-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfunction.py
618 lines (510 loc) · 20.5 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# Copyright (c) 2023, Haruka Kiyohara, Ren Kishimoto, HAKUHODO Technologies Inc., and Hanjuku-kaso Co., Ltd. All rights reserved.
# Licensed under the Apache 2.0 License.
"""Mathematical Functions used in Real-Time Bidding (RTB) Simulation."""
from dataclasses import dataclass
from typing import Tuple, Union, Optional
import numpy as np
from sklearn.utils import check_scalar, check_random_state
from .base import (
BaseWinningPriceDistribution,
BaseClickAndConversionRate,
)
from ...utils import NormalDistribution
from ...utils import sigmoid
from ...utils import check_array
@dataclass
class WinningPriceDistribution(BaseWinningPriceDistribution):
"""Class to sample the winning price (i.e., second price) and compare it with the given bid price.
Imported as: :class:`rtbgym.envs.simulator.WinningDistribution`
Note
-------
Winning price distribution follows gamma distribution.
.. math::
p(x) = x^{k-1} \\frac{\\exp(- x / \\theta)}{\\theta^k \\Gamma(k)},
where :math:`\\Gamma(k) := (k-1)!` and :math:`k` and :math:`\\theta` are hyperparameters.
Tip
-------
Use :class:`BaseWinningPriceDistribution` to define a custom WinningPriceDistribution.
Parameters
-------
n_ads: int (> 0)
Number of ads.
n_users: int (> 0)
Number of users. (This is for API consistency)
ad_feature_dim: int (> 0)
Dimension of the ad feature vectors. (This is for API consistency)
user_feature_dim: int (> 0)
Dimension of the user feature vectors. (This is for API consistency)
step_per_episode: int (> 0)
Length of the CTR trend cycle. (This is for API consistency)
standard_bid_price_distribution: NormalDistribution, default=None
Distribution of the bid price whose average impression probability is expected to be 0.5.
minimum_standard_bid_price: {int, float}, default=None (> 0)
Minimum value for standard bid price.
If None, minimum_standard_bid_price is set to standard_bid_price_distribution.mean / 2.
random_state: int, default=None (>= 0)
Random state.
References
-------
Wen-Yuan Zhu, Wen-Yueh Shih, Ying-Hsuan Lee, Wen-Chih Peng, and Jiun-Long Huang.
"A Gamma-based Regression for Winning Price Estimation in Real-Time Bidding Advertising." 2017.
"""
n_ads: int
n_users: int
ad_feature_dim: int
user_feature_dim: int
step_per_episode: int
standard_bid_price_distribution: Optional[NormalDistribution] = (None,)
minimum_standard_bid_price: Optional[Union[int, float]] = None
random_state: Optional[int] = None
def __post_init__(self):
check_scalar(self.n_ads, name="n_ads", target_type=int, min_val=1)
if not isinstance(self.standard_bid_price_distribution, NormalDistribution):
raise ValueError(
"standard_bid_price_distribution must be a child class of NormalDistribution"
)
if self.minimum_standard_bid_price is None:
self.minimum_standard_bid_price = (
self.standard_bid_price_distribution.mean / 2
)
check_scalar(
self.minimum_standard_bid_price,
name="minimum_standard_bid_price",
target_type=(int, float),
min_val=0,
)
if self.random_state is None:
raise ValueError("random_state must be given")
self.random_ = check_random_state(self.random_state)
if self.standard_bid_price_distribution is None:
self.standard_bid_price_distribution = NormalDistribution(
mean=50,
std=5,
random_state=self.random_state,
)
standard_bid_prices = np.clip(
self.standard_bid_price_distribution.sample(self.n_ads),
self.minimum_standard_bid_price,
None,
)
self.ks = self.random_.normal(
loc=50,
scale=5,
size=self.n_ads,
)
self.thetas = self.random_.normal(
loc=standard_bid_prices * 0.02,
scale=(standard_bid_prices * 0.02) / 5,
size=self.n_ads,
)
@property
def standard_bid_price(self):
return self.standard_bid_price_distribution.mean
def sample_outcome(
self,
bid_prices: np.ndarray,
ad_ids: np.ndarray,
user_ids: np.ndarray,
ad_feature_vector: np.ndarray,
user_feature_vector: np.ndarray,
timestep: Union[int, np.ndarray],
) -> Tuple[np.ndarray]:
"""Calculate impression probability for given bid price.
