diff --git a/code-of-conduct.md b/code-of-conduct.md new file mode 100644 index 00000000..a5a920fc --- /dev/null +++ b/code-of-conduct.md @@ -0,0 +1,3 @@ +# Foundation Model Stack Community Code of Conduct + +Please refer to [Foundation Model Stack Community Code of Conduct](https://github.com/foundation-model-stack/foundation-model-stack/blob/main/code-of-conduct.md). diff --git a/fms_fsdp/config/training.py b/fms_fsdp/config/training.py index 1d072958..5c44cc04 100644 --- a/fms_fsdp/config/training.py +++ b/fms_fsdp/config/training.py @@ -26,6 +26,18 @@ class train_config: strip_tokens: str = "" logical_shards: int = 1024 num_workers: int = 1 + doc_cutoff: int = 1_000_000 + doc_breakpoint: int = 65_536 + filter_exp: int = 2 + target_doclen: int = 8192 + slice_rate: float = 0.0 + + # FIM training + psm_rate: float = 0.0 + spm_rate: float = 0.0 + fim_pre: int = 1 + fim_mid: int = 2 + fim_suf: int = 3 # fsdp policies sharding_strategy: str = "hsdp" @@ -72,3 +84,9 @@ class train_config: stage2_prompt_length: int = 64 stage2_batch_size: int = 96 stage2_seq_length: int = 256 + + # context parallel + cp: bool = False + cp_mamba_impl: str = "allgather" # "allgather" or "serial" + cp_attn_impl: str = "zigzag" # "zigzag" or "ring" + cp_over_world: bool = False diff --git a/fms_fsdp/utils/config_utils.py b/fms_fsdp/utils/config_utils.py index f4e7628c..85d4253a 100644 --- a/fms_fsdp/utils/config_utils.py +++ b/fms_fsdp/utils/config_utils.py @@ -126,7 +126,6 @@ def get_model_config(model_variant): nlayers=24, hidden_grow_factor=8 / 3, max_expected_seq_len=4096, - rope_theta=500000.0, ) elif model_variant == "llama3_70b": model_config = LLaMAConfig( @@ -175,7 +174,7 @@ def get_model_config(model_variant): "num_heads_kv": 8, "out_proj_bias": False, "qkv_proj_bias": False, - "rotary_emb_dim": 64, + "rotary_emb_dim": 0, }, "rms_norm": True, "residual_in_fp32": True, diff --git a/fms_fsdp/utils/dataloader_utils.py b/fms_fsdp/utils/dataloader_utils.py index 4b811d6d..67cead33 100644 --- a/fms_fsdp/utils/dataloader_utils.py +++ b/fms_fsdp/utils/dataloader_utils.py @@ -5,6 +5,8 @@ AutoHandler, BufferDataset, CheckpointDataset, + DocSliceDataset, + FIMDataset, ParquetHandler, PreloadBufferDataset, PreprocessDataset, @@ -12,6 +14,7 @@ ScalableShardDataset, StreamingDocDataset, ) +from math import ceil _handler_map = { @@ -57,9 +60,9 @@ def __iter__(self): return torch.utils.data.DataLoader(data, batch_size=cfg.batch_size) -def get_data_loader(cfg, rank, world_size, postprocess=[causal_lm]): +def get_data_loader(cfg, rank, world_size, dp_degree): """ - Pytorch dataloader for stateful, distributed, and rescalable causal language model (CLM) training. + Pytorch dataloader for stateful, distributed, and rescalable language model training. Assumes underlying data is sequences of integer values. ... Args @@ -70,12 +73,21 @@ def get_data_loader(cfg, rank, world_size, postprocess=[causal_lm]): Rank of current distributed worker. Used for handling dataset sharding logic. world_size : int Number of distributed workers. Used for handling dataset sharding logic. - postprocess : List[Callable] - Any task-specific postprocessing to apply before handing over data. Steps will apply in - the order provided by the user. For CLM training, use postprocess=[causal_lm]. """ - datasets, weights = parse_data_args(cfg.datasets, cfg.weights) + do_cp = False + if dp_degree != world_size: + do_cp = True + cp_worldsize = world_size // dp_degree + cp_rank = rank % cp_worldsize + world_size = dp_degree + rank = rank // cp_worldsize + + fim_training = cfg.psm_rate + cfg.spm_rate > 0 + if fim_training: + assert cfg.bos_token is None, "No BOS in FIM training. Did you mean fim_pre?" + + datasets, weights, cols = parse_data_args(cfg.datasets, cfg.weights, cfg.col_name) # Base streaming dataset. Returns doc chunks in sequence. # Implements dataset sampling and rescalability. @@ -87,9 +99,9 @@ def get_data_loader(cfg, rank, world_size, postprocess=[causal_lm]): cfg.file_type in _handler_map ), f"File type {cfg.file_type} is not recognized ({list(_handler_map.keys())})" if cfg.file_type == "hf_parquet" or cfg.file_type == "auto": - filehandler = _handler_map[cfg.file_type](cfg.tokenizer_path, cfg.col_name) + filehandler = _handler_map[cfg.file_type](cfg.tokenizer_path, cols, cfg.doc_cutoff) else: - filehandler = _handler_map[cfg.file_type] + filehandler = _handler_map[cfg.file_type](cols) # Base reader layer data = StreamingDocDataset( cfg.data_path, @@ -99,8 +111,10 @@ def get_data_loader(cfg, rank, world_size, postprocess=[causal_lm]): cfg.eos_token, bos_token=cfg.bos_token, strip_tokens=set(droplist), - min_length=3, + min_length=cfg.target_doclen, seed=cfg.seed, + filter_exp=cfg.filter_exp, + max_consecutive_chunks=ceil(cfg.doc_breakpoint/1024), ) # Add rescaling/resharding data = ScalableShardDataset( @@ -120,18 +134,40 @@ def get_data_loader(cfg, rank, world_size, postprocess=[causal_lm]): # Wrap above dataset in packing logic to form constant-length lines. data = BufferDataset( data, - cfg.seq_length if causal_lm not in postprocess else cfg.seq_length + 1, + cfg.seq_length + 1, bos_token=cfg.bol_token, eos_token=cfg.eol_token, pack_hard=True, ) # Shuffle outputs in length 10k buffer. Consecutive lines appear 10k steps apart on average. - data = PreloadBufferDataset(data, 10000) - - # Apply desired postprocessing steps in sequence + data = PreloadBufferDataset(data, 1000) + # Slice and rearrange docs to force long-context retrieval + if cfg.slice_rate > 0: + data = DocSliceDataset( + data, + cfg.eos_token, + slice_rate=cfg.slice_rate, + ) + # Apply FIM transformation if needed + if fim_training: + data = FIMDataset( + data, + cfg.eos_token, + cfg.psm_rate, + cfg.spm_rate, + pre_token=cfg.fim_pre, + mid_token=cfg.fim_mid, + suf_token=cfg.fim_suf, + ) + # Transform to tensors data = PreprocessDataset(data, torch.IntTensor) - for p in postprocess: - data = PreprocessDataset(data, p) + # Apply CLM transformation + data = PreprocessDataset(data, causal_lm) + # Apply CP chunking if using CP + if do_cp: + def chunk(x): + return x[(cp_rank*x.size(0))//cp_worldsize : ((cp_rank+1)*x.size(0))//cp_worldsize] + data = PreprocessDataset(data, lambda x: (chunk(x[0]), chunk(x[1]))) # Enable auto-saving data = CheckpointDataset( @@ -146,7 +182,7 @@ def get_data_loader(cfg, rank, world_size, postprocess=[causal_lm]): ) -def parse_data_args(datas, weights): +def parse_data_args(datas, weights, cols): # Convert csv inputs into corresponding lists of values def splitstrip(x): if isinstance(x, str): @@ -160,4 +196,5 @@ def splitstrip(x): datas = splitstrip(datas) weights = [float(x) for x in splitstrip(weights)] - return datas, weights + cols = splitstrip(cols) + return datas, weights, cols diff --git a/fms_fsdp/utils/dataset_utils.py b/fms_fsdp/utils/dataset_utils.py index aedc5862..9ba14958 100644 --- a/fms_fsdp/utils/dataset_utils.py +++ b/fms_fsdp/utils/dataset_utils.py @@ -180,16 +180,20 @@ def load_state_dict(self, state_dicts, sharded_input=False): self.load_worldsize = len(state_dicts) state_dicts = _shard_inclusive(state_dicts, self.rank, self.worldsize) if self.load_worldsize == self.worldsize: - [ - setattr(self, flag, state_dicts[0][self.statename(flag)]) - for flag in self.state_params + self.reshard_params - ] + for flag in self.state_params + self.reshard_params: + if self.statename(flag) in state_dicts[0]: + setattr(self, flag, state_dicts[0][self.statename(flag)]) + elif self.rank == 0: + logging.warning(f"Dataloader state key {self.statename(flag)} not present in checkpoint!") else: for flag in self.reshard_params: - reshard = self._reshard( - [sd[self.statename(flag)] for sd in state_dicts] - ) - setattr(self, flag, reshard) + if self.statename(flag) in state_dicts[0]: + reshard = self._reshard( + [sd[self.statename(flag)] for sd in state_dicts] + ) + setattr(self, flag, reshard) + elif self.rank == 0: + logging.warning(f"Dataloader state key {self.statename(flag)} not present in checkpoint!") return state_dicts def load_from_path(self, path: str): @@ -343,8 +347,8 @@ class ArrowHandler(_ShardFileHandler): Non-standard data format, though. """ - def __init__(self, col_name: str = "tokens"): - self.col_name = col_name + def __init__(self, col_names: List[str] = ["text", "contents", "tokens"]): + self.col_names = col_names def is_legal(self, filepath: str): return "arrow" in os.path.splitext(filepath)[1] @@ -356,7 +360,18 @@ def length(self, path: str): return self.open(path).num_record_batches def get(self, reader: pa.RecordBatchFileReader, index: int, drop_tokens: Set): - doc = reader.get_batch(index)[self.col_name] + assert ( + index < reader.num_record_batches + ), f"Illegal index {index} in set of {reader.num_record_batches} documents" + frame = reader.get_batch(index) + doc = None + for name in self.col_names: + if name in frame.column_names: + doc = frame[name] + break + assert ( + doc is not None + ), f"None of column names {self.col_names} found in file headers {frame.column_names}" if len(doc) > 0 and doc[0].as_py() in drop_tokens: doc = doc.slice(1, len(doc) - 1) # Recheck len for edge case where doc=[eos] @@ -371,28 +386,37 @@ def slice(self, doc: pa.UInt32Array, index: int, n_pull: int) -> List: class ParquetHandler(_ShardFileHandler): """ Reader for indexable parquet shard files, common in HF datasets. - Here we assume reasonably small shard files (<5Gb) and documents (<100k tokens), + Here we assume reasonably small shard files (<5Gb) and truncate docs to max_doclen characters, as we rely on parquet/pandas for efficient file reading, and tokenize entire documents before getting/slicing. However, this is a standard and widely-used data format. """ - def __init__(self, tokenizer_path: str, col_name: str = "text"): + def __init__(self, tokenizer_path: str, col_names: List[str] = ["text", "contents", "tokens"], max_doclen: int = 1_000_000): self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) - self.col_name = col_name + self.col_names = col_names + self.max_doclen = max_doclen def is_legal(self, filepath: str): return "parquet" in os.path.splitext(filepath)[1] def open(self, path: str): - return pq.read_pandas(path, columns=[self.col_name], partitioning=None)[ - self.col_name - ] + names = pq.read_metadata(path).schema.names + match = None + for name in self.col_names: + if name in names: + match = name + break + assert match is not None, f"None of column names {self.col_names} found in file headers {names}" + return pq.read_pandas(path, columns=[match], partitioning=None)[match] def length(self, path: str): return pq.read_metadata(path).num_rows def get(self, reader, index: int, drop_tokens: Set): - doc = self.tokenizer(str(reader[index]))["input_ids"] + assert ( + index < reader.length() + ), f"Illegal index {index} in set of {reader.length()} documents" + doc = self.tokenizer(str(reader[index])[: self.max_doclen])["input_ids"] if len(doc) > 0 and doc[0] in drop_tokens: doc = doc[1:] # Recheck len for edge case where doc=[eos] @@ -405,9 +429,9 @@ def slice(self, doc: List, index: int, n_pull: int) -> List: class AutoHandler(_ShardFileHandler): - def __init__(self, tokenizer_path: str, col_name: str = "text"): - self.PHandler = ParquetHandler(tokenizer_path, col_name) - self.AHandler = ArrowHandler() + def __init__(self, tokenizer_path: str, col_names: List[str] = ["text", "contents", "tokens"], max_doclen: int = 1_000_000): + self.PHandler = ParquetHandler(tokenizer_path, col_names, max_doclen) + self.AHandler = ArrowHandler(col_names) self.current = _ShardFileHandler() def is_legal(self, filepath: str): @@ -651,13 +675,19 @@ def __init__(self, dataset: _StatefulDataset, window_size: int): def __iter__(self): dataset = iter(self.dataset) + # Pad out buffer if needed + self._pad_buffer() + first_draw = next(dataset) while True: - # Pad out buffer if needed - self._pad_buffer() + # If buffer entries have wrong length, reset buffer + if len(first_draw) != len(self.buffer[0]): + self.buffer = [] + self.buffer_size = 0 + self._pad_buffer() # If buffer is undersized, add a datapoint if self.buffer_size < self.window_size: - self.buffer[self.buffer_size] = next(dataset) + self.buffer[self.buffer_size] = next(dataset) if self.buffer_size > 0 else first_draw self.buffer_size += 1 # Swap out randomly sampled value from buffer. @@ -673,10 +703,10 @@ def __iter__(self): yield out def _pad_buffer(self): - if self.buffer_size < self.window_size: + if len(self.buffer) < self.window_size: self.buffer += [ [], - ] * (self.window_size - self.buffer_size) + ] * (self.window_size - len(self.buffer)) def state_dict(self): # Write generator state manually @@ -684,6 +714,8 @@ def state_dict(self): # Prune buffer so it can be resharded in future self.buffer = self.buffer[: self.buffer_size] out = super().state_dict() + # Pad buffer back out again + self._pad_buffer() return out def load_state_dict(self, state_dicts, sharded_input=False): @@ -694,6 +726,224 @@ def load_state_dict(self, state_dicts, sharded_input=False): # Manually set buffer size self.buffer_size = len(self.buffer) return sharded_dicts + + +class DocSliceDataset(_WrapperDataset): + """ + Wrapper for a StatefulDataset that implements document slicing. + ... + Args + ---- + dataset : _StatefulDataset + Fully instantiated dataset + delimiter_token : int + Value used for delimiter + slice_rate : float + Proportion of documents to slice + overlap : int + Number of tokens to overlap for slice retrieval + """ + + def __init__(self, dataset: _StatefulDataset, delimiter_token: int, slice_rate: float = 0.5, overlap: int = 3): + super().__init__(dataset) + self.g_state = None + self.generator = torch.Generator().manual_seed(self.rank) + self.state_params = ["g_state"] + self.delimiter = delimiter_token + self.slicerate = slice_rate + self.overlap = overlap + + def __iter__(self): + dataset = iter(self.dataset) + while True: + inp = next(dataset) + inplen = len(inp) + doclist = [] + last_delim = 0 + if self.delimiter not in inp: + yield inp + else: + for i in range(len(inp)): + if inp[i] == self.delimiter: + doclist.append(inp[last_delim:i]) + last_delim = i+1 + doclist.append(inp[last_delim:]) + # Pull out any short caps + begin = [] + end = [] + if len(doclist[0])//3 <= self.overlap: + begin = doclist[0] + doclist = doclist[1:] + if len(doclist[-1])//3 <= self.overlap: + end = doclist[-1] + doclist = doclist[:-1] + # Figure out which docs to slice + slice = [] + unslice = [] + for doc in doclist: + if torch.rand(1, generator=self.generator) < self.slicerate and len(doc)//3 > self.overlap: + slice.append(doc) + else: + unslice.append(doc) + if len(slice) <= 1: + yield inp + else: + # Perform slicing + sliced = [] + for doc in slice: + i = torch.randint(0, len(doc)//3, [1], generator=self.generator).item() + len(doc)//3 + sliced.append([doc[:i], doc[i-self.overlap:]]) + slice = sliced + doclist = [slice[0][0], slice[1][0], slice[0][1], slice[1][1]] + for docpair in slice[2:]: + inds = torch.randperm(len(doclist)+1, generator=self.generator)[:2].tolist() + inds.sort() + inds[1] += 1 + doclist = doclist[:inds[0]] + [docpair[0]] + doclist[inds[0]:inds[1]-1] + [docpair[1]] + doclist[inds[1]-1:] + for doc in unslice: + i = torch.randint(0, len(doclist)+1, [1], generator=self.generator).item() + doclist = doclist[:i] + [doc] + doclist[i:] + out = begin + [self.delimiter] + for doc in doclist: + out = out + doc + out.append(self.delimiter) + out = out + end + yield out[:inplen] + + def state_dict(self): + # Write generator state manually + self.g_state = self.generator.get_state() + out = super().state_dict() + return out + + def load_state_dict(self, state_dicts, sharded_input=False): + sharded_dicts = super().load_state_dict(state_dicts, sharded_input) + # Manually set generator state if it exists + if self.g_state is not None: + self.generator.set_state(self.g_state) + return sharded_dicts + + +class FIMDataset(_WrapperDataset): + """ + Wrapper for a StatefulDataset that implements Fill-In-the-Middle training + (https://arxiv.org/pdf/2207.14255). + Input should be a packed sequence (i.e. call BufferDataset before FIMDataset). + Breaks sequence apart into component document spans, and for each document span + of sufficient length, transforms with specified probability into: + PSM mode:
 (prefix)  (suffix)  (middle) 
+    SPM mode: 
  (suffix)  (prefix) (middle) 
+    The new delimiter tokens can be omitted by passing in None.
+    Any extra tokens after transformation are dropped from the end of the sequence.
+    ...
+    Args
+    ----
+    dataset : _StatefulDataset
+        Fully instantiated dataset
+    delimiter_token : any
+        Token used to indicate document boundaries
+    psm_rate : float
+        Chance to transform into PSM. Cannot exceed 1.
+    spm_rate : float
+        Chance to transform into SPM. Cannot exceed 1.
+    min_len : int
+        Minimum document length to perform FIM transformation
+    pre_token : any | none
+        Token used to indicate prefix section of the document
+    mid_token : any | none
+        Token used to indicate middle infill section of the document
+    suf_token : any | none
+        Token used to indicate suffix section of the document
+    """
+
+    def __init__(
+        self,
+        dataset: _StatefulDataset,
+        delimiter_token: Any,
+        psm_rate: float = 0.0,
+        spm_rate: float = 0.0,
+        min_len: int = 10,
+        pre_token=None,
+        mid_token=None,
+        suf_token=None,
+    ):
+        super().__init__(dataset)
+        assert (
+            psm_rate + spm_rate > 0
+        ), f"FIM training requires SPM or PSM transformation. Please specify a nonzero psm_rate or spm_rate."
+        assert (
+            psm_rate + spm_rate <= 1
+        ), f"Combined psm_rate {psm_rate} and spm_rate {spm_rate} probabilities cannot exceed 1."
+        self.psm = psm_rate
+        self.spm = spm_rate
+        self.delimiter = delimiter_token
+        self.min_len = min_len
+        self.pref = pre_token
+        self.suff = suf_token
+        self.midd = mid_token
+
+        self.g_state = None
+        self.generator = torch.Generator().manual_seed(self.rank)
+        self.state_params = ["g_state"]
+
+    def __iter__(self):
+        dataset = iter(self.dataset)
+        while True:
+            inp = next(dataset)
+            len_ = len(inp)
+            i_eos = [0] + [i for i, x in enumerate(inp) if x == self.delimiter] + [len_]
+            docs = [
+                inp[i_eos[j] + 1 : i_eos[j + 1]] for j in range(len(i_eos) - 1)
+            ]  # list[list[any]]
+            out = []
+            for i in range(len(docs)):
+                doc = docs[i]
+                if len(docs[i]) >= self.min_len:
+                    # decide psm, spm, or nothing
+                    thresh = torch.rand([1], generator=self.generator).item()
+                    if thresh < self.psm + self.spm:
+                        # Split doc
+                        doc = []
+                        if self.pref:
+                            doc = [self.pref]
+                        splits = torch.randint(
+                            0, len(docs[i]), [2], generator=self.generator
+                        ).tolist()
+                        pre = docs[i][: min(splits)]
+                        mid = docs[i][min(splits) : max(splits)]
+                        suf = docs[i][max(splits) :]
+
+                        if thresh < self.psm:
+                            # PSM transformation
+                            doc += pre
+                            if self.suff:
+                                doc.append(self.suff)
+                            doc += suf
+                            if self.midd:
+                                doc.append(self.midd)
+                            doc += mid
+                        else:
+                            # SPM transformation
+                            if self.suff:
+                                doc.append(self.suff)
+                            doc += suf
+                            if self.midd:
+                                doc.append(self.midd)
+                            doc += pre + mid
+                out += doc + [self.delimiter]
+            yield out[:len_]
+
+    def state_dict(self):
+        # Write generator state manually
+        self.g_state = self.generator.get_state()
+        return super().state_dict()
+
+    def load_state_dict(self, state_dicts, sharded_input=False):
+        sharded_dicts = super().load_state_dict(state_dicts, sharded_input)
+        # Manually set generator state if it exists
+        if self.g_state is not None:
+            self.generator.set_state(self.g_state)
+        return sharded_dicts
 
