diff --git a/flax/nnx/__init__.py b/flax/nnx/__init__.py index fcb15f0608..d85271c465 100644 --- a/flax/nnx/__init__.py +++ b/flax/nnx/__init__.py @@ -167,4 +167,5 @@ from .extract import to_tree as to_tree from .extract import from_tree as from_tree from .extract import NodeStates as NodeStates +from .summary import tabulate as tabulate from . import traversals as traversals \ No newline at end of file diff --git a/flax/nnx/extract.py b/flax/nnx/extract.py index 191a0c195a..09f6458f29 100644 --- a/flax/nnx/extract.py +++ b/flax/nnx/extract.py @@ -144,7 +144,7 @@ def check_consistent_aliasing( for path, value in graph.iter_graph(node): if graph.is_graph_node(value) or isinstance(value, graph.Variable): if isinstance(value, Object): - value.check_valid_context( + value._check_valid_context( lambda: f'Trying to extract graph node from different trace level, got {value!r}' ) if isinstance(value, graph.Variable): diff --git a/flax/nnx/object.py b/flax/nnx/object.py index b1f7478eef..d91eba7724 100644 --- a/flax/nnx/object.py +++ b/flax/nnx/object.py @@ -134,6 +134,10 @@ class Array(reprlib.Representable): shape: tp.Tuple[int, ...] dtype: tp.Any + @staticmethod + def from_array(array: jax.Array | np.ndarray) -> Array: + return Array(array.shape, array.dtype) + def __nnx_repr__(self): yield reprlib.Object(type='Array', same_line=True) yield reprlib.Attr('shape', self.shape) @@ -163,12 +167,12 @@ def __setattr__(self, name: str, value: Any) -> None: self._setattr(name, value) def _setattr(self, name: str, value: tp.Any) -> None: - self.check_valid_context( + self._check_valid_context( lambda: f"Cannot mutate '{type(self).__name__}' from different trace level" ) object.__setattr__(self, name, value) - def check_valid_context(self, error_msg: tp.Callable[[], str]) -> None: + def _check_valid_context(self, error_msg: tp.Callable[[], str]) -> None: if not self._object__state.trace_state.is_valid(): raise errors.TraceContextError(error_msg()) diff --git a/flax/nnx/rnglib.py b/flax/nnx/rnglib.py index a100740afa..6949a1ec5e 100644 --- a/flax/nnx/rnglib.py +++ b/flax/nnx/rnglib.py @@ -64,7 +64,7 @@ def __post_init__(self): raise TypeError(f'key must be a jax.Array, got {type(self.key)}') def __call__(self) -> jax.Array: - self.check_valid_context( + self._check_valid_context( lambda: 'Cannot call RngStream from a different trace level' ) key = jax.random.fold_in(self.key.value, self.count.value) diff --git a/flax/nnx/summary.py b/flax/nnx/summary.py new file mode 100644 index 0000000000..6f78621b64 --- /dev/null +++ b/flax/nnx/summary.py @@ -0,0 +1,545 @@ +# Copyright 2024 The Flax Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from collections import defaultdict +import dataclasses +import functools +import inspect +import io +import typing as tp +from types import MappingProxyType + +import jax +import numpy as np +import rich.console +import rich.table +import rich.text +import yaml +import jax.numpy as jnp + +from flax import nnx +from flax import typing +from flax.nnx import graph, statelib, variablelib + +try: + from IPython import get_ipython + + in_ipython = get_ipython() is not None +except ImportError: + in_ipython = False + + +class ObjectInfo(tp.NamedTuple): + path: statelib.PathParts + stats: dict[type[variablelib.Variable], typing.SizeBytes] + variable_groups: defaultdict[ + type[variablelib.Variable], defaultdict[typing.Key, variablelib.Variable] + ] + +NodeStats = dict[int, ObjectInfo | None] + +def _collect_stats( + path: statelib.PathParts, + node: tp.Any, + node_stats: NodeStats, + object_types: set[type], +): + if not graph.is_node(node) and not isinstance(node, variablelib.Variable): + raise ValueError(f'Expected a graph node or Variable, got {type(node)!r}.') + + if id(node) in node_stats: + return + + stats: dict[type[variablelib.Variable], typing.SizeBytes] = {} + variable_groups: defaultdict[ + type[variablelib.Variable], defaultdict[typing.Key, variablelib.Variable] + ] = defaultdict(lambda: defaultdict()) + node_stats[id(node)] = ObjectInfo(path, stats, variable_groups) + + if isinstance(node, nnx.Object): + node._nnx_tabulate_id = id(node) # type: ignore + object_types.add(type(node)) + + node_dict = graph.get_node_impl(node).node_dict(node) + for key, value in node_dict.items(): + if id(value) in node_stats: + continue + elif isinstance(value, variablelib.Variable): + var_type = type(value) + if issubclass(var_type, nnx.RngState): + var_type = nnx.RngState + size_bytes = typing.value_stats(value.value) + if var_type in stats: + stats[var_type] += size_bytes + else: + stats[var_type] = size_bytes + variable_groups[var_type][key] = value + node_stats[id(value)] = None + elif graph.is_node(value): + _collect_stats((*path, key), value, node_stats, object_types) + # accumulate stats from children + child_info = node_stats[id(value)] + assert child_info is not None + for var_type, size_bytes in child_info.stats.items(): + if var_type in stats: + stats[var_type] += size_bytes + else: + stats[var_type] = size_bytes + +@dataclasses.dataclass(frozen=True, repr=False) +class ArrayRepr: + shape: tuple[int, ...] + dtype: tp.Any + + @classmethod + def from_array(cls, x: jax.Array | np.ndarray): + return cls(jnp.shape(x), jnp.result_type(x)) + + def __str__(self): + shape_repr = ','.join(str(x) for x in self.shape) + return f'[dim]{self.dtype}[/dim][{shape_repr}]' + + +@dataclasses.dataclass +class CallInfo: + object_id: int + type: type + path: statelib.PathParts + input_args: tuple[tp.Any, ...] + input_kwargs: dict[str, tp.Any] + outputs: tp.Any + +class SimpleObjectRepr: + def __init__(self, obj: tp.Any): + self.type = type(obj) + + def __str__(self): + return f'{self.type.__name__}(...)' + + def __repr__(self): + return f'{self.type.__name__}(...)' + + +def get_method_wrapper( + rows: list[CallInfo], + node_stats: NodeStats, + method: tp.Callable, +) -> tp.Callable: + method_name = method.__name__ + @functools.wraps(method) + def method_wrapper(obj, *args, **kwargs): + def _to_dummy_array(x): + if isinstance(x, jax.Array | np.ndarray): + return ArrayRepr.from_array(x) + elif graph.is_graph_node(x): + return SimpleObjectRepr(x) + else: + return x + + object_id: int = getattr(obj, '_nnx_tabulate_id') + input_args_info, input_kwargs_info = jax.tree.map( + _to_dummy_array, (args, kwargs) + ) + node_info = node_stats[object_id] + assert node_info is not None + path = node_info.path + if method_name != '__call__': + path = (*path, method_name) + call_info = CallInfo( + object_id=object_id, + type=type(obj), + path=path, + input_args=input_args_info, + input_kwargs=input_kwargs_info, + outputs=None, + ) + rows.append(call_info) + out = method(obj, *args, **kwargs) + call_info.outputs = jax.tree.map(_to_dummy_array, out) + return out + + return method_wrapper + + +def _call_obj( + obj, + input_args: tuple[tp.Any, ...], + input_kwargs: dict[str, tp.Any], + *, + call_method: str, + rows: list[CallInfo], + node_stats: NodeStats, + object_types: set[type], +): + original_methods: dict[type, dict[str, tp.Callable]] = {} + try: + for obj_type in object_types: + methods: dict[str, tp.Callable] = {} + for name, top_method in inspect.getmembers(obj_type, inspect.isfunction): + if not name.startswith('_') or name == '__call__': + methods[name] = top_method + method_wrapper = get_method_wrapper(rows, node_stats, top_method) + setattr(obj_type, name, method_wrapper) + + original_methods[obj_type] = methods + + top_method = getattr(type(obj), call_method) + top_method(obj, *input_args, **input_kwargs) + finally: + for obj_type, methods in original_methods.items(): + for name, top_method in methods.items(): + setattr(obj_type, name, top_method) + + +def filter_rng_streams(row: CallInfo): + return not issubclass(row.type, nnx.RngStream) + +def tabulate( + obj, + *input_args, + depth: int | None = None, + method: str = '__call__', + row_filter: tp.Callable[[CallInfo], bool] = filter_rng_streams, + table_kwargs: tp.Mapping[str, tp.Any] = MappingProxyType({}), + column_kwargs: tp.Mapping[str, tp.Any] = MappingProxyType({}), + console_kwargs: tp.Mapping[str, tp.Any] = MappingProxyType({}), + **input_kwargs, +) -> str: + """Creates a summary of the graph object represented as a table. + + The table summarizes the object's state and metadata. The table is + structured as follows: + + - The first column represents the path of the object in the graph. + - The second column represents the type of the object. + - The following columns provide information about the object's state, + grouped by Variable types. + + Example: + + >>> from flax import nnx + ... + >>> class Block(nnx.Module): + ... def __init__(self, din, dout, rngs: nnx.Rngs): + ... self.linear = nnx.Linear(din, dout, rngs=rngs) + ... self.bn = nnx.BatchNorm(dout, rngs=rngs) + ... self.dropout = nnx.Dropout(0.2, rngs=rngs) + ... + ... def __call__(self, x): + ... return nnx.relu(self.dropout(self.bn(self.linear(x)))) + ... + >>> class Foo(nnx.Module): + ... def __init__(self, rngs: nnx.Rngs): + ... self.block1 = Block(32, 128, rngs=rngs) + ... self.block2 = Block(128, 10, rngs=rngs) + ... + ... def __call__(self, x): + ... return self.block2(self.block1(x)) + ... + >>> foo = Foo(nnx.Rngs(0)) + >>> # print(nnx.tabulate(foo, jnp.ones((1, 32)))) + + Foo Summary + ┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓ + ┃ path ┃ type ┃ inputs ┃ outputs ┃ BatchStat ┃ Param ┃ RngState ┃ + ┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩ + │ │ Foo │ float32[1,32] │ float32[1,10] │ 276 (1.1 KB) │ 5,790 (23.2 KB) │ 2 (12 B) │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block1 │ Block │ float32[1,32] │ float32[1,128] │ 256 (1.0 KB) │ 4,480 (17.9 KB) │ 2 (12 B) │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block1/linear │ Linear │ float32[1,32] │ float32[1,128] │ │ bias: float32[128] │ │ + │ │ │ │ │ │ kernel: float32[32,128] │ │ + │ │ │ │ │ │ │ │ + │ │ │ │ │ │ 4,224 (16.9 KB) │ │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block1/bn │ BatchNorm │ float32[1,128] │ float32[1,128] │ mean: float32[128] │ bias: float32[128] │ │ + │ │ │ │ │ var: float32[128] │ scale: float32[128] │ │ + │ │ │ │ │ │ │ │ + │ │ │ │ │ 256 (1.0 KB) │ 256 (1.0 KB) │ │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block1/dropout │ Dropout │ float32[1,128] │ float32[1,128] │ │ │ 2 (12 B) │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block2 │ Block │ float32[1,128] │ float32[1,10] │ 20 (80 B) │ 1,310 (5.2 KB) │ │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block2/linear │ Linear │ float32[1,128] │ float32[1,10] │ │ bias: float32[10] │ │ + │ │ │ │ │ │ kernel: float32[128,10] │ │ + │ │ │ │ │ │ │ │ + │ │ │ │ │ │ 1,290 (5.2 KB) │ │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block2/bn │ BatchNorm │ float32[1,10] │ float32[1,10] │ mean: float32[10] │ bias: float32[10] │ │ + │ │ │ │ │ var: float32[10] │ scale: float32[10] │ │ + │ │ │ │ │ │ │ │ + │ │ │ │ │ 20 (80 B) │ 20 (80 B) │ │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ block2/dropout │ Dropout │ float32[1,10] │ float32[1,10] │ │ │ │ + ├────────────────┼───────────┼────────────────┼────────────────┼────────────────────┼─────────────────────────┼──────────┤ + │ │ │ │ Total │ 276 (1.1 KB) │ 5,790 (23.2 KB) │ 2 (12 B) │ + └────────────────┴───────────┴────────────────┴────────────────┴────────────────────┴─────────────────────────┴──────────┘ + + Total Parameters: 6,068 (24.3 KB) + + + Note that ``block2/dropout`` is not shown in the table because it shares the + same ``RngState`` with ``block1/dropout``. + + Args: + obj: A object to summarize. It can a pytree or a graph objects + such as nnx.Module or nnx.Optimizer. + *input_args: Positional arguments passed to the object's method. + **input_kwargs: Keyword arguments passed to the object's method. + depth: The depth of the table. + method: The method to call on the object. Default is ``'__call__'``. + row_filter: A callable that filters the rows to be displayed in the table. + By default, it filters out rows with type ``nnx.RngStream``. + table_kwargs: An optional dictionary with additional keyword arguments + that are passed to ``rich.table.Table`` constructor. + column_kwargs: An optional dictionary with additional keyword arguments + that are passed to ``rich.table.Table.add_column`` when adding columns to + the table. + console_kwargs: An optional dictionary with additional keyword arguments + that are passed to `rich.console.Console` when rendering the table. + Default arguments are ``'force_terminal': True``, and ``'force_jupyter'`` + is set to ``True`` if the code is running in a Jupyter notebook, otherwise + it is set to ``False``. + + Returns: + A string summarizing the object. + """ + _console_kwargs = {'force_terminal': True, 'force_jupyter': in_ipython} + _console_kwargs.update(console_kwargs) + + obj = graph.clone(obj) # create copy to avoid side effects + node_stats: NodeStats = {} + object_types: set[type] = set() + _collect_stats((), obj, node_stats, object_types) + variable_types = { + nnx.RngState + if issubclass(variable_state.type, nnx.RngState) + else variable_state.type + for _, variable_state in nnx.state(obj).flat_state() + } + variable_types = sorted(variable_types, key=lambda t: t.__name__) + + rows: list[CallInfo] = [] + eval_fn = functools.partial( + _call_obj, + call_method=method, + rows=rows, + node_stats=node_stats, + object_types=object_types, + ) + nnx.eval_shape(eval_fn, obj, input_args, input_kwargs) + + if depth is not None: + rows = [row for row in rows if len(row.path) <= depth and row_filter(row)] + else: + rows = [row for row in rows if row_filter(row)] + + rich_table = rich.table.Table( + show_header=True, + show_lines=True, + show_footer=True, + title=f'{type(obj).__name__} Summary', + **table_kwargs, + ) + + rich_table.add_column('path', **column_kwargs) + rich_table.add_column('type', **column_kwargs) + rich_table.add_column('inputs', **column_kwargs) + rich_table.add_column('outputs', **column_kwargs) + + for var_type in variable_types: + rich_table.add_column(var_type.__name__, **column_kwargs) + + for row in rows: + node_info = node_stats[row.object_id] + assert node_info is not None + col_reprs: list[str] = [] + path_str = '/'.join(map(str, row.path)) + col_reprs.append(path_str) + col_reprs.append(row.type.