forked from JamesP6000/WsprryPi
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathwspr.cpp
1181 lines (1057 loc) · 37.4 KB
/
wspr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// WSPR transmitter for the Raspberry Pi. See accompanying README and BUILD
// files for descriptions on how to use this code.
/*
License:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <dirent.h>
#include <math.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <signal.h>
#include <malloc.h>
#include <time.h>
#include <sys/time.h>
#include <getopt.h>
#include <vector>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <sys/timex.h>
using namespace std;
#define ABORT(a) exit(a)
// Used for debugging
#define MARK std::cout << "Currently in file: " << __FILE__ << " line: " << __LINE__ << std::endl
// PLLD clock frequency.
// There seems to be a 2.5ppm offset between the NTP measured frequency
// error and the frequency error measured by a frequency counter. This fixed
// PPM offset is compensated for here.
#define F_PLLD_CLK (500000000.0*(1-2.500e-6))
// Empirical value for F_PWM_CLK that produces WSPR symbols that are 'close' to
// 0.682s long. For some reason, despite the use of DMA, the load on the PI
// affects the TX length of the symbols. However, the varying symbol length is
// compensated for in the main loop.
#define F_PWM_CLK_INIT (31156186.6125761)
// WSRP nominal symbol time
#define WSPR_SYMTIME (8192.0/12000.0)
// How much random frequency offset should be added to WSPR transmissions
// if the --offset option has been turned on.
#define WSPR_RAND_OFFSET 80
#define WSPR15_RAND_OFFSET 8
#define BCM2708_PERI_BASE 0x20000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
// This must be declared global so that it can be called by the atexit
// function.
volatile unsigned *allof7e = NULL;
// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0
#define GPIO_GET *(gpio+13) // sets bits which are 1 ignores bits which are 0
#define ACCESS(base) *(volatile int*)((long int)allof7e+base-0x7e000000)
#define SETBIT(base, bit) ACCESS(base) |= 1<<bit
#define CLRBIT(base, bit) ACCESS(base) &= ~(1<<bit)
#define CM_GP0CTL (0x7e101070)
#define GPFSEL0 (0x7E200000)
#define PADS_GPIO_0_27 (0x7e10002c)
#define CM_GP0DIV (0x7e101074)
#define CLKBASE (0x7E101000)
#define DMABASE (0x7E007000)
#define PWMBASE (0x7e20C000) /* PWM controller */
typedef enum {WSPR,TONE} mode_type;
struct GPCTL {
char SRC : 4;
char ENAB : 1;
char KILL : 1;
char : 1;
char BUSY : 1;
char FLIP : 1;
char MASH : 2;
unsigned int : 13;
char PASSWD : 8;
};
struct CB {
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int RES1;
volatile unsigned int RES2;
};
struct DMAregs {
volatile unsigned int CS;
volatile unsigned int CONBLK_AD;
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int DEBUG;
};
struct PageInfo {
void* p; // physical address
void* v; // virtual address
};
//struct PageInfo constPage;
//struct PageInfo instrPage;
//struct PageInfo instrs[1024];
// Get the physical address of a page of virtual memory
void getRealMemPage(void** vAddr, void** pAddr) {
void* a = (void*)valloc(4096);
((int*)a)[0] = 1; // use page to force allocation.
mlock(a, 4096); // lock into ram.
*vAddr = a; // yay - we know the virtual address
unsigned long long frameinfo;
int fp = open("/proc/self/pagemap", 'r');
lseek(fp, ((long int)a)/4096*8, SEEK_SET);
read(fp, &frameinfo, sizeof(frameinfo));
*pAddr = (void*)((long int)(frameinfo*4096));
}
void freeRealMemPage(void* vAddr) {
munlock(vAddr, 4096); // unlock ram.
