Skip to content

Latest commit

 

History

History
21 lines (15 loc) · 1.38 KB

README_old.md

File metadata and controls

21 lines (15 loc) · 1.38 KB

yolo2_light

Light version of convolutional neural network Yolo v2 for objects detection with a minimum of dependencies (INT8-inference, BIT1-XNOR-inference)

This repository supports:

  • Windows - cpu only

How to compile:

  • Build yolo_cpu.sln

How to use INT8-inference:

  • Use flag -quantized at the end of command, for example,
    • yolo_cpu.exe detector test tiny-yolov2/voc.names tiny-yolov2/yolov2-tiny-voc.cfg tiny-yolov2/yolov2-tiny-voc.weights -thresh 0.10 person.jpg -quantized
  • For the custom dataset, you should use input_calibration= parameter in your cfg-file, from the correspon cfg-file: yolov2-tiny-voc.cfg, ...

How to use BIT1-XNOR-inference:

  • You should base your cfg-file on tiny-yolo-obj_xnor.cfg and train it by using this repository as usual https://github.com/AlexeyAB/darknet

  • Then use it for Detection-test:

    • yolo_cpu.exe detector test tiny-yolo-voc_xnor/voc.names tiny-yolo-voc_xnor/tiny_yolo_xnor.cfg tiny-yolo-voc_xnor/tiny_yolo_xnor.weights -thresh 0.21 person.jpg
    • Note: here we provide tiny_yolo_xnor.weights which was trained in voc dataset with tiny_yolo_xnor-train.cfg