-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
271 lines (239 loc) · 12.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
data.py
This module loads glossing data from files in the custom format:
\t <source sentence>
\g <gloss>
\l <translation>
Each sample is separated by a blank line. This module provides a
PyTorch LightningDataModule to load training, validation, and test data.
The raw data is loaded as lists of tokens, and then converted to padded tensors
via a custom collate function.
"""
import torch
from torch.utils.data import Dataset, DataLoader
from collections import Counter
from typing import List, Dict, Optional
from itertools import chain
from pytorch_lightning import LightningDataModule
from torchtext.vocab import build_vocab_from_iterator
from functools import partial
# Special tokens for our tokenizers.
SPECIAL_TOKENS = ["<pad>", "<unk>", "<s>", "</s>"]
def read_glossing_file_custom(file_path: str) -> Dict[str, List]:
"""
Reads a glossing file with the following format:
- Lines starting with "\t" contain the source sentence.
- Lines starting with "\g" contain the gloss.
- Lines starting with "\l" contain the translation.
Each sample is separated by a blank line.
Args:
file_path (str): Path to the data file.
Returns:
A dictionary with keys:
"sources": List[List[str]]
"targets": List[List[str]]
"translations": List[List[str]]
"""
samples = []
current_sample = {"source": None, "gloss": None, "translation": None}
with open(file_path, encoding="utf-8") as f:
for line in f:
line = line.strip()
# Blank line indicates end of current sample.
if not line:
if any(current_sample.values()):
samples.append(current_sample)
current_sample = {"source": None, "gloss": None, "translation": None}
continue
if line.startswith("\\t"):
current_sample["source"] = line[2:].strip().split()
elif line.startswith("\\g"):
current_sample["gloss"] = line[2:].strip().split()
elif line.startswith("\\l"):
current_sample["translation"] = line[2:].strip().split()
else:
continue
if any(current_sample.values()):
samples.append(current_sample)
sources = [s["source"] for s in samples]
targets = [s["gloss"] for s in samples]
translations = [s["translation"] for s in samples]
return {"sources": sources, "targets": targets, "translations": translations}
class GlossingFileData:
def __init__(self, sources: List[List[str]], targets: List[List[str]], translations: List[List[str]]):
self.sources = sources
self.targets = targets
self.translations = translations
class SequencePairDataset(Dataset):
def __init__(self, data: GlossingFileData):
super().__init__()
self.data = data
self._length = len(self.data.sources)
def __len__(self) -> int:
return self._length
def __getitem__(self, idx: int) -> Dict[str, List[str]]:
return {
"source": self.data.sources[idx],
"target": self.data.targets[idx],
"translation": self.data.translations[idx]
}
def collate_fn(batch: List[Dict[str, List[str]]],
source_tokenizer, target_tokenizer, trans_tokenizer,
max_src_len: int, max_tgt_len: int, max_trans_len: int) -> (
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
"""
Collate function that converts a list of sample dictionaries (with raw token lists)
into padded tensors.
Returns:
src: Tensor of shape (batch, max_src_len)
src_lengths: Tensor of shape (batch,)
gloss: Tensor of shape (batch, max_tgt_len)
trans: Tensor of shape (batch, max_trans_len)
"""
src_list, src_len_list, gloss_list, trans_list = [], [], [], []
for sample in batch:
# Convert source tokens to indices.
src_tokens = sample["source"]
src_indices = [source_tokenizer[token] for token in src_tokens]
src_len_list.append(len(src_indices))
if len(src_indices) < max_src_len:
src_indices = src_indices + [source_tokenizer["<pad>"]] * (max_src_len - len(src_indices))
else:
src_indices = src_indices[:max_src_len]
src_list.append(torch.tensor(src_indices, dtype=torch.long))
# For target (gloss), add start and end tokens.
tgt_tokens = ["<s>"] + sample["target"] + ["</s>"]
tgt_indices = [target_tokenizer[token] for token in tgt_tokens]
if len(tgt_indices) < max_tgt_len:
tgt_indices = tgt_indices + [target_tokenizer["<pad>"]] * (max_tgt_len - len(tgt_indices))
else:
tgt_indices = tgt_indices[:max_tgt_len]
gloss_list.append(torch.tensor(tgt_indices, dtype=torch.long))
# For translation.
trans_tokens = sample["translation"]
trans_indices = [trans_tokenizer[token] for token in trans_tokens]
if len(trans_indices) < max_trans_len:
trans_indices = trans_indices + [trans_tokenizer["<pad>"]] * (max_trans_len - len(trans_indices))
else:
trans_indices = trans_indices[:max_trans_len]
trans_list.append(torch.tensor(trans_indices, dtype=torch.long))
src_tensor = torch.stack(src_list, dim=0)
src_lengths = torch.tensor(src_len_list, dtype=torch.long)
gloss_tensor = torch.stack(gloss_list, dim=0)
trans_tensor = torch.stack(trans_list, dim=0)
return src_tensor, src_lengths, gloss_tensor, trans_tensor
def get_collate_fn(source_tokenizer, target_tokenizer, trans_tokenizer,
max_src_len: int, max_tgt_len: int, max_trans_len: int):
"""
Returns a collate function with bound tokenizers and maximum lengths.