free(vAddr);
}
void txon()
{
SETBIT(GPFSEL0 , 14);
CLRBIT(GPFSEL0 , 13);
CLRBIT(GPFSEL0 , 12);
// Set GPIO drive strength, more info: http://www.scribd.com/doc/101830961/GPIO-Pads-Control2
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 0; //2mA -3.4dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 1; //4mA +2.1dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 2; //6mA +4.9dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 3; //8mA +6.6dBm(default)
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 4; //10mA +8.2dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 5; //12mA +9.2dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 6; //14mA +10.0dBm
ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 7; //16mA +10.6dBm
struct GPCTL setupword = {6/*SRC*/, 1, 0, 0, 0, 3,0x5a};
ACCESS(CM_GP0CTL) = *((int*)&setupword);
}
void txoff()
{
struct GPCTL setupword = {6/*SRC*/, 0, 0, 0, 0, 1,0x5a};
ACCESS(CM_GP0CTL) = *((int*)&setupword);
}
// Transmit symbol sym for tsym seconds.
//
// TODO:
// Upon entering this function at the beginning of a WSPR transmission, we
// do not know which DMA table entry is being processed by the DMA engine.
#define PWM_CLOCKS_PER_ITER_NOMINAL 1000
void txSym(
const int & sym_num,
const double & center_freq,
const double & tone_spacing,
const double & tsym,
const vector <double> & dma_table_freq,
const double & f_pwm_clk,
struct PageInfo instrs[],
struct PageInfo & constPage,
int & bufPtr
) {
const int f0_idx=sym_num*2;
const int f1_idx=f0_idx+1;
const double f0_freq=dma_table_freq[f0_idx];
const double f1_freq=dma_table_freq[f1_idx];
const double tone_freq=center_freq-1.5*tone_spacing+sym_num*tone_spacing;
// Double check...
assert((tone_freq>=f0_freq)&&(tone_freq<=f1_freq));
const double f0_ratio=1.0-(tone_freq-f0_freq)/(f1_freq-f0_freq);
//cout << "f0_ratio = " << f0_ratio << endl;
assert ((f0_ratio>=0)&&(f0_ratio<=1));
const long int n_pwmclk_per_sym=round(f_pwm_clk*tsym);
long int n_pwmclk_transmitted=0;
long int n_f0_transmitted=0;
while (n_pwmclk_transmitted<n_pwmclk_per_sym) {
// Number of PWM clocks for this iteration
long int n_pwmclk=PWM_CLOCKS_PER_ITER_NOMINAL;
// Iterations may produce spurs around the main peak based on the iteration
// frequency. Randomize the iteration period so as to spread this peak
// around.
n_pwmclk+=round((rand()/((double)RAND_MAX+1.0)-.5)*n_pwmclk)*1;
if (n_pwmclk_transmitted+n_pwmclk>n_pwmclk_per_sym) {
n_pwmclk=n_pwmclk_per_sym-n_pwmclk_transmitted;
}
// Calculate number of clocks to transmit f0 during this iteration so
// that the long term average is as close to f0_ratio as possible.
const long int n_f0=round(f0_ratio*(n_pwmclk_transmitted+n_pwmclk))-n_f0_transmitted;
const long int n_f1=n_pwmclk-n_f0;
// Configure the transmission for this iteration
// Set GPIO pin to transmit f0
bufPtr++;
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].p)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (long int)constPage.p + f0_idx*4;
// Wait for n_f0 PWM clocks
bufPtr++;
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].p)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = n_f0;
// Set GPIO pin to transmit f1
bufPtr++;
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].p)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (long int)constPage.p + f1_idx*4;
// Wait for n_f1 PWM clocks
bufPtr=(bufPtr+1) % (1024);
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].p)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = n_f1;
// Update counters
n_pwmclk_transmitted+=n_pwmclk;
n_f0_transmitted+=n_f0;
}
}
void unSetupDMA(){
printf("exiting\n");
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS(DMABASE));
DMA0->CS =1<<31; // reset dma controller
txoff();
}
void handSig(const int h) {
exit(0);
}
double bit_trunc(
const double & d,
const int & lsb
) {
return floor(d/pow(2.0,lsb))*pow(2.0,lsb);
}
// Program the tuning words into the DMA table.
