-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathagent.py
679 lines (570 loc) · 25.2 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import asyncio
from collections import OrderedDict
from dataclasses import dataclass, field
import time, importlib, inspect, os, json
import token
from typing import Any, Awaitable, Coroutine, Optional, Dict, TypedDict
import uuid
import models
from langchain_core.prompt_values import ChatPromptValue
from python.helpers import extract_tools, rate_limiter, files, errors, history, tokens
from python.helpers.print_style import PrintStyle
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.language_models.llms import BaseLLM
from langchain_core.embeddings import Embeddings
import python.helpers.log as Log
from python.helpers.dirty_json import DirtyJson
from python.helpers.defer import DeferredTask
from typing import Callable
class AgentContext:
_contexts: dict[str, "AgentContext"] = {}
_counter: int = 0
def __init__(
self,
config: "AgentConfig",
id: str | None = None,
name: str | None = None,
agent0: "Agent|None" = None,
log: Log.Log | None = None,
paused: bool = False,
streaming_agent: "Agent|None" = None,
):
# build context
self.id = id or str(uuid.uuid4())
self.name = name
self.config = config
self.log = log or Log.Log()
self.agent0 = agent0 or Agent(0, self.config, self)
self.paused = paused
self.streaming_agent = streaming_agent
self.task: DeferredTask | None = None
AgentContext._counter += 1
self.no = AgentContext._counter
existing = self._contexts.get(self.id, None)
if existing:
AgentContext.remove(self.id)
self._contexts[self.id] = self
@staticmethod
def get(id: str):
return AgentContext._contexts.get(id, None)
@staticmethod
def first():
if not AgentContext._contexts:
return None
return list(AgentContext._contexts.values())[0]
@staticmethod
def remove(id: str):
context = AgentContext._contexts.pop(id, None)
if context and context.task:
context.task.kill()
return context
def kill_process(self):
if self.task:
self.task.kill()
def reset(self):
self.kill_process()
self.log.reset()
self.agent0 = Agent(0, self.config, self)
self.streaming_agent = None
self.paused = False
def nudge(self):
self.kill_process()
self.paused = False
if self.streaming_agent:
current_agent = self.streaming_agent
else:
current_agent = self.agent0
self.task =self.run_task(current_agent.monologue)
return self.task
def communicate(self, msg: "UserMessage", broadcast_level: int = 1):
self.paused = False # unpause if paused
if self.streaming_agent:
current_agent = self.streaming_agent
else:
current_agent = self.agent0
if self.task and self.task.is_alive():
# set intervention messages to agent(s):
intervention_agent = current_agent
while intervention_agent and broadcast_level != 0:
intervention_agent.intervention = msg
broadcast_level -= 1
intervention_agent = intervention_agent.data.get(
Agent.DATA_NAME_SUPERIOR, None
)
else:
self.task = self.run_task(self._process_chain, current_agent, msg)
return self.task
def run_task(
self, func: Callable[..., Coroutine[Any, Any, Any]], *args: Any, **kwargs: Any
):
if not self.task:
self.task = DeferredTask(
thread_name=self.__class__.__name__,
)
self.task.start_task(func, *args, **kwargs)
return self.task
# this wrapper ensures that superior agents are called back if the chat was loaded from file and original callstack is gone
async def _process_chain(self, agent: "Agent", msg: "UserMessage|str", user=True):
try:
msg_template = (
await agent.hist_add_user_message(msg) # type: ignore
if user
else await agent.hist_add_tool_result(
tool_name="call_subordinate", tool_result=msg # type: ignore
)
)
response = await agent.monologue()
superior = agent.data.get(Agent.DATA_NAME_SUPERIOR, None)
if superior:
response = await self._process_chain(superior, response, False)
return response
except Exception as e:
agent.handle_critical_exception(e)
@dataclass
class ModelConfig:
provider: models.ModelProvider
name: str
ctx_length: int = 0
limit_requests: int = 0
limit_input: int = 0
limit_output: int = 0
vision: bool = False
kwargs: dict = field(default_factory=dict)
@dataclass
class AgentConfig:
chat_model: ModelConfig
utility_model: ModelConfig
embeddings_model: ModelConfig
browser_model: ModelConfig
prompts_subdir: str = ""
memory_subdir: str = ""
knowledge_subdirs: list[str] = field(default_factory=lambda: ["default", "custom"])
code_exec_docker_enabled: bool = False
code_exec_docker_name: str = "A0-dev"
code_exec_docker_image: str = "frdel/agent-zero-run:development"
code_exec_docker_ports: dict[str, int] = field(
default_factory=lambda: {"22/tcp": 55022, "80/tcp": 55080}
)
code_exec_docker_volumes: dict[str, dict[str, str]] = field(
default_factory=lambda: {
files.get_base_dir(): {"bind": "/a0", "mode": "rw"},
files.get_abs_path("work_dir"): {"bind": "/root", "mode": "rw"},
}
)
code_exec_ssh_enabled: bool = True
code_exec_ssh_addr: str = "localhost"
code_exec_ssh_port: int = 55022
code_exec_ssh_user: str = "root"
