-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathicp.py
215 lines (169 loc) · 6.81 KB
/
icp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Original code: https://github.com/ClayFlannigan/icp
# Modified to reject pairs that have greater distance than the specified threshold
# Add covariance check
import numpy as np
from sklearn.neighbors import NearestNeighbors
def compute_C_k(point1, point2):
d = point1 - point2
alpha = np.pi/2 + np.arctan2(d[1], d[0])
c = np.cos(alpha)
s = np.sin(alpha)
m = np.array([[c*c, c*s],
[c*s, s*s]])
return m
def dC_drho(point1, point2):
eps = 0.001
C_k = compute_C_k(point1, point2)
point1b = point1 + point1 * (eps/np.linalg.norm(point1))
C_k_eps = compute_C_k(point1b, point2)
return (1/eps) * (C_k_eps - C_k)
def rotation_matrix(theta):
return np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
def vers(theta):
return np.array([np.cos(theta), np.sin(theta)])
def compute_covariance(laser_ref, laser_sens, t, theta, angles):
# Reference: https://censi.science/research/robot-perception/icpcov/
d2J_dxdy1 = np.zeros((3, laser_ref.shape[0]))
d2J_dxdy2 = np.zeros((3, laser_sens.shape[0]))
d2J_dt2 = np.zeros((2, 2))
d2J_dt_dtheta = np.zeros((2,1));
d2J_dtheta2 = np.zeros((1, 1))
for i in range(laser_ref.shape[0]-1):
p_i = laser_sens[i]
p_j1 = laser_ref[i]
p_j2 = laser_ref[i+1]
v1 = rotation_matrix(theta + np.pi/2) @ p_i
v2 = rotation_matrix(theta) @ p_i + t - p_j1
v3 = vers(theta + angles[i])
v4 = vers(theta + angles[i] + np.pi/2)
C_k = compute_C_k(p_j1, p_j2)
d2J_dt2_k = 2 * C_k
d2J_dt_dtheta_k = 2 * (C_k @ v1)
v_new = rotation_matrix(theta+np.pi) @ p_i
d2J_dtheta2_k = 2 * ((C_k @ v_new @ v2.T) + (C_k @ v1 @ v1.T))
d2J_dt2 += d2J_dt2_k
d2J_dt_dtheta += d2J_dt_dtheta_k[:, np.newaxis]
d2J_dtheta2 += d2J_dtheta2_k
d2Jk_dtdrho_i = 2 * C_k @ v3
d2Jk_dtheta_drho_i = 2 * ((C_k @ v4 @ v2.T) + (C_k @ v1 @ v3.T))
d2J_dxdy2[:, i] += np.hstack([d2Jk_dtdrho_i, d2Jk_dtheta_drho_i])
dC_drho_j1 = dC_drho(p_j1, p_j2)
dC_drho_j2 = dC_drho(p_j2, p_j1)
v_j1 = vers(angles[i]) # Probably wrong
d2Jk_dt_drho_j1 = (-2 * (C_k @ v_j1)) + (2 * (dC_drho_j1 @ v2))
d2Jk_dtheta_drho_j1 = (-2 * (C_k @ v1 @ v_j1.T)) + (dC_drho_j1 @ v1 @ v2.T)
d2J_dxdy1[:, i] += np.hstack([d2Jk_dt_drho_j1, d2Jk_dtheta_drho_j1])
d2Jk_dt_drho_j2 = 2 * (dC_drho_j2 @ v2)
d2Jk_dtheta_drho_j2 = 2 * (dC_drho_j2 @ v1 @ v2.T)
d2J_dxdy1[:, i+1] += np.hstack([d2Jk_dt_drho_j2, d2Jk_dtheta_drho_j2])
d2J_dx2 = np.vstack([np.hstack([d2J_dt2, d2J_dt_dtheta]),
np.hstack([d2J_dt_dtheta.T, d2J_dtheta2])])
edx_dy1 = -np.linalg.inv(d2J_dx2) @ d2J_dxdy1
edx_dy2 = -np.linalg.inv(d2J_dx2) @ d2J_dxdy2
ecov0_x = edx_dy1 @ edx_dy1.T + edx_dy2 @ edx_dy2.T
return ecov0_x, edx_dy1, edx_dy2
def best_fit_transform(A, B):
'''
Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions
Input:
A: Nxm numpy array of corresponding points
B: Nxm numpy array of corresponding points
Returns:
T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B
R: mxm rotation matrix
t: mx1 translation vector
'''
assert A.shape == B.shape
