIdkAPqKUXhmxBsQQQwwxxBBWRFunkUkpPXnx/28AZEb5+THEEEMMMYQAY389mFJKCSGqbA4hZAGABQCQkJDw/eHDh6vW5fV6IUn+6d+hQ4dACIHIXbHPY8aMCaT5QbXh22+/RWtrKwAgLS0NLS0tfutNTEyEzWbDkSNHMGzYMCQmJvJ6UlJS0NHRgZSUFDQ1NSElJQWZmfrp8KFDhyBJEiRJgsfjkfWN+L/NZkNCQgI6OjrQ0NAgq0OSJFgsFpw/fx7Z2dmwWCyQJAmHDh3y+3yx3pMnT4IQgiuuuEJ3+9Wgdz4AwD//+U8AgMfjQVxcHIYMGQKDwYBvv/0Wdrs9Km3Q01eBgBACo9GI7u5u/p3JZILH48Ho0aPD+iwtBNIHl3MbxLXNcOHCBV1zUO/cSUlJwdmzZwFAca87dOjQaUpphq7KKKURKwDsAOqFz18ByL74fzaAr/TU8/3vf59qYfv27Zq/M9hsNpqSkkLtdjuVJIna7XaakpJCbTabrvtDbYPD4aBlZWUUgO5iNpsppZRKkkTdbjevZ+bMmdRsNvNrZs6cSe12e0BtBkATEhKoyWTizzMajRQAraio4N+x/rJarfy73/72t3TlypVUkiSamJhIAVCHw8H7QeudLBYLBUBdLhd1u93U5XLRrKyssIwDpfrnA6WU1tTU0Ly8POpyuWh1dTW12+0UALXZbLSmpiYqbQhkPgRSEhISKCGEJiUl8e+iiUD64HJugyRJtLq6mjocDipJEnU4HLS6uppKkuS3br1zYfr06XztqdTzGdW7r+u9MJiiQDSeA7Ds4v/LAKzUU084iUZ2drZss8rOzo4a0WCTQ5KkgBY/pZcIjsPhoACowWCgKSkpfFPPyMighJCA2ixJEpUkiVZUVFBCCL3hhhv4d5RSmpaWxomBJEmUEMK4Q1pXV0fdbjctLi7m7ZEkSRfRYCWYRaIHgW4UNTU11Gaz8b6srq6mLpeL5uXlBU04AiUagc4JAHwslD4bDAZqMBgoAGoymfj/0cRg2LAHQhtC2ZeMRiM/6OkhGmrzeUAQDQC1AE4C6AbQAGAegCHotZr6GsCHANL11BUuohEKRfcHPW1gk8NqtfZZ8GqFcRolJSWUEMIXv1jsdju1WCzUYDDoamtNTQ0nPmyDYf/HxcVxLmDo0KEyjoBdI0kSzczMpIQQOmLECBkR0EM0CCF9+tzlclGHwxFQn6shmI3C4XBQl8sVtjZFi9MoLi6mra2tnHj7/tbe3i7jGqOJwbBhD4Q2hCIB0TtPGNHQqEc30YiYsI9S6qSUZlNKTZRSG6V0LaW0mVI6hVI6mlJ6K6X0TKSer4T8/Hx89dVXsu+++uor5Ofn67q/trYWY8eOhcFgwNixY1FbWxtwGyilOH/+PIxGfeokJn+sqakBAAwdOlT2e2pqKkpLS9HR0YGenh6/9dXW1qKsrAyVlZUAgLi4OH4fIYTLwUtLS3H77bdDkiRMmzYNcXFxAHp1LDNmzMCZM71D19XVBUIITCYTysrKdL0TpRRmsxl5eXmQJAl5eXm45557dN8fCRw8eBA33XST7LubbroJBw8e7KcW6cPq1auRmpqK1atXy76fMGECNm/eDKvViqqqKkyYMKGfWhiDP5w4cQJer1fxbzgwffr0sNTD0G+K8P5AYWEhVqxYgRUrVmDhwoVYtWoVli5dioULF/q9l222a9euxU033YRPPvkE8+bNAwA4nU5dz29sbMT69esxd+5cmZJSC2zTOnPmDFauXIlHH30UhBDMnj0b27Ztw6lTp1BVVYWf/exnnLBovcMDDzwAt9uN0tJSEELg8XhQXFyM2tparqQHgC+//BL79+9HcnIyNm7ciJtuugl33303Nm7ciA8//BC//vWv8dprr+HUqVOQJAkPPfQQnE4nPvroI7/vFB8fz4kmIQRAr6Ju+PDhYdmkU1JSAq6nrq4O9fX1iI+P5991dnairq4uqDYF0obNmzf3MdAIB1idkiTB6/UCQFDvEh8fD5vNBpPJFNb2xdALg8EAk8mEd955h+8ts2bNgsFg0HV/JOaOFi4rorF9+3YsXboUVVVVePTRR5Gfn4+lS5di48aNfu8tLy/H2rVrUVhYCKCXAK1duxalpaW6iUZOTg4efvjhgNrs8Xj4/2PHjuX/v//++3yDa29vx/vvv69ZDyN63d3daGtrw6efforJkycjPj4eH3zwgYxgAODch9lsxpQpU0ApBSEEGRkZaGpqwsqVKwEA6enpeOmll1T7wGAwoKenB5mZmTh16hQAICsrCwBw+PBhft2uXbtgMBhw1VVXcUISLM6fPw+r1arr2ubmZpw4cQIpKSno6elBV1cXhg8fDpPJhKNHj2LChAkYMmRIRNvQ3t4e1oVvNBpl80b8Xi9XzUApRXNzMxoaGpCXlxeW9sUgh8fjgcfjQVFREY4dO4YRI0bw7/TA11Iu0risYk8dPHgQTzzxBOrr69HT04P6+no88cQTuk5foYovamtrcfbsWV1mtkowGo24++67+cI9e/Ys34Q7Oztx7tw5zU2KEb38/Hx8+umnnPhZLBa+SUuShNmzZwMAXC4XAKCpqQkLFy5Ea2srFi5ciKamJgCXdGHNzc2aRJMRH9ZWADh27BiOHDkiE/UBvaaJoRKMQNDc3Izjx4+D0l6T66ysLPT09ODw4cM4cuQIcnJygiIYwSBYgsFOo+KplJlRs74khPDvAgUhBEOGDEFnZ2dQ7YtBH9hYsXkQyDqIJsEALjOikZ+fj9/85jeyzeo3v/mNrtNXfn4+PvnkE9l3n3zyie6TW3l5OeLj45GWFly4rcmTJ6OtrQ3Hjh3r81tzczPi4+NlohVfMKJXVlaGefPmYfv27cjJycHp06f5hnDttddyEde0adP4vS+//DJSUlLw8ssvY8aMGUG1XwTzhaisrERnZycqKyvR2trK9SbRwjfffMN1KsnJybDZbBg9ejTi4uJgMBiiRjCCASGEc3FAL3E2GAwghMDtdkOSJC4CNJlMkCQJbrc76GcNNIRDvzhQoMQZejweXXrP/hiby4poMJ1GUVERzp8/j6KiIqxYsYKfurUgbrbd3d3Yvn075s2bp1t5e+DAATQ1NfnVO2jdbzAYuGzaF0ajEadPn1a9nxE9p9OJ8vJylJaW4uTJXud8tvF8+umnIISAECIjbuI7//3vfw+q/SJOnz6tW3QTSXR0dMDtdiMpKYl/l5SUBLfbjY6Ojqi2JT09PaDr4+Pj0dPTw7kHSZLQ09OD+Ph4EEKQlZWFK664ApMmTcK4ceOQlZU1IDf/YFBbW4tFixahvb0dQK94b9GiRYOWcPT09ODChQvo7OwEIQSdnZ24cOGCLsMWSqluo5pwIabT0KnTYCKY0tJSHDx4EPn5+SgvL9etz4iLi0N8fDwWLFgQVNt9PbFFbNmyBbNmzdIUPzCit3btWsyaNQtZWVmYN28eRo8ejb/+9a/8uoKCAuzYsQPLly/HK6+8AqCX6+jq6oLZbMaoUaNC3nwopXA6nbK+XLdunewkfHLCRHgvisKCwTmfz1JGBrL37pZ9l5CQgJ6eHrS1tSE5ORkA0NbWxjmNaIJ562rh888/h9FoxPjx4zl3yA4R7G9nZycopfjmm2+4NVxcXBy8Xq9fEdj999+P6dOnY9asWSG+TWSxZMkSGI1GVFVVccXxnDlzsGTJEt3rcSAhLi4Os2bNwt69e/Htt99iyJAhmDJlCv785z/rup95+0cLlxWncfDgQVx5pTw+4pVXXqlbL+F0OmX6kEAmaFdXF86fP49z53y3s8DAxENms1n2vWg6qwSRwzCbzZg2bRoOHz6M7du345FHHuHX7d+/H6mpqZxgAMDtt9+OpqYm3H777di/fz8XgxBCMHz48IBPeBkZGdi8ebOsL41GIxISEvg1oRAMJSjVl5WVBa/Xi8OHD+PcuXM4d+4cDh8+DK/Xy5X10YDRaNR1qvz888/xxRdfALgk+2YWTewvpZQTCaZM7e7uhtfrjbr4L1JoaGjAfffdh9LSUsTHx6O0tBT33Xef5sFqIMPtdmPnzp0yce3OnTt1iRMlSYq6vumyIho5OTlYunSpbHCWLl2KnJyciD/bbDbj+uuvD4lomEwm/OpXvwIA/Nu//Rv/vrS0FPfff7+uOs6ePQtKKT+Zpqen49VXX+W/M72IKLJ59913kZGRgU2bNnE5OjuJNzQ0YM6cOSgtLdX9HpRSHDlyRCb2am5ujupGDfTqVoYPHw5CCA4dOoQZM2bA6XTiZz/7Gd566y0AwNq1azFmzBj84Ac/wIMPPoiSkhIAvQYCd911F6699lpce+212LFjh+pz2tra8MADD+Dqq6/GuHHjeN11dXW4/vrr4XQ6sWzZMly4cAFA78Fg9erVuPfee/Gzn/0MR44cQWNjI9566y3U1tZi9uzZ2LNnD1paWvDrX/8ac+fOhdPp5KLDl19+GY8//jjmzZuHJ554AoQQ/O53v4PT6cS4ceO4TwelFCUlJbjyyitx66234ttvv41YX4cb69evl63j9evX93eTgkZBQQHGjx/P/aGmTZuG8ePHo6CgwO+9ejjIcOOyIhpAbyCwoqIixMfHo6ioiC/USKOrqwuffvopVqxYEVI9t99+O4BeuS7buNmiychQjzfGTG47OzuRkpLClbw9PT0y64snn3wSAPCb3/yGf8cmpsPhQGJiIiilSElJwQcffIAFCxaAUoqXX35ZN8dx5ZVXwmg0yk6Kqamp/aJ4HjJkCMaNG4dJkybh7bffxoEDB7Bnzx68+OKLOHHiBJ566in87W9/w44dO/Dll1/y+xYtWoRf//rX2LVrF9566y3Mnz9f9RlPPfUUUlJSsG/fPnzxxReYPHkyTp8+jaeffhoffvgh/vjHPyI/Px9vvPEGvyc1NRWvv/467rrrLrz++uvIycnBXXfdBafTiZqaGlxzzTWoqKjAnDlzUF1djeeeew5PP/00AHDuafXq1SgvL8fGjRuRnJyM1157Dbt27cKaNWtw+PBh/OUvf8FXX32FAwcOoLq6Gjt37oxcR4cRRqMRXV1dsu+6urqiLtsPFwoLC/HOO+9wEZPH48E777yjS9faHxicvRwkTpw4AbPZjCNHjgDojS4ZHx+v+/RfW1uL8vJyLocvKyvTLaIym82YNWsWqqqqgm0+uru7ZdFxmUjj9ttvR0JCAn75y1+q3stMbidPnoysrCzU1NTggQceQGdnJ19scXFxWLJkCQBg8eLFfXwHDh48CK/XC4PBgD//+c8oLCzErbfeildffRVerxfl5eV46aWX/L6H1qk82mhubsY333yDjo4OVFVV4eOPP4bBYMDx48fxxz/+EbfccgtXUv/0pz/lUUU//PBDHDhwgNdz7tw5tLW1yTg0hg8//BB/+tOf+Oe0tDS89957OHDgAG688Uau9BT9cNiGkZ+fj+3btyu2/X//9395lF6gVyHMDkHTp09HQUEBrFYrnn32WezZswdbt25FYmIizp49i6+//hoff/wxnE4nDAYDcnJyMHny5GC7Maro6emB0WhEUVERjh49ipEjR+oW8Q1EqBnH1NTU8MgNWhCdN6OBy4rTYOaIFRUVaG9vR0VFBdxuty7Frhh+g7HEZWVluk/XbrcbO3bswMyZM4NqO9NhqPl5UEpRX1+vaoYo+pk8/PDDKCwsxFNPPYVTp07xU5soQxW9f/Py8mAwGDhn09PTgylTpnCT5REjRvBn6AHbHH1Nbpubm3XdHy40NzejsbERw4cPx7lz57Bnzx5UVVXB5XLhmmuuwVVXXaV6r9frxd/+9jfs3bsXe/fuxYkTJxQJhhoopbjtttuwd+9e1NTUYMOGDfj3f/93/jvTPzCrKLU2rFu3DjU1NaipqcEHH3zAw2szixyv1wu3241HHnkENTU12Lt3Lw4fPoypU6fqbutAQ0FBARYsWMB9jCwWCxYsWKBLnDMQcebMGaSmpmLr1q1wu93YunUrUlNTeagef4gmwQAuM6Lh9XqRkJCAyspKWK1WVFZWIiEhQVenix7hJpOJe4SXl5frenZBQQEmTJjAPakDhS87LmLLli0wGAzYtGmTKlET/Uyefvpp5OXl4b777gMgJ0SEEFRWVuLaa6+VcRmUUpkfSEZGBvbv34/y8nKcPHkSkiTp9llh8b9E8ZTFYsE333yjszfCg2+++QYjR45EcnIyzp8/j6FDh+Kqq67Czp078be//Q3t7e3461//ipaWFng8Hq6LAICpU6fKToF79+5Vfc5tt92G3//+9/xzS0sLrrvuOuzYsQP/+Mc/APSa/x49elSzvYmJiTJx6nXXXYc333yTf2b9ykyzjx8/jt27d+Pqq6/Ghg0b+OHo0KFDaG9vx49+9CNs2LABPT09OHnypCpHM9BQVlbGT+FsrtfU1PRr7LJQMXXqVNl6GMhE/bIiGkDv5icGBNOrRArVI7ysrAzvv/8+nn32WQDBOeXMmDGDt7euro5bUhUWFiIlJQVer1eVqDGTW6vVivPnz3OFuC8opSgtLcXOnTs5Z8EsikaMGMGV1aLStLu7G4QQ3YuW6VDa29tBKUV7ezvOnz8v842QNPQzwUCpvo6ODs4d3HHHHfB4PPjhD3+IiooKXHfddcjNzcVjjz2GH/zgB7jxxhtht9uRkpICAHjxxRfx2WefYdy4cSgoKMCqVatUn/3444+jpaUFY8eOxfjx47F9+3ZkZGRg/fr1cDqdcDqdKCoq4mJTNdx888346KOPuCL8kUcewYEDB+B0OnH33Xfj7bffBtBrzEAp5eM3a9Ys5OXlYc6cORg7diweeugheDwe/OQnP8Ho0aNRUFCAuXPn4vrrrw+ma6MOp9OJO++8U6Y4vvPOOweluS3Dhg0bOKfd3NyMDRs29HOLNKA3HG5/lnCFRsfFsNwVFRU8ZDQLUe4P/kJn62mDWmhzf4W1feTIkdTlclEA1Ol08uRJDodD8T3cbrcsBHlJSYnuZ7JkRGKdkiTR/Px81XtKSkp059Mwm82y/AFbtmyhn332md8+1INz587puq6+vp42NDTQ+vp6umvXLtlnhvPnz1NKKe3u7qbTp0+nb7/9dljbQCmlu3btCmupr6+nX3/9Nf3ss8/orl276GeffUa//vpr2XsFigMHDgR8T6TCkouJs9j8Uct9MhhCo7O1y3KqsL968uPoWcvTp08fHKHRByoopViyZAksFguWLFmim9MI1SO8trYWhJCg5Y+EEIwaNYqbttbW1mLkyJEAgKKiIlBKYTKZVEOk1NbW4v3334ckSVi3bp0sjSRzbBMhmtCyOk0mk4yzEmMbAcCaNWt0v4+vI2K0I3UCgNVqxcmTJ2VWKydPnpR5q//Hf/wHJkyYgLFjxyIvLy9onVQ00dHRgQsXLsBms2HixIkYPXo0Lly4EHUv90ihvLwcs2fPlolzZs+erVtUPNDA5r2vo2a014NeXFbWU4BcscjCMOjZyEP1CGcEKtjN8bbbbkNdXR2Ki4vR0tKC06dPc3l4ZWUl4uLi4Ha7UVRUpBj2nelkSktL8c477/AQIkBvRFZfVFZWwmQyobu7G/v37wfQV6/C3oP1qZbexRcdHR2yvhR9RaKF1tZWWfwmJjY7ffo0V+7/53/+p+761q1bhxdeeAHApbzQN954o0yfEW6w+eSb353lnJYkCcnJyRg2bFjY8jP0Nw4cOID29naZRzizpBrMEH2gBrIl2GXHaXi9Xi7HTkpKCujkH4pHeENDAyilWLp0acBtBnqV3VOnTsWqVavQ2NgIt9sNi8UCSZJgsVi4j0ZVVRVPvLN06VKu3GQ6mdzcXGzcuBFFRUW8brbZiB7DFovFb5uYhZUYA0kPWCIpUZHZ3t4edY9lt9sNq9UKSilsNhuuueYaZGRkwOv1KgaG9IcHHniAW1Pt2LEDe/fujSjBAC6NnXgQoZSiqamJW0+dO3cOTU1NA/bkGiji4uJQWloq09+VlpYOeo93ti58E60NNFx2RAPoJRaSJAVkIhkuhLJwt2zZAq/XC4fDAZfLhba2Nk7ATp48iZEjR6qGfWfWU3/9618xZ84cfPzxx33qF01uKysr+clbjSCIToGBEN/bbrsNAGROlpRS5Obm6q4jXDh79ixyc3ORlZUFg8HAAzU2hRDGpLm5GYcPH8Znn32G/fv3a5oSh2pm7CsiBHpjajFfk927d+PQoUMwGAyyMC2DGW63Gy+99JJMVPzSSy8FHcV3oIClDxDTCAxEXHZE46c//Sn3PB4yZAh++tOfRuW5NpsNhBBuPRUKlPQrBoMBN998M4BLYaPj4+NhMpm4j8m8efPQ1dWFW265hUcIBZQtuUROJCMjg4fiDgfefPNNWCwWzs1YLBakp6dH3SM8Li4OlFJuds1iT5lMpqCJO/P9yMzMxMSJEzF8+HA0NjaqEodQzYyViIbJZMKFCxc4sTcYDLhw4cJ3JvNeQUGBok5jsPhp+IZ1ZxAjFg9kDOzWRQDvvvuuzNTz3Xffjfgzma9EuMQDYvBBtmgeeughbNu2DY8//jgWLVqE06dPw+v1wmq1YtGiRQDAFYVipF2DwaDYLlE+fPr0aVBKwyZnNZlMWLNmjYwr0iMOCzcYZ/PPf/4Tu3fvxpEjR0AphdVqDTqSL/P9EPUJI0eOVCUOoSqnfZWnwCUdFfuOjZuS7moworCwECtXrsSBAwdw1VVXYebMmYPGT0PJSZhBaSwHIi4romE2m9HZ2cnzTrAERL4RY8MJNkmqq6vDUhc7oSxZskQWTvuGG27AD3/4Q5SXl6OpqQlnzpxBcXEx3nzzTX690+lEeno6DAYDt45Sm6CiAjjcSrmBkEsD6OU0WXh0oFfcFh8fj5aWFs04XloQfT8YkpKSVIlDsMRJLc6S0WjkhwDGGYoRcAc7amtrsWHDBqSkpIBSigMHDuDZZ58dNH4aSk7Cgw2XlfVURkYGTp48iba2NgC90UcNBkPQG4SIbdu2oaSkpE9cKjZJQhVD1NbW4qGHHkJnZye8Xi8aGhqQkJCA9evXw2az4Z577uE6hg8++ADx8fGYN28ebr75ZlRXV3MP09bWVjz00EN47LHHAKhvJOz3SGDDhg1+c6v/8Y9/DKuJaEJCAn7+85/LvmtubobX60Vqaip3dmS5NZj1VDDPaWtrkxGDtrY2VX1CsBu5GiEXv2f/RzPXQqTBcmm88cYbslwaGzdu1BWnqb9x8OBBNDQ0YOzYsXyvYGBx5cT4cgMRlxXRYPGBOjs70d3dDZPJhPj4+JBNEWtra7F27VrZRJ43bx6AS1ZLV1xxRUjPKCkpQXt7OzIyMnDq1CkeUmLu3LlwOBwALsWnMhqN3CO8tLQU3/ve9wCA58A4efIkOjs7cfvtt3PP8k2bNsmep8d8NljTwIaGBr+e9OH2KVCqTwwj0t7ejrvvvhvHjh1DZ2cnnn76aYwaNQoPP/ww2traMHToUB5J+Prrr8dzzz2Hf/mXf8Hy5cshSRIX/WVlZeHo0aMYNmwYLBYL2tracPTo0bCH32fEhplFs78iEVIyxx3saGhoQF1dHT+hFxYW4rXXXhvQYTdEsPQM4l7BAkWywKmh5tyJNC4r8RSLyZObmwtJkpCbm8ujtoaC8vJyPProo4ohPJjVUqgJYs6cOYOUlBTuJJicnMzFIJWVlWhqasKpU6dgs9lw3333Yfv27fjhD3+I/fv3Y9OmTUhOTsa6deuQnJzMQ2W7XC6kpaXJCEZ8fDyMRiOKi4v9tilYsVW0cpj4Q0dHB7q7u/HFF1/g97//PUwmE15//XXU1tbijjvuQGlpKf785z/j888/R1FREcrKymA0GrF+/XoUFxfjww8/xH//93/jiSee4HUOGTIEOTk5OHXqFHbv3o3jx48jJycnIkr++Ph4mWOib454JXPcGPofg308Liui4fF4uGes1+vlnrN62Xe1ZPYHDx7E1VdfLbuWxaViVkvhAEsDSS+m82QmhqWlpUhJSYHBYMDKlSvh8XhQVFTEdQcWiwVz587Fk08+ib/85S9wOp04f/48PB4PWlpaMGXKFP6Mzs5OeDyegJztApXLU0px4cIFWV+K1lzRQlxcHI4dOwZKKW699Vbs2bMHv/vd77Bnzx7s27cP9fX1uO222zBhwgQ8/fTTnPA7HA78/Oc/x/Tp01FVVdXHP2DIkCHIy8vDpEmT4HA4NAlGKKlzOzs7ZRY3ahncBvsmJcJms2Hu3Lkyy8G5c+fCZrP1d9N0obGxEStXrpQZsQw2XFZEA+hl51nI4TNnzug2Q9QKjZ6fn499+/bJrv/kk0+Qn5/P9RrhMFf9xz/+IVOyMqJRVFSE8+fPo6enB1lZWaioqABwScldWVmJ7du3cwWcLyvPoqMGimDfye1248yZMzh06BC8Xi8OHTqE5ubmqIdGB8AtzOLi4lBVVYXvfe97WLVqFWpra+FwOLiz3r59+1BXV8fv27dvH1JTU0POdheqPk2MbqAHenxHBjJWrlyJnp4eFBUVwWw2o6ioCD09PUFHj4428vPzYbPZZJaDDIGOZX/hsiMaHo8Hzz77LNrb2/Hss8/q5jLSsA1wAAAgAElEQVS0QqOXlZXhueeeU41L5XQ6kZ2dHZb2M6sZkdhVVVXB6XSCEIJp06Zh7ty5OHnyJEpKSmA2m9HS0sJ1K7W1tTxlKYOS6EzPZsYmNzst682cxoi2OA6UUhw/flzX/eGC2+0GpRQtLS04fvw4UlNT8cADD+Dee+/F3r170dTUhP/5n/8BAFk4lbfffhtnzpzBxx9/jNLSUrS2tgbdhmAV7nrAiLpI3PX4jgxkOJ1OvPDCC/B4PDxtcCStH8MNJR8roHftiPnezWbzgM1EeNkRDaV8GnqgFRrd6XRi3rx5MpbTNy5VY2NjWNrOLL+6u7u5WKSyshJbtmwBpRSbN2+G2+3G5s2b8f777+OWW27B0qVLMWzYMHz44YcoLi5Ge3u738B7gXil+voD6MXDDz+MxMREPPzww0hNTY26lQ8be6PRiH/84x9wOp2YMmUK1qxZg4ceegh/+MMfsHTpUowfPx4TJkzAzp07cfr0aSxbtgx/+MMfMGbMGJSUlHA/mIEE3xhrjLAzPUt6enrU85eEEyaTCS6XC263G9XV1QElRIs2tm3bxkWx5eXluPPOO/uIpxITE5GbmwtCCHJzc2E2mwes1dt3kmio6R6AS6dhJufVS83FJEYMTAQFAFOmTNGMS6U3QZEWrr/+eowZMwZArxKUiaemTJmCtrY2ZGZm9uGETpw4gYULF+L06dP48Y9/jLNnz2L69Omy1LDDhg0DoO6JqtdDlYXgCAa+eoFwh7xQqo/pfLq7u3H99dejpqYGb7zxBl5//XUUFBRgyJAh+Mtf/oK///3v2L9/Px588EEMHToUhw4dwvDhwwEAv/zlL/Haa6/J6g0kjEgkkJCQ0EcpDvT2MeM0mpubB23U21ATokUTzLJSFGu///77KCsrk4mn3G43z+9z4sSJAR0SZWDyPyGA6R7Wrl3bx/zVZrOhublZNjhGo1GXEq2srAz33HMPLBYLz0vc3t7Oo5r6Q2FhIRdvBAOLxQKXy4Xi4mIMGzZMlmUtNTUVLS0tfcIoME6ovr4elZWVqK2txezZs/Hee+9h69at/Domlxcd/bTSjKohUFPB7du38zHq7u6WKYx9fSoCwfnz53U5EKqJlbxeLwgh/DQeiOWTGEYkIyODm9wCCMmCauLEiWhra+M5yrVgMpn6jAW9mHnxuxD1VsnXYenSpboTokUTomUlAJkpPDtYGgwGdHZ2yg60nZ2dYQvbE2585zgNrVPIzJkz0dXVhfT0dABAeno6urq6As6REIzFy8aNGwO+R8SaNWtgMBjwyiuvyAgGIQQpKSkghPRJOSpyQgyMa0hNTdX9bL2TN1B22ul0wmw2w+l0wuv1hsXJMhBoneYSEhKCOo0HGkZELxfCAg/qgRrxPnfu3Hci6i3zdRBP7wPFjNsXSpaVDQ0N2L9/P5eE+Dphsr8DVSE+qIkGE0NNmTKFi6G0dA/bt2/H8uXLMXToUEiShKFDh2L58uW6ciOXl5djw4YNOHz4MHp6enD48GFs2LBBN0scqp/Gzp074fV6FcVpFosFd955J7xer6oynnFgLHQGC6WiBnHCDhkyJCJB1FpbW0EpRWtrK6xWa0SVwloQ343939HRgWHDhgV8QAg0jEgkAhYCve/BFKvib7t378bXX3+NhISEQR311pfgDVQC6GtZWVtbi6VLl8Jut/eJPTVYMGiJhmgCu2XLFm4Cm5OTo6p7OHjwIJ544gnV8OFaCDVHOEOwkUZXrVqFtLQ0bvZptVphtVohSRIqKyuxY8cOAFBVxjMO7PTp07BYLFwmrwfffPNNRIKojRo1CpIkYdSoUTCbzf228JllG3P+BMB9YQJtk2iswKAVRiRUvYKWA19WVhYmTpzI85oDwDXXXIPc3FycPXtWdwywgbYhnzhxAgaDAZMnT0ZcXBzmzp2LlStXhsXYJNzwtax87LHHQCnFM888M2hjTw1aoiGKocSwGQBU07L6U2ZrIZR7RYg5KAKBx+PB/PnzubXF+fPn8f3vfx89PT3Ys2cPzp49C0KIqjKeEb24uDhceeWVssx9IpgClfl6AKEpuLUgihf27t3Lo8xGC+wEzvrCVxzg9XoDTuzDwoiICZCOHj2KrKwsxesjddr3er1obGzE7t27ZbqbPXv2oLm5GVlZWbqi3lJK0dzcrKhYjyTUjFlqa2thNBrx8MMPw+12w+VywWQy4auvvgqLsUm44WtZeeTIEfzkJz/hvltiaHQ1rnGgoV8U4YSQXwOYj97E5/sAPEApVXZnVYHayb+xsRGvv/66alpWX2V2c3Mz96YWAw36gtlX+yrY9YinwmUK+Pvf/14m9//oo48AAMuWLeNxjtTAiF5XVxd27NiB4uJivPLKK32uU5KjXrhwIfTGC2CxkETlICEEH330Ea677rqQ6+/s7NS1yXV2dvrdOEUxj150dXVh37598Hg8MJlMSElJwbfffqvoCNjU1KTqyR0JsLzyZ8+exfHjx3WJHePj46Pqca1lzFJeXo4lS5bgpZdewjXXXIObbroJJSUlWLZsWR8rtoGCKVOm4KmnngIADB8+HBs3blSMPTVoYoVRSqNaAOQCOAwg4eLnNwHcr3XP97//feoLh8NBy8rKqMPhoJIkyT6roaamhmZkZFC73U4lSaJDhw6lkiTRsrIy6na7qcvlonl5ebSmpkb1fvF54nXbt2/XfCZ6CWRQhVJKCSEUAE1LS6MAqMlk4r+bzWY6c+ZMarfb/b47u0e8X6mw5wVaWD/ofS8Gt9tNJUlSbX8gUBsLpT5Re0+j0UiXLVvWp53hboPZbNbdt5IkhXSd2L8ul0tzrYQDevvAFw6Hg7pcLtl3rL2SJFG3201ramqozWaTvZ/Sug22DeGE2AabzUZTUlL4HmS323WvESXomQ/Tp0+n06dP16wPwGdU5x7eX+IpI4AEQogRQCKAgIWRhYWFWLFiBYqKivD++++jqKgIK1asQGFhoSpr66vMzszMxHPPPYeNGzfqsvcOJkc4C+UcKstJL548WMhkUcz1zDPP4L333sOECRN01+dPRyF62TLdSbhMAJX6IhhRX6hg4ywqrtk79vT08BNgJKEnmjCDXr0Su843E5zX61U0khho0NIfimJi5uBXV1cHu90+oB38GE6cOMFFnmxNDzropS7hLAAWAWgD0ATgDX/XB8Jp2Gw2mpeXR10uVx/uQZIkWlxcLDvdLViwQHYCC/bEq3aiAUDr6uqow+EIidMAQOPi4jiHQAjhp2T27lqcBrsmmOfrPeEiQE5DaYzCAb2nS0mSqNFopGlpaTQjI4NmZWXRlStX8nfOysqiNptN9X41zrOmpoafJH05Ul8Ey9H5jo3vGBmNRtXr/LUpXIgEp1FTU0Pz8vJoRkYGHTlyJJUkiZpMJlpSUqLIPQ00TsNsNtOKigrZ7/7Wvhb0zJFwcxpR12kQQtIA/B8AeQBaAfxfQsi9lNLXfa5bAGABAGRmZnL5PcPBgwfxX//1X7j11lvR1taGpKQkeDwelJeX4/nnnwchBDt27AAhBKWlpXjsscdgsVj6yPFfffVVWK1WXv+ePXswYsSIPs/zh7a2NtV71q9fH1KyeFZvd3c3Fi5ciNWrV2P+/PlYs2YNAOCll16Cx+PBb3/7W9U2HDhwAM3NzTzvQnx8fERk6Vr9wCBJEiilKCoqwrFjxzBixAjce++9yM7ODrjfg20D0Bv36ciRIyCE4Pbbb8d7772HJ598EkDvqbyzsxMlJSWKdW3btg1r167Fo48+iquvvhr79u3D4sWL8eabb+LTTz9FSUkJfvCDH/DvDxw4IIsmzEBDPG2qpQj1eDywWCy4cOFCH31Xe3s7Dhw4EJa+1oLecfDFT37yE8yZM0fWt8899xzmzZuH7OxsjB8/nvs9jRw5EjfffDPeeustWK1WHDx4UPbMYNsQTohtcLvdePzxx7F06VJ4PB6/ESnC3faw1KeXuoSrAPgpgLXC57kAXta6R43TYKcRRsldLhcFQN1ut+xaxj2wU92MGTNoU1MTnThxIqfGaideLT2GCLUTTXp6OpUkic6ZMydkTsNisXAZaGZmJrVYLPx3l8ulyWmwEw7gX58Bn5MrOzXraaseToONQ6QQiE5Dqz+0TuNqp2Gz2UxdLpesDVr6g0B0Glp9qcSxpKWlUUIITU5Olo2r3W6nGRkZEec2xD7Qu470XG+z2ajJZKKEEP4bm/8DndNIT0+nhBCamZnJ1zEbG/E7vWtEzxwJN6fRH0TjhwD2o1eXQQC8BqBU6x4losHYVJfLRbdu3co3fJvNpsraAqD5+fl8oZrNZpqTk6PKtovP8CdGefzxxxUnuc1mo6mpqbo2an9EgynQCCHUaDRyosHa9fjjj6tOCkIIHTp0qO5nBiKSCpRoJCYmDiiioVQsFovmvUwhK8LtdlOg9wAitkFL5BmqeEqtJCQk8M3HYDDIiIzdbqepqamaordwgPVBIOuIQUv0B4AuX76c5uXl0YqKCmq327nRgm+dA41oGI1Gmp6eLusLNjZsjzCZTDQuLi5GNGQPBX4D4EsA9QD+CMCsdb0S0aBUeWJpTVC2mETLhYSEBNXOFE+T4rPMZnMf4pKdna2pRwllA6C0l/iIi18sZrOZlpSUaC4QRrzYPUlJSRHZrPQQDSZvjxT0bhQOh4PrhrKysqgkSdw6zZ9eK1ychq8FULiK2WxWnC9sfrJTbSTB+kBLR6EEXytHkTNyOBzUbrdTl8slW5Mmk0mRCA40ogGArlu3TrZvsbFh4yWOmz9cNkQj0KJGNBh8J4baKYV1ImPb2Qah1pmieZ84iQHI2HuHw0Gff/552b1sUdhsNpqVlRXQKV+JaFx99dWyzZ6dUMeOHauL02DtYBuKyBZHm2joXRDBQs9GIXIZQ4YMoTabjUqSRAsKCnS1T+1wUlJSQvPy8ujzzz+v61QdCaLBOFBfblHknpjCP5Jg46DGlakRZpvN1ucQlp2dzceourpa1vd1dXUUGBwmt1qKcF+jBkKI37oDIRpTp07VqidGNLSIhpLFiRKYxRE7GTM22G6380lMae+iWL58ueyZ1dXVVJIkvgBC8dWgtFeMceutt/KTydChQ/nmoMd6ii02vc8MlhPRQzQY6x2IjDsQ+Nso2IbP9EMLFizgG3sgp/BwWE8FKwbUKunp6YrfW61WvgmzA0QkESynAfRaHIpghIHVJfa93W5XFbUNNKJRUlJCjUYjraiooO3t7VzPCESO0/jXf/1XumjRIn/1XL5Ew594KiUlRdah7LMS2AADoJs2baIVFRXUaDTSkpISPokp7T0Z+copmblmuMRTAGhrayullHK59KZNmygArgTUOpmwxcY4lEA2K2Y4EB8fHxaiwQgSa3O4FbP+Ngpx4yGEUEmS6IIFC+iIESNoWloalSSJpqenR7QNYlvCTTS0ymDQaWgRjUDrGmhEg9LefUXUqwLow/nrPbj4G+/p06fTXbt20V27dvmr5/IgGkonPYfDQfPy8mQdl5eX53dxKsHXt0H0DfFHNBgnwjxAQyUavpxGcnKyjNOYM2cONZlMqpOCLTbfjVtPYQo6NZ1KoESDEWIlIhsO+NsoRHFJSUmJYhttNlvQRCwQTmPq1KkRIxDFxcW0vb1dZrk3GKynmChVbX6wuggh1Gw2y6yotNrQX/DXBt81Ka5Nf4gRjQCIhpr1lDgAhBDFzVHv4LDNRZzE7e3tXHGqRzyVnp6ua7P1RzR8dRoiIWMckL9JpmUtFK6iV6eRlJQkO23NmDFD1yLRA72cBuuT5ORkzoEZDAZqtVppWVlZUA6HbF7q1Wn4OuGFqxiNRj7vmHkq+40ZTkQawW7Yog5RjRPVy3EMJqIRCfFUjGgI0PLTiIuLk00mJkMH1GMqKZ2ARDGGOIlNJpNuRTjQax4YKtFgtulKv5vNZnrjjTdqchqUyolGICbATDylxzw0EEU4s1hi8vVoEQ1xw8nNzaXp6enUaDTSGTNmcD2H0Wj0G8tMCaJ+SU9MtEgQDK0SCQ98NYSyYfvjTPTqSQYT0VBb+8HeGyMaPhBFDGxQmJ38sGHDZERj2LBhQS0mcXOprq7mG4qv6ELL5BYAF2WFQjQA0GXLlsnEbJMnT6YAaEVFBT+dqME3YKE/8VSw1lWBEA1RGRhOhz+91lOsL9lpnxGKDz74gALwqydSAiFEkdNQqyeSBILpoJQMPgZywEJ/YOvKVyylZJE1EImGL0FkY6PXQEdEjGiEidO45pprZINyzTXX6NqYWR3iYhIHmOkolE4/Ws594kk6FKKRnJzMCVdiYiKfXHp0GmI7EhMT/YrM/EXfVCoGgyEgoiHa4WsZJASKQJ37GIFkMaiYo1hFRQU1m80BPZuZVIpt0KonkkRDa56HM6qwGiLBaYiWb3V1dbID2kDlNMS9wWaz0YyMDEXnPq3xUkOMaARANNR0GuzUyEQqTFbuL1wDg9pi8idnVZuc4QqNzgiE72ZPCOlzmlVacMAljofpX1gdzENbLCKhC3cYEVbENjqdzqgTDXYAYKEdsrKyqNVq5d7zWhyCGtjcEDkNLY4lUs59/ub5QOA0/BEGJc5dFBmza+rq6qjdbh+QOg1fKYTdbqdZWVmydsaIRpSIBqXqHuG+G6vBYOAbp6j0FDdMBnExifUbjcY+3uQpKSlcGa41OUNVQF8cVNVCCKGTJk2idrtddcExosE8w/1xEkpsc7iJhiieCoeZK4PejQLoJaBWq7VP22w2W9A6jZkzZ3KdEct1olaPmvVWpMpA0WnoIQwixHwa1dXVfayngIHp3Oer75QkiS5btoyazeY+4ikxjEiMaESZaKiFIBCJCNtsxY1RvNZ3UvsOhiRJMoKjJp5i7QwX0VASKzHP9kmTJikuONFsmJ2kRW/4cJZAiIa4SJKTk6Pmp8HAiEZGRkYfj31mRRVom5hvDzN3FX17lBBtTmOghEb3RxjUPMi1vMUDbUM0IEkS3bp1K/8smuBHIwlTjGgIUBNP2Ww2OnPmTJk5JzvpaXWur8jJ1yzTd0MRxV1ainBf/4hQiQbbhERTTZPJJDtxiQpC8fkZGRn8PpH4hNMrORCiIY5ROE1AAxVPKSn9DQYDlSQp4HYNdOupaEJrHLQIgxZBYbq5srIyWlBQwKUAalxqfxMNX06DiULZ/PKn7/SHGNEIgGhoKcLFyJ4Gg0EzfDT7nkHptMPCMihxKAA0TW6ZuCIcRMNoNMpYV7bZu1wuHv7aV0Fos9loRUWFTLehp0Qj3Wt/cxpMNCTG+mFOlOLnQNrF5o3YBi2lczQIhTiW0USwnIaW6IpFWGC+JwUFBaoRbv21IRrwPVCy8Rg6dCg/qMaIRpSIhpbJLXApJr1e01EG39OO2kbrK9pSc+5jm304iAYAWRRW9p3D4eDe4b4KQkZIGNehl6uItsltf+g0fDmNESNGcKs0u91OW1tbKYCA5P9s3oht6I8ot8FuQuFEsDoN9ruSuNfhuBTlloEZGyj1cX8TDUrlomsA9Prrr1c0uY0RjShwGkrpXllnKXlX6hkc8bRjtVpVN3xx89UKI0IICUvsKa3N3jdar7jgANCysjK+SCVJGjA6DRHhjLoaiE5jxowZiqK6mpoabiobiKVRoB7h0VaERxPBWk9p/cYOccuWLePiKZPJRIuLixW5uYFANMQ2sD1JKWBhLIxIhIlGSUkJPyUyjiIcsvmEhASZFZaY9QyALEe3FtFgYUYA0JEjR4a80PWKi0S4XC6eM52JrYBep69AuJ9ARFXBmtwuWbKkX4iGGC1ALHPmzOEK7EB9GgKJPRXtgIXRRLCxp/xxISw0DxNPlZWVqcYuGwhEw5fTMJvNMtP9UMYrRjQCIBqi6SgTJ4hJhpg3rJ7IrGxjZKfvqVOncpO+vLw8rpPw3TyZWEOSJDpjxgyZYpedfFiIj1AXOuMQlMRGIrFUWmhKp9lAnPeiZXIbLmczvRsFG8+JEyfS/Pz8PvOBKcGD8WkIhHBFs2ht2oFs7IH0gRoRKCkpURVBaYUICcSCqr+Jhq9OI1BdoT/EiEYARAO4FD6ZTYxQw3WYzWZOLNiGzxKm+F5rtVq56ZwWp8GimI4dOzYkosHapxQzymQycRGLkglyXl4eHTp0qCzaLtOBhLsEG3uKENIvfhpiMRqNMgIZSkTYQAlXJIqSAUioAQCD6QM1M3CTyaSq7Ga+GL46QtZnubm5/J1sNpvsd6U29BccDge99957+bv4isv9cfz+ECMaARIN39M98/5mC178q2eBiQndGfFgSjdfHQC7Nj09XVOn4XA46KRJk0Ja/P4mh1ZUTLZgRZY+UpFVAyUaSpxZOBAo0WBzxGQyyYhysLk+SkpKZM59Wma77Fmh5JD3LWpznhCiGopebwDAQMDGQcm8tqCgoI+XvGhWm5KSIhPhMEfampoaajKZaEVFhYzYqJk19zfRYJEG1DgNfzpXf4gRjQCIBjspFxcX03fffbePsjlQRbhvRFw1nQYbdJPJRBMTE7kFjpr1FDOvCxfRUFKqa6WtZQsW6FUeRpJgBEo0RIQzrIWejULJKs53rBmhCKRtgTr3+QtvEyzR8OUkmQcyg5gPhtLAU7LqgRanIUm9qXWVnscOOKL40mAw0PT0dMVDGIulNhBNbtmBiMF3rGJEI4pEw2g00qSkJNlpJNgUpUBvVjxxQ66pqfGrD2G24lp+GkajMWRRkDg5lHQaWkSDLVigl2gEk7kvkBII0QinKESEHqsd0eFSaeGK4e8D2TzFMPVss77xxhtVAxZGwnrKZrPRhISEPg6gImfhSzQiyWkoib5MJhMtKytTfB6APocwMb0AEx37jpsSYe5vokEI4VyT75qLeYRHmWgAoOvWrZNNrHXr1oW84EQ9RWpqqiqXwEKIMOcvrdDoocqt2fuOGjVKtS7GIfmCLVir1SpzYgvk+ZFShIdT6SrC30YhElJfj1y2Ec2cOZOLcALZPAEochpqG0CoIWaUitohJT4+XlVxHEmdBqtfHO+SkhLNtMxqRIMQQi0WC01JSaHZ2dm0rq6OTp8+nY/dQAtYaLPZVHWRete+FvzdHyMaAkQlNZsYos0zO30H4o/AOBUmMmCyyOrqatl1H3zwQZ/TvVrsKbG+YAullxSmSu9jt9upxWLhXI9vG5ROs4FwZZEyuY0U/G0UosjOYDDQMWPGKPYpy6sRyOYJ9OraxDZoZSWMtsmtlnI/UtZTalB7npZ4ir1HZmYmj3wgntZ9ibtWTLhoID09nUqSxN8lmLWvBX/3x4iGACY7rqiooJs3b5ad6EaPHi2zHBk9enRAA8VOm06nU7aoxQ3bZDJx8RWl6guELdRQFjqll3Q4SnWx9ophRlhoDnaikySJPvTQQxHflAYD0WCchj9vbK3oqWoQ54pvbCElRNJ6is0VX+fFgRCwkFJ1oiEqwn0jSvsewHz7TxQjakkAogUAdPbs2TI/DaUxCnaN+JsDMaLhg5KSkj5B79hA+PoA6FlkTLktbsZz5sxRvFbULVCqzWmES6ehxuKK3zPzVVGeXVZWxm3bI7VBsTIYiAYTxajFBMvJyZHNgUA2GaPRKJO3s2CSRqNR8fpIEo0ZM2b00dVFE8GGEdEyuWUm7MyviommmLm0r0WYmq4xWgBAn3vuOdlnsfjqnXzXs576tUqMaKhAnJxs0YoDwBatVucyZTrjHlg9agRHHFh/Og1fq5xgiQbQy36PGTNGpmth3JAkSbSsrIzm5eXRiooKzhnZ7Xaanp4u89O4nIkGpb2blr85ER8fz5Mx6SUcTLQi6jSYaEUJkR6PaPW5EoINWOjvNzUT9sTERE48mMm8GJac0uhkLBTha46vtY8EM17+xjtGNFTgG9tFLcqtVpEkSSZ+YhFOte4RfTpEBx4xLpYYPz+Uha53kokL7re//S0FwHU9oWYQ1FPCSTSClbGH2xs7kGRMYhRWwL8PSqTHQ2me94d4yncsmc+ICLah6+FCAPQxUmG5YkQLrXvvvVf2jGhzGjU1NbLIFayt8fHxVJIkWQKwWOypfuQ0fE+QSt8pFVH2y+TdapyGJEl8cAkhfGKIDmHMsioc6V61flfy3TCZTNyiKhrEgpVgnft8zSVDseYJF9FwOp3UZDKppmtVImrswDBQ82kE67AYDII1uVXrW0p7ORTfTItWq5UaDAaamZkp6+eysjJqNBr7VadBKaWTJk0KWgzpD/7ujxENFfhyGsAlRWQg1lNMlAVcIhqFhYV9rgHAo7LabDZqNBqp1WqVTc60tDQuxw5n5j4lPw1mPioWMSy7GJMr0iXY2FO+DnCh+A2Ei2gwbpNFuxXBDgO+B4WpU6f2u3OfVlHzCGfvFAnrKbUwIgaDoU//+Xsm02mYzWaamZnJdRqsiPczD+z+tJ4qKSmRST7EuQXEnPsGDNFQyhGuZ0FpZbNLT0+XcSvsWkYQ0tLS+sSeYoMeqgOXv8nh7xQTFxfHMxpGelMK1k9jzpw51Gw2840LAC0oKOizCeiRR4eLaLDcGnl5eX04DTULH6PRGBCnwTbBaBXWJpa4iCGSfhpK3uZMxKSUlpm1R2mzZ3pGJT2h79xwuVx06NCh/Uo0mHicHZACtaT0B3/3x4iGCpQ4jWAWE9voDQYDdTgc1GAw0KSkJNWc4kz+CsjN6sRFyUK4h7LQ/b2XnnwdkQ4fwkqwHuHM1p5tXAUFBbSiokK2cUWb02CFpQv2vVeMKSQeFALJ3BftJEysrYxjZYikR7hS3Xa7nVqtVsW0zFoEzN/7iUTIarXS1NTUfje5nT9/vuyzWPwd+PTUr1ViRMMHSqeRYBcTY5GZKIfVlZKSougVnpGRIVN2WyyWPmHamegqnGFE9Np6i1yT6L0e6U0pWEU4I3xsc2EbR0VFBS0oKIioTkONE128eDEFoCheAnpFlCKYyDKQzH2RHg+lucKcQUUz4EjGnlIiAqwtviJKADLuzJdb83f4EZYRFkEAACAASURBVNOoGgyGfleEA6APPvig7HOga99f/VolRjQEiBNx69atfFNhnRVoPg1AHimX0kvmk0rXpqenc9txX7klY0mZWMpf8ng9EyfQe0QLjFBNfgMpweo0WN+JG1dNTQ0tKCjgG0k0radEnZCSeImNqxKnEUjmvkiOhRg6hhXfhGUMkeQ0KO17wAMgC+RHae/BgemRlDgNFkKEvUtRURGdP3++7P3E9kqSREeOHCl7RrRNblnQUiWP8KNHj/qNCOAP/uZAjGgIECc5m5xKCmG9xTevA1N0Zmdn0+XLlyt6nrIot77xZcQIuADo5MmTQ1r8/iaHP/FXtERTQGBEQ/TanzRpEk+tysAy4LHNIJpEIyEhgR8IlDYaLa/lQDL3RWtcxLki6pDEvo5k7Cml9x45cqTseSzDpRgiiIEZI+h5Pwat8OvRAjs4+q5BMRy/v7WvBX/9ESMaAtS8RoNdTGI+DRaCuaysTBbvRqmw333FU+E83YuTIxoiplBKIERDTMLEvH3ZxlVdXU2zs7NpVlYWra6ujqh4inGjvn2bl5fHDye+G42a9RTLlBhoPo1oFVGH5LuhRjP2lNlspnPmzFE0hmDpBMT1xMROSu8kRnEQLcLKysr4/VoxtyKNmTNnBm0l5w/+7o8RDQEs/LN4uk9ISAh6MfkqsNnEVQu9odfxT6/llr+Jo/faQMRxkSiBEA2xMAsv0XrKbrfLFni4FeF6OTA1YjV16lQZtzR16tSA82n0xxgxzi7SJ26tcRBjx/n2k5jKWdQ1Mu9qrXdj4iCmCE9MTAzYrDfciBGNMBQAqQD+DOBLAAcBXK91vVYSJsbmhSM/BCGETpw4kQK9J0QmftB7/w033EAbGxvpDTfcENZFLk6OSOXBCFcJltNgmy+DVvwhf9AbRkTvOyltMmqbHovOKrZByc+Dwd8mGO4ixqKaOnWq334KBf7GQSl2HKXaoj+9/WUymagkSXTMmDGKFlrRQjjM7bXg7/7vEtF4DcD8i//HAUjVul4tn4bvxhPqgvINjQ70egXruVeSJBnXI3IYoZ7+/U2OcKYKDbUEQjTEE6AYMZjS3o1DSdHs65CmBL0BC7UI8JgxY/ooi0Woyd2B3jwvok6D5XlRQn/5afjqNCKBYHNZEEKo1WqVrScWIkTP+4kWWsAlh1gmflby7o8UQk165g/+7o8E0ZAQZRBCUgD8CMBa9PaKm1LaGkxd8+fPx8mTJ7Ft2zacPHkS8+fPD6ltbW1tAICuri6YzWbExcWhtrZW8VpCiOyz1+tFd3c3AKC7uxs9PT2y3yIJ9tzBhtLSUrS1taG0tBRdXV19fvftY9/PwaK8vBzjx4/XHJejR49i/Pjxqr93dXVh4cKFsu/Y58WLF+OXv/wlOjs7UVlZicWLF8NoNCrWs23btiDeIHj09PSgvr4er776qmKfDwQYDAaYTCZs2bIFbrcbW7ZsgclkgsFgULzebDbz/71eL0wmEwoLC/l3CQkJkCQJCQkJMJvN7OAaFbBnKc3dxsZG3HDDDVFrS7igPJN9QAiZBOBmADkAOgDUA9hKKW0J4pl5AJoArCOEjAfwOYBFlNJ2n2cuALAAADIzM/HRRx/1qWjdunX4wx/+wD+rTapgwBYUIURxkhmNxj6bdVJSEtra2vhfBrfbHVJblN7dH9TaHWm0tbXpbu+SJUuwePFiGAwG3l52b2NjI5YuXYqioiIcO3YMI0aMwP33348VK1b4rd9fG/bv348vv/xSs46uri7s2bMHgHL/m0wmPPLII7j77rv5d2+++SYA4MyZM3jyySfxyCOPICUlBS0tLbBarYr1iIeLaMBgMGDEiBEYNWoUTCZTUHNLLwKZCyI8Hg8opdi7dy96enqwb98+UErh8XgQHx+Pzs5OAL1r0OPx9CF+7B0Zpk2bhhkzZmDTpk1YvXo1gODWVChITk5GS4t8u8zJyfF7XzjaeeTIEQCQ7UkhQYsNAfAAgN0A3gLwGID5AEoAvIjezf41ACP0sjUX65wEwAPghxc/vwDgKa17tMRTakVUUPq7FuibI5wpSbUy3PnWrRSlMhxFz/sOlBKIeCotLY3nRRDfldLIxp4ihOjyogd6reKUoKbTAPqKI+Pj41VFItEen4Gk01AD0JsLRNRFMP8pPcYLbDyA3jUq1sOMLKIF1qbi4mLa2toa1NrXU79amTdvXnR1GgB+ASBB4/cJAKbofdjFe7IAHBE+3wzgfa17giEawRTf4IZ6wqMzWaXvRhFOwhGp941ECdZ6ymQyyTyUIxnlFujVp+jRBRkMBtV6lBS5RqORpqeny5z7WNwytbZEu0RLIRws0fBNkcoSqQVrNKAUvDRaCMfaD7b+q6++mhOM74Ii/P8BuPLi//8B4Dmt66NFNIIpw4cPl+XvFidnuMxuB9L7+iuhWE+xUPLMYoo5ToY7n4bZbKY33nij3/Y9+uijuhau77xMSEiQZe5jpuBq10ezMETDMzpYoqFlcss4U7VETKyvlaJBsxJNj/BwjVcg9bPIv5TSiBANXYpwQkg8IeQXhJCXCSFVrOi5VwWlAN4ghHyBXm7lmRDqigjUFJe+OH78OP+/paUFXq+3j+wy2nLrwYIhQ4bwv7Nnz4bBYEBZWRkqKyvR2dmJ6upqmEwmvP7666ivr4fT6QzLc2+55Rbs2LHD73UNDQ2av48bNw6EEF7GjRsHAOjo6EBycjIkScKQIUPQ0dERlnaHE5988gny8/P7tQ21tbUYO3YsDAYDxo4dy41OGhsb8eKLL8JisYAQAovFghdffBGNjY0AgNbWVnz++ecwm82QJPkW1t3dDUmSMHToUP4du4b9jbRhiohwGW8MKOihLAD+L4CnAPx/AO4DUAfgBb2UKdQyEDmNaHpmD4T31VsC4TR8TSoBhCX+kb8TrsPh0B0mnnE/vrj66qsp0Ct7b2pq4jJ3QD00vxL6Y95GOwmTErTEj/7SvYox5tTeUeQ0RH8PJk6MFvyNhz9T3GDqjzSnoZdo7Ln494uLf00A/qb3IaGWaBINRgwC9eD0DVcQTt+JSL5vuEuozn2iQ5/NZqO5ubkUCG/sKeY46E9saDQaVXOEA70EQ4RIONTGMVrzWKswIt2fREOLMGgRFF+/FqUI0mwNss/iumQhR6IF1oZgRdR66xfLgBBPAWC2pa2EkLEAUgAM03nvoEJv/wVuJuv1enHs2DH+d7D6TkQT8fHx/G9iYiKAXjPcyspKrF+/Hm1tbTh58iQAoL29HYsWLVL1mwkEOTk5KC0t9Ss29Hg8OH36NGbPno3y8vI+v99xxx0y8codd9wRctsiDeb3YLFYsGTJkn5rx8GDB9HQ0CDrv4aGBhw8eBBOpxN33nknpk2bhri4OEybNg133nknnE4nXC6XTOTT2dmJuLg4Wd1er1cmNu7o6IDX60VHR8eAFBUOOuihLOg1tU1Dr1PePwF8C+AhvZQp1NIf4qlop+HUKtF433CVYK2nmCllYmKijEszm800NzeXulwump2dHRaPcK2Q90olKSmpj8ksAJ4/XIm7vOGGG/qIrZTQH3OJUkrr6upU2xQuaI2DzWaj2dnZMm6CjW8oSZiUCvMEZ39jinDFesLOaWyjlLZQSj+mlF5BKR2GXr3GdxbBeMuyE9B3UvkVAaSlpfG/Ho8HwKVTIdDbj263GydOnEBhYSFee+01v8ppPThz5kxAp+y2trY+Clfm3JmTk4OGhgbk5ORw7jI+Ph47d+5ERkYGNm3axDmqGOSgF7l638/l5eWYPXs2SktLER8fj9LSUlVuT2lcmpqaMGPGDP7dmTNnQCnFmTNnkJSU1Oe5MQQGvUTjLYXv/hzOhnwXwCZjbFLqw9mzZ2V/gV6v+q1btwIAVqxYgaSkpIg8WwwzoYa8vDwAvRuTryjL4/HAbrdj586dyMnJwc6dO2G32wH0ikwcDgcPE8E8mAcCmKXX9OnTYbPZ+q0djY2NWLlypYwwrFy5Eo2NjThw4ABWr16N9vZ2UErR3t6O1atX48CBA33q8bWE8nq9GDZsGL744gt+eBOtp6ZMmYKCgoLIv+B3GJpEgxByFSHkLgAphJB/E8r9AGLHpxhCAlvw4sInhKCoqAgAsGzZMr5Zb9++HXPnzg3LRmez2XDffff5ve7w4cMAgIyMDMXfx40bx+Memc1mbnIL9IYqYcRkoCEpKQlut5tzegxqJrDhgG/dOTk5+Oqrr2TXfPXVV8jPz4fBYEBPTw+qqqrQ1dWFqqoq9PT06AoT5PV6uZnuFVdcAQB45pln0N7ejmeeeQbvvfeergNDDBrQkl0B+D8A1gFovviXlRcB3KBXBhZqGYgmt9Esg+l9A9FpsNAKYkgPk8mkanmWkJAQFo/wmpoabuIb6DgwMKsdpXfQc39/zmMWTkPU00Qyc59S3SwVrVI+DUA9la4eU3cxjAh7X/Y32qHRWRuY428oc06rfrEMFJNbzXwXkS4xojF43jdYRbhYiouL6YMPPqj4m1YWPAY9RCMjIyOocWAwGo08WyPzfVAy/1S7v7/msZgJT2xTJHOEK9XNwuH7pvxlsaHUYk8F8p6sXqUQ69FCqOMVTP0DhWiMAbANQP3Fz+MAPK73IaGWGNEYPO8bKtEQszECl6yqWPyhcCRhYptYMOMgzr8FCxbINrYFCxbwa+12Oz169CjfBH3v7895zOJ8iW1ieShEhBpqhI2DUt2sLUoBH9PT02XWTmIa5kDflRDSJ4ZVzHpKsZ6wE42/AvgBLjr5XfyuXu9DQi0xojF43jdUorF8+XK+0YoxnMxmM73uuut0LSQ9zn1ut1t3m5h3sQiWpU+8jn1OS0uT5QhnsciUEO3x8c0syRBtToP1k4ji4mJOHAghfZw/9RINUVzIuMD+cu7Tm1JYrfiD0j0DhWjsuvhXJBp79T4k1BIjGoPnfUMlGmopdtlpk/WHFsIZRsR3HBjYZpCQkEAlSZLlp5ckSZYjXCsDYH+Nk+/mGW2dBtDr/yKK95jIDACdOHGiTHTF0jD7K2I0YaXfGTGPFkIdp2DqjzTR0BeVDzhNCPnexUaBEDILwEmd98YQg26cO3dOMVmM2+1mh5WQkZubi40bN4ZUh8fjgcFg4B7GHR0d3OqHUopXXnkFr7zyCoDw++2kp6fjzJkzQd8vSRIuXLgg+44FgywtLcXBgweRn5+P8vLysASJVKrbYDDw8WT909HRwRMr7d69m99PKZV91oLH4wEhRJbNT5IkeL1eSJL0nYvUUFNTg9mzZyt+Hyno9dP4BYDVAK4ihJwA8CsAC7VviSGGwGEymRTDe4i+HKHC5XLJNpVgIUkSTCYTgN52M38AX+JGKcXw4cNDfh7QSzCam5tDqkMtyqvT6UR9fT1PCRuuqMJKYBn4SktLcf78eZSWlqKzsxPJycn8mhkzZvRx1PMHSZJACEFqair/Tsm0+7sCp9OJmpoaOBwOSJIEh8OBu+66K6JjF5CYCIAFgDWQe8JRvsviKcZKapXB9L7hsJ5SCvFBCOHBC/1BTxKm5ORk3e1REi+x35RMbn3NQgkhquFP9LbBV7wQbN9KkiQzN44kRPFURkaGTBQFgI4dO1Ymgrr11lt5XxuNRpnVU6C6AX9J0KIFrTmtpwQCNkfEudKf+TSGEEJeRG/ypI8IIS8QQobouTeGGMIBQghOnDgRtvoCCROjdUL905/+hNTUVPzpT3/i32VmZuL555+H2+2Gy+VCZmZmWMKfhANerxdtbW1IT0/v8xvzziaEcC/tcGDJkiUwGAwyZz1JklBfX8/z1hiNRuzYsYPnzfYND+L72R/Clg87TPgu5dTROxJ/AtAE4C4Asy7+vyFSjYrh8gZV0F2I8ajCgWBii/kiLi6OJ9xqaWnh0VavuOIKLF26lEdoZZ7JwWLq1Kkht1UEpbSPTqS0tBSrVq2SeU+vWrUqLISjoaEBDzzwgCxkCPPuZmFikpKS0NHRwfvT7XbzjbanpyfgqNN6vMdjCA56iUY2pfQpSunhi+VpAJmRbFgMly+0TvZKBKU/YDQaYTKZYLfbIUkS7HY712/s3LmTB2Ds7u4OKZTI1KlTsWXLlrC0WQtr1qzBPffcg6qqKlitVlRVVeGee+7BmjVrwlL/Cy+8gEOHDsHr9eLQoUNcIS0SXUII2tvb+T2h6CK+Syf7gQa9RKOOEPIzQoh0sdwNIPIzOYYYLiIzM3NARQ9euHAhLly4gOPHj/P8DaJFEiNuwSpfp0+fDgBRIRhAL+f1ySef8FS7lZWV+OSTT8LCkRFCcOHCBcyfPx+tra2YP38+/01Udg+UA0EM2vAXsPA8IeQcgAcB1ADoulj+BGBB5JsXw+UIJfl1QkKC7rzt0cANN9wAo9EoE6EMpPYFCkIIfvzjH6OwsBAmkwmFhYX48Y9/HBZCTSlFYmIiNm/ejPT0dGzevJn/9qtf/QopKSn41a9+JRMpxcXFwW63gxACu93eJ9FSDP0HzVlOKbVGqyExxMCgdDo/cuRI9BuigZKSEu6rwSKwMpHUQAZTcvtmsKOUYs2aNRg1ahQWLlyIVatWYc2aNWE7/f/iF7/ABx98AACwWCz8e6fTiVOnTiEzM1MmUnK73XzMgxl7QkiMc4kQ/HEadj+/E0JI/wXlj+E7iYEkhlLDmTNnQAjBypUr0d7ejpUrV8razfQbAy0BE6VUMeWpw+HA8OHDsXjxYlgsFixevBjDhw+Hw+EI+ZlGoxFr166Vib4YTp06JfsbLsQIRuTgT6fxHCHkLULIXEKIgxAyjBAyghAymRDyFIAdAPKj0M4YLiMMlgX/ox/9SKY4/tGPfsR/Y4regZSASQu5ubn4/9s79+i4qvPQ//Y8NLI0smzJtmxZCiYJbkGYGLATklwuOK0N60Y82oR1r92bS9NcZ+Wm4gYckobQxIuVtuSWmHAb+likTQNtFFZNuPWDUqBBdgKFMOZhy2DApDYyGNl4bNnSyJrnd/+Y2cdnzjw0Gs1T2r+1zpJmn3P2/s5rf3t/+9vfPnToUNqCRYcOHWLp0qXTzvtLX/oSp06dYu3atTQ0NLB27dqcx9p7IYbaJK/SEJGbgG8BvwH8Jcl5GttJjnG8AXxKRJ4qt5AGQy2ya9cua3Z2MBhk165d1RVoGvz85z8HMpcs1unT4ROf+ETa6of5PJvs3lOG2mRS7ykReU1E7hSRq0XkN0RkpYisF5F/FJH6aEbVAbn8yut5cHU2MDw8TCKRYHh4uNqiTIt4PI5SKq1it/+eDhs3biQej6f1YjRbtmwhFAqxZcuWujBLGgp0uVVKNSqlNimlHk2Zq25TStWWsbbOef755zMUh8fjmXEB1gy1i4jg9/tRSuH3+0tmJtS9h0WLFuFyuVi0aJG17/bbb6e5uZnbb7+dlhbjd1MPFNqMfQgYBfQI1gbgH4CbyiHUbOXRRx+1wiisWrWqytIYZiM6/Eapw3D4fD7LKcDuHKAVk4hw5syZkpZpKA+FKo2LReQi2+8BpdRr5RDIYJgJ7pL6GnRY7npBy13qZxAOh6flQmuoHQqdEf6SUuoK/UMp9TFgT3lEMsx26l1hQHoLup6oV7kNlaNQpXE58O9KqcNKqcPAc8BqpdSgUmpf2aQz1C0rVqyotgg1gal8DTONQs1T15ZVCsOMY9++fVxyySUMDg5WWxSDoS6p1QZHoT2NC0TkbfsGXG3732DIYN8+0wktF319fVNKN9Q+IkIgELAveleTFKo0vq2U+mulVLNSqkMptQO4rpyCGQyG3PzgBz+gr6/PWrbW5/PR19eXFqLDYCgHhSqNq4BfA68AzwD9IvLZskllMBgmRcdyCgQCGTGdDIZyUajSmA98lKTiCAPnKTN9c1ro9RJqlVIEqjMYDDOPQpXG88C/isi1wGqgk2SwwqJRSrmVUi8rpXZOJx9D6bnxxhvZv39/tcUwGAw1SKFK47eBqFLq2yJyFvge8I1plv0V4MA08zCUGJ/Px5133gnUrveGwWCoHoUqjTuAK4D1qd+jwJZiC02twfFp4G+LzWMm0dbWVm0R6O3tRUQyQnlrT45AIFAlyWoXp4XWWGwNs4FClcbHROQPgQkAETkFTGf9xfuArwP1E1+hjOjw2vmoh1Z/PchYSpzXO9uu3zA7KXRyX1Qp5QYEQCm1kCIrfKVUL3BcRF5USl2d57gvklqHvKOjo67XKsjG8uXLrf937drFiRMnGB8fJxKJANkDxg0MDACwZs2assik7/GJEycyyj9x4kTWc3p7e9m5c6d1/tjYWNmf1WT5l0uG6eZZzPn5nokm375SyFTsdVfiXSiWWpRL1wPFPkt9rj0P+3dbsiCU2vyQbwN+j+TiS+8Af0pyAaabCjk3S153p/I5DAwD48A/5jvn8ssvFyckFVjdbps2bRJAent7RUQkEAjItm3bJBAISCAQyLjecl+7lkPL4iQQCEh/f3/W8wDx+XwiIjIwMFB2WSfDKUOp7t9085iKLPq+5nsmufYVI9N07ncu9HOo9LdVineoVExVpsm+/Xzoc+156PqkgDpljxRYhxfU0xCRnyilXgR+C1DAjSJS1CC2iNxBcoyEVE/jdhH578XkNROYM2dOtUUomPXrk0NaGzZsSEv3+Xx1s6ypwWCYHgUvCycirwOvl1GWsiKpcM+1RFtbG1//+tenfF4gEGD16tUllWXz5s0FHbd+/XrWr1/Pnj3nghzv2LGjpLIYDLMN+2qGtU5VJRWRXSJS8lluuhvljOOi/1YbPbGvkAHwXDivcTpylPO+1Mo9NxhqFfv66fVA/ai3EqEr223btlVblFnDtm3bpq3gDIaZhv4e6klhQB0rjebm5imlV4tcleRVV11VYUmy4/EUbKE0GAyG+lUaY2NjGQqiubm55GsblwKnKanQ8YNy43K5iEaj1RbDYDDUEXWrNCCpOESErVu3IiJVUxi5ehOVNMVMpSw9+/tb3/pWGSUyGAwzkbpWGrXEwMBA1RdR0TI4xxBqtadjMBjqD6M0DIYaZd26ddUWwWDIwCiNaWI+bEO5eOKJJ6otgmGa6JUVC02vB2a10sgVXXayqLN6fsO6devMh20oKbW+OJdhakxMTOD1etPS6j2CwqxWGsFgMENBtLW1EQwGc7YEent72bhxIyJiFIbBYJiUJ598Mm1MsZ4VBsxypQFJxWEfPNaztCcmJtIUR29vLz6fzwwiGwyGWY2Z2ZUH3SLQcZZ27NiRFnPJYDAYZhuzvqdhMMw0TKgWQzkxSsNQcUylVn5EhIGBAbNMbxbM+zc9jNIwVIVckYgNhlJj3rPSYpSGwWAwGArGDIQbDIYZiVKKp59+utpiVIVAIMDY2Fjamj2jo6PW/36/v+iF3ExPw1AzGNOBYbq0tbVZpqhEIlFtcarG2NgYLS0tNDQ00NDQwLJly2hpabG26QR3NT0NQ02hFUetLc1rqH30xNzZ7hZ/9OhRQqEQwWCQ8fFxACKRiLW/oaGBlpaWovM3PQ2DgeqF78i1aFhDQ0OFJakPnL3R3t5eK9T/dJZPnklEIhG8Xi8NDQ243W7mzZtn9TgaGhrSFEgxmJ6GYdYhIll7MoFAoGg7b7GMjY3h9/sJhUJWWnNzM3fccUdF5aglcj0frTD039neo6gWpqdhqElyzS8o1bhHrjVGuru7sx6fK71Q8i1DrBcTCwQCbN68ueSLidXCImFTxbhk1y5GaRhqFl1Z6Lhglag4hoaGWLRoUVpad3c3Q0NDGbJlQ0RqchnieqmEa1WuekF7TY2NjTEyMsLExAQjIyPWZvegKhajNAwGB4899lhaBetUGJpcFfHY2Jg1G7uayxBPhXL2RvLlXQ+KrJ4YGxvD5XLhcrlwu900NjbidrutLR6PT7sMM6ZRJUZHR3nwwQeJRCLs27ePeDyOiHDs2DEABgcH8fv9LFu2rOJ2dsPsxD5WsGrVqrrJ21BZjNKoMIFAgLfffpuzZ89aratYLGbt14OA8XicUCjEW2+9BWAUh8FgqAmM0qgwY2NjNDQ0pHmH2P/XSkMphcvlwuv11oV5w2AwVB49hgHJtYGi0ajlUqvrFZfLVVIXbqM0KoTuYUSjUaLRaJpt0WnLtbsWJhIJY+s1GAxZ0TO/4VyYkIaGBqLRKC5Xcsi61DPjjdKoELqHAcmHmG9QyuVyWT0Ol8tFKBRiYGDA2h8MBq0XRP/v9/vLfxEGg2HWY5RGhThx4gRnz54lkUgQj8en5MWQSCRoaWnh6NGjVtdTz37VYQKGh4eB3PMbDAbDzCIQCDA8PJxWFyQSCWKxmGWhcLvdJS/XKI0KEAgEGB0dtQa+izU3RSKRDNtkQ0MDwWDQGkwfHBwkkUjw05/+lHA4zMGDB2lqauKGG27g6NGjDAwMEAwGOXToEKFQiIMHDxIOh4lGowwODtLY2Eg4HObQoUMsWLAASEbENLGgDIbaYmxszAoXAsm6YGRkxBoTLZdZ2yiNMqIHqYaHh62eRa4QCdMhHo/jcrlIJBIkEgnLphmNRonFYoyOjvKjH/2IWCzGyZMnicViiAgul8saX2lqaiIej9Pc3ExzczMjIyNWC2Z4eJhoNMrBgwetMsPhMC6Xi6amJstUZkxkBsPMxyiNAtBmodHRUStypB5jOHHiBLFYjHA4bLXidSU6PDxMc3MzXq8XpRRut5tYLFa2VoBWBLpLqif5JBIJfD4fiUQCr9eL1+tlYmICALfbnTWAmVY+Gq/XSzgcZmJiwpI9kUgQiUQs741EIoHHY14pg6FQ7N5PkD5eCdNb96JczJovfNu2bZb9H7Ba35pYLMbWrVvTTDL6YY2MjFjH6Tx0KzwUCuH1egGsWPWaYDA47YiStYTuLWmlpJSisbExbX84HGbr1q1pc09CoVBWc5nBMNuxez8BGSHLSxH2o9TMKKWRT2sHg0F8Pp/1UMbHxzNa+6FQyDIdvf322xw+fBjAapVHIhESiYRl1vF6vcRiMeLxeFkGgaTDawAAIABJREFUnOoRbX6zx1/S/ycSCZqbm9MiuhoMhvqi4kpDKdUNPAR0AAI8ICL/dyp5OJWDjvUzPDxsDQx1dnamaW2Xy5UxN8JZ0etJMKOjo0Sj0bTKTZuU7OMRbre7rANO9c7o6GjaPdfjJ7FYzDLv1WJLymAoB9oRRaMn42mrha63ap1q9DRiwFdF5CWlVAvwolLqKRF5rdAMnF06v99PS0sLwWCwJIuMxONxa46EJtusbUN+nD0wPX4Sj8etD0UrfDvGW8swE4lEIhmmqMOHD1tjh/Viyq640hCR94D3Uv+PKqUOAEuBgpXGTEfP4IzH4zNuneNEIoFSyvpQtMK3Mzo6Oq3lKA2GWsDuPTkwMMDY2Jhl8ob6XZ2xqmMaSqllwKXAr6opRyWZyjwN3duZaYojG/aJi7rLrk1XIyMjVVlVz2CYDtoiEgwGaWlpwe/3pymKeulZOFHVsscrpfzAbuBPReTRLPu/CHwRoKOj4/KHH37Y2vfee+9ZHktwbtKbjiWfSCQy5gycOnUqrYU7MTGRYXLSYxr2AW/IHbvFHgrE4/Ewd+7ctP32cZdiXxB9PY2NjUQikaxmG+fscm0S0mY2PX5jNxfZPaF0uohY9yccDuPz+YBz169nmmoZnONCOlZWQ0MDLpcrq7y6XO11pZ+VfnaQ/dkAljuvx+PhAx/4QM57ppdQzcaJEyeIRqOEw2Frdr79Oer3yufzEY1G85Zjz1N73dllmJiYyEifLB+ABQsWZOSZrYzJ9mWTIV8+UzmmELI9h2x5F3Ntep/GeY2ANU/J4/Gkvc8ar9dbkuvMha6nnPWTRn9X9nrGeb+i0ShLlizJmb+eL6XRdZfG/v1D8lvyeDz4fL60fNesWfOiiBQUs74qPQ2llBf4GfCTbAoDQEQeAB4AWLVqlVx99dXWvoGBgTTzxeHDh1m2bJllH4xEIixbtiwtP/3A5s2bB8Dx48fTKjw9h2HevHmMjIykzb6emJhIezBawTQ2NlrzFlwuV0aZ9q7oyZMnC+416NhTOsptLBbjoosu4rXXXsvqpaW9vvRYi66QtdzRaJTGxkbOnj2btg9IS4/H49b9OXnypPW/Vnjj4+MZgdCcLrcTExNWi2pkZCRDXn2/7Hnbnx3AsWPHaGpqSjvPLlsoFML+PjjZtWtXzv363Tl8+LA170QrwkQiQTQatRSWngQ5ma98tjUidu3axeLFi6e0doRe83rVqlUZeeZbhyLXvmwyFLKeRanWvMj2HLLlXcy16X2Q7KU6G7/auzEcDtPa2soFF1yQcf7o6Gje92i62N815zsO574r+5iGsw7JJ6OeF2bPc2RkhGg0atUzHo8n7TvVE3nb29uLvvZqeE8p4O+AAyJyb6XLrwb2+SHToampKasdNBQKpUXGtXt96Ra0TnO6uzrT9QC13atDK1T9MtrLqmec804Aq4epx5OCwSDDw8NWq3n16tUFTcgqFJ3XiRMnrGdw8OBBQqEQ+/btsxoB9tAu9h5JtvKnKkO9oe+Z3ZnC3pO3h9XQPV5D6ahGT+OTwOeAQaXUK6m0b4rIv1RBlrJSKmUxGS6Xy1q4SS/xCOk9jebmZs6ePcucOXOsfXCupzFnzpyMnkZbWxuQbAHpYGjOMZmzZ89a/9e7ErFHFta/dQXU0tJiVcy5JmTpcRkdPNLr9eac3WsfJPV6vYRCIeLxuKWcASuKgA7tor1vdGWpy7XLMpkMte7inEsh68gL2vvO5XJZE0hFxIq5ZO/5zlbsDTv9LunvVESstGKphvfUM0Dd+VM6zUo6hIZurUYiEY4ePZr13KamJiKRiDVuoE0h9YQ2F4XD4ZxjGnqMYHx83AqC6BxvmcnrgzgDSmYzNWjsg6S6RWwfp9PvyFQnjTpl0AEt7eXaXZx1j6RcoSycSuDIkSNpMcw8Hg9KqYzQO3q+glaIwWCQ5uZmwuEwHo8Ht9tt3S/dONLv32zGqRC0qVu/R4lEgtbWVtrb24suY0bNCC8HubSyiKS9oNkm5szEbrGOZwWZ8amcId+zKQj9W1cSs/0jLzdOJeJ0cdbPoVyhLJy9MqeJ1WnHn2mhd8qNbqBNhr7npfjeZo3S0J48dju9s7WvJ51pReH04rGjlGLOnDlpAfwMSXTFkC28SrbwLUePHk17+c39NBgmx96DzIXb7TYr9+VDVzzxeDzDVKTt/rpbVgrvKcPU0d1l3fqMRCJ0dnamBYXU6XbqzZxnMBSCvbGUrd7K1+vSdZmzt2/3nioHdak0nDbX8fHxjJvtNBVpl9dqU0isKv3AtY12NoQbt5stcgU01M98ugN5BkM1cJqSspmKnPVWLTou1GVt1N7enmYn1a1V3TuoRZuoHtjUq2rZXTv1QOi8efOsl8bum65X/tOV5fj4eNo8BvvkPUN+dIPj9OnT1v1y3jejlAzlINt4DqTP06gH6lJp1CN68pwmHA7j9XoREXw+X1oocSdON0041zUNBoO43W7cbnfaxDsnumw9SxaSPRnd8hkfH8fj8RAKhSwPKd3i1+lwbtY3ULaem33mvl1+3VCYTmh13eDQbsR2b7BsXfpgMEgikUgLc2IwFIJuoGhLSLaehnMSaz1glEYFcFaA4+Pj1lKpiUSCD3/4wyilcrrsarTysM+S3bNnD++++671QurJfR6Px/Jmsrtzdnd3EwwGaW9vZ3R0lOuvvz5rns5ZuNu3byccDjM6Omr5yGv7qUaPG9UTdm8wZ7iSeDxOe3u71ZO1r82SzWxw+vRpy/XT6/XmtU/bezx6Lk027BGBtfI6ffo0QNb3xT6uV48VUjHY5w9Fo9G0yAWxWIxoNJr1XpW7EWBvoNgtIZUqv1wYpTFN9IuZSCSs5WB1L0BXQnZfc71vfHyc9vZ2GhoaWL16tRUSoRj0Kng6bMP27du5/vrrc4aisP8tlM7OTlatWpUxGxdI8/k+cuSIpbj0fbF/LDNhSVineVTjNI/ms0/bK5RsIVf05EvtnKHz15VPtvwhc5VJZ+9TKx67zNPx2a8UWhnmqmjtSxADtLa2Wve1qakp672qxfGCeqC+v94K4Ry81q0ae6C/uXPnsmbNmoLi6OzZs4ejR49ax9cT9t6Oxn699nhDWsEcOXLE6uHomEBOe66hNGi7ebawGnBO8Wh0QydfBTqdFrEzb92z0jiVWL5eFJxbKM2pYO09vNnSw6oWda00Hn/8cV566SUrkuXVV1/N+eefn/VY/VLpD0BE0tax1m60oVAobT2LXN5O9hmpra2ttLa2lvry6h6tYLZv324pSBHJOvvYbp6pNxNXvZOr56SZTos8m9NKPiWWqxelzzNOCtWnbpXG448/zgsvvGD9jsVinDhxgng8zqlTp3jwwQfTjt+4cSOhUIidO3cC0NPTw6uvvmrtX758OXfeeSdwrqurK6/e3l4Adu7cSW9vL8uXL+fee+9NO3bXrl1luMqZhzMche592Qf5z5w5w8TERFpYjdm6Bvvo6CiDg4PW+uoHDhzgwgsvBGD//v388pe/5P3332fhwoVceeWVVliQU6dO8Ytf/IJly5ahlLLmH4kIjz/+OFdeeSUXX3xxNS/NUAGi0SiRSITjx4/j9XqZO3futHtidas07ApDowME+nw+2tvb6e7u5siRIwA8+uijnDx5kh07dgCwadOmNMWyadMm6/+ptHR1T2TNmjVAUsFoxZRN+dgVzw033JCR9uabbwLJsMc//OEPWb9+vVXWNddcw1NPPcWnP/1pq4ze3l4ee+wx1q5dy8svv8z777/Ppk2brLwfe+wxurq6OH78OGvXrrXKeuyxx+jt7eXll18G4NJLL+XZZ5/lzJkzXHvttTz11FNs3LiR3bt3Mzg4aMnp8/kIh8OWIgUyrtd5H+3y6GM1zvvl9/v50pe+xNKlSy0vKV3hKaX44Ac/OK2X3u/3Mzo6yhtvvGGFcLfPXBeRtCCMu3fvxu/3Z8SRAvjOd76T5nG1cuVKVq9ezd69e3nllVfSjt28eXNOmX7xi1/Q0dGR1orWlb9e90PL9sILL1gf/vbt263jjx8/zs9+9jOuv/56lFIMDQ1Z4xuhUMi6l01NTdaxAOedd56Vx3333WeZhyDZg7711ltzyj0V/uZv/oZjx46xcuVKxsfH8fv9tLa2MjIywoMPPojH4+Gyyy7LqRCvuOIKOjo6SiLLTOP48eMMDQ0RCoVYvHgxPp/PGjeMRCLWhNpIJMLp06fTJjkXQ10qDb/fn3bRWjkEg0GCwaClHLJVUuUgX6iRXOieipbPLmdvby+hUIgNGzYAsH79eq655hqefPLJrHmJSN59WnE600WEd955B0hWeCdPnrT2h8Nh7r///ozz8sW5UUpZwfCKMTHpc7Zs2ZL27DZt2mTdL4/HMy0TxerVq7nkkksYHBzkuuuu48orryQcDtPc3GyNBehIs7FYjKamJkKhEHfffTd9fX1WPk6Fodm9e3dWpXbXXXelNUw0e/funXLYFPviQ06GhoYy5vHk4tFHH+W2224DMhUGJMcX7rvvPr7whS9MST4nWmHYGRsbY2xszJIzFovlVYhDQ0MopfB4PBw7dixDwep5T+FwmDNnzgDnGpFNTU1pDcR8Crwc6LKXL1+e9lza2to4efKktThUOBxm79691vd688035w1x7/f7eeuttzh27BgNDQ3Mnz8fEbF66Drqr4jQ2tpqOaYMDQ2xcuXKoq+nLpXG6tWrrQchIjzyyCN85zvfyVjtbc+ePezYsSOjAhMRtm/fblVEAFdddRVbtmypiD19MkVm379hwwbWr1+fUynMNuzjUMUyODgIwI4dOxCRtJ5eMBi0GiH2nqperhOSH+v8+fOt/OzHzZ8/n3A4nNHT1efZ/9djBfPnz8ftdqdVoF6v1/I0mz9/Ps3NzZw8eZL29nZ8Pl9G2JVisCsrp8KYLH0qOBVGPvIpxAMHDtDV1TVtee66666KKA6/38/9999vNXCbmprS3ofx8fG0OgjSe94PPvhg3gbF6tWr+ehHP5pxrj2PbBYBSDZ6iqUulYYdpRS9vb3cdNNNWdOzVdBKqYxW3+7duy3X1XJRiV5PsdhlyyanMy3bS5kPEeG6667LSMum2HMdW26F/uabb6Z9dM7358c//jGQ2WjR4zJ2+QYGBvD7/Wnp+nydB8CnPvUpK805dmYvOxAIWHldd911tLW10d7ezs0332y5cmuZtOLasGED0WiUoaEhK5+Wlpa0Xrpearde0I0GvS6M1+u1zC96TZm5c+dy5swZS7GHw2FWrlyZVmGPjo6WfaEq+3sCZDzTQr+dWqMulcbx3/0sTyxcZP2e+9rr3LJwEcvcHlwKEgKH4zErHeA3PckuW4Sk5m58+J+4bcnSc5k+/E98ZclSIggeFK7UsRMJwf/SKyjgB0uWol56BV7ey+cXL2EkZZ44Fo/z2WDuFlKtkc0kNt288nHvvfdy7733ZnwkuRS7Tnem1SK5rmHNmjUlNY/eddddVl56XA6SrdF85WSrqJyKMBAIZDX3aqZTuTpNyXPnzk1bqztbhQ7n5v44e3Fnzpyxfnd3d1vHHzlyxDJL2xUsZFfsdgVeCbQM9nu/efPmtAZTPuvIVMpxNrhuvvnmDMeg6aDqIQz1qlWrxD4v4PQ93+NHf/Zn1u/uri6OvPMOPR4vTS7FuAivRqNWOsDVDT68LmVV9F0NPrCF9VAuF6PxGCOJBItdbhqUIgG4AJd+gCJg+1/vB3g/keDXsRjtbW0EU2MDH0oNRvmUYu4UXgJJbTGEcRHau7p5+K2D1vXZaW5qomUijEulTlKAx0skGqXR5QIRlAhnSbYQtHGngeSxETmXHkOs+9OsFKHUuzEuAgKdbjdNSln3I4EQsb0+MYTmBQuZ07GItwYHmadceBzX3ZAS871E8t57/C08dzKYdm0LXS7cbg+x1PNp8HoZj0Ys2ZZ/4pMs+n8/y3n/8q0Rrt+dHo+XTrcbv9udvEdKJVcGE0FSzg2iFO/Gotb79Aff/CatX7u9qPcPsM7XcsTffZc9P+mnyaWYp1w0pt6XWDxOo8tFQhKMS/KZNDc18X4oxKvRKD0eLyh4NWXXt5fjlOHjbW3EbD0Jfb/tMgFZryeb3FNBPwd7BTiZM4STyfZp8inGbGmVqvfyXXs2mZ79wf188pa+NEUylfy1kp3MPJXFaeVFESloYfi67Gm0fu12Nn39a9bv3v/0SXbuH8w4Lld6Ngp5ObO53GYc+/GPZeTz1ZYWfm9OM3NcLhpIKiE3uZcvVKmtAYVHKRLDw/R4vVZPyo47EsWrXxy9Lx7HqytBAKVoTu3Wr4re51Xn0gVFozu5pwFFS+roROqkRqVIjzal8NrkERSuU6eInz3LYrebBlTGNerfi/VKYuPjGdfWSLLS9qWuS8XjeJTLki362ms57tzkhJ973iov83oyWex2W9cffu75tDw0c8fPMtd2Dfp4nW4v2/6/jJ5hmSd5TgMKlfqQfdazSz7/RrfCHYnS7E5+rsvc6Z+tvRynDAvDEcTmrqzC4TTZtUzZrieb3FPl5K23sbV9ofX7or2D/J/F5+ZghEUYeeMgN6eO0Q2tX6fMUO2pfRd5vXiAhtQzUwAvJT3UFPDXKatBAoi+vJctizut9ykhcNJmdQA4tnYdqmUuix59pOhrm4zT93yPe+edG/v6+GsH+KNF5zzAPK+9zi0LFlmNpScXdXCmo4Pvf/vb1nmn7/leToV9+p7v8YTt/Ob9r+INvEijx8M9izuJIUT3v0rY5eadpjl8at583o3H2DLdmfDai6aWt8svv1yckKrnRES2bt2alqbTA4FARnoxW29vr/T29lr/b9q0Ke+x0y3PueW7hmzlafnKIctk28DAQEnuebbrsd+PfGgZcpHt/jmfcbb7N1kekz2bQmTJVXa+ZzmVfblkmqrchZDtXcgmayHyf7WlRe6dN1+eWLBIBjuWyIHFnXJwabccXNothzq75NCSpfLrJZ0yuHiJPPfBD8sTCxbJLxd1yC8XdcgTCxfJ1otXyL3z5ltb8Cu3ysif31P0tRXCsd/5jDyxcJG1vbW0Ww4u6bS2t5Z2yxuLz/1+Y3FnUnbbOcd+5zM58x/+7bXyxuJOeTW1vdn1AXl7yVI50tklR5YsTW6dXXKks0uGOrvk7SVLZWjJUnljcWdGvsAeKbA+rsuehp18A+GGmYNUYCC8GCSHHVoPhE/HPm3Haf+erHy7DLXsgFEo2VrHUzJPfeyjaVaH2+77fhmkTGfRo49wzRTMU9nSJE9PqHHdOva+svdcT8PjIxyN4ne7rR601r4xpYglEsQQFvRcjO/jVxR9XdVflahGaWtrq7YIhhRvvvlm2RSG3SmgmMpVKcVdd92VId+aNWuypk9FHju58spVvl2G2cbmzZszYsU50yqNlsFONjm/se6aguVs/drtXHPiOFceP8aVx4/x7Yt7WHHsPW65bCXnvfcu5733Ln2XreSWy1Zy26Uf4cLho6wYfo8lP3+qqDEqTd0qjf7+/rLmb4/imq8yEZGcspRbxtlCpVvKlSzPvo5KvnLt+1wuV5oHkn3fZGuzzAacSjSfYq0UWgY72WSaTg8A4Omnn57W+YVQt0rDHl6jHB95vhfsqquusux7WpY//uM/pqenB6UUPT099Pf3p8lYLmaC6aFWyedtkqs1ONX0YuZI2BfPchIOh9PynKzBM5l8pWidTyWPyRph9n1T6R3WwneSa66TRinF6tWri1ZuO3fuTJv3Y8+3pBQ6+FHNLd9AeKU2+wDltm3bMuTRg3568L2Uck4lHxGx5AsEAhW/T+UYCM92jfmYykD4dMqdyrMqtSzlvI/Od7hYsj2HbHlnS+vv75eenh657rrrpKenR/r7+619lXiHSkW55SwkD7uDRZ53efYMhNcKOmChHamCDVU7BugAgYbyMNV4Y7lC7FcTp0zZZK+WzDrumo5ErcPp1KIzRK2jpwqUCqM0SkAxAQvLSSlnfBtmB+VWdoV+C5LHS84ojOIpZV1Qt2MalcZUwAZDcUx1qQFDbWN6GlPEOfhWayYHg8FgKCempzFNTMvIYDDMJozSMBgMBkPBGKVRIzQ3N6etiQ3JtQJKseiMwWAwlAqjNGqEz3/+88TjcTo6OlBK0dHRQTwe58Ybb6y2aAaDwWBhlEaNMDAwwB133MGCBQtQSrFgwQLuuOMOa83tSuO2hdPu6OjIc2R27GEuDAbDzGHWeE91d3czb948a33ofLhcLhKpBX8qxYEDB3j55Zf5kz/5EystGo1y9913V0yGtrY2zpw5QywWw+Px0NjYSCKR4GRqUanJfPY9nnOvUzQa5eKLL2b//v1ll9tgMFSOqvQ0lFLXKqXeUEq9pZT6Rqnzty8DqX8PDQ2xb98+VqxYkXG8ruw8Hg9KKb785S+XWqRJufDCC3nmmWfS0p555hkuvPDCspfd1NREV1cXwWCQJ598kp6eHiYmJvjhD3+I3+9n6dKlKKU477zzaGxszDi/paWFhQsXErethHjhhRfyF3/xF/T399PS0pIxXmMoHtOLM1SVQuONlGoD3MCvgQ+SXP1zL3BRvnOmGntqKvT19YnP5xNAfD6f9PX1TZp/qbe+vj7p7++X888/X55++mmJRCLy9NNPy/nnn2/F3Cln+a2trfLQQw9llClyLgaQy+WyYgD19PTInXfemZauf+t4Q/breeihh2TZsmUCSFdXl/T19UlLS4t4vV4BxOv1SktLS8ni8VQi9tR0zy8kH6VURprX65X+/n7xeDxZz8mVPplMpfqesj2HSn5LpXqHSkV3d3dZ5SxVvkwh9lQ1lMbHgSdsv+8A7sh3TjmVRi4q9fKuWLHCKjNbBV0Jebq6urKWmYt8Cs5eYee7nmz71q1bV5IPaTKlUWg5+cotVQWQ7/ienh7p6+vLeg/7+/vF7XanHe92u6W/v78omcrxPdWq0nC73UVfUzEsXLiwKDk9Hs+keRd7D7LkU9NK47PA39p+fw64P9851VAaK1asKPvLq3s1hVCuj6cQJZGNXAphsgp7MtatW5e1ha23devWTZpHITJMVXEopdLOL8WHOlk+k5HrGeS7f7nKKMf3VCtKQytXt9stSqkpfXelwPk+Oq0b69aty9kAmIy+vr6SvItMQWmo5PGVQyn1WeBaEfmfqd+fAz4mIn2O474IfDH18zeANxxZXZ6nmBdLJG6+MgolQfaxowTw8hTyWUnStCdAKaahTwDvASdLkJedBcCJEuV1ATDX9vsMcLDEMrQBHyB5b/NxHDhi+30RMKfAMiD38+4GFhVQ3lRoA84v8Fj9rZTje9LPYarfUa53XIAYUMgAmc4jStLhR6XS3qf4+1oshbyPbcASoJGpf5vdwEIKrxcEeMmRdp6ILCzk5Gp4T71L8iI1Xam0NETkAeCBQjJUSu0RkVWlEa84jAxGBiNDbZVvZCgP1fCeCgAXKKXOV0o1AP8N2F4FOQwGg8EwRSre0xCRmFKqD3iCpEngRyLyaqXlMBgMBsPUqcrkPhH5F+BfSphlQWasMmNkSGJkSGJkqH75YGQoORUfCDcYDAZD/WJiTxkMBoOhYIzSMBgMBkPB1GXAQqXUbwI3AEtTSe8C20XkQPWkqi5KqYdE5H9UW45KYvO+Oyoi/6aU2gB8AjgAPCAi0aoKaDDMQOpuTEMp9UfAeuBh4J1UchfJyuNhEfluheT4TZJK61ciMmZLv1ZE/rXMZTtdlBWwBngaQESuL2f5Njk+BhwQkTNKqTnAN4DLgNeAPxOR02Uu/yckGz5NwAjgBx4Ffovku31zOcs3GGYj9ag03gR6nK3IVKvzVRG5oAIy/G/gD0m2aFcCXxGRbal9L4nIZWUu/yWSFfPfcm7m609JKk5EZHc5y7fJ8SrwkZQb9QPAOPAIyUr7IyLyu2Uuf5+IXKKU8pDsbXaKSFwlF27fKyKXlLN8w+QopRaJyPEqlt8uIsFqlT8TqccxjQTQmSV9SWpfJdgIXC4iNwJXA99SSn0lta8UIT4mYxXJ0A53AqdFZBdwVkR2V0phpHCJSEzLJCK3isgzInIXySjGZS8/1VhoIdnbaE2l+ygs1ERJUEq1KqW+q5R6XSl1UikVVEodSKXNq5AMc5VSdyul/iFlprPv+6sKydDm2NqBF5RS85VSbRUo/7tKqQWp/1cppf4D+JVS6m2l1FXlLt9W7oBS6h+VUt1KqaeUUqeVUgGl1KWVkKHc1OOYxq3Az5VSBzkXQ+YDwIeBvpxnlRaXNkmJyGGl1NXAI0qp86iA0hCRBPB9pdTW1N9jVOdZ7ldKfV5E/h7Yq5RaJSJ7lFLLScb8KTd/B7xOcpLoncDWVEVxBUnzZaX4J5KmwatFZBhAKbUYuDm1b10FZPh7knG5fgb8gVLqM8AGEQmTvB+V4ATwtiNtKck4R0L5GxKfFhG9Ps89wH8VkUDqfewn2dgqN38FbAbmAf8O3CYia5VSv5Xa9/EKyFBeCo1sWEsbyR7SFcBnUtsVgLuC5T8NrHSkeYCHgHgV7senSY4hVLrcVuDHJNdH+RVJRfEfwG6S5qlKyNBJ0iwFyQ/1s8BHK3wf3ihmX4lleMXx+07gWaAdeKlCMnwV+FdghS3tUAWfwwHAk/r/ece+wQrJ8LLt/6Fc++p5q7sxjVpAKdUFxCTVqnTs+6SIPFsFsaqGUmouyaiqHuAdETlWZZEqilLqSeDfgAf1tSulOoDfB9aKyG9XQIYDJMf6Era03we+BvhF5Lxyy5Aqswv4PkkrwGaSY0uVMFWilLoFuA74LvCfgfkkHSM+BXxQRD5XARmeI3ndrcD3SI53/nPKPLZFZkDgQqM0DIZpopSaT9Jz7AbOhTk/RjIQ53dF5FQFZPhz4EkR+TdH+rXAD6QCDiKOcq8HvgksE5HFFSz3auB/ActJNmKOAP9MMsZdLM+ppSr/I8CfkxxfvS0ly80kHTU2isi/l1uGcmOkuZxcAAACBUlEQVSUhsFQRmxjPrNOhpQb9odEZH+170O1y68VGUqBURoGQxlRSg2JyAeMDNWVodrl14oMpaAevacMhppCKbUv1y6gw8hQGRmqXX6tyFBujNIwGKZPB3AN4By7UCTdLo0MlZGh2uXXigxlxSgNg2H67CTpofSKc4dSapeRoWIyVLv8WpGhrJgxDYPBYDAUTD2GETEYDAZDlTBKw2AwGAwFY5SGwVAgSql5Sqkvp/7vVEo9Um2ZDIZKY8Y0DIYCUUotA3aKyMVVFsVgqBrGe8pgKJzvAh9SSr1CMqLshSJycSrG041AM3AByZhDDcDngDDwX0TkpFLqQ8BfAgtJrj2yUURer/xlGAzFY8xTBkPhfAP4tYisJBkI0M7FwO8Cq4E/BcZF5FLgOUAvw/sAcIuIXA7cTjJUtsFQV5iehsFQGgZEZBQYVUqdBnak0geBS5RSfpLrl29NLiwIJBeLMhjqCqM0DIbSELb9n7D9TpD8zlzASKqXYjDULcY8ZTAUzijJpWWnjIicAQ4ppW4CUEk+UkrhDIZKYJSGwVAgIhIEnlVK7Se5nOhU+T3gC0qpvcCrJNffMBjqCuNyazAYDIaCMT0Ng8FgMBSMURoGg8FgKBijNAwGg8FQMEZpGAwGg6FgjNIwGAwGQ8EYpWEwGAyGgjFKw2AwGAwFY5SGwWAwGArm/wOt23bfESeEbgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -864,7 +897,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -873,11 +906,25 @@ "data": { "text/html": [ "
\n", + "\n", "\n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -888,47 +935,52 @@ " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -936,15 +988,15 @@ "" ], "text/plain": [ - " timepoint_id beta coef end_time exp(beta) model_cohort\n", - "0 1 0.281855 sex[T.male] 0.118611 1.325587 test model\n", - "1 1 1.263018 sex[T.male] 0.118611 3.536076 test model\n", - "2 1 0.875265 sex[T.male] 0.118611 2.399512 test model\n", - "3 1 0.128097 sex[T.male] 0.118611 1.136664 test model\n", - "4 1 0.185878 sex[T.male] 0.118611 1.204276 test model" + " iter _timepoint_id beta coef end_time exp(beta) model_cohort\n", + "0 0 1 1.303891 sex 0.009787 3.683601 test model\n", + "1 1 1 0.349997 sex 0.009787 1.419063 test model\n", + "2 2 1 0.348042 sex 0.009787 1.416292 test model\n", + "3 3 1 0.200147 sex 0.009787 1.221583 test model\n", + "4 4 1 0.189725 sex 0.009787 1.208917 test model" ] }, - "execution_count": 27, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -963,89 +1015,26 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "
timepoint_iditer_timepoint_idbetacoefend_time
0010.281855sex[T.male]0.1186111.3255871.303891sex0.0097873.683601test model
111.263018sex[T.male]0.1186113.53607610.349997sex0.0097871.419063test model
2210.875265sex[T.male]0.1186112.3995120.348042sex0.0097871.416292test model
3310.128097sex[T.male]0.1186111.1366640.200147sex0.0097871.221583test model
4410.185878sex[T.male]0.1186111.2042760.189725sex0.0097871.208917test model
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timepoint_idbetacoefend_timeexp(beta)model_cohort
010.281855sex[T.male]0.1186111.325587test model
111.263018sex[T.male]0.1186113.536076test model
210.875265sex[T.male]0.1186112.399512test model
310.128097sex[T.male]0.1186111.136664test model
410.185878sex[T.male]0.1186111.204276test model
\n", - "
