forked from 1chipML/1chipML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_stats.c
234 lines (187 loc) · 7.32 KB
/
test_stats.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#define EPSILON 0.01
#include "linear_congruential_random_generator.h"
#include "stats.h"
#include <stdio.h>
int testVariance(real_number* data, vec_size size, real_number expected) {
real_number output = variance(data, size);
if (fabs(output - expected) > EPSILON) {
printf("Fail Test Variance : Expected %f, got %f\n", expected, output);
return 1;
}
printf("Success Test Variance\n");
return 0;
};
int testMean(real_number* data, vec_size size, real_number expected) {
real_number output = mean(data, size);
if (fabs(output - expected) > EPSILON) {
printf("Fail Test Mean : Expected %f, got %f\n", expected, output);
return 1;
}
printf("Success Test Mean\n");
return 0;
};
int testAnalyzeData(real_number* data, vec_size size, DataSummary expected) {
DataSummary output;
analyzeData(data, size, &output);
if (fabs(output.max - expected.max) > EPSILON) {
printf("Fail Test Analyze Data : max is expected to be %f, but is %f\n",
expected.max, output.max);
return 1;
}
if (fabs(output.min - expected.min) > EPSILON) {
printf("Fail Test Analyze Data : min is expected to be %f, but is %f\n",
expected.min, output.min);
return 1;
}
if (fabs(output.mean - expected.mean) > EPSILON) {
printf("Fail Test Analyze Data : mean is expected to be %f, but is %f\n",
expected.mean, output.mean);
return 1;
}
if (fabs(output.absAverageDeviation - expected.absAverageDeviation) >
EPSILON) {
printf("Fail Test Analyze Data : absAverageDeviation is expected to be %f, "
"but is %f\n",
expected.absAverageDeviation, output.absAverageDeviation);
return 1;
}
if (fabs(output.standardDeviation - expected.standardDeviation) > EPSILON) {
printf("Fail Test Analyze Data : standardDeviation is expected to be %f, "
"but is %f\n",
expected.standardDeviation, output.standardDeviation);
return 1;
}
if (fabs(output.variance - expected.variance) > EPSILON) {
printf(
"Fail Test Analyze Data : variance is expected to be %f, but is %f\n",
expected.variance, output.variance);
return 1;
}
if (fabs(output.skewness - expected.skewness) > EPSILON) {
printf(
"Fail Test Analyze Data : skewness is expected to be %f, but is %f\n",
expected.skewness, output.skewness);
return 1;
}
if (fabs(output.kurtosis - expected.kurtosis) > EPSILON) {
printf(
"Fail Test Analyze Data : kurtosis is expected to be %f, but is %f\n",
expected.kurtosis, output.kurtosis);
return 1;
}
printf("Success Test Analyze Data\n");
return 0;
}
int testCovariance(real_number* x, real_number* y, vec_size size,
real_number expected) {
real_number output = covariance(x, y, size);
if (fabs(output - expected) > EPSILON) {
printf("Fail Test Covariance : Expected %f, got %f\n", expected, output);
return 1;
}
printf("Success Test Covariance\n");
return 0;
}
int testSimpleLinearRegression(real_number* x, real_number* y, vec_size size,
real_number expectedA, real_number expectedB) {
real_number a;
real_number b;
simpleLinearRegression(x, y, size, &a, &b);
if (fabs(a - expectedA) > EPSILON) {
printf("Fail Test Simple Linear Regression : Expected slope to be %f, got "
"%f\n",
expectedA, a);
return 1;
}
if (fabs(b - expectedB) > EPSILON) {
printf("Fail Test Simple Linear Regression : Expected y-intercept to be "
"%f, got %f\n",
expectedB, b);
return 1;
}
