-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
166 lines (146 loc) · 5.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from utils import (
parse_args,
setup_basics,
neptune_log,
set_seeds,
)
from utils.online_logs import (
update_online_metrics,
reset_avg_online_metrics,
get_online_metrics_mult,
log_avg_online,
log_test,
log_final,
)
import numpy as np
from metrics import Metric
from handler import handler_LLM
from student import student
from accelerate import Accelerator
from accelerate.logging import get_logger
from task import (
get_task,
make_datacollator,
)
import pdb
import copy
import gc
logger = get_logger(__name__)
def main():
args = parse_args()
accelerator = Accelerator()
run = setup_basics(accelerator, logger, args)
# Pre-Logging
run["args"] = vars(args)
set_seeds(args.seed)
task = get_task(
accelerator=accelerator,
args=args,
model=None,
)
if not task.is_classification:
args.is_classification = False
else:
args.soft_labels = (
True # for classification, we always use a soft labels objective
)
online_dataloader = task.data["online_dataloader"]
st = student(args, task, run, accelerator)
budgets = [int(b) for b in args.budget.split(",")]
wrap = handler_LLM(args, st, task)
metric = Metric(args, soft=args.soft_labels, online=True)
# Initialize student model
# If we put a checkpoint, we load the model and we skip the first $checkpoint steps
if args.checkpoint != "-1":
PATH = "checkpoints/" + args.task_name + "/" + str(args.checkpoint) + ".pt"
if args.n_init == 100 and args.strategy == "MV":
PATH = (
"checkpoints/"
+ args.task_name
+ "/"
+ str(args.checkpoint.split("_")[0])
+ "_500.pt"
)
st.init_checkpoint(PATH)
wrap = handler_LLM(args, st, task)
wrap.student_vec = []
if args.strategy == "MV":
for idx in range(5):
st_aux = student(args, task, run, accelerator)
aux_name = int(args.checkpoint.split("_")[1])
if args.n_init == 100:
aux_name = 500
PATH_AUX = (
"checkpoints/"
+ args.task_name
+ "/"
+ str(args.checkpoint.split("_")[0])
+ "_"
+ str(aux_name - 400 + 100 * idx)
+ ".pt"
)
st_aux.init_checkpoint(PATH_AUX)
wrap.student_vec.append(copy.deepcopy(st_aux.model).cpu())
del st_aux
stop_retraining = args.strategy == "EM_raw"
send_update = False
for step, sample in enumerate(online_dataloader):
if args.checkpoint != "-1" and step < args.n_init:
wrap.save_cache(sample)
if args.strategy == "CS":
wrap.output = wrap.call_llm(sample)
wrap.obtain_embed(sample)
wrap.save_embed()
if args.checkpoint == "-1" or step >= args.n_init:
gc.collect()
decision, pred = wrap.query(sample)
stats = get_online_metrics_mult(
args,
metric,
sample,
pred,
decision,
budgets,
wrap.performance,
)
neptune_log(
run=run,
pref=f"online/",
stats=stats,
epoch=step,
)
if step == 0 or (args.checkpoint != "-1" and step == args.n_init):
avg_online = reset_avg_online_metrics(stats)
avg_online = update_online_metrics(avg_online, stats)
if wrap.retrain or (
step + 1 and (step + 1) % args.retrain_freq == 0 and not stop_retraining
):
set_seeds(args.seed)
wrap.BT = []
cache = wrap.retrieve_cache()
train_dataloader, eval_dataloader = make_datacollator(
args, task.tokenizer, cache
)
train_dataloader, eval_dataloader = accelerator.prepare(
train_dataloader, eval_dataloader
)
if wrap.retrain:
st.suffixes.append(str(budgets[len(wrap.budget_models)]) + "-")
st.train(train_dataloader, eval_dataloader)
del train_dataloader, eval_dataloader
if step + 1 and (step + 1) % args.retrain_freq == 0: wrap.update = False
wrap.reorder_students()
if wrap.budget_arr[-1] == 0:
stop_retraining = True
wrap.delete_cache()
send_update = True
if send_update or step == len(online_dataloader) - 1:
log_avg_online(run, avg_online, step, budgets[-1])
avg_online = reset_avg_online_metrics(stats)
send_update = False
if step == len(online_dataloader) - 1:
log_final(run)
if run is not None:
run.stop()
if __name__ == "__main__":
main()