-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheval_fb.py
225 lines (177 loc) · 7.97 KB
/
eval_fb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import json
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import argparse
import foolbox
def evaluate_fb(model, config, x_min, x_max, norm='l1', bound=None, verbose=True):
fmodel = foolbox.models.TensorFlowModel(model.x_input, model.pre_softmax, (x_min, x_max))
if norm == 'l2':
attack = foolbox.attacks.BoundaryAttack(fmodel)
else:
attack = foolbox.attacks.PointwiseAttack(fmodel)
dataset = config["data"]
num_eval_examples = config['num_eval_examples']
eval_batch_size = config['eval_batch_size']
if dataset == "mnist":
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
if "model_type" in config and config["model_type"] == "linear":
x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels
pos_train = (y_train == 5) | (y_train == 7)
x_train = x_train[pos_train]
y_train = y_train[pos_train]
y_train = (y_train == 5).astype(np.int64)
pos_test = (y_test == 5) | (y_test == 7)
x_test = x_test[pos_test]
y_test = y_test[pos_test]
y_test = (y_test == 5).astype(np.int64)
from tensorflow.contrib.learn.python.learn.datasets.mnist import DataSet
from tensorflow.contrib.learn.python.learn.datasets import base
options = dict(dtype=tf.uint8, reshape=False, seed=None)
train = DataSet(x_train, y_train, **options)
test = DataSet(x_test, y_test, **options)
mnist = base.Datasets(train=train, validation=None, test=test)
else:
import cifar10_input
data_path = config["data_path"]
cifar = cifar10_input.CIFAR10Data(data_path)
# Iterate over the samples batch-by-batch
num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
all_corr_nat = []
all_corr_adv = []
lps = []
num_inconsistencies = 0
num_solved_inconsistencies = 0
pbar = tqdm(total=num_eval_examples)
for ibatch in range(num_batches):
bstart = ibatch * eval_batch_size
bend = min(bstart + eval_batch_size, num_eval_examples)
if dataset == "mnist":
x_batch = mnist.test.images[bstart:bend, :].reshape(-1, 28, 28, 1)
y_batch = mnist.test.labels[bstart:bend]
else:
x_batch = cifar.eval_data.xs[bstart:bend, :].astype(np.float32)
y_batch = cifar.eval_data.ys[bstart:bend]
adversarials = []
preds_adv = []
for x, y in zip(x_batch, y_batch):
for trial in range(1):
if norm == "l2":
adversarial = attack(x, y, iterations=5000, max_directions=25)
else:
adversarial = attack(x, y)
failed = False
if adversarial is None:
failed = True
adversarial = x
pred_adv = y
if not failed:
pred_adv = np.argmax(fmodel.predictions(adversarial))
if pred_adv == y:
num_inconsistencies += 1
if verbose:
print("Inconsistency with l2 {:.3f}!".format(np.sqrt(np.sum(np.square(adversarial - x)))))
new_adversarials = np.asarray([x + a * (adversarial - x) for a in [1.001, 1.005, 1.01, 1.05, 1.1]])
new_preds_adv = np.argmax(fmodel.batch_predictions(new_adversarials), axis=-1)
if ((new_preds_adv == y)).all():
failed = True
adversarial = x
if verbose:
print("Failed to resolve inconsistency!")
else:
adversarial = new_adversarials[np.argmin(new_preds_adv != y)]
pred_adv = new_preds_adv[np.argmin(new_preds_adv != y)]
num_solved_inconsistencies += 1
if verbose:
print("Solved inconsistency")
if norm == 'l1':
lp = np.sum(np.abs(adversarial - x))
else:
lp = np.sqrt(np.sum(np.square(adversarial - x)))
if verbose:
print("trial {}".format(trial), lp, failed)
if lp < bound:
break
lps.append(lp)
adversarials.append(adversarial)
preds_adv.append(pred_adv)
if not verbose:
pbar.update(n=1)
preds = np.argmax(fmodel.batch_predictions(x_batch), axis=-1)
all_corr_nat.extend(preds == y_batch)
all_corr_adv.extend(preds_adv == y_batch)
if verbose:
all_corr_adv = np.asarray(all_corr_adv)
all_corr_nat = np.asarray(all_corr_nat)
lps = np.asarray(lps)
print('acc adv w. bound', np.mean(all_corr_adv | ((lps > bound) & all_corr_nat)))
pbar.close()
all_corr_adv = np.asarray(all_corr_adv)
all_corr_nat = np.asarray(all_corr_nat)
lps = np.asarray(lps)
acc_nat = np.mean(all_corr_nat)
acc_adv = np.mean(all_corr_adv)
print('acc_nat', acc_nat)
print('acc_adv', acc_adv)
print('min(lp)={:.2f}, max(lp)={:.2f}, mean(lp)={:.2f}, median(lp)={:.2f}'.format(
np.min(lps), np.max(lps), np.mean(lps), np.median(lps)))
print('acc adv w. bound', np.mean(all_corr_adv | ((lps > bound) & all_corr_nat)))
print("num_inconsistencies", num_inconsistencies)
print("num_solved_inconsistencies", num_solved_inconsistencies)
return all_corr_nat, all_corr_adv, lps
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Eval script options',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('model_dir', type=str,
help='path to model directory')
parser.add_argument('--epoch', type=int, default=None,
help='specific epoch to load (default=latest)')
parser.add_argument('--eval_cpu', help='evaluate on CPU',
action="store_true")
parser.add_argument('--norm', help='norm to use', choices=['l1', 'l2'], default='l1')
parser.add_argument('--bound', type=float, help='Foolbox pointwise attack noise bound', default=None)
args = parser.parse_args()
if args.eval_cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
model_dir = args.model_dir
with open(model_dir + "/config.json") as config_file:
config = json.load(config_file)
dataset = config["data"]
if dataset == "mnist":
from model import Model
model = Model(config)
x_min, x_max = 0.0, 1.0
else:
from cifar10_model import Model
model = Model(config)
x_min, x_max = 0.0, 255.0
saver = tf.train.Saver()
if args.epoch is not None:
ckpts = tf.train.get_checkpoint_state(model_dir).all_model_checkpoint_paths
ckpt = [c for c in ckpts if c.endswith('checkpoint-{}'.format(args.epoch))]
assert len(ckpt) == 1
cur_checkpoint = ckpt[0]
else:
cur_checkpoint = tf.train.latest_checkpoint(model_dir)
assert cur_checkpoint is not None
config_tf = tf.ConfigProto()
config_tf.gpu_options.allow_growth = True
if dataset == "mnist":
config_tf.gpu_options.per_process_gpu_memory_fraction = 0.1
else:
config_tf.gpu_options.per_process_gpu_memory_fraction = 0.1
with tf.Session(config=config_tf) as sess:
# Restore the checkpoint
print('Evaluating checkpoint {}'.format(cur_checkpoint))
saver.restore(sess, cur_checkpoint)
evaluate_fb(model, config, x_min, x_max, args.norm, args.bound)