 
 class BufferDataset(_WrapperDataset):
@@ -841,10 +1091,10 @@ class StreamingDocDataset(_StatefulDataset):
         Documents below this length are skipped
     max_chunksize : int
         Maximum sequence length to return. Break long docs into chunks of this size or shorter.
+    max_consecutive_chunks : int
+        Number of doc chunks to emit before manually inserting EOS and resuming later.
     verbose : bool
         Track setup progress?
-    shuffle : bool
-        Shuffle shard file and document orders? (Disable for simple testing)
     """
 
     def __init__(
@@ -859,7 +1109,9 @@ def __init__(
         seed: int = 42,
         min_length: int = 1,
         max_chunksize: int = 1024,
+        max_consecutive_chunks: int = 256,
         verbose: bool = False,
+        filter_exp: int = 2,
     ):
         super().__init__(datapath, rank, worldsize)
         self.seed = seed
@@ -871,7 +1123,9 @@ def __init__(
         self.eos = delimiter_token
         self.bos = bos_token
         self.drop = strip_tokens
+        self.max_consec = max_consecutive_chunks
         self.verbose = verbose
+        self.filter_exp = filter_exp
         self.docset: List[
             Any
         ] = []  # map of doc indices to (shardid, min docid, max docid)
@@ -885,6 +1139,8 @@ def __init__(
         self.tokens_seen = 0
         self.docs_seen = 0
         self.percent_seen = 0
+        self.has_yielded = False
+        self.consec = 0
 
