-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistanceCalculator.py
192 lines (163 loc) · 5.95 KB
/
distanceCalculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# distanceCalculator.py
# ---------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to
# http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
"""
This file contains a Distancer object which computes and
caches the shortest path between any two points in the maze. It
returns a Manhattan distance between two points if the maze distance
has not yet been calculated.
Example:
distancer = Distancer(gameState.data.layout)
distancer.getDistance( (1,1), (10,10) )
The Distancer object also serves as an example of sharing data
safely among agents via a global dictionary (distanceMap),
and performing asynchronous computation via threads. These
examples may help you in designing your own objects, but you
shouldn't need to modify the Distancer code in order to use its
distances.
"""
import threading, sys, time, random
class Distancer:
def __init__(self, layout, background=True, default=10000):
"""
Initialize with Distancer(layout). Changing default is unnecessary.
This will start computing maze distances in the background and use them
as soon as they are ready. In the meantime, it returns manhattan distance.
To compute all maze distances on initialization, set background=False
"""
self._distances = None
self.default = default
# Start computing distances in the background; when the dc finishes,
# it will fill in self._distances for us.
dc = DistanceCalculator()
dc.setAttr(layout, self)
dc.setDaemon(True)
if background:
dc.start()
else:
dc.run()
def getDistance(self, pos1, pos2):
"""
The getDistance function is the only one you'll need after you create the object.
"""
if self._distances == None:
return manhattanDistance(pos1, pos2)
if isInt(pos1) and isInt(pos2):
return self.getDistanceOnGrid(pos1, pos2)
pos1Grids = getGrids2D(pos1)
pos2Grids = getGrids2D(pos2)
bestDistance = self.default
for pos1Snap, snap1Distance in pos1Grids:
for pos2Snap, snap2Distance in pos2Grids:
gridDistance = self.getDistanceOnGrid(pos1Snap, pos2Snap)
distance = gridDistance + snap1Distance + snap2Distance
if bestDistance > distance:
bestDistance = distance
return bestDistance
def getDistanceOnGrid(self, pos1, pos2):
key = (pos1, pos2)
if key in self._distances:
return self._distances[key]
else:
raise Exception("Positions not in grid: " + str(key))
def isReadyForMazeDistance(self):
return self._distances != None
def manhattanDistance(x, y ):
return abs( x[0] - y[0] ) + abs( x[1] - y[1] )
def isInt(pos):
x, y = pos
return x == int(x) and y == int(y)
def getGrids2D(pos):
grids = []
for x, xDistance in getGrids1D(pos[0]):
for y, yDistance in getGrids1D(pos[1]):
grids.append(((x, y), xDistance + yDistance))
return grids
def getGrids1D(x):
intX = int(x)
if x == int(x):
return [(x, 0)]
return [(intX, x-intX), (intX+1, intX+1-x)]
##########################################
# MACHINERY FOR COMPUTING MAZE DISTANCES #
##########################################
distanceMap = {}
distanceMapSemaphore = threading.Semaphore(1)
distanceThread = None
def waitOnDistanceCalculator(t):
global distanceThread
if distanceThread != None:
time.sleep(t)
class DistanceCalculator(threading.Thread):
def setAttr(self, layout, distancer, default = 10000):
self.layout = layout
self.distancer = distancer
self.default = default
def run(self):
global distanceMap, distanceThread
distanceMapSemaphore.acquire()
if self.layout.walls not in distanceMap:
if distanceThread != None: raise Exception('Multiple distance threads')
distanceThread = self
distances = computeDistances(self.layout)
print >>sys.stdout, '[Distancer]: Switching to maze distances'
distanceMap[self.layout.walls] = distances
distanceThread = None
else:
distances = distanceMap[self.layout.walls]
distanceMapSemaphore.release()
self.distancer._distances = distances
def computeDistances(layout):
distances = {}
allNodes = layout.walls.asList(False)
for source in allNodes:
dist = {}
closed = {}
for node in allNodes:
dist[node] = sys.maxint
import util
queue = util.PriorityQueue()
queue.push(source, 0)
dist[source] = 0
while not queue.isEmpty():
node = queue.pop()
if node in closed:
continue
closed[node] = True
nodeDist = dist[node]
adjacent = []
x, y = node
if not layout.isWall((x,y+1)):
adjacent.append((x,y+1))
if not layout.isWall((x,y-1)):
adjacent.append((x,y-1) )
if not layout.isWall((x+1,y)):
adjacent.append((x+1,y) )
if not layout.isWall((x-1,y)):
adjacent.append((x-1,y))
for other in adjacent:
if not other in dist:
continue
oldDist = dist[other]
newDist = nodeDist+1
if newDist < oldDist:
dist[other] = newDist
queue.push(other, newDist)
for target in allNodes:
distances[(target, source)] = dist[target]
return distances
def getDistanceOnGrid(distances, pos1, pos2):
key = (pos1, pos2)
if key in distances:
return distances[key]
return 100000