__name__) + inputs_repr = '' + if row.input_args: + input_args = row.input_args + if len(row.input_args) == 1 and not row.input_kwargs: + input_args = row.input_args[0] + inputs_repr += _as_yaml_str(input_args) + if inputs_repr and row.input_kwargs: + inputs_repr += '\n' + if row.input_kwargs: + inputs_repr += _as_yaml_str(row.input_kwargs) + col_reprs.append(inputs_repr) + col_reprs.append(_as_yaml_str(row.outputs)) + + for var_type in variable_types: + attributes = {} + for name, variable in node_info.variable_groups[var_type].items(): + value = variable.value + value_repr = _render_array(value) if _has_shape_dtype(value) else '' + metadata = variable.get_metadata() + + if metadata: + attributes[name] = { + 'value': value_repr, + **metadata, + } + elif value_repr: + attributes[name] = value_repr + + if attributes: + col_repr = _as_yaml_str(attributes) + '\n\n' + else: + col_repr = '' + + size_bytes = node_info.stats.get(var_type) + if size_bytes: + col_repr += f'[bold]{size_bytes}[/bold]' + col_reprs.append(col_repr) + + rich_table.add_row(*col_reprs) + + rich_table.columns[3].footer = rich.text.Text.from_markup( + 'Total', justify='right' + ) + node_info = node_stats[id(obj)] + assert node_info is not None + for i, var_type in enumerate(variable_types): + size_bytes = node_info.stats[var_type] + rich_table.columns[i + 4].footer = str(size_bytes) + + rich_table.caption_style = 'bold' + total_size = sum(node_info.stats.values(), typing.SizeBytes(0, 0)) + rich_table.caption = f'\nTotal Parameters: {total_size}' + + return _get_rich_repr(rich_table, _console_kwargs) + + +def _get_rich_repr(obj, console_kwargs): + f = io.StringIO() + console = rich.console.Console(file=f, **console_kwargs) + console.print(obj) + return f.getvalue() + + +def _size_and_bytes(pytree: tp.Any) -> tuple[int, int]: + leaves = jax.tree.leaves(pytree) + size = sum(x.size for x in leaves if hasattr(x, 'size')) + num_bytes = sum( + x.size * x.dtype.itemsize for x in leaves if hasattr(x, 'size') + ) + return size, num_bytes + + +def _size_and_bytes_repr(size: int, num_bytes: int) -> str: + if not size: + return '' + bytes_repr = _bytes_repr(num_bytes) + return f'{size:,} [dim]({bytes_repr})[/dim]' + + +def _bytes_repr(num_bytes): + count, units = ( + (f'{num_bytes / 1e9:,.1f}', 'GB') + if num_bytes > 1e9 + else (f'{num_bytes / 1e6:,.1f}', 'MB') + if num_bytes > 1e6 + else (f'{num_bytes / 1e3:,.1f}', 'KB') + if num_bytes > 1e3 + else (f'{num_bytes:,}', 'B') + ) + + return f'{count} {units}' + + +def _has_shape_dtype(value): + return hasattr(value, 'shape') and hasattr(value, 'dtype') + + +def _normalize_values(x): + if isinstance(x, type): + return f'type[{x.__name__}]' + elif isinstance(x, ArrayRepr | SimpleObjectRepr): + return str(x) + else: + return x + +def _maybe_pytree_to_dict(pytree: tp.Any): + path_leaves = jax.tree_util.tree_flatten_with_path(pytree)[0] + path_leaves = [ + (tuple(map(graph._key_path_to_key, path)), value) + for path, value in path_leaves + ] + if len(path_leaves) < 1: + return pytree + elif len(path_leaves) == 1 and path_leaves[0][0] == (): + return pytree + else: + return _unflatten_to_simple_structure(path_leaves) + + +def _unflatten_to_simple_structure(xs: list[tuple[tuple[tp.Any, ...], tp.Any]]): + result = [] if len(xs) > 0 and isinstance(xs[0][0][0], int) else {} + for path, value in xs: + cursor = result + for i, key in enumerate(path[:-1]): + if isinstance(cursor, list): + if key == len(cursor): + next_key = path[i + 1] + if isinstance(next_key, int): + cursor.append([]) + else: + cursor.append({}) + else: + if key not in cursor: + next_key = path[i + 1] + if isinstance(next_key, int): + cursor[key] = [] + else: + cursor[key] = {} + cursor = cursor[key] + cursor[path[-1]] = value + return result + +def _as_yaml_str(value) -> str: + if (hasattr(value, '__len__') and len(value) == 0) or value is None: + return '' + + value = jax.tree.map(_normalize_values, value) + value = _maybe_pytree_to_dict(value) + + file = io.StringIO() + yaml.safe_dump( + value, + file, + default_flow_style=False, + indent=2, + sort_keys=False, + explicit_end=False, + ) + return file.getvalue().replace('\n...', '').replace("'", '').strip() + + +def _render_array(x): + shape, dtype = jnp.shape(x), jnp.result_type(x) + shape_repr = ','.join(str(x) for x in shape) + return f'[dim]{dtype}[/dim][{shape_repr}]' + + +def _sort_variable_types(types: tp.Iterable[type]) -> list[type]: + def _variable_parents_count(t: type): + return sum(1 for p in t.mro() if issubclass(p, variablelib.Variable)) + + type_sort_key = {t: (-_variable_parents_count(t), t.__name__) for t in types} + return sorted(types, key=lambda t: type_sort_key[t]) diff --git a/tests/nnx/summary_test.py b/tests/nnx/summary_test.py new file mode 100644 index 0000000000..94059c212c --- /dev/null +++ b/tests/nnx/summary_test.py @@ -0,0 +1,74 @@ +# Copyright 2024 The Flax Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import jax.numpy as jnp +from absl.testing import absltest + +from flax import nnx + +CONSOLE_TEST_KWARGS = dict(force_terminal=False, no_color=True, width=10_000) + + +class SummaryTest(absltest.TestCase): + def test_tabulate(self): + class Block(nnx.Module): + def __init__(self, din, dout, rngs: nnx.Rngs): + self.linear = nnx.Linear(din, dout, rngs=rngs) + self.bn = nnx.BatchNorm(dout, rngs=rngs) + self.dropout = nnx.Dropout(0.2, rngs=rngs) + + def forward(self, x): + return nnx.relu(self.dropout(self.bn(self.linear(x)))) + + class Foo(nnx.Module): + def __init__(self, rngs: nnx.Rngs): + self.block1 = Block(32, 128, rngs=rngs) + self.block2 = Block(128, 10, rngs=rngs) + + def __call__(self, x): + return self.block2.forward(self.block1.forward(x)) + + foo = Foo(nnx.Rngs(0)) + x = jnp.ones((1, 32)) + table_repr = nnx.tabulate( + foo, x, console_kwargs=CONSOLE_TEST_KWARGS + ).splitlines() + + self.assertIn('Foo Summary', table_repr[0]) + self.assertIn('path', table_repr[2]) + self.assertIn('type', table_repr[2]) + self.assertIn('BatchStat', table_repr[2]) + self.assertIn('Param', table_repr[2]) + self.assertIn('block1/forward', table_repr[6]) + self.assertIn('Block', table_repr[6]) + self.assertIn('block1/linear', table_repr[8]) + self.assertIn('Linear', table_repr[8]) + self.assertIn('block1/bn', table_repr[13]) + self.assertIn('BatchNorm', table_repr[13]) + self.assertIn('block1/dropout', table_repr[18]) + self.assertIn('Dropout', table_repr[18]) + self.assertIn('block2/forward', table_repr[20]) + self.assertIn('Block', table_repr[20]) + self.assertIn('block2/linear', table_repr[22]) + self.assertIn('Linear', table_repr[22]) + self.assertIn('block2/bn', table_repr[27]) + self.assertIn('BatchNorm', table_repr[27]) + self.assertIn('block2/dropout', table_repr[32]) + self.assertIn('Dropout', table_repr[32]) + + self.assertIn('Total', table_repr[34]) + self.assertIn('276 (1.1 KB)', table_repr[34]) + self.assertIn('5,790 (23.2 KB)', table_repr[34]) + self.assertIn('2 (12 B)', table_repr[34]) + self.assertIn('Total Parameters: 6,068 (24.3 KB)', table_repr[37])