" - ], - "text/plain": [ - " timepoint_id beta coef end_time exp(beta) model_cohort\n", - "0 1 0.281855 sex[T.male] 0.118611 1.325587 test model\n", - "1 1 1.263018 sex[T.male] 0.118611 3.536076 test model\n", - "2 1 0.875265 sex[T.male] 0.118611 2.399512 test model\n", - "3 1 0.128097 sex[T.male] 0.118611 1.136664 test model\n", - "4 1 0.185878 sex[T.male] 0.118611 1.204276 test model" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" + "ename": "ValueError", + "evalue": "No objects to concatenate", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfirst_beta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msurvivalstan\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextract_time_betas\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtestfit\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoefs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'sex[T.male]'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mfirst_beta\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/projects/survivalstan/survivalstan/utils.py\u001b[0m in \u001b[0;36mextract_time_betas\u001b[0;34m(models, element, value_name, **kwargs)\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[0melement\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0melement\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 91\u001b[0m value_name=value_name, **kwargs)\n\u001b[0;32m---> 92\u001b[0;31m for model in models]\n\u001b[0m\u001b[1;32m 93\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/projects/survivalstan/survivalstan/utils.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[0melement\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0melement\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 91\u001b[0m value_name=value_name, **kwargs)\n\u001b[0;32m---> 92\u001b[0;31m for model in models]\n\u001b[0m\u001b[1;32m 93\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/projects/survivalstan/survivalstan/utils.py\u001b[0m in \u001b[0;36m_extract_time_betas_single_model\u001b[0;34m(stanmodel, element, coefs, value_name, timepoint_id_col, timepoint_end_col)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0mtb_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'coef'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcoef_names\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0mtime_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtb_df\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0mtime_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtime_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m timepoint_data = (stanmodel['df']\n\u001b[1;32m 143\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mtimepoint_id_col\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimepoint_end_col\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/srv/conda/lib/python3.6/site-packages/pandas/core/reshape/concat.py\u001b[0m in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnames\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0mverify_integrity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverify_integrity\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 225\u001b[0;31m copy=copy, sort=sort)\n\u001b[0m\u001b[1;32m 226\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 227\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/srv/conda/lib/python3.6/site-packages/pandas/core/reshape/concat.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, objs, axis, join, join_axes, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 257\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobjs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 259\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'No objects to concatenate'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 260\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 261\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkeys\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: No objects to concatenate" + ] } ], "source": [ @@ -1166,9 +1155,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.7" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 2 } diff --git a/survivalstan/formulas.py b/survivalstan/formulas.py new file mode 100644 index 0000000..c015f67 --- /dev/null +++ b/survivalstan/formulas.py @@ -0,0 +1,458 @@ +import warnings +import pandas as pd +import patsy +import numpy as np +import re +import logging + +warnings.simplefilter(action='ignore', category=UserWarning) +logger = logging.getLogger(__name__) + + +def _prep_timepoint_dataframe(df, + timepoint_end_col, + timepoint_id_col=None + ): + """ Helper function to take a set of timepoints + in observation-level dataframe & return + formatted timepoint_id, end_time, duration + + Returns + --------- + pandas dataframe with one record per timepoint_id + where timepoint_id is the index + sorted on the index, increasing + + """ + time_df = df.copy() + time_df.sort_values(timepoint_end_col, inplace=True) + if not(timepoint_id_col): + timepoint_id_col = 'timepoint_id' + time_df[timepoint_id_col] = ((time_df[timepoint_end_col] + .astype('category') + .cat + .codes) + + 1) + time_df.dropna(how='any', subset=[timepoint_id_col, timepoint_end_col], + inplace=True) + time_df = (time_df.loc[:, [timepoint_id_col, timepoint_end_col]] + .drop_duplicates()) + time_df[timepoint_end_col] = time_df[timepoint_end_col].astype(np.float32) + time_df.set_index(timepoint_id_col, inplace=True, drop=True) + time_df.sort_index(inplace=True) + t_durs = time_df.diff(periods=1) + t_durs.rename(columns={timepoint_end_col: 't_dur'}, inplace=True) + time_df = time_df.join(t_durs) + if len(time_df.index) > 1: + time_df.fillna(inplace=True, value=time_df.loc[1, timepoint_end_col]) + return(time_df) + + +class Id(object): + def __init__(self, desc='id'): + self.values = [] + self.desc = desc + + def memorize_chunk(self, x): + self.values.extend(np.unique(x)) + + def memorize_finish(self): + self.ids = np.arange(len(self.values))+1 + self.lookup = dict(zip(self.values, self.ids)) + + def transform(self, x): + if patsy.util.have_pandas and isinstance(x, pd.Series): + d = pd.Series([self.lookup[val] for val in x]).astype(int) + d.index = x.index + return(d) + else: + return np.array([self.lookup[val] for val in x]) + + def len(self): + return len(self.ids) + + def decode_df(self): + df = pd.DataFrame({'id': self.ids, 'value': self.values}) + df.dropna(inplace=True) + return df + + +as_id = patsy.stateful_transform(Id) + + +class SurvData(pd.DataFrame): + ''' patsy.DesignMatrix representing survival data output ''' + survival_type = 'UNK' + + def __init__(self, *args, **kwargs): + if 'stan_data' in kwargs.keys(): + stan_data = kwargs['stan_data'] + del kwargs['stan_data'] + else: + stan_data = dict() + if 'meta_data' in kwargs.keys(): + meta_data = kwargs['meta_data'] + del kwargs['meta_data'] + else: + meta_data = dict() + super(SurvData, self).__init__(*args, **kwargs) + self.stan_data = stan_data + self.meta_data = meta_data + + +class WideSurvData(SurvData): + ''' pd.DataFrame representing survival data with one record per subject ''' + survival_type = 'wide' + + def __init__(self, *args, **kwargs): + super(WideSurvData, self).__init__(*args, **kwargs) + self._validate_wide_data() + + def _validate_wide_data(self): + # TODO confirm wide format + # validate contents of stan_data + return True + + +class LongSurvData(SurvData): + ''' pd.DataFrame representing survival data + with endpoint_time_id, event_status & subject_id ''' + survival_type = 'long' + + +class NotValidId(ValueError): + ''' Class of errors pertaining to invalid Id variables ''' + + +class Surv(object): + ''' Class representing stateful Survival-type data + ''' + def __init__(self): + self.subject_id = Id('subject') + self.timepoint_id = Id('timepoint') + self.group_id = Id('group') + self._type = None + self._grouped = None + pass + + def _check_kwargs(self, **kwargs): + kwargs = dict(**kwargs) + allowed_kwargs = ['subject', 'group'] + bad_keys = [key not in allowed_kwargs for key in kwargs.keys()] + if any(bad_keys): + raise ValueError('Invalid parameter: {}' + .format(','.join(bad_keys))) + return kwargs + + def memorize_chunk(self, time, event_status, **kwargs): + kwargs = self._check_kwargs(**kwargs) + if 'subject' in kwargs.keys(): + self._type = 'long' + self.subject_id.memorize_chunk(kwargs['subject']) + self.timepoint_id.memorize_chunk(time) + else: + self._type = 'wide' + if 'group' in kwargs.keys(): + self._grouped = True + self.group_id.memorize_chunk(kwargs['group']) + else: + self._grouped = False + + def memorize_finish(self): + self.subject_id.memorize_finish() + self.group_id.memorize_finish() + self.timepoint_id.memorize_finish() + + def _prep_timepoint_standata(self, timepoint_df): + unique_timepoints = _prep_timepoint_dataframe( + timepoint_df, + timepoint_id_col='id', + timepoint_end_col='value') + timepoint_input_data = { + 't_dur': unique_timepoints['t_dur'], + 't_obs': unique_timepoints['value'], + 'T': len(unique_timepoints.index) + } + return timepoint_input_data + + def _prep_long(self, timepoint_id, event_status, subject_id, group_id=None, + stan_data=dict(), meta_data=dict(), **kwargs): + if not patsy.util.have_pandas: + raise ValueError('non-pandas use case not supported yet. Please ', + 'import pandas to use `surv`') + dm = {'timepoint_id': timepoint_id, + 'event_status': event_status.astype(int), + 'subject_id': subject_id + } + if group_id is not None: + dm.update({'group_id': group_id}) + dm = pd.DataFrame(dm) + # make sure data.frame columns always ordered alphabetically + # so: + # 0. event_status + # 1. subject_id + # 2. timepoint_id + dm.sort_index(axis=1, inplace=True) + # prep stan_data inputs + stan_data.update({ + 'event': dm['event_status'].values.astype(int), + 't': dm['timepoint_id'].values.astype(int), + 's': dm['subject_id'].values.astype(int), + 'N': len(dm.index), + }) + if group_id is not None: + stan_data.update({'g': dm['group_id'].values.astype(int)}) + meta_data.update({'df': dm}) + return LongSurvData(dm, + stan_data=stan_data, + meta_data=meta_data, **kwargs) + + def _prep_wide(self, time, event_status, group_id=None, + stan_data=dict(), meta_data=dict(), **kwargs): + if not patsy.util.have_pandas: + raise ValueError('non-pandas usage not yet supported. Please', + ' import pandas library to use `surv` syntax') + + # prep pandas dataframe + dm = {'event_status': event_status.astype(int), + 'time': time, + } + if group_id is not None: + dm.update({'group_id': group_id}) + dm = pd.DataFrame(dm) + # prep stan_data object + stan_data.update({'y': dm['time'].values.astype(float), + 'event': dm['event_status'].values.astype(int), + 'N': len(dm.index)}) + if group_id is not None: + stan_data.update({'g': dm['group_id'].values.astype(int)}) + meta_data.update({'df': dm}) + return WideSurvData(dm, + stan_data=stan_data, + meta_data=meta_data, + **kwargs) + + def transform(self, time, event_status, **kwargs): + kwargs = self._check_kwargs(**kwargs) + meta_data = dict() + stan_data = dict() + if 'subject' in kwargs.keys(): + subject_id = self.subject_id.transform(kwargs['subject']) + timepoint_id = self.timepoint_id.transform(time) + meta_data.update({'timepoint_id': self.timepoint_id.decode_df(), + 'subject_id': self.subject_id.decode_df()}) + stan_data.update(self._prep_timepoint_standata(self + .timepoint_id + .decode_df())) + stan_data.update({'S': self.subject_id.len()}) + if 'group' in kwargs.keys(): + group_id = self.group_id.transform(kwargs['group']) + stan_data.update({'G': self.group_id.len()}) + meta_data.update({'group_id': self.group_id.decode_df()}) + else: + group_id = None + + if self._type == 'long': + return(self._prep_long(timepoint_id=timepoint_id, + event_status=event_status, + subject_id=subject_id, + group_id=group_id, + meta_data=meta_data, + stan_data=stan_data) + ) + elif self._type == 'wide': + return(self._prep_wide(time=time, + event_status=event_status, + group_id=group_id, + meta_data=meta_data, + stan_data=stan_data)) + + +surv = patsy.stateful_transform(Surv) + + +def _get_args(s): + ''' Given a string of named code, return dict of named arguments + + Parameters: + s (string): string in format of: + function_name(arg1=val1, arg2=val2, ...) + + Returns: + if string in format above + dict containing named parameter values: + {'arg1': 'val1', 'arg2': 'val2'} + note: function_name & unnamed args are ignored + ''' + pattern = r'(\w[\w\d_]*)\((.*)\)$' + match = re.match(pattern, s) + if match and len(match.groups()) == 2: + d = dict(re.findall(r'(\S+)\s*=\s*(".*?"|[^ ,]+)', match.groups()[1])) + for name, value in d.items(): + try: + d[name] = int(value) + except: + d[name] = value.strip('\"').strip('\'') + return(d) + else: + raise ValueError('function string {} could not be parsed'.format(s)) + + +class SurvivalFactor(patsy.EvalFactor): + ''' A factor object to encode LHS variables + for Survival Models, including model type + ''' + def __init__(self, *args, **kwargs): + super(SurvivalFactor, self).__init__(*args, **kwargs) + self._is_survival = False + self._class = None + + def eval(self, *args, **kwargs): + result = super(SurvivalFactor, self).eval(*args, **kwargs) + try: + self._class = result.__class__ + except: + logger.warning('Outcome class could not be determined') + if isinstance(result, SurvData): + self.code_args = _get_args(self.code) + self._is_survival = True + self._type = result.survival_type + self._meta_data = result.meta_data + self._stan_data = result.stan_data + + return result + + +class SurvivalModelDesc(object): + ''' A ModelDesc class to force use of SurvivalFactor when encoding LHS + variables for a SurvivalModel + + Example: + + # simple survival model + my_formula = SurvivalModelDesc('surv(time=time, + event_status=event_value) ~ X1') + y, X = patsy.dmatrices(my_formula, data=df) + + # with a subject id + my_formula2 = SurvivalModelDesc('surv(time=time, + event_status=event_value, subject=subject_id) ~ X1') + y2, X2 = patsy.dmatrices(my_formula2, data=df) + + # saves information about class & type of survival model + y2.design_info.terms[0].factors[0]._class + y2.design_info.terms[0].factors[0]._type + ''' + def __init__(self, formula): + self.formula = formula + try: + self.lhs, self.rhs = re.split(string=formula, + pattern='~', + maxsplit=1) + except ValueError: + self.rhs = formula + self.lhs = '' + self.lhs_termlist = [patsy.Term([SurvivalFactor(self.lhs)])] + self.rhs_termlist = patsy.ModelDesc.from_formula(self.rhs).rhs_termlist + + def __patsy_get_model_desc__(self, eval_env): + return patsy.ModelDesc(self.lhs_termlist, self.rhs_termlist) + + +def formula_has_lhs(formula): + '''return True if formula has LHS. False otherwise + ''' + surv_model = SurvivalModelDesc(formula) + return surv_model.lhs.strip() != '' + + +def formula_uses_surv(formula, df): + ''' return True if formula uses `surv` syntax & can be successfully parsed + ''' + if formula_has_lhs(formula): + surv_model = SurvivalModelDesc(formula) + (y, X) = patsy.dmatrices(surv_model, df) + return surv_model.lhs_termlist[0].factors[0]._is_survival + else: + return False + + +def gen_lhs_formula(event_col, time_col=None, group_col=None, + sample_col=None, timepoint_end_col=None): + ''' Construct LHS of formula_like str using `surv` syntax + + Parameters: + event_col (str): + name of column containing event status + (0:censor/1:observed) or (F/T) + time_col (str): + name of column containing time to event + group_col (str): + (optional) name of column containing group identifiers, + if applicable + sample_col (str): + (optional) name of column containing sample or subject + identifiers, if applicable + timepoint_end_col (str): + (optional) name of column containing timepoint end value, + if applicable + + Returns: + lhs_formula_like (str) + in surv(param=value, param2=value2, ...) syntax + + Comments: + Is used by SurvivalStanData class to provide backwards + compatibility with surv syntax + ''' + pars = {'event_status': event_col} + if time_col: + pars.update({'time': time_col}) + # group column + if group_col: + pars.update({'group': group_col}) + # subject column + if sample_col: + pars.update({'subject': sample_col}) + # timepoint end col + if timepoint_end_col: + pars.update({'time': timepoint_end_col}) + lhs_formula = 'surv({})'.format(','.join(['{}={}'.format(name, value) + for name, value in pars.items()])) + return(lhs_formula) + + +def gen_surv_formula(rhs_formula, event_col, time_col=None, + group_col=None, sample_col=None, timepoint_end_col=None): + ''' Construct formula_like str using `surv` syntax + + Parameters: + rhs_formula (str): + formula_like (str) for RHS of model spec + event_col (str): + name of column containing + event status (0:censor/1:observed) or (F/T) + time_col (str): + name of column containing time to event + group_col (str): + (optional) name of column containing group identifiers, + if applicable + sample_col (str): + (optional) name of column containing sample or subject + identifiers, if applicable + timepoint_end_col (str): + (optional) name of column containing timepoint end value, + if applicable + + Returns: + formula_like (str) in + `surv(param=value, param2=value2, ...) ~ .` syntax + + Comments: + Is used by SurvivalStanData class + to provide backwards compatibility with surv syntax + ''' + lhs_formula = gen_lhs_formula(event_col=event_col, time_col=time_col, + group_col=group_col, sample_col=sample_col, + timepoint_end_col=timepoint_end_col) + return('~'.join([lhs_formula.strip(), rhs_formula.strip()])) diff --git a/survivalstan/models.py b/survivalstan/models.py index 6403dac..557744c 100644 --- a/survivalstan/models.py +++ b/survivalstan/models.py @@ -1,32 +1,40 @@ -import pkg_resources, os +from os.path import join as joinpth +import pkg_resources -resource_package = __name__ ## Could be any module/package name. +resource_package = __name__ # Could be any module/package name. -_pem_survival_unstructured_path = os.path.join('stan', 'pem_survival_model_unstructured.stan') -_pem_survival_randomwalk_path = os.path.join('stan', 'pem_survival_model_randomwalk.stan') -_pem_survival_gamma_path = os.path.join('stan', 'pem_survival_model_gamma.stan') -_pem_survival_timevarying_path = os.path.join('stan', 'pem_survival_model_tvc.stan') -_weibull_survival_path = os.path.join('stan', 'weibull_survival_model.stan') -_exp_survival_path = os.path.join('stan', 'exp_survival_model.stan') +_pem_survival_unstructured_path = joinpth( + 'stan', 'pem_survival_model_unstructured.stan') +_pem_survival_randomwalk_path = joinpth( + 'stan', 'pem_survival_model_randomwalk.stan') +_pem_survival_gamma_path = joinpth('stan', + 'pem_survival_model_gamma.stan') +_pem_survival_timevarying_path = joinpth('stan', + 'pem_survival_model_tvc.stan') +_weibull_survival_path = joinpth('stan', 'weibull_survival_model.stan') +_exp_survival_path = joinpth('stan', 'exp_survival_model.stan') # varying-coefs models -_weibull_survival_varcoef_path = os.path.join('stan', 'weibull_survival_model_varying_coefs.stan') -_pem_survival_varcoef_path = os.path.join('stan', 'pem_survival_model_unstructured_varcoef.stan') +_weibull_survival_varcoef_path = joinpth( + 'stan', 'weibull_survival_model_varying_coefs.stan') +_pem_survival_varcoef_path = joinpth( + 'stan', 'pem_survival_model_unstructured_varcoef.stan') pem_survival_model = pkg_resources.resource_string( - resource_package, _pem_survival_unstructured_path).decode("utf-8") + resource_package, _pem_survival_unstructured_path + ).decode("utf-8") pem_survival_model_unstructured = pkg_resources.resource_string( - resource_package, _pem_survival_unstructured_path).decode("utf-8") + resource_package, _pem_survival_unstructured_path).decode("utf-8") pem_survival_model_randomwalk = pkg_resources.resource_string( - resource_package, _pem_survival_randomwalk_path).decode("utf-8") + resource_package, _pem_survival_randomwalk_path).decode("utf-8") pem_survival_model_gamma = pkg_resources.resource_string( - resource_package, _pem_survival_gamma_path).decode("utf-8") + resource_package, _pem_survival_gamma_path).decode("utf-8") pem_survival_model_timevarying = pkg_resources.resource_string( - resource_package, _pem_survival_timevarying_path).decode("utf-8") + resource_package, _pem_survival_timevarying_path).decode("utf-8") weibull_survival_model = pkg_resources.resource_string( - resource_package, _weibull_survival_path).decode("utf-8") + resource_package, _weibull_survival_path).decode("utf-8") exp_survival_model = pkg_resources.resource_string( - resource_package, _exp_survival_path).decode("utf-8") + resource_package, _exp_survival_path).decode("utf-8") # varying-coefs models pem_survival_model_varying_coefs = pkg_resources.resource_string( diff --git a/survivalstan/sim.py b/survivalstan/sim.py index bae3e08..d407631 100644 --- a/survivalstan/sim.py +++ b/survivalstan/sim.py @@ -1,7 +1,7 @@ """ - Functions to simulate failure-time data + Functions to simulate failure-time data for testing & model checking purposes """ @@ -10,7 +10,8 @@ import pandas as pd import patsy -## -- generic/simple simulate data functions +# -- generic/simple simulate data functions + def sim_data_exp(N, censor_time, rate): """ @@ -19,7 +20,7 @@ def sim_data_exp(N, censor_time, rate): Parameters ----------- - N: (int) number of observations + N: (int) number of observations censor_time: (float) uniform censor time for each observation rate: (float, positive) hazard rate used to parameterize failure times @@ -33,12 +34,13 @@ def sim_data_exp(N, censor_time, rate): or censored (FALSE) """ sample_data = pd.DataFrame({ - 'true_t': np.random.exponential((1/rate), size=N) + 'true_t': np.random.exponential((1/rate), size=N) }) - ## censor observations at censor_time + # censor observations at censor_time sample_data['t'] = np.minimum(sample_data['true_t'], censor_time) sample_data['event'] = sample_data['t'] >= sample_data['true_t'] - sample_data['sex'] = ['female' if np.random.uniform()>0.5 else 'male' for i in np.arange(N)] + sample_data['sex'] = ['female' if np.random.uniform() > 0.5 else 'male' + for i in np.arange(N)] sample_data['age'] = np.random.poisson(55, N) sample_data['index'] = np.arange(N) return(sample_data) @@ -49,17 +51,21 @@ def _make_sim_rate(df, form, coefs): return np.exp(np.dot(rate_df, coefs)) -def sim_data_exp_correlated(N, censor_time, rate_form = '1 + age + sex', rate_coefs = [-3, 0.3, 0]): +def sim_data_exp_correlated(N, censor_time, + rate_form='1 + age + sex', + rate_coefs=[-3, 0.3, 0]): """ simulate true lifetimes (t) according to exponential model Parameters ----------- - N: (int) number of observations + N: (int) number of observations censor_time: (float) uniform censor time for each observation - rate_form: names of variables to use when estimating rate. defaults to `'1 + age + sex'` - rate_coefs: inputs to rate-calc (coefs used to estimate log-rate). defaults to `[-3, 0.3, 0]` + rate_form: names of variables to use when estimating rate. + defaults to `'1 + age + sex'` + rate_coefs: inputs to rate-calc (coefs used to estimate log-rate). + defaults to `[-3, 0.3, 0]` Returns @@ -75,59 +81,65 @@ def sim_data_exp_correlated(N, censor_time, rate_form = '1 + age + sex', rate_co - rate: simulated rate value for each obs """ sample_data = pd.DataFrame({ - 'sex': ['female' if np.random.uniform()>0.5 else 'male' for i in np.arange(N)], + 'sex': ['female' if np.random.uniform() > 0.5 else 'male' + for i in np.arange(N)], 'age': np.random.poisson(55, N), }) - sample_data['rate'] = _make_sim_rate(df=sample_data, form=rate_form, coefs=rate_coefs) - ## censor observations at censor_time - sample_data['true_t'] = sample_data['rate'].apply(lambda rate: np.random.exponential(1/rate)) + sample_data['rate'] = _make_sim_rate(df=sample_data, + form=rate_form, + coefs=rate_coefs) + # censor observations at censor_time + sample_data['true_t'] = (sample_data['rate'] + .apply(lambda rate: + np.random.exponential(1/rate))) sample_data['t'] = np.minimum(sample_data['true_t'], censor_time) sample_data['event'] = sample_data['t'] >= sample_data['true_t'] sample_data['index'] = np.arange(N) return(sample_data) -## -- simulate data for joint models +# -- simulate data for joint models + def _sim_jointmodel_inputs(N, - B_matrix=None, - p=0.5, - sigma_00=1.5, - sigma_01=-0.5, - sigma_10=-0.5, - sigma_11=0.8, - sigma_v=0.8, - meas_error_scale=1.25, - **kwargs): + B_matrix=None, + p=0.5, + sigma_00=1.5, + sigma_01=-0.5, + sigma_10=-0.5, + sigma_11=0.8, + sigma_v=0.8, + meas_error_scale=1.25, + **kwargs): ''' Simulate parameter & covariate values for data-generating process, some of which are hard-coded. Hard-coded values can be overwritted by passing named kwargs to this function. - Returns a dict of inputs for other sim-data functions in this module. ''' - ## construct B_matrix if not provided + # construct B_matrix if not provided if not B_matrix: B1_matrix = np.matrix([[np.power(sigma_00, 2), sigma_01], [sigma_10, np.power(sigma_11, 2)]]) - B_matrix = np.zeros(shape=(3,3)) + B_matrix = np.zeros(shape=(3, 3)) B_matrix[0:2, 0:2] = B1_matrix B_matrix[2, 2] = np.power(sigma_v, 2) - ## simulate subject-level parameters for random effects - raneff = np.matrix(np.random.multivariate_normal(mean=(0,0,0), cov=B_matrix, size=N)) - b = raneff[:,0:2] - vi = raneff[:,2] - - ## measurement error for longitudinal data simulation + # simulate subject-level parameters for random effects + raneff = np.matrix(np.random.multivariate_normal(mean=(0, 0, 0), + cov=B_matrix, + size=N)) + b = raneff[:, 0:2] + vi = raneff[:, 2] + # measurement error for longitudinal data simulation + def meas_error(n=1): return(np.random.normal(loc=0, scale=meas_error_scale, size=n)) - ## simulate covariate values + # simulate covariate values X = np.matrix(np.random.binomial(size=(N, 2), p=p, n=1)) - X_l = X[:,0:1] # covariate X for longitudinal submodel - X_r = X[:,0:1] # covariate X for recurrent events submodel - X_t = X[:,1:2] # covariate X for terminal event submodel - + X_l = X[:, 0:1] # covariate X for longitudinal submodel + X_r = X[:, 0:1] # covariate X for recurrent events submodel + X_t = X[:, 1:2] # covariate X for terminal event submodel params = { 'X': X, 'X_l': X_l, @@ -148,54 +160,70 @@ def meas_error(n=1): 'censor': 5.5, 'meas_gap': 0.2, } - if dict(**kwargs): params.update(dict(**kwargs)) return(params) - -def _sim_jointmodel_terminal_events(lambda_t_0, alpha, vi, X_t, B_t, b, eta_t, censor, **kwargs): +def _sim_jointmodel_terminal_events(lambda_t_0, + alpha, + vi, + X_t, + B_t, + b, + eta_t, + censor, + **kwargs): ''' Simulate data for terminating events - Returns a dataframe containing: - event_status (1:observed, 0:censor) - event_time (time to event) - index (subject_id) ''' - t_df = pd.DataFrame(data=np.random.exponential(lambda_t_0*np.exp(alpha*vi + X_t*B_t + b*eta_t)), + t_df = pd.DataFrame(data=np.random.exponential(lambda_t_0 + * np.exp(alpha*vi + + X_t*B_t + + b*eta_t)), columns=['death']) - t_df['event_status'] = t_df['death'].apply(lambda x: 1 if x <= censor else 0) - t_df['event_time'] = t_df['death'].apply(lambda x: x if x <= censor else censor) + t_df['event_status'] = (t_df['death'] + .apply(lambda x: 1 if x <= censor else 0)) + t_df['event_time'] = (t_df['death'] + .apply(lambda x: x if x <= censor else censor)) t_df.reset_index(inplace=True) - return(t_df.loc[:,['index', 'event_time', 'event_status']]) + return(t_df.loc[:, ['index', 'event_time', 'event_status']]) -def _sim_jointmodel_recurrent_events(lambda_r_0, vi, X_r, B_r, b, eta_r, N, t_df, max_events=6, **kwargs): +def _sim_jointmodel_recurrent_events(lambda_r_0, vi, X_r, B_r, b, eta_r, + N, t_df, max_events=6, **kwargs): ''' Simulate data for recurrent events. - - Returns a data frame containing one obs for each recurrent event observed. - + Returns a data frame containing one obs for + each recurrent event observed. Columns include: - index (subject_id) - recurrence_time (calendar time of recurrent event) ''' - r_df = pd.DataFrame(data=np.random.exponential(lambda_r_0*np.exp(vi + X_r*B_r + b*eta_r), size=(N, max_events))) + r_df = pd.DataFrame(data=np.random.exponential(lambda_r_0 + * np.exp(vi + + X_r*B_r + + b*eta_r), + size=(N, max_events))) r_df = r_df.cumsum(axis=1) r_df.reset_index(inplace=True) r_df2 = pd.melt(r_df, id_vars='index', value_name='recurrence_time') del r_df2['variable'] r_df2 = pd.merge(r_df2, t_df, on='index', how='outer') r_df3 = r_df2.query('recurrence_time <= event_time').copy() - return(r_df3.loc[:,['index', 'recurrence_time']]) + return(r_df3.loc[:, ['index', 'recurrence_time']]) -def _sim_jointmodel_longitudinal_biomarker(N, meas_gap, t_df, X_l, b, meas_error, B_l, - left_censor_at=-0.4, max_visits=20, **kwargs): +def _sim_jointmodel_longitudinal_biomarker(N, meas_gap, t_df, X_l, b, + meas_error, B_l, + left_censor_at=-0.4, + max_visits=20, + **kwargs): ''' Simulate data for longitudinal biomarker correlated with events - - Returns a data frame containing one obs for each longitudinal biomarker measure observed. - + Returns a data frame containing one obs + for each longitudinal biomarker measure observed. Columns: - index (subject_id) - biomarker_time (time of biomarker measurement) @@ -206,72 +234,68 @@ def _sim_jointmodel_longitudinal_biomarker(N, meas_gap, t_df, X_l, b, meas_error l_df.reset_index(inplace=True) l_df = pd.melt(l_df, id_vars=['index'], value_name='biomarker_time') del l_df['variable'] - l_df = pd.merge(l_df, t_df, on='index', how='outer') l_df = l_df.query('biomarker_time <= event_time').copy() - + def _sim_biomarker_values(row): index = int(row['index']) time = row['biomarker_time'] X_x = np.matrix([1, time, X_l[index, 0]]) b_x = b[index, :] - x_x = np.matrix([1, time]).transpose() + x_x = np.matrix([1, time]).transpose() # pylint: disable=E1111 epsilon = meas_error() value = X_x*B_l + b_x*x_x + epsilon if len(value) != 1: print('Warning') else: return(float(value)) - l_df['biomarker_value'] = l_df.apply(_sim_biomarker_values, axis=1) if left_censor_at: - l_df['biomarker_value'] = l_df['biomarker_value'].apply(lambda x: x if x >= left_censor_at else left_censor_at) + l_df['biomarker_value'] = (l_df['biomarker_value'] + .apply(lambda x: x if x >= left_censor_at + else left_censor_at)) return(l_df.loc[:, ['index', 'biomarker_time', 'biomarker_value']]) def _prep_jointmodel_covariate_data(X, **kwargs): - ''' Helper function to prepare subject-level covariate values (X) as a dataframe. - + ''' Helper function to prepare subject-level covariate values (X) + as a dataframe. Returns a dataframe containing one record per subject. - Columns: - index (subject_id) - X1 (first simulated covariate) - X2 (second simulated covariate) ''' - X_df = pd.DataFrame(X, columns=['X1','X2']) + X_df = pd.DataFrame(X, columns=['X1', 'X2']) X_df.reset_index(inplace=True) return(X_df) + def sim_data_jointmodel(N, p=0.5, **kwargs): - ''' Simulate data for joint model - + ''' Simulate data for joint model Returns --------- Dictionary of 4 ojects: - - params: parameter values used to simulate data - covars: dataframe of covariates per subject_id - events: dataframe of multiple-event data, per subject_id - biomarker: dataframe of longitudinal biomarker values simulated - ''' params = _sim_jointmodel_inputs(N=N, p=p, **kwargs) x_df = _prep_jointmodel_covariate_data(**params) t_df = _sim_jointmodel_terminal_events(**params) r_df = _sim_jointmodel_recurrent_events(t_df=t_df, **params) l_df = _sim_jointmodel_longitudinal_biomarker(t_df=t_df, **params) - - ## prepare data in survivalstan format + # prepare data in survivalstan format t_df.rename(columns={'event_status': 'event_value', - 'event_time': 'time', - 'index': 'subject_id'}, - inplace=True) + 'event_time': 'time', + 'index': 'subject_id'}, + inplace=True) t_df['event_name'] = 'death' r_df.rename(columns={'recurrence_time': 'time', - 'index': 'subject_id'}, - inplace=True) + 'index': 'subject_id'}, + inplace=True) r_df['event_value'] = 1 r_df['event_name'] = 'new_lesion' @@ -279,7 +303,3 @@ def sim_data_jointmodel(N, p=0.5, **kwargs): l_df.rename(columns={'index': 'subject_id'}, inplace=True) events = pd.concat([t_df, r_df]) return dict(params=params, covars=x_df, events=events, biomarker=l_df) - - - - diff --git a/survivalstan/stan/exp_survival_model.stan b/survivalstan/stan/exp_survival_model.stan index 72b6670..1a1efad 100644 --- a/survivalstan/stan/exp_survival_model.stan +++ b/survivalstan/stan/exp_survival_model.stan @@ -30,7 +30,7 @@ parameters { real tau_s_raw; vector[M] tau_raw; vector[M] beta_raw; - real alpha; + real alpha; } transformed parameters { vector[M] beta; @@ -66,4 +66,4 @@ generated quantities { log_lik[n] = exponential_ccdf_log(y[n], (lp[n] * alpha)); } } -} \ No newline at end of file +} diff --git a/survivalstan/stan/pem_survival_model_tvc.stan b/survivalstan/stan/pem_survival_model_tvc.stan index eebdaaa..b43ab37 100644 --- a/survivalstan/stan/pem_survival_model_tvc.stan +++ b/survivalstan/stan/pem_survival_model_tvc.stan @@ -49,7 +49,7 @@ transformed data { vector[T] log_t_dur; int n_trans[S, T]; - log_t_dur = log(t_obs); + log_t_dur = log(t_dur); // n_trans used to map each sample*timepoint to n (used in gen quantities) // map each patient/timepoint combination to n values diff --git a/survivalstan/stan/pem_survival_model_unstructured.stan b/survivalstan/stan/pem_survival_model_unstructured.stan index f9dda0f..c7890c7 100644 --- a/survivalstan/stan/pem_survival_model_unstructured.stan +++ b/survivalstan/stan/pem_survival_model_unstructured.stan @@ -39,7 +39,7 @@ transformed data { vector[T] log_t_dur; // log-duration for each timepoint int n_trans[S, T]; - log_t_dur = log(t_obs); + log_t_dur = log(t_dur); // n_trans used to map each sample*timepoint to n (used in gen quantities) // map each patient/timepoint combination to n values @@ -139,4 +139,4 @@ generated quantities { y_hat_event[samp] = 0; } } // end per-sample loop -} \ No newline at end of file +} diff --git a/survivalstan/stan/pem_survival_model_unstructured_varcoef.stan b/survivalstan/stan/pem_survival_model_unstructured_varcoef.stan index 83944a9..eec4b89 100644 --- a/survivalstan/stan/pem_survival_model_unstructured_varcoef.stan +++ b/survivalstan/stan/pem_survival_model_unstructured_varcoef.stan @@ -42,7 +42,7 @@ data { transformed data { vector[T] log_t_dur; // log-duration for each timepoint - log_t_dur = log(t_obs); + log_t_dur = log(t_dur); } parameters { vector[T] log_baseline_raw; // unstructured baseline hazard for each timepoint t @@ -95,4 +95,4 @@ generated quantities { //yhat_uncens[n] = poisson_log_rng(log_hazard[n]); log_lik[n] = poisson_log_log(event[n], log_hazard[n]); } -} \ No newline at end of file +} diff --git a/survivalstan/stan/pem_survival_model_varying_coefs3.stan b/survivalstan/stan/pem_survival_model_varying_coefs3.stan index b5c965d..9a060b6 100644 --- a/survivalstan/stan/pem_survival_model_varying_coefs3.stan +++ b/survivalstan/stan/pem_survival_model_varying_coefs3.stan @@ -61,7 +61,7 @@ transformed data { t_dur[1] <- t_obs[1]; for (i in 2:T) { t_dur[i] <- t_obs[i] - t_obs[i-1]; - print(t_dur[i]); + // print(t_dur[i]); } } parameters { @@ -124,4 +124,4 @@ generated quantities { for (n in 1:N) { log_lik[n] <- poisson_log(event[n], hazard[n]); } -} \ No newline at end of file +} diff --git a/survivalstan/stan/pem_survival_model_varying_coefs4.stan b/survivalstan/stan/pem_survival_model_varying_coefs4.stan index 19f8fa4..0a5fa4a 100644 --- a/survivalstan/stan/pem_survival_model_varying_coefs4.stan +++ b/survivalstan/stan/pem_survival_model_varying_coefs4.stan @@ -63,7 +63,7 @@ transformed data { t_dur[1] <- t_obs[1]; for (i in 2:T) { t_dur[i] <- t_obs[i] - t_obs[i-1]; - print(t_dur[i]); + // print(t_dur[i]); } } parameters { @@ -126,4 +126,4 @@ generated quantities { for (n in 1:N) { log_lik[n] <- poisson_log(event[n], hazard[n]); } -} \ No newline at end of file +} diff --git a/survivalstan/survivalstan.py b/survivalstan/survivalstan.py index 258e24e..28d7742 100644 --- a/survivalstan/survivalstan.py +++ b/survivalstan/survivalstan.py @@ -1,18 +1,27 @@ - + import patsy import stanity import pandas as pd import numpy as np import logging +# n.b. necessary to import surv directly b/c of how patsy formulas work +# see: http://patsy.readthedocs.io/en/latest/stateful-transforms.html +# which reads +# Currently the rule is that you must access the stateful transform +# function using a simple, bare variable reference, without any dots +# or other lookups +from .formulas import surv # noqa: F401 +from . import formulas logger = logging.getLogger(__name__) - + + def fit_stan_survival_model(df=None, formula=None, event_col=None, model_code=None, file=None, - model_cohort='survival model', + model_cohort='survival model', time_col=None, sample_id_col=None, sample_col=None, @@ -38,51 +47,72 @@ def fit_stan_survival_model(df=None, 3. Fits model to data 4. Tries the following functions on the resulting fit object: - `stanity.psisloo` to summarize model fit using LOO-PSIS approximation - - extract posterior draws for beta coefficients (if model contains `beta` parameter) + - extract posterior draws for beta coefficients + (if model contains `beta` parameter) - extract posterior draws for grouped-beta coefficients (if applicable) Parameters: - df (pandas DataFrame): The data frame containing input data to Survival model. - formula (chr): Patsy formula to use for covariates. E.g 'met_status + pd_l1' - event_col (chr): name of column containing event status. Will be coerced to boolean + df (pandas DataFrame): The data frame containing input data to Survival + model. + formula (chr): Patsy formula to use for covariates. + E.g 'met_status + pd_l1' + event_col (chr): name of column containing event status. + Will be coerced to boolean model_code (chr): stan model code to use. file (chr): path to stan file (if model_code not given) *args, **kwargs: passed to FIT_FUN (stanity.fit or replacement) - model_cohort (chr): description of this model fit, to be used when plotting or summarizing output - time_col (chr): name of column containing event time -- used for parameteric models - sample_id_col (chr): name of column containing numeric sample ids (1-indexed & sequential) - sample_col (chr): name of column containing sample descriptions - will be converted to an ID - group_id_col (chr): name of column containing numeric group ids (1-indexed & sequential) - group_col (chr): name of column containing group descriptions - will be converted to an ID - timepoint_id_col (chr): name of column containing timepoint ids (1-indexed & sequential) - timepoint_end_col (chr): name of column containing end times for each timepoint (will be converted to an ID) + model_cohort (chr): description of this model fit, to be used + when plotting or summarizing output + time_col (chr): name of column containing event time -- used + for parameteric models + sample_id_col (chr): name of column containing numeric sample ids + (1-indexed & sequential) + sample_col (chr): name of column containing sample descriptions - will + be converted to an ID + group_id_col (chr): name of column containing numeric group ids + (1-indexed & sequential) + group_col (chr): name of column containing group descriptions - will + be converted to an ID + timepoint_id_col (chr): name of column containing timepoint + ids (1-indexed & sequential) + timepoint_end_col (chr): name of column containing end times for each + timepoint (will be converted to an ID) stan_data (dict): extra params passed to stan data object - grp_coef_type (chr): type of group coef specified, if using a varying-coef model + grp_coef_type (chr): type of group coef specified, if using a + varying-coef model Can be one of: - - 'None' (default): guess group coef orientation from data. - Works except in case where M (num covariates) == G (num groups) + - 'None' (default): guess group coef orientation from data. + Works except in case where M (covariates) == G (groups) - 'matrix': grp_beta defined as `matrix[M, G] grp_beta;` - - 'vector-of-vectors': grp_beta defined as `vector[M] grp_beta[G];` - drop_intercept (bool): whether to drop the intercept term from the model matrix (default: True) + - 'vector-of-vectors': grp_beta defined + as `vector[M] grp_beta[G];` + drop_intercept (bool): whether to drop the intercept term from + the model matrix (default: True) Returns: - dictionary of results objects. + dictionary of results objects. Contents:: - df: Pandas data frame containing input data, filtered to non-missing obs & with ID variables created + df: Pandas data frame containing input data, + filtered to non-missing obs & with ID variables created x_df: Covariate matrix passed to Stan x_names: Column names for the covariate matrix passed to Stan data: List passed to Stan - contains dimensions, etc. fit: pystan fit object returned from Stan call coefs: posterior draws for coefficient values - loo: psis-loo object returned for fit model. Used for model comparison & summary - model_cohort: description of this model and/or cohort on which the model was fit + loo: psis-loo object returned for fit model. Used for model + comparison & summary + model_cohort: description of this model and/or cohort on + which the model was fit df_all: input df given, with calculated values included - sample_col: name of column (in df_all) used to identify the sample - sample_id_col: name of column containing numeric id derived from the sample - timepoint_end_col: name of column (in df_all) used to determine end-time of 'long' data, if relevant - timepoint_id_col: name of column containing numeric id derived from timepoint_end_col + sample_col: name of column (in df_all) used to identify the sample + sample_id_col: name of column containing numeric id + derived from the sample + timepoint_end_col: name of column (in df_all) used to determine + end-time of 'long' data, if relevant + timepoint_id_col: name of column containing numeric id derived + from timepoint_end_col Raises: AttributeError, KeyError @@ -108,12 +138,12 @@ def fit_stan_survival_model(df=None, if model_code is None: if file is None: raise AttributeError('Either model_code or file is required.') - + if input_data is None: input_data = SurvivalStanData(df=df, formula=formula, time_col=time_col, - event_col=event_col, + event_col=event_col, sample_id_col=sample_id_col, sample_col=sample_col, group_id_col=group_id_col, @@ -122,35 +152,35 @@ def fit_stan_survival_model(df=None, timepoint_end_col=timepoint_end_col, drop_intercept=drop_intercept, **stan_data - ) + ) x_df = input_data.x_df df_nonmiss = input_data.df_nonmiss - + if make_inits: - kwargs = dict(kwargs, init = make_inits(input_data.data)) - + kwargs = dict(kwargs, init=make_inits(input_data.data)) + survival_fit = FIT_FUN( - model_code = model_code, - file = file, - data = input_data.data, + model_code=model_code, + file=file, + data=input_data.data, *args, **kwargs - ) - + ) + try: beta_coefs = pd.DataFrame( survival_fit.extract()['beta'], - columns = x_df.columns - ) - beta_coefs.reset_index(0, inplace = True) - beta_coefs = beta_coefs.rename(columns = {'index':'iter'}) - beta_coefs = pd.melt(beta_coefs, id_vars = ['iter']) + columns=x_df.columns + ) + beta_coefs.reset_index(0, inplace=True) + beta_coefs = beta_coefs.rename(columns={'index': 'iter'}) + beta_coefs = pd.melt(beta_coefs, id_vars=['iter']) beta_coefs['exp(beta)'] = np.exp(beta_coefs['value']) beta_coefs['model_cohort'] = model_cohort except: beta_coefs = None - - ## prep by-group coefs if group specified + + # prep by-group coefs if group specified if input_data.group_id_col: try: grp_names = input_data.get_group_names() @@ -161,8 +191,9 @@ def fit_stan_survival_model(df=None, columns=x_df.columns, input_data=input_data.data, model_cohort=model_cohort - ) + ) except: + logger.warning('Error extracting grp_coefs from model fit') grp_coefs = None else: grp_coefs = beta_coefs @@ -173,7 +204,7 @@ def fit_stan_survival_model(df=None, loo = stanity.psisloo(survival_fit.extract()['log_lik']) except: loo = None - + if not sample_id_col: sample_id_col = None if not sample_col: @@ -203,253 +234,252 @@ def fit_stan_survival_model(df=None, class SurvivalStanData: 'Input data representing a survival model in survivalstan' - + def __init__(self, - df, formula, event_col, + df, formula, event_col=None, time_col=None, sample_id_col=None, sample_col=None, group_id_col=None, group_col=None, timepoint_id_col=None, timepoint_end_col=None, drop_intercept=True, - **kwargs): - ## capture input params + # capture input params self.df = df self.formula = formula self.event_col = event_col self.time_col = time_col - self.group_id_col = group_id_col self.group_col = group_col - self.timepoint_id_col = timepoint_id_col self.timepoint_end_col = timepoint_end_col - self.sample_id_col = sample_id_col self.sample_col = sample_col + self.sample_id_col = sample_id_col + self.group_id_col = group_id_col + self.timepoint_id_col = timepoint_id_col self.drop_intercept = drop_intercept - + # prepare data + self.prep_survival_formula() + self.prep_design_info() self.prep_df_nonmiss() - self.prep_input_data(**kwargs) - - - def _prep_othercols(self): - ''' Update list of columns to keep, other than those generated by formula - ''' - ## construct data frame with all necessary columns - ## limit to non-missing data - ## (if necessary) transform columns to ids - other_cols = [self.event_col, self.time_col, - self.group_id_col, self.group_col, - self.timepoint_id_col, self.timepoint_end_col, - self.sample_id_col, self.sample_col] - - other_cols = list(set(other_cols)) ## dedup - other_cols.remove(None) ## remove 'none' - self.other_cols = other_cols - - def prep_df_nonmiss(self): - ''' Create x_df and df_nonmiss + self.prep_stan_data(**kwargs) + + def prep_survival_formula(self): + ''' Process inputs & convert to new survival-formula syntax ''' - self._prep_othercols() - - ## input covariates given formula - x_df = patsy.dmatrix(self.formula, - self.df, - return_type='dataframe' - ) - - - if self.other_cols and len(self.other_cols)>0: - ## filter other inputs to non-missing observations on input covariates - df_nonmiss = x_df.join(self.df[self.other_cols]).dropna() + # does given formula have a LHS component & use surv syntax? + if formulas.formula_uses_surv(self.formula, self.df): + self.surv_formula = self.formula + elif formulas.formula_has_lhs(self.formula): + raise ValueError('Given formula has LHS component not using `surv`' + ' syntax. Please see ?survivalstan.formulas.surv') else: - df_nonmiss = x_df + rhs_formula = formulas.SurvivalModelDesc(self.formula).rhs + self.surv_formula = (formulas + .gen_surv_formula( + rhs_formula=rhs_formula, + event_col=self.event_col, + group_col=self.group_col, + sample_col=self.sample_col, + timepoint_end_col=self.timepoint_end_col, + time_col=self.time_col)) + + def prep_design_info(self): + ''' Prepare x and y design matrices + ''' + (self.y, self.x) = patsy.dmatrices( + formula_like=formulas.SurvivalModelDesc(self.surv_formula), + data=self.df, + ) + surv_factor = self.y.design_info.terms[0].factors[0] + if surv_factor._is_survival: + args = surv_factor.code_args + if 'subject' in args.keys(): + self.sample_col = args['subject'] + if 'group' in args.keys(): + self.group_col = args['group'] + if surv_factor._type == 'long': + if 'time' in args.keys(): + self.timepoint_end_col = args['time'] - if len(x_df.columns)>1 and self.drop_intercept: + def prep_df_nonmiss(self): + ''' Create x_df and df_nonmiss + ''' + # prep dataframe containing RHS vars (x_df) + x_df = pd.DataFrame(self.x, columns=self.x.design_info.term_names) + if len(x_df.columns) > 1 and self.drop_intercept: x_df = x_df.ix[:, x_df.columns != 'Intercept'] - - self.df_nonmiss = df_nonmiss self.x_df = x_df - - self._prep_timepoint_ids() - self._prep_sample_ids() - self._prep_group_ids() - - def _prep_event_data(self, **kwargs): - ## prep input dictionary to pass to stan.fit - self.data = { - 'N': len(self.df_nonmiss.index), - 'M': len(self.x_df.columns), - 'x': self.x_df.as_matrix(), - 'event': self.df_nonmiss[self.event_col].values.astype(int), - } - - if self.time_col: - self.data['y'] = self.df_nonmiss[self.time_col].values - - if self.timepoint_id_col: - self.data['t'] = self.df_nonmiss[self.timepoint_id_col].values.astype(int) - - if self.sample_id_col: - self.data['s'] = self.df_nonmiss[self.sample_id_col].values.astype(int) - - if self.group_id_col: - self.data['g'] = self.df_nonmiss[self.group_id_col].values.astype(int) - - def prep_input_data(self, **kwargs): - self._prep_event_data() - if self.sample_id_col: - self._prep_sample_data() - if self.timepoint_id_col: - self._prep_timepoint_data() - if self.group_id_col: - self._prep_group_data() + # prep dataframe containing LHS vars (y_df) + self.y_df = self.y.design_info.terms[0].factors[0]._meta_data['df'] + # prep df_nonmiss containing both + if self.y_df.shape[0] != self.x_df.shape[0]: + raise ValueError('x and y dataframes have different lengths.') + self.x_df.reset_index(drop=True, inplace=True) + self.y_df.reset_index(drop=True, inplace=True) + self.df_nonmiss = pd.concat([self.y_df, self.x_df], axis=1) + if self.df_nonmiss.dropna().shape != self.df_nonmiss.shape: + raise ValueError('Missing data in df_nonmiss') + self._update_df_with_ids() + + def _update_df_with_ids(self): + ''' add ID decodes to df_nonmiss + ''' + # name object decode for user-provided subject, group & timepoint cols + decode_objects = {'subject_id': self.sample_col, + 'group_id': self.group_col, + 'timepoint_id': self.timepoint_end_col, + } + mdata = self.y.design_info.terms[0].factors[0]._meta_data + for decode in decode_objects.keys(): + if decode in mdata.keys(): + decode_df = mdata[decode] + if decode_df.dropna().shape != decode_df.shape: + logger.warning('NA values in decode of {}'.format(decode)) + decode_df.dropna(inplace=True) + decode_id_col = decode + decode_id_rename = '_{}'.format(decode_id_col) + decode_col = decode_objects[decode] + decode_df.rename(columns={'id': decode_id_rename, + 'value': decode_col}, + inplace=True) + self.df_nonmiss.rename(columns={decode_id_col: + decode_id_rename}, + inplace=True) + self.df_nonmiss = pd.merge(self.df_nonmiss, decode_df, + on=decode_id_rename, how='left') + if decode == 'subject_id': + self.sample_id_col = decode_id_rename + self.sample_col = decode_col # not necessary, may be safer + if decode == 'group_id': + self.group_id_col = decode_id_rename + self.group_col = decode_col # also not necessary + self._prep_grp_names() + if decode == 'timepoint_id': + self.timepoint_id_col = decode_id_rename + self.timepoint_end_col = decode_col # also not necessary + self._prep_timepoint_df() + + def prep_stan_data(self, **kwargs): + ''' Prep data dictionary to pass to stan.fit + ''' + # LHS stan_data prepared by SurvivalModelDesc + self.data = self.y.design_info.terms[0].factors[0]._stan_data + # RHS stan_data from x_df + # use x_df for now to handle drop_intercept correctly + self.data.update({ + 'x': self.x_df.values, + 'M': self.x_df.shape[1] + }) if dict(**kwargs): self.data.update(dict(**kwargs)) - - def _prep_timepoint_ids(self): - ''' construct timepoint ID vars & add to df_nonmiss - ''' - if self.timepoint_end_col and not(self.timepoint_id_col): - self.timepoint_id_col = 'timepoint_id' - self.df_nonmiss[self.timepoint_id_col] = self.df_nonmiss[self.timepoint_end_col].astype('category').cat.codes + 1 - def _prep_sample_ids(self): - ''' construct sample ID var & add to df_nonmiss + def _prep_grp_names(self): + ''' Populate grp_names attribute ''' - if self.sample_col and not(self.sample_id_col): - self.sample_id_col = 'sample_id' - self.df_nonmiss[self.sample_id_col] = self.df_nonmiss[self.sample_col].astype('category').cat.codes + 1 - - def _prep_group_ids(self): - ''' construct group ID var & add to df_nonmiss - ''' - if self.group_col and not(self.group_id_col): - self.group_id_col = 'group_id' - self.df_nonmiss[self.group_id_col] = self.df_nonmiss[self.group_col].astype('category').cat.codes + 1 + self.grp_names = (self + .df_nonmiss + .loc[ + ~(self + .df_nonmiss[[self.group_id_col]] + .duplicated())] + .sort_values(self.group_id_col)[self.group_col] + .values) def get_group_names(self): if not self.group_id_col: return(None) - - # which column should describe group names - if self.group_col: - grp_desc = self.group_col - else: - grp_desc = self.group_id_col - - # group names in order of id - self.grp_names = self.df_nonmiss.loc[ - ~self.df_nonmiss[[self.group_id_col]].duplicated()].sort_values(self.group_id_col)[grp_desc].values - return(self.grp_names) - - def _prep_timepoint_data(self): - ''' Add timepoint-id-related data to input vector + return(list(self.grp_names)) + + def _prep_timepoint_df(self): + ''' Add timepoint-id-related data to self.timepoint_df ''' - unique_timepoints = _prep_timepoint_dataframe(self.df_nonmiss, - timepoint_id_col=self.timepoint_id_col, - timepoint_end_col=self.timepoint_end_col - ) - timepoint_input_data = { - 't_dur': unique_timepoints['t_dur'], - 't_obs': unique_timepoints[self.timepoint_end_col], - 'T': len(unique_timepoints.index) - } + unique_timepoints = _prep_timepoint_dataframe( + self.df_nonmiss, + timepoint_id_col=self.timepoint_id_col, + timepoint_end_col=self.timepoint_end_col + ) unique_timepoints.reset_index(inplace=True) self.timepoint_df = unique_timepoints - self.data.update(timepoint_input_data) - def _prep_sample_data(self): - ''' Prep per-sample input data - ''' - sample_input_data = { - 'S': len(self.df_nonmiss[self.sample_id_col].unique()) - } - self.data.update(sample_input_data) - - - def _prep_group_data(self): - ''' Prep per-group input data - ''' - group_input_data = { - 'G': len(self.df_nonmiss[self.group_id_col].unique()) - } - self.data.update(group_input_data) - - - -def _extract_grp_coefs(survival_fit, element, grp_coef_type, grp_names, columns, input_data, model_cohort): +def _extract_grp_coefs(survival_fit, element, grp_coef_type, grp_names, + columns, input_data, model_cohort): """ Helper function to extract grp coefs summary data """ grp_coefs_extract = survival_fit.extract()[element] - - ## try to guess shape of group-betas + # try to guess shape of group-betas if not(grp_coef_type): grp_coef_type = _guess_grp_coef_type(extract=grp_coefs_extract, input_data=input_data) - - ## process group_coefs according to type + # process group_coefs according to type if grp_coef_type == 'matrix': try: - grp_coefs_data = _format_grp_coefs_matrix(extract=grp_coefs_extract, - columns=columns, - grp_names=grp_names - ) + grp_coefs_data = _format_grp_coefs_matrix( + extract=grp_coefs_extract, + columns=columns, + grp_names=grp_names + ) except: raise Exception('unable to format grp coefs as matrix') elif grp_coef_type == 'vector-of-vectors': try: - grp_coefs_data = _format_grp_coefs_vectors(extract=grp_coefs_extract, - columns=columns, - grp_names=grp_names - ) + grp_coefs_data = _format_grp_coefs_vectors( + extract=grp_coefs_extract, + columns=columns, + grp_names=grp_names + ) except: raise Exception('unable to format grp coefs as vector-of-vectors') elif grp_coef_type == 'unknown': - print("warning: unable to determine group-coef orientation. Try using arg `grp_coef_type`") + print("warning: unable to determine group-coef orientation." + " Try using arg `grp_coef_type`") return(None) else: - print("Invalid `grp_coef_type` -- must be one of 'vector-of-vectors' or 'matrix'") + print("Invalid `grp_coef_type` -- must be one of 'vector-of-vectors'" + " or 'matrix'") print("Skipping grp coef extraction for now.") return(None) - + # process/format grp_coefs data - grp_coefs = pd.melt(grp_coefs_data, id_vars=['group','iter']) + grp_coefs = pd.melt(grp_coefs_data, id_vars=['group', 'iter']) grp_coefs['exp(beta)'] = np.exp(grp_coefs['value']) grp_coefs['group'] = grp_coefs.group.astype('category') grp_coefs['model_cohort'] = model_cohort return(grp_coefs) + def _format_grp_coefs_matrix(extract, columns, grp_names): """ Helper function for format grp_coefs data if in `matrix[M, G]` form """ grp_coefs_data = list() i = 0 for grp in grp_names: - grp_data = pd.DataFrame(extract[:,:,i], columns = columns) + grp_data = pd.DataFrame(extract[:, :, i], columns=columns) grp_data.reset_index(inplace=True) - grp_data.rename(columns={'index':'iter'}, inplace=True) + grp_data.rename(columns={'index': 'iter'}, inplace=True) grp_data['group'] = grp grp_coefs_data.append(grp_data) i = i+1 return(pd.concat(grp_coefs_data)) + def _format_grp_coefs_vectors(extract, columns, grp_names): - """ Helper function for format grp_coefs data if in `vector[M] grp_beta[G]` form + """ Helper function for format grp_coefs data + if in `vector[M] grp_beta[G]` form """ grp_coefs_data = list() i = 0 for grp in grp_names: - grp_data = pd.DataFrame(extract[:,i,:], columns = columns) + grp_data = pd.DataFrame(extract[:, i, :], columns=columns) grp_data.reset_index(inplace=True) - grp_data.rename(columns={'index':'iter'}, inplace=True) + grp_data.rename(columns={'index': 'iter'}, inplace=True) grp_data['group'] = grp grp_coefs_data.append(grp_data) i = i+1 return(pd.concat(grp_coefs_data)) - + def _guess_grp_coef_type(extract, input_data): - """ helper function to determine grp_coefs type from shape of returned object + """ helper function to determine grp_coefs type from shape + of returned object """ if input_data['M'] == input_data['G']: # unable to determine shape if M == G @@ -460,13 +490,14 @@ def _guess_grp_coef_type(extract, input_data): grp_coef_type = 'matrix' return grp_coef_type + def _prep_timepoint_dataframe(df, timepoint_end_col, - timepoint_id_col = None + timepoint_id_col=None ): - """ Helper function to take a set of timepoints - in observation-level dataframe & return - formatted timepoint_id, end_time, duration + """ Helper function to take a set of timepoints + in observation-level dataframe & return + formatted timepoint_id, end_time, duration Returns --------- @@ -479,66 +510,96 @@ def _prep_timepoint_dataframe(df, time_df.sort_values(timepoint_end_col, inplace=True) if not(timepoint_id_col): timepoint_id_col = 'timepoint_id' - time_df[timepoint_id_col] = time_df[timepoint_end_col].astype('category').cat.codes + 1 - time_df.dropna(how='any', subset=[timepoint_id_col, timepoint_end_col], inplace=True) - time_df = time_df.loc[:,[timepoint_id_col, timepoint_end_col]].drop_duplicates() + time_df[timepoint_id_col] = (time_df[timepoint_end_col] + .astype('category') + .cat.codes + 1) + time_df.dropna(how='any', + subset=[timepoint_id_col, timepoint_end_col], + inplace=True) + time_df = (time_df + .loc[:, [timepoint_id_col, timepoint_end_col]] + .drop_duplicates()) time_df[timepoint_end_col] = time_df[timepoint_end_col].astype(np.float32) time_df.set_index(timepoint_id_col, inplace=True, drop=True) time_df.sort_index(inplace=True) t_durs = time_df.diff(periods=1) - t_durs.rename(columns = {timepoint_end_col: 't_dur'}, inplace=True) + t_durs.rename(columns={timepoint_end_col: 't_dur'}, inplace=True) time_df = time_df.join(t_durs) - if len(time_df.index)>1: + if len(time_df.index) > 1: time_df.fillna(inplace=True, value=time_df.loc[1, timepoint_end_col]) return(time_df) -def extract_grp_baseline_hazard(results, timepoint_id_col = 'timepoint_id', timepoint_end_col = 'end_time'): +def extract_grp_baseline_hazard(results, timepoint_id_col='timepoint_id', + timepoint_end_col='end_time'): """ If model results contain a grp_baseline object, extract & summarize it """ - - ## TODO check if results are by-group - ## TODO check if baseline hazard is computable + # TODO check if results are by-group + # TODO check if baseline hazard is computable grp_baseline_extract = results['fit'].extract()['grp_baseline'] coef_group_names = results['grp_coefs']['group'].unique() i = 0 grp_baseline_data = list() for grp in coef_group_names: - grp_base = pd.DataFrame(grp_baseline_extract[:,:,i]) - grp_base_coefs = pd.melt(grp_base, var_name=timepoint_id_col, value_name='baseline_hazard') + grp_base = pd.DataFrame(grp_baseline_extract[:, :, i]) + grp_base_coefs = pd.melt(grp_base, + var_name=timepoint_id_col, + value_name='baseline_hazard') grp_base_coefs['group'] = grp grp_baseline_data.append(grp_base_coefs) i = i+1 grp_baseline_coefs = pd.concat(grp_baseline_data) - end_times = _extract_timepoint_end_times(results, timepoint_id_col = timepoint_id_col, timepoint_end_col = timepoint_end_col) - bs_data = pd.merge(grp_baseline_coefs, end_times, on = timepoint_id_col) + end_times = _extract_timepoint_end_times( + results, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col) + bs_data = pd.merge(grp_baseline_coefs, end_times, on=timepoint_id_col) return(bs_data) -def _extract_timepoint_end_times(results, timepoint_end_col = 'end_time', timepoint_id_col = 'timepoint_id'): + +def _extract_timepoint_end_times(results, timepoint_end_col='end_time', + timepoint_id_col='timepoint_id'): df_nonmiss = results['df'] - end_times = df_nonmiss.loc[~df_nonmiss[[timepoint_id_col]].duplicated()].sort_values(timepoint_id_col)[[timepoint_end_col, timepoint_id_col]] + end_times = (df_nonmiss + .loc[~df_nonmiss[[timepoint_id_col]].duplicated()] + .sort_values(timepoint_id_col)[ + [timepoint_end_col, timepoint_id_col]]) return(end_times) -def extract_baseline_hazard(results, element='baseline', timepoint_id_col = 'timepoint_id', timepoint_end_col = 'end_time'): + +def extract_baseline_hazard(results, element='baseline', timepoint_id_col=None, + timepoint_end_col=None): """ If model results contain a baseline object, extract & summarize it """ - ## TODO check if baseline hazard is computable + if timepoint_id_col is None: + timepoint_id_col = results['timepoint_id_col'] + if timepoint_end_col is None: + timepoint_end_col = results['timepoint_end_col'] + # TODO check if baseline hazard is computable baseline_extract = results['fit'].extract()[element] baseline_coefs = pd.DataFrame(baseline_extract) - bs_coefs = pd.melt(baseline_coefs, var_name = timepoint_id_col, value_name = 'baseline_hazard') - end_times = _extract_timepoint_end_times(results, timepoint_id_col = timepoint_id_col, timepoint_end_col = timepoint_end_col) - bs_data = pd.merge(bs_coefs, end_times, on = timepoint_id_col) + bs_coefs = pd.melt(baseline_coefs, + var_name=timepoint_id_col, + value_name='baseline_hazard') + end_times = _extract_timepoint_end_times( + results, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col) + bs_data = pd.merge(bs_coefs, end_times, on=timepoint_id_col) bs_data['model_cohort'] = results['model_cohort'] return(bs_data) -## convert wide survival data to long format + def prep_data_long_surv(df, time_col, event_col, sample_col=None, event_name=None): - ''' Convert wide survival dataframe (df) to long format, in preparation for modeling using PEM models. - - Returns a pandas DataFrame with original records duplicated for each unique failure time observed. - Each record will have two new columns: 'end_failure' and 'end_time', indicating - the event status (`end_failure`) for each unique timepoint (`end_time`). + ''' Convert wide survival dataframe (df) to long format, + in preparation for modeling using PEM models. + + Returns a pandas DataFrame with original records duplicated for + each unique failure time observed. + Each record will have two new columns: 'end_failure' and + 'end_time', indicating the event status (`end_failure`) + for each unique timepoint (`end_time`). Parameters: df (pandas.DataFrame): @@ -546,33 +607,36 @@ def prep_data_long_surv(df, time_col, event_col, sample_col=None, time_col (str): name of column containing time to censor/event event_col (str or list of strings): - name of column containing status (1 or True: event, 0 or False: censor) - If a list is provided, these will be processed as multiple event types. + name of column containing status (1 or True: event, 0 or + False: censor). If a list is provided, these will be processed + as multiple event types. sample_col (str): (optional) column containing sample or subject identifier. If given, result will be de-duped so that multiple events within a sample are handled correctly. event_name (str): - (optional) column containing description of event type, if - more than one type of event is observed. - If given, then then multiple events per subject will be processed. + (optional) column containing description of event type, if + more than one type of event is observed. If given, multiple + events per subject will be processed. Returns: - pandas.DataFrame with original records duplicated for each unique failure time observed. + pandas.DataFrame with original records duplicated for each unique + failure time observed. + + Each record will _include all original covariate values_, plus + two new columns: 'end_failure' and 'end_time', indicating the + timepoint-specific event status for each record. - Each record will _include all original covariate values_, plus two new columns: - 'end_failure' and 'end_time', indicating the timepoint-specific event status for - each record. + If multiple events are given (either via a list of event_cols + or by providing an event_name, the result will contain multiple + end_failure columns, one for each event type. - If multiple events are given (either via a list of event_cols or by providing an - event_name, the result will contain multiple end_failure columns, one for each - event type. - ''' - ## process multiple event_names, if given: + # process multiple event_names, if given: if event_name: if not sample_col: - raise ValueError('Sample col is required to process multiple events') + raise ValueError('Sample col is required to process' + ' multiple events') df_events = pd.pivot_table(df, index=[sample_col, time_col], columns=[event_name], @@ -582,23 +646,28 @@ def prep_data_long_surv(df, time_col, event_col, sample_col=None, df_events.columns = df_events.columns.droplevel(0) event_cols = list(df[event_name].unique()) df_covars = df.loc[:, - [column for column in df.columns if column not in [event_name, event_col]] - ].drop_duplicates().copy() - assert(all(df_covars.duplicated(subset=[sample_col, time_col]) == False)) - df_multi = pd.merge(df_events, df_covars, on=[sample_col, time_col], how='outer') + [column for column in df.columns + if column not in [event_name, event_col] + ] + ].drop_duplicates().copy() + assert(all(df_covars.duplicated(subset=[sample_col, time_col]) + == False)) + df_multi = pd.merge(df_events, df_covars, on=[sample_col, time_col], + how='outer') else: df_multi = df event_cols = event_col - if isinstance(event_cols, list): - logger.debug('Event col is given as a list; processing multi-event data') - ## start with covariates per subject_id - df_covars = df_multi.loc[:, - [column for column in df_multi.columns - if column not in event_cols and column not in time_col]].copy() + logger.debug('Event col is given as a list;' + ' processing multi-event data') + # start with covariates per subject_id + df_covars = df_multi.loc[:, + [column for column in df_multi.columns + if column not in event_cols + and column not in time_col]].copy() df_covars.drop_duplicates(inplace=True) assert(all(df_covars.duplicated(subset=[sample_col]) == False)) - ## merge in event-data for each event type + # merge in event-data for each event type ldf = None for event in event_cols: longdata = prep_data_long_surv(df_multi, @@ -606,56 +675,59 @@ def prep_data_long_surv(df, time_col, event_col, sample_col=None, time_col=time_col, sample_col=sample_col ) - longdata = longdata.loc[:, [sample_col, 'end_time', 'end_failure']].copy() + longdata = (longdata + .loc[:, [sample_col, 'end_time', 'end_failure']] + .copy()) longdata.rename(columns={'end_failure': 'end_{}'.format(event)}, inplace=True) if ldf is None: ldf = longdata else: - ldf = pd.merge(ldf, longdata, on=[sample_col, 'end_time'], how='outer') + ldf = pd.merge(ldf, + longdata, + on=[sample_col, 'end_time'], + how='outer') with_covars = pd.merge(ldf, df_covars, on=sample_col, how='outer') return with_covars - - - ## identify distinct failure/censor times + # identify distinct failure/censor times failure_times = df[time_col].unique() - ftimes = pd.DataFrame({'end_time': failure_times, 'key':1}) - - ## cross join failure times with each observation + ftimes = pd.DataFrame({'end_time': failure_times, 'key': 1}) + # cross join failure times with each observation df['key'] = 1 - dflong = pd.merge(df, ftimes, on = 'key') + dflong = pd.merge(df, ftimes, on='key') del dflong['key'] - - ## identify end-time & end-status for each sample*failure time + # identify end-time & end-status for each sample*failure time + def gen_end_failure(row): if row[time_col] > row['end_time']: - ## event not yet occurred (time_col is after this timepoint) + # event not yet occurred (time_col is after this timepoint) return False if row[time_col] == row['end_time']: - ## event during (==) this timepoint + # event during (==) this timepoint return row[event_col] if row[time_col] < row['end_time']: - ## event already occurred (time_col is before this timepoint) + # event already occurred (time_col is before this timepoint) return np.nan - - dflong['end_failure'] = dflong.apply(lambda row: gen_end_failure(row), axis = 1) - - ## confirm total number of non-censor events hasn't changed + dflong['end_failure'] = dflong.apply( + lambda row: gen_end_failure(row), + axis=1) + # confirm total number of non-censor events hasn't changed if not(sum(dflong.end_failure.dropna()) == sum(df[event_col].dropna())): - print('Warning: total number of events has changed from {0} to {1}'.format(sum(df[event_col]), sum(dflong.end_failure))) - - - ## remove timepoints after failure/censor event + print('Warning: total number of events has changed from {0} to {1}' + .format(sum(df[event_col]), sum(dflong.end_failure))) + # remove timepoints after failure/censor event dflong = dflong.query('end_time <= {0}'.format(time_col)).copy() - - ## if sample_col is given, remove duplicates induced in case of multiple events + # if sample_col is given, remove duplicates + # induced in case of multiple events if sample_col: - dflong['_rank'] = dflong.groupby([sample_col, 'end_time'])[time_col].rank() + dflong['_rank'] = (dflong + .groupby([sample_col, 'end_time'])[time_col] + .rank()) dflong = dflong.query('_rank == 1') del dflong['_rank'] - return(dflong) + def make_weibull_survival_model_inits(stan_input_dict): def f(): m = { @@ -667,4 +739,3 @@ def f(): } return m return f - diff --git a/survivalstan/utils.py b/survivalstan/utils.py index e63ea14..5459543 100644 --- a/survivalstan/utils.py +++ b/survivalstan/utils.py @@ -9,19 +9,21 @@ import numpy as np from lifelines.utils import survival_table_from_events import logging -import re import matplotlib.patches as mpatches logger = logging.getLogger(__name__) + def _summarize_survival(df, time_col, event_col, evaluate_at=None): - ## prepare survival table + # prepare survival table table = survival_table_from_events(df[time_col], df[event_col]) table.reset_index(inplace=True) - ## normalize survival as fraction of initial_n + # normalize survival as fraction of initial_n table['initial_n'] = max(table.at_risk) - table['survival'] = table.apply(lambda row: row['at_risk']/row['initial_n'], axis=1) - ## handle timepoints if given + table['survival'] = table.apply(lambda row: + row['at_risk'] / row['initial_n'], + axis=1) + # handle timepoints if given if evaluate_at is not None: evaluate_times = pd.DataFrame({'event_at': evaluate_at}) table = pd.merge(evaluate_times, table, on='event_at', how='outer') @@ -29,123 +31,169 @@ def _summarize_survival(df, time_col, event_col, evaluate_at=None): table['keep'] = table['event_at'].apply(lambda x: x in evaluate_at) else: table['keep'] = True - table = table.loc[table['keep'] == True,['event_at','survival']] + table = table.loc[table['keep'] == True, ['event_at', 'survival']] # noqa: E712, E501 table.rename(columns={'event_at': time_col}, inplace=True) return table -def extract_time_betas(models, element='beta_time', value_name='beta', **kwargs): - ''' Extract posterior draws for values of time-varying `element` from each model given in the list of `models`. - - Returns a pandas.DataFrame containing one record for each posterior draw of each parameter, where - the parameter varies over time. - +def extract_time_betas(models, element='beta_time', + value_name='beta', **kwargs): + ''' Extract posterior draws for values of time-varying `element` from each + model given in the list of `models`. + Returns a pandas.DataFrame containing one record for each posterior + draw of each parameter, where the parameter varies over time. Columns include: - - - model_cohort: description of the model or cohort from which the draw was taken - - : the value of the posterior draw, named according to given parameter `value_name` - - coef: description of the coefficient estimated, as per patsy formula provided - - iter: integer indicator of the draw from which that estimate was taken - - : integer identifier for each unique time at which betas are estimated - (default column name is set by `fit_stan_survival_model`, typically as "timepoint_id") + - model_cohort: description of the model or cohort from which + the draw was taken + - : the value of the posterior draw, named + according to given parameter `value_name` + - coef: description of the coefficient estimated, as per + patsy formula provided + - iter: integer indicator of the draw from which that + estimate was taken + - : integer identifier for each unique + time at which betas are estimated + (default column name is set by `fit_stan_survival_model`, + typically as "timepoint_id") - : time at which this beta was estimated - (default column name is set by `fit_stan_survival_model`, typically as "end_time") - + (default column name is set by `fit_stan_survival_model`, + typically as "end_time") + ** Parameters **: - - :param models: list of model-fit objects returned by `survivalstan.fit_stan_survival_model`. + + :param models: list of model-fit objects returned by + `survivalstan.fit_stan_survival_model`. :type models: list - - :param element: name of parameter to extract. Defaults to "beta_time", the parameter name + + :param element: name of parameter to extract. + Defaults to "beta_time", the parameter name used in the example time-varying stan model. :type element: str - - :param value_name: what you would like the "value" column called in the resulting dataframe + + :param value_name: what you would like the "value" column called + in the resulting dataframe :type value_name: str - - :param **kwargs: **kwargs are passed to `_extract_time_betas_single_model`, allowing - user to customize "default" values which would otherwise be read from each model object. - examples include: `coefs`, `timepoint_id_col`, and `timepoint_end_col`. - + + :param **kwargs: **kwargs are passed to + `_extract_time_betas_single_model`, allowing + user to customize "default" values which would otherwise be + read from each model object. + examples include: + `coefs`, `timepoint_id_col`, and `timepoint_end_col`. + ** Returns **: - - :returns: pandas.DataFrame containing posterior draws of parameter values. - + + :returns: pandas.DataFrame containing posterior draws of parameter + values. ''' - data = [_extract_time_betas_single_model(model, element=element, value_name=value_name, **kwargs) for model in models] + data = [_extract_time_betas_single_model(model, + element=element, + value_name=value_name, **kwargs) + for model in models] return pd.concat(data) -def _extract_time_betas_single_model(stanmodel, element='beta_time', coefs=None, - value_name='beta', timepoint_id_col=None, + +def _extract_time_betas_single_model(stanmodel, + element='beta_time', + coefs=None, + value_name='beta', + timepoint_id_col=None, timepoint_end_col=None): ''' Helper/utility function used by `extract_time_betas`, for a single model ''' - + if not timepoint_id_col: timepoint_id_col = stanmodel['timepoint_id_col'] if not timepoint_end_col: timepoint_end_col = stanmodel['timepoint_end_col'] if not timepoint_id_col or not timepoint_end_col: - raise ValueError('timepoint_id_col and timepoint_end_col are required, but were either not given or were not set by stan model') + raise ValueError('timepoint_id_col and timepoint_end_col are required,' + ' but were either not given or were not set by' + ' stan model') time_betas = stanmodel['fit'].extract()[element] - + # determine coef names coef_names = list(stanmodel['x_names']) num_coefs = time_betas.shape[1] if len(coef_names) != num_coefs: - raise ValueError('Num coefs does not equal number of coef names. Please report this as a bug') + raise ValueError('Num coefs does not equal number of coef names.' + ' Please report this as a bug') logger.debug('num_coefs set to {}'.format(num_coefs)) - + # determine which coefs to extract plot_coefs = list(np.arange(num_coefs)) if coefs is not None: plot_coefs = [val for val in plot_coefs if coef_names[val] in coefs] logger.debug('plot_coefs set to {}'.format(','.join(str(plot_coefs)))) - + # extract time-betas for each coef time_data = list() for i in plot_coefs: - tb_df = pd.DataFrame(time_betas[:,i,:]) - tb_df = pd.melt(tb_df, var_name=timepoint_id_col, value_name=value_name) + tb_df = pd.DataFrame(time_betas[:, i, :]) + tb_df.reset_index(inplace=True) + tb_df.rename(columns={'index': 'iter'}, inplace=True) + tb_df = pd.melt(tb_df, + var_name=timepoint_id_col, + value_name=value_name, + id_vars='iter') tb_df['coef'] = coef_names[i] time_data.append(tb_df) time_data = pd.concat(time_data) - timepoint_data = stanmodel['df'].loc[:,[timepoint_id_col, timepoint_end_col]].drop_duplicates() + timepoint_data = (stanmodel['df'] + .loc[:, [timepoint_id_col, timepoint_end_col]] + .drop_duplicates()) + # coerce timepoint_id_col to int64 in both datasets + time_data[timepoint_id_col] = time_data[timepoint_id_col].astype('int64') + timepoint_data[timepoint_id_col] = (timepoint_data[timepoint_id_col] + .astype('int64')) time_data = pd.merge(time_data, timepoint_data, on=timepoint_id_col) time_data['exp({})'.format(value_name)] = np.exp(time_data[value_name]) time_data['model_cohort'] = stanmodel['model_cohort'] return(time_data) + def _get_timepoint_cols(models, timepoint_id_col, timepoint_end_col): if not timepoint_id_col: - timepoint_id_col = np.unique([model['timepoint_id_col'] for model in models]) - if len(timepoint_id_col)>1: - ValueError('timepoint_id_col is not uniform for all models. Please reformat data and set timepoint_id_col manually') - elif len(timepoint_id_col)==1: + timepoint_id_col = np.unique([model['timepoint_id_col'] + for model in models]) + if len(timepoint_id_col) > 1: + ValueError('timepoint_id_col is not uniform for all models.' + ' Please reformat data and set timepoint_id_col' + ' manually') + elif len(timepoint_id_col) == 1: timepoint_id_col = timepoint_id_col[0] if not timepoint_end_col: - timepoint_end_col = np.unique([model['timepoint_end_col'] for model in models]) - if len(timepoint_end_col)>1: - ValueError('timepoint_end_col is not uniform for all models. Please reformat data and set timepoint_end_col manually') - elif len(timepoint_end_col)==1: + timepoint_end_col = np.unique([model['timepoint_end_col'] + for model in models]) + if len(timepoint_end_col) > 1: + ValueError('timepoint_end_col is not uniform for all models.' + ' Please reformat data and set timepoint_end_col' + ' manually') + elif len(timepoint_end_col) == 1: timepoint_end_col = timepoint_end_col[0] if not timepoint_id_col or not timepoint_end_col: - raise ValueError('timepoint_id_col and timepoint_end_col are required, but were either not given or were not set by model') + raise ValueError('timepoint_id_col and timepoint_end_col are required,' + ' but were either not given or were not set by model') return (timepoint_id_col, timepoint_end_col) - + + def _plot_time_betas(models=None, df=None, element='beta_time', - coefs=None, y='exp(beta)', ylabel=None, + coefs=None, y='exp(beta)', ylabel=None, timepoint_id_col=None, timepoint_end_col=None, - x='timepoint_end_col', xlabel='time', + x='timepoint_end_col', xlabel='time', subplot=None, ticks_at=None, num_ticks=10, step_size=None, fill=True, value_name='beta', ylim=None, **kwargs): if df is None: - df = extract_time_betas(models=models, element=element, coefs=coefs, - value_name=value_name, timepoint_id_col=timepoint_id_col, - timepoint_end_col=timepoint_end_col) - timepoint_id_col, timepoint_end_col = _get_timepoint_cols(models=models, - timepoint_id_col=timepoint_id_col, - timepoint_end_col=timepoint_end_col) + df = extract_time_betas(models=models, + element=element, + coefs=coefs, + value_name=value_name, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col) + timepoint_id_col, timepoint_end_col = _get_timepoint_cols( + models=models, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col) logger.debug('timepoint_id_col set to {}'.format(timepoint_id_col)) logger.debug('timepoint_end_col set to {}'.format(timepoint_end_col)) else: @@ -159,10 +207,11 @@ def _plot_time_betas(models=None, df=None, element='beta_time', time_col = x logger.debug('time_col set to {}'.format(time_col)) if not time_col: - raise ValueError('time_col is not defined - specify name of column using `x`') - + raise ValueError('time_col is not defined - specify name of column' + ' using `x`') + if not ylabel: - if not coefs or len(coefs)>1: + if not coefs or len(coefs) > 1: ylabel = '{}'.format(y) else: ylabel = '{} for {}'.format(y, coefs[0]) @@ -195,91 +244,109 @@ def _plot_time_betas(models=None, df=None, element='beta_time', _ = ax.xaxis.set_ticks(ticks_at) _ = ax.xaxis.set_ticklabels( [r"%d" % (int(round(x))) for x in ticks_at]) - + if ylim: _ = plt.ylim(ylim) if dict(**kwargs): _ = plt.setp(time_beta_plot[y]['boxes'], **kwargs) _ = plt.setp(time_beta_plot[y]['medians'], **kwargs) - _ = plt.setp(time_beta_plot[y]['whiskers'], **kwargs) + _ = plt.setp(time_beta_plot[y]['whiskers'], **kwargs) # noqa: F841 + def plot_time_betas(models=None, df=None, element='beta_time', y='beta', trans=None, coefs=None, x='timepoint_end_col', - by=['model_cohort','coef'], timepoint_id_col=None, timepoint_end_col=None, + by=['model_cohort', 'coef'], timepoint_id_col=None, + timepoint_end_col=None, subplot=None, ticks_at=None, ylabel=None, xlabel='time', - num_ticks=10, step_size=None, fill=True, alpha=0.5, pal=None, - value_name='beta', **kwargs): - ''' Plot posterior draws of time-varying parameters (`element`) from each model given in the list of `models`. - - - .. seealso:: `extract_time_betas` to return the dataframe used by this function to plot data. - - .. note:: this function can optionally take a `df` argument (the result of extract_time_betas) to + num_ticks=10, step_size=None, fill=True, alpha=0.5, + pal=None, value_name='beta', **kwargs): + ''' Plot posterior draws of time-varying parameters (`element`) from each + model given in the list of `models`. + + .. seealso:: `extract_time_betas` to return the dataframe used by this + function to plot data. + + .. note:: this function can optionally take a `df` argument (the result + of extract_time_betas) to support data-extraction & plotting in a two-step operation. - + ** Parameters controlling data extraction **: - - :param models: list of model-fit objects returned by `survivalstan.fit_stan_survival_model`. + + :param models: list of model-fit objects returned by + `survivalstan.fit_stan_survival_model`. :type models: list - - :param element: name of parameter to extract. Defaults to "beta_time", the parameter name - used in the example time-varying stan model. + + :param element: name of parameter to extract. + Defaults to "beta_time", the parameter name + used in the example time-varying stan model. :type element: str - - :param value_name: what you would like the "value" column called in the resulting dataframe + + :param value_name: what you would like the "value" column + called in the resulting dataframe :type value_name: str - - :param coefs: (optional) parameter passed to `extract_time_betas`, to override coefficient names + + :param coefs: (optional) parameter passed to `extract_time_betas`, + to override coefficient names + captured in `fit_stan_survival_model`. + + :param timepoint_id_col: (optional) parameter passed + to `extract_time_betas`, to override timepoint_id_col captured in `fit_stan_survival_model`. - - :param timepoint_id_col: (optional) parameter passed to `extract_time_betas`, to - override timepoint_id_col captured in `fit_stan_survival_model`. - - :param timepoint_end_col: (optional) parameter passed to `extract_time_betas` to - override timepoint_end_col captured in `fit_stan_survival_model`. - + + :param timepoint_end_col: (optional) parameter passed to + `extract_time_betas` to override timepoint_end_col captured + in `fit_stan_survival_model`. + ** Parameters controlling plot orientation/presentation **: - - :param trans: (optional) function to transform y-values plotted. Example: np.log + + :param trans: (optional) function to transform y-values plotted. + Example: np.log :type trans: function - - :param by: (optional) list of columns by which to aggregate & color boxplots - Defaults to: ['model_cohort', 'coef'] + + :param by: (optional) list of columns by which to aggregate & + color boxplots. Defaults to: ['model_cohort', 'coef'] :type by: list - + :param pal: (optional) palette to use for plotting. :type pal: list of colors, matching length of `by` groups - - :param y: (optional) column to put on the y-axis. Defaults to 'beta' + + :param y: (optional) column to put on the y-axis. + Defaults to 'beta' :type y: str - - :param x: (optional) column to put in the x-axis. Defaults to 'timepoint_end_col' + + :param x: (optional) column to put in the x-axis. + Defaults to 'timepoint_end_col' :type x: str - - :param num_ticks: (optional) how many ticks to show on the x-axis. See _plot_time_betas for details. - + + :param num_ticks: (optional) how many ticks to show + on the x-axis. See _plot_time_betas for details. + :param alpha: (optional) level of transparency for boxplots - - :param fill: (optional) whether to fill in boxplots or just show outlines. Defaults to True - - :param subplot: (optional) pyplot.subplots object to use, if provided. Useful if you want to overlay - multiple values on the same plot. - - + + :param fill: (optional) whether to fill in boxplots or just show + outlines. Defaults to True + + :param subplot: (optional) pyplot.subplots object to use, if + provided. Useful if you want to overlay multiple values + on the same plot. + + ** Returns **: - + :returns: Nothing. Plotted object is a side-effect. - + ''' if df is None: df = extract_time_betas(models=models, element=element, coefs=coefs, - value_name=value_name, timepoint_id_col=timepoint_id_col, - timepoint_end_col=timepoint_end_col) - timepoint_id_col, timepoint_end_col = _get_timepoint_cols(models=models, - timepoint_id_col=timepoint_id_col, - timepoint_end_col=timepoint_end_col) + value_name=value_name, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col) + timepoint_id_col, timepoint_end_col = _get_timepoint_cols( + models=models, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col) logger.debug('timepoint_id_col set to {}'.format(timepoint_id_col)) logger.debug('timepoint_end_col set to {}'.format(timepoint_end_col)) if trans: @@ -296,170 +363,235 @@ def plot_time_betas(models=None, df=None, element='beta_time', subplot = plt.subplots(1, 1) for grp, grp_df in df.groupby(by): _plot_time_betas(df=grp_df.copy(), - timepoint_id_col=timepoint_id_col, timepoint_end_col=timepoint_end_col, - num_ticks=num_ticks, step_size=step_size, ticks_at=ticks_at, - x=x, y=y, color=pal[i], subplot=subplot, alpha=alpha, fill=fill, **kwargs) + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col, + num_ticks=num_ticks, step_size=step_size, + ticks_at=ticks_at, + x=x, y=y, color=pal[i], subplot=subplot, + alpha=alpha, fill=fill, **kwargs) legend_handles.append(mpatches.Patch(color=pal[i], label=grp)) i = i+1 plt.legend(handles=legend_handles) plt.show() else: - _plot_time_betas(df=df, num_ticks=num_ticks, step_size=step_size, ticks_at=ticks_at, - timepoint_id_col=timepoint_id_col, timepoint_end_col=timepoint_end_col, - x=x, y=y, subplot=subplot, alpha=alpha, fill=fill, **kwargs) + _plot_time_betas(df=df, num_ticks=num_ticks, + step_size=step_size, ticks_at=ticks_at, + timepoint_id_col=timepoint_id_col, + timepoint_end_col=timepoint_end_col, + x=x, y=y, subplot=subplot, alpha=alpha, + fill=fill, **kwargs) + def _get_sample_ids_single_model(model, sample_col=None, sample_id_col=None): if not sample_col: sample_col = model['sample_col'] if not sample_col: - raise ValueError('sample_col was not given and is also not provided to the model. This is a required input') + raise ValueError('sample_col was not given and is also not' + ' provided to the model. This is a required' + ' input') if not sample_id_col: sample_id_col = model['sample_id_col'] if not sample_id_col: - raise ValueError('sample_id_col was not given and is also not provided to the model. This is a required input') - patient_sample_ids = model['df'].loc[:,[sample_col, sample_id_col]].drop_duplicates().sort_values(sample_id_col) + raise ValueError('sample_id_col was not given and is also not' + ' provided to the model. This is a required' + ' input') + patient_sample_ids = (model['df'] + .loc[:, [sample_col, sample_id_col]] + .drop_duplicates().sort_values(sample_id_col)) patient_sample_ids['model_cohort'] = model['model_cohort'] + patient_sample_ids.dropna(inplace=True) return patient_sample_ids def get_sample_ids(models, sample_col='patient_id'): - data = [_get_sample_ids_single_model(model=model, sample_col=sample_col) for model in models] + data = [_get_sample_ids_single_model(model=model, + sample_col=sample_col) + for model in models] return pd.concat(data) -def _prep_pp_data_single_model(model, time_element='y_hat_time', event_element='y_hat_event', - sample_col=None, time_col='event_time', event_col='event_status', +def _prep_pp_data_single_model(model, time_element='y_hat_time', + event_element='y_hat_event', + sample_col=None, time_col='event_time', + event_col='event_status', join_with='df_all', sample_id_col=None): - patient_sample_ids = _get_sample_ids_single_model(model=model, sample_col=sample_col, sample_id_col=sample_id_col) + patient_sample_ids = _get_sample_ids_single_model( + model=model, + sample_col=sample_col, + sample_id_col=sample_id_col) if not sample_col: sample_col = model['sample_col'] - pp_event_time = extract_params_long(models=[model], - element=time_element, - varnames=patient_sample_ids[sample_col].values, - ) - pp_event_time.rename(columns={'value': time_col, 'variable': sample_col}, inplace=True) - pp_event_status = extract_params_long(models=[model], - element=event_element, - varnames=patient_sample_ids[sample_col].values, - ) - pp_event_status.rename(columns={'value': event_col, 'variable': sample_col}, inplace=True) - pp_data = pd.merge(pp_event_time, pp_event_status, on=['iter', sample_col, 'model_cohort']) + pp_event_time = extract_params_long( + models=[model], + element=time_element, + varnames=patient_sample_ids[sample_col].values, + ) + pp_event_time.rename(columns={'value': time_col, 'variable': sample_col}, + inplace=True) + pp_event_status = extract_params_long( + models=[model], + element=event_element, + varnames=patient_sample_ids[sample_col].values, + ) + pp_event_status.rename( + columns={'value': event_col, 'variable': sample_col}, + inplace=True) + pp_data = pd.merge(pp_event_time, pp_event_status, + on=['iter', sample_col, 'model_cohort']) if join_with: - pp_data = pd.merge(pp_data, model[join_with], on=sample_col, suffixes=['','_original']) + pp_data[sample_col] = pp_data[sample_col].astype( + model[join_with][sample_col].dtype) + pp_data = pd.merge(pp_data, model[join_with], on=sample_col, + suffixes=['', '_original']) return pp_data def prep_pp_data(models, time_element='y_hat_time', event_element='y_hat_event', event_col='event_status', time_col='event_time', **kwargs): - ''' Extract posterior-predicted values from each model included in the list of `models` given, optionally merged with + ''' Extract posterior-predicted values from each model included in the + list of `models` given, optionally merged with covariates & meta-data provided in the input `df`. - + **Parameters**: - - :param models: list of `fit_stan_survival_model` results from which to extract posterior-predicted values + + :param models: list of `fit_stan_survival_model` results from + which to extract posterior-predicted values :type models: list - - :param time_element: (optional) name of parameter containing posterior-predicted event **time** for each subject + + :param time_element: (optional) name of parameter containing + posterior-predicted event **time** for each subject Defaults to standard used in survivalstan models: `y_hat_time`. :type time_element: str - - :param event_element: (optional) name of parameter containing posterior-predicted event **status** for each subject - Defaults to the standard used in survivalstan models: `y_hat_event`. + + :param event_element: (optional) name of parameter containing + posterior-predicted event **status** for each subject + Defaults to the standard used in survivalstan models: + `y_hat_event`. :type event_element: str - - :param event_col: (optional) name to use for column containing posterior draw for event_status + + :param event_col: (optional) name to use for column containing + posterior draw for event_status :type event_col: str - - :param time_col: (optional) name to use for column containing posterior draw for time to event + + :param time_col: (optional) name to use for column containing + posterior draw for time to event :type time_col: str - - :param **kwargs: **kwargs