         self.state_params = [
             "dataset",
@@ -895,6 +1151,8 @@ def __init__(
             "docs_seen",
             "percent_seen",
             "lcg_state",
+            "g_state",
+            "consec",
         ]
 
         # Setup flags
@@ -902,6 +1160,9 @@ def __init__(
         self._len = 0
         self.dataset = ""
         self.lcg_state = 0
+        self.g_state = None
+
+        self.g = None
 
     def setup(self):
         """
@@ -922,22 +1183,15 @@ def setup(self):
             # listdir, assemble shardfraglist (ind -> shard, frag)
             shards = [
                 os.path.join(root, name)[len(datapath) + 1 :]
-                for root, dirs, files in os.walk(datapath, topdown=False)
+                for root, dirs, files in os.walk(datapath, topdown=False, followlinks=True)
                 for name in files
                 if self.filehandler.is_legal(os.path.join(root, name))
+                and os.path.getsize(os.path.join(root, name)) > 1_000_000
+                # 1mb minimum file size to prevent empty files
             ]
             shards.sort()  # Ensure consistent sharding across machines
-            start_frag = (self.rank * self.worldsize * len(shards)) // self.worldsize
-            end_frag = (
-                (self.rank + 1) * self.worldsize * len(shards)
-            ) // self.worldsize
-            shardfrags = [
-                (shards[i // self.worldsize], i % self.worldsize)
-                for i in range(start_frag, end_frag)
-            ]
-
-            # Assemble length of each owned shard file
 
+            # Find metadata file
             countfiles = []
             if os.path.exists(os.path.join(pardir, "meta")):
                 countfiles = [
@@ -945,55 +1199,78 @@ def setup(self):
                     for x in os.listdir(os.path.join(pardir, "meta"))
                     if "counts" in x and "csv" in x
                 ]
-            doc_counts = {}
             if len(countfiles) > 0:
                 # Count file exists, use it
                 countpath = os.path.join(pardir, "meta", countfiles[0])
+            else:
+                countpath = ""
+
+            # Use shard file sizes to perform partitioning
+            # Create shardlist of form shardid -> [start%, end%]
+            if len(countfiles) > 0:
+                sizes = {}
                 with open(countpath, "r") as csvfile:
                     reader = csv.DictReader(csvfile)
                     for row in reader:
                         fullpath = row["dataset/filename"]
-                        prefix = fullpath.find("/" + dataset) + 1
-                        if prefix > 0:
+                        prefix = fullpath.find(dataset + "/")
+                        if prefix >= 0:
+                            key = fullpath[prefix + len(dataset) + 1 :]
+                            sizes[key] = int(row["size"])
+                shard_sizes = [sizes[shard] for shard in shards]
+            else:
+                shard_sizes = [
+                    os.path.getsize(os.path.join(datapath, shard)) for shard in shards
+                ]
+            shard_sizes = [s / sum(shard_sizes) for s in shard_sizes]
+            start = self.rank / self.worldsize
+            end = (self.rank + 1) / self.worldsize
+            shardset = {}
+            tally = 0
+            for i in range(len(shards)):
+                if tally <= end and tally + shard_sizes[i] >= start:
+                    shardset[shards[i]] = [
+                        min(max((start - tally) / shard_sizes[i], 0), 1),
+                        min(max((end - tally) / shard_sizes[i], 0), 1),
+                    ]
+                tally += shard_sizes[i]
+
+            # Assemble length of each owned shard file
+            doc_counts = {}
+            if len(countfiles) > 0:
+                # Count file exists, use it
+                with open(countpath, "r") as csvfile:
+                    reader = csv.DictReader(csvfile)
+                    for row in reader:
+                        fullpath = row["dataset/filename"]
+                        prefix = fullpath.find(dataset)
+                        if prefix >= 0:
                             key = fullpath[prefix + len(dataset) + 1 :]
                             doc_counts[key] = int(row["documents"])
             else:
                 # Count file does not exist, touch every owned file for length
-                unique_shardfiles = set(shard for shard, frag in shardfrags)
                 doc_counts = {
                     shard: self.filehandler.length(os.path.join(datapath, shard))
-                    for shard in unique_shardfiles
+                    for shard in shardset
                 }
 
-            # Read shardfrags, assemble doc list for each file shard (aggregating over fragments):
-            ndocs = -1
-            docset = {}  # shardid -> (min docid, max docid)
-            for i, (shard, frag) in enumerate(shardfrags):
-                ndocs = doc_counts[shard]
-                doc_start = (ndocs * frag) // self.worldsize
-                doc_end = (
-                    ndocs * frag + ndocs
-                ) // self.worldsize - 1  # Inclusive upper bound
-                if shard not in docset:
-                    docset[shard] = [doc_start, doc_end]
-                min_d, max_d = docset[shard]
-                if doc_start < min_d:
-                    docset[shard][0] = doc_start
-                if doc_end > max_d:
-                    docset[shard][1] = doc_end
-
-            # Add shard entries to self.docset
+            # Assemble doc list for each file shard
+            # Create docset of form [shardid, min docid, max docid]
             doccount = 0
-            for shardid in docset:
-                min_d = docset[shardid][0]
-                max_d = docset[shardid][1]
-                self.docset.append((shardid, min_d, max_d))
-                doccount += max_d - min_d + 1
+            for shard in shardset:
+                ndocs = doc_counts[shard]
+                if ndocs > 0:
+                    doc_start = int(ndocs * shardset[shard][0])
+                    doc_end = max(
+                        doc_start, int(ndocs * shardset[shard][1]) - 1
+                    )  # inclusive upper bound
+                    self.docset.append([shard, doc_start, doc_end])
+                    doccount += doc_end - doc_start + 1
             self._len = doccount
 
             if self.verbose:
                 logging.info(
-                    f"    Worker {self.rank} ingested {len(shardfrags)} shard fragments from {dataset}"
+                    f"    Worker {self.rank} ingested {len(self.docset)} shard fragments from {dataset}"
                 )
 
