forked from ennauata/housegan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
276 lines (237 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import os
import numpy as np
import math
from floorplan_dataset_maps import FloorplanGraphDataset, floorplan_collate_fn
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch
from PIL import Image, ImageDraw, ImageOps
from utils import combine_images_maps, rectangle_renderer
from models import Discriminator, Generator, compute_gradient_penalty, weights_init_normal
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=1000000, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=32, help="size of the batches")
parser.add_argument("--g_lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--d_lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=128, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--sample_interval", type=int, default=50000, help="interval between image sampling")
parser.add_argument("--exp_folder", type=str, default='exp', help="destination folder")
parser.add_argument("--n_critic", type=int, default=1, help="number of training steps for discriminator per iter")
parser.add_argument("--target_set", type=str, default='A', help="which split to remove")
opt = parser.parse_args()
cuda = True if torch.cuda.is_available() else False
lambda_gp = 10
multi_gpu = True
# exp_folder = "{}_{}_g_lr_{}_d_lr_{}_bs_{}_ims_{}_ld_{}_b1_{}_b2_{}".format(opt.exp_folder, opt.target_set, opt.g_lr, opt.d_lr, \
# opt.batch_size, opt.img_size, \
# opt.latent_dim, opt.b1, opt.b2)
exp_folder = "{}_{}".format(opt.exp_folder, opt.target_set)
os.makedirs("./exps/"+exp_folder, exist_ok=True)
os.makedirs("./checkpoints/", exist_ok=True)
os.makedirs("./temp/", exist_ok=True)
# Loss function
adversarial_loss = torch.nn.BCEWithLogitsLoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Support to multiple GPUs
def graph_scatter(inputs, device_ids, indices):
nd_to_sample, ed_to_sample = indices
batch_size = (torch.max(nd_to_sample) + 1).detach().cpu().numpy()
N = len(device_ids)
shift = np.round(np.linspace(0, batch_size, N, endpoint=False)).astype(int)
shift = list(shift) + [int(batch_size)]
outputs = []
for i in range(len(device_ids)):
if len(inputs) <= 3:
x, y, z = inputs
else:
x, y, z, w = inputs
inds = torch.where((nd_to_sample>=shift[i])&(nd_to_sample<shift[i+1]))[0]
x_split = x[inds]
y_split = y[inds]
inds = torch.where(nd_to_sample<shift[i])[0]
min_val = inds.size(0)
inds = torch.where((ed_to_sample>=shift[i])&(ed_to_sample<shift[i+1]))[0]
z_split = z[inds].clone()
z_split[:, 0] -= min_val
z_split[:, 2] -= min_val
if len(inputs) > 3:
inds = torch.where((nd_to_sample>=shift[i])&(nd_to_sample<shift[i+1]))[0]
w_split = (w[inds]-shift[i]).long()
_out = (x_split.to(device_ids[i]), \
y_split.to(device_ids[i]), \
z_split.to(device_ids[i]), \
w_split.to(device_ids[i]))
else:
_out = (x_split.to(device_ids[i]), \
y_split.to(device_ids[i]), \
z_split.to(device_ids[i]))
outputs.append(_out)
return outputs
def data_parallel(module, _input, indices):
device_ids = list(range(torch.cuda.device_count()))
output_device = device_ids[0]
replicas = nn.parallel.replicate(module, device_ids)
inputs = graph_scatter(_input, device_ids, indices)
replicas = replicas[:len(inputs)]
outputs = nn.parallel.parallel_apply(replicas, inputs)
return nn.parallel.gather(outputs, output_device)
# # Initialize weights
# generator.apply(weights_init_normal)
# discriminator.apply(weights_init_normal)
# Visualize a single batch
def visualizeSingleBatch(fp_loader_test, opt):
with torch.no_grad():
# Unpack batch
mks, nds, eds, nd_to_sample, ed_to_sample = next(iter(fp_loader_test))
real_mks = Variable(mks.type(Tensor))
given_nds = Variable(nds.type(Tensor))
given_eds = eds
# Generate a batch of images
z_shape = [real_mks.shape[0], opt.latent_dim]
z = Variable(Tensor(np.random.normal(0, 1, tuple(z_shape))))
gen_mks = generator(z, given_nds, given_eds)
# Generate image tensors
real_imgs_tensor = combine_images_maps(real_mks, given_nds, given_eds, \
nd_to_sample, ed_to_sample)
fake_imgs_tensor = combine_images_maps(gen_mks, given_nds, given_eds, \
