-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
239 lines (187 loc) · 7.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
- https://en.wikipedia.org/wiki/Tf%E2%80%93idf
- https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
"""
import os
import math
import logging
from typing import Optional, List
from collections import OrderedDict
from abc import ABC, abstractmethod
ENG_CHARS = "abcdefghijklmnopqrstuvwxyz"
class Tokenizer(ABC):
@abstractmethod
def next(self) -> Optional[str]:
raise NotImplementedError
class SimpleTokenizer(Tokenizer):
def __init__(self, tokens: List[str]):
self.tokens = tokens
self.index = 0
def next(self) -> Optional[str]:
if self.index >= len(self.tokens):
return None
token = self.tokens[self.index]
self.index += 1
return token
def reset(self) -> 'SimpleTokenizer':
self.index = 0
return self
class FileTokenizer(Tokenizer):
def __init__(self, filename: str):
lines = []
with open(filename, "r", encoding="utf-8", errors="ignore") as f:
for line in f:
lines.append(line.strip())
cnt1, cnt2 = None, None
for i, line in enumerate(lines):
if line.startswith("Lines:"):
try:
cnt1 = int(line[6:].strip())
break
except Exception as e:
logging.warning("parse int with error %s", e)
if cnt2 is None and len(line) == 0:
cnt2 = i
if cnt1 is not None:
lines = lines[-cnt1:]
elif cnt2 is not None:
lines = lines[cnt2:]
self.lines = "\n".join(lines)
self.pos = 0
def _next(self) -> Optional[str]:
while self.pos < len(self.lines):
c = self.lines[self.pos].lower()
if c in ENG_CHARS:
break
self.pos += 1
if self.pos >= len(self.lines):
return None
token = ""
while self.pos < len(self.lines):
c = self.lines[self.pos].lower()
if c not in ENG_CHARS:
break
token += c
self.pos += 1
return token
def next(self) -> Optional[str]:
while True:
token = self._next()
if token is None or len(token) > 1:
return token
def test_file_tokenizer(filename):
tokenizer = FileTokenizer(filename)
print(tokenizer.lines)
tokens = []
while True:
token = tokenizer.next()
if token is None:
break
tokens.append(token)
print(tokens)
def check_file_tokenizer():
files = [os.path.join("20_newsgroups", file) for file in os.listdir("20_newsgroups")]
files = [os.path.join(file, file1) for file in files for file1 in os.listdir(file)]
for file in files:
try:
FileTokenizer(file)
except Exception as e:
print(file, e)
def _build_tf_from_tokenizer(tokenizer: Tokenizer):
n = 0
tf_map = OrderedDict()
while True:
token = tokenizer.next()
if token is None:
break
n += 1
if token not in tf_map:
tf_map[token] = 0
tf_map[token] += 1
for token, tf in tf_map.items():
tf_map[token] = tf / n
return tf_map
def _build_idf_from_tokenizers(tokenizers: List[Tokenizer], thresh: int = 0, base: str = "e"):
idf_map = OrderedDict()
for tokenizer in tokenizers:
token_set = set()
while True:
token = tokenizer.next()
if token is None:
break
token_set.add(token)
for token in token_set:
if token not in idf_map:
idf_map[token] = 0
idf_map[token] += 1
new_idf_map = OrderedDict()
for token, idf in idf_map.items():
if idf <= thresh:
continue
new_idf = len(tokenizers) / idf
if base == "10":
new_idf_map[token] = math.log10(new_idf)
else:
new_idf_map[token] = math.log(new_idf)
return new_idf_map
class TFIDF:
def __init__(self, tokenizers: List[Tokenizer], thresh: int = 0, base: str = "e"):
self.idf_map = _build_idf_from_tokenizers(tokenizers, thresh, base)
@classmethod
def build_tf_map(cls, tokenizer: Tokenizer):
return _build_tf_from_tokenizer(tokenizer)
def build_tf_idf_map(self, tokenizer: Tokenizer):
tf_map = _build_tf_from_tokenizer(tokenizer)
tf_idf_map = {}
for token, tf in tf_map.items():
if token not in self.idf_map:
tf_idf_map[token] = 0
else:
tf_idf_map[token] = tf * self.idf_map[token]
return tf_idf_map
def build_tf_idf_vector(self, tokenizer: Tokenizer):
tf_map = _build_tf_from_tokenizer(tokenizer)
tf_idf_vector = []
for token, idf in self.idf_map.items():
if token not in tf_map:
tf_idf_vector.append(0)
else:
tf_idf_vector.append(tf_map[token] * idf)
return tf_idf_vector
def test_tf_idf():
tokenizer1 = SimpleTokenizer(["this", "is", "a", "a", "sample"])
tokenizer2 = SimpleTokenizer(["this", "is", "another", "another", "example", "example", "example"])
tf_idf = TFIDF([tokenizer1, tokenizer2], base="10")
print(tf_idf.idf_map["this"], 0)
print(tf_idf.idf_map["example"], 0.301)
tokenizer1_tf_map = tf_idf.build_tf_map(tokenizer1.reset())
tokenizer2_tf_map = tf_idf.build_tf_map(tokenizer2.reset())
tokenizer1_tf_idf_map = tf_idf.build_tf_idf_map(tokenizer1.reset())
tokenizer2_tf_idf_map = tf_idf.build_tf_idf_map(tokenizer2.reset())
print(tokenizer1_tf_map["this"], 0.2)
print(tokenizer2_tf_map["this"], 0.14)
print(tokenizer1_tf_idf_map["this"], 0)
print(tokenizer2_tf_idf_map["this"], 0)
print("example" not in tokenizer1_tf_map, True)
print(tokenizer2_tf_map["example"], 0.429)
print("example" not in tokenizer1_tf_map, True)
print(tokenizer2_tf_idf_map["example"], 0.129)
if __name__ == "__main__":
# test_file_tokenizer("20_newsgroups\\alt.atheism\\49960")
# check_file_tokenizer()
# test_tf_idf()
files = [os.path.join("20_newsgroups", file) for file in os.listdir("20_newsgroups")]
files = [os.path.join(file, file1) for file in files for file1 in os.listdir(file)]
tf_idf = TFIDF([FileTokenizer(train_file) for train_file in files], thresh=3)
idf_sequence = [(k, v) for k, v in tf_idf.idf_map.items()]
idf_sequence = sorted(idf_sequence, key=lambda kv: kv[1], reverse=True)
with open("idf.txt", "w", encoding="utf-8") as f:
for k, v in idf_sequence:
f.write(f"{k}: {v}\n")
with open("result.txt", "w", encoding="utf-8") as f:
for file in files:
tf_idf_map = tf_idf.build_tf_idf_map(FileTokenizer(file))
tf_idf_sequence = [(k, v) for k, v in tf_idf_map.items()]
tf_idf_sequence = sorted(tf_idf_sequence, key=lambda kv: kv[1], reverse=True)
tf_idf_str = " ".join([k for k, v in tf_idf_sequence][:10])
f.write(f"{file}: {tf_idf_str}\n")