             # Shuffle shard files - guaranteed inconsistent across workers
@@ -1002,6 +1279,7 @@ def setup(self):
             random.shuffle(self.docset)
             # Setup doc shuffle - same guarantee
             self.lcg_state = seed
+            self.g = torch.Generator().manual_seed(self.rank)
 
     def _get_docid(self, i):
         """
@@ -1048,8 +1326,11 @@ def _construct_chunk(self, j, doc, n_chunks):
         # Add bos/eos tokens if needed
         if self.bos is not None and j == 0:
             chunk = [self.bos] + chunk
-        if j == n_chunks - 1:
+        if j == n_chunks - 1 or self.consec == self.max_consec:
             chunk = chunk + [self.eos]
+            self.consec = 0
+        else:
+            self.consec += 1
         return chunk
 
     def _random_map_docid(self, size):
@@ -1094,10 +1375,9 @@ def __iter__(self):
                 doclcg = self._random_map_docid(docrange)
                 docid = doclcg + mindoc
                 doc = self.filehandler.get(reader, docid, self.drop)
-                if len(doc) == 0:
-                    continue
                 doclen = len(doc) + 1 if self.bos is None else len(doc) + 2
-                if doclen >= self.min_length:
+                keep_chance = (doclen/self.min_length)**self.filter_exp
+                if len(doc) > 0 and torch.rand(1, generator=self.g).item() < keep_chance:
                     n_chunks = math.ceil(doclen / self.chunksize)
                     for j in range(n_chunks):
                         if i == 0 and j < residual_chunks:
@@ -1110,6 +1390,7 @@ def __iter__(self):
                                 self.percent_seen = (
                                     self.docs_seen * 100 / (self._len + 1e-9)
                                 )
+                            self.has_yielded = True
                             yield self._construct_chunk(j, doc, n_chunks)
 
                 # Advance RNG state
@@ -1123,15 +1404,24 @@ def __iter__(self):
             newpath = os.path.join(self.datapath, shardid)
             path, reader = self._get_reader(path, newpath, reader)
             doc = self.filehandler.get(reader, docid, self.drop)
-            if len(doc) == 0:
-                continue
             doclen = len(doc) + 1 if self.bos is None else len(doc) + 2
-            if doclen >= self.min_length:
+            keep_chance = (doclen/self.min_length)**self.filter_exp
+            if len(doc) > 0 and torch.rand(1, generator=self.g).item() < keep_chance:
                 n_chunks = math.ceil(doclen / self.chunksize)
                 for j in range(residual_chunks):
                     self.chunk_index = j
+                    self.has_yielded = True
                     yield self._construct_chunk(j, doc, n_chunks)
 
+            # Check that epoch was non-empty
+            assert self.has_yielded, f"Empty logical shard detected: {self.dataset, self.docset}"
+
+    def state_dict(self):
+        # Write generator state manually
+        self.g_state = self.g.get_state()
+        out = super().state_dict()
+        return out
+
     def load_state_dict(self, state_dicts, sharded_input=False):
         self.setup()
         assert (
@@ -1142,6 +1432,9 @@ def load_state_dict(self, state_dicts, sharded_input=False):
         assert (
             d == self.dataset
         ), f"Dataset mismatch: checkpoint contains {self.dataset}, expected {d}"
+        # Manually set generator state if it exists
+        if self.g_state is not None:
+            self.g.set_state(self.g_state)
         return out
 
 
@@ -1203,12 +1496,12 @@ def setup(self):
         if not self.is_setup:
             _StatefulDataset.setup(self)
             n_logical_shards = self.total_shards
+            assert (
+                n_logical_shards % self.worldsize == 0
+            ), f"Total workers {self.worldsize} must divide n_logical_shards {n_logical_shards} evenly"
             logicals = list(range(n_logical_shards))
             self.logicals_owned = _shard_partition(logicals, self.rank, self.worldsize)
             self.n_logicals = n_logical_shards // self.worldsize
-            assert (
-                len(self.logicals_owned) == self.n_logicals
-            ), "(world size * num workers) does not divide logical shards evenly"
 
             # Build logical shards
             for i in range(self.n_logicals):
@@ -1225,6 +1518,9 @@ def setup(self):
                     )
             [d.setup() for d in self.data]
             self.n_docs_remaining = [d._len for d in self.data]
+            assert (
+                sum(self.n_docs_remaining) > 0
+            ), f"No documents detected in shard {self.rank} of {self.datapath}"
 
             self.generator = torch.Generator().manual_seed(self.rank)
 
@@ -1232,14 +1528,16 @@ def __iter__(self):
         self.setup()
         # Grab one doc at a time in random order
         data = [iter(d) for d in self.data]
+        # Reset if we're rescaling into a prematurely finished epoch
+        # (i.e. [1,1,0,0,0,0] into [1,1,0] [0,0,0] )
+        if sum(self.n_docs_remaining) == 0:
+            self.n_docs_remaining = [d._len for d in self.data]
+            self.generator.manual_seed(self.rank)
         while True:
             # Sample logical shard (or load from ckp)
             if self.current_reader is not None:
                 ind = self.current_reader
             else:
-                assert (
-                    sum(self.n_docs_remaining) > 0
-                ), f"No documents detected in {self.datapath}"
                 ind = torch.multinomial(
                     torch.tensor(self.n_docs_remaining, dtype=torch.float),
                     1,
@@ -1331,6 +1629,10 @@ def __init__(
             ]
         )
         assert len(self.datasets) > 0, "You must specify at least one dataset"
+        for d in datasets:
+            assert os.path.exists(
+                os.path.join(datapath, d)
+            ), f"Invalid subdataset path: {os.path.join(datapath, d)}"
 
         if weights is not None:
             assert len(weights) == len(
diff --git a/fms_fsdp/utils/train_utils.py b/fms_fsdp/utils/train_utils.py
index ef421f6f..ba05636d 100644
--- a/fms_fsdp/utils/train_utils.py
+++ b/fms_fsdp/utils/train_utils.py
@@ -2,7 +2,6 @@
 from dataclasses import asdict
 from functools import partial
 
-
 try:
     import packaging.version
 except ImportError:
@@ -30,6 +29,7 @@ def train(
     checkpointer,
     start_step,
     tokens_seen,
+    cp_degree: int = 1,
 ):
     if cfg.tracker:
         if cfg.tracker not in ["wandb", "aim"]:
@@ -44,19 +44,22 @@ def train(
             except ImportError:
                 raise ImportError("tracker is set to wandb but wandb is not installed.")
             if rank == 0:
-                print(f"--> wandb is enabled!")
+                print("--> Started initializing wandb", flush=True)
                 try:
                     wandb.init(
                         project=project_name,
                         dir=tracker_dir,
                         resume="allow",
                         id=run_id,
+                        # mode='offline',
+                        settings=wandb.Settings(init_timeout=3600),
                     )
                 except wandb.errors.UsageError:
                     raise ValueError(
                         "wandb failed to init, did you pass your wandb api key via WANDB_API_KEY?"
                     )
                 wandb.config = asdict(cfg)
+                print(f"--> wandb is enabled!", flush=True)
 
         if cfg.tracker == "aim":
             try:
@@ -64,7 +67,7 @@ def train(
             except ImportError:
                 raise ImportError("tracker is set to aim but aim is not installed.")
             if rank == 0:
-                print(f"--> aim is enabled!")
+                print("--> aim is enabled!")
                 run = Run(
                     experiment=project_name,
                     repo=tracker_dir,
@@ -89,8 +92,9 @@ def train(
         output = output.logits if hasattr(output, "logits") else output
         ce_loss = torch.nn.CrossEntropyLoss()
         loss = ce_loss(output.view(-1, output.size(-1)), label.view(-1).long())
-
+        loss = loss + .0001 * torch.logsumexp(output, dim=-1).pow(2).mean()
         loss.backward()
+
         ddp_stats[1] += model.clip_grad_norm_(cfg.grad_clip_thresh).item()
         optimizer.step()
         scheduler.step()
@@ -101,14 +105,18 @@ def train(
         if profiler:
             profiler.step()
 