code_exec_ssh_pass: str = ""
additional: Dict[str, Any] = field(default_factory=dict)
@dataclass
class UserMessage:
message: str
attachments: list[str]
class LoopData:
def __init__(self, **kwargs):
self.iteration = -1
self.system = []
self.user_message: history.Message | None = None
self.history_output: list[history.OutputMessage] = []
self.extras_temporary: OrderedDict[str, history.MessageContent] = OrderedDict()
self.extras_persistent: OrderedDict[str, history.MessageContent] = OrderedDict()
self.last_response = ""
# override values with kwargs
for key, value in kwargs.items():
setattr(self, key, value)
# intervention exception class - skips rest of message loop iteration
class InterventionException(Exception):
pass
# killer exception class - not forwarded to LLM, cannot be fixed on its own, ends message loop
class RepairableException(Exception):
pass
class HandledException(Exception):
pass
class Agent:
DATA_NAME_SUPERIOR = "_superior"
DATA_NAME_SUBORDINATE = "_subordinate"
DATA_NAME_CTX_WINDOW = "ctx_window"
def __init__(
self, number: int, config: AgentConfig, context: AgentContext | None = None
):
# agent config
self.config = config
# agent context
self.context = context or AgentContext(config)
# non-config vars
self.number = number
self.agent_name = f"Agent {self.number}"
self.history = history.History(self)
self.last_user_message: history.Message | None = None
self.intervention: UserMessage | None = None
self.data = {} # free data object all the tools can use
async def monologue(self):
while True:
try:
# loop data dictionary to pass to extensions
self.loop_data = LoopData(user_message=self.last_user_message)
# call monologue_start extensions
await self.call_extensions("monologue_start", loop_data=self.loop_data)
printer = PrintStyle(italic=True, font_color="#b3ffd9", padding=False)
# let the agent run message loop until he stops it with a response tool
while True:
self.context.streaming_agent = self # mark self as current streamer
self.loop_data.iteration += 1
try:
# prepare LLM chain (model, system, history)
prompt = await self.prepare_prompt(loop_data=self.loop_data)
# output that the agent is starting
PrintStyle(
bold=True,
font_color="green",
padding=True,
background_color="white",
).print(f"{self.agent_name}: Generating")
log = self.context.log.log(
type="agent", heading=f"{self.agent_name}: Generating"
)
async def stream_callback(chunk: str, full: str):
# output the agent response stream
if chunk:
printer.stream(chunk)
self.log_from_stream(full, log)
# store as last context window content
self.set_data(Agent.DATA_NAME_CTX_WINDOW, prompt.format())
agent_response = await self.call_chat_model(
prompt, callback=stream_callback
)
await self.handle_intervention(agent_response)
if (
self.loop_data.last_response == agent_response
): # if assistant_response is the same as last message in history, let him know
# Append the assistant's response to the history
await self.hist_add_ai_response(agent_response)
# Append warning message to the history
warning_msg = self.read_prompt("fw.msg_repeat.md")
await self.hist_add_warning(message=warning_msg)
PrintStyle(font_color="orange", padding=True).print(
warning_msg
)
self.context.log.log(type="warning", content=warning_msg)
else: # otherwise proceed with tool
# Append the assistant's response to the history
await self.hist_add_ai_response(agent_response)
# process tools requested in agent message
tools_result = await self.process_tools(agent_response)
if tools_result: # final response of message loop available
return tools_result # break the execution if the task is done
# exceptions inside message loop:
except InterventionException as e:
pass # intervention message has been handled in handle_intervention(), proceed with conversation loop
except RepairableException as e:
# Forward repairable errors to the LLM, maybe it can fix them
error_message = errors.format_error(e)
await self.hist_add_warning(error_message)
PrintStyle(font_color="red", padding=True).print(error_message)
self.context.log.log(type="error", content=error_message)
except Exception as e:
# Other exception kill the loop
self.handle_critical_exception(e)
finally:
# call message_loop_end extensions
await self.call_extensions(
"message_loop_end", loop_data=self.loop_data
)
# exceptions outside message loop:
except InterventionException as e:
pass # just start over
except Exception as e:
self.handle_critical_exception(e)
finally:
self.context.streaming_agent = None # unset current streamer
# call monologue_end extensions
await self.call_extensions("monologue_end", loop_data=self.loop_data) # type: ignore
async def prepare_prompt(self, loop_data: LoopData) -> ChatPromptTemplate:
# set system prompt and message history
loop_data.system = await self.get_system_prompt(self.loop_data)
loop_data.history_output = self.history.output()
# and allow extensions to edit them
await self.call_extensions("message_loop_prompts", loop_data=loop_data)