void setupDMATab(
const double & center_freq_desired,
const double & tone_spacing,
const double & plld_actual_freq,
vector <double> & dma_table_freq,
double & center_freq_actual,
struct PageInfo & constPage
){
// Make sure that all the WSPR tones can be produced solely by
// varying the fractional part of the frequency divider.
center_freq_actual=center_freq_desired;
double div_lo=bit_trunc(plld_actual_freq/(center_freq_desired-1.5*tone_spacing),-12)+pow(2.0,-12);
double div_hi=bit_trunc(plld_actual_freq/(center_freq_desired+1.5*tone_spacing),-12);
if (floor(div_lo)!=floor(div_hi)) {
center_freq_actual=plld_actual_freq/floor(div_lo)-1.6*tone_spacing;
stringstream temp;
temp << setprecision(6) << fixed << " Warning: center frequency has been changed to " << center_freq_actual/1e6 << " MHz" << endl;
cout << temp.str();
cout << " because of hardware limitations!" << endl;
}
// Create DMA table of tuning words. WSPR tone i will use entries 2*i and
// 2*i+1 to generate the appropriate tone.
dma_table_freq.resize(1024);
double tone0_freq=center_freq_actual-1.5*tone_spacing;
vector <long int> tuning_word(1024);
for (int i=0;i<8;i++) {
double tone_freq=tone0_freq+(i>>1)*tone_spacing;
double div=bit_trunc(plld_actual_freq/tone_freq,-12);
if (i%2==0) {
div=div+pow(2.0,-12);
}
tuning_word[i]=((int)(div*pow(2.0,12)));
}
// Fill the remaining table, just in case...
for (int i=8;i<1024;i++) {
double div=500+i;
tuning_word[i]=((int)(div*pow(2.0,12)));
}
// Program the table
for (int i=0;i<1024;i++) {
dma_table_freq[i]=plld_actual_freq/(tuning_word[i]/pow(2.0,12));
((int*)(constPage.v))[i] = (0x5a<<24)+tuning_word[i];
if ((i%2==0)&&(i<8)) {
assert((tuning_word[i]&(~0xfff))==(tuning_word[i+1]&(~0xfff)));
}
}
}
void setupDMA(
struct PageInfo & constPage,
struct PageInfo & instrPage,
struct PageInfo instrs[]
){
atexit(unSetupDMA);
signal (SIGINT, handSig);
signal (SIGTERM, handSig);
signal (SIGHUP, handSig);
signal (SIGQUIT, handSig);
// Allocate a page of ram for the constants
getRealMemPage(&constPage.v, &constPage.p);
// Create 1024 instructions allocating one page at a time.
// Even instructions target the GP0 Clock divider
// Odd instructions target the PWM FIFO
int instrCnt = 0;
while (instrCnt<1024) {
// Allocate a page of ram for the instructions
getRealMemPage(&instrPage.v, &instrPage.p);
// make copy instructions
// Only create as many instructions as will fit in the recently
// allocated page. If not enough space for all instructions, the
// next loop will allocate another page.
struct CB* instr0= (struct CB*)instrPage.v;
int i;
for (i=0; i<(signed)(4096/sizeof(struct CB)); i++) {
instrs[instrCnt].v = (void*)((long int)instrPage.v + sizeof(struct CB)*i);
instrs[instrCnt].p = (void*)((long int)instrPage.p + sizeof(struct CB)*i);
instr0->SOURCE_AD = (unsigned long int)constPage.p+2048;
instr0->DEST_AD = PWMBASE+0x18 /* FIF1 */;
instr0->TXFR_LEN = 4;
instr0->STRIDE = 0;
//instr0->NEXTCONBK = (int)instrPage.p + sizeof(struct CB)*(i+1);
instr0->TI = (1/* DREQ */<<6) | (5 /* PWM */<<16) | (1<<26/* no wide*/) ;
instr0->RES1 = 0;
instr0->RES2 = 0;
// Shouldn't this be (instrCnt%2) ???
if (i%2) {
instr0->DEST_AD = CM_GP0DIV;
instr0->STRIDE = 4;
instr0->TI = (1<<26/* no wide*/) ;
}
if (instrCnt!=0) ((struct CB*)(instrs[instrCnt-1].v))->NEXTCONBK = (long int)instrs[instrCnt].p;
instr0++;
instrCnt++;
}
}
// Create a circular linked list of instructions
((struct CB*)(instrs[1023].v))->NEXTCONBK = (long int)instrs[0].p;
// set up a clock for the PWM
ACCESS(CLKBASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000026; // Source=PLLD and disable
usleep(1000);
//ACCESS(CLKBASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002800;
ACCESS(CLKBASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002000; // set PWM div to 2, for 250MHz
ACCESS(CLKBASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000016; // Source=PLLD and enable
usleep(1000);
// set up pwm
ACCESS(PWMBASE + 0x0 /* CTRL*/) = 0;
usleep(1000);
ACCESS(PWMBASE + 0x4 /* status*/) = -1; // clear errors
usleep(1000);
// Range should default to 32, but it is set at 2048 after reset on my RPi.
ACCESS(PWMBASE + 0x10)=32;
ACCESS(PWMBASE + 0x20)=32;
ACCESS(PWMBASE + 0x0 /* CTRL*/) = -1; //(1<<13 /* Use fifo */) | (1<<10 /* repeat */) | (1<<9 /* serializer */) | (1<<8 /* enable ch */) ;
usleep(1000);
ACCESS(PWMBASE + 0x8 /* DMAC*/) = (1<<31 /* DMA enable */) | 0x0707;
//activate dma
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS(DMABASE));
DMA0->CS =1<<31; // reset
DMA0->CONBLK_AD=0;
DMA0->TI=0;
DMA0->CONBLK_AD = (unsigned long int)(instrPage.p);
DMA0->CS =(1<<0)|(255 <<16); // enable bit = 0, clear end flag = 1, prio=19-16
}
//
// Set up a memory regions to access GPIO
//
void setup_io(
int & mem_fd,
char * & gpio_mem,
char * & gpio_map,
volatile unsigned * & gpio
) {
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
printf("can't open /dev/mem \n");
exit (-1);
}
/* mmap GPIO */
// Allocate MAP block
if ((gpio_mem = (char *)malloc(BLOCK_SIZE + (PAGE_SIZE-1))) == NULL) {
printf("allocation error \n");
exit (-1);
}
// Make sure pointer is on 4K boundary
if ((unsigned long)gpio_mem % PAGE_SIZE)
gpio_mem += PAGE_SIZE - ((unsigned long)gpio_mem % PAGE_SIZE);
// Now map it
gpio_map = (char *)mmap(
gpio_mem,
BLOCK_SIZE,
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_FIXED,
mem_fd,
GPIO_BASE
);
if ((long)gpio_map < 0) {
printf("mmap error %ld\n", (long int)gpio_map);
exit (-1);
}
// Always use volatile pointer!
gpio = (volatile unsigned *)gpio_map;
}
void setup_gpios(
volatile unsigned * & gpio
){
int g;
// Switch GPIO 7..11 to output mode
/************************************************************************\
* You are about to change the GPIO settings of your computer. *
* Mess this up and it will stop working! *
* It might be a good idea to 'sync' before running this program *
* so at least you still have your code changes written to the SD-card! *
\************************************************************************/
// Set GPIO pins 7-11 to output
for (g=7; g<=11; g++) {
INP_GPIO(g); // must use INP_GPIO before we can use OUT_GPIO
//OUT_GPIO(g);
}
}
// Convert string to uppercase
void to_upper(char *str)
{ while(*str)
{
*str = toupper(*str);
str++;
}
}
// Encode call, locator, and dBm into WSPR codeblock.