"""
return partial(collate_fn,
source_tokenizer=source_tokenizer,
target_tokenizer=target_tokenizer,
trans_tokenizer=trans_tokenizer,
max_src_len=max_src_len,
max_tgt_len=max_tgt_len,
max_trans_len=max_trans_len)
class GlossingDataModule(LightningDataModule):
"""
PyTorch Lightning DataModule for glossing data.
Expects three files: train, validation, and test.
"""
def __init__(self, train_file: str, val_file: str, test_file: str, batch_size: int = 32,
max_src_len: int = 100, max_tgt_len: int = 30, max_trans_len: int = 50):
super().__init__()
self.train_file = train_file
self.val_file = val_file
self.test_file = test_file
self.batch_size = batch_size
self.max_src_len = max_src_len
self.max_tgt_len = max_tgt_len
self.max_trans_len = max_trans_len
def setup(self, stage: Optional[str] = None) -> None:
if stage == "fit" or stage is None:
train_data_dict = read_glossing_file_custom(self.train_file)
val_data_dict = read_glossing_file_custom(self.val_file)
self.train_dataset = SequencePairDataset(GlossingFileData(
sources=train_data_dict["sources"],
targets=train_data_dict["targets"],
translations=train_data_dict["translations"]
))
self.val_dataset = SequencePairDataset(GlossingFileData(
sources=val_data_dict["sources"],
targets=val_data_dict["targets"],
translations=val_data_dict["translations"]
))
# Build vocabularies from training data.
source_tokens = list(set(token for sentence in train_data_dict["sources"] for token in sentence))
target_tokens = list(set(token for sentence in train_data_dict["targets"] for token in sentence))
trans_tokens = list(set(token for sentence in train_data_dict["translations"] for token in sentence))
for token in SPECIAL_TOKENS:
if token not in source_tokens:
source_tokens.append(token)
if token not in target_tokens:
target_tokens.append(token)
if token not in trans_tokens:
trans_tokens.append(token)
self.source_alphabet = sorted(source_tokens)
self.target_alphabet = sorted(target_tokens)
self.trans_alphabet = sorted(trans_tokens)
self.source_alphabet_size = len(self.source_alphabet)
self.target_alphabet_size = len(self.target_alphabet)
self.trans_alphabet_size = len(self.trans_alphabet)
# Build tokenizers using torchtext's build_vocab_from_iterator.
self.source_tokenizer = build_vocab_from_iterator([[token] for token in self.source_alphabet],
specials=SPECIAL_TOKENS)
self.target_tokenizer = build_vocab_from_iterator([[token] for token in self.target_alphabet],
specials=SPECIAL_TOKENS)
self.trans_tokenizer = build_vocab_from_iterator([[token] for token in self.trans_alphabet],
specials=SPECIAL_TOKENS)
self.source_tokenizer.set_default_index(self.source_tokenizer["<unk>"])
self.target_tokenizer.set_default_index(self.target_tokenizer["<unk>"])
self.trans_tokenizer.set_default_index(self.trans_tokenizer["<unk>"])
# Get a bound collate function.
self._batch_collate = get_collate_fn(self.source_tokenizer, self.target_tokenizer,
self.trans_tokenizer, self.max_src_len,
self.max_tgt_len, self.max_trans_len)
if stage == "test" or stage is None:
test_data_dict = read_glossing_file_custom(self.test_file)
self.test_dataset = SequencePairDataset(GlossingFileData(
sources=test_data_dict["sources"],
targets=test_data_dict["targets"],
translations=test_data_dict["translations"]
))
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True,
collate_fn=self._batch_collate, num_workers=4, persistent_workers=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=False,
collate_fn=self._batch_collate, num_workers=4, persistent_workers=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size, shuffle=False,
collate_fn=self._batch_collate, num_workers=4, persistent_workers=True)
if __name__ == "__main__":
train_file = "data/Gitksan/git-train-track1-uncovered"
val_file = "data/Gitksan/git-dev-track1-uncovered"
test_file = "data/Gitksan/git-test-track1-uncovered"
dm = GlossingDataModule(train_file, val_file, test_file, batch_size=2)
dm.setup(stage="fit")
dm.setup(stage="test")
print("Training samples:", len(dm.train_dataset))
print("Validation samples:", len(dm.val_dataset))
print("Test samples:", len(dm.test_dataset))
# Print a single batch sample for training (in text format).
train_loader = dm.test_dataloader()
for batch in train_loader:
src_tensor, src_lengths, gloss_tensor, trans_tensor = batch
print("Batch sample (in text format):")
for i in range(src_tensor.size(0)):
src_text = " ".join([dm.source_tokenizer.get_itos()[idx] for idx in src_tensor[i].tolist() if
idx != dm.source_tokenizer["<pad>"]])
gloss_text = " ".join([dm.target_tokenizer.get_itos()[idx] for idx in gloss_tensor[i].tolist() if
idx != dm.target_tokenizer["<pad>"]])
trans_text = " ".join([dm.trans_tokenizer.get_itos()[idx] for idx in trans_tensor[i].tolist() if
idx != dm.trans_tokenizer["<pad>"]])
print(f"Sample {i + 1}:")
print(" Source:", src_text)
print(" Gloss: ", gloss_text)
print(" Trans: ", trans_text)
break