# get number of dimensions
m = A.shape[1]
# translate points to their centroids
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - centroid_A
BB = B - centroid_B
# rotation matrix
H = np.dot(AA.T, BB)
U, S, Vt = np.linalg.svd(H)
R = np.dot(Vt.T, U.T)
# special reflection case
if np.linalg.det(R) < 0:
Vt[m-1,:] *= -1
R = np.dot(Vt.T, U.T)
# translation
t = centroid_B.T - np.dot(R,centroid_A.T)
# homogeneous transformation
T = np.identity(m+1)
T[:m, :m] = R
T[:m, m] = t
return T, R, t
def nearest_neighbor(src, dst):
'''
Find the nearest (Euclidean) neighbor in dst for each point in src
Input:
src: Nxm array of points
dst: Nxm array of points
Output:
distances: Euclidean distances of the nearest neighbor
indices: dst indices of the nearest neighbor
'''
assert src.shape == dst.shape
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(dst)
distances, indices = neigh.kneighbors(src, return_distance=True)
return distances.ravel(), indices.ravel()
def icp(A, B, init_pose=None, max_iterations=20, tolerance=0.001):
'''
The Iterative Closest Point method: finds best-fit transform that maps points A on to points B
Input:
A: Nxm numpy array of source mD points
B: Nxm numpy array of destination mD point
init_pose: (m+1)x(m+1) homogeneous transformation
max_iterations: exit algorithm after max_iterations
tolerance: convergence criteria
Output:
T: final homogeneous transformation that maps A on to B
distances: Euclidean distances (errors) of the nearest neighbor
i: number of iterations to converge
'''
assert A.shape == B.shape
# get number of dimensions
m = A.shape[1]
# make points homogeneous, copy them to maintain the originals
src = np.ones((m+1,A.shape[0]))
dst = np.ones((m+1,B.shape[0]))
src[:m,:] = np.copy(A.T)
dst[:m,:] = np.copy(B.T)
# apply the initial pose estimation
if init_pose is not None:
src = np.dot(init_pose, src)
prev_error = 0
for i in range(max_iterations):
# find the nearest neighbors between the current source and destination points
distances, indices = nearest_neighbor(src[:m,:].T, dst[:m,:].T)
# Reject pairs that have 1 meter distance between them
indices = indices[np.linalg.norm(src[:m, :], axis=0) < 80]
distances = distances[np.linalg.norm(src[:m, :], axis=0) < 80]
filtered_src = src[:, np.linalg.norm(src[:m, :], axis=0) < 80]
indices = indices[distances < 1.0]
# compute the transformation between
# the current source and nearest destination points
T,_,_ = best_fit_transform(filtered_src[:m, distances < 1.0].T, dst[:m,indices].T)
# distances = distances[distances <= 1.0]
# update the current source
src = np.dot(T, src)
# check error
mean_error = np.mean(distances)
if np.abs(prev_error - mean_error) < tolerance:
break
prev_error = mean_error
# calculate final transformation
T,_,_ = best_fit_transform(A, src[:m,:].T)
# FIXME: BROKEN
# theta = np.arctan2(T[1,0], T[0,0])
# t = T[0:2, 2]
# angle_res = 1
# angles = np.arange(-90, 91, angle_res)
# cov, a, b = compute_covariance(A, src[:m, :].T, t, theta, np.radians(angles))
cov = np.eye(3)
return T, distances, i, cov