void wspr(const char* call, const char* l_pre, const char* dbm, unsigned char* symbols)
{
// pack prefix in nadd, call in n1, grid, dbm in n2
char* c, buf[16];
strncpy(buf, call, 16);
c=buf;
to_upper(c);
unsigned long ng,nadd=0;
if(strchr(c, '/')){ //prefix-suffix
nadd=2;
int i=strchr(c, '/')-c; //stroke position
int n=strlen(c)-i-1; //suffix len, prefix-call len
c[i]='\0';
if(n==1) ng=60000-32768+(c[i+1]>='0'&&c[i+1]<='9'?c[i+1]-'0':c[i+1]==' '?38:c[i+1]-'A'+10); // suffix /A to /Z, /0 to /9
if(n==2) ng=60000+26+10*(c[i+1]-'0')+(c[i+2]-'0'); // suffix /10 to /99
if(n>2){ // prefix EA8/, right align
ng=(i<3?36:c[i-3]>='0'&&c[i-3]<='9'?c[i-3]-'0':c[i-3]-'A'+10);
ng=37*ng+(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
ng=37*ng+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
if(ng<32768) nadd=1; else ng=ng-32768;
c=c+i+1;
}
}
int i=(isdigit(c[2])?2:isdigit(c[1])?1:0); //last prefix digit of de-suffixed/de-prefixed callsign
int n=strlen(c)-i-1; //2nd part of call len
unsigned long n1;
n1=(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
n1=36*n1+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
n1=10*n1+c[i]-'0';
n1=27*n1+(n<1?26:c[i+1]-'A');
n1=27*n1+(n<2?26:c[i+2]-'A');
n1=27*n1+(n<3?26:c[i+3]-'A');
//if(rand() % 2) nadd=0;
if(!nadd){
// Copy locator locally since it is declared const and we cannot modify
// its contents in-place.
char l[4];
strncpy(l, l_pre, 4);
to_upper(l); //grid square Maidenhead locator (uppercase)
ng=180*(179-10*(l[0]-'A')-(l[2]-'0'))+10*(l[1]-'A')+(l[3]-'0');
}
int p = atoi(dbm); //EIRP in dBm={0,3,7,10,13,17,20,23,27,30,33,37,40,43,47,50,53,57,60}
int corr[]={0,-1,1,0,-1,2,1,0,-1,1};
p=p>60?60:p<0?0:p+corr[p%10];
unsigned long n2=(ng<<7)|(p+64+nadd);
// pack n1,n2,zero-tail into 50 bits
char packed[11] = {n1>>20, n1>>12, n1>>4, ((n1&0x0f)<<4)|((n2>>18)&0x0f),
n2>>10, n2>>2, (n2&0x03)<<6, 0, 0, 0, 0};
// convolutional encoding K=32, r=1/2, Layland-Lushbaugh polynomials
int k = 0;
int j,s;
int nstate = 0;
unsigned char symbol[176];
for(j=0;j!=sizeof(packed);j++){
for(i=7;i>=0;i--){
unsigned long poly[2] = { 0xf2d05351L, 0xe4613c47L };
nstate = (nstate<<1) | ((packed[j]>>i)&1);
for(s=0;s!=2;s++){ //convolve
unsigned long n = nstate & poly[s];
int even = 0; // even := parity(n)
while(n){
even = 1 - even;
n = n & (n - 1);
}
symbol[k] = even;
k++;
}
}
}
// interleave symbols
const unsigned char npr3[162] = {
1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,
0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,
0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,
0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
0,0 };
for(i=0;i!=162;i++){
// j0 := bit reversed_values_smaller_than_161[i]
unsigned char j0;
p=-1;
for(k=0;p!=i;k++){
for(j=0;j!=8;j++) // j0:=bit_reverse(k)
j0 = ((k>>j)&1)|(j0<<1);
if(j0<162)
p++;
}
symbols[j0]=npr3[j0]|symbol[i]<<1; //interleave and add sync vector
}
}
// Wait for the system clock's minute to reach one second past 'minute'
void wait_every(int minute)
{
time_t t;
struct tm* ptm;
for(;;){
time(&t);
ptm = gmtime(&t);
if((ptm->tm_min % minute) == 0 && ptm->tm_sec == 0) break;
usleep(1000);
}
usleep(1000000); // wait another second
}
void print_usage() {
cout << "Usage:" << endl;
cout << " wspr [options] callsign locator tx_pwr_dBm f1 <f2> <f3> ..." << endl;
