This repository has been archived by the owner on Feb 7, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_lensing_approx.py
100 lines (68 loc) · 2.98 KB
/
plot_lensing_approx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import matplotlib.pyplot as plt
from glass.matter import effective_redshifts
from glass.lensing import multi_plane_weights, multi_plane_matrix
from _plotting import getcl, split_bins, multi_row_label, symlog_no_zero
from _config import *
cls = np.load(spec_path/'matter.npy')
theory_cls = np.load(spec_path/'lensing.npy')
theory_cls = split_bins(theory_cls)
n = len(weights.z)
zkap = effective_redshifts(weights)
wkap = multi_plane_weights(zkap, weights)
lmat = multi_plane_matrix(zkap, wkap, cosmo)
approx_cls = sum(lmat[:, i, np.newaxis]*lmat[:, j, np.newaxis]*getcl(cls, i, j, lmax=lmax)
for i in range(n) for j in range(n))
plot_bins = np.searchsorted(shells[1:], showz)
fig, axes = plt.subplots(len(showz), 1, figsize=(4, 4), sharex=True, sharey=True)
axes = np.atleast_1d(axes)
for i, ax in zip(plot_bins, axes):
zsrc = zkap[i]
ax.annotate(f'$z_s = {zsrc:.2f}$', xy=(1., 1.), xytext=(-5, -8),
xycoords='axes fraction', textcoords='offset points',
ha='right', va='top', backgroundcolor=(1., 1., 1., 0.5))
z = np.arange(0, np.nextafter(zsrc+0.01, zsrc), 0.01)
w = 3*cosmo.omega_m/2*cosmo.xm(z)/cosmo.xm(zsrc)*cosmo.xm(z, zsrc)*(1 + z)/cosmo.ef(z)
ax.plot(z, w, '-', c='k', lw=0.5, zorder=1)
for k in range(i+1):
z = weights.z[k]
w = lmat[i, k]*weights.w[k]/np.trapz(weights.w[k], weights.z[k])
ax.plot(z, w, c='C0', zorder=0)
for z in shells:
ax.axvline(z, c=plt.rcParams['grid.color'], ls=plt.rcParams['grid.linestyle'],
lw=plt.rcParams['grid.linewidth'], zorder=-2)
if z > zsrc:
break
axes[0].margins(y=0.2)
axes[-1].set_xlabel('redshift $z$')
axes[-1].set_ylabel('effective lensing kernel')
fig.tight_layout()
multi_row_label(fig, axes[-1])
fig.savefig(plot_path/'lensing_kernel.pdf', dpi=300, bbox_inches='tight')
plt.close()
###
l = np.arange(1, lmax+1)
fig, axes = plt.subplots(len(plot_bins), 1, figsize=(4, 4), sharex=True, sharey=True)
axes = np.atleast_1d(axes)
for i, ax in zip(plot_bins, axes):
zsrc = zkap[i]
ax.annotate(f'$z_s = {zsrc:.2f}$', xy=(1., 1.), xytext=(-5, -8),
xycoords='axes fraction', textcoords='offset points',
ha='right', va='top', backgroundcolor=(1., 1., 1., 0.8))
tl = theory_cls[i][0][1:lmax+1]
al = approx_cls[i][1:]
sl = 1/(l + 0.5)**0.5
ax.plot(l, (al - tl)/np.fabs(tl))
ax.fill_between(l, +sl, -sl,
fc=plt.rcParams['hatch.color'], ec='none', zorder=-1)
ax.grid(True, which='major', axis='y')
axes[0].set_ylim(-0.9, 0.9)
axes[0].set_xscale('log')
axes[0].set_yscale('symlog', linthresh=1e-2, linscale=0.45, subs=[2, 3, 4, 5, 6, 7, 8, 9])
axes[-1].set_xlabel('angular mode number $l$')
axes[0].set_ylabel('relative error $\\Delta C_l^{\\kappa\\kappa}/C_l^{\\kappa\\kappa}$')
fig.tight_layout()
multi_row_label(fig, axes[0])
symlog_no_zero(axes)
fig.savefig(plot_path/'lensing_approx.pdf', dpi=300, bbox_inches='tight')
plt.close()