Parameters
-------
bid_prices: array-like of shape (search_volume, )
Bid price for each auction.
ad_ids: array-like of shape (search_volume/n_samples, )
Ad ids used for each auction. (This is for API consistency)
user_ids: array-like of shape (search_volume/n_samples, )
User ids used for each auction. (This is for API consistency)
ad_feature_vector: array-like of shape (search_volume/n_samples, ad_feature_dim)
Ad feature vector for each auction.
user_feature_vector: array-like of shape (search_volume/n_samples, user_feature_dim)
User feature vector for each auction.
timestep: {int, array-like of shape (n_samples, )}
Timestep in the RL environment.
Returns
-------
impressions: ndarray of shape (search_volume, )
Whether impression occurred for each auction.
winning_prices: ndarray of shape (search_volume, )
Sampled winning price for each auction.
"""
check_array(
bid_prices,
name="bid_prices",
expected_dim=1,
min_val=0,
)
check_array(
ad_ids,
name="ad_ids",
expected_dim=1,
expected_dtype=int,
min_val=0,
max_val=self.n_ads - 1,
)
winning_prices = np.clip(
self.random_.gamma(shape=self.ks[ad_ids], scale=self.thetas[ad_ids]),
1,
None,
)
impressions = winning_prices < bid_prices
return impressions.astype(int), winning_prices.astype(int)
@dataclass
class ClickThroughRate(BaseClickAndConversionRate):
"""Class to calculate ground-truth CTR (i.e., click per impression).
Imported as: :class:`rtbgym.envs.simulator.ClickThroughRate`
Note
-------
We define two coefficient, context coefficient (`coef`) and time coefficient (`time_coef`).
First, the value is calculated linearly from context vector and coef by inner product.
Then, we multiply the value with `time_coef` and gain (ground-truth) CTR.
In short, CTR is calculated as follows.
CTR = (context @ coef) * time_coef, where @ denotes inner product.
Tip
-------
Use :class:`BaseClickAndConversionRate` to define a custom ClickThroughRate.
Parameters
-------
n_ads: int (> 0)
Number of ads. (This is for API consistency)
n_users: int (> 0)
Number of users. (This is for API consistency)
ad_feature_dim: int (> 0)
Dimension of the ad feature vectors.
user_feature_dim: int (> 0)
Dimension of the user feature vectors.
step_per_episode: int (> 0)
Length of the CTR trend cycle.
random_state: int, default=None (>= 0)
Random state.
"""
n_ads: int
n_users: int
ad_feature_dim: int
user_feature_dim: int
step_per_episode: int
random_state: Optional[int] = None
def __post_init__(self):
check_scalar(
self.ad_feature_dim,
name="ad_feature_dim",
target_type=int,
min_val=1,
)
check_scalar(
self.user_feature_dim,
name="user_feature_dim",
target_type=int,
min_val=1,
)
check_scalar(
self.step_per_episode,
name="step_per_episode",
target_type=int,
min_val=1,
)
if self.random_state is None:
raise ValueError("random_state must be given")
self.random_ = check_random_state(self.random_state)
coef_dim = self.ad_feature_dim + self.user_feature_dim
self.coef = self.random_.normal(loc=0.0, scale=0.5 / coef_dim, size=coef_dim)
# define intermittent time_coef using trigonometric function
n_wave = 10
time_coef_weight = self.random_.beta(5, 20, size=n_wave)
start_point = self.random_.uniform(size=n_wave)
time_coef = np.zeros(self.step_per_episode + 20)
for i in range(10):
time_coef += time_coef_weight[i] * (
np.cos(
(
np.arange(self.step_per_episode + 20) * (i + 1) * np.pi
+ start_point[i] * 2 * np.pi
)
/ self.step_per_episode
)
+ 1
)
start_idx = self.random_.randint(5, 15)
self.time_coef = (
time_coef[start_idx : start_idx + self.step_per_episode] / n_wave
)
def calc_prob(
self,
ad_ids: np.ndarray,
user_ids: np.ndarray,
ad_feature_vector: np.ndarray,
user_feature_vector: np.ndarray,
timestep: Union[int, np.ndarray],
) -> np.ndarray:
"""Calculate CTR (i.e., click per impression).
Note
-------
CTR is calculated using both context coefficient (`coef`) and time coefficient (`time_coef`).
CTR = (context @ coef) * time_coef, where @ denotes inner product.
Parameters
-------
ad_ids: array-like of shape (search_volume/n_samples, )
Ad ids used for each auction. (not used, but for API consistency)
user_ids: array-like of shape (search_volume/n_samples, )
User ids used for each auction. (not used, but for API consistency)
ad_feature_vector: array-like of shape (search_volume/n_samples, ad_feature_dim)
Ad feature vector for each auction.
user_feature_vector: array-like of shape (search_volume/n_samples, user_feature_dim)
User feature vector for each auction.
timestep: {int, array-like of shape (n_samples, )}
Timestep in the RL environment.
