-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate.py
68 lines (58 loc) · 2.4 KB
/
aggregate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import pandas as pd
from config import get_fitness_info
import itertools
from tqdm import tqdm
from utils.eval_utils import distance
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--protein', type=str, choices=['GFP', 'AAV'], required=True)
parser.add_argument('--level', type=str, choices=['hard', 'medium'], required=True)
parser.add_argument('--alg', type=str, required=True)
args = parser.parse_args()
protein = args.protein
level = args.level
inits = pd.read_csv(f'data/{protein}/{level}.csv')
inits = inits.sort_values(by='target').iloc[:128]['sequence'].tolist()
highs = pd.read_csv(f'data/{protein}/all.csv')[['sequence', 'target']]
highs = highs[highs['target'] > highs['target'].quantile(q=0.9).item()]
highs = highs['sequence'].tolist()
length, min_fitness, max_fitness = get_fitness_info(protein)
summary = []
if args.alg == 'ours':
target = 'target'
else:
target = 'true_score'
for run in tqdm(range(5)):
ddir = f'{args.alg}/{protein}_{level}_{run}.csv'
sequences = pd.read_csv(ddir)
for r in tqdm(range(1, 16)):
data = sequences[sequences['round']==r]
data = data.sort_values(by=target,ascending=False).iloc[:128]
if args.alg == 'ours':
data[target] = (data[target] - min_fitness) / (max_fitness - min_fitness)
top_fitness = data.iloc[:16][target].mean().item()
median_fitness = data[target].median().item()
seqs = data['sequence'].tolist()
distances = []
for s1, s2 in itertools.combinations(seqs, 2):
distances.append(distance(s1, s2))
diversity = np.median(distances)
distances = []
for j in seqs:
dist_j = []
for i in inits:
dist_j.append(distance(i,j))
distances.append(min(dist_j))
novelty = np.median(distances)
distances = []
for j in seqs:
dist_j = []
for i in highs:
dist_j.append(distance(i,j))
distances.append(min(dist_j))
high = np.median(distances)
instance = [run, r, top_fitness, median_fitness, diversity, novelty, high]
summary.append(instance)
results = pd.DataFrame(summary, columns=['run','round','top fitness', 'median fitness','diversity', 'novelty', 'high'])
results.to_csv(f'summary/{args.alg}/{protein}_{level}_total.csv', index=False)