diff --git a/cpp/binary tree/Fenwick_Tree.cpp b/cpp/binary tree/Fenwick_Tree.cpp new file mode 100644 index 000000000..da3a9c1f2 --- /dev/null +++ b/cpp/binary tree/Fenwick_Tree.cpp @@ -0,0 +1,89 @@ +// C++ code to demonstrate operations of Fenwick Tree +#include + +using namespace std; + +/* n --> No. of elements present in input array. + BITree[0..n] --> Array that represents Binary Indexed Tree. + arr[0..n-1] --> Input array for which prefix sum is evaluated. */ + +// Returns sum of arr[0..index]. This function assumes +// that the array is preprocessed and partial sums of +// array elements are stored in BITree[]. +int getSum(int BITree[], int index) +{ + int sum = 0; // Iniialize result + + // index in BITree[] is 1 more than the index in arr[] + index = index + 1; + + // Traverse ancestors of BITree[index] + while (index>0) + { + // Add current element of BITree to sum + sum += BITree[index]; + + // Move index to parent node in getSum View + index -= index & (-index); + } + return sum; +} + +// Updates a node in Binary Index Tree (BITree) at given index +// in BITree. The given value 'val' is added to BITree[i] and +// all of its ancestors in tree. +void updateBIT(int BITree[], int n, int index, int val) +{ + // index in BITree[] is 1 more than the index in arr[] + index = index + 1; + + // Traverse all ancestors and add 'val' + while (index <= n) + { + // Add 'val' to current node of BI Tree + BITree[index] += val; + + // Update index to that of parent in update View + index += index & (-index); + } +} + +// Constructs and returns a Binary Indexed Tree for given +// array of size n. +int *constructBITree(int arr[], int n) +{ + // Create and initialize BITree[] as 0 + int *BITree = new int[n+1]; + for (int i=1; i<=n; i++) + BITree[i] = 0; + + // Store the actual values in BITree[] using update() + for (int i=0; i +using namespace std; + +// limit for array size +const int N = 100000; + +int n; // array size + +// Max size of tree +int tree[2 * N]; + +// function to build the tree +void build( int arr[]) +{ + // insert leaf nodes in tree + for (int i=0; i 0; --i) + tree[i] = tree[i<<1] + tree[i<<1 | 1]; +} + +// function to update a tree node +void updateTreeNode(int p, int value) +{ + // set value at position p + tree[p+n] = value; + p = p+n; + + // move upward and update parents + for (int i=p; i > 1; i >>= 1) + tree[i>>1] = tree[i] + tree[i^1]; +} + +// function to get sum on interval [l, r) +int query(int l, int r) +{ + int res = 0; + + // loop to find the sum in the range + for (l += n, r += n; l < r; l >>= 1, r >>= 1) + { + if (l&1) + res += tree[l++]; + + if (r&1) + res += tree[--r]; + } + + return res; +} + +// driver program to test the above function +int main() +{ + int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; + + // n is global + n = sizeof(a)/sizeof(a[0]); + + // build tree + build(a); + + // print the sum in range(1,2) index-based + cout << query(1, 3)< +#include +#define MAX 1000 + + +// constant-sized arrays, we have done it here for simplicity. +int tree[MAX] = {0}; // To store segment tree +int lazy[MAX] = {0}; // To store pending updates + +/* si -> index of current node in segment tree + ss and se -> Starting and ending indexes of elements for + which current nodes stores sum. + us and ue -> starting and ending indexes of update query + diff -> which we need to add in the range us to ue */ +void updateRangeUtil(int si, int ss, int se, int us, + int ue, int diff) +{ + + if (lazy[si] != 0) + { + // Make pending updates using value stored in lazy + // nodes + tree[si] += (se-ss+1)*lazy[si]; + + // checking if it is not leaf node because if + // it is leaf node then we cannot go further + if (ss != se) + { + // We can postpone updating children we don't + // need their new values now. + // Since we are not yet updating children of si, + // we need to set lazy flags for the children + lazy[si*2 + 1] += lazy[si]; + lazy[si*2 + 2] += lazy[si]; + } + + // Set the lazy value for current node as 0 as it + // has been updated + lazy[si] = 0; + } + + // out of range + if (ss>se || ss>ue || se=us && se<=ue) + { + // Add the difference to current node + tree[si] += (se-ss+1)*diff; + + // same logic for checking leaf node or not + if (ss != se) + { + // This is where we store values in lazy nodes, + // rather than updating the segment tree itelf + // Since we don't need these updated values now + // we postpone updates by storing values in lazy[] + lazy[si*2 + 1] += diff; + lazy[si*2 + 2] += diff; + } + return; + } + + // If not completely in rang, but overlaps, recur for + // children, + int mid = (ss+se)/2; + updateRangeUtil(si*2+1, ss, mid, us, ue, diff); + updateRangeUtil(si*2+2, mid+1, se, us, ue, diff); + + // And use the result of children calls to update this + // node + tree[si] = tree[si*2+1] + tree[si*2+2]; +} + +// Function to update a range of values in segment +// tree +/* us and eu -> starting and ending indexes of update query + ue -> ending index of update query + diff -> which we need to add in the range us to ue */ +void updateRange(int n, int us, int ue, int diff) +{ +updateRangeUtil(0, 0, n-1, us, ue, diff); +} + + +/* A recursive function to get the sum of values in given + range of the array. The following are parameters for + this function. + si --> Index of current node in the segment tree. + Initially 0 is passed as root is always at' + index 0 + ss & se --> Starting and ending indexes of the + segment represented by current node, + i.e., tree[si] + qs & qe --> Starting and ending indexes of query + range */ +int getSumUtil(int ss, int se, int qs, int qe, int si) +{ + // If lazy flag is set for current node of segment tree, + // then there are some pending updates. So we need to + // make sure that the pending updates are done before + // processing the sub sum query + if (lazy[si] != 0) + { + // Make pending updates to this node. Note that this + // node represents sum of elements in arr[ss..se] and + // all these elements must be increased by lazy[si] + tree[si] += (se-ss+1)*lazy[si]; + + // checking if it is not leaf node because if + // it is leaf node then we cannot go further + if (ss != se) + { + // Since we are not yet updating children os si, + // we need to set lazy values for the children + lazy[si*2+1] += lazy[si]; + lazy[si*2+2] += lazy[si]; + } + + // unset the lazy value for current node as it has + // been updated + lazy[si] = 0; + } + + // Out of range + if (ss>se || ss>qe || se=qs && se<=qe) + return tree[si]; + + // If a part of this segment overlaps with the given + // range + int mid = (ss + se)/2; + return getSumUtil(ss, mid, qs, qe, 2*si+1) + + getSumUtil(mid+1, se, qs, qe, 2*si+2); +} + +// Return sum of elements in range from index qs (query +// start) to qe (query end). It mainly uses getSumUtil() +int getSum(int n, int qs, int qe) +{ + // Check for erroneous input values + if (qs < 0 || qe > n-1 || qs > qe) + { + printf("Invalid Input"); + return -1; + } + + return getSumUtil(0, n-1, qs, qe, 0); +} + +// A recursive function that constructs Segment Tree for +// array[ss..se]. si is index of current node in segment +// tree st. +void constructSTUtil(int arr[], int ss, int se, int si) +{ + // out of range as ss can never be greater than se + if (ss > se) + return ; + + // If there is one element in array, store it in + // current node of segment tree and return + if (ss == se) + { + tree[si] = arr[ss]; + return; + } + + // If there are more than one elements, then recur + // for left and right subtrees and store the sum + // of values in this node + int mid = (ss + se)/2; + constructSTUtil(arr, ss, mid, si*2+1); + constructSTUtil(arr, mid+1, se, si*2+2); + + tree[si] = tree[si*2 + 1] + tree[si*2 + 2]; +} + +/* Function to construct segment tree from given array. +This function allocates memory for segment tree and +calls constructSTUtil() to fill the allocated memory */ +void constructST(int arr[], int n) +{ + // Fill the allocated memory st + constructSTUtil(arr, 0, n-1, 0); +} + + +// Driver program to test above functions +int main() +{ + int arr[] = {1, 3, 5, 7, 9, 11}; + int n = sizeof(arr)/sizeof(arr[0]); + + // Build segment tree from given array + constructST(arr, n); + + // Print sum of values in array from index 1 to 3 + printf("Sum of values in given range = %d\n", + getSum(n, 1, 3)); + + // Add 10 to all nodes at indexes from 1 to 5. + updateRange(n, 1, 5, 10); + + // Find sum after the value is updated + printf("Updated sum of values in given range = %d\n", + getSum( n, 1, 3)); + + return 0; +} diff --git a/python/Matrix/Matrix transpose.py b/python/Matrix/Matrix transpose.py new file mode 100644 index 000000000..12526e10f --- /dev/null +++ b/python/Matrix/Matrix transpose.py @@ -0,0 +1,17 @@ +# Program to transpose a matrix using a nested loop + +X = [[12,7], + [4 ,5], + [3 ,8]] + +result = [[0,0,0], + [0,0,0]] + +# iterate through rows +for i in range(len(X)): + # iterate through columns + for j in range(len(X[0])): + result[j][i] = X[i][j] + +for r in result: + print(r) diff --git a/python/sorting/brick_sort.py b/python/sorting/brick_sort.py new file mode 100644 index 000000000..90b48eaf6 --- /dev/null +++ b/python/sorting/brick_sort.py @@ -0,0 +1,30 @@ +# Python Program to implement +# Odd-Even / Brick Sort + +def oddEvenSort(arr, n): + # Initially array is unsorted + isSorted = 0 + while isSorted == 0: + isSorted = 1 + temp = 0 + for i in range(1, n-1, 2): + if arr[i] > arr[i+1]: + arr[i], arr[i+1] = arr[i+1], arr[i] + isSorted = 0 + + for i in range(0, n-1, 2): + if arr[i] > arr[i+1]: + arr[i], arr[i+1] = arr[i+1], arr[i] + isSorted = 0 + + return + + +arr = [34, 2, 10, -9] +n = len(arr) + +oddEvenSort(arr, n); +for i in range(0, n): + print(arr[i], end =" ") + +# Code Contribute by Mohit Gupta_OMG <(0_o)>