# extras (memory etc.)
extras: list[history.OutputMessage] = []
for extra in loop_data.extras_persistent.values():
extras += history.Message(False, content=extra).output()
for extra in loop_data.extras_temporary.values():
extras += history.Message(False, content=extra).output()
loop_data.extras_temporary.clear()
# combine history and extras
history_combined = history.group_outputs_abab(loop_data.history_output + extras)
# convert history to LLM format
history_langchain = history.output_langchain(history_combined)
# build chain from system prompt, message history and model
prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(content="\n\n".join(loop_data.system)),
*history_langchain,
]
)
return prompt
def handle_critical_exception(self, exception: Exception):
if isinstance(exception, HandledException):
raise exception # Re-raise the exception to kill the loop
elif isinstance(exception, asyncio.CancelledError):
# Handling for asyncio.CancelledError
PrintStyle(font_color="white", background_color="red", padding=True).print(
f"Context {self.context.id} terminated during message loop"
)
raise HandledException(
exception
) # Re-raise the exception to cancel the loop
else:
# Handling for general exceptions
error_text = errors.error_text(exception)
error_message = errors.format_error(exception)
PrintStyle(font_color="red", padding=True).print(error_message)
self.context.log.log(
type="error",
heading="Error",
content=error_message,
kvps={"text": error_text},
)
raise HandledException(exception) # Re-raise the exception to kill the loop
async def get_system_prompt(self, loop_data: LoopData) -> list[str]:
system_prompt = []
await self.call_extensions(
"system_prompt", system_prompt=system_prompt, loop_data=loop_data
)
return system_prompt
def parse_prompt(self, file: str, **kwargs):
prompt_dir = files.get_abs_path("prompts/default")
backup_dir = []
if (
self.config.prompts_subdir
): # if agent has custom folder, use it and use default as backup
prompt_dir = files.get_abs_path("prompts", self.config.prompts_subdir)
backup_dir.append(files.get_abs_path("prompts/default"))
prompt = files.parse_file(
files.get_abs_path(prompt_dir, file), _backup_dirs=backup_dir, **kwargs
)
return prompt
def read_prompt(self, file: str, **kwargs) -> str:
prompt_dir = files.get_abs_path("prompts/default")
backup_dir = []
if (
self.config.prompts_subdir
): # if agent has custom folder, use it and use default as backup
prompt_dir = files.get_abs_path("prompts", self.config.prompts_subdir)
backup_dir.append(files.get_abs_path("prompts/default"))
prompt = files.read_file(
files.get_abs_path(prompt_dir, file), _backup_dirs=backup_dir, **kwargs
)
prompt = files.remove_code_fences(prompt)
return prompt
def get_data(self, field: str):
return self.data.get(field, None)
def set_data(self, field: str, value):
self.data[field] = value
def hist_add_message(self, ai: bool, content: history.MessageContent):
return self.history.add_message(ai=ai, content=content)
async def hist_add_user_message(
self, message: UserMessage, intervention: bool = False
):
self.history.new_topic() # user message starts a new topic in history
# load message template based on intervention
if intervention:
content = self.parse_prompt(
"fw.intervention.md",
message=message.message,
attachments=message.attachments,
)
else:
content = self.parse_prompt(
"fw.user_message.md",
message=message.message,
attachments=message.attachments,
)
# remove empty attachments from template
if (
isinstance(content, dict)
and "attachments" in content
and not content["attachments"]
):
del content["attachments"]
# add to history
msg = self.hist_add_message(False, content=content) # type: ignore
self.last_user_message = msg
return msg
async def hist_add_ai_response(self, message: str):
self.loop_data.last_response = message
content = self.parse_prompt("fw.ai_response.md", message=message)
return self.hist_add_message(True, content=content)
async def hist_add_warning(self, message: history.MessageContent):
content = self.parse_prompt("fw.warning.md", message=message)
return self.hist_add_message(False, content=content)
async def hist_add_tool_result(self, tool_name: str, tool_result: str):
content = self.parse_prompt(
"fw.tool_result.md", tool_name=tool_name, tool_result=tool_result
)
return self.hist_add_message(False, content=content)
def concat_messages(
self, messages
): # TODO add param for message range, topic, history
return self.history.output_text(human_label="user", ai_label="assistant")
def get_chat_model(self):
return models.get_model(
models.ModelType.CHAT,
self.config.chat_model.provider,
self.config.chat_model.name,
**self.config.chat_model.kwargs,
)
def get_utility_model(self):
return models.get_model(
models.ModelType.CHAT,
self.config.utility_model.provider,
self.config.utility_model.name,
**self.config.utility_model.kwargs,
)
def get_embedding_model(self):