are passed to `_prep_pp_data_single_model`, allowing user to override - or specify default values given in the original call to `fit_stan_survival_model`. - Parameters include: `sample_col`, `sample_id_col` to define names of sample description & id columns - as well as `join_with` giving name of dataframe to join with (options include df_nonmiss, x_df, or None). - + + :param **kwargs: **kwargs are passed to + `_prep_pp_data_single_model`, allowing user to override + or specify default values given in the original call to + `fit_stan_survival_model`. Parameters include: + `sample_col`, `sample_id_col` to define names of sample + description & id columns as well as `join_with` giving + name of dataframe to join with (options include + df_nonmiss, x_df, or None). + Use `join_with` = None to disable merge with original dataframe. - + **Returns**: - - :returns: pandas.DataFrame with one record per posterior draw (iter) for each subject, from each model - optionally joined with original input data. + + :returns: pandas.DataFrame with one record per posterior draw + (iter) for each subject, from each model optionally + joined with original input data. ''' - data = [_prep_pp_data_single_model(model=model, event_element=event_element, - time_element=time_element, event_col=event_col, time_col=time_col, **kwargs) + data = [_prep_pp_data_single_model(model=model, + event_element=event_element, + time_element=time_element, + event_col=event_col, + time_col=time_col, + **kwargs) for model in models] data = pd.concat(data) data.sort_values([time_col, 'iter'], inplace=True) return data -def prep_pp_survival_data(models=None, time_element='y_hat_time', event_element='y_hat_event', - time_col='event_time', event_col='event_status', pp_data=None, - by=None, **kwargs): +def prep_pp_survival_data(models, time_element='y_hat_time', + event_element='y_hat_event', + time_col='event_time', + event_col='event_status', + pp_data=None, + by=None, **kwargs): ''' Summarize posterior-predicted values into KM survival/censor rates by group, for each model given in the list of `models`. - - See `prep_pp_data` for details regarding process of extracting posterior-predicted values. - + + See `prep_pp_data` for details regarding process of extracting + posterior-predicted values. + **Parameters**: - - :param models: list of `fit_stan_survival_model` results from which - to extract posterior-predicted values. If `None` provided, then - `pp_data` must be given. + + :param models: list of `fit_stan_survival_model` results from + which to extract posterior-predicted values :type models: list - + :param pp_data: (optional) data frame containing - posterior-predicted values. If None, then `models` must be - provided. + posterior-predicted values. If None, then `models` must be + provided. :type pp_data: pandas.DataFrame - :param by: additional column or columns by which to summarize posterior-predicted values. - Default is None, which results in draws summarized by [`iter` and `model_cohort`]. + :param by: additional column or columns by which to summarize + posterior-predicted values. Default is None, which results in + draws summarized by [`iter` and `model_cohort`]. Values can include any covariates provided in the original df. :type by: str or list of strings - - :param time_element: (optional) name of parameter containing posterior-predicted event **time** for each subject + + :param time_element: (optional) name of parameter containing + posterior-predicted event **time** for each subject Defaults to standard used in survivalstan models: `y_hat_time`. :type time_element: str - - :param event_element: (optional) name of parameter containing posterior-predicted event **status** for each subject - Defaults to the standard used in survivalstan models: `y_hat_event`. + + :param event_element: (optional) name of parameter containing + posterior-predicted event **status** for each subject + Defaults to the standard used in survivalstan models: + `y_hat_event`. :type event_element: str - - :param event_col: (optional) name to use for column containing posterior draw for event_status + + :param event_col: (optional) name to use for column containing + posterior draw for event_status :type event_col: str - - :param time_col: (optional) name to use for column containing posterior draw for time to event + + :param time_col: (optional) name to use for column containing + posterior draw for time to event :type time_col: str - - :param **kwargs: **kwargs are passed to `_prep_pp_data_single_model`, allowing user to override - or specify default values given in the original call to `fit_stan_survival_model`. - Parameters include: `sample_col`, `sample_id_col` to define names of sample description & id columns - as well as `join_with` giving name of dataframe to join with (options include df_nonmiss, x_df, or None). - + + :param **kwargs: **kwargs are passed to + `_prep_pp_data_single_model`, allowing user to override + or specify default values given in the original call to + `fit_stan_survival_model`. Parameters include: `sample_col`, + `sample_id_col` to define names of sample description & id + columns as well as `join_with` giving name of dataframe to + join with (options include df_nonmiss, x_df, or None). + Use `join_with` = None to disable merge with original dataframe. - + **Returns**: - - :returns: pandas.DataFrame with one record per posterior draw (iter), timepoint, model_cohort, and by-groups. + + :returns: pandas.DataFrame with one record per posterior draw + (iter), timepoint, model_cohort, and by-groups. ''' if pp_data is None: pp_data = prep_pp_data(models, time_element=time_element, - event_element=event_element, time_col=time_col, event_col=event_col, **kwargs) + event_element=event_element, time_col=time_col, + event_col=event_col, **kwargs) groups = ['iter', 'model_cohort'] if by and isinstance(by, str): groups.append(by) elif by and isinstance(by, list): groups.extend(by) pp_surv = pp_data.groupby(groups).apply( - lambda df: _summarize_survival(df, time_col=time_col, event_col=event_col)) + lambda df: _summarize_survival(df, time_col=time_col, + event_col=event_col)) pp_surv.reset_index(inplace=True) return pp_surv -def _plot_pp_survival_data(pp_surv, time_col='event_time', survival_col='survival', - num_ticks=10, step_size=None, ticks_at=None, subplot=None, - ylabel='Survival %', xlabel='Days', label='posterior predictions', + +def _plot_pp_survival_data(pp_surv, time_col='event_time', + survival_col='survival', + num_ticks=10, step_size=None, + ticks_at=None, subplot=None, + ylabel='Survival %', xlabel='Days', + label='posterior predictions', fill=True, **kwargs): pp_surv.sort_values(time_col, inplace=True) if not subplot: @@ -495,7 +627,7 @@ def _plot_pp_survival_data(pp_surv, time_col='event_time', survival_col='surviva if dict(**kwargs): _ = plt.setp(survival_plot[survival_col]['boxes'], **kwargs) _ = plt.setp(survival_plot[survival_col]['medians'], **kwargs) - _ = plt.setp(survival_plot[survival_col]['whiskers'], **kwargs) + _ = plt.setp(survival_plot[survival_col]['whiskers'], **kwargs) # noqa: F841, E501 def _get_color_palette(n): @@ -508,79 +640,102 @@ def _get_color_palette(n): color_list = plt.cm.viridis(np.linspace(0, 1, n)) return color_list -def plot_pp_survival(models, time_element='y_hat_time', event_element='y_hat_event', - num_ticks=10, step_size=None, ticks_at=None, time_col='event_time', - event_col='event_status', fill=True, by=None, alpha=0.5, pal=None, + +def plot_pp_survival(models, time_element='y_hat_time', + event_element='y_hat_event', + num_ticks=10, step_size=None, ticks_at=None, + time_col='event_time', + event_col='event_status', fill=True, by=None, + alpha=0.5, pal=None, subplot=None, **kwargs): - ''' Plot KM curve estimates from posterior-predicted values by group, for each model given in the list of `models`. - - See `prep_pp_survival_data` for details regarding process of extracting posterior-predicted values. - + ''' Plot KM curve estimates from posterior-predicted values by group, for + each model given in the list of `models`. See + `prep_pp_survival_data` for details regarding process of + extracting posterior-predicted values. + **Parameters controlling data extraction **: - - :param models: list of `fit_stan_survival_model` results from which to extract posterior-predicted values + + :param models: list of `fit_stan_survival_model` results from which + to extract posterior-predicted values :type models: list - - :param by: additional column or columns by which to summarize posterior-predicted values. - Default is None, which results in draws summarized by [`iter` and `model_cohort`]. + + :param by: additional column or columns by which to summarize + posterior-predicted values. Default is None, which results + in draws summarized by [`iter` and `model_cohort`]. Values can include any covariates provided in the original df. :type by: str or list of strings - - :param time_element: (optional) name of parameter containing posterior-predicted event **time** for each subject + + :param time_element: (optional) name of parameter containing + posterior-predicted event **time** for each subject Defaults to standard used in survivalstan models: `y_hat_time`. :type time_element: str - - :param event_element: (optional) name of parameter containing posterior-predicted event **status** for each subject - Defaults to the standard used in survivalstan models: `y_hat_event`. + + :param event_element: (optional) name of parameter containing + posterior-predicted event **status** for each subject + Defaults to the standard used in survivalstan models: + `y_hat_event`. :type event_element: str - - :param event_col: (optional) name to use for column containing posterior draw for event_status + + :param event_col: (optional) name to use for column containing + posterior draw for event_status :type event_col: str - - :param time_col: (optional) name to use for column containing posterior draw for time to event + + :param time_col: (optional) name to use for column containing + posterior draw for time to event :type time_col: str - - :param **kwargs: **kwargs are passed to `_prep_pp_data_single_model`, allowing user to override - or specify default values given in the original call to `fit_stan_survival_model`. - Parameters include: `sample_col`, `sample_id_col` to define names of sample description & id columns - as well as `join_with` giving name of dataframe to join with (options include df_nonmiss, x_df, or None). - + + :param **kwargs: **kwargs are passed to + `_prep_pp_data_single_model`, allowing user to override or + specify default values given in the original call to + `fit_stan_survival_model`. Parameters include: `sample_col`, + `sample_id_col` to define names of sample description & id + columns as well as `join_with` giving name of dataframe to join + with (options include df_nonmiss, x_df, or None). + Use `join_with` = None to disable merge with original dataframe. - + ** Parameters controlling plot orientation/presentation **: - + :param pal: (optional) palette to use for plotting. :type pal: list of colors, matching length of `by` groups - + :param ticks_at: (optional) exact locations for placement of ticks - - :param num_ticks: (optional) control number of ticks, if ticks_at not given. - - :param step_size: (optional) control tick spacing, if ticks_at or num_ticks not given - + + :param num_ticks: (optional) control number of ticks, if ticks_at + not given. + + :param step_size: (optional) control tick spacing, if ticks_at or + num_ticks not given + :param alpha: (optional) level of transparency for boxplots - - :param fill: (optional) whether to fill in boxplots or just show outlines. Defaults to True - - :param subplot: (optional) pyplot.subplots object to use, if provided. Useful if you want to overlay - observed or true survival on the same plot. - + + :param fill: (optional) whether to fill in boxplots or just show + outlines. Defaults to True + + :param subplot: (optional) pyplot.subplots object to use, if + provided. Useful if you want to overlay observed or true + survival on the same plot. + :param xlabel: (optional) label for x-axis (defaults to "Days") - - :param ylabel: (optional) label for y-axis (defaults to "Survival %") - - :param label: (optional) legend-label for this plot group - (defaults to "posterior predictions", model-cohort, or by-group label depending options) - - :param **kwargs: (optional) args passed to set properties of boxes, medians & whiskers (e.g. color) - + + :param ylabel: (optional) label for y-axis (defaults to + "Survival %") + + :param label: (optional) legend-label for this plot group + (defaults to "posterior predictions", model-cohort, or by-group + label depending options) + + :param **kwargs: (optional) args passed to set properties of boxes, + medians & whiskers (e.g. color) + ** Returns **: - + :returns: Nothing. Plotted object is a side-effect. ''' pp_surv = prep_pp_survival_data(models, time_element=time_element, - event_element=event_element, time_col=time_col, + event_element=event_element, + time_col=time_col, event_col=event_col, by=by) if by: if not pal: @@ -591,20 +746,33 @@ def plot_pp_survival(models, time_element='y_hat_time', event_element='y_hat_eve if not subplot: subplot = plt.subplots(1, 1) for grp, df in pp_surv.groupby(by): - _plot_pp_survival_data(df.copy(), num_ticks=num_ticks, step_size=step_size, ticks_at=ticks_at, - time_col=time_col, color=pal[i], subplot=subplot, alpha=alpha, fill=fill, **kwargs) + _plot_pp_survival_data(df.copy(), + num_ticks=num_ticks, + step_size=step_size, ticks_at=ticks_at, + time_col=time_col, color=pal[i], + subplot=subplot, alpha=alpha, fill=fill, + **kwargs) legend_handles.append(mpatches.Patch(color=pal[i], label=grp)) i = i+1 plt.legend(handles=legend_handles) plt.show() else: - _plot_pp_survival_data(pp_surv, num_ticks=num_ticks, step_size=step_size, - ticks_at=ticks_at, time_col=time_col, alpha=alpha, fill=fill, **kwargs) + _plot_pp_survival_data(pp_surv, num_ticks=num_ticks, + step_size=step_size, + ticks_at=ticks_at, time_col=time_col, + alpha=alpha, fill=fill, **kwargs) -def plot_observed_survival(df, event_col, time_col, label='observed', *args, **kwargs): - actual_surv = _summarize_survival(df=df, time_col=time_col, event_col=event_col) - plt.plot(actual_surv[time_col], actual_surv['survival'], label=label, *args, **kwargs) +def plot_observed_survival(df, event_col, time_col, label='observed', *args, + **kwargs): + actual_surv = _summarize_survival(df=df, time_col=time_col, + event_col=event_col) + plt.plot(actual_surv[time_col], + actual_surv['survival'], + label=label, + *args, + **kwargs) + def _list_files_in_path(path, pattern="*.stan"): """ @@ -652,7 +820,7 @@ def _read_file(filepath, resource=None): def read_files(path, pattern='*.stan', encoding="utf-8", resource=None): """ - Reads file contents from a directory path into memory. Returns a + Reads file contents from a directory path into memory. Returns a dictionary of file names: file contents. Is intended to be used to load a directory of stan files into an object. @@ -691,9 +859,10 @@ def read_files(path, pattern='*.stan', encoding="utf-8", resource=None): results[file_data['basename']] = file_data['code'] return(results) + def _prep_data_for_coefs(models, element): - """ - Helper function to concatenate/extract data + """ + Helper function to concatenate/extract data from a list of model objects. See `plot_coefs` for description of data inputs @@ -706,28 +875,45 @@ def _prep_data_for_coefs(models, element): return 'value', 'variable', df +def _get_parameter_from_model_list(models, parameter): + ''' Return parameter name if similar for all models + ''' + values = np.unique([model[parameter] for model in models]) + if len(values) > 1: + raise ValueError('Inconsistent data for {}'.format(parameter)) + elif len(values) == 0: + raise ValueError('No data for {}.'.format(parameter)) + return(values[0]) + + def _prep_data_for_baseline_hazard(models, element='baseline'): - """ - Helper function to concatenate/extract baseline hazard data + """ + Helper function to concatenate/extract baseline hazard data from a list of model objects. - + Note `element` input parameter is ignored here. See `plot_coefs` for description of data inputs """ # prepare df containing posterior estimates of baseline hazards df_list = list() - [df_list.append(extract_baseline_hazard(model, element=element)) for model in models] + [df_list.append(extract_baseline_hazard(model, element=element)) + for model in models] df = pd.concat(df_list) + timepoint_id_col = _get_parameter_from_model_list(models, + 'timepoint_id_col') + timepoint_end_col = _get_parameter_from_model_list(models, + 'timepoint_end_col') # add helper variables to df - df['timepoint_id'] = df['timepoint_id'].astype('category') + df[timepoint_id_col] = df[timepoint_id_col].astype('category') df['log_hazard'] = np.log1p(df['baseline_hazard']) - df['end_time_id'] = df['end_time'].astype('category') + df['end_time_id'] = df[timepoint_end_col].astype('category') return 'log_hazard', 'end_time_id', df -def plot_coefs(models, element='coefs', force_direction=None, trans=None, **kwargs): +def plot_coefs(models, element='coefs', force_direction=None, trans=None, + by=None, **kwargs): """ Plot coefficients for models listed @@ -738,43 +924,47 @@ def plot_coefs(models, element='coefs', force_direction=None, trans=None, **kwar List of model objects element (string, optional): Which element to plot. defaults to 'coefs'. - Other options (depending on model type) include: + Other options (depending on model type) include: - 'grp_coefs' - 'baseline' - 'beta_time' force_direction (string, optional): Takes values 'h' or 'v' - - if 'h': forces horizontal orientation, (`variable` names along the x axis) - - if 'v': forces vertical orientation (`variable` names along the y axis) - if None (default), coef plots default to 'v' for all plots except baseline hazard. + - if 'h': forces horizontal orientation, + (`variable` names along the x axis) + - if 'v': forces vertical orientation + (`variable` names along the y axis) + if None (default), coef plots default to 'v' for all plots except + baseline hazard. trans (function, optional): If present, transforms value of `value` column - example: np.exp to plot exp(beta) if None (default), plots raw value - + by (str): + name of variable by which to color boxplots. E.g. 'group' if plotting + grp_coefs. Defaults to None for single model, or 'model_cohort' for + multiple models. """ - # TODO: check if models object is a list or a single model - - if element=='beta_time': - return plot_time_betas(models=models, element=element, trans=trans, **kwargs) - + if element == 'beta_time': + return plot_time_betas(models=models, element=element, + trans=trans, **kwargs) # prep data from models given - if element=='baseline' or element=='baseline_raw': - value, variable, df = _prep_data_for_baseline_hazard(models, element=element) + if element == 'baseline' or element == 'baseline_raw': + value, variable, df = _prep_data_for_baseline_hazard(models, + element=element) else: - value, variable, df = _prep_data_for_coefs(models=models, element=element) - + value, variable, df = _prep_data_for_coefs(models=models, + element=element) if trans: df[value] = trans(df[value]) - # select hue depending on number of elements - if len(models)==1: - hue = None + if len(models) == 1: + hue = by else: hue = 'model_cohort' - if element=='baseline' or element=='baseline_raw': + if element == 'baseline' or element == 'baseline_raw': direction = 'h' else: direction = 'v' @@ -782,16 +972,16 @@ def plot_coefs(models, element='coefs', force_direction=None, trans=None, **kwar if force_direction: direction = force_direction - if direction=='h': + if direction == 'h': xval = variable yval = value else: xval = value yval = variable - ## plot coefficients - sb.boxplot(x = xval, y = yval, data = df, hue = hue) - if hue=='model_cohort': + # plot coefficients + sb.boxplot(x=xval, y=yval, data=df, hue=hue) + if hue == 'model_cohort': plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) @@ -806,7 +996,7 @@ def extract_params_long(models, element, rename_vars=None, varnames=None): List of model objects element (string, optional): Which element to plot. defaults to 'coefs'. - Other options (depending on model type) include: + Other options (depending on model type) include: - 'grp_coefs' - 'baseline_hazard' rename_vars (dict, optional): @@ -823,7 +1013,7 @@ def extract_params_long(models, element, rename_vars=None, varnames=None): for model in models: df_list.append(_extract_params_from_single_model( model, - element = element, + element=element, rename_vars=rename_vars, varnames=varnames )) @@ -831,21 +1021,22 @@ def extract_params_long(models, element, rename_vars=None, varnames=None): return(df_list) -def _extract_params_from_single_model(model, element, rename_vars=None, varnames=None): +def _extract_params_from_single_model(model, element, rename_vars=None, + varnames=None): if varnames is None: df = pd.DataFrame( model['fit'].extract()[element] ) - else: + else: df = pd.DataFrame( - model['fit'].extract()[element] - , columns=varnames + model['fit'].extract()[element], + columns=varnames ) if rename_vars is not None: - df.rename(columns = rename_vars, inplace=True) - df.reset_index(0, inplace = True) - df = df.rename(columns = {'index':'iter'}) - df = pd.melt(df, id_vars = ['iter']) + df.rename(columns=rename_vars, inplace=True) + df.reset_index(0, inplace=True) + df = df.rename(columns={'index': 'iter'}) + df = pd.melt(df, id_vars=['iter']) df['model_cohort'] = model['model_cohort'] return(df) @@ -853,78 +1044,95 @@ def _extract_params_from_single_model(model, element, rename_vars=None, varnames def filter_stan_summary(stan_fit, pars=None, remove_nan=False): """ Filter stan fit summary, for the set of parameters in `pars`. See ?pystan.summary for details about summary stats given. - + Parameters ---------- - stan_fit: - StanFit object for which posterior draws are desired to be summarized + stan_fit: + StanFit object for which posterior draws are desired to be + summarized pars: (list, optional) - list of strings used to filter parameters. Passed directly to `pystan.summary`. + list of strings used to filter parameters. Passed directly to + `pystan.summary`. default: return all parameters remove_nan: (bool, optional) - whether to remove (and report on) NaN values for Rhat. These are problematic for distplot. + whether to remove (and report on) NaN values for Rhat. These are + problematic for distplot. - Returns + Returns ------- - pandas dataframe containing summary stats for posterior draws of selected parameters + pandas dataframe containing summary stats for posterior draws of + selected parameters """ if isinstance(stan_fit, list): - if len(stan_fit)>1: - logger.warning('More than one model passed to `filter_stan_summary`. Using only the first.') + if len(stan_fit) > 1: + logger.warning('More than one model passed to' + ' `filter_stan_summary`. Using only the first.') stan_fit = stan_fit[0]['fit'] - ## else: assume stan_fit was passed correctly + # else: assume stan_fit was passed correctly if pars: fitsum = stan_fit.summary(pars=pars) else: fitsum = stan_fit.summary() - df = pd.DataFrame(fitsum['summary'], columns=fitsum['summary_colnames'], index=fitsum['summary_rownames']) + df = pd.DataFrame(fitsum['summary'], + columns=fitsum['summary_colnames'], + index=fitsum['summary_rownames']) if remove_nan: - ## most of NaN values are Rhat - ## remove & report on their frequency if remove_nan == True + # most of NaN values are Rhat + # remove & report on their frequency if remove_nan == True df_nan_rows = pd.isnull(df).any(1) if any(df_nan_rows): - logger.info('Warning - {} rows removed due to NaN values for Rhat. This may indicate a problem in your model estimation.'