-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtask.py
257 lines (228 loc) · 9.24 KB
/
task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
from transformers import DataCollatorForSeq2Seq, T5Tokenizer
from datasets import arrow_dataset
from torch.utils.data import DataLoader
import datasets
from torch.utils.data import Subset
import torch
from functools import partial
import pandas as pd
import ast
import json
import pdb
class Task:
def __init__(self, task_name, tokenizer, soft_labels):
self.task_name = task_name
DATA_DIR = os.getenv("DATA_PATH")
self.path = os.path.join(DATA_DIR, task_name)
self.tokenizer = tokenizer
self.load_config()
self.load_data()
self.soft_labels = soft_labels
def load_config(self):
with open(os.path.join(self.path, "config.json")) as f:
config = json.load(f)
self.is_classification = config["is_classification"]
if self.is_classification:
self.classes = config["classes"]
self.soft_classes = config["soft_classes"]
self.data_path = config["training_data"]
def load_data(self):
data = {}
for split, split_path in self.data_path.items():
fin = pd.read_csv(
os.path.join(self.path, split_path),
)
if self.task_name == "ag_news":
fin = pd.read_csv(os.path.join(self.path, split_path), nrows=10000)
if split == "test":
fin = pd.read_csv(os.path.join(self.path, split_path), nrows=1000)
inputs = list(fin["input"].values.astype(str))
gold_hard = list(fin["gold_hard"].values.astype(str))
if "llm_soft" in fin.columns:
llm_soft = list(fin["llm_soft"].values.astype(str))
if "llm_hard" in fin.columns:
llm_hard = list(fin["llm_hard"].values.astype(str))
data[split] = arrow_dataset.Dataset.from_dict(
{
"inputs": inputs,
"gold_hard": gold_hard,
"llm_hard": llm_hard,
"llm_soft": llm_soft,
}
)
self.raw_data = datasets.DatasetDict(data)
def load_classes(self):
self.classes_dict = {}
self.classes_dict_gold = {}
for idx, class_name in enumerate(self.classes):
target = self.tokenizer.encode(class_name, add_special_tokens=False)[0]
self.classes_dict[self.soft_classes[idx]] = target
self.classes_dict_gold[class_name] = target
return
def preprocess(self, accelerator, args, model=None):
def process_data_to_model_inputs(is_eval: bool, batch):
out = {}
# Tokenizer will automatically set [BOS] <text> [EOS]
out["input_ids"] = self.tokenizer(
batch["inputs"],
padding=False,
max_length=args.max_length,
truncation=True,
).input_ids
if self.is_classification:
out["gold_soft"] = make_soft(batch["gold_hard"], target="gold")
if not self.soft_labels:
out["llm_soft"] = make_soft(batch["llm_hard"], target="llm")
else:
out["llm_soft"] = select_classes(batch["llm_soft"])
if is_eval:
out["gold_hard"] = batch["gold_hard"]
out["llm_hard"] = batch["llm_hard"]
else:
# limited to max_out_length
out["gold_hard"] = self.tokenizer(
batch["gold_hard"],
padding=False,
max_length=args.max_out_length,
truncation=True,
).input_ids
out["llm_hard"] = self.tokenizer(
batch["llm_hard"],
padding=False,
max_length=args.max_out_length,
truncation=True,
).input_ids
return out
def collate_for_eval(default_collate, batch):
inputs = [{"input_ids": x["input_ids"]} for x in batch]
out = default_collate(inputs)
out["llm_hard"] = [x["llm_hard"] for x in batch]
out["gold_hard"] = [x["gold_hard"] for x in batch]
if self.is_classification:
out["llm_soft"] = [x["llm_soft"] for x in batch]
out["gold_soft"] = [x["gold_soft"] for x in batch]
return out
def select_classes(batch_soft_labels):
new_batch = []
for soft_labels in batch_soft_labels:
soft_labels = ast.literal_eval(soft_labels)
soft_labels = soft_labels[0]
new_soft_labels = []
for key in self.soft_classes:
if key in soft_labels:
new_soft_labels.append(soft_labels[key])
else:
new_soft_labels.append(-100)
new_batch.append(new_soft_labels)
return new_batch
def make_soft(batch_hard_labels, target):
if target == "gold":
classes_dict = self.classes_dict_gold
else:
classes_dict = self.classes_dict
new_batch = []
for hard_label in batch_hard_labels:
new_soft_labels = []
for label in classes_dict.keys():
if label == hard_label:
new_soft_labels.append(0)
else:
new_soft_labels.append(-100)
new_batch.append(new_soft_labels)
return new_batch
data_collator = DataCollatorForSeq2Seq(
self.tokenizer, model=model, padding="longest"
)
eval_collator = partial(collate_for_eval, data_collator)
processed_data = {}
for split in self.data_path.keys():
max_samples = getattr(args, f"{split}_samples")
self.raw_data[split] = random_subset(
dataset=self.raw_data[split],
max_samples=max_samples,
seed=args.seed,
)
self.raw_data[split] = arrow_dataset.Dataset.from_list(
list(self.raw_data[split])
)
processed_data[split] = self.raw_data[split].map(
partial(process_data_to_model_inputs, split in ["test"]),
batched=True,
batch_size=args.per_device_eval_batch_size,
remove_columns=self.raw_data[split].column_names,
)
online_dataloader = DataLoader(
processed_data["train"],
shuffle=True,
collate_fn=data_collator,
batch_size=1,
)
test_dataloader = DataLoader(
processed_data["test"],
collate_fn=eval_collator,
batch_size=args.per_device_eval_batch_size,
)
idx_wrong = []
idx_right = []
for idx in range(len(processed_data["test"])):
tgt = (processed_data["test"]["gold_soft"][idx]).index(
max(processed_data["test"]["gold_soft"][idx])
)
llm_pred = (processed_data["test"]["llm_soft"][idx]).index(
max(processed_data["test"]["llm_soft"][idx])
)
if tgt != llm_pred:
idx_wrong.append(idx)
else:
idx_right.append(idx)
test_wrong = processed_data["test"].select(idx_wrong)
test_wrong_dataloader = DataLoader(
test_wrong,
collate_fn=eval_collator,
batch_size=args.per_device_eval_batch_size,
)
online_dataloader, test_dataloader, test_wrong_dataloader = accelerator.prepare(
online_dataloader,
test_dataloader,
test_wrong_dataloader,
)
self.data = {
"online_dataloader": online_dataloader,
"test_dataloader": test_dataloader,
"test_wrong_dataloader": test_wrong_dataloader,
}
return
def random_subset(dataset, max_samples: int, seed: int = 42):
if max_samples >= len(dataset) or max_samples == -1:
return dataset
generator = torch.Generator().manual_seed(seed)
perm = torch.randperm(len(dataset), generator=generator)
return Subset(dataset, perm[:max_samples].tolist())
def get_task(accelerator, args, model=None):
tokenizer = T5Tokenizer.from_pretrained(
args.model_name_or_path, model_max_length=args.max_length
)
# load config, data, and preprocess
task = Task(args.task_name, tokenizer, args.soft_labels)
if task.is_classification:
task.load_classes()
task.preprocess(accelerator, args, model=None)
return task
def make_datacollator(args, tokenizer, processed_data, model=None):
processed_data = arrow_dataset.Dataset.from_dict(processed_data)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, padding="longest")
aux = processed_data.train_test_split(test_size=0.1)
train_dataloader = DataLoader(
aux["train"],
shuffle=True,
collate_fn=data_collator,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
aux["test"],
shuffle=True,
collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size,
)
return train_dataloader, eval_dataloader