return models.get_model(
models.ModelType.EMBEDDING,
self.config.embeddings_model.provider,
self.config.embeddings_model.name,
**self.config.embeddings_model.kwargs,
)
async def call_utility_model(
self,
system: str,
message: str,
callback: Callable[[str], Awaitable[None]] | None = None,
background: bool = False,
):
prompt = ChatPromptTemplate.from_messages(
[SystemMessage(content=system), HumanMessage(content=message)]
)
response = ""
# model class
model = self.get_utility_model()
# rate limiter
limiter = await self.rate_limiter(
self.config.utility_model, prompt.format(), background
)
async for chunk in (prompt | model).astream({}):
await self.handle_intervention() # wait for intervention and handle it, if paused
content = models.parse_chunk(chunk)
limiter.add(output=tokens.approximate_tokens(content))
response += content
if callback:
await callback(content)
return response
async def call_chat_model(
self,
prompt: ChatPromptTemplate,
callback: Callable[[str, str], Awaitable[None]] | None = None,
):
response = ""
# model class
model = self.get_chat_model()
# rate limiter
limiter = await self.rate_limiter(self.config.chat_model, prompt.format())
async for chunk in (prompt | model).astream({}):
await self.handle_intervention() # wait for intervention and handle it, if paused
content = models.parse_chunk(chunk)
limiter.add(output=tokens.approximate_tokens(content))
response += content
if callback:
await callback(content, response)
return response
async def rate_limiter(
self, model_config: ModelConfig, input: str, background: bool = False
):
# rate limiter log
wait_log = None
async def wait_callback(msg: str, key: str, total: int, limit: int):
nonlocal wait_log
if not wait_log:
wait_log = self.context.log.log(
type="util",
update_progress="none",
heading=msg,
model=f"{model_config.provider.value}\\{model_config.name}",
)
wait_log.update(heading=msg, key=key, value=total, limit=limit)
if not background:
self.context.log.set_progress(msg, -1)
# rate limiter
limiter = models.get_rate_limiter(
model_config.provider,
model_config.name,
model_config.limit_requests,
model_config.limit_input,
model_config.limit_output,
)
limiter.add(input=tokens.approximate_tokens(input))
limiter.add(requests=1)
await limiter.wait(callback=wait_callback)
return limiter
async def handle_intervention(self, progress: str = ""):
while self.context.paused:
await asyncio.sleep(0.1) # wait if paused
if (
self.intervention
): # if there is an intervention message, but not yet processed
msg = self.intervention
self.intervention = None # reset the intervention message
if progress.strip():
await self.hist_add_ai_response(progress)
# append the intervention message
await self.hist_add_user_message(msg, intervention=True)
raise InterventionException(msg)
async def wait_if_paused(self):
while self.context.paused:
await asyncio.sleep(0.1)
async def process_tools(self, msg: str):
# search for tool usage requests in agent message
tool_request = extract_tools.json_parse_dirty(msg)
if tool_request is not None:
tool_name = tool_request.get("tool_name", "")
tool_args = tool_request.get("tool_args", {})
tool = self.get_tool(tool_name, tool_args, msg)
await self.handle_intervention() # wait if paused and handle intervention message if needed
await tool.before_execution(**tool_args)
await self.handle_intervention() # wait if paused and handle intervention message if needed
response = await tool.execute(**tool_args)
await self.handle_intervention() # wait if paused and handle intervention message if needed
await tool.after_execution(response)
await self.handle_intervention() # wait if paused and handle intervention message if needed
if response.break_loop:
return response.message
else:
msg = self.read_prompt("fw.msg_misformat.md")
await self.hist_add_warning(msg)
PrintStyle(font_color="red", padding=True).print(msg)
self.context.log.log(
type="error", content=f"{self.agent_name}: Message misformat"
)
def log_from_stream(self, stream: str, logItem: Log.LogItem):
try:
if len(stream) < 25:
return # no reason to try
response = DirtyJson.parse_string(stream)
if isinstance(response, dict):
# log if result is a dictionary already
logItem.update(content=stream, kvps=response)
except Exception as e:
pass
def get_tool(self, name: str, args: dict, message: str, **kwargs):
from python.tools.unknown import Unknown
from python.helpers.tool import Tool
classes = extract_tools.load_classes_from_folder(
"python/tools", name + ".py", Tool
)
tool_class = classes[0] if classes else Unknown
return tool_class(agent=self, name=name, args=args, message=message, **kwargs)
async def call_extensions(self, folder: str, **kwargs) -> Any:
from python.helpers.extension import Extension
classes = extract_tools.load_classes_from_folder(
"python/extensions/" + folder, "*", Extension
)
for cls in classes:
await cls(agent=self).execute(**kwargs)