nd_to_sample, ed_to_sample)
# Save images
save_image(real_imgs_tensor, "./exps/{}/{}_real.png".format(exp_folder, batches_done), \
nrow=12, normalize=False)
save_image(fake_imgs_tensor, "./exps/{}/{}_fake.png".format(exp_folder, batches_done), \
nrow=12, normalize=False)
return
# Configure data loader
rooms_path = '/home/nelson/Workspace/autodesk/housegan/'
fp_dataset_train = FloorplanGraphDataset(rooms_path, transforms.Normalize(mean=[0.5], std=[0.5]), target_set=opt.target_set)
fp_loader = torch.utils.data.DataLoader(fp_dataset_train,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
collate_fn=floorplan_collate_fn)
fp_dataset_test = FloorplanGraphDataset(rooms_path, transforms.Normalize(mean=[0.5], std=[0.5]), target_set=opt.target_set, split='eval')
fp_loader_test = torch.utils.data.DataLoader(fp_dataset_test,
batch_size=64,
shuffle=False,
num_workers=opt.n_cpu,
collate_fn=floorplan_collate_fn)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.g_lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.d_lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# ----------
# Training
# ----------
batches_done = 0
for epoch in range(opt.n_epochs):
for i, batch in enumerate(fp_loader):
# Unpack batch
mks, nds, eds, nd_to_sample, ed_to_sample = batch
indices = nd_to_sample, ed_to_sample
# Adversarial ground truths
batch_size = torch.max(nd_to_sample) + 1
valid = Variable(Tensor(batch_size, 1)\
.fill_(1.0), requires_grad=False)
fake = Variable(Tensor(batch_size, 1)\
.fill_(0.0), requires_grad=False)
# Configure input
real_mks = Variable(mks.type(Tensor))
given_nds = Variable(nds.type(Tensor))
given_eds = eds
# Set grads on
for p in discriminator.parameters():
p.requires_grad = True
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Generate a batch of images
z_shape = [real_mks.shape[0], opt.latent_dim]
z = Variable(Tensor(np.random.normal(0, 1, tuple(z_shape))))
if multi_gpu:
gen_mks = data_parallel(generator, (z, given_nds, given_eds), indices)
else:
gen_mks = generator(z, given_nds, given_eds)
# Real images
if multi_gpu:
real_validity = data_parallel(discriminator, \
(real_mks, given_nds, \
given_eds, nd_to_sample), \
indices)
else:
real_validity = discriminator(real_mks, given_nds, given_eds, nd_to_sample)
# Fake images
if multi_gpu:
fake_validity = data_parallel(discriminator, \
(gen_mks.detach(), given_nds.detach(), \
given_eds.detach(), nd_to_sample.detach()),\
indices)
else:
fake_validity = discriminator(gen_mks.detach(), given_nds.detach(), \
given_eds.detach(), nd_to_sample.detach())
# Measure discriminator's ability to classify real from generated samples
if multi_gpu:
gradient_penalty = compute_gradient_penalty(discriminator, real_mks.data, \
gen_mks.data, given_nds.data, \
given_eds.data, nd_to_sample.data,\
data_parallel, ed_to_sample.data)
else:
gradient_penalty = compute_gradient_penalty(discriminator, real_mks.data, \
gen_mks.data, given_nds.data, \
given_eds.data, nd_to_sample.data, \
None, None)
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) \
+ lambda_gp * gradient_penalty
# Update discriminator
d_loss.backward()
optimizer_D.step()
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Set grads off
for p in discriminator.parameters():
p.requires_grad = False
# Train the generator every n_critic steps
if i % opt.n_critic == 0:
# Generate a batch of images
z = Variable(Tensor(np.random.normal(0, 1, tuple(z_shape))))
gen_mks = generator(z, given_nds, given_eds)
# Score fake images
if multi_gpu:
fake_validity = data_parallel(discriminator, \
(gen_mks, given_nds, \
given_eds, nd_to_sample), \
indices)
else:
fake_validity = discriminator(gen_mks, given_nds, given_eds, nd_to_sample)
# Update generator
g_loss = -torch.mean(fake_validity)
g_loss.backward()
optimizer_G.step()
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(fp_loader), d_loss.item(), g_loss.item()))
if (batches_done % opt.sample_interval == 0) and batches_done:
torch.save(generator.state_dict(), './checkpoints/{}_{}.pth'.format(exp_folder, batches_done))
visualizeSingleBatch(fp_loader_test, opt)
batches_done += opt.n_critic