-        if batch_idx % cfg.report_interval == 0:
+        if batch_idx % cfg.report_interval == 0 or batch_idx == start_step + 1:
             dist.all_reduce(ddp_stats, op=dist.ReduceOp.SUM)
             train_loss = ddp_stats[0] / ddp_stats[2]
             g_norm = ddp_stats[1] / ddp_stats[2]
             elapsed_time = time.time() - loop_start
             world_size = int(os.environ["WORLD_SIZE"])
             new_tokens_seen = (
-                (batch_idx - start_step) * world_size * cfg.batch_size * cfg.seq_length
+                (batch_idx - start_step)
+                * world_size
+                * cfg.batch_size
+                * cfg.seq_length
+                // cp_degree
             )
             if rank == 0:
                 total_tokens_seen = tokens_seen + new_tokens_seen
@@ -118,10 +126,10 @@ def train(
                 current_step_time = (time.time() - start) / cfg.report_interval
                 overall_step_time = elapsed_time / (batch_idx - start_step)
                 current_throughput = int(
-                    cfg.batch_size * cfg.seq_length / current_step_time
+                    cfg.batch_size * cfg.seq_length / cp_degree / current_step_time
                 )
                 overall_throughput = int(
-                    cfg.batch_size * cfg.seq_length / overall_step_time
+                    cfg.batch_size * cfg.seq_length / cp_degree / overall_step_time
                 )
                 reserved_mem = torch.cuda.max_memory_reserved(
                     device=torch.cuda.current_device()
@@ -145,7 +153,8 @@ def train(
                     "overall token per day:",
                     int(new_tokens_seen / elapsed_time * 3600 * 24),
                 )
-                if cfg.tracker:
+                print(f"Total tok/step: {world_size * cfg.batch_size * cfg.seq_length}")
+                if cfg.tracker and batch_idx > start_step + 1:
                     vals_to_track = {
                         "learning rate": current_lr,
                         "loss": current_loss,
@@ -201,11 +210,11 @@ def get_mixed_precision_policy(cfg, rank):
         if bf16_ready:
             mixed_precision_policy = bfSixteen
             if rank == 0:
-                print(f"bFloat16 enabled for mixed precision - using bfSixteen policy")
+                print("bFloat16 enabled for mixed precision - using bfSixteen policy")
         else:
             mixed_precision_policy = fpSixteen
             if rank == 0:
-                print(f"FP16 enabled")
+                print("FP16 enabled")
     else:
         mixed_precision_policy = None
 
