-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathbit_hyperrule.py
63 lines (52 loc) · 1.86 KB
/
bit_hyperrule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def get_resolution(original_resolution):
"""Takes (H,W) and returns (precrop, crop)."""
area = original_resolution[0] * original_resolution[1]
return (160, 128) if area < 96*96 else (512, 480)
known_dataset_sizes = {
'cifar10': (32, 32),
'cifar100': (32, 32),
'oxford_iiit_pet': (224, 224),
'oxford_flowers102': (224, 224),
'imagenet2012': (224, 224),
}
def get_resolution_from_dataset(dataset):
if dataset not in known_dataset_sizes:
raise ValueError(f"Unsupported dataset {dataset}. Add your own here :)")
return get_resolution(known_dataset_sizes[dataset])
def get_mixup(dataset_size):
return 0.0 if dataset_size < 20_000 else 0.1
def get_schedule(dataset_size):
if dataset_size < 20_000:
return [100, 200, 300, 400, 500]
elif dataset_size < 500_000:
return [500, 3000, 6000, 9000, 10_000]
else:
return [500, 6000, 12_000, 18_000, 20_000]
def get_lr(step, dataset_size, base_lr=0.003):
"""Returns learning-rate for `step` or None at the end."""
supports = get_schedule(dataset_size)
# Linear warmup
if step < supports[0]:
return base_lr * step / supports[0]
# End of training
elif step >= supports[-1]:
return None
# Staircase decays by factor of 10
else:
for s in supports[1:]:
if s < step:
base_lr /= 10
return base_lr