Returns
-------
ctrs: ndarray of shape (search_volume/n_samples, )
Ground-truth CTR (i.e., click per impression) for each auction.
"""
check_array(
ad_feature_vector,
name="ad_feature_vector",
expected_dim=2,
)
check_array(
user_feature_vector,
name="user_feature_vector",
expected_dim=2,
)
if ad_feature_vector.shape[1] != self.ad_feature_dim:
raise ValueError(
"Expected `ad_feature_dim.shape[1] == ad_feature_dim`, but found False"
)
if user_feature_vector.shape[1] != self.user_feature_dim:
raise ValueError(
"Expected `user_feature_dim.shape[1] == user_feature_dim`, but found False"
)
if ad_feature_vector.shape[0] != user_feature_vector.shape[0]:
raise ValueError(
"Expected ad_feature_dim and user_feature_dim must have the same length"
)
if not (isinstance(timestep, int) and timestep >= 0) and not (
isinstance(timestep, np.ndarray)
and np.issubsctype(timestep, int)
and timestep.ndim == 1
and timestep.min() >= 0
):
raise ValueError(
"timestep must be an non-negative integer or an 1-dimensional NDArray of non-negative integers"
)
contexts = np.concatenate([ad_feature_vector, user_feature_vector], axis=1)
ctrs = sigmoid(contexts @ self.coef.T) * self.time_coef[timestep].flatten()
return ctrs
def sample_outcome(
self,
ad_ids: np.ndarray,
user_ids: np.ndarray,
ad_feature_vector: np.ndarray,
user_feature_vector: np.ndarray,
timestep: Union[int, np.ndarray],
) -> np.ndarray:
"""Stochastically determine whether click occurs in impression=True case.
Parameters
-------
ad_ids: array-like of shape (search_volume/n_samples, )
Ad ids used for each auction. (not used, but for API consistency)
user_ids: array-like of shape (search_volume/n_samples, )
User ids used for each auction. (not used, but for API consistency)
ad_feature_vector: array-like of shape (search_volume/n_samples, ad_feature_dim)
Ad feature vector for each auction.
user_feature_vector: array-like of shape (search_volume/n_samples, user_feature_dim)
User feature vector for each auction.
timestep: {int, array-like of shape (n_samples, )}
Timestep in the RL environment.
Returns
-------
clicks: array-like of shape (search_volume/n_samples, )
Whether click occurs when impression=True.
"""
ctrs = self.calc_prob(
timestep=timestep,
ad_ids=ad_ids,
user_ids=user_ids,
ad_feature_vector=ad_feature_vector,
user_feature_vector=user_feature_vector,
)
clicks = self.random_.rand(len(ad_ids)) < ctrs
return clicks.astype(int)
@dataclass
class ConversionRate(BaseClickAndConversionRate):
"""Class to calculate ground-truth CVR (i.e., conversion per click).
Imported as: :class:`rtbgym.envs.simulator.ConversionRate`
Note
-------
We define two coefficient, context coefficient (`coef`) and time coefficient (`time_coef`).
First, the value is calculated linearly from context vector and coef by inner product.
Then, we multiply the value with `time_coef` and gain (ground-truth) CVR.
In short, CVR is calculated as follows.
CVR = (context @ coef) * time_coef, where @ denotes inner product.
Tip
-------
Use :class:`BaseClickAndConversionRate` to define a custom ConversionRate.
Parameters
-------
n_ads: int (> 0)
Number of ads. (This is for API consistency)
n_users: int (> 0)
Number of users. (This is for API consistency)
ad_feature_dim: int (> 0)
Dimension of the ad feature vectors.
user_feature_dim: int (> 0)
Dimension of the user feature vectors.
step_per_episode: int (> 0)
Length of the CVR trend cycle.
random_state: int, default=None (>= 0)
Random state.