diff --git a/fms_to_hf_mamba_transformers.py b/fms_to_hf_mamba_transformers.py
new file mode 100644
index 00000000..57b3ec80
--- /dev/null
+++ b/fms_to_hf_mamba_transformers.py
@@ -0,0 +1,280 @@
+# coding=utf-8
+# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Modified from src/transformers/models/bamba/convert_mamba_ssm_checkpoint.py
+"""
+
+"""This script can be used to convert checkpoints provided in the `mamba_ssm` library into the format provided in HuggingFace `transformers`. It depends on the `mamba2_ssm` package to be installed."""
+
+import argparse
+import json
+import os
+import re
+from os import path
+from typing import Dict, Optional, Union
+
+import torch
+from huggingface_hub import split_torch_state_dict_into_shards
+from safetensors.torch import save_file
+
+from transformers import AutoTokenizer
+from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME
+
+from transformers.models.bamba import BambaConfig
+
+
+def convert_state_dict_from_mamba_ssm(original_sd: Dict) -> Dict[str, torch.Tensor]:
+    state_dict = {}
+
+    for orig_k, param in original_sd.items():
+        k = orig_k.replace("backbone", "model")
+
+        # for embeddings
+        k = k.replace("embedding", "embed_tokens")
+
+        # for mixer
+        k = k.replace("mixer", "mamba")
+
+        # for final layernorm
+        k = k.replace("norm_f", "final_layernorm")
+
+        # for block layernorm
+        k = re.sub(r"(\d+)\.norm\.", r"\1.input_layernorm.", k)
+        k = re.sub(r"(\d+)\.norm2\.", r"\1.pre_ff_layernorm.", k)
+
+        # for mlp
+        k = k.replace("mlp.fc2", "feed_forward.down_proj")
+
+        if "mlp.fc1" in k:
+            param, param2 = torch.chunk(param, 2, dim=0)
+            k2 = k.replace("mlp.fc1", "feed_forward.gate_proj")
+            state_dict[k2] = param2
+            k = k.replace("mlp.fc1", "feed_forward.up_proj")
+
+        if ("in_proj" in k and orig_k.replace("in_proj", "conv1d") in original_sd) or (
+            "out_proj" in k and orig_k.replace("out_proj", "conv1d") in original_sd
+        ):
+            # then this must be a mamba
+            pass
+        else:
+            # for attn
+            # - because mixer was replaced to mamba above
+            k = k.replace("mamba.out_proj", "self_attn.o_proj")
+            if "mamba.in_proj" in k:
+                m, n = param.shape
+                d = (m - n) // 2
+                param, param2, param3 = torch.split(param, [n, d, d], dim=0)
+                k2 = k.replace("mamba.in_proj", "self_attn.k_proj")
+                state_dict[k2] = param2
+                k2 = k.replace("mamba.in_proj", "self_attn.v_proj")
+                state_dict[k2] = param3
+                k = k.replace("mamba.in_proj", "self_attn.q_proj")
+
+        state_dict[k] = param
+
+    return state_dict
+
+
+# Adapted from transformers.models.mamba.convert_mamba_ssm_checkpoint_to_pytorch.py
+def convert_ssm_config_to_hf_config(
+    config_ssm: Dict,
+    **kwargs,
+) -> BambaConfig:
+    """Convert a config from mamba_ssm to a BambaConfig from here."""
+    hf_config: BambaConfig = BambaConfig(**kwargs)
+
+    hf_config.architectures = ["BambaForCausalLM"]
+
+    # Set important values from config and recalculate other resulting entries
+    hf_config.hidden_size = config_ssm["d_model"]
+    hf_config.intermediate_size = config_ssm["d_intermediate"]
+    hf_config.mamba_n_heads = (hf_config.hidden_size * hf_config.mamba_expand) // hf_config.mamba_d_head
+    hf_config.num_hidden_layers = config_ssm["n_layer"]
+    hf_config.tie_word_embeddings = config_ssm["tie_embeddings"]
+
+    # currently this script assumes config_ssm belongs to v2
+    if config_ssm["ssm_cfg"].get("layer") != "Mamba2":
+        raise ValueError("Conversion script only supports Mamba2")
+
+    # Set attention values
+    attn_cfg = config_ssm.get("attn_cfg")
+    if attn_cfg:
+        assert attn_cfg["causal"], "Only support non-causal attention."
+        assert not attn_cfg["qkv_proj_bias"], "Only support no qkv bias."
+        assert not attn_cfg["out_proj_bias"], "Only support no out bias."
+        hf_config.attn_rotary_emb = attn_cfg["rotary_emb_dim"]
+        hf_config.num_attention_heads = attn_cfg["num_heads"]
+        hf_config.num_key_value_heads = attn_cfg["num_heads_kv"]
+        hf_config.rope_theta = attn_cfg["rotary_emb_base"]
+
+    attention_layer_indices = config_ssm.get("attn_layer_idx")
+    if attention_layer_indices:
+        hf_config.attn_layer_indices = attention_layer_indices
+
+    # Padded vocab size, mostly of 16 but 32 is also very common in different models
+    vocab_size = config_ssm["vocab_size"]
+    pad_vocab_size_multiple = config_ssm["pad_vocab_size_multiple"]
+    if (vocab_size % pad_vocab_size_multiple) != 0:
+        vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
+    hf_config.vocab_size = vocab_size
+
+    return hf_config
+
+
+def save_single_safetensor(
+    state_dict: Dict,
+    save_directory: str,
+    metadata: Dict,
+):
+    save_file(
+        state_dict,
+        os.path.join(save_directory, SAFE_WEIGHTS_NAME),
+        metadata,
+    )
+
+
+def save_sharded_safetensors(
+    state_dict: Dict,
+    save_directory: str,
+    metadata: Dict,
+    max_shard_size: Union[int, str] = "5GB",
+):
+    filename_pattern = SAFE_WEIGHTS_NAME.replace(".bin", "{suffix}.bin").replace(
+        ".safetensors", "{suffix}.safetensors"
+    )
+    state_dict_split = split_torch_state_dict_into_shards(
+        state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
+    )
+    index = {
+        "metadata": state_dict_split.metadata,
+        "weight_map": state_dict_split.tensor_to_filename,
+    }
+    # Save the index
+    with open(os.path.join(save_directory, SAFE_WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
+        content = json.dumps(index, indent=2, sort_keys=True) + "\n"
+        f.write(content)
+
+    filename_to_tensors = state_dict_split.filename_to_tensors.items()
+    for shard_file, tensors in filename_to_tensors:
+        shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
+        save_file(shard, os.path.join(save_directory, shard_file), metadata=metadata)
+
+
+# Adapted from transformers.models.mamba.convert_mamba_ssm_checkpoint_to_pytorch.py
+def convert_mamba_ssm_checkpoint_file_to_huggingface_model_file(
+    mamba_ssm_checkpoint_path: str,
+    precision: str,
+    output_dir: str,
+    tokenizer_path: Optional[str] = None,
+    save_model: Union[bool, str] = True,
+) -> None:
+    # load tokenizer if provided, this will be used to set the
+    # token_ids in the config file
+    token_ids = {}
+    if tokenizer_path:
+        tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
+        for key in [
+            "bos_token_id",
+            "eos_token_id",
+            "pad_token_id",
+        ]:
+            id = getattr(tokenizer, key, None)
+            if id:
+                token_ids[key] = id
+
+    # there are some configs unsettable by mamba_ssn config, so
+    # if there are changes from the defaults, have to pass them into
+    # the function
+    unsettables = {
+        "mamba_d_head": 64,
+        "mamba_d_state": 128,
+        "mamba_n_groups": 1,
+        "rms_norm_eps": 1e-5,
+    }
+
+    # Load and save config based on name
+    config_path = path.join(mamba_ssm_checkpoint_path, "config.json")
+    with open(config_path, "r", encoding="utf-8") as json_file:
+        config = json.load(json_file)
+
+    # convert the config
+    hf_config = convert_ssm_config_to_hf_config(
+        config_ssm=config,
+        **token_ids,
+        **unsettables,
+    )
+    hf_config.save_pretrained(output_dir)
+
+    # Load state dict of the original model and transfer to hf model
+    state_dict = torch.load(
+        path.join(mamba_ssm_checkpoint_path, "pytorch_model.bin"),
+        map_location="cpu",
+        weights_only=True,
+    )
+    # FIXME: allow other parameters to pass in
+    state_dict = convert_state_dict_from_mamba_ssm(state_dict)
+
+    # Save new model to pytorch_dump_path
+    dtype = torch.float32 if precision == "fp32" else (torch.bfloat16 if precision == "bf16" else torch.float16)
+
+    save_file_fn = None
+    if isinstance(save_model, bool) and save_model:
+        save_file_fn = save_single_safetensor
+    elif isinstance(save_model, str) and save_model == "sharded":
+        save_file_fn = save_sharded_safetensors
+
+    if save_file_fn:
+        save_file_fn({k: v.to(dtype) for k, v in state_dict.items()}, output_dir, metadata={"format": "pt"})
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        "-i",
+        "--mamba_ssm_checkpoint_directory",
+        type=str,
+        required=True,
+        help="Path to a directory containing the `pytorch_model.bin` mamba_ssm checkpoint file to be converted.",
+    )
+    parser.add_argument(
+        "-p",
+        "--precision",
+        type=str,
+        default="fp16",
+        required=True,
+        choices=("fp32", "fp16", "bf16"),
+        help="The precision the model will be saved in. Select from fp32, fp16 or bf16.",
+    )
+    parser.add_argument(
+        "-o", "--output_dir", type=str, required=True, help="Path to directory to save the converted output model to."
+    )
+    parser.add_argument(
+        "-t",
+        "--tokenizer_model_path",
+        type=str,
+        default=None,
+        required=False,
+        help="Path to a the tokenizer file.",
+    )
+    args = parser.parse_args()
+
+    convert_mamba_ssm_checkpoint_file_to_huggingface_model_file(
+        args.mamba_ssm_checkpoint_directory,
+        args.precision,
+        args.output_dir,
+        args.tokenizer_model_path,
+    )
+
diff --git a/main_training_mamba.py b/main_training_mamba.py
index 3619ea25..88fb9bbc 100644
--- a/main_training_mamba.py
+++ b/main_training_mamba.py
@@ -4,12 +4,15 @@
 
 import fire
 import torch
+import torch.nn as nn
 import torch.optim as optim
 from mamba_ssm.models.config_mamba import MambaConfig
 from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
 from mamba_ssm.modules.block import Block
 from torch import distributed as dist
+from torch.distributed.device_mesh import DeviceMesh
 from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
+from torch.distributed.fsdp.wrap import CustomPolicy
 from torch.optim.lr_scheduler import LambdaLR
 
 from fms_fsdp import config
@@ -51,20 +54,82 @@ def main(**kwargs):
         Path.home(), ".triton", "cache", str(local_rank)
     )
 
