-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
273 lines (241 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import random
import logging
import argparse
import numpy as np
import pandas as pd
from torch import nn
from torch.utils.data import DataLoader
from sklearn.metrics import matthews_corrcoef
from stabilizer.model import PoolerClassifier
from stabilizer.dataset import TextLabelDataset
from stabilizer.reproducibility import seed_torch
from stabilizer.trainer import train_step, evaluate_step
from stabilizer.reinitialize import reinit_autoencoder_model
from stabilizer.llrd import get_optimizer_parameters_with_llrd
from transformers import get_scheduler, AdamW, AutoModel, AutoTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
"""
config = {'train_data_path': 'data/glue/cola/train.jsonl',
'valid_data_path': 'data/glue/cola/valid.jsonl',
'batch_size': 32,
'pretrained_tokenizer_name_or_path': 'models/bert-base-uncased',
'pretrained_model_name_or_path': 'models/bert-base-uncased',
'device_name': 'cpu',
'dropout_prob': 0.1,
'num_classes': 1,
'lr': 2e-5,
'num_epochs': 3,
'validate_every_n_iteration': 10,
'dataloader_seed': 41,
'layer_initialization_seed': 1000,
'dropout_seed': 1234,
'reinit_encoder': True,
'reinit_num_layers': 4,
'apply_llrd': True,
'multiplicative_factor': 0.95}
python main.py --train_data_path data/glue/cola/train.jsonl --valid_data_path data/glue/cola/valid.jsonl --batch_size 32 \
--pretrained_tokenizer_name_or_path models/bert-base-uncased --pretrained_model_name_or_path models/bert-base-uncased \
--device_name cuda --dropout_prob 0.1 --num_classes 1 --lr 2e-5 --num_epochs 3 --validate_every_n_iteration 10 \
--dataloader_seed 41 --layer_initialization_seed 1000 --dropout_seed 1234 --reinit_encoder True --reinit_num_layers 4 \
--apply_llrd True --multiplicative_factor 0.95
"""
def parse_args():
parser = argparse.ArgumentParser(description="Train a Pooler classifier on CoLA dataset")
parser.add_argument("--train_data_path", type=str, help="Path of the training data file")
parser.add_argument("--valid_data_path", type=str, help="Path of the validation data file")
parser.add_argument(
"--pretrained_tokenizer_name_or_path",
type=str,
help="Path of the directory that contains the tokenizer",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
help="Path of the directory that contains the pretrained model",
)
parser.add_argument("--batch_size", type=int, help="Batch size")
parser.add_argument(
"--device_name",
type=str,
choices=("cpu", "cuda"),
help="Device to train the algorithm",
)
parser.add_argument("--dropout_prob", type=float, help="Value of dropout")
parser.add_argument(
"--num_classes",
type=int,
help="Num of output classes for the classification task",
)
parser.add_argument("--lr", type=float, help="Learning rate")
parser.add_argument("--num_epochs", type=int, help="Number of training epochs")
parser.add_argument("--validate_every_n_iteration", type=int, help="How often to validate")
parser.add_argument("--dropout_seed", type=int, default=random.randint(a=0, b=10000))
parser.add_argument("--layer_initialization_seed", type=int, default=random.randint(a=0, b=10000))
parser.add_argument("--dataloader_seed", type=int, default=random.randint(a=0, b=10000))
parser.add_argument(
"--reinit_encoder",
type=bool,
help="Should be the transformer encoder be reinitialized",
)
parser.add_argument(
"--reinit_num_layers",
type=int,
help="Number of transformer encoder layers to be reinitialized",
)
parser.add_argument(
"--apply_llrd",
type=bool,
help="Should apply Layerwise learning rate decay to the model parameters during optimization",
)
parser.add_argument(
"--multiplicative_factor",
type=float,
help="Factor with which the learning rate should decrease for successive layers",
)
args = parser.parse_args()
return args
def post_process_targets(targets):
targets = targets.type(torch.int)
targets = targets.cpu().detach().numpy().reshape(-1)
return targets
def post_process_predictions(predictions):
predictions = torch.sigmoid(predictions)
predictions = (predictions >= 0.5).type(torch.int)
predictions = predictions.cpu().detach().numpy().reshape(-1)
return predictions
def compute_matthews_corrcoef(targets, predictions):
if len(np.unique(predictions)) > 1 and len(np.unique(targets)) > 1:
score = matthews_corrcoef(y_true=targets, y_pred=predictions)
else:
score = 0.0
return score
def run():
# Read configuration
config = parse_args().__dict__
# Read training data
train_data = pd.read_json(path_or_buf=config["train_data_path"], lines=True).set_index("idx")
valid_data = pd.read_json(path_or_buf=config["valid_data_path"], lines=True).set_index("idx")
# Prepate data to create dataset
train_text_excerpts = train_data["text"].tolist()
valid_text_excerpts = valid_data["text"].tolist()
train_labels = torch.from_numpy(train_data["label"].to_numpy().reshape(-1, 1)).type(torch.float32)
valid_labels = torch.from_numpy(valid_data["label"].to_numpy().reshape(-1, 1)).type(torch.float32)
# Create Dataset
train_dataset = TextLabelDataset(text_excerpts=train_text_excerpts, labels=train_labels)
valid_dataset = TextLabelDataset(text_excerpts=valid_text_excerpts, labels=valid_labels)
# Create DataLoader
generator = torch.Generator(device="cpu")
_ = generator.manual_seed(config["dataloader_seed"])
train_dataloader = DataLoader(
dataset=train_dataset,
batch_size=config["batch_size"],
shuffle=True,
generator=generator,
)
valid_dataloader = DataLoader(
dataset=valid_dataset,
batch_size=config["batch_size"],
shuffle=False,
generator=generator,
)
# Create tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(config["pretrained_tokenizer_name_or_path"])
transformer = AutoModel.from_pretrained(
pretrained_model_name_or_path=config["pretrained_model_name_or_path"],
hidden_dropout_prob=config["dropout_prob"],
attention_probs_dropout_prob=config["dropout_prob"],
)
# Reinitialize
if config["reinit_encoder"]:
seed_torch(config["layer_initialization_seed"])
transformer.encoder = reinit_autoencoder_model(
transformer.encoder, reinit_num_layers=config["reinit_num_layers"]
)
model = PoolerClassifier(
transformer=transformer,
transformer_output_size=transformer.config.hidden_size,
transformer_output_dropout_prob=config["dropout_prob"],
num_classes=config["num_classes"],
task_specific_layer_seed=config["layer_initialization_seed"],
)
device = torch.device(config["device_name"])
_ = model.to(device)
# Define loss
loss_fn = nn.BCEWithLogitsLoss()
# Create optimizer
if config["apply_llrd"]:
model_parameters = get_optimizer_parameters_with_llrd(
model=model,
peak_lr=config["lr"],
multiplicative_factor=config["multiplicative_factor"],
)
else:
model_parameters = model.parameters()
optimizer = AdamW(params=model_parameters, lr=config["lr"])
# Create scheduler
num_training_steps = config["num_epochs"] * len(train_dataloader)
num_warmup_steps = num_training_steps // 10
logger.info(f"Number of training steps: {num_training_steps}")
logger.info(f"Number of warmup steps: {num_warmup_steps}")
scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
# Add dropout seed
seed_torch(config["dropout_seed"])
# Start training
iteration_num = 0
for epoch in range(config["num_epochs"]):
for batch in train_dataloader:
batch_inputs = tokenizer(
text=batch["text_excerpt"],
padding=True,
truncation=True,
return_tensors="pt",
).to(device)
batch_targets = batch["label"].to(device)
train_outputs = train_step(
model=model,
inputs=batch_inputs,
targets=batch_targets,
loss_fn=loss_fn,
optimizer=optimizer,
scheduler=scheduler,
)
if iteration_num % config["validate_every_n_iteration"] == 0:
valid_targets, valid_predictions = [], []
for batch in valid_dataloader:
batch_inputs = tokenizer(
text=batch["text_excerpt"],
padding=True,
truncation=True,
return_tensors="pt",
).to(device)
batch_targets = batch["label"].to(device)
valid_outputs = evaluate_step(
model=model,
inputs=batch_inputs,
targets=batch_targets,
loss_fn=loss_fn,
)
valid_targets.extend(valid_outputs["targets"])
valid_predictions.extend(valid_outputs["predictions"])
valid_targets = torch.vstack(valid_targets)
valid_predictions = torch.vstack(valid_predictions)
valid_loss = loss_fn(valid_predictions, valid_targets)
valid_targets = post_process_targets(valid_targets)
valid_predictions = post_process_predictions(valid_predictions)
valid_score = compute_matthews_corrcoef(targets=valid_targets, predictions=valid_predictions)
logger.info(f"Iteration num: {iteration_num}, Train loss: {train_outputs['loss']}")
logger.info(f"Iteration num: {iteration_num}, Valid loss: {valid_loss}, Valid score: {valid_score}")
iteration_num += 1
if __name__ == "__main__":
run()