-
Notifications
You must be signed in to change notification settings - Fork 11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Projection back to the range step #3
Comments
@1094442522 Did you figure this out? @giannisdaras It would be really helpful to get your clarification on this? |
I‘ve got the same question as you did...I doubt that the author didn't implement line5,6 in the ilo_stylegan.py @1094442522 @akashsharma02 |
The following code projects back to the l1-ball from the solution of the previous layer: Line 248 in 08a88f2
If the solution of the prev. layer lies within the range of the layer (which is definitely the case when you optimize in the first intermediate layer), you are guaranteed to stay in an l1-deviation from the range. Is this answering what you guys are asking? Thanks for your interest! |
You wrote "This problem is solved by initializing a latent vector $z^p$ to $\hat{z}^p$ and then minimizing using gradient descent the loss $||G_1(z^k) − \tilde{z}_p||$" in the paper, namely the 5th line of Algorithm 1. But I don't find any inplementation of this. In my opinion, the code just simplly project present vector into an l1-deviation ball. Thanks for answering my question! And I would be grateful if you help me figure this out. |
Hi, I read the paper and find there is a 'projection back to the range step' in Algorithm 1. Is this step implemented in the ilo_stylegan.py?
From my understanding of the code, there is a projection to the l1 ball neighbourhood of prev_gen_out, but I don't find the step z_p ← G1(z_k) in the code (the step 6 in Algorithm1). I am wondering if there is something wrong with my understanding.
Thanks for your help and attached is the algorithm 1.

The text was updated successfully, but these errors were encountered: