-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
209 lines (189 loc) · 6.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
from data_loader import get_loader
from build_vocab import Vocabulary
from model import EncoderCNN, DecoderRNN
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms
from img_transform import image_transform
# usage
# python3 train.py --version 2 --vocab_path data/vocab_new.pkl
# python3 train.py --mode twitter --save_step 20 --batch_size 16 --do_further_train
# python3 train.py --mode twitter --save_step 20 --batch_size 16 --do_further_train --version 2 --vocab_path data/vocab_new.pkl
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args):
# Create model directory
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
# Image preprocessing, normalization for the pretrained resnet
if args.mode == "coco":
transform = transforms.Compose(
[
transforms.RandomCrop(args.crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
if args.mode == "twitter":
transform = image_transform
# Load vocabulary wrapper
with open(args.vocab_path, "rb") as f:
vocab = pickle.load(f)
# Build data loader
data_loader = get_loader(
args.image_dir,
args.caption_path,
vocab,
transform,
args.batch_size,
shuffle=True,
num_workers=args.num_workers,
mode=args.mode,
mecab_dict_path=args.mecab_dict_path,
)
# Build the models
encoder = EncoderCNN(args.embed_size).to(device)
decoder = DecoderRNN(
args.embed_size, args.hidden_size, len(vocab), args.num_layers
).to(device)
# load the trained models
if args.do_further_train:
encoder.load_state_dict(torch.load(args.encoder_path))
decoder.load_state_dict(torch.load(args.decoder_path))
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
params = (
list(decoder.parameters())
+ list(encoder.linear.parameters())
+ list(encoder.bn.parameters())
)
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
# Train the models
total_step = len(data_loader)
for epoch in range(args.num_epochs):
for i, (images, captions, lengths) in enumerate(data_loader):
# Set mini-batch dataset
images = images.to(device)
captions = captions.to(device)
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
# Forward, backward and optimize
features = encoder(images)
outputs = decoder(features, captions, lengths)
loss = criterion(outputs, targets)
decoder.zero_grad()
encoder.zero_grad()
loss.backward()
optimizer.step()
# Print log info
if i % args.log_step == 0:
print(
"Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}".format(
epoch,
args.num_epochs,
i,
total_step,
loss.item(),
np.exp(loss.item()),
)
)
# Save the model checkpoints
if (i + 1) % args.save_step == 0:
torch.save(
decoder.state_dict(),
os.path.join(
args.model_path,
"decoder-{}-{}.{}.{}.ckpt".format(epoch + 1, i + 1, args.mode, args.version),
),
)
torch.save(
encoder.state_dict(),
os.path.join(
args.model_path,
"encoder-{}-{}.{}.{}.ckpt".format(epoch + 1, i + 1, args.mode, args.version),
),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
default="models/",
help="path for saving trained models",
)
parser.add_argument(
"--crop_size", type=int, default=224, help="size for randomly cropping images"
)
parser.add_argument(
"--vocab_path",
type=str,
default="data/vocab.pkl",
help="path for vocabulary wrapper",
)
parser.add_argument(
"--image_dir",
type=str,
default="data/resized2014",
help="directory for resized images",
)
parser.add_argument(
"--caption_path",
type=str,
# default="data/annotations/captions_train2014.json",
default="data/stair_captions_v1.2_train.json",
help="path for train annotation json file",
)
parser.add_argument(
"--log_step", type=int, default=10, help="step size for prining log info"
)
parser.add_argument(
"--save_step",
type=int,
default=1000,
help="step size for saving trained models",
)
parser.add_argument(
"--encoder_path",
type=str,
default="models/encoder-5-3000.coco.1.ckpt",
help="path for trained encoder",
)
parser.add_argument(
"--decoder_path",
type=str,
default="models/decoder-5-3000.coco.1.ckpt",
help="path for trained decoder",
)
# Model parameters
parser.add_argument(
"--embed_size",
type=int,
default=256,
help="dimension of word embedding vectors",
)
parser.add_argument(
"--hidden_size", type=int, default=512, help="dimension of lstm hidden states"
)
parser.add_argument(
"--num_layers", type=int, default=1, help="number of layers in lstm"
)
parser.add_argument("--num_epochs", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--mode", type=str, default="coco", help="coco or twitter")
parser.add_argument("--do_further_train", action="store_true")
parser.add_argument(
"--mecab_dict_path", default="/home/smg/nishikawa/src/lib/mecab/dic/ipadic"
)
parser.add_argument(
"--version", default="epoch10"
)
args = parser.parse_args()
print(args)
main(args)