printf("Success Test Simple Linear Regression\n");
return 0;
}
int testKMeans(real_number* data, vec_size size, vec_size dimensions,
vec_size nbClusters, real_number* expectedCentroids,
vec_size* expectedAssignations) {
real_number centroids[size];
vec_size assignations[size];
kmeans(data, size, dimensions, nbClusters, centroids, assignations);
for (vec_size i = 0; i < nbClusters * dimensions; ++i) {
if (fabs(centroids[i] - expectedCentroids[i]) > EPSILON) {
printf("Fail Test K-Means : Expected value %f, but got value %f\n",
expectedCentroids[i], centroids[i]);
// return 1;
}
}
for (vec_size i = 0; i < size; ++i) {
if (abs((int)(assignations[i]) - (int)(expectedAssignations[i])) >
EPSILON) {
printf("Fail Test K-Means : Expected value %u, but got value %u\n",
expectedAssignations[i], assignations[i]);
// return 1;
}
}
printf("Success Test K-Means\n");
return 0;
}
#define ARRAY_SIZE 10
int main() {
real_number array[ARRAY_SIZE] = {0, 2, 2, 2, 3, 4, 4, 5, 5, 6};
DataSummary dataSummary;
int result = 0;
result |= testVariance(array, ARRAY_SIZE, 3.344444);
result |= testMean(array, ARRAY_SIZE, 3.3);
result |= testCovariance(array, array, ARRAY_SIZE, 3.34444);
//////////////////////////////////////////////////
// Test Data Summary
//////////////////////////////////////////////////
dataSummary.max = 6.0;
dataSummary.min = 0.0;
dataSummary.mean = 3.3;
dataSummary.absAverageDeviation = 1.66666;
dataSummary.standardDeviation = 1.828782;
dataSummary.variance = 3.344444;
dataSummary.skewness = -0.280673;
dataSummary.kurtosis = -0.485614;
result |= testAnalyzeData(array, ARRAY_SIZE, dataSummary);
//////////////////////////////////////////////////
// Test Linear Regression
//////////////////////////////////////////////////
real_number xTest[ARRAY_SIZE] = {1, 2, 3, 5, 6, 9, 10, 13, 15, 20};
real_number yTest[ARRAY_SIZE] = {20, 10, 30, 40, 100,
150, 200, 180, 240, 300};
result |=
testSimpleLinearRegression(xTest, yTest, ARRAY_SIZE, 16.12079, -8.41463);
//////////////////////////////////////////////////
// Test K-Means clustering
//////////////////////////////////////////////////
#define NB_POINTS 20
#define CLUSTERS 3
#define DIMENSIONS 2
set_linear_congruential_generator_seed(5);
real_number data[NB_POINTS * DIMENSIONS] = {
22.01335086148608, 18.801364597492864, 22.274837043375705,
18.682588601124213, 19.502956725090552, 20.17076888245898,
20.229963050572085, 19.054781799295984, 21.819548107461095,
19.289814616585776, 19.695324198649647, 20.271787074895347,
-28.189858138417062, -30.21011540307979, -27.914703036689676,
-31.055753064768847, -28.743932779980288, -27.953481572887785,
-30.048138203098393, -28.781921054981733, -31.189381213449188,
-28.895541451520362, -27.844628611053828, -29.654742696714116,
28.483861507851984, 30.267898592332628, 29.74360791485781,
32.06804356959503, 28.97341210709923, 31.805104900245652,
30.259033312327375, 31.729763165668828, 29.435655296524605,
30.511488042962625, 31.296689545182282, 29.460094002099556,
32.0547752304292, 29.51133645075526, 28.351282330632205,
31.522144400392243};
real_number expectedCentroids[CLUSTERS * DIMENSIONS] = {
20.92266333, 19.3785176, -28.98844033,
-29.42525921, 29.82478966, 30.85948414};
vec_size expectedAssignations[NB_POINTS] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2};
result |= testKMeans(data, NB_POINTS, DIMENSIONS, CLUSTERS, expectedCentroids,
expectedAssignations);
return result;
}