-    # get policy
+    # get policy. NOTE: @goon - overriding {wrapping_policy, param_init_fn} below
     block = Block
     (
         mixed_precision_policy,
-        wrapping_policy,
+        _,
         sharding_strategy_policy,
         apply_selective_ac,
-        param_init_fn,
+        _,  # NOTE: @goon - We'll override param_init_fn for mamba below
     ) = get_policies(cfg, rank, block)
+    if cfg.low_cpu_fsdp:
+        # NOTE: @goon - the params will be junk after using this. Only intended to be used in
+        # conjunction with loading proper weights from a checkpoint.
+        def param_init_fn(module):
+            module.to_empty(device=torch.cuda.current_device())
+    else:
+        param_init_fn = None
+
+    # Meshes for FSDP and CP. NOTE: @goon - Getting hangs and/or OOMs if I don't explicitly specify
+    # the FSDP mesh when using 4+ nodes with HSDP + in-node-CP.
+    def get_1D_world_mesh(world_size: int) -> DeviceMesh:
+        mesh = dist.device_mesh.init_device_mesh("cuda", (world_size,))
+        return mesh
+
+    def get_2D_world_mesh(world_size: int) -> DeviceMesh:
+        num_gpu_per_node = torch.cuda.device_count()
+        assert world_size % num_gpu_per_node == 0
+        mesh = dist.device_mesh.init_device_mesh(
+            "cuda",
+            (world_size // num_gpu_per_node, num_gpu_per_node),
+            mesh_dim_names=("inter_node", "intra_node"),
+        )
+        return mesh
+
+    requires_2d_mesh = (cfg.sharding_strategy == "hsdp") or (
+        cfg.cp and not cfg.cp_over_world
+    )
+    if requires_2d_mesh:
+        mesh = get_2D_world_mesh(world_size)
+        fsdp_mesh = mesh
+        cp_mesh = mesh["intra_node"] if cfg.cp else None
+    else:
+        mesh = get_1D_world_mesh(world_size)
+        fsdp_mesh = mesh
+        cp_mesh = mesh if cfg.cp else None
+
+    if cfg.cp:
+        cp_degree = world_size if cfg.cp_over_world else torch.cuda.device_count()
+    else:
+        cp_degree = 1
+
+    dp_degree = world_size // cp_degree
 
     # get model
     config_data = get_model_config(cfg.model_variant)
     mamba_config = MambaConfig(**config_data)
-    model = MambaLMHeadModel(mamba_config)
+
+    if cfg.low_cpu_fsdp:
+        with torch.device("meta"):
+            model = MambaLMHeadModel(
+                mamba_config,
+                cp_mesh=cp_mesh if cfg.cp else None,
+                cp_mamba_impl=cfg.cp_mamba_impl if cfg.cp else None,
+                cp_attn_impl=cfg.cp_attn_impl if cfg.cp else None,
+            )
+    else:
+        model = MambaLMHeadModel(
+            mamba_config,
+            cp_mesh=cp_mesh if cfg.cp else None,
+            cp_mamba_impl=cfg.cp_mamba_impl if cfg.cp else None,
+            cp_attn_impl=cfg.cp_attn_impl if cfg.cp else None,
+        )
+
+    def lambda_fn(module: nn.Module):
+        return isinstance(module, (Block, nn.Embedding)) or module is model.lm_head
+
+    wrapping_policy = CustomPolicy(lambda_fn)
 
     if rank == 0:
         total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
@@ -74,7 +139,7 @@ def main(**kwargs):
     if rank == 0:
         print("Constructing datasets...")
     if not cfg.use_dummy_dataset:
-        train_loader = get_data_loader(cfg, rank, world_size)
+        train_loader = get_data_loader(cfg, rank, world_size, dp_degree)
     else:
         train_loader = get_dummy_loader(cfg, rank, world_size)
     if rank == 0:
@@ -83,32 +148,60 @@ def main(**kwargs):
     # FSDP
     model = FSDP(
         model,
+        device_mesh=fsdp_mesh,
         auto_wrap_policy=wrapping_policy,
         mixed_precision=mixed_precision_policy,
         sharding_strategy=sharding_strategy_policy,
-        use_orig_params=cfg.use_torch_compile,
+        use_orig_params=True,
         device_id=torch.cuda.current_device(),
         limit_all_gathers=True,
         param_init_fn=param_init_fn,
     )
+    if rank == 0:
+        print(model)
 
     # fsdp activation checkpointing
     if cfg.fsdp_activation_checkpointing:
         if rank == 0:
-            print(f"--> applying FSDP activation checkpointing...")
+            print("--> applying FSDP activation checkpointing...")
         apply_selective_ac(model, p=cfg.selective_checkpointing)
 
     # torch compile
     if cfg.use_torch_compile:
         if rank == 0:
-            print(f"--> enabling torch compile...")
+            print("--> enabling torch compile...")
         # the default accumulated_cache_size_limit=64 is not enough for 70b model, so we make it 128 here
         torch._dynamo.config.accumulated_cache_size_limit = 128
         model = torch.compile(model)
 
     # Optimizer
+    # optimizer = optim.AdamW(
+    #     model.parameters(),
+    #     lr=cfg.learning_rate,
+    #     betas=(0.9, 0.95),
+    #     weight_decay=0.1,
+    # )
+    params_with_decay = []
+    params_without_decay = []
+    for name, param in model.named_parameters():
+        suff = name.split('.')[-1]
+        if 'A_log' in suff or 'D' in suff or 'dt_bias' in suff:
+            params_without_decay.append(param)
+        else:
+            params_with_decay.append(param)
     optimizer = optim.AdamW(
-        model.parameters(), lr=cfg.learning_rate, betas=(0.9, 0.95), weight_decay=0.1
+        [
+            {
+                "params": params_with_decay,
+                "weight_decay": 0.1,
+            },
+            {
+                "params": params_without_decay,
+                "weight_decay": 0.,
+            },
+        ],
+        betas = (0.9, 0.95),
+        lr = cfg.learning_rate,
     )
 
     # optionally load from checkpoint (when continue pretraining)
@@ -131,19 +224,36 @@ def main(**kwargs):
             g["initial_lr"] = cfg.learning_rate
 
     # LR schedule
+    warmup_interval = min(2000, cfg.num_steps // 20)
+    warmup = lambda x: 1 - (1 - min(x, warmup_interval) / warmup_interval) ** 2
     # linear decay for annealing
     if cfg.training_stage == "annealing":
-        schedule = lambda x: 1 - x / cfg.num_steps
-    else:
+        warmup_interval = 1000
+        schedule = lambda x: x / warmup_interval if x < warmup_interval else 1 - (x - warmup_interval) / (cfg.num_steps - warmup_interval)
+    elif cfg.training_stage == "cosine":
         # cosine decay
-        warmup_interval = min(2000, cfg.num_steps // 20)
         schedule = lambda x: min(
-            1 - (1 - min(x, warmup_interval) / warmup_interval) ** 2,
+            warmup(x),
             0.1
             + 0.5
             * (1 - 0.1)
             * (1 + math.cos(min(x, cfg.num_steps) / cfg.num_steps * math.pi)),
         )
+    elif cfg.training_stage == "constant":
+        warmup_interval = 2000
+        schedule = lambda x: (min(x, warmup_interval) / warmup_interval)
+    elif cfg.training_stage == "linear_to_constant":
+        linear_steps = 25000
+        start_lr = 2e-4
+        end_lr = 2e-4
+        schedule = lambda x: (start_lr + (end_lr - start_lr) * min(x - start_step, linear_steps) / linear_steps) / cfg.learning_rate
+    elif cfg.training_stage == "annealing_with_specified_decay_steps":
+        warmup_interval = 2000
+        total_decay_steps = 25000
+        schedule = lambda x: (x - start_step) / warmup_interval if x - start_step < warmup_interval else max(0.0, 1 - (x - start_step - warmup_interval) / total_decay_steps)
+    else:
+        schedule = lambda x: 1.0 + (0.75 - 1.0) * (x / 32000) if x <= 32000 else 0.75
+        
 
     scheduler = LambdaLR(optimizer, lambda x: schedule(x + start_step))
 
@@ -165,6 +275,7 @@ def main(**kwargs):
         checkpointer,
         start_step,
         tokens_seen,
+        cp_degree,
     )
 
     checkpointer.save_single_file(cfg.num_steps, model)