|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 6, |
| 5 | + "execution_count": 9, |
6 | 6 | "id": "733c5564",
|
7 | 7 | "metadata": {
|
8 | 8 | "scrolled": true
|
|
14 | 14 | },
|
15 | 15 | {
|
16 | 16 | "cell_type": "code",
|
17 |
| - "execution_count": 7, |
| 17 | + "execution_count": 22, |
18 | 18 | "id": "87fa18b4-7d57-46e5-aa42-694ac83ef4e6",
|
19 | 19 | "metadata": {},
|
20 | 20 | "outputs": [
|
|
24 | 24 | "((4000, 40), (4000,), (40,))"
|
25 | 25 | ]
|
26 | 26 | },
|
27 |
| - "execution_count": 7, |
| 27 | + "execution_count": 22, |
28 | 28 | "metadata": {},
|
29 | 29 | "output_type": "execute_result"
|
30 | 30 | }
|
31 | 31 | ],
|
32 | 32 | "source": [
|
33 | 33 | "from mnist1d.data import make_dataset, get_dataset_args\n",
|
34 | 34 | "\n",
|
35 |
| - "defaults = get_dataset_args()\n", |
36 |
| - "data = make_dataset(defaults)\n", |
| 35 | + "default_args = get_dataset_args()\n", |
| 36 | + "data = make_dataset(default_args)\n", |
| 37 | + "x,y,t = data['x'], data['y'], data['t']\n", |
| 38 | + "x.shape, y.shape, t.shape\n", |
| 39 | + "# >>> ((4000, 40), (4000,), (40,))" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 23, |
| 45 | + "id": "dae1e6ec", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [ |
| 48 | + { |
| 49 | + "data": { |
| 50 | + "text/plain": [ |
| 51 | + "((8000, 40), (8000,), (40,))" |
| 52 | + ] |
| 53 | + }, |
| 54 | + "execution_count": 23, |
| 55 | + "metadata": {}, |
| 56 | + "output_type": "execute_result" |
| 57 | + } |
| 58 | + ], |
| 59 | + "source": [ |
| 60 | + "default_args.num_samples = 10000\n", |
| 61 | + "data = make_dataset(default_args)\n", |
37 | 62 | "x,y,t = data['x'], data['y'], data['t']\n",
|
38 |
| - "\n", |
39 | 63 | "x.shape, y.shape, t.shape"
|
40 | 64 | ]
|
41 | 65 | },
|
|
0 commit comments