-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQLearning-TaxiEnvironment.py
306 lines (189 loc) · 6.47 KB
/
QLearning-TaxiEnvironment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python
# coding: utf-8
# In[351]:
import gym
import numpy as np
import random
import matplotlib.pyplot as plt
def adaptiveEpsilonGreedy(epsilon, epsilon_decay, epsilon_min):
if epsilon > epsilon_min:
epsilon = epsilon*epsilon_decay
return epsilon
env = gym.make("Taxi-v3").env
num_state = env.observation_space.n
num_action = env.action_space.n
# 500 state - 6 action
q_table = np.zeros((num_state,num_action))
#Hyperparameter
"""learning_rate = 0.7
discount_rate = 0.5
epsilon = 1
epsilon_decay = 0.1
epsilon_min = 0.001
"""
learning_rate = 1
discount_rate = 0.9
epsilon = 1
epsilon_decay = 0.7
epsilon_min = 0.000001
#Plotting metric
reward_list = []
dropout_list = []
epsilon_list = []
episode_list = []
episode_number = 500
for i in range(1,episode_number):
#initialize environment in each episode
state = env.reset()
reward_count = 0
dropouts = 0
epsilon = 1
time_step_list = []
time_step = 0
while True:# time-step
epsilon_list.append(epsilon)
time_step_list.append(time_step)
#print("Time-Step",time_step)
#exploit vs explore to select action: keşfet ya da Q_TABLE : epsilon
#%10 explore %90 exploit(Q_table)
if random.uniform(0,1) < epsilon: #keşfet
action = env.action_space.sample()#random action seç
else:
action = np.argmax(q_table[state]) #en yüksek Q valueya sahip actionı seç
next_state, reward, done, _ = env.step(action)#action alındı
#Q tableı güncelle: gelecekteki maximum değeri geçmişteki statein action değerine ata
old_value = q_table[state,action]
next_max = np.max(q_table[next_state])
next_value = (1-learning_rate)*old_value + learning_rate*(reward + discount_rate*next_max)
q_table[state,action] = next_value
state = next_state # for iteration
#find wrong dropouts
if reward == -10: #reward = -10 ise yanlış yerde indirmiş demektir
dropouts += 1 #yanlış indirme sayısı arttı
reward_count += reward
time_step +=1
epsilon = adaptiveEpsilonGreedy(epsilon, epsilon_decay, epsilon_min)
if done:
break
episode_list.append(i)
reward_list.append(reward_count) #her episode sonundaki toplam reward kaydedildi
dropout_list.append(dropouts) #her episode sonundaki yanlış indirme sayısı kaydedildi
#print("Episode: {}, total_reward: {}".format(i,reward_count))
print("Training is done!")
#Not hiç yanlış dropout yapmadığında rewardın negatif çıkmasının sebebi zaman kaybı
# ### Episode Experiment
# In[282]:
rw1 = reward_list
eps_list1 = episode_list
# In[284]:
rw2 = reward_list
eps_list2 = episode_list
# In[286]:
rw3 = reward_list
eps_list3 = episode_list
# In[294]:
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 30
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size
l1, = plt.plot(eps_list1, rw1, label="Episode = 100")
l2, = plt.plot(eps_list2, rw2, label= "Episode = 200" )
l3, = plt.plot(eps_list3, rw3, label= "Episode = 300" )
plt.legend(handles=[l1, l2, l3])
plt.xlabel("Episode", fontsize=20)
plt.ylabel("Reward", fontsize=20)
plt.title("Learning Rate:{} Discount Rate:{} Epsilon Decay:{} Minimum Epsilon:1e-6".format(learning_rate,discount_rate,epsilon_decay))
plt.autoscale(axis='x',tight=False)
plt.grid(True)
plt.show()
# In[296]:
rw1 = reward_list
eps_list1 = episode_list
# In[303]:
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 15
fig_size[1] = 3
plt.rcParams["figure.figsize"] = fig_size
l1, = plt.plot(eps_list1, rw1, label="Episode = 500")
plt.legend(handles=[l1])
plt.xlabel("Episode", fontsize=7)
plt.ylabel("Reward", fontsize=7)
plt.title("Learning Rate:{} Discount Rate:{} Epsilon Decay:{} Minimum Epsilon:1e-6".format(learning_rate,discount_rate,epsilon_decay),fontsize=10)
plt.autoscale(axis='x',tight=False)
plt.grid(True)
plt.show()
# ### Learning Rate Experiment
# In[305]:
rw1 = reward_list
eps_list1 = episode_list
# In[307]:
rw2 = reward_list
eps_list2 = episode_list
# In[309]:
rw3 = reward_list
eps_list3 = episode_list
# In[314]:
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 30
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size
l1, = plt.plot(eps_list1, rw1, label="Learning Rate = 1")
l2, = plt.plot(eps_list2, rw2, label= "Learning Rate = 0.2" )
l3, = plt.plot(eps_list3, rw3, label= "Learning Rate = 0.01" )
plt.legend(handles=[l1, l2, l3])
plt.xlabel("Episode", fontsize=20)
plt.ylabel("Reward", fontsize=20)
plt.title("Episode:500 Discount Rate:{} Epsilon Decay:{} Minimum Epsilon:1e-6".format(discount_rate,epsilon_decay),fontsize = 15)
plt.autoscale(axis='x',tight=False)
plt.grid(True)
plt.show()
# ### Discount Rate Experiment
# In[322]:
rw1 = reward_list
eps_list1 = episode_list
# In[324]:
rw2 = reward_list
eps_list2 = episode_list
# In[327]:
rw3 = reward_list
eps_list3 = episode_list
# In[328]:
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 30
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size
l1, = plt.plot(eps_list1, rw1, label="Discount Rate = 0.9")
l2, = plt.plot(eps_list2, rw2, label= "Discount Rate = 0.2" )
l3, = plt.plot(eps_list3, rw3, label= "Discount Rate = 0.01" )
plt.legend(handles=[l1, l2, l3])
plt.xlabel("Episode", fontsize=20)
plt.ylabel("Reward", fontsize=20)
plt.title("Episode:500 Learning Rate:{} Epsilon Decay:{} Minimum Epsilon:1e-6".format(learning_rate,epsilon_decay),fontsize = 15)
plt.autoscale(axis='x',tight=False)
plt.grid(True)
plt.show()
# ### Epsilon Decay Experiment
# In[346]:
rw1 = reward_list
eps_list1 = episode_list
# In[349]:
rw2 = reward_list
eps_list2 = episode_list
# In[343]:
rw3 = reward_list
eps_list3 = episode_list
# In[353]:
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 30
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size
l1, = plt.plot(eps_list1, rw1, label="Epsilon Decay = 0.99")
l2, = plt.plot(eps_list2, rw2, label= "Epsilon Decay = 0.7" )
l3, = plt.plot(eps_list3, rw3, label= "Epsilon Decay = 0.01" )
plt.legend(handles=[l1, l2, l3])
plt.xlabel("Episode", fontsize=20)
plt.ylabel("Reward", fontsize=20)
plt.title("Episode:500 Learning Rate:{} Discount Rate:{} Minimum Epsilon:1e-6".format(learning_rate,discount_rate),fontsize = 15)
plt.autoscale(axis='x',tight=False)
plt.grid(True)
plt.show()