"""
n_ads: int
n_users: int
ad_feature_dim: int
user_feature_dim: int
step_per_episode: int
random_state: Optional[int] = None
def __post_init__(self):
check_scalar(
self.ad_feature_dim,
name="ad_feature_dim",
target_type=int,
min_val=1,
)
check_scalar(
self.user_feature_dim,
name="user_feature_dim",
target_type=int,
min_val=1,
)
check_scalar(
self.step_per_episode,
name="step_per_episode",
target_type=int,
min_val=1,
)
if self.random_state is None:
raise ValueError("random_state must be given")
self.random_ = check_random_state(self.random_state)
coef_dim = self.ad_feature_dim + self.user_feature_dim
self.coef = self.random_.normal(loc=0.0, scale=0.5 / coef_dim, size=coef_dim)
# define intermittent time_coef using trigonometric function
n_wave = 10
time_coef_weight = self.random_.beta(10, 15, size=n_wave)
start_point = self.random_.uniform(size=n_wave)
time_coef = np.zeros(self.step_per_episode + 20)
for i in range(10):
time_coef += time_coef_weight[i] * (
np.cos(
(
np.arange(self.step_per_episode + 20) * (i + 1) * np.pi
+ start_point[i] * 2 * np.pi
)
/ self.step_per_episode
)
+ 1
)
start_idx = self.random_.randint(5, 15)
self.time_coef = (
time_coef[start_idx : start_idx + self.step_per_episode] / n_wave
)
def calc_prob(
self,
ad_ids: np.ndarray,
user_ids: np.ndarray,
ad_feature_vector: np.ndarray,
user_feature_vector: np.ndarray,
timestep: Union[int, np.ndarray],
) -> np.ndarray:
"""Calculate CVR (i.e., conversion per click) using context vectors.
Note
-------
CVR is calculated using both context coefficient (`coef`) and time coefficient (`time_coef`).
CVR = (context @ coef) * time_coef, where @ denotes inner product.
Parameters
-------
ad_ids: array-like of shape (search_volume/n_samples, )
Ad ids used for each auction. (not used, but for API consistency)
user_ids: array-like of shape (search_volume/n_samples, )
User ids used for each auction. (not used, but for API consistency)
ad_feature_vector: array-like of shape (search_volume/n_samples, ad_feature_dim)
Ad feature vector for each auction.
user_feature_vector: array-like of shape (search_volume/n_samples, user_feature_dim)
User feature vector for each auction.
timestep: {int, array-like of shape (n_samples, )}
Timestep in the RL environment.
Returns
-------
cvrs: ndarray of shape (search_volume/n_samples, )
Ground-truth CVR (i.e., conversion per click) for each auction.
"""
check_array(
ad_feature_vector,
name="ad_feature_vector",
expected_dim=2,
)
check_array(
user_feature_vector,
name="user_feature_vector",
expected_dim=2,
)
if ad_feature_vector.shape[1] != self.ad_feature_dim:
raise ValueError(
"Expected `ad_feature_dim.shape[1] == ad_feature_dim`, but found False"
)
if user_feature_vector.shape[1] != self.user_feature_dim:
raise ValueError(
"Expected `user_feature_dim.shape[1] == user_feature_dim`, but found False"
)
if ad_feature_vector.shape[0] != user_feature_vector.shape[0]:
raise ValueError(
"Expected ad_feature_dim and user_feature_dim must have the same length"
)
if not (isinstance(timestep, int) and timestep >= 0) and not (
isinstance(timestep, np.ndarray)
and np.issubsctype(timestep, int)
and timestep.ndim == 1
and timestep.min() >= 0
):
raise ValueError(
"timestep must be an non-negative integer or an 1-dimensional NDArray of non-negative integers"
)
contexts = np.concatenate([ad_feature_vector, user_feature_vector], axis=1)
cvrs = sigmoid(contexts @ self.coef.T) * self.time_coef[timestep].flatten()
return cvrs
def sample_outcome(
self,
ad_ids: np.ndarray,
user_ids: np.ndarray,
ad_feature_vector: np.ndarray,
user_feature_vector: np.ndarray,
timestep: Union[int, np.ndarray],
) -> np.ndarray:
"""Stochastically determine whether conversion occurs in click=True case.
Parameters
-------
ad_ids: array-like of shape (search_volume/n_samples, )
Ad ids used for each auction. (not used, but for API consistency)
user_ids: array-like of shape (search_volume/n_samples, )
User ids used for each auction. (not used, but for API consistency)
ad_feature_vector: array-like of shape (search_volume/n_samples, ad_feature_dim)
Ad feature vector for each auction.
user_feature_vector: array-like of shape (search_volume/n_samples, user_feature_dim)
User feature vector for each auction.
timestep: {int, array-like of shape (n_samples, )}
Timestep in the RL environment.
Returns
-------
conversions: ndarray of shape (search_volume/n_samples, )
Whether conversion occurs when click=True.
"""
cvrs = self.calc_prob(
ad_ids=ad_ids,
user_ids=user_ids,
ad_feature_vector=ad_feature_vector,
user_feature_vector=user_feature_vector,
timestep=timestep,
)
conversions = self.random_.rand(len(ad_ids)) < cvrs
return conversions.astype(int)