-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathmodel.py
185 lines (153 loc) · 6.85 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model code. Provided settings are identical to what was used in the paper."""
import sonnet as snt
import tensorflow.compat.v1 as tf
from object_attention_for_reasoning import transformer
QUESTION_VOCAB_SIZE = 82
ANSWER_VOCAB_SIZE = 22
MAX_QUESTION_LENGTH = 20
MAX_CHOICE_LENGTH = 12
NUM_CHOICES = 4
EMBED_DIM = 16
PRETRAINED_MODEL_CONFIG = dict(
use_relative_positions=True,
shuffle_objects=True,
transformer_layers=28,
head_size=128,
num_heads=10,
embed_dim=EMBED_DIM,
)
def append_ids(tensor, id_vector, axis):
id_vector = tf.constant(id_vector, tf.float32)
for a in range(len(tensor.shape)):
if a != axis:
id_vector = tf.expand_dims(id_vector, axis=a)
tiling_vector = [s if i != axis else 1 for i, s in enumerate(tensor.shape)]
id_tensor = tf.tile(id_vector, tiling_vector)
return tf.concat([tensor, id_tensor], axis=axis)
class ClevrerTransformerModel(object):
"""Model from Ding et al. 2020 (https://arxiv.org/abs/2012.08508)."""
def __init__(self, use_relative_positions, shuffle_objects,
transformer_layers, num_heads, head_size, embed_dim):
"""Instantiate Sonnet modules."""
self._embed_dim = embed_dim
self._embed = snt.Embed(QUESTION_VOCAB_SIZE, embed_dim - 2)
self._shuffle_objects = shuffle_objects
self._memory_transformer = transformer.TransformerTower(
value_size=embed_dim + 2,
num_heads=num_heads,
num_layers=transformer_layers,
use_relative_positions=use_relative_positions,
causal=False)
self._final_layer_mc = snt.Sequential(
[snt.Linear(head_size), tf.nn.relu, snt.Linear(1)])
self._final_layer_descriptive = snt.Sequential(
[snt.Linear(head_size), tf.nn.relu,
snt.Linear(ANSWER_VOCAB_SIZE)])
self._dummy = tf.get_variable("dummy", [embed_dim + 2], tf.float32,
initializer=tf.zeros_initializer)
self._infill_linear = snt.Linear(embed_dim + 2)
self._mask_embedding = tf.get_variable(
"mask", [embed_dim + 2], tf.float32, initializer=tf.zeros_initializer)
def _apply_transformers(self, lang_embedding, vision_embedding):
"""Applies transformer to language and vision input.
Args:
lang_embedding: tensor,
vision_embedding: tensor, "validation", or "test".
Returns:
tuple, output at dummy token, all output embeddings, infill loss
"""
def _unroll(tensor):
"""Unroll the time dimension into the object dimension."""
return tf.reshape(
tensor, [tensor.shape[0], -1, tensor.shape[3]])
words = append_ids(lang_embedding, [1, 0], axis=2)
dummy_word = tf.tile(self._dummy[None, None, :], [tf.shape(words)[0], 1, 1])
vision_embedding = append_ids(vision_embedding, [0, 1], axis=3)
vision_over_time = _unroll(vision_embedding)
transformer_input = tf.concat([dummy_word, words, vision_over_time], axis=1)
output, _ = self._memory_transformer(transformer_input,
is_training=False)
return output[:, 0, :]
def apply_model_descriptive(self, inputs):
"""Applies model to CLEVRER descriptive questions.
Args:
inputs: dict of form: {
"question": tf.int32 tensor of shape [batch, MAX_QUESTION_LENGTH],
"monet_latents": tf.float32 tensor of shape [batch, frames, 8, 16],
}
Returns:
Tensor of shape [batch, ANSWER_VOCAB_SIZE], representing logits for each
possible answer word.
"""
question = inputs["question"]
# Shape: [batch, question_len, embed_dim-2]
question_embedding = self._embed(question)
# Shape: [batch, question_len, embed_dim]
question_embedding = append_ids(question_embedding, [0, 1], 2)
choices_embedding = self._embed(
tf.zeros([question.shape[0], MAX_CHOICE_LENGTH], tf.int64))
choices_embedding = append_ids(choices_embedding, [0, 1], 2)
# Shape: [batch, choices, question_len + choice_len, embed_dim]
lang_embedding = tf.concat([question_embedding, choices_embedding], axis=1)
# Shape: [batch, frames, num_objects, embed_dim]
vision_embedding = inputs["monet_latents"]
if self._shuffle_objects:
vision_embedding = tf.transpose(vision_embedding, [2, 1, 0, 3])
vision_embedding = tf.random.shuffle(vision_embedding)
vision_embedding = tf.transpose(vision_embedding, [2, 1, 0, 3])
output = self._apply_transformers(lang_embedding, vision_embedding)
output = self._final_layer_descriptive(output)
return output
def apply_model_mc(self, inputs):
"""Applies model to CLEVRER multiple-choice questions.
Args:
inputs: dict of form: {
"question": tf.int32 tensor of shape [batch, MAX_QUESTION_LENGTH],
"choices": tf.int32 tensor of shape [batch, 4, MAX_CHOICE_LENGTH],
"monet_latents": tf.float32 tensor of shape [batch, frames, 8, 16],
}
Returns:
Tensor of shape [batch, 4], representing logits for each choice
"""
question = inputs["question"]
choices = inputs["choices"]
# Shape: [batch, question_len, embed_dim-2]
question_embedding = self._embed(question)
# Shape: [batch, question_len, embed_dim]
question_embedding = append_ids(question_embedding, [1, 0], 2)
# Shape: [batch, choices, choice_len, embed_dim-2]
choices_embedding = snt.BatchApply(self._embed)(choices)
# Shape: [batch, choices, choice_len, embed_dim]
choices_embedding = append_ids(choices_embedding, [0, 1], 3)
# Shape: [batch, choices, question_len + choice_len, embed_dim]
lang_embedding = tf.concat([
tf.tile(question_embedding[:, None],
[1, choices_embedding.shape[1], 1, 1]),
choices_embedding], axis=2)
# Shape: [batch, frames, num_objects, embed_dim]
vision_embedding = inputs["monet_latents"]
if self._shuffle_objects:
vision_embedding = tf.transpose(vision_embedding, [2, 1, 0, 3])
vision_embedding = tf.random.shuffle(vision_embedding)
vision_embedding = tf.transpose(vision_embedding, [2, 1, 0, 3])
output_per_choice = []
for c in range(NUM_CHOICES):
output = self._apply_transformers(
lang_embedding[:, c, :, :], vision_embedding)
output_per_choice.append(output)
output = tf.stack(output_per_choice, axis=1)
output = tf.squeeze(snt.BatchApply(self._final_layer_mc)(output), axis=2)
return output