forked from sarathknv/adversarial-examples-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_dataset.py
executable file
·64 lines (46 loc) · 2.57 KB
/
prepare_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from torchvision import datasets, transforms
def load_dataset(dataset_name):
if dataset_name == 'mnist':
num_classes = 10
in_channels = 1
train = datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.1307,), (0.3081,))
#transforms.Normalize((0.5,), (0.5,))
]))
test = datasets.MNIST('../data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.1307,), (0.3081,))
#transforms.Normalize((0.5,), (0.5,))
]))
elif dataset_name == 'fmnist':
num_classes = 10
in_channels = 1
train = datasets.FashionMNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test = datasets.FashionMNIST('../data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
elif dataset_name == 'cifar10':
num_classes = 10
in_channels = 3
train = datasets.CIFAR10('../data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2615))
]))
test = datasets.CIFAR10('../data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]))
return (train, test, in_channels, num_classes)