cout << " OR" << endl;
cout << " wspr [options] --test-tone f" << endl;
cout << endl;
cout << "Options:" << endl;
cout << " -h --help" << endl;
cout << " Print out this help screen." << endl;
cout << " -p --ppm ppm" << endl;
cout << " Known PPM correction to 19.2MHz RPi nominal crystal frequency." << endl;
cout << " -s --self-calibration" << endl;
cout << " Call ntp_adjtime() before every transmission to obtain the PPM error of the crystal." << endl;
cout << " -r --repeat" << endl;
cout << " Repeatedly, and in order, transmit on all the specified command line freqs." << endl;
cout << " -x --terminate <n>" << endl;
cout << " Terminate after n transmissions have been completed." << endl;
cout << " -o --offset" << endl;
cout << " Add a random frequency offset to each transmission:" << endl;
cout << " +/- " << WSPR_RAND_OFFSET << " Hz for WSPR" << endl;
cout << " +/- " << WSPR15_RAND_OFFSET << " Hz for WSPR-15" << endl;
cout << " -t --test-tone freq" << endl;
cout << " Simply output a test tone and the specified frequency. Only used" << endl;
cout << " for debugging and to verify calibration." << endl;
cout << " -n --no-delay" << endl;
cout << " Transmit immediately, do not wait for a WSPR TX window. Used" << endl;
cout << " for testing only." << endl;
cout << endl;
cout << "Frequencies can be specified either as an absolute TX carrier frequency, or" << endl;
cout << "using one of the following strings. If a string is used, the transmission" << endl;
cout << "will happen in the middle of the WSPR region of the selected band." << endl;
cout << " LF LF-15 MF MF-15 160m 160m-15 80m 60m 40m 30m 20m 17m 15m 12m 10m 6m 4m 2m" << endl;
cout << "<B>-15 indicates the WSPR-15 region of band <B>." << endl;
cout << endl;
cout << "Transmission gaps can be created by specifying a TX frequency of 0" << endl;
}
// From StackOverflow:
// http://stackoverflow.com/questions/478898/how-to-execute-a-command-and-get-output-of-command-within-c
std::string exec(const char * cmd) {
FILE* pipe = popen(cmd, "r");
if (!pipe) return "ERROR";
char buffer[128];
std::string result = "";
while (!feof(pipe)) {
if (fgets(buffer, 128, pipe) != NULL)
result += buffer;
}
pclose(pipe);
return result;
}
void parse_commandline(
// Inputs
const int & argc,
char * const argv[],
// Outputs
string & callsign,
string & locator,
string & tx_power,
vector <double> & center_freq_set,
double & ppm,
bool & self_cal,
bool & repeat,
bool & random_offset,
double & test_tone,
bool & no_delay,
mode_type & mode,
int & terminate
) {
// Default values
ppm=0;
self_cal=false;
repeat=false;
random_offset=false;
test_tone=NAN;
no_delay=false;
mode=WSPR;
terminate=-1;
static struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ppm", required_argument, 0, 'p'},
{"self-calibration", no_argument, 0, 's'},
{"repeat", no_argument, 0, 'r'},
{"terminate", required_argument, 0, 'x'},
{"offset", no_argument, 0, 'o'},
{"test-tone", required_argument, 0, 't'},
{"no-delay", no_argument, 0, 'n'},
{0, 0, 0, 0}
};
while (1) {
/* getopt_long stores the option index here. */
int option_index = 0;
int c = getopt_long (argc, argv, "hp:srx:ot:",
long_options, &option_index);
if (c == -1)
break;
switch (c) {
char * endp;
case 0:
// Code should only get here if a long option was given a non-null
// flag value.