.format(df_nan_rows[df_nan_rows].count())) + (logger + .info('Warning - {} rows removed due to NaN values for Rhat.' + ' This may indicate a problem in your model estimation.' + .format(df_nan_rows[df_nan_rows].count()))) df = df[~df_nan_rows] - return df.loc[:,['mean','se_mean','sd','2.5%','50%','97.5%','Rhat']] + return df.loc[:, ['mean', 'se_mean', 'sd', '2.5%', '50%', '97.5%', 'Rhat']] def print_stan_summary(stan_fit, pars=None): - """ Convenience function to print stan fit summary, for the set of parameters in `pars`. + """ Convenience function to print stan fit summary, for the set of + parameters in `pars`. Parameters ---------- - stan_fit: - StanFit object for which posterior draws are desired to be summarized + stan_fit: + StanFit object for which posterior draws are desired to be + summarized pars: (optional) - list of strings used to filter parameters. Passed directly to `pystan.summary`. - default: return all parameters + list of strings used to filter parameters. Passed directly to + `pystan.summary`. default: return all parameters """ print(filter_stan_summary(stan_fit=stan_fit, pars=pars).to_string()) def plot_stan_summary(stan_fit, pars=None, metric='Rhat'): - """ Plot distribution of values in stan fit summary, for the set of parameters in `pars`. + """ Plot distribution of values in stan fit summary, for the set of + parameters in `pars`. - Primary use case is to summarize Rhat estimates for set of parameters, as a quick check of convergence. + Primary use case is to summarize Rhat estimates for set of parameters, + as a quick check of convergence. Parameters ---------- - stan_fit: - StanFit object for which posterior draws are desired to be summarized + stan_fit: + StanFit object for which posterior draws are desired to be + summarized pars: (list of str, optional) - list of strings used to filter parameters. Passed directly to `pystan.summary`. - default: return all parameters + list of strings used to filter parameters. Passed directly to + `pystan.summary`. default: return all parameters metric: (str, optional) - the name of the metric to plot, as one of: ['mean','se_mean','sd','2.5%','50%','97.5%','Rhat'] + the name of the metric to plot, as one of: + ['mean','se_mean','sd','2.5%','50%','97.5%','Rhat'] default: `Rhat` """ df = filter_stan_summary(stan_fit=stan_fit, pars=pars, remove_nan=True) - if not metric in df.columns: - raise ValueError('Invalid metric ({}). Should be one of {}'.format(metric, '.'.join(df.columns))) + if metric not in df.columns: + raise ValueError( + 'Invalid metric ({}). Should be one of {}' + .format(metric, '.'.join(df.columns))) sb.distplot(df[metric]) - diff --git a/test/test_SurvivalStanData.py b/test/test_SurvivalStanData.py new file mode 100644 index 0000000..7448258 --- /dev/null +++ b/test/test_SurvivalStanData.py @@ -0,0 +1,51 @@ +import survivalstan +from .test_formulas import _dict_keys_include +from nose.tools import ok_, eq_ +import pandas as pd + + +def get_test_data(n=50): + dataset = survivalstan.sim.sim_data_exp_correlated(N=n, + censor_time=10) + dataset.rename(columns={'index': 'subject_id', + 'event': 'event_value', + 't': 'time', + }, inplace=True) + return(dataset) + +def get_alt_test_data(n=100): + data = survivalstan.sim.sim_data_jointmodel(N=n) + df = pd.merge(data['events'].query('event_name == "death"'), + data['covars'], on='subject_id') + return(df) + +def test_basic_SurvivalStanData(df=get_test_data(), + stan_data_keys=['event', 'y', 'x', 'M', 'N'], + **kwargs): + ''' Test that SurvivalStanData works with old syntax + ''' + ssdata = survivalstan.SurvivalStanData(formula = ' ~ 1', df=df, + event_col='event_value', + time_col='time', + **kwargs) + _dict_keys_include(ssdata.data, stan_data_keys) + return(ssdata) + +test_basic_SurvivalStanData(df=get_alt_test_data()) + +def test_basic_SurvivalStanData_with_sample(df=get_test_data()): + ## note - also tests for safety against redundant id names + ssdata = test_basic_SurvivalStanData(df=df, + stan_data_keys=['event','t','t_obs','t_dur','T','S','s','M','N','x'], + sample_col='subject_id') + +def test_basic_SurvivalStanData_with_sample_and_group(df=get_test_data()): + ## note - also tests for safety against redundant id names + ssdata = test_basic_SurvivalStanData(df=df, + stan_data_keys=['event','t','t_obs','t_dur','T','S','s','M','N','x','G','g'], + sample_col='subject_id', + group_col='sex') + grp_ids = ssdata.get_group_names() + eq_(len(grp_ids), 2) + + diff --git a/test/test_byo-gamma_survival_model.py b/test/test_byo-gamma_survival_model.py index ba002d8..676a977 100644 --- a/test/test_byo-gamma_survival_model.py +++ b/test/test_byo-gamma_survival_model.py @@ -1,6 +1,6 @@ -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np @@ -14,8 +14,8 @@ int count_value(vector a, real val) { int s; s = 0; - for (i in 1:num_elements(a)) - if (a[i] == val) + for (i in 1:num_elements(a)) + if (a[i] == val) s = s + 1; return s; } @@ -40,7 +40,6 @@ i_cens = i_cens+1; } } - print(idx_obs); log_lik[1] = gamma_lpdf(t[idx_obs] | shape, rate[idx_obs]); log_lik[2] = gamma_lccdf(t[idx_cens] | shape, rate[idx_cens]); prob = sum(log_lik); @@ -101,7 +100,7 @@ def test_model(**kwargs): ok_('coefs' in testfit) survivalstan.utils.plot_coefs([testfit]) survivalstan.utils.plot_coefs([testfit], trans=np.exp) - return(testfit) + return(testfit) def test_null_model(**kwargs): @@ -128,4 +127,3 @@ def test_null_model(**kwargs): survivalstan.utils.plot_coefs([testfit]) survivalstan.utils.plot_coefs([testfit], trans=np.exp) return(testfit) - diff --git a/test/test_byo-gamma_survival_model_sim.py b/test/test_byo-gamma_survival_model_sim.py index 84cc1f9..a903ee4 100644 --- a/test/test_byo-gamma_survival_model_sim.py +++ b/test/test_byo-gamma_survival_model_sim.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np @@ -14,8 +13,8 @@ int count_value(vector a, real val) { int s; s = 0; - for (i in 1:num_elements(a)) - if (a[i] == val) + for (i in 1:num_elements(a)) + if (a[i] == val) s = s + 1; return s; } @@ -40,7 +39,6 @@ i_cens = i_cens+1; } } - print(idx_obs); log_lik[1] = gamma_lpdf(t[idx_obs] | shape, rate[idx_obs]); log_lik[2] = gamma_lccdf(t[idx_cens] | shape, rate[idx_cens]); prob = sum(log_lik); @@ -127,5 +125,3 @@ def test_model(**kwargs): survivalstan.utils.plot_coefs([testfit]) survivalstan.utils.plot_coefs([testfit], trans=np.exp) return(testfit) - - diff --git a/test/test_exp_survival_model.py b/test/test_exp_survival_model.py index a4bc7bd..92c867d 100644 --- a/test/test_exp_survival_model.py +++ b/test/test_exp_survival_model.py @@ -1,6 +1,6 @@ -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np @@ -36,6 +36,29 @@ def test_model(): survivalstan.utils.plot_coefs([testfit], trans=np.exp) return(testfit) +def test_model_with_formula(): + ''' Test survival model using `surv` syntax + ''' + d = load_test_dataset() + testfit = survivalstan.fit_stan_survival_model( + model_cohort = 'test model', + model_code = model_code, + df = d, + formula = 'surv(event_status=event, time=t) ~ age + sex', + iter = num_iter, + chains = 2, + seed = 9001, + make_inits = make_inits, + FIT_FUN = stancache.cached_stan_fit, + ) + ok_('fit' in testfit) + ok_('coefs' in testfit) + ok_('loo' in testfit) + survivalstan.utils.plot_coefs([testfit]) + survivalstan.utils.plot_coefs([testfit], trans=np.exp) + return(testfit) + + def test_null_model(**kwargs): ''' Test NULL survival model on flchain dataset ''' diff --git a/test/test_exp_survival_model_sim.py b/test/test_exp_survival_model_sim.py index b211f81..cf097d6 100644 --- a/test/test_exp_survival_model_sim.py +++ b/test/test_exp_survival_model_sim.py @@ -1,6 +1,6 @@ -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np diff --git a/test/test_formulas.py b/test/test_formulas.py new file mode 100644 index 0000000..67dd2af --- /dev/null +++ b/test/test_formulas.py @@ -0,0 +1,247 @@ +import survivalstan +from survivalstan.formulas import * +from nose.tools import ok_, eq_ +from numpy import array_equal + +def get_test_data(): + ''' Return test data for patsy formula testing + ''' + data = survivalstan.sim.sim_data_jointmodel(N=100) + df = pd.merge(data['events'].query('event_name == "death"'), + data['covars'], on='subject_id') + return(df) + +def get_alt_test_data(): + ''' Return test data with event coded as boolean + ''' + data = get_test_data() + data['event_value'] = data['event_value'] == 1 + return(data) + +def test_get_args(): + ''' test that get_args correctly parses args + ''' + res = survivalstan.formulas._get_args('function_name(arg1=1, arg2="2")') + eq_(res, {'arg1': 1, 'arg2': '2'}) + res = survivalstan.formulas._get_args('function_name(arg1=1, arg2 = "2")') + eq_(res, {'arg1': 1, 'arg2': '2'}) + +def test_as_id_str(): + ''' Test that as_id uniquely enumerates strings + ''' + res = as_id(np.array(['a','b','a','c'])) + ok_(array_equal(res, [1, 2, 1, 3])) + +def test_as_id_str_alpha(): + ''' Test that as_id uniquely enumerates strings in sort order + ''' + res = as_id(np.array(['b','a','b','c'])) + ok_(array_equal(res, [2, 1, 2, 3])) + +def test_as_id_int(): + ''' Test that as_id uniquely enumerates integers + ''' + res = as_id(np.array([10, 2, 10, 8])) + ok_(array_equal(res, [3, 1, 3, 2])) + +def test_as_id_formula(): + ''' Test that as_id enumerates strings within a patsy formula + ''' + test_formula = 'event_value + as_id(time) + as_id(subject_id) ~ X1 + X2' + df = get_test_data() + y, X = patsy.dmatrices(formula_like=test_formula, data=df) + res = pd.DataFrame(y) + # should have 3 columns & same number rows as df + eq_(res.shape[1], 3) + eq_(res.shape[0], df.shape[0]) + # check valid ids + check_valid_id(res[1], ref=df['time']) + check_valid_id(res[2], ref=df['subject_id']) + +def is_sequential(x): + ''' helper function to determine if set of list elements + form a sequential set + ''' + it = (int(el) for el in sorted(set(x))) + first = next(it) + return all(a == b for a, b in enumerate(it, first + 1)) + +def test_is_sequential(): + ''' test whether is_sequential test logic is correct + ''' + x = [1, 2, 3, 3, 5, 4] + ok_(is_sequential(x)) + y = [1, 3, 4] + ok_(not(is_sequential(y))) + +def check_valid_id(x, ref=None): + ''' helper function to validate whether x is an ID + ''' + ok_(is_sequential(x)) + eq_(np.min(x), 1) + # TODO test one-to-one & onto relationship + if ref is not None: + eq_(np.max(x), len(x.unique())) + return(True) + +def test_surv_df(df=get_test_data()): + ''' test surv_df: that surv stateful transform accepts time & event values + ''' + res = surv(time=df['time'], event_status=df['event_value']) + eq_(res.shape[1], 2) + eq_(res.shape[0], len(df.index)) + ok_(array_equal(set(res.columns), set(['time', 'event_status']))) # order doesn't matter + eq_(np.sum(res['event_status']), np.sum(df['event_value'])) + +def test_surv_df_with_bool(): + ''' test surv_df2: that surv stateful transform works with boolean event types + ''' + test_surv_df(get_alt_test_data()) + +def test_surv_df_subject(): + ''' test that surv stateful transform includes subject id when given + ''' + df = get_test_data() + res = surv(time=df['time'], event_status=df['event_value'], + subject=df['subject_id']) + eq_(res.shape[1], 3) + eq_(res.shape[0], len(df.index)) + ok_(array_equal(set(res.columns), set(['timepoint_id', 'event_status', 'subject_id']))) # order doesn't matter + check_valid_id(res['subject_id'], ref=df['subject_id']) + check_valid_id(res['timepoint_id'], ref=df['time']) + eq_(np.sum(res['event_status']), np.sum(df['event_value'])) + +def test_surv_df_formula(df=get_test_data()): + y, X = patsy.dmatrices('surv(time=time, event_status=event_value) ~ X1', + data=df) + res = pd.DataFrame(y) + eq_(res.shape[1], 2) + eq_(res.shape[0], len(df.index)) + eq_(np.sum(res[0]), np.sum(df['event_value'])) + eq_(np.sum(res[1]), np.sum(df['time'])) + +def test_surv_df_formula_with_bool(): + test_surv_df_formula(get_alt_test_data()) + +def test_surv_df_subject_formula(df=get_test_data()): + formula = 'surv(time=time, event_status=event_value, subject=subject_id) ~ X1' + y, X = patsy.dmatrices(formula, data=df) + res = pd.DataFrame(y) + # test quality of res + eq_(res.shape[1], 3) + eq_(res.shape[0], len(df.index)) + # results should be: + # 0: event_status + # 1. timeepoint_id + # 2: subject_id + eq_(np.sum(res[0]), np.sum(df['event_value'])) + check_valid_id(res[1], ref=df['time']) + check_valid_id(res[2], ref=df['subject_id']) + # test whether class ids are retained when predicting new data + (y.new, X.new) = patsy.build_design_matrices([y.design_info, + X.design_info], df.tail(n=50)) + res2 = pd.DataFrame(y.new) + resm = pd.merge(res, res2, on=[1,2], how='inner') + ok_(array_equal(resm['0_x'], resm['0_y'])) + +def test_surv_df_subject_formula_with_bool(): + test_surv_df_subject_formula(get_alt_test_data()) + +def test_SurvivalFactor_formula(): + # basic SurvivalFactor class + a = SurvivalFactor(code='surv(time=time, event_status=event_value)') + ok_(a._class is None) + # test with generic ModelDesc function + md = patsy.ModelDesc([patsy.Term([a])],[]) + df = get_test_data() + y, X = patsy.dmatrices(md, data=df) + eq_(y.shape[1], 2) + eq_(y.shape[0], len(df.index)) + ok_(y.design_info.terms[0].factors[0]._is_survival) ## should be True + ok_(issubclass(y.design_info.terms[0].factors[0]._class, SurvData)) + eq_(y.design_info.terms[0].factors[0]._type, 'wide') + +def _dict_keys_include(dict_obj, incl): + ''' Assert that all keys in `incl` exist in dict_obj.keys() + ''' + not_incl = [key for key in incl if key not in dict_obj.keys()] + if len(not_incl)>0: + print('Keys not found in obj: {}'.format(str(not_incl))) + ok_(len(not_incl)==0) + +def test_SurvivalModelDesc_wide_with_bool(): + test_SurvivalModelDesc_wide(get_alt_test_data()) + +def test_SurvivalModelDesc_wide(df=get_test_data()): + formula = 'surv(time=time, event_status=event_value) ~ X1' + my_formula = SurvivalModelDesc(formula) + y, X = patsy.dmatrices(my_formula, data=df) + # inspect data frame + eq_(y.shape[1], 2) + eq_(y.shape[0], len(df.index)) + # should only be one LHS term + eq_(len(y.design_info.terms), 1) + # should only be one LHS factor + eq_(len(y.design_info.terms[0].factors), 1) + # LHS should be of type 'survival' (wide) + ok_(y.design_info.terms[0].factors[0]._is_survival == True) + ok_(issubclass(y.design_info.terms[0].factors[0]._class, SurvData)) + eq_(y.design_info.terms[0].factors[0]._type, 'wide') + # stan_data & meta-data should be empty + _dict_keys_include(y.design_info.terms[0].factors[0]._stan_data, + incl=['event', 'y', 'N']) + _dict_keys_include(y.design_info.terms[0].factors[0]._meta_data, + incl=['df']) + +def test_SurvivalModelDesc_long_with_bool(): + test_SurvivalModelDesc_long(get_alt_test_data()) + +def test_SurvivalModelDesc_long(df=get_test_data()): + formula = 'surv(time=time, event_status=event_value, subject=subject_id) ~ X1' + my_formula = SurvivalModelDesc(formula) + y, X = patsy.dmatrices(my_formula, data=df) + # confirm shape of data returned + eq_(y.shape[1], 3) + eq_(y.shape[0], len(df.index)) + ok_(y.design_info.terms[0].factors[0]._is_survival) ## should be True + eq_(y.design_info.terms[0].factors[0]._class, LongSurvData) + eq_(y.design_info.terms[0].factors[0]._type, 'long') + # look for stan_data + stan_data = y.design_info.terms[0].factors[0]._stan_data + _dict_keys_include(stan_data, + ['t_obs','t_dur','T','S','N','event','t','s']) + # look for meta-data + meta_data = y.design_info.terms[0].factors[0]._meta_data + _dict_keys_include(meta_data, ['timepoint_id', 'subject_id']) + # can we extract meta-data? + eq_(meta_data['subject_id'].shape[1], 2) + eq_(meta_data['subject_id'].shape[0], 100) ## because simulated N=100 + # test ability to build design matrices on new data + y.new, X.new = patsy.build_design_matrices(design_infos=[y.design_info, + X.design_info], + data=df.tail(n=50)) + res1 = pd.DataFrame(y) + res2 = pd.DataFrame(y.new) + resm = pd.merge(res1, res2, on=[1, 2], how='inner') + ok_(array_equal(resm['0_x'], resm['0_y'])) + +def test_SurvivalModelDesc_long_with_group(): + df = get_test_data() + formula = 'surv(time=time, event_status=event_value, subject=subject_id, group=subject_id) ~ X1' + my_formula = SurvivalModelDesc(formula) + y, X = patsy.dmatrices(my_formula, data=df) + eq_(y.shape[1], 4) + eq_(y.shape[0], len(df.index)) + ok_(y.design_info.terms[0].factors[0]._is_survival) + eq_(y.design_info.terms[0].factors[0]._class, LongSurvData) + eq_(y.design_info.terms[0].factors[0]._type, 'long') + stan_data = y.design_info.terms[0].factors[0]._stan_data + _dict_keys_include(stan_data, + ['t_obs', 't_dur', 'T', 'S', 'G', 'N', 'event', + 't', 's', 'g']) + meta_data = y.design_info.terms[0].factors[0]._meta_data + _dict_keys_include(meta_data, + ['timepoint_id', 'subject_id', 'group_id']) + + + diff --git a/test/test_jointmodel_datasets.py b/test/test_jointmodel_datasets.py index c5dc9d6..56725e4 100644 --- a/test/test_jointmodel_datasets.py +++ b/test/test_jointmodel_datasets.py @@ -1,3 +1,5 @@ +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import statsmodels import survivalstan import random diff --git a/test/test_pem_survival_model.py b/test/test_pem_survival_model.py index f4f6c92..1fdc96a 100644 --- a/test/test_pem_survival_model.py +++ b/test/test_pem_survival_model.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np diff --git a/test/test_pem_survival_model_sim.py b/test/test_pem_survival_model_sim.py index adedda8..6696a81 100644 --- a/test/test_pem_survival_model_sim.py +++ b/test/test_pem_survival_model_sim.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np @@ -12,7 +11,7 @@ model_code = survivalstan.models.pem_survival_model make_inits = None -def test_pem_model_sim(**kwargs): +def test_pem_model_sim(): ''' Test weibull survival model on simulated dataset ''' dlong = sim_test_dataset_long() @@ -29,7 +28,6 @@ def test_pem_model_sim(**kwargs): seed = 9001, make_inits = make_inits, FIT_FUN = stancache.cached_stan_fit, - **kwargs ) ok_('fit' in testfit) ok_('coefs' in testfit) @@ -40,7 +38,30 @@ def test_pem_model_sim(**kwargs): return(testfit) -def test_pem_model_sim_covar(**kwargs): +def test_pem_model_sim_with_formula(): + ''' Test pem survival model using `surv` formula syntax + ''' + dlong = sim_test_dataset_long() + testfit = survivalstan.fit_stan_survival_model( + model_cohort = 'test model', + model_code = model_code, + df = dlong, + formula = 'surv(event_status=end_failure, time=end_time, subject=index) ~ 1', + iter = num_iter, + chains = 2, + seed = 9001, + make_inits = make_inits, + FIT_FUN = stancache.cached_stan_fit, + ) + ok_('fit' in testfit) + ok_('coefs' in testfit) + ok_('loo' in testfit) + survivalstan.utils.plot_coefs([testfit]) + survivalstan.utils.plot_coefs([testfit], trans=np.exp) + survivalstan.utils.plot_coefs([testfit], element='baseline') + return(testfit) + +def test_pem_model_sim_covar(): ''' Test weibull survival model on simulated dataset ''' dlong = sim_test_dataset_long() @@ -57,7 +78,6 @@ def test_pem_model_sim_covar(**kwargs): seed = 9001, make_inits = make_inits, FIT_FUN = stancache.cached_stan_fit, - **kwargs ) ok_('fit' in testfit) ok_('coefs' in testfit) @@ -67,3 +87,23 @@ def test_pem_model_sim_covar(**kwargs): survivalstan.utils.plot_coefs([testfit], element='baseline') return(testfit) +def test_pem_model_sim_covar_with_form(): + dlong = sim_test_dataset_long() + testfit = survivalstan.fit_stan_survival_model( + model_cohort = 'test model', + model_code = model_code, + df = dlong, + formula = 'surv(event_status=end_failure, time=end_time, subject=index) ~ age + sex', + iter = num_iter, + chains = 2, + seed = 9001, + make_inits = make_inits, + FIT_FUN = stancache.cached_stan_fit, + ) + ok_('fit' in testfit) + ok_('coefs' in testfit) + ok_('loo' in testfit) + survivalstan.utils.plot_coefs([testfit]) + survivalstan.utils.plot_coefs([testfit], trans=np.exp) + survivalstan.utils.plot_coefs([testfit], element='baseline') + return(testfit) diff --git a/test/test_pem_survival_model_timevarying.py b/test/test_pem_survival_model_timevarying.py index cac83cb..37f7bd5 100644 --- a/test/test_pem_survival_model_timevarying.py +++ b/test/test_pem_survival_model_timevarying.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np diff --git a/test/test_pem_survival_model_timevarying_sim.py b/test/test_pem_survival_model_timevarying_sim.py index 17c0b50..94e2110 100644 --- a/test/test_pem_survival_model_timevarying_sim.py +++ b/test/test_pem_survival_model_timevarying_sim.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np diff --git a/test/test_pem_survival_model_varcoefs.py b/test/test_pem_survival_model_varcoefs.py index d244da6..bfe811a 100644 --- a/test/test_pem_survival_model_varcoefs.py +++ b/test/test_pem_survival_model_varcoefs.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np @@ -41,6 +40,28 @@ def test_pem_model(**kwargs): survivalstan.utils.plot_coefs([testfit], element='baseline') return(testfit) +def test_pem_model_using_form(): + dlong = load_test_dataset_long() + testfit = survivalstan.fit_stan_survival_model( + model_cohort = 'test model', + model_code = model_code, + df = dlong, + formula = 'surv(event_status=end_failure, time=end_time, group=sex, subject=index) ~ age', + iter = num_iter, + chains = 2, + seed = 9001, + make_inits = make_inits, + FIT_FUN = stancache.cached_stan_fit, + ) + ok_('fit' in testfit) + ok_('coefs' in testfit) + ok_('loo' in testfit) + survivalstan.utils.plot_coefs([testfit]) + survivalstan.utils.plot_coefs([testfit], trans=np.exp) + survivalstan.utils.plot_coefs([testfit], trans=np.exp, element='grp_coefs') + survivalstan.utils.plot_coefs([testfit], element='baseline') + return(testfit) + def test_pem_null_model(force=True, **kwargs): ''' Test NULL survival model on flchain dataset ''' diff --git a/test/test_pem_survival_model_varcoefs_sim.py b/test/test_pem_survival_model_varcoefs_sim.py index 1598ccf..19113db 100644 --- a/test/test_pem_survival_model_varcoefs_sim.py +++ b/test/test_pem_survival_model_varcoefs_sim.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np diff --git a/test/test_weibull_survival_model.py b/test/test_weibull_survival_model.py index 045def2..3c2e687 100644 --- a/test/test_weibull_survival_model.py +++ b/test/test_weibull_survival_model.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np diff --git a/test/test_weibull_survival_model_sim.py b/test/test_weibull_survival_model_sim.py index c897eb2..e349992 100644 --- a/test/test_weibull_survival_model_sim.py +++ b/test/test_weibull_survival_model_sim.py @@ -1,6 +1,5 @@ - -import matplotlib as mpl -mpl.use('Agg') +from matplotlib import pyplot as plt +plt.switch_backend('Agg') import survivalstan from stancache import stancache import numpy as np