You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
$ cd backup
$ wget https://pjreddie.com/media/files/yolov2-tiny.weights
$ cd ..
$ ./darknet detect cfg/yolov2-tiny.cfg backup/yolov2-tiny.weights data/dog.jpg
layer filters size input output
0 conv 16 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BFLOPs
1 max 2 x 2 / 2 416 x 416 x 16 -> 208 x 208 x 16
2 conv 32 3 x 3 / 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BFLOPs
3 max 2 x 2 / 2 208 x 208 x 32 -> 104 x 104 x 32
4 conv 64 3 x 3 / 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BFLOPs
5 max 2 x 2 / 2 104 x 104 x 64 -> 52 x 52 x 64
6 conv 128 3 x 3 / 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BFLOPs
7 max 2 x 2 / 2 52 x 52 x 128 -> 26 x 26 x 128
8 conv 256 3 x 3 / 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BFLOPs
9 max 2 x 2 / 2 26 x 26 x 256 -> 13 x 13 x 256
10 conv 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BFLOPs
11 max 2 x 2 / 1 13 x 13 x 512 -> 13 x 13 x 512
12 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BFLOPs
13 conv 512 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x 512 1.595 BFLOPs
14 conv 425 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 425 0.074 BFLOPs
15 detection
mask_scale: Using default '1.000000'
Loading weights from backup/yolov2-tiny.weights...Done!
data/dog.jpg: Predicted in 1.282148 seconds.
dog: 82%
car: 74%
bicycle: 59%
yolov3
yolov3-tiny
$ cd backup
$ wget https://pjreddie.com/media/files/yolov3-tiny.weights
$ cd ..
$ ./darknet detect cfg/yolov3-tiny.cfg backup/yolov3-tiny.weights data/dog.jpg
layer filters size input output
0 conv 16 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BFLOPs
1 max 2 x 2 / 2 416 x 416 x 16 -> 208 x 208 x 16
2 conv 32 3 x 3 / 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BFLOPs
3 max 2 x 2 / 2 208 x 208 x 32 -> 104 x 104 x 32
4 conv 64 3 x 3 / 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BFLOPs
5 max 2 x 2 / 2 104 x 104 x 64 -> 52 x 52 x 64
6 conv 128 3 x 3 / 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BFLOPs
7 max 2 x 2 / 2 52 x 52 x 128 -> 26 x 26 x 128
8 conv 256 3 x 3 / 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BFLOPs
9 max 2 x 2 / 2 26 x 26 x 256 -> 13 x 13 x 256
10 conv 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BFLOPs
11 max 2 x 2 / 1 13 x 13 x 512 -> 13 x 13 x 512
12 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BFLOPs
13 conv 256 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 256 0.089 BFLOPs
14 conv 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BFLOPs
15 conv 255 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 255 0.044 BFLOPs
16 yolo
17 route 13
18 conv 128 1 x 1 / 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BFLOPs
19 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128
20 route 19 8
21 conv 256 3 x 3 / 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BFLOPs
22 conv 255 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 255 0.088 BFLOPs
23 yolo
Loading weights from backup/yolov3-tiny.weights...Done!
data/dog.jpg: Predicted in 1.278319 seconds.
dog: 57%
car: 52%
truck: 56%
car: 62%
bicycle: 59%
yolov3-spp
ImageNet Classification
Nightmare
RNNs in Darknet
DarkGo: Go in Darknet
Tiny Darknet
$ cd backup
$ wget https://pjreddie.com/media/files/tiny.weights
$ cd ..
$ ./darknet classify cfg/tiny.cfg backup/tiny.weights data/dog.jpg
layer filters size input output
0 conv 16 3 x 3 / 1 224 x 224 x 3 -> 224 x 224 x 16 0.043 BFLOPs
1 max 2 x 2 / 2 224 x 224 x 16 -> 112 x 112 x 16
2 conv 32 3 x 3 / 1 112 x 112 x 16 -> 112 x 112 x 32 0.116 BFLOPs
3 max 2 x 2 / 2 112 x 112 x 32 -> 56 x 56 x 32
4 conv 16 1 x 1 / 1 56 x 56 x 32 -> 56 x 56 x 16 0.003 BFLOPs
5 conv 128 3 x 3 / 1 56 x 56 x 16 -> 56 x 56 x 128 0.116 BFLOPs
6 conv 16 1 x 1 / 1 56 x 56 x 128 -> 56 x 56 x 16 0.013 BFLOPs
7 conv 128 3 x 3 / 1 56 x 56 x 16 -> 56 x 56 x 128 0.116 BFLOPs
8 max 2 x 2 / 2 56 x 56 x 128 -> 28 x 28 x 128
9 conv 32 1 x 1 / 1 28 x 28 x 128 -> 28 x 28 x 32 0.006 BFLOPs
10 conv 256 3 x 3 / 1 28 x 28 x 32 -> 28 x 28 x 256 0.116 BFLOPs
11 conv 32 1 x 1 / 1 28 x 28 x 256 -> 28 x 28 x 32 0.013 BFLOPs
12 conv 256 3 x 3 / 1 28 x 28 x 32 -> 28 x 28 x 256 0.116 BFLOPs
13 max 2 x 2 / 2 28 x 28 x 256 -> 14 x 14 x 256
14 conv 64 1 x 1 / 1 14 x 14 x 256 -> 14 x 14 x 64 0.006 BFLOPs
15 conv 512 3 x 3 / 1 14 x 14 x 64 -> 14 x 14 x 512 0.116 BFLOPs
16 conv 64 1 x 1 / 1 14 x 14 x 512 -> 14 x 14 x 64 0.013 BFLOPs
17 conv 512 3 x 3 / 1 14 x 14 x 64 -> 14 x 14 x 512 0.116 BFLOPs
18 conv 128 1 x 1 / 1 14 x 14 x 512 -> 14 x 14 x 128 0.026 BFLOPs
19 conv 1000 1 x 1 / 1 14 x 14 x 128 -> 14 x 14 x1000 0.050 BFLOPs
20 avg 14 x 14 x1000 -> 1000
21 softmax 1000
Loading weights from backup/tiny.weights...Done!
data/dog.jpg: Predicted in 0.250622 seconds.
14.51%: malamute
6.09%: Newfoundland
5.59%: dogsled
4.55%: standard schnauzer
4.05%: Eskimo dog
Train a Classifier on CIFAR-10
$ cd data
$ wget https://pjreddie.com/media/files/cifar.tgz
$ tar xzf cifar.tgz
$ ls cifar
labels.txt test train
$ cd cifar
$ find `pwd`/train -name \*.png > train.list
$ find `pwd`/test -name \*.png > test.list
$ cd ../..