cout << "Check code!" << endl;
ABORT(-1);
break;
case 'h':
print_usage();
ABORT(-1);
break;
case 'p':
ppm=strtod(optarg,&endp);
if ((optarg==endp)||(*endp!='\0')) {
cerr << "Error: could not parse ppm value" << endl;
ABORT(-1);
}
break;
case 's':
self_cal=true;
break;
case 'r':
repeat=true;
break;
case 'x':
terminate=strtol(optarg,&endp,10);
if ((optarg==endp)||(*endp!='\0')) {
cerr << "Error: could not parse termination argument" << endl;
ABORT(-1);
}
if (terminate<1) {
cerr << "Error: termination parameter must be >= 1" << endl;
ABORT(-1);
}
break;
case 'o':
random_offset=true;
break;
case 't':
test_tone=strtod(optarg,&endp);
mode=TONE;
if ((optarg==endp)||(*endp!='\0')) {
cerr << "Error: could not parse test tone frequency" << endl;
ABORT(-1);
}
break;
case 'n':
no_delay=true;
break;
case '?':
/* getopt_long already printed an error message. */
ABORT(-1);
default:
ABORT(-1);
}
}
// Parse the non-option parameters
unsigned int n_free_args=0;
while (optind<argc) {
// Check for callsign, locator, tx_power
if (n_free_args==0) {
callsign=argv[optind++];
n_free_args++;
continue;
}
if (n_free_args==1) {
locator=argv[optind++];
n_free_args++;
continue;
}
if (n_free_args==2) {
tx_power=argv[optind++];
n_free_args++;
continue;
}
// Must be a frequency
// First see if it is a string.
double parsed_freq;
if (!strcmp(argv[optind],"LF")) {
parsed_freq=137500.0;
} else if (!strcmp(argv[optind],"LF-15")) {
parsed_freq=137612.5;
} else if (!strcmp(argv[optind],"MF")) {
parsed_freq=475700.0;
} else if (!strcmp(argv[optind],"MF-15")) {
parsed_freq=475812.5;
} else if (!strcmp(argv[optind],"160m")) {
parsed_freq=1838100.0;
} else if (!strcmp(argv[optind],"160m-15")) {
parsed_freq=1838212.5;
} else if (!strcmp(argv[optind],"80m")) {
parsed_freq=3594100.0;
} else if (!strcmp(argv[optind],"60m")) {
parsed_freq=5288700.0;
} else if (!strcmp(argv[optind],"40m")) {
parsed_freq=7040100.0;
} else if (!strcmp(argv[optind],"30m")) {
parsed_freq=10140200.0;
} else if (!strcmp(argv[optind],"20m")) {
parsed_freq=14097100.0;
} else if (!strcmp(argv[optind],"17m")) {
parsed_freq=18106100.0;
} else if (!strcmp(argv[optind],"15m")) {
parsed_freq=21096100.0;
} else if (!strcmp(argv[optind],"12m")) {
parsed_freq=24926100.0;
} else if (!strcmp(argv[optind],"10m")) {
parsed_freq=28126200.0;
} else if (!strcmp(argv[optind],"6m")) {
parsed_freq=50294500.0;
} else if (!strcmp(argv[optind],"4m")) {
parsed_freq=70092500.0;
} else if (!strcmp(argv[optind],"2m")) {
parsed_freq=144490500.0;
} else {
// Not a string. See if it can be parsed as a double.
char * endp;
parsed_freq=strtod(argv[optind],&endp);
if ((optarg==endp)||(*endp!='\0')) {
cerr << "Error: could not parse transmit frequency: " << argv[optind] << endl;
ABORT(-1);
}
}
optind++;
center_freq_set.push_back(parsed_freq);
}
// Check consistency among command line options.
if (ppm&&self_cal) {
cout << "Warning: ppm value is being ignored!" << endl;
ppm=0.0;
}
if (mode==TONE) {
if ((callsign!="")||(locator!="")||(tx_power!="")||(center_freq_set.size()!=0)||random_offset) {
cerr << "Warning: callsign, locator, etc. are ignored when generating test tone" << endl;
}
random_offset=0;
if (test_tone<=0) {
cerr << "Error: test tone frequency must be positive" << endl;
ABORT(-1);
}
} else {
if ((callsign=="")||(locator=="")||(tx_power=="")||(center_freq_set.size()==0)) {
cerr << "Error: must specify callsign, locator, dBm, and at least one frequency" << endl;
cerr << "Try: wspr --help" << endl;
ABORT(-1);
}
}
// Print a summary of the parsed options
if (mode==WSPR) {
cout << "WSPR packet contents:" << endl;
cout << " Callsign: " << callsign << endl;
cout << " Locator: " << locator << endl;
cout << " Power: " << tx_power << " dBm" << endl;
cout << "Requested TX frequencies:" << endl;
stringstream temp;
for (unsigned int t=0;t<center_freq_set.size();t++) {
temp << setprecision(6) << fixed;
temp << " " << center_freq_set[t]/1e6 << " MHz" << endl;
}
cout << temp.str();
temp.str("");
if (self_cal) {
temp << " ntp_adjtime() will be used to peridocially calibrate the transmission frequency" << endl;
} else if (ppm) {
temp << " PPM value to be used for all transmissions: " << ppm << endl;
}
if (terminate>0) {
temp << " TX will stop after " << terminate << " transmissions." << endl;
} else if (repeat) {
temp << " Transmissions will continue forever until stopped with CTRL-C" << endl;
}
if (random_offset) {
temp << " A small random frequency offset will be added to all transmisisons" << endl;
}
if (temp.str().length()) {
cout << "Extra options:" << endl;
cout << temp.str();
}
cout << endl;
} else {
stringstream temp;
temp << setprecision(6) << fixed << "A test tone will be generated at frequency " << test_tone/1e6 << " MHz" << endl;
cout << temp.str();
if (self_cal) {
cout << "ntp_adjtime() will be used to calibrate the tone" << endl;
} else if (ppm) {
cout << "PPM value to be used to generate the tone: " << ppm << endl;
}
cout << endl;
}
}
// Call ntp_adjtime() to obtain the latest calibration coefficient.
void update_ppm(
double & ppm
) {
struct timex ntx;
int status;
double ppm_new;
ntx.modes = 0; /* only read */
status = ntp_adjtime(&ntx);
if (status != TIME_OK) {
//cerr << "Error: clock not synchronized" << endl;
//return;
}
ppm_new = (double)ntx.freq/(double)(1 << 16); /* frequency scale */
if (abs(ppm_new)>200) {
cerr << "Warning: absolute ppm value is greater than 200 and is being ignored!" << endl;
} else {
if (ppm!=ppm_new) {
cout << " Obtained new ppm value: " << ppm_new << endl;
}
ppm=ppm_new;
}
}
/* Return 1 if the difference is negative, otherwise 0. */
// From StackOverflow:
// http://stackoverflow.com/questions/1468596/c-programming-calculate-elapsed-time-in-milliseconds-unix
int timeval_subtract(struct timeval *result, struct timeval *t2, struct timeval *t1) {
long int diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec + 1000000 * t1->tv_sec);
result->tv_sec = diff / 1000000;
result->tv_usec = diff % 1000000;
return (diff<0);
}
void timeval_print(struct timeval *tv) {
char buffer[30];
time_t curtime;
//printf("%ld.%06ld", tv->tv_sec, tv->tv_usec);
curtime = tv->tv_sec;
//strftime(buffer, 30, "%m-%d-%Y %T", localtime(&curtime));
strftime(buffer, 30, "UTC %m-%d-%Y %T", gmtime(&curtime));
printf("%s.%03ld", buffer, (tv->tv_usec+500)/1000);
}
int main(const int argc, char * const argv[]) {
// Initialize the RNG
srand(time(NULL));
// Parse arguments
string callsign;
string locator;
string tx_power;
vector <double> center_freq_set;
double ppm;
bool self_cal;
bool repeat;
bool random_offset;
double test_tone;
bool no_delay;
mode_type mode;
int terminate;
parse_commandline(
argc,
argv,
callsign,
locator,
tx_power,
center_freq_set,
ppm,
self_cal,
repeat,
random_offset,
test_tone,
no_delay,
mode,
terminate
);
int nbands=center_freq_set.size();
// Initial configuration
int mem_fd;
char *gpio_mem, *gpio_map;
volatile unsigned *gpio = NULL;
setup_io(mem_fd